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PREFACE

As we are writing we are looking forward to the 8th International Conference on Mathematical and

Numerical Aspects of Waves (Waves 2007) which will be held in a month’s time, from 23 to 27 July

2007, at the University of Reading, organised jointly with INRIA. This meeting is the 8th in a sequence

which started in Strasbourg in 1991. Commencing with that first meeting, this series has been one of the

main venues where significant advances in the analysis and computational modelling of wave phenomena

are discussed and where exciting new applications are presented.

We expect this 8th conference to maintain the strong traditions of its predecessors. In addition to

plenary talks by Mark Ablowitz, Annalisa Buffa, Weng Cho Chew, Tom Hagstrom, Andreas Kirsch, John

Toland, and Ross McPhedran, we are expecting approximately 180 varied and interesting contributed

talks. This proceedings contains accounts, in the form of 2-3 page short papers or extended abstracts, of

all the papers to be presented at the Waves 2007 meeting.

As the reader of this proceedings will see, major themes of the conference include periodic media and

photonic crystals, metamaterials and propagation in complex and random media, nonlinear wave phe-

nomena in optics and fluid dynamics, inverse problems and optimization, numerical methods for time

domain problems, resonances and trapped modes, finite element methods for the Helmholtz equation

and Maxwell system, absorbing boundary conditions, elastic waves, gravity waves, and brain waves and

cognitive neurodynamics. The conference includes an embedded Workshop on High Frequency Propa-

gation and Scattering, as a follow-up satellite meeting of the 2007 Isaac Newton Institute Programme on

Highly Oscillatory Problems: Computation, Theory and Application, and many of the papers describe

very recent developments by participants in that five-month programme which finishes next month.

It is pleasure to thank our co-organisers, from INRIA, ENSTA, and Reading, for their efforts in

putting this proceedings together. While all have contributed, thanks are especially due to Houssem

Haddar and Jing-Rebecca Li of INRIA, who supervised the submission and reviewing process, and Nick

Biggs of Reading who supervised the production of the proceedings. It is a pleasure also to thank the

following for their direct or indirect financial support for the Waves 2007 meeting and its embedded

workshop: the Isaac Newton Institute, Cambridge, the Institute of Mathematics and its Applications,

SIAM UK, INRIA, and the University of Reading Computational Science Theme.

Simon Chandler-Wilde and Patrick Joly,

on behalf of the Waves 2007 Organising Committee:

Nick Biggs, Anne-Sophie Bonnet-Bendhia, Peter Chamberlain, Simon Chandler-Wilde, Gary Cohen,

Hossem Haddar, Patrick Joly, Steve Langdon, Jing-Rebecca Li, Eric Lunéville, Beatrice Pelloni, Roland

Potthast.

June 2007
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Nonlinear waves in optics and fluid dynamics

Mark J. Ablowitz
University of Colorado, Department of Applied Mathematics, Boulder, Colorado, U.S.A.

Email: mark.ablowitz@colorado.edu

Abstract
Nonlinear waves arise naturally in optics and fluid dy-

namics. An extremely important class of special solu-
tions are localized waves, often termed solitons or solitary
waves, arise naturally in nonlinear optics and fluid dy-
namics. In optical communications, asymptotic analysis
leads to the “classical” and “dispersion-managed” (DM)
nonlocal nonlinear Schrödinger (NLS) equations which
have localized pulses as special solutions. Recent re-
search has shown that similar dispersion-managed equa-
tions explain observed phenomena in mode-locked lasers.
Both in nonlinear optics with quadratic nonlinearity and
water waves, a nonlocal NLS type equation arises which
reduce to the standard NLS equation in appropriate lim-
its. Here localized modes are fundamentally important in
the study of wave collapse. In water waves the classical
equations can reformulated as a system of two equations
for the wave height and for the velocity potential evalu-
ated on the free surface. One of the equations is a nonlo-
cal equation and one is a local nonlinear PDE. This sys-
tem reduces to known asymptotic limits in shallow and
deep water. Included in these asymptotic reductions are
the Boussinesq, Benney-Luke and nonlinear Schrödinger
equations.

Discussion
Obtaining localized waves to the governing equations

of nonlinear optics and fluid dynamics are of keen sci-
entific interest. One of the best known examples dates
back to J. Scott Russell [1] who observed the propagation
of solitary waves in shallow canals in Edinburgh, Scot-
land. This provided motivation for the seminal works
of Boussinesq [2] and of Korteweg-deVries (KdV) [3]
who derived the approximate equations governing water
waves in shallow water, which they showed possess soli-
tary wave solutions. Subsequent numerical and analytical
studies of the KdV equation led to the concept of solitons
cf. [4]. Solitons in the KdV equation are solitary waves
which interact elastically in the sense that the velocity and
amplitude are the same in the limit of large distances be-
fore and after a collision.

In nonlinear optics solitary waves are usually called
solitons, despite the fact that they generally do not inter-
act elastically. We will refer to solitons in this broader

context. In optical fibers solitons were predicted to ex-
ist in 1973 [5, 6]. They were subsequently demonstrated
experimentally by Molleneauer [7]; [see also 8, 9, for ad-
ditional references and historical background]. In order
to improve and enhance optical communications various
technological difficulties had to be overcome; some of
the more important developments include: i) all-optical
amplifiers which are used to counteract damping; and ii)
dispersion-management (DM) [10, 11] in which strong
variations in the underlying dispersion of the fibers are
employed to significantly reduces penalties (e.g. reduc-
ing the effects of four wave mixing [12] and reduc-
ing the size of frequency and timing shifts [13]) that
arise in multi-channel communications systems. DM sys-
tems are of keen technological interest and have been re-
cently installed in commercial communications environ-
ments. Dispersion-managed systems also give rise to lo-
calized pulse solutions [11]. In [14] a nonlocal equa-
tion which governs strongly dispersion-managed commu-
nications systems was derived by the asymptotic method
of multiple scales. This asymptotic equation, termed
the DMNLS (dispersion managed nonlinear Schrödinger
equation) equation is nonlocal. It admits solitary wave
solutions which were found numerically in [14], [see also
15, 16], and were rigorously proven to exist in [17]. DM
systems also give rise to other special solutions of the
DMNLS equation, in particular quasi-linear pulse solu-
tions [18, 19].

Another nonlocal system of equations which arises in
both optics and water waves is also of interest. The
system is called the NLSM equation or the nonlinear
Schrödinger equation coupled to a mean term. In non-
linear optics it arises in quadratic nonlinear media un-
der the quasi-monochromatic assumption. In [20, 21] it
is shown that with quadratic nonlinearity introduced, the
classical nonlinear Schrödinger equation (NLS) is mod-
ified to have coupling to a mean term. In water waves
similar systems were found earlier, first by Benney and
Roskes [22], [see also 23, who introduced surface ten-
sion] and later by Davey and Stewartson [24] who put the
equations into a simpler form. The stationary localized
waves of this equation are fundamentally important in the
study of wave collapse which can occur in these systems.

An numerical method to to find localized waves was re-
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cently introduced [25]; see also [14, 26] for related meth-
ods. The main ideas are to go to Fourier space, then renor-
malize variables to obtain an algebraic system coupled to
a nonlinear integral equation. The localized mode is de-
termined from a convergent fixed point iteration scheme.
The method is termed spectral renormalization, or SPRZ.
We have found the method of coupling to be remarkably
effective and straight forward to implement.

In Bose-Einstein condensates a multi-dimensional
NLS equation with a parametrically forced external po-
tential is the governing equation. This system supports
dispersive shock waves and they have been experimen-
tally observed. The theory and experiments are described
in recent papers [27–29].

In the study of water waves one needs to determine the
free surface, which appears as an unknown in the basic
formulation. For two dimensional water waves, where
the free surface evolves as a function of one space dimen-
sion and time, there are various techniques which can be
used to eliminate the vertical coordinate and to reduce the
problem to the evaluation of the motion of the wave height
and velocity potential on a fixed domain. Effective meth-
ods used in the two dimensional water wave problem in-
clude conformal mapping and singular integral equations,
both of which make use of complex analytic techniques
[see e.g. 30–33]. In the three dimensional problem, where
the free surface evolves as a function of two space dimen-
sions and time, the situation is more difficult and one loses
the possibility of employing standard complex analysis.

Zakharov [34] showed that the wave height η and ve-
locity potential φ evaluated on the free surface, are canon-
ically conjugate variables and the water wave equations
are formulated as a Hamiltonian system. Craig and Sulem
[35] employed these variables and introduced an elegant
Dirichlet-Neumann operator G(η) associated with the ve-
locity potential which eliminated the vertical coordinate
from the formulation. The operator G(η) is obtained as a
series, which is valid for small η. This formulation was
used in [36] to find small amplitude/long wave approx-
imations including the Boussinesq, Korteweg-deVries
(KdV) and Kadomtsev-Petviashvili (KP) equations. The
Dirichlet-Neumann operator methodology, which em-
ploys high order series approximations to a modified ver-
sion of G, has been employed to perform interesting com-
putational investigations cf. [37].

In [38] an explicit nonlocal formulation of water waves
in 2+1 dimensions was constructed. The original equa-
tions with unknown boundary conditions are replaced by
an integro-differential equation and a nonlinear partial

differential equation, both of which are formulated in a
known domain. The vertical coordinate is removed from
the determining equations. These two equations can be
used to determine the wave height and the velocity poten-
tial on the free surface. From this system well known
asymptotic equations, in both shallow and deep water
with surface tension included are obtained. In particular,
this nonlocal system leads to the Benney-Luke (BL) and
[39] and Kadomtsev-Petviashvili (KP; cf. [4]) equations
in shallow water and the NLS equations in deep water.
The SPRZ method can be used to find lump type solu-
tions to these equations.
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Abstract
In this work, new mimetic finite difference discretiza-

tions of second order differential equations are intro-
duced. Our analysis will include the relevant cases of
diffusion problems, electromagnetics. The methods we
propose are intimately linked with the theory of cochains
and their use as discrete differential forms.

Introduction
We are interested in solving numerically differential

problems whose unknowns can be thought as differential
forms, pretty much in the spirit of [1], but going beyond
the finite element techniques. When treating this family
of differential problems there are two main setting avail-
able: the language of differential forms and the one of
functional analysis of partial differential equations. Here
we basically choose the second one, just using the classi-
fication coming from differential geometry.

Our differential problems will be set in a bounded do-
mainΩ which is supposed to be a bounded polyhedron in
R

3 and we will always consider homogeneous essential
boundary conditions. This choice is made just for sim-
plicity and does not affect generality.

All problems we treat can be considered in the context
of electromagnetic phenomena, and we present them in
this framework.

Electrostatics: Given a charge densityρ, the electric
scalar potential verifies

−div εgrad p = ρ (0.1)

whereε is the electric permittivity tensor. Potentials are
evaluated on points, and can be interpreted as differential
0−forms. Let us recall that this problem comes from:

div D = ρ D = εgrad p (0.2)

after elimination of the electric inductionD. In this case,
ρ must be interpreted as a3-form,D is the electric induc-
tion and it is known through fluxed: thus is a2−form.

Magnetostatics: Given a current densityJ, the vector
potentialu verifies:

curlµ−1curl u = J. (0.3)

u can be interpreted as a1−form and can be evaluated
through integrals along lines. Most often the problem
(0.3) is made wellposed by adding the gauge:div u = 0.
Problem (0.3) comes from the standard magnetostatics:

div B = 0 curlH = J B = µH on Ω
(0.4)

whereµ is the magnetic permeability,H the magnetic
field andB = curl u the magnetic induction. It is well
known that the magnetic fieldH can be interpreted as a
differential 1-form, while the magnetic inductionB can
be sought as a differential2-form, i.e., it is known through
fluxes.

Cochains
Given the domainΩ, we are given with a polyhe-

dral partition Th of Ω, N vertices V 1, V 2, ...V N, E
edgese1, e2, ..., eE, F facesf1, f2, ..., fF andP elements
P 1, . . . , P P.

We can naturally define four types of unknowns
attached to the partitionTh:

• node unknownswhose values are attached tovertices
and are to be interpreted as thevalue of a scalar function
at each node;

• edge unknownswhose values are attached toedgesand
are to be interpreted as thecirculation of a vector fieldon
the edge;

• face unknownswhose values are attached tofacesand
are to be interpreted as theflux of a vector fieldacross the
face;

• element unknownswhose values are attached to
elementand are to be interpreted as theintegral of a
scalar functionover the element.

We denote the corresponding space of all node un-
knowns byN, that of all edge unknowns byE, that of all
face unknowns byF, and that of all element unknowns by
P.

Signs of elements in these spaces will depend on the
orientation of edges and faces. We consider then the ori-
entation fixed once and for all.
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In the Mimetic Finite Differences (MFD) framework
these spaces are used as discretization spaces for the prob-
lems mentioned above.N is the natural discretization
space for the scalar potentialp in (0.1), i.e., for0−forms;
E is the natural discretization space for1−forms, i.e. u
and H in (0.3)-(0.4); F can be interpreted as discrete
2−forms and as discretiztion ofD orB in (0.2) and (0.4).
Finally, the right candidate to discretizeρ, and3−forms
in general, is indeedP.

For algebraic topology,N, E, F and P are co-chain
spaces and form a complex, a co-chain complex, together
with the co-boundary operator. We defer the reader to [3]
for an application of these concepts to the formalization
of MFD.

The co-boundary operator is a collection of operators
linking our spaces one upon the other. When co-chains
are interpreted as discrete differential forms, then co-
boundary operator is seen as discretization of standard
differential operatord, that is, in our simplified setting,
asgrad , curl , div depending on the space on which it
acts. Here we adopt a self evident notation (as it is stan-
dard in MFD):

• TheGRAD operator, fromN to E, defined as follows:
for each edgee with vertices(V 1, V 2) and oriented from
V 1 to V 2

(

GRADu
)






e
= u|V 2

− u|V 1
. (0.5)

• TheCURL operator, fromE to F, defined as follows:
for each elementϕ ∈ E and for each facef we denote
by e1, e2, ..., eEf

the edges sharing the facef and we sup-
pose they are endowed with the orientation induced by
the orientation off . We consider the corresponding val-
uesϕ1, ϕ2, ..., ϕEf

of ϕ with the sign corresponding to
the orientation just chosen. ThenCURLϕ on the facef
is defined as

(

CURL ϕ
)






f
=

Ef
∑

i=1

ϕi. (0.6)

• TheDIV operator, fromF to P, defined as follows:
let f1, ..., fFP

be all the faces of an elementP , and for
eachσ ∈ F let σ1, ..., σFP

be its values on each face as-
sumed to be oriented outward with respect toP . Then
DIVσ is defined as

DIVσ =

FP
∑

k=1

σk. (0.7)

It is interesting to note that, taking in the spaces
N, E, F, P the obvious canonical basis (after choosing

an orientation of the edges, faces and elements in an ar-
bitrary way, but once and for all), then the matrices asso-
ciated with the operatorsGRAD , CURL , andDIV are
the incidence matrices.

Scalar products
It is rather obvious to see that each of the spacesN,

E, F andP can be considered as alinear vector space
over R, introducing in an obvious way the sum of two
elements of the same space or the multiplication by a real
number. What we recalled above can be found in a num-
ber of papers dealing with theoretical approximations of
differential forms: it is elegant, it is simple.

However, if one wants to use co-chains as discrete dif-
ferential forms in order to approximate boundary value
problems for partial differential equations, then, appar-
ently, little can be done unless we introduce suitable
scalar products. In particular, scalar products are an im-
plicit discretization of the discretize Hodge-* operators
that, in turn, are substantial in describing the properties
of the material we are dealing with (even when the prob-
lem is set in the vacuum).

If we want to obtain robust and reliable numerical
methods, we need to define scalar products able to mimic
theL2-inner product, possibly weighted with material pa-
rameters. “To mimic” means here that the scalar product
needs to have some exactness property which garantees
“the bit of” consistency which is needed to get conver-
gence.

As it is natural, scalar products are constructed element
by element, and the globalL2-like inner product is then
obtained by summing over the elements.

Here we provide scalar products following a general
strategy based onreconstruction operators. Let us see it,
as an example, on the case of the spaceN|P , i.e., the node
unknowns attached to nodesV ⊂ ∂P , P ∈ Th. To every
u ∈ N|P we associate a (smooth enough) functionRN(u)
such thatRN(u)|V = u|V for all vertexV , and define the
scalar product element by element as:

[u, v]N,P :=

∫

P

RN uRN v dP (0.8)

This can be rather easily done in a tetrahedron, giving
raise to the usual Lagrangian finite elements. IfP is a
tetrahedron the same idea applies toE, F producingedge
and faceelements. It is clear, however, that this proce-
dure applied on a general polyhedron can rely only upon
suitable submeshing as proposed in [6].

A different approach was used however in other cases:
a pioneering paper is [2], and recently the approach has
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been formalized in [5] forF type spaces. The idea is to
use minimal consistency and prove that:any scalar prod-
uct would do the work, provided it has the right scaling
and is ”exact on constants”. The meaning of being “exact
on constants” is the following, e.g., onN|P : the result of
the integral

∫

P

(RN u)c dP (0.9)

for a constantc, can be expressed in terms ofc andu is a
closed form for any “good” reconstruction operator1. We
can then set forc ∈ R:

[u, ΠNc]N,P :=

∫

P

(RN u)c dP, (0.10)

whereΠNc is just the evaluation of the constant on each
vertex in∂P . As a consequence, we known how to com-
pute the scalar product of a constant field against any
u ∈ N|P and we say it is “exact” on constants. Formula
(0.10) defines “a part of” the scalar product, and the rest
can be chosen arbitrarily just preserving the right scaling.

In the paper [4], we construct scalar products onN,
E, F andP having this property which is also proved to
be sufficient to obtain robust numerical methods. They
are all defined as sum of contributions local to the single
element. We denote these scalar products as[·, ·]N, [·, ·]E,
[·, ·]F and[·, ·]P and we present their use in the definition
of new numerical schemes.

Cochains discretizations
We propose here to use cochains as a discretization

strategy for the differential problems mentioned in the In-
troduction. We denote byN0, E0, F0 the spaces where the
natural boundary conditions are imposed; e.g.,N0 will be
the space of nodes unknowns which are zero on each node
on the boundary of the computational domainΩ. For sim-
plicity, we suppose all material tensors to be reduced to
constants. During the talk, we will treat the general case.

The discretization of (0.1) will then be: Findph ∈ N0

such that for allqh ∈ N0

ε[GRAD ph, GRAD qh]E = [ΠNρ, qh]N. (0.11)

whereΠN denotes the evaluation ofρ on nodes. The one
of (0.2) will in turn be: FindDh ∈ F, ph ∈ P such that
for all Fh ∈ F, qh ∈ P

ε−1[Dh,Fh]F − [ph, DIVFh]P = 0

[DIVDh, qh]P = [ΠPρ, qh]P
(0.12)

1Among others, reconstruction operators must preserve constants:
if v are the nodal values of a constantc, thenRN(v) = c. The same
rationale is applied to the other spaces.

whereΠP denotes the integral ofρ on each elementP ∈

Th. This problem has been studied in [5]. We turn now to
magnetostatics. The discretization of (0.3) together with
the gaugediv u = 0, is: Finduh ∈ E0 andph ∈ N0 such
that for allEh ∈ E0, qh ∈ N0

µ−1[CURLuh, CURLEh]F−[GRAD ph,Eh]E =

= [ΠEJ,Eh]E

[uh, GRAD qh]E = 0
(0.13)

whereΠE does the following: for each edge of the mesh,
it computes the circulation ofJ on the edge. Thus,ΠEJ is
an element ofE. We do not propose here a discretization
of (0.4), since it is either equivalent to (0.12) or to (0.13).
A discretization which computes both a magnetic field in
E and a magnetic induction inF is not available.

Now, the open questions are the following:
(i) Are these discrete problems wellposed ?
(ii) Do they verify error estimates ?
(iii) What can we say on the spectral properties ?

All these questions will be addressed during the talk
and are the object of the paper [4].
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Abstract
In this talk, the recent development of fast algorithms

will be discussed for simulating complex structures where
the objects can be a tiny fraction of the wavelength, and
yet wave physics is important. The equivalence princi-
ple algorithm will be presented to separate circuit physics
from wave physics, so that complex problems can be
solved. Then the solution of complex radiation prob-
lem using parallel computers and special preconditioning
techniques will be discussed. Furthermore, the diagonal-
ization of the vector addition theorem will be presented.
We will discuss on how to solve the high frequency prob-
lem in a frequency independent manner. The talk will end
by presenting some future challenge problems.

Introduction
Integral equation solvers (IESs) are, in general, more

complex to implement compared to differential equation
solvers (DESs). This is due to the need for the Green’s
function method, which generally involves the evaluation
of singular integrals. Moreover, due to the dense ma-
trix system, acceleration solution methods have to be in-
voked before IESs are competitive with differential equa-
tion solvers [1]. Also, linearity of the media has to be
assumed before frequency-domain and Green’s-function
techniques can be used. In contrast to DESs, the ad-
vantage of IESs, lies in the smaller number of unknowns
and favorable scaling properties for memory and CPU re-
quirements. DESs are simple to implement, but usually
exhibit worse scaling properties when applied to surface
scattering problems. The presence of grid-dispersion er-
ror worsens their scaling properties for large scale com-
puting. On the other hand, DESs in the time domain
can easily account for nonlinear phenomena. Hence, for
an area replete with nonlinear physics, such as computa-
tional mechanics or computational fluid dynamics, DESs
outrank integral equation solvers in popularity [2]. IESs
also have the advantage of satisfying the radiation condi-
tion automatically, whereas in DESs, absorbing boundary
conditions have to be used, or the mesh has to be trun-
cated with a boundary integral equation.

Many electrical engineering and electromagnetics phe-
nomena can be modelled with linear equations. Hence,

Green’s function and IESs are rather popular in this arena.
The advantages of IESs in electromagnetics make them
popular for solving a number of scattering problems. This
is especially so when they have been accelerated with fast
algorithms [3].

However, when IESs are modelled with complex struc-
tures, convergence issue is a main concern. Still the scal-
ing of computational load with problem is another con-
cern.

Integral Equation Solvers for Complex Structures
In the following, several advances in integral equation

solvers made recently are discussed. First, techniques
on how to improve convergence when highly complex
structures are encountered are presented. Then, we fol-
low that with a presentation on a way to diagonalize the
vector addition theorem, which is very important for the
design of fast algorithms for electromagnetics and elastic
wave problems. Then the issue of arriving at frequency
independent solution for some scattering problem is ad-
dressed.

Equivalence Principle Aglorithm
The equivalence principle algorithm (EPA) is a good

way to domain decompose a larger problem into smaller
problems. It also allows regions of low frequency physics
(circuit physics) to be separated from the regions of mid
frequency physics (wave physics). The use of EPA al-
lows a larger problem to be broken down into a sum of
smaller problems, so that only smaller problems need to
be solved at one time. Then the solution to the larger
problem is accomplished by rigorously concatenating the
smaller problems together.

Recently, we have developed an equivalence princi-
ple algorithm that allows the equivalence surface to cut
through metal, and break an object involving metal into
smaller objects [4], [5].

EPA also allows one to use one technique to solve the
smaller problems, while a different technique is used to
solve the larger problem. This is important since the
physics at the micro-scale is quite different from the
physics at the macro-scale.

9



Parallelization for Radiation Problems

Scattering problems are generally more benign com-
pared to the radiation problem. The reason being that
in the scattering problem, the object is usually excited
by a source placed far away. Hence, the current on the
scatterer is usually quite smooth. However, for the ra-
diation problem, the excitation source is usually placed
right on the scatterer, and hence, the induced current on
the scatterer is quite singular. In terms of eigenfunction
expansions, the current covers a broader spectrum in the
radiation problems compared to the scattering problem.
Hence, the convergence rate in radiation problem is usu-
ally slower compared to that of the scattering problems,
due to the larger range of eigenfunctions being excited.

Recently, we have successfully connected a code for
antenna radiation, named FastAnt, with a parallel solver,
ScaleME [6]. This is necessary due to the slower conver-
gence rate of the radiation problem, as well as the addi-
tional cost of designing preconditioners for the radiation
problem. To ameliorate the convergence issue, we have
designed the self-box inclusion (SBI) preconditioner [7]
to help reduce the number of iterations needed in solving
the problem.

Recently, in combining FastAnt with ScaleME, we
have reworked the preconditioning strategy so that rea-
sonably large radiation problems can be solved. We will
demonstrate the solution of radiation due to a complex
antenna on top of an automobile.

Diagonalization of Vector Addition Theorem

Electromagnetic and elastic wave problems are inher-
ently vector in nature. Electromagnetic and elastic wave
fields can be expressed in terms of vector wave functions,
and the vector addition theorem can be used to change the
coordinates of the vector wave functions. Recently, we
have successfully derived some important mathematical
identities [8]. They are useful to diagonalize the vector
addition theorem. The use of such vector addition theo-
rem will save memory, as well as making the solving of
electromagnetic problems more natural using fast algo-
rithms.

Furthermore, the successful diagonalization of the vec-
tor addition theorem for translation means that a mixed-
form fast multipole algorithm (MF-FMA) can be easily
designed. Such MF-FMA is important in modeling multi-
scale structures that may be encountered in circuits and
antenna structures.

High-Frequency Method
There is a need to arrive at frequency independent

method for high frequency scattering. A naive compu-
tational electromagnetics method will have resource in-
crease as the frequency increases. However, as the fre-
quency becomes very high, the wave physics becomes
ray-like or particle-like. The phase variation can be sep-
arated from the envelope variation. At even higher fre-
quencies, the phase becomes random, making a ray be-
have like a particle. There is a need to develop numerical
methods that can gradually transition from the wave-like
nature to particle-like nature of waves [9], [11], [10]. We
will show our recent advances made in this arena regard-
ing the scattering solution by a strip which is frequency
independent [12].

Some Examples
Shown in this section are some examples of numerical

simulation results. More will be discussed at the confer-
ence.
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Abstract
We introduce an exact representation of waves propa-

gating in a half space, which we call the complete plane
wave representation. It expresses the time-domain wave
field as a superposition of outgoing propagating modes
and decaying evanescent modes. A finite approximation
to this representation is derived via appropriate quadra-
ture rules. Local radiation boundary condition sequences
are then constructed which are exact when applied to
the finite representation, and the conditions are extended
to polygonal domains by identifying them with a non-
standard PML admitting a closure akin to the PML corner
layers. Numerical experiments suggest that the new con-
ditions lead to dramatic improvements in the long time ac-
curacy of simulations with a complexity estimate compa-
rable to optimal nonlocal approximations. The new com-
plete radiation boundary conditions thus combine easy
implementation, geometric flexibility, and spectral con-
vergence with essentially uniform long time accuracy.

Introduction
As radiation to the far field is a typical feature of wave

propagation problems, the efficient and accurate simula-
tion of waves requires methods to accurately impose such
conditions at artificial boundaries located as closely as
possible to scatterers and other inhomogeneities. In re-
cent years, a number of new methods have been intro-
duced which are capable of delivering arbitrary accuracy
for models which are isotropic and homogeneous in the
far field. These include:

i. Fast, low-memory approximations to exact, nonlocal
formulations [1], [2], [3], [4];

ii. Local boundary condition sequences [5], [6], [7],
[8];

iii. Reflectionless absorbing layers (PML) [9], [10],
[11];

iv. Fast evaluations of the retarded potential [12];

v. Construction and fast evaluation of equivalent
sources [13], [14].

(See the recent review articles [15], [16] for more details
and a more extensive reference list.)

Although all the algorithms mentioned above can be ef-
ficient in some settings, at least those with which the au-
thors are most familiar, (i-iii), are all suboptimal in others.
(The algorithm in [12] does satisfy what we would define
as an optimal complexity estimate, though we have no ex-
perience with its practical performance, while a complete
analysis of the algorithms in [13], [14] is unknown to us.)

The algorithms in class (i.) are based on a factorization
of the nonlocal operators into spatial and temporal pieces.
The spatial part is handled by a fast transform algorithm
and the temporal part is compressed either by global ex-
ponential approximations [1], [2] or piecewise exponen-
tial approximations [3], [4]. To guarantee an accuracy, ε,
up to a time, T , for a wavelength, λ, the algorithm of [1],
[2] requires a boundary operator described by:

Pnonlocal ≤ C ln
1
ε
· ln cT

λ
(1)

functions per harmonic where C will denote some con-
stant. We believe this estimate is optimal. However, al-
though the associated computational cost is small com-
pared with the cost of the interior solve, the factorization
only exists for special boundaries: spheres, cylinders and
planes. Thus, for example, if one wishes to solve the scat-
tering problem for a high aspect ratio object, the need to
solve in a spherical domain leads to significant additional
costs. In addition, although fast spherical harmonic trans-
forms exist [17], [18], they are expensive.

Algorithms in class (ii.), though conceptually quite
simple, were generally only used at lowest order, and thus
provided only limited accuracy with no real possibility of
effecting convergence. To enable their use at arbitrary
order in polygonal domains, a special auxiliary variable
reformulation was introduced in [19], [20]. However, al-
though the methods were found to be spectrally conver-
gent at fixed times, their accuracy rapidly degraded at
large times. (See, e.g., the analyses in [21], [22].) The
resulting estimate of the number of auxiliary functions
needed is:

Plocal =≤ C ln
1
ε
· cT
λ
, (2)
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which is obviously quite bad for cTλ À 1.
Algorithms in class (iii.), the perfectly matched lay-

ers, have been the most successful of all those mentioned.
From the start, they combined the features of easy im-
plementation, error control, and geometric flexibility. In
particular, they can be implemented by simply solving an
augmented system of equations in the layer region (in-
cluding corner layers), and convergence can be achieved
simply by thickening the layer. However, PMLs, too, suf-
fer from long time nonuniformities [22], [23]. It is less
straightforward to write down complexity estimates for
PML as they depend on the discretization of the layer. In
particular, one can certainly use a somewhat coarser mesh
towards the end. However, under the assumption of a uni-
form resolution one finds that the number of points across
the layer should satisfy:

PPML =≤ C ln
1
ε
·
√
cT

λ
, (3)

confirming their superiority to the standard local condi-
tions.

In this work we examine the root cause of the long-time
nonuniformities for the two local methods, and develop
methods to dramatically improve their accuracy. In par-
ticular we will write down a complete plane wave repre-
sentation of the wave field which includes both propagat-
ing and evanescent modes. It will be seen that with an ex-
plicit treatment of modes of both types optimal complex-
ity estimates can evidently be achieved for local bound-
ary condition sequences. We also note that our auxiliary
variable formulation can be interpreted as a non-standard
PML, thus showing that PMLs with optimal complexity
estimates exist. We will consider the construction of op-
timal standard PMLs in the future.

Complete Plane Wave Expansions
Consider a planar artificial boundary, x = 0, and a field

or field component uwhich satisfies the scalar wave equa-
tion. Using a Fourier-Laplace transformation with Dirich-
let data given on the plane x = −δ we derive for x > −δ:

û(x, ky, kz, s) = e−(s2+c2k2
x+c2k2

y)1/2 x+δ
c û0, (4)

Computing the inverse transforms to form u and in par-
ticular choosing <(s) = 0 as an inversion contour we can
break the integrals into two pieces according to the expo-
nent, −γx/c. We express imaginary exponents as:

− cos θ
sx

c
, θ ∈ [0,

π

2
], (5)

and real exponents as:

−σx, σ ≥ 0. (6)

We obtain (see [25] for more details and [24] for an alter-
native derivation):

u(x, y, z, t) =
∫ π

2

0
Φ (ct− x cosφ, y, z, φ) dφ

+
∫ ∞

0
e−σ(x+δ)Υ(y, z, t, σ)dσ, (7)

The standard radiation boundary condition sequences
only explicitly treat the propagating modes, that is the first
integral in (7). Their accuracy can be estimated via their
complex reflection coefficients. Assuming a boundary lo-
cated at x = 0 and the Padé approximants of order p [6]
this coefficient takes the form:

R̂local ∝
(
s− γ

s+ γ

)2p

e−γδ/c. (8)

If we consider s imaginary and γ real corresponding to
the evanescent modes we see that the reflection coefficient
is independent of p. To prove convergence at all we must
consider <(s) = O(T−1) > 0 in which case the factor
is bounded by 1−O(T−1). Applying Parseval’s relation
the estimate (2) follows.

Similarly one can derive a reflection coefficient for
standard PML. The details depend on the termination
condition at the edge of the layer, but the essential fac-
tor is:

R̂PML ∝ e
−2Lγ

“
s+α+σ̄
c(s+α)

”
. (9)

Here L is the layer width, σ̄ is the average absorption, and
α is the complex frequency shift parameter. Note that if s
is imaginary and γ is real the real part of the exponent is:

−2Lγ
|s|2 + α2 + ασ̄

c(|s|2 + α2)
(10)

which is again much better than the expression for the
boundary conditions but which still vanishes when γ = 0.
Taking<(s) = O(T−1) and α = 0 (which is not optimal)
estimate (3) follows.

Boundary condition formulation
Following the treatment of analogous expressions in

deriving the translation formulas for the fast multipole
method, approximate (7) by some quadrature rule:

u(x, y, z, t) ≈
np−1∑

j=0

wjΦj(ct− x cos θj , y, z)

+
ne∑

j=1

dje
−σjxΥj(t, y, z). (11)
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Local boundary conditions with np + ne auxiliary func-
tions can now be constructed which are exact on this
approximate representation independent of the unknown
functions Φj and Υj . Following [19], [20] we recursively
define for j = 0, . . . , np − 1:

(
cos θj

∂

∂t
+ c

∂

∂x

)
ψj =

(
cos θj

∂

∂t
− c

∂

∂x

)
ψj+1

(12)
with ψ0 = u and for j = 1, . . . , ne:

(
σj +

∂

∂x

)
ψnp+j−1 =

(
σj − ∂

∂x

)
ψnp+j (13)

Assuming (11) is exact we note that each subsequent term
in the recursion involves one fewer term in the sum. That
is, the operators on the left-hand sides of (12) and (13) are
chosen to annihilate terms in the approximate representa-
tion. We may then conclude:

ψnp+ne = 0. (14)

We now impose (12)-(14). Upon proving by induc-
tion that each of these auxiliary fields satisfies the govern-
ing equations, one derives evolution equations along the
boundary x = 0 by eliminating the normal derivatives.
This leads to the local boundary condition sequences. Al-
ternatively, one can interpret the recursions as a finite vol-
ume discretization of a PML (with nonstandard parame-
ters). (See [26], [27] for related ideas). In particular, if
we perform a Laplace transform in time the equations for-
mally resemble a discrete PML with frequency-dependent
grid spacings:

ψ̂j+1 − ψ̂j(
2c

s cos θj

) =
1
2

(
∂ψ̂j+1

∂x
+
∂ψ̂j
∂x

)
, (15)

ψ̂j+1 − ψ̂j(
2
σj

) =
1
2

(
∂ψ̂j+1

∂x
+
∂ψ̂j
∂x

)
. (16)

For first order systems

ut +Aux +Buy + Cuz = 0, (17)

the approximate boundary conditions now take the fol-
lowing form. For 0 ≤ j ≤ np:

(cos θjA− I)
∂ψj
∂t

−B
∂ψj
∂y

− C
∂ψj
∂z

=

(cos θjA+ I)
∂ψj+1

∂t
+B

∂ψj+1

∂y
+ C

∂ψj+1

∂z
, (18)

and for 1 ≤ j ≤ ne:

−∂ψnp+j

∂t
−B

∂ψnp+j

∂y
− C

∂ψnp+j

∂z
+ σjAψnp+j =

∂ψnp+j+1

∂t
+B

∂ψj+1

∂y
+ C

∂ψnp+j+1

∂z
+ σjAψnp+j+1, (19)

truncated by:
ψin
np+ne+1 = 0, (20)

with ∂ψout
0
∂t computed from the interior. (Here “in” and

“out” refer to normal characteristic variables.) Note that
the discretization of these conditions is straightforward as
they are of the same type as the interior equations.

To use these conditions on polygonal domains, corner
and edge compatibility conditions must be derived to pro-
vide boundary conditions for the auxiliary hyperbolic sys-
tems. Here, as first noted by Guddati and Lim [27], the
PML interpretation is useful, allowing the construction of
corner compatibility conditions in analogy with standard
corner layers. Precisely,

∂ψk+1,j+1

∂t
+
∂ψk,j
∂t

+
∂ψk+1,j

∂t
+
∂ψk,j+1

∂t
+SjA (ψk+1,j+1 − ψk+1,j + ψk,j+1 − ψk,j) (21)

+SkB (ψk+1,j+1 − ψk,j+1 + ψk+1,j − ψk,j) = 0,

where

Sjw ≡
{

cos θj ∂w∂t , j ≤ np,
σj−npw, j > np.

(22)

Truncate by:

ψin
k,np+ne+1 = ψin

np+ne+1,j = 0, (23)

with
∂ψout

k,0

∂t ,
∂ψout

0,j

∂t computed from the edges. (Here the
meanings of in and out are based on the local character-
istics in the normal directions. The truncations are com-
bined for k = j = np+ne+1.) We refer to [28] for more
details and to [29] for implementations for second order
equations.

We have not yet proven error estimates for the new con-
ditions. However, we have obtained excellent results in
our numerical experiments so far and we have also car-
ried out numerical evaluations of the complex reflection
coefficients. In our experiments we have used a combina-
tion of Gauss-Radau and Yarvin-Rokhlin nodes to define
the boundary condition parameters:

θj =
π(cj + 1)

4
, j = 0, . . . , np − 1, (24)
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where cj are the left endpoint Gauss-Radau nodes on
[−1, 1] and

σj = δdj , j = 0, . . . , ne, (25)

where dj are the Yarvin-Rokhlin nodes [30] and δ is a
length scale parameter. In practice we choose this to be
the minimum separation between inhomogeneities and
the artificial boundary. For our error estimates we have
made the slightly unrealistic choice of δ = 5λ and set
np = ne. Numerical evaluation of the reflection coeffi-
cient then yields the optimal estimate:

np + ne ≤ C ln
1
ε
· ln cT

λ
. (26)

As a simple numerical experiment we have compared
all three local methods for Maxwell’s equations with c =
1 and a field produced by transversely 1-periodic point
sources located a distance 2 from the artificial boundary.
These have Gaussian time signature which is effectively
zero at the initial time. We resolve the fields very accu-
rately using 8th order spatial differencing combined with
the standard 4th order Runge-Kutta method in time. (The
8th order one-sided spatial differences are stabilized by
adding one subcell grid point as discussed in [31].)

The results, displayed in Figure 1, confirm the theoreti-
cal predictions. The 30-term Padé conditions are accurate
up to t = 20 but the error eventually grows to 3 × 10−2.
The 19-point PML, with parameters optimized to equidis-
tribute the error in time, is significantly more accurate
with errors oscillating near 10−4 with eventual growth to
about 8 × 10−4. However with 30 terms of the new con-
ditions the maximum error remains below 7 × 10−7 and
is probably dominated by the discretization error. Further
experiments in [25], [28] confirm this excellent perfor-
mance.

Extensions and Conclusions
Given the positive results obtained so far, we are hope-

ful that the new local boundary condition sequences based
on complete plane wave representations will provide a
fully satisfactory solution to the radiation boundary con-
dition problem for homogeneous, isotropic wave systems.
In particular, they are easy to implement, geometrically
flexible, and appear to be as accurate as the less flexible
nonlocal approaximations derived in [1], [2].

We have so far only just started to consider extensions
of the complete plane wave expansion to other problems.
One case where we have had some preliminary success is
that of lattice waves. Here we approximate the boundary

Figure 1: Errors for various 30-term approximate
boundary conditions. Maxwell’s equations with

transversely periodic point sources.

conditions derived in [32] used for multiscale computa-
tions of crack problems at low temperature. It is still un-
clear if methods such as these can be constructed for gen-
eral anisotropic systems. However, we do believe that the
linearized Euler equations will admit an analagous repre-
sentation, following the transformation used in [11] to de-
rive a stable PML. Of course we would also like to apply
the complete plane wave representation to optimize the
parameters in a standard PML. A direct approach would
be to tune the grid spacings and absorption profiles to
minimize the errors for the functions in the approximate
representation. We hope to carry out such a construction
in the near future.
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INVERSE SCATTERING PROBLEMS FOR THE TIME-HARMONIC MAXWELL SYSTEM
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Abstract
In this talk we study the following electromagnetic

scattering problem. Let k = ω
√

ε0µ0 > 0 be the wave
number with frequency ω, electric permittivity ε0, and
magnetic permeability µ0 in vacuum. An incident plane
electromagnetic field of the form

H i(x; θ, p) = p eikθ·x and

Ei(x; θ, p) = − 1
iωε0

curlH i(x; θ, p)

= −
√

µ0

ε0
(θ × p) eikθ·x .

is scattered by a non-magnetic inhomogeneous medium
with space dependent electric permittivity ε = ε(x) and
conductivity σ = σ(x). Here, θ ∈ S2 =

{
x ∈ R3 :

|x| = 1
}

denotes the direction of the incident plane wave
and p ∈ C3 with p · θ =

∑3
j=1 pjθj = 0 the polarization

vector.

We assume that ε ≡ ε0 and σ ≡ 0 outside of some
bounded domain. The pair (Ei,H i) satisfies the time har-
monic Maxwell system in vacuum, i.e.

curlEi − iωµ0H
i = 0 in R3,

curlH i + iωε0E
i = 0 in R3 .

The total fields are superpositions of the incident and scat-
tered fields, i.e. E = Ei + Es and H = H i + Hs and
satisfy the Maxwell system

curlE − iωµ0H = 0 in R3, (1)

curlH + iωεE = σE in R3 . (2)

Furthermore, the tangential components of E and H are
continuous on interfaces where σ or ε are discontinu-
ous. Finally, the scattered fields have to satisfy the Silver-
Müller radiation condition√

µ0

ε0
Hs(x)× x− |x|Es(x) = O

(
1
|x|

)
(3)

uniformly w.r.t. x̂ = x/|x| as |x| tends to infinity.

In this talk we will always work with the magnetic field
H only. This is motivated by the fact that in our case of

a non-magnetic medium the magnetic field is divergence
free.

Eliminating the electric field E from the system (1), (2)
leads to

curl
[

1
σ − iωε

curlH
]
− iωµ0 H = 0

i.e.

curl
[

1
εr

curlH
]
− k2H = 0 in R3

where εr denotes the (complex valued) relative permittiv-
ity given by

εr(x) =
ε(x)
ε0

+ i
σ(x)
ω ε0

.

We note that εr ≡ 1 outside of some bounded domain.
The incident field H i satisfies

curl2H i − k2H i = 0 in R3 .

The Silver-Müller radiation condition (3) turns into

curlHs(x)× x̂− ikHs(x) = O
(

1
|x|2

)
(4)

as |x| tends to infinity. The continuity of the tangential
components of E and H translates into analogous re-
quirements for Hs and curlHs.

From the Silver-Müller radiation condition (4) one con-
cludes that Hs has the asymptotic form

Hs(x) =
exp(ik|x|)

4π|x|
H∞(x̂) + O

(
1
|x|2

)
uniformly w.r.t. x̂ = x/|x|. The vector field H∞ is
called the far field pattern of Hs. It depends on the wave
number k, the direction of observation x̂, and the direc-
tion θ and polarization p of the incident field. We write
H∞ = H∞(x̂; θ, p) und suppress the dependence on k
since we keep k fixed. H∞ is tangential, i.e. satisfies
H∞(x̂; θ, p) · x̂ = 0 for all x̂, θ ∈ S2 and p ∈ C3 with
p · θ = 0.

In our talk we concentrate on the inverse scattering
problem which is to determine (properties of) εr from
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the knowledge of the far field patterns H∞(x̂; θ, p) for all
x̂, θ ∈ S2 and polarization vectors p.

In the first part we recall some properties of the far field
patterns H∞(x̂; θ, p) and the corresponding far field op-
erator F : L2

t (S
2) → L2

t (S
2) defined by

(Fp)(x̂) :=
∫
S2

H∞(
x̂; θ, p(θ)

)
ds(θ) , x̂ ∈ S2.

Here, Lt(S2) denotes the L2−space of tangential vector
fields on S2.

In the second part we present the Factorization Method
which is a relatively new approach for determing the sup-
port D of εr − 1. This method avoids the computation of
(a sequence of) forward problems, is therefore extremely
fast (at least for constant background media) and does not
need a priori information on the type of boundary con-
ditions or the number of connectivity components of the
scatterer. The Factorization Method is based on a decom-
position of F in the form

F = H∗T H

with some explicitely given integral operator H :
L2

t (S
2) → L2(D) and some isomorphism T from L2(D)

onto itself. It can be shown that the support D of εr − 1
consists of exactly those points z ∈ R3 for which the
function

φz(x̂) =
ik

4π
(x̂× p)× x̂ e−ikx̂·z , x̂ ∈ S2 ,

is in the range of H∗. Under certain assumptions on εr

and the support D the range of H∗ can be expressed by
the range of an operator F# which can be easily com-
puted from the data operator F . Combining these results
yields a very explicit representation of the characteristic
function of D.

One of the important assumptions mentioned above is that
k2 is not an eigenvalue of the following unconventional
system of linear homogeneous differential equations:

curl
[

1
εr

curl v
]
− k2v = 0 in D ,

curl2w − k2w = 0 in D ,

ν × v = ν × w on ∂D ,

1
εr

ν × curl v = ν × curlw on ∂D .

We will report on some properties of this “interior trans-
mission eigenvalue problem”.
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Abstract
We consider defect modes created in total gaps of 2D

photonic crystals by changing a property such as the di-
electric constant or radius of a single cylinder. Using an
asymptotic method based on the dominant contribution
to the Green’s function from the band edge, we derive a
simple exponential law which links the frequency differ-
ence between the defect mode and the band edge to the
change in dielectric constant. We present numerical re-
sults which show the accuracy of the exponential law, for
TE and TM polarizations, hexagonal and square arrays
and for the first and second gaps.

Introduction
The original motivation for the study of photonic crys-

tals was to create bandgaps for light by analogy with those
for electrons in semiconductors, and to employ structural
modification to induce localized states in the gaps, the
analogue of localized states for electrons induced by dop-
ing. In recent years, attention has turned to the unusual
in-band properties of photonic crystals, and in particular
to possibilities for photon manipulation at the band-edge
[1], [2].

Here, we focus on properties of defect states at the gap-
edge. We employ a Bloch function representation of the
Green’s function, and show that near the gap-edge this
is dominated by a single term, contributed by the Bloch
edge wave function. The frequency dependence of this
term in two dimensions for parabolic band-edge disper-
sion is logarithmic in |ω − ωbe|, the difference in the fre-
quency in the gap and that at the band edge. We show that
this asymptotic procedure gives rise to an exponential de-
pendence of |ω−ωbe| on the inverse of the parameter giv-
ing rise to the defect state. This type of result is derived
in the tight-binding case for electrons in the solid state lit-
erature, but the derivation described here does not rely on
tight-binding and is framed quite generally, requiring in
essence only that the density of states at the band-edge be
non-zero.

We describe the asymptotic technique for two-
dimensional photonic crystals in which the distribution
of dielectric constant is altered, as in [4]. We also con-
sider the case of Dirichlet boundary conditions, in which

the radius of one cylinder in a square array of cylinders
is altered to generate a defect. This is a particularly inter-
esting special case, in that there is a low-frequency band
edge whose cut-off frequency is known analytically, as is
the curvature at the band edge. This means that the im-
portant parameters of the formula for the frequency of the
defect mode can be estimated analytically.

Numerical Examples
The analytic estimates for the behaviour of modes near

gap edges are verified using a numerical method called
the Fictitious Source Superposition Method (FSS) [5].
This method is particularly well suited to modelling the
behaviour of such modes, which are spatially very ex-
tended, and thus difficult to model using supercell or PML
techniques.

Fig. 1 shows the comparison between the normalized
inverse wavelength d/λ as determined numerically and
the asymptotic formula appropriate to the Dirichlet case:

δω = Ae
S
δa , (1)

where δω = |ω − ωbe|, ω = 2πc/λ, A is determined
numerically, and S is the sensitivity, which can be de-
termined analytically. In the case shown, S is positive,
so defects are formed by decreasing the radius: δa =
0.1 − ρd. Note that the exponential form of equation (1)
is particular to two dimensions, which is an intermediate
case between the power law asymptotics of one dimen-
sion and the three dimensional case, where the density of
states at the band edge is zero.

Figs. 2 and 3 give respectively a line plot and a surface
plot of the defect wave function. Note the mixture of the
oscillating Bloch function and the exponential decay in
the former, and the four positive peaks near the centre of
the defect in the latter. The wave function goes to zero
within each cylinder, as is evident from Fig. 2, where the
small radius of the central cylinder makes this feature less
obvious than in other cylinders.

References
[1] M. Ibanescu , S.G. Johnson, D. Roundy, C. Luo,

Y. Fink, and J.D.Joannopoulos,” Anomalous disper-

20



0.02 0.04 0.06 0.08 0.1
Ρd

0.362

0.364

0.366

0.368

0.372

0.374

d�Λ

Figure 1: Normalized reciprocal wavelength d/λ for
defects formed by changing the radius of a single

cylinder to ρd, in a square array (period d) of cylinders
with radius 0.1d. Dashed line: exponential fit; solid line-

FSS results. Dirichlet boundary conditions.

-4 -2 2 4

0.2

0.4

0.6

0.8

Figure 2: Line plot (along an axis through the centre of
the defect) of the wave function of the defect formed by

reducing the radius of a single cylinder to 0.03d for a
square array of cylinders with radius 0.1d and Dirichlet

boundary conditions.

sion relations by symmetry breaking in axially uni-
form waveguides”, Phys. Rev. Lett., vol.92,063903
(2004).

[2] A. Figotin and I. Vitebskiy I, ”Slow light in photonic
crystals”, Waves in Random and Complex Media,
vol. 16, 293-382 (2006).

[3] E.N. Economou, ”Green’s Functions in Quantum
Physics”, Springer-Verlag (Berlin, 1983).

[4] K.B.Dossou, R.C.McPhedran, L.C. Botten, A.A.
Asatryan and C. M. de Sterke, ”Gap-edge Asymp-
totics of Defect Modes in 2D Photonic Crystals”,
Optics Express, vol. 15, 4753-4762 (2007)

-5

-2.5

0

2.5

5

x
-5

-2.5

0

2.5

5

y

0

0.25

0.5

0.75

1

z

-5

-2.5

0

2.5

5

x

Figure 3: Surface plot of the wave function of the
defect formed by reducing the radius of a single cylinder
to 0.03d for a square array of cylinders with radius 0.1d

and Dirichlet boundary conditions.

[5] K.B. Dossou, L.C. Botten, S. Wilcox, R.C. McPhe-
dran, R.C., C.M. de Sterke, N.A. Nicorovici, N.A.
and A.A. Asatryan, ”Exact Modelling of General-
ized Defect Modes in Photonic Crystal Structures”,
Physica B, vol. 394, 330-334 (2007).

21



Hydroelastic Waves

J. F. TOLAND

Introduction

By a hydroelastic wave is meant the steady
irrotational periodic motion under gravity of
an inviscid incompressible liquid when the top
streamline is in contact with a frictionless elas-
tic sheet. Such problems have been of interest
since GREENHILL’s paper [7] in the nineteenth
century up to the present day, for example in the
theory of very large floating structures (VLFS),
or platforms (VLFP) (see [1] and the references
therein) and flow under ice [8], [9], [11]. Re-
cently there have been mathematical studies of
small amplitude solutions [8], [10], [11], and nu-
merical studies [5], [6], [9] of large amplitude so-
lutions, to nonlinear models.

The question of existence for large-amplitude
two-dimensional waves on flows of infinite depth
when the sheet’s elastic response to stretching
and bending may be strongly nonlinear, when
its mass is neglected, was formulated in [13] as
a variational problem. For a class of problems
where the stored energy is a sum of the effects
of bending and stretcing the existence of waves
propagating with arbitrarily large speeds was es-
tablished by maximizing a Lagrangian. This lec-
ture is on [3], [14] in which we develop the vari-
ational approach to deal with a heavy sheet and a
more general elastic responses. That case is more
complicated for the following reason.

A hydrodynamic wave is steady when the fluid’s
Eulerian velocity field is stationary in a reference
frame moving with the wave. On the other hand,
as the wave passes, the material points in the sur-
face sheet move relative to each other according
to the dynamical equations of solid mechanics in
Lagrangian coordinates with the forces of grav-
ity and the pressure exerted by the fluid acting
on them. We will show the existence of travel-
ling waves for which the Eulerian velocity of the
fluid and Lagrangian velocity of the elastic sheet
are stationary, but not constant, in a reference
frame moving with the wave. Such waves are
given by non-trivial solutions of a free-boundary
value problem for the stream function.

The Physical Problem

We consider hydroelastic travelling waves that
are periodic and travel with speed c0 without
changing form on the surface of an inviscid fluid
which is at rest at infinite depth and occupies the
region beneath a thin elastic sheet. Throughout
the wavelength is normalized to be 2π and we as-
sume that the fluid’s velocity field is irrotational
in the (x, y)-plane, 2π-periodic in the x direc-
tion, and stationary with respect to a frame mov-
ing with velocity c0.

The material points of the sheet on the surface
are supposed to move periodically in time with
respect to a frame that is translating horizontally
with speed d. This drift velocity d might be zero,
in which case the material points move period-
ically with respect to the fluid at rest at infinite
depth. If c0d < 0, the surface sheet drifts in the
opposite direction to that of wave propagation.

The intersection of the sheet with the plane z = 0
is supposed to behave dynamically like a uni-
form, thin, hyperelastic rod, as described by
ANTMAN [2, Ch. 4], with a stored-energy func-
tion that depends on both stretch and curvature.
By the reference section is meant the line y =
z = 0 and steady travelling waves are sought
which satisfy the constraint that at any moment
of time
(?) the material in an interval of length 2π of the
reference section is deformed to become one pe-
riod of the hydroelastic wave surface.

Mathematical Formulation

We suppose that the position, at time t, of
the point with Lagrangian coordinates (X, 0) is
given by
R(X, t) : =

(
X + dt + u(X − ct), v(X − ct)

)
where u and v are 2π-periodic and c, d ∈ R. Let
c0 = c+ d. Then the wave profile St at time t is

{(X + dt+ u(X − ct), v(X − ct)) : X ∈ R}
= S0 + (c0t, 0).

The second line shows that St describes a fixed
profile S0 propagating from left to right with-
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out changing shape at a constant speed c0; the
first line shows that points on the surface have
time period 2π/c relative to a frame moving with
speed d. So c0 is the wave speed and d is the drift
velocity of the material in the surface sheet, both
calculated relative to the fluid at rest at infinite
depth. We suppose throughout that c0 ≥ 0 and
d ∈ R.

The elasticity of the surface membrane is defined
as follows. Let s ∈ [0, 2π] denotes a point of
the reference sheet (the X-axis) and let r(s) ∈
S = {r(s) : s ∈ R} denote its position after
deformation, so that |r′(s)| is the stretch at r(s).
Let σ̂(r(s)) denote the curvature of S at r(s).
Then the elastic energy stored in in one period is∫ 2π

0
|r′(s)|e

(
|r′(s)|, σ̂(r(s))

)
ds.

With c and ρ given, let $ be defined by

$(γ, σ) = ν ⇔ ν2(e1(ν, σ)− c2ρ/2) = γ.

and let γ = γ(σ, η) depends on the height and
curvature, η and σ, and the density and velocity,
ρ and c, via the formula∫

S

dς

$(γ + gρη(ς), σ(ς))
= 2π,

where ς denotes arc length along one period the
surface. This is to ensure that (?) in the Intro-
duction is satisfied. Let e(ν, σ) := e(ν, σ) −
(c2ρ/2)ν and, for any real numbers γ1 and σ1,
let

v(γ1, σ1) = e($(γ1, σ1), σ1) +
γ1

$(γ1, σ1)
,

v 2(γ1, σ1) =
∂v

∂σ1
(γ1, σ1) = e2

(
$(γ1, σ1), σ1

)
,

and

N(s) = v
(
γ(σ, η) + gρη(s), σ(s)

)
− σ(s)v 2

(
γ(σ, η) + gρη(s), σ(s)

)
.

Then we can deduce from the mechanics [2] that
the pressure exerted on the sheet by the fluid be-
neath is determined by its position and curvature
(alone) through the formula

P (ς) =
d2

dς2
(
v 2(γ + gρη(ς), σ(ς))

)
− σ(ς)N(ς) +

gρ cos θ(ς)
$(γ + gρη(ς), σ(ς))

,

in which γ = γ(σ, η), N is given above and ϑ is
the angle between the surface and the horizontal.

Note that this formula for P depends only on the
geometric shape of the sheet section and does not
require knowledge of the displacement of the ma-
terial points in the undeformed sheet section.

The unknown region occupied by the liquid is
characterized by the kinematic requirement that
the surface is a streamline and the dynamic con-
dition that the pressure in the fluid and the effect
of gravity yield the force needed to deform the
sheet. Therefore the existence of a steady hy-
droelastic wave with speed c0, when the drift ve-
locity is d and (?) holds, corresponds to the exis-
tence of a non-self-intersecting smooth curve S
in the plane which is 2π-periodic in the horizon-
tal direction for which there exists a solution of
the following system:

∆ψ = 0 below S,
ψ ≡ 0 on S ( kinematic condition),

∇ψ(x, y) → (0, c0) as y → −∞,

with the dynamic (pressure) boundary condition

1
2
|∇ψ|2 + gη =

c20
2
− P (ς) on S .

Are there any nontrivial solutions of this prob-
lem? In [13] we use a variational argument based
on Zakharov’s Hamiltonian system [15] as for-
mulated in [4] to prove the existence of travelling
waves when the surface density is zero.

Hypotheses and Main Result

Roughly speaking the main hypotheses on the
stored-energy function is:

e11 > κ, where κ ≥ 0 is a constant,
and the mapping

(t, σ) 7→ e(1/t, σ) (H)

is strictly convex and tends to ∞ suffi-
ciently rapidly as t → ∞ or 0, and as
|σ| → ∞.

Suppose that g > 0, ρ ≥ 0, c0 ≥ 0 and d ∈ R are
given. Let c = c0 − d and suppose that c2ρ ≤ κ.
Suppose also that

c20 + c2ρ+
g2ρ2

e11(1, 0)− c2ρ
> g + e22(1, 0).

2
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Then there exists a non-zero solution of the hy-
droelastic wave problem. In particular, if c20 + ρ2

is sufficiently large there exist waves for all val-
ues of c with c2ρ ≤ κ. A special case occurs
when ρ is sufficiently large (depending only on e
and g) and c is sufficiently small (depending on ρ
and e). For example, when ρ is sufficiently large,
there exist waves for all c0 and dwith c20+d2 suf-
ficiently small; c0 and d may have opposite sign
and either of c0 or d may be zero.

The case c = c0 = d = 0 and ρ is sufficiently
large is included. This limiting case corresponds
to static hydroelastic waves in which there is no
motion in the surface sheet or in the fluid and
elastic stresses are balanced by hydrostatic pres-
sure.

Thus, depending on the density of the surface
sheet, very slow, or very fast hydroelastic waves
are proved to exist, and the drift can have either
sign depending on circumstances.
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Abstract
We present a new class of integral equations dedicated

to the iterative solution of harmonic scattering problems.
We conjecture a localization of the so-called admittance
operator with increasing frequency, which allows us to
construct an approximate model able to be efficiently dis-
critized. The general framework of the formalism consists
of factorizing the Calderón projector with a regularizing
boundary operator ˜A built with this approximation of the
admittance. An important feature of the approach is to di-
rectly inform about the optimal operator A for which the
resulting equation becomes trivial (whose underlying op-
erator is identity). Therefore, in such a framework, build-
ing well-conditioned integral equations becomes to ex-
hibit as pertinent as possible approximations ˜A of A.

Introduction
The relevance of integral methods for solving scat-

tering problems in harmonic regime requires no further
proof. Using them in combination with fast multi-pole
algorithms and iterative solvers enables one to accu-
rately solve problems involving hundreds of thousands
of unknowns. However, the efficiency of iterative meth-
ods depending on the condition number of the linear
systems, it becomes absolutely crucial to have either
high-performance pre-conditioners or intrinsically well-
conditioned integral formulations. It is in this strategic
field, that the french aerospace lab ONERA has been con-
ducting fundamental research for the past few years.

The main research theme, begun in 1998 [9], is based
on a generalized combined source integral equation (GC-
SIE) [10] [11] [8], also called later generalized Brakhage-
Werner integral equation by different authors [3] [7]. Very
close in spirit, but in the area of direct integral equation
methods is the generalized combined field integral equa-
tion (GCFIE) of Contopanagos et al. [6] and Adams [1].
The goal of both methods is to find a way to incorporate in
the integral equation formalism, some information on the
scattering phenomenon. Eventually, it turns out that both
GCSIE and GCFIE depend on the choice of an operator
˜Y , which should be an approximation of the admittance
of the diffracting body. Indeed, the construction of the
equation is done in such a way that in the limiting case

where this approximation is exact, the integral operator
to be inverted becomes the identity (this is also true for
GCFIE although it has not been noticed by the authors).
Thus, we need to construct computable approximations
of the admittance such that the operator underlying the
equation appears as a mathematically controllable pertur-
bation of the identity (small or compact). When the GC-
SIE or GCFIE are discretized, we then arrive at a linear
system which is close to the identity and hopefully, by its
very nature, well-conditioned.

After recalling the principle of the method, we apply
it to the problem of scattering by a perfect electric con-
ductor, making explicit the approximation of the admit-
tance operator that was used. We then discuss suitable
modifications for handling different boundary conditions
(impedance or Leontovitch). Numerical results show the
efficiency of the method, both in terms of reliability (for
complex geometries) and in terms of iterations and speed.

A general formalism
Most boundary value problems in wave scattering read

as

Find w ∈ W such that Bw = u0 , (1)

where u0 ∈ D′(Γ) is a distribution on the boundary Γ of a
compact set D, W a functional space of admissible wave
solutions usually defined on R

3 \ D, and B a boundary
trace operator. Moreover, W can be parameterized with
the help of a potential C

w = C(γ0w, γ1w) ,

where (γ0w, γ1w) stand for the Cauchy data of w ∈ W .
Since (1) is well-posed there exists an operator A defined
by

A : Bw 7→ (γ0w, γ1w) ,

and therefore
BCA = Id . (2)

The integral equations we present are built on the
model:

Find u ∈ D′(Γ) such that BC ˜Au = u0 , (3)
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where ˜A is meant to be an approximation as close as
possible to A. In view of (2), the linear system pro-
duced after the discretization of (3) is expected to be well-
conditioned. Although the general framework of this for-
malism is not confined to Maxwell problems, we restrict
now our presentation to this field of applications. There-
fore, C is given by the Stratton-Chu formula

C(u,v) = Lv −Ku (4)

where L = − 1

ik
∇ × ∇ × G, K = ∇ × G, and G is the

vector potential.

The perfect electrical conductor problem
Although already relevant, one of the simplest applica-

tions of this framework is to consider the electromagnetic
problem of the perfect electrical conductor (PEC). There,
(γ0, γ1) = (n×, 1

ik
n × curl) (n being the unit outward

normal to Γ and k the wave number) and B = γ0. Here,
it is easily seen that A = (Id, Y ) where Y is the classi-
cal admittance operator, and hence approximating A be-
comes approximating Y . In (3) we will have ˜A = (Id, ˜Y )

A quite natural way to build approximations of the ad-
mittance is to pull back onto the boundary Γ of the scat-
terer, the well known admittance of the tangent plane.
Viewing the admittance of the plane as the trace of a
potential, say −2n × L, we are obviously conveyed to
import this formula onto the boundary and to consider
the first approximation ˜Y = −2n × L. The resulting
equation turns out to be a compact perturbation of the
identity, but suffers from irregular frequencies. A solu-
tion to remove these spurious modes is to localize this
first approximation. While Contopanagos et al. [6] and
Adams [1] propose to introduce a damping coefficient in
the wave number, we suggest to use a quadratic partition
of unity (Up, χp)

1 on the boundary, leading to the follow-
ing pseudo-local approximation

˜Y = −2
∑

p

χp n×Lχp . (5)

This technique has been thoroughly studied in [5], [4],
[2]. One of its foremost features is that it leads to an
equation without internal resonance frequency, and shows
a condition number independent of both the mesh refine-
ment and the frequency. Concerning experimental results,
we point out that, for instance, the Channel cavity, which
models an aircraft air intake was processed at 7 GHz

1(Up)p is a set of patches recovering Γ, and (χp)p a family of trun-
cation functions with support in Up and such that

P

p
χ

2

p = 1.

(300 000 unknowns) in half the computational time usu-
ally needed with a classical equation (FIG. 1). Another
technique to approximate Y has been proposed in [7].
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Figure 1: Resolution time in function of the incidence
for the Channel cavity at 7 GHz (around 300 000 DoF).

Let us note that for PEC problem, a well-conditioned
direct formulation can as well be designed when the ex-
citation is given by an incident electromagnetic wave
(Einc,Hinc). Indeed, starting from the well-known com-
bined field integral equation

n×KJ + J + αL|tanJ = n×H
inc − αE

inc

|tan , (6)

and replacing coupling coefficient α with −Y n× leads to

n ×KJ + J − Y n ×LJ = J . (7)

As before, approximating Y by ˜Y and solving

n×KJ + J− ˜Y n×LJ = n×H
inc + ˜Y n×E

inc (8)

should give a well-conditioned equation.

Problems with impedance boundary conditions
In this kind of problem, the boundary operator B is

given by
BE = Etan + n×H . (9)

Writing A in coordinates (AE , AH), we have AH =
Y AE and setting u = BE, (9) becomes u = −n ×
AEu + Y AEu, so that

AE = (Y − n×)−1 . (10)

Looking at the principal symbol of AE , we propose the
following approximation

˜AE = n × (Πstar + 2ikG0) , (11)
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where Πstar is the Helmholtz projector onto the curl free
vector-fields and G0 is the tangential trace of the convo-
lution with the Green function of the Laplacian. Taking
˜A = ( ˜AE , ˜Y ˜AE), one can show that (3) is well-posed,
and the underlying operator is a compact perturbation of
identity.
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Abstract
We propose a new class of hybrid-mixed-type solution

methodology for solving high-frequency Helmholtz prob-
lems. The proposed approach distinguishes itself from
similar discontinuous Galerkin methods by a local ap-
proximation of the solution with oscillated finite elements
polynomials that satisfy the wave equation. We enforce
a weak continuity of the solution across the element in-
terfaces by Lagrange multipliers. Preliminary numerical
results are presented to illustrate the potential of the pro-
posed method.

Introduction
The numerical solution of waves phenomenas has

adquired great attention during the last century. Despite
the tremendous progress that has been made in the re-
cent years, the challenge of efficient computation at high
wavenumbers is still considered as an unsolved problem
by current numerical techniques. Indeed, standard com-
putational methods such as Galerkin finite element meth-
ods (FEM) are unable to cope with rapid oscillation be-
cause they become prohibitely expensive to resolve the
waves and control numerical dispersion errors. For exam-
ple, solving an acustic scattering with Q2 finite elements
when ka = 10, where k is the wave number and a is the
dimension of the considered submarine-like scatterer, re-
quires to solve a system of almost 10 million complex un-
knowns [1], when scatterer applications require to solve
exterior Helmholtz problem when ka > 200.
Research efforts on reducing the computational cost for
mid- and high-frequency problems have been and are cur-
rently directed in many different venues, e.g. (a) mesh-
dependent augmented Galerkin techniques such as sta-
bilized methods [2], and (b) multi-scale methods such
as partition of unity methods [3], residual free bubbles
[4], and discontinuous Galerkin methods (DGM) [5]. We
propose a new hybrid-mixed-type formulation for solv-
ing mid- and high-frequency wave problems in which the
solution is approximated locally by oscillated finite ele-

ments polynomials that satisfy the wave equation. In ad-
dition, a weak continuity of the solution is enforced by the
introduction of Lagrange multipliers along the element
interfaces. Due to the discontinuous nature of the approx-
imation element-level static condensation is enabled. The
computational cost of the proposed method is then sim-
plified, and mainly given by the total number of Lagrange
multipliers degrees of freedom and by the sparsity pattern
of the resulting matrix.
The approach we propose here combines the features of
standard Galerkin finite elements techniques in terms of
implementation complexities and the oscillating aspect of
the shape functions needed for approximating high fre-
quency waves.

The mixed-hybrid variational formulation
Let Ω ⊂ Rd be a d-dimensional, open, bounded region

with smooth boundary ∂Ω.
Find u : Ω → R such that

{
∆u + k2u = f , in Ω
∂u
∂ν = iku + g , on ∂Ω

(1)

where k > 0 is the wave number, ∂/∂ν denotes the nor-
mal derivative and f : Ω → R and g : ∂Ω → R are given
functions. The second equation in (1) is a representation
of a class of inhomogeneous Robin boundary conditions.
Let Th be a regular triangulation of Ω into subdomain
K with boundary ∂K. The subdomain K is either a
triangular-shapad or a quadrilateral-shaped element. We
focus in this abstract on the case where the subdomains K
are rectangular-shaped elements. Let h denote the step-
size of the trangulation. We consider the following hybrid
variational formulation:
Find (u, λ) ∈ V ×M such that

{
a(u, v) + b(v, λ) = F (v) , ∀v ∈ V
b(u, µ) = 0 , ∀µ ∈M (2)
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where the bilinear form a(·, ·) and b(·, ·), and the right-
hand side F are given by:

a(u, v) =
∑

K∈Th

(∫

K
(∇u · ∇v − k2uv)dx

−ik

∫

∂K∩∂Ω
uvds

)
, ∀u, v ∈ V (3)

b(v, µ) =
∑

K∈Th

∫

∂K
µKvds , ∀(v, µ) ∈ V ×M(4)

F (u) =
∑

K∈Th

(∫

∂K∩∂Ω
gvds

−
∫

K
fvdx

)
, ∀v ∈ V (5)

where V and M denote the following spaces

V = {v ∈ L2(Ω) : v|K ∈ H1(K)},
M = {µ ∈

∏

K∈Th

L2(∂K) : µ = 0 on ∂Ω and

∀K,K ′ ∈ Th, µK + µK′
= 0 on ∂K ∩ ∂K ′}.

Now, let Vh and Wh denote two finite-dimensional space
satisfying

Vh ⊂ V , Wh ⊂ W. (6)

The basic idea in our method is to seek an approximate so-
lution (vh, λh) ∈ Vh×Wh to the variational problem (2).
We chose to approximate the primal variable u using a
linear combination of finite element polynomials that os-
cillate with the frequency. The oscillated aspect of these
shape functions with respect to the wavenumber ka is il-
lustrated in Fig. 1. More specifically, we construct the
space Vh as follows:

Vh = {vh ∈ V : v|K =
2∑

l=1




2∑

j=1

ul
jΛj(x)e(−1)liky

+
4∑

j=3

ul
jΛj(y)e(−1)likx


 , ul

j ∈ C} (7)

where Λj is an one-dimensional Lagrange polynomial.
The dicrete space Mh is given by

Mh = {µh ∈M : ∀K ∈ Th and ∀eK
j ∈ ∂K :

µK
j = µ|eK

j
∈ C, 1 ≤ j ≤ 4} (8)

where eK
j represents the element edges. In particular we

approximate the Lagrange multipliers field by

µh = µ0 + µ1s, (9)

Figure 1: Dependence of the shape function Λ1(x)eiky

with respect to the wave number ka = 10.

where s is varying along one element edge. µh has simi-
larly expression along all three other edges of the element.
From now on we refer to our element as the OP-8-2 el-
ement, (OP for oscillated polynomials, 8 for eight shape
functions for element, 2 for two Lagrange multipliers dofs
per edge).

Numerical results
In this section we present preliminary results obtained

for a two-dimensional model problem discretized by
a uniform rectangular-shaped mesh. We consider the
Helmholtz problem (1) where Ω is an a × a square do-
main, and the functions f and g are chosen so that the
exact solution is a plane wave propagating in a given di-
rection d = (cos θ, sin θ)

uex(x, y) = eikd·x.
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We vary the angle θ of propagation in the interval [0, 2π)
and for each angle we measure the relative error by the
following H1 modified norm which takes into account the
jump of the solution along the element edges

||u− uex||cH1 =


 ∑

K∈Th

||u− uex||2H1(K)

+
∑

∂K∈Th

||[u]||2L2(∂K∩∂K′)




1/2

(10)

The proposed method is compared with both the standard
finite element method equipped with the Q2 elements and
the DGM equipped with the R-8-2b elements. We must
point out that the main difference between the porposed
method and the DGM formulation is the approximation
at the element level. The latter approach approximates
the solution by planar waves. Because of space limita-
tion, we present comparison results obtained for ka = 30
only. Fig.2 shows the dependence of the relative errors
with respect to the angle of propagation when ka = 30.
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Figure 2: Performance comparison when ka = 30.

The preliminary results obtained from the numerical
investigation performed in the case of waveguide prob-
lems reveal:

• The OP-8-2 elements exhibit superiority with respect
to the standard Q2 element. We must point out that
since we use static condensation procedure, the size
of the resulting linear system is smaller that the size
of the system obtained when using Q2 finite ele-
ments discretization.

• The performance of proposed solution methodology
is overall comparable to the DGM method. The
elements OP-8-2 and R-8-2b deliver results with
the same level of accuracy. However, the pro-
posed method is more versatile than DGM because
it can be applied to unstructured meshes with either
triangular-shaped elements or quadrilateral-shaped
elements, and its extension to three-dimensional
problems is conceptually straightforward.
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Abstract
The aim of this paper is to propose an approach for

improving the accuracy of the finite element solution
of time-harmonic scattering problems, and in particular
acoustic scattering by sound-hard, convex obstacles. The
method uses approximate microlocal analysis techniques
developed for the fast solution of high-frequency prob-
lems. After a detailed presentation of the methodology,
we provide a numerical example for a two-dimensional
problem to validate our approach.

Introduction
Many developments have been proposed over the last

decade to improve the accuracy of the classical finite
element solution of time-harmonic scattering problems
at high frequencies. Indeed, the finite element solu-
tion is known to suffer from pollution effects when the
wavenumber increases, leading to ever costlier computa-
tions as the mesh spacing must decrease faster than the
wavelength [1]. In this paper we propose a method which
strongly reduces this problem. The very basic ideas are 1)
the a priori determination of an approximate phase in the
bounded computational domain using microlocal analy-
sis techniques and 2) the computation of a slowly varying
wave field over the domain through a classical finite ele-
ment formulation. All these points are developed below
and a numerical example is given to validate the proposed
approach.

The classical formulation
We investigate the numerical solution of the time-

harmonic acoustic scattering problem of a plane wave
uinc(x) = eikν·x by a sound-hard obstacle Ω− ⊂ Rd,
d ≥ 1, with C1 closed boundary Γ. The real-valued pos-
itive wavenumber k is related to the wavelength λ by the
relation k = 2π/λ while the normalized incidence vec-
tor direction is ν. We set Ω+ := Rd\Ω− as the exterior
domain of propagation associated with Ω−. The spatial
variable is denoted by x = (x1, ..., xd). The boundary

value problem writes

∆u+ k2u = 0, in Ω+,
∂nΓu = g := −∂nΓu

inc, on Γ,
lim

|x|→+∞
|x|(d−1)(∇u · x

|x|
− iku) = 0.

(1)

The operator ∆ is the Laplacian operator and a · b des-
ignates the hermitian inner product of two d-dimensional
complex-valued vector fields a and b. The outwardly di-
rected unit normal vector to Ω− is nΓ. In a suitable func-
tional setting, this problem is known to be well-posed.

To approximate the solution to problem (1), we con-
sider a smooth convex fictitious boundary Σ enclosing
the scatterer Ω−. We set Ωb as the bounded compu-
tational domain delimited by Γ and Σ. We only con-
sider the second-order Bayliss-Gunzburger-Turkel-like
(BGT2-like) Artificial Boundary Condition (ABC) de-
rived in [2]. We restrict our attention to this approach
to show that the proposed solution is flexible in terms of
code implementation even if other truncation techniques
like PML could also be used and adapted to the proposed
strategy. The BGT2-like ABC on Σ is given by

∂nΣu = divΣ(A∇Σu)− βu, on Σ, (2)

where nΣ designates the outwardly directed unit normal
vector to Σ, the operator divΣ is the surface divergence
of a tangential complex-valued vector field and∇Σ is the
surface gradient operator of a complex-valued scalar sur-
face field, all these quantities being defined over Σ. Fur-
thermore, the operator A is a complex-valued tensor field
and β is a complex-valued scalar function. The varia-
tional formulation consists in computing u ∈ H1(Ωb)
such that

a(u, v) = `(v), (3)

for any test-function v ∈ H1(Ωb). The sesquilinear form
a(·, ·) is defined by

a(u, v) = (∇u,∇v)0,Ωb
− k2(u, v)0,Ωb

+(A∇Σu,∇Σv)0,Σ + (βu, v)0,Σ,
(4)



and the linear form ` appearing in the right-hand side
is: `(v) = −(g, v)0,Γ. We define (·, ·)0,D as the hermi-
tian inner product of two complex-valued scalar or vector
square-integrable fields u and v of L2(D), D specifying
the integration domain.

The finite element solution consists in introducing a
covering Ωh of Ωb using some tetrahedrons K: Ωh =
∪K∈Kh

K, where Kh designates a triangulation of the do-
main. The corresponding interpolated boundaries asso-
ciated with Γ and Σ are respectively denoted by Γh and
Σh. The p-finite element version of (3) yields the discrete
formulation: find uh ∈ Vh such that

ah(uh, vh) = `h(vh), (5)

for any test-function vh of Vh, setting

ah(uh, vh) = (∇uh,∇vh)0,Ωh
− k2(uh, vh)0,Ωh

+
+(Ah∇Σh

uh,∇Σh
vh)0,Σh

+ (βhuh, vh)0,Σh

(6)
and: `h(vh) = −(gh, vh)0,Γh

. The classical finite element
space of order p is given by

Vh := {vh ∈ C0(Ωh)/vh |K ∈ Pp(K), ∀K ∈ Kh},

where Pp is the space of polynomials of degree less than
or equal to p.

The improved formulation
Our proposed approach can be roughly decomposed

into two successive steps

1) an a priori determination over the computational
domain Ωb of an approximate phase φ̃ through the
solution ũ to a one-way wave propagation evolution
equation, with initial condition ũ0 approximating the
trace of the field u on Γ; and

2) the calculation of the true solution u through the
computation of a slowly varying envelope A =
e−ikφ̃u, solution to a weak formulation solved by a
classical finite element procedure.

The two following subsections explain in detail how to
treat efficiently these two points.

Step 1: computing the approximate phase φ̃
If the obstacle Ω− was sound-soft instead of sound-

hard (i.e., if the Neumann boundary condition on Γ in
(1) was replaced with the Dirichlet condition u = uinc),
then the construction of the initial condition ũ0 for the
one-way wave propagation evolution equation would be

trivial: the exact trace of the field u on Γ being known,
we would set ũ0 = uinc on Γ [3].

For the sound-hard obstacle we are interested in here,
however, the exact trace of u on Γ is unknown and
the construction of ũ0 relies on the knowledge of the
Dirichlet-to-Neumann operator on Γ. In order to effi-
ciently compute an approximation of the trace in the high-
frequency regime, our approach is to use the On-Surface
Radiation Condition (OSRC) proposed in [4], which, for
a given normal derivative trace on Γ, expresses an approx-
imation ϕ of the exact trace of u through the relation

Λϕ = g, on Γ, (7)

where Λ is the pseudo-local OSRC operator given by

Λ = ik
√

1 +X. (8)

Then, we simply set ũ0 = ϕ. The symmetrical partial
differential operator X is: X = divΓ(k−2

ε ∇Γ·), defin-
ing the complex wavenumber kε by kε = k + iε, with
ε = 0.4k1/3H2/3

Γ , where HΓ is the mean curvature on
Γ. The numerical solution of (7)-(8) can be obtained effi-
ciently through the introduction of complex Padé approx-
imants of the square-root in conjunction with a surface
finite element method [4], [5].

Once the surface field ũ0 := Ãeikφ̃ is known on Γ,
the corresponding surface phase function φ̃ can be com-
puted. To solve this phase unwrapping problem, we con-
sider the known field ũ0 and differentiate the relation
eikφ̃ = ũ0/Ã, assuming that the surface field is not equal
to zero. Taking the real part of the equation, one gets

∇Γφ̃ = F := <(
1
ik

Ã

ũ0
∇Γ(

ũ0

Ã
)), (9)

where the surface vector field F is known. If one fixes
the value of φ̃ at an arbitrary surface point x∗ where ũ0 is
non-zero and one takes the surface divergence of equation
(9), then a continuous determination of the phase φ̃ can be
computed as the unique solution to the well-posed surface
partial differential equation

−∆Γφ̃ = −divΓF, on Γ,

φ̃(x∗) = arg
(
ũ0(x∗)
Ã(x∗)

)
.

(10)

The numerical solution can be easily obtained by a sur-
face finite element method, similarly to the OSRC tech-
nique [5].

To extend the phase in the whole computational do-
main, our approach consists in developing an approxi-
mate forward propagating equation according to a priv-
ileged direction. This can be done by the application of



microlocal analysis methods. Here, we will only consider
the lowest-order approximation

ũ(x) = ũ(x0)eik||x−x0||, (11)

where x is an exterior point in the computational domain
and x0 its projection onto Γ (see [3] for the use of a more
complex forward propagating technique based on the so-
lution of the Eikonal equation). Since the phase φ̃(x0) is
known at x0 by the previous step, the phase at point x of
Ω+ is finally given by

φ̃(x) = φ̃(x0) + ||x− x0||. (12)

Step 2: computing the exact solution u through A
In a way similar to what was done in [6] for boundary

integral equations, let us use the ansatz u = Aeikφ̃, and let
us recall that φ̃ is known from step 1. Then, replacing u
by this expression in the weak formulation (4) and taking
some test-functions v = Beikφ̃, we obtain the following
weak formulation: find A ∈ H1(Ωb) such that

A(A,B) = L(B), (13)

for all B ∈ H1(Ωb). The sesquilinear form A is given by

A(A,B) = (∇A,∇B)0,Ωb

+ik
(

(A∇φ̃,∇B)0,Ωb
− (∇A,B∇φ̃)0,Ωb

)
−k2((1− ||∇φ̃||2)A,B))0,Ωb

(A∇ΣA,∇ΣB)0,Σ

+ik
(

((A∇Σφ̃)A,∇ΣB)0,Σ − (A∇ΣA,B∇Σφ̃)0,Σ

)
+k2((A∇Σφ̃,∇Σφ̃)A,B))0,Σ + (βA,B)0,Σ

(14)
and the linear form L by: L(B) = −(f,B)0,Γ, with
f = ge−ikφ̃ and φ̃ given. Even if the formulation seems
complicated at first sight, all the quantities can be how-
ever easily obtained through simple assembling proce-
dures available in most finite element codes.

A numerical result
To show the improvement related to our approach, we

consider a simple two-dimensional test-case. The compu-
tational domain is composed of a circular scatterer with
radius R0 = 1 and a fictitious circular boundary Σ with
radius R1 = 2. The incident wave is plane. Figure 1
shows the relative L2(Ωb)-error over the concentric com-
putational domain according to k for two densities of dis-
cretization points per wavelength nλ = λ/h, using the
linear finite element method. We can see that, compared
to the classical approach, the new formulation leads to a
significant accuracy improvement. More two- and three-
dimensional test-cases will be presented during the talk
and further numerical results will be discussed.

k

ε 2

uh (nλ = 10)
Ah (nλ = 10)
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Ah (nλ = 20)
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Figure 1: Relative L2 error ε2 vs. wavenumber k for
the classical (uh) and improved (Ah) formulations.
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Abstract
We study stable forms of eigenvibrations for inhomo-

geneous media consisting of two parts with strongly con-
trasting stiffness and mass density. In this work we treat
a critical case for the high frequency vibrations, namely
the case when the order of mass density inhomogeneity
is the same as the order of stiffness inhomogeneity, with
heavier part being softer. Two non-classical effects are
discussed, firstly the appearance of limit problem with
nonlinear dependance on the spectral parameter and sec-
ondary the quantized multi-dimensional WKB or geomet-
rical optics asymptotic expansions of the high frequency
resonances.

Problem statement
Let a soft and heavy body part Ω+ be complemented

by a stiff and relatively light body part Ω− forming a
bounded domain Ω = Ω− ∪ Γ ∪ Ω+ of Rd, d ≥ 2, with
smooth interface Γ. We assume that domains Ω, Ω− and
Ω+ have Lipschitz boundaries. For the sake of simplic-
ity the surfaces ∂Ω and Γ are supposed to intersect at the
right angle. We consider stiffness Kε and mass density
Rε of the form

Kε =
{

k(x), x ∈ Ω−
εκ(x), x ∈ Ω+

Rε =
{

εr(x), x ∈ Ω−
ρ(x), x ∈ Ω+

with all functions being positive and smooth in the clo-
sures Ω− and Ω+ respectively. We consider body config-
uration such that ∂Ω ∩ ∂Ω± 6= ∅ (see Figure 1). Let ν
be the unit normal to Γ. We assume that eigenvibrations
of the body are described by the self-adjoint eigenvalue
problem

−div (Kε(x)∇uε) = λεRε(x)uε, x ∈ Ω, (1)

uε
∣∣
∂Ω

= 0, (2)

understood in the weak sense, i.e. implying the following
interface conditions on Γ

uε
−
∣∣
Γ

= uε
+

∣∣
Γ
, k

∂uε−
∂ν

∣∣
Γ

= εκ
∂uε

+

∂ν

∣∣
Γ
. (3)

The inferior indices − and + denote the restrictions of
a function defined in Ω to the subdomains Ω− and Ω+.

Figure 1: Configuration of the body

We investigate the question how the eigenvibrations of
the media, namely eigenvalues λε and eigenfunctions uε,
change if the parameter ε tends to 0. More precisely,
we are looking for the stable forms of eigenvibrations,
namely for the sequences of pairs λε and appropriately
normalized uε with non-trivial limits as ε → 0.

Low frequencies
Elastic problems with simultaneous perturbations of

stiffness and mass density, either with other geometries
or at different perturbation rates, were studied in [1–3].

It is well-known that for each fixed ε > 0 the spec-
trum of problem (1)-(3) is real and discrete, consisting of
eigenvalues with finite multiplicity that form a sequence
0 < λε

1 < λε
2 ≤ · · · ≤ λε

n < · · · → ∞ as n → ∞. The
corresponding eigenfunctions {uε

n}∞n=1 form an orthog-
onal basis in the weighted real L2-space with the scalar
product

(φ, ψ)ε = ε

∫

Ω−
r(x)φψ dx +

∫

Ω+

ρ(x)φψ dx.

Moreover, for each number n the eigenvalue branch λε
n is

a continuous function of ε ∈ (0, 1) such that λε
n ≤ cnε

with positive constant cn independent of ε.
Studying asymptotic behaviour as ε → 0 of each eigen-

value branch λε
n with fixed number n and corresponding

eigenfunctions uε
n (appropriately normalized), we imme-
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diately have the convergence

ε−1λε
n → λn, uε

n →
{

0 in Ω−
vn in Ω+

as ε → 0,

where λn is an eigenvalue and vn is the corresponding
eigenfunction of the limit problem

−div (κ(x)∇v) = λρ(x)v in Ω+, uε
∣∣
∂Ω+

= 0.

The asymptotic expansions in power series of ε for the
eigenelements λε

n and uε
n could be constructed and justi-

fied by a standard procedure. Since each eigenvalue tends
to zero as ε → 0, the corresponding eigenvibrations are
referred to as low frequency vibrations. Nevertheless, the
convergence to the limits is not uniform with respect to
number n. Moreover, all low frequency vibrations vanish
in Ω− as ε → 0. This naturally poses the question on
the possibility of constructing other non-trivial limits of
eigenvibrations addressed next.

High frequencies. Discussion and results
Since the asymptotics of eigenelements with fixed

number n leads immediately to the low frequencies, the
only other non-trivial stable forms of vibrations could be
found among eigenfunctions uε

n(ε) with numbers n(ε) →
∞. Also, similarly to [4], these high frequency vibrations
have a discrete dependence on ε (see Figure 2).

We hence construct certain sequences of small param-
eter εr → 0 such that at certain energy levels

λε := λεr

n(εr) ∼ ε−1µ + µ1 (4)

the corresponding eigenfunctions uε := uεr

n(εr) with unit
norm in L2(Ω) converge weakly in L2(Ω) to functions of
the form

U =
{

w in Ω−,
0 in Ω+.

We have to mention that the asymptotic expansions
for high frequency eigenelements are constructed under
certain strong additional restrictions. Using the WKB-
expansions we require Ω+ to be the tube of rays with the
base Γ for the corresponding eikonal equation (see Figure
3 and the next section for the specification). The tube of
rays is supposed to be free from the focal points.

The high frequency levels µ and corresponding limit
forms of vibrations w are described by a family of the
following problems, parametrized by δ ∈ [0, π) in the
boundary condition,

−div (k(x)∇w) = µr(x)w, x ∈ Ω−, (5)

w
∣∣
∂Ω−∩∂Ω

= 0, (6)
√

µκρw
∣∣
Γ

cos δ + k ∂w
∂ν

∣∣
Γ

sin δ = 0, δ ∈ [0, π). (7)

Figure 2: High frequencies: eigenvalues

Notice that (5) – (7) have a non-linear dependence on
the spectral parameter µ. In the space

H∗(Ω−) = {φ ∈ H2(Ω−) : φ|∂Ω−∩∂Ω = 0}
the family of problems (5) – (7) admits variational formu-
lation∫

Ω−
k∇w∇φdx +

√
µ cotan δ

∫

Γ

√
κρwφ dγ =

µ

∫

Ω−
r wφ dx, ∀φ ∈ H∗(Ω−). (8)

It can be shown that the union of spectra for problems
(5) – (7) contains all the positive real semi-axis. Namely,
for any positive µ0 there exists δ0 ∈ [0, π) with a non-
zero eigenfunction w ∈ H∗(Ω−) satisfying (8) for all
φ ∈ H∗(Ω−) with δ = δ0 and µ = µ0. The distinguish-
ing feature of this result is that the high frequency levels
µ which we can approach by the eigenelements λε with
non-trivial limits of uε fill in the continuum set R+ (con-
trary to e.g. the discrete spectrum for the high frequency
limits in the purely stiff problem [4]).

Asymptotic expansions
Under the above assumptions we construct asymp-

totic expansions of high frequency eigenelements using
combination of the power series technique and WKB-
approximations, namely

λε ∼ µε−1 + µ1 + · · ·+ µjε
j−1 + . . .

uε ∼





∞∑
j=0

wj(x)εj , Ω−
∞∑

j=0
〈aj(x), N

(
S(x)

ε

)
〉εj , Ω+

(9)
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where 〈·, ·〉 denotes a scalar product in R2,

N(τ) = (cos τ, sin τ)

and the phase function S =
√

µS0 with S0 being a so-
lution of eikonal equation c(x)|∇S0(x)|2 = 1 in Ω+

with c(x) = κ(x)ρ(x)−1. Our geometrical assumptions,
which were mentioned above, could be explained now
more specifically. We suppose Γ to be a wave front that
is to say the vector field ∇S0 changes in the orthogo-
nal to Γ direction. Further the wave front moves along
rays that are projections of bicharacteristics to the coor-
dinate space. Finally, the front comes to ∂Ω simultane-
ously along the rays as follows. Namely, first we solve
the Hamilton system for H(x, p) = c(x)|p|2 − 1,

dxξ

dt
= 2c(x)pξ,

dpξ

dt
= −|pξ|2∇c(x)

with the initial conditions

xξ(0) = ξ ∈ Γ, pξ(0) = c(x)−1/2ν.

Let for t ∈ (0, h) the rays xξ(t) do not intersect (for all
ξ ∈ Γ). Then we formalize all our geometrical assump-
tions to the requirement

Ω+ = {x ∈ Rd| x = xξ(t), t ∈ (0, h), ξ ∈ Γ}.

In particular, if smooth Γ coincides with ∂Ω− then Ω+ is
a “shell” surrounding Ω− and ∂Ω is an equidistant surface
relative to Γ in the metric c(x)−1/2|dx|.

Finally, we fix the phase function S0(xξ(t)) = 2(t−h).
Hence, we consider short-wave asymptotic expansions
(9) along the rays xξ. The specifics of such approach lies
in peculiar boundary conditions that have to be satisfied
after the transport equations for the coefficients aj(xξ) are
solved. In particular, according to the transport equations
the leading terms transform to the form

〈a0, N(ε−1S)〉 = α〈β0, N(γεS0)〉,

where α = J−1/2(ρκ)−1/4 depends on the geometrical
spreading J(t, ξ) = det ∂xξ(t)

∂(t,ξ) > 0, γε =
√

µ
ε + µ1

2
√

µ ,

β0 ∈ R2 is an arbitrary constant vector.
Then transmission conditions (3) imply

α〈β0, N(γεS0)〉|Γ = w0|Γ,√
µρκα〈β0, N

′(γεS0)〉|Γ = k ∂w0
∂ν |Γ.

(10)

Since according to our assumptions S0(ξ) = −2h does
not depend on ξ ∈ Γ, relations (10) are satisfied after the

Figure 3: Tube of rays

quantization 2hγε = δ + 2πr, r ∈ N. The latter fixes the
sequence of small parameter

εr =
2h
√

µ

δ + 2πr − hµ1/
√

µ
, r ∈ N,

for each selected direction ε−1µ + µ1 of asymptotics (4)
for λε. Moreover, (2) gives β0,1 = 0 and then (10) im-
plies (7), which depends on µ nonlinearly. For the chosen
asymptotic direction characterized by µ and µ1 with sim-
ple eigenvalue µ of (5) – (7) we construct on this way
complete asymptotic expansions for the above selected
series of λε and uε.
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Abstract
We propose and analyze a new fast method for the nu-

merical solution of time-domain boundary integral for-
mulations of the wave equation. Discretization in time
is achieved by Lubich’s convolution quadrature method
and in space by a Galerkin boundary element method. We
show that the arising block Toeplitz system is after a small
perturbation equivalent to a a decoupled system of dis-
cretized Helmholtz equations. Each of these systems can
efficiently be solved by a fast data-sparse method (e.g.
FMM, panel clustering). Further savings can be achieved
by noticing that in some cases the solutions of many of
the Helmholtz problems can be replaced by zero. Finally
the proposed method is inherently parallel.

We prove that the excellent stability and optimal con-
vergence of the convolution quadrature are inherited by
the new method. These results thereby pave the way to
the efficient solution using fast data-sparse techniques.

1 Introduction
Boundary value problems governed by the wave equa-

tion arise in many physical applications such as electro-
magnetic wave propagation or the computation of tran-
sient acoustic waves. Since such problems are typically
formulated in unbounded domains, the method of integral
equations is an elegant tool to transform this partial dif-
ferential equation to an integral equation on the bounded
surface of the scatterer.

In this paper we represent the solution of the wave
equation as a single layer potential thereby arriving at a
boundary integral formulation of the problem. For dis-
retisation we employ the convolution quadrature method
in time [5], [6] and a Galerkin boundary element method
in space.

The coefficient matrix in the arising system of linear
equations is a block-triangular Toeplitz matrix consisting
of N blocks of dimensionM × M , whereN denotes the
number of time steps andM is the number of spatial de-
grees of freedom. Due to the non-localness of the arising
boundary integral operators, theM × M matrix blocks
are densely populated.

In the literature, there exist (at least) two alternatives
to solve this system efficiently. In [3], an FFT-technique
is employed which makes use of the Toeplitz structure

of the system matrix and the computational complexity
is reduced toO

(

M2N log2 N
)

, while the storage com-
plexity stays atO

(

M2N
)

. In [2], [4] the M × M block
matrices are approximated by data sparse representations
based on a cutoff and panel-clustering strategy. This leads
to a significant reduction of the storage complexity while
the computational complexity is reduced compared to the
naive approach (cost:O

(

N2M2
)

) but increased com-
pared to the FFT approach.

In this paper, we will propose a third approach which
combines the advantages of the FFT-technique with the
data sparse approximation: The block Toeplitz system
is transformed to a decoupled system of discretized
Helmholtz problems which can then be efficiently solved
by fast data sparse approximations. Thereby we re-
duce both the storage and complexity estimates to
O(MN loga N), for a smalla ≥ 1. A full version of
the paper [1], where all the results stated here are proved,
is in preparation.

2 Integral formulation of the wave equation
Let Ω ⊂ R

3 be a Lipschitz domain with boundaryΓ.
We consider the homogeneous wave equation

∂2

t u = ∆u in Ω × (0, T ) (1 a)

u(·, 0) = ∂tu(·, 0) = 0 in Ω (1 b)

u = g onΓ × (0, T ) (1 c)

on a time interval(0, T ) for someT > 0. For its solution,
we employ an ansatz as asingle layer potential

u(x, t) =

∫ t

0

∫

Γ

k(x − y, t − τ)φ(y, τ)dΓydτ (2)

for (x, t) ∈ Ω × (0, T ) and wherek(z, t) is the funda-
mental solution of the wave equation,

k(z, t) =
δ(t − ‖z‖)

4π‖z‖
, (3)

δ(t) being the Dirac delta distribution. The ansatz (2) sat-
isfies the homogeneous equation ( 1 a) and the initial con-
ditions ( 1 b). The extensionx → Γ is continuous and
hence, the unknown densityφ in (2) is determined via the
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boundary condition ( 1 c),u(x, t) = g(x, t). This results
in the boundary integral equation forφ,

∫ t

0

∫

Γ

k(x − y, t − τ)φ(y, τ)dΓydτ = g(x, t) (4)

for all (x, t) ∈ Γ × (0, T ).

3 Time and space discretisation
For the time discretisation, we employ the convolution

quadrature approach which has been developed by Lubich
in [5], [6]

We split the time interval[0, T ] into N + 1 time steps
of equal length∆t = T/N and compute an approximate
solution at the discrete time levelstn = n∆t. The contin-
uous convolution operator is replaced by a discrete convo-
lution operator, and the resulting semi-discrete problem is
given by

n
∑

j=0

∫

Γ

ω∆t
n−j(‖x − y‖)φ∆t,j(y)dΓy = g(x, tn), (5)

for all n = 1, . . . ,N, x ∈ Γ.
If the time discretisation is related to a multistep

method defined by its generating polynomialγ(ζ) (see
[5]) the kernel functionsω∆t

n (d) are implicitly defined by

k̂

(

d,
γ(ζ)

∆t

)

=
∞

∑

n=0

ω∆t
n (d)ζn.

Here, k̂ denotes the Laplace transform of the original
kernel k̂(d, s) = e−sd

4πd
. For the rest of this paper we

consider the BDF2 multistep method defined byγ(ζ) =
1

2
(ζ − 1)(ζ − 3).
For the space discretisation, we employ a standard

Galerkin boundary element method. The space of piece-
wise constant, discontinuous functions is denoted by
S−1,0 and the space of continuous, piecewise linear func-
tions by S0,1 The general notation isS for the bound-
ary element space and(bm)Mm=1

for the basis. The mesh
width is denoted byh. For the space-time discrete solu-
tion at timetn we employ the ansatz

φ∆t,h,n(y) =

M
∑

m=1

φn,mbm(y) , (6)

where(φn,m)M
m=1

∈ R
M are the nodal values of the dis-

crete solution at time steptn.

We impose the integral equation not pointwise but in a
weak form: Findφ∆t,h,n ∈ S of the form (6) such that

n
∑

j=0

M
∑

m=1

φj,m

∫

Γ

∫

Γ

ω∆t
n−j(x − y)bm(y)bk(x)dΓydΓx

=

∫

Γ

g(x, tn)bk(x)dΓx (7)

for all 1 ≤ k ≤ M andn = 1, . . . ,N . This can be written
as a linear system

n
∑

j=0

An−jφj,⋆ = gn,⋆ , n = 0, . . . ,N , (8)

with

(An)k,m :=

∫

Γ

∫

Γ

ω∆t
n (x − y)bm(y)bk(x)dΓydΓx ,

and

gn,⋆ =

(
∫

Γ

g(x, tn)bk(x)dΓx

)M

k=1

.

4 Transformation to a decoupled system of
Helmholtz problems

Let us defineω∆t
n := 0 for n = −N,−N + 1, . . . ,−1.

With this definition we can extend the sum in (7) toj =
0, 1, . . . ,N to obtain

N
∑

j=0

M
∑

m=1

φj,m

∫

Γ

∫

Γ

ω∆t
n−j(x − y)bm(y)bk(x)dΓydΓx

=

∫

Γ

g∆t,n(x)bk(x)dΓx. (9)

The next step in our method is to replace eachω∆t
n by

the trapezoid rule approximation of the Cauchy integral
representation. The details and an error estimate are
given in the following proposition. For clearer exposi-
tion we introduce some extra notation. LetζN+1 :=
exp(−2πi/(N + 1)) and κl := iγ(λζ l

N+1
)/∆t. Then

we notice that

k̂(‖x − y‖, γ(λζ l
N+1)/∆t) = Gκl

(‖x − y‖),

whereGκ(·) is the fundamental solution of the Helmholtz
operator∆ + κ2·:

Gκ(d) =
eiκd

4πd
.
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Proposition 4.1 Let N ∈ N, d > 0, ∆t = T/N , and
λ < e−∆t be given. There exists a constantC > 0 inde-
pendent of the parameters such that, for−N ≤ j ≤ N ,

|ω∆t
j (d) −

λ−j

N + 1

N
∑

l=0

Gκl
(d)ζ−lj

N+1
| ≤ Ce2T λN+1

d
.

Substituting the above approximation in to (9) we ob-
tain a new system

λn

N + 1

N
∑

l=0

(

Âl φ̂l,⋆

)

k
ζ−nl
N+1

=

∫

Γ

g(x, tn)bk(x)dΓx,

where

φ̂l,⋆ :=

N
∑

j=0

λj φ̃j,⋆ζ
lj
N+1

and

(Âl)k,m =

∫

Γ

∫

Γ

Gκl
(‖x − y‖)bm(y)bk(x)dΓydΓx.

Note that the unknowns (in the time domain) of the
above systems are denoted byφ̃j,m. The approximation
φ̃∆,h,n ∈ S at time tn is then given analogously to (6)
Now, notice that if we take the Fourier transform of both
sides we obtainN + 1 decoupled problems:

Âlφ̂l,⋆ =

∫

Γ

ĝ∆t,l(x)b⋆(x)dΓx, (10)

where

ĝ∆t,l(x) =
N

∑

n=0

λng(x, tn)ζ ln
N+1

.

Therefore we have indeed reduced the problem of
solving numerically the wave equation to a system
of Helmholtz problems with wavenumbersκl, l =
0, 1, . . . N .

The stability and convergence of the new method can
be derived using the techniques developed in [6] and [2].

Theorem 4.2 Letg be sufficiently compatible and smooth
(see [6]) and letS = Sm−1,m for m ∈ {0, 1}. Then if
λN+1 ≤ Ch∆t8, the solutionφ̃∆t,h,n exists and satisfies
the error estimate

‖φ̃∆t,h,n − φ(·, tn)‖H−1/2(Γ)
≤ Cg(∆t2 + hm+3/2),

whereC depends onT andCg depends on the right-hand
sideg.

5 Fast solution of the decoupled systems
To solve theN dense systems from the previous sec-

tion, fast methods (e.g. FMM, panel clustering) designed
for high-frequency Helmholtz problems (see e.g. [7]), can
be applied. In these methods dense sub-blocks of the ma-
trix are replaced by data-sparse (e.g. low rank) matrix
approximations. It is then possible to solve each dense
M × M system (10) inO(M loga M), for some small
a ≥ 0, time and storage complexity. The conditions on
the error introduced so that the stability and optimal con-
vergence is preserved are developed in [1].

To reduce the costs even further we notice that if
∂r

t g(x, 0) = ∂r
t g(x, T ) = 0, for r = 0, 1, . . . R (corre-

sponding to a smooth, time limited incoming signal) only
O(N3/R) systems need to be solved (see [1]). In fact if
∂r

t g(x, 0) = ∂r
t g(x, T ) = 0, for all r ≥ 0 then we expect

to only have to solveO(log N) systems. For supporting
numerical evidence see [1].
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Abstract
A recently developed integral equation method can de-

liver scattering returns with prescribed error tolerancesin
fixed computational times for single-scattering problems
of arbitrarily high frequency. To encompass multiple-
scattering effects while preserving a frequency indepen-
dent operation count, recent extensions of the approach
are based on a spectrally convergent Neumann series to
decompose the overall scattering return into a superposi-
tion of single-scattering contributions. For cases wherein
the series is slowly convergent, these implementations
have relied on analytic continuation mechanisms (Padé
approximation) to reduce the number of iterations nec-
essary to reach a prescribed error tolerance. Here, we
present a new Krylov-subspace method that provides a
further significant reduction in the number of iterations
while still retaining the frequency-independent computa-
tional cost.

Introduction
Oscillatory problems, such as those that arise in con-

nection with acoustic, elastic or electromagnetic simula-
tions, have provided significant impetus to the design of
advanced numerical algorithms for decades and particu-
larly over the last twenty years. As a result, an array
of sophisticated simulation schemes (based on e.g. finite
elements, finite differences, multi-resolution analyses or
boundary integral equations) have been devised to effi-
ciently tackle these applications. Today, such algorithms
enable the virtual analysis of large practical configura-
tions that may span up to a few hundred wavelengths. The
very nature of these approaches, however, limits their ap-
plicability at higher frequencies since the numerical reso-
lution of field oscillations translates to a commensurately
higher number of degrees of freedom and this, in turn, can
easily lead to impractical computational times.

A recently developed scattering simulator (based on
the rigorous solution of integral equation formulations
which incorporate asymptotic phase information), on the
other hand, has demonstrated the capability of deliver-
ing solutions in prescribed error tolerances within fixed
computational times for single-scattering problems of ar-

bitrarily high frequency [1]. To encompass multiple-
scattering effects, recent extensions of the approach are
based on the iterated evaluation of a suitable Neumann
series that reduces the overall problem to a sequence of
single-scattering events. This series converges spectrally,
with a rate that can be asymptotically determined; see [2–
4]. As such it is amenable to acceleration via Padé ap-
proximation, and use of this latter technique can be shown
to provide a substantial reduction in the number of itera-
tions to reach a prescribed tolerance. Here, we present a
new Krylov-subspace method that provides a further sig-
nificant reduction in the number of iterations while still
retaining the frequency-independent operation count.

High-frequency Multiple Scattering Formulation
For simplicity of presentation, we consider here the

(exterior) sound soft acoustic scattering problem from a
bounded obstacleK ⊂ Rn (n = 2, 3)











∆u(x) + k2u(x) = 0, x ∈ Rn\K,

u(x) = −uinc(x) = −eikα·x, x ∈ ∂K,

lim
|x|→∞

|x|(n−1)/2

[(

x
|x|

,∇u(x)
)

− iku(x)
]

= 0

and recall that its solution can be recast, through the use
of Green’s identities, in the form of an integral equation

η(x) −

∫

∂K

∂G(x, y)

∂ν(x)
η(y) ds(y) = 2

∂uinc(x)

∂ν(x)
(1)

for the (unknown)physical quantity η (normal velocity
of the total field in acoustics) confined to the scattering
surface∂K whereG = −2Φ andΦ is the outgoing fun-
damental solution to the Helmholtz equation. When the
scatterer is composed of several (disjoint) substructures
K = ∪{Kσ : σ ∈ I}, equation (1) can be written as

(I − R)η = f (2)

wheref = [fσ1
, . . . , fσ

|I|

]t, fσ = 2∂uinc/∂ν|∂Kσ
, η =

[ησ1
, . . . , ησ

|I|

]t, ησ = η|∂Kσ
and the operatorR is de-

fined forx ∈ ∂Kσ as

(Rστητ )(x) =

∫

∂Kτ

∂G(x, y)

∂ν(x)
ητ (y) ds(y) .
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Inverting the diagonal part of the equation in (2) yields

(I − T )η = g (3)

wheregσ = (I −Rσσ)−1fσ, Tστ = (I −Rσσ)−1Rστ δστ

and δ is the Kronecker symbol. Considering the series
solution to (3)

η =

∞
∑

m=0

ηm =

∞
∑

m=0

Tmg ,

we note that

ηm
∣

∣

Kσm
=

∑

σ0,...,σm−1∈I
σj 6=σj−1

Tσmσm−1
Tσm−1σm−2

· · ·Tσ1σ0
gσ0

, (4)

for eachσm ∈ I, and each summand in (4) corresponds,
in the limit of infinite frequency, to a group of rays that
reflect through∂Kσ0

, . . . , ∂Kσm−1
and arrive at∂Kσm .

Thus the phaseϕm(x), for x ∈ ∂Kσm , of the correspond-
ing summand can be evaluated a priori as

ϕm(x) = α · xm,0(x) +

m−1
∑

j=0

|xm,j+1(x) − xm,j(x)|

where the points

(xm,0(x), . . . , xm,m−1(x)) ∈ ∂Kσ0
× · · · × ∂Kσm−1

satisfy the law of reflection throughout to finally arrive at
xm,m(x) := x ∈ ∂Kσm . Knowledge of the phasesϕm, in
turn, allows for their extraction in the recursive applica-
tion of the operatorsTστ and thus for the fast, frequency
independent, evaluation of the latter. In more detail, for a
given sequence{σm}m≥0 ⊂ I with σm 6= σm+1, letting

η0 = gσ0
and ηm = Tσmσm−1

ηm−1 , (m ≥ 1)

we haveηm = ηslow
m eikϕm , and thus

ηslow

m − e−ikϕmRσmσm(eikϕmηslow

m ) = F slow (5)

where

F sloweikϕm = Rσmσm−1
(eikϕm−1ηslow

m−1)

is twice the normal velocity of the field scattered off
∂Kτm−1

evaluated on∂Kσ. In the form (5) the advan-
tages of the formulation become rather clear, as it en-
tails only discretizations of slow modulations and integra-
tions that can be localized to the neighborhood of critical
points; see [2, 5].

Enhanced Convergence by Analytic Continuation
As has recently been shown (see [2–4]), within the con-

text of several interacting convex structures, the (spectral)
convergence of the Neumann series is governed by the un-
derlying geometrical configuration. More precisely, con-
sidering for simplicity the case of two cylindrical convex
structuresK1 andK2, the (high-frequency) rate of con-
vergence of the Neumann series is given, asymptotically
ask → ∞, by

Rk = e2ikd
(√

r +
√

r − 1
)−1

(6)

whered = dist(K1,K2), r = (1+dκ1)(1+dκ2) andκj

are the curvatures at the distance minimizing points. The
spectral rate in (6) suggests that, as long asr > 1, the
series can be interpreted as a power series in an artificial
parameterz evaluated atz = 1. At high-frequencies, the
radius of convergence of this series will thus be limited (it
will approachR−1

k ) but its convergence can be enhanced
via classical Padé approximation; see [5].

A New Krylov-subspace Based Acceleration Strategy
Although, as shown in [5] (see also Figure 1), the use

of Padé approximation significantly accelerates the con-
vergence of multiple scattering iterations, it is not optimal
from this perspective. In the present context, a most rele-
vant property of the Padé approximants relates to the pos-
sibility of evaluating these from the sole knowledge of the
iteratesTmg, whose calculation can be done in frequency
independent times. Indeed, the new high-frequency inte-
gral equation approach allows for the efficient evaluation
of the Krylov subspace associated with the operatorT or,
equivalently, that ofI − T . And this, in turn, suggests
that a best approximation to the solution of equation (3)
can alternatively be garnered through the application of
optimized Krylov subspace methods (e.g. GMRES).

In more detail, and lettingA = I − T , a basis
p0, p1, . . . , pm−1 for the Krylov subspace

Km(A, g) = span{g,Ag, . . . , Am−1g}

can be effectively computed through the classical recur-
sion

pj+1 = Apj +

j
∑

i=0

βij pi (7)

provided efficient evaluations ofAmg can be attained.
Clearly, a most natural approach would rely on thebi-
nomial theorem

Am =

m
∑

j=0

(

m

j

)

(−1)j T j (8)
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as this reduces the problem to the fast evaluation of the
iteratesT jg entering the Neumann series. We note, how-
ever, that the convergence of this Krylov-subspace tech-
nique is strongly affected by thedirect use of (8) as it im-
pairs the approximation of each projectionAm (see Fig-
ure 1). On the other hand, owing to (8), we have

Km(A, g) = span{g, Tg, . . . , Tm−1g} ,

and thus, the representation

pj =

j
∑

i=0

γijT
ig (9)

delivers thestable recursion (see [6])

pj+1 = (I − T )pj +

j
∑

i=0

βijpi (10)

=

j
∑

i=0

γijT
ig +

j
∑

i=0

γijT
i+1g +

j
∑

i=0

βijpi

replacing the combined use of (7) and (8).

Numerical Example
In Figure 1, we present a comparison of (a) the Neu-

mann series; (b) the Padé approximation; (c) a Krylov
subspace method (GMRES) based on the binomial for-
mula (8); and (d) the alternative implementation of the
latter based on the decomposition (9) leading to equation
(10). Here we have considered the configuration in Figure
1 (top) consisting of two elliptical cylinders with centers
at (0, 0) and (0,−4.5), and major/minor axes10/1 and
7/2. The illumination is provided by a plane wave with
direction along the major axes and wavenumberk = 40.
The bottom figure displays the number of reflections ver-
sus the relativeL∞ error between the exact solution and
the approximations obtained by the four aforementioned
schemes.
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Abstract
The Ultra Weak Variational Formulation of the

Helmholtz equation is a variational method, discretized
using a plane wave basis, for approximating the
Helmholtz equation. The method has proved used at fre-
quencies where standard finite element methods become
very expensive. To date, convergence is proved only on
the boundary of the computational domain, but is always
observed throughout the domain. In this paper we pro-
vide the first convergence proof in a global norm. The
proof is based on intepreting the scheme as a discontinu-
ous Galerkin method.

Introduction
Complete families of solutions have been investigated

as a means of approximating partial differential equations
for many years (see for example the early paper of Tre-
fftz [15] and the book of Herrera [7]). In order to control
approximation error and the conditioning of the resulting
linear system, it is desirable to use multiple complete fam-
ilies associated with different subregions of the domain
of the differential equation. The solution on each subre-
gion must then be constrained by approximately enforc-
ing transmission conditions between elements and also
approximately enforcing boundary conditions in order to
generate a global approximate solution (an alternative ap-
proach, the Partition of Unity Finite Element Method
(PUFEM) [12], [13], constructs a continuous approxima-
tion but is more difficult to use when the sound speed is
discontinuous).

One method for weakly enforcing the transmission
conditions is the Ultra Weak Variational Formulation
(UWVF). We shall be concerned with an error analysis
of the discrete UWVF for the Helmholtz equation pro-
posed by Cessenat and Després [2], [3], [4]. This method
has been extended to other equations and tested compu-
tationally in several studies [2], [3], [11], [9], [10] and
has proved to be a useful computational tool at mid-range
frequencies. In numerical comparisons with other meth-
ods using complete families (in particular the PUFEM [8]
and least squares method [6]) it has been found to pro-
vide similar accuracy although it is more generally appli-
cable than PUFEM and usually better conditioned than

least squares. In all these studies global convergence of
the method under mesh refinement is observed (until the
mesh is so fine that ill-conditioning prevents further im-
provement in the error [11]). In the work of Cessenat
and Després, convergence is proved on the boundary of
the computation domain. In this paper we shall use tech-
niques from the analysis of the discontinuous Galerkin
method to provide a global L2 error estimate. This is a
preliminary reports on results presented in more detail in
[1].

Description of the UWVF
In this section we shall describe the UWVF for a sim-

ple model problem for the Helmholtz equation. Suppose
Ω ⊂ R3 is a bounded polyhedral domain in R3 with
boundary Γ = ∂Ω and unit outward normal n. We wish
to approximate the function u = u(x) that satisfies

∆u + k2u = 0 in Ω, (1)

where k > 0 is the wave-number. The field u is assumed
to be subject to the impedance boundary condition

∂u

∂n
− ikηu = g on Γ. (2)

Here g ∈ L2(Γ) is a given function, and η is a given
real, uniformly bounded and uniformly positive contin-
uous function of position on Γ. Note that η = 1 cor-
responds to a low order absorbing boundary condition
which allows the UWVF to approximate scattering prob-
lems.

Now suppose Ω is covered by a regular and quasi-
uniform mesh of tetrahedra of maximum diameter h. We
shall enumerate the tetrahedra K1,K2, . . . ,KNh

. The
continuous UWVF governs the upwind fluxes on the
boundary of each tetrahedron in the mesh. Defining
uj = u|Kj we set

χj =
(

ηuj +
1
ik

∂uj

∂nj

) ∣∣∣∣
∂Kj

, 1 ≤ j ≤ Nh.

The appropriate solution space is then X =∏Nn
j=1 L2(∂Kj). We define ~X = (X 1, . . . ,XNn)

and consider ~X ∈ X . In order to state the UWVF
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we need two special operators. The first is denoted
F : X → X and is defined as follows. If Yj ∈ L2(∂Kj),
then let wj ∈ H1(Kj) satisfy

∆wj + k2wj = 0 in Kj ,

ηwj +
1
ik

∂wj

∂nj
= Yj on ∂Kj ,

and set Fj(Yj) = −νwj + 1
ik∂wj/∂nj . Here η is given

from the boundary condition on ∂Kj ∩ Γ 6= ∅ and other-
wise is usually chosen to be η = 1.

In addition let Π : X → X be defined by

Πχj |∂Kj∩∂K`
= χ` if ∂Kj ∩ ∂K` 6= ∅,

Πχj |∂Kj∩Γ = 0 if ∂Kj ∩ Γ 6= ∅.

In deriving the UWVF, Cessenat and Després [2], [3]
show that ~X ∈ X satisfies

〈~X , ~Y〉 − 〈Π~X , F (~Y)〉 = 〈g̃, F (~Y)〉 (3)

for all ~Y ∈ X where 〈·, ·〉 is the inner produce on X
defined by

〈~X , ~Y〉 =
Nh∑
j=1

∫
∂Kj

1
2η
X jȲj dA.

This inner product defines a norm ‖·‖X on X . In addition
g̃ = g on Γ and g̃ = 0 on faces interior to Ω. Cessenat
and Després show that (3) has exactly one solution corre-
sponding to the upwind fluxes of (1) - (2). Equation (3)
can be derived simply by intergration by parts as in [2],
[3] or via discontinuous Galerkin techniques [5], [10], [1].
It is the latter view that we take in order to prove conver-
gence.

To discretize the UWVF, let dKj

` , 1 ≤ ` ≤ p, denote
pj linearly independent unit vectors (typically chosen,
for example, to be quadrature points on the unit sphere).
Then set

Mh
Kj

= span
{

exp(ikdKj

` · x), 1 ≤ ` ≤ pj

}
.

For each j, the discrete space Xh
j is the impedance trace

of Mh
Kj

. Thus

Xh
j =

{
ηwj +

1
ik

∂wj

∂nj

∣∣∣∣ wj ∈ Mh
Kj

}
.

Then the global discrete space is Xh =
Nh∏
j=1

Xh
j . The

discrete UWVF is to seek ~X h ∈ Xh such that

〈~X h
, ~Yh〉 − 〈Π~X h

, F (~Yh
)〉 = 〈g̃, F (~Yh

)〉

for all ~Yh ∈ Xh. This problem is also proved to have a
unique solution by Cessenat and Després. Note that the
action of F on any element of Xh is easy to compute.

Error Estimates
The convergence of the UWVF was studied in [2], [3]

where it is shown that∥∥∥∥ 1√
2η

(X j −X h)
∥∥∥∥2

L2(Γ)

≤ 4‖(I − Ph)~X‖2
X , (4)

where Ph is the X-orthogonal projection of X onto Xh.
In fact, this estimate is a very slight extension of the re-
sults in [2], [3] since in [1] we have derived the method
and results when ν 6= 1.

In [1] we provide details of the proof of the following
theorm that proves convergence throughout Ω, at least if
the solution u is sufficiently smooth.

Theorem 1 Let uh
j ∈ Mh

Kj
be such that

νuh
j − (1/ik) ∂uh

j /∂nj = X h
j on ∂Kj .

Then if ν = 1 and uh is defined by uh|Kj = uh
j we have

the error estimate

‖u− uh‖L2(Ω) ≤ Ch−1/2‖(I − Ph)~X‖X . (5)

Remark 1 We might hope for a power of h1/2 in this re-
sult. When ~X is smooth enough and pj = 2µ + 1 for all
j, Cessenat and Després show that in 2D

‖(I − Ph)~X‖X ≤ Chµ− 1
2

where C depends on u and µ. Our estimate (5) also holds
in 2D so in that case

‖u− uh‖L2(Ω) ≤ Chµ−1.

This proves convergence, at least for smooth data in 2D
provided µ > 1.

This theorem is proved via a more basic result. Let
a(~X , ~Y) = 〈~X , ~Y〉 − 〈Π~X , F (~Y)〉 and define, for a face
f with between K1 and K2,

[u]f = u1n1 + u2n2, [v]f = v|K1 · n1 + v|K2 · n2.

We prove, using techniques from the theory of discontin-
uous Galerkin methods, that∑

f :interior face

∫
f

η

2
|[u]f |2 +

1
2η

∣∣∣∣[ 1
ik
∇u]f

∣∣∣∣2 dA

+
∑

j

∫
Γ∩∂Kj

1
2η
|Fj(X j)|2 dA = Re

(
a(~X , ~X )

)
.
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Using estimates for a(~X − ~XH
, ~X − ~X h

) from [3] and
defining eh = u− uh we then verify that

∑
f :interior face

∫
f

η

2
|[eh]f |2 +

1
2η

∣∣∣∣[ 1
ik
∇eh]f

∣∣∣∣2 dA

+
∑

j

∫
Γ∩∂Kj

1
2η
|Fj(X j −X h

j )|2dA

≤ 2‖(I − Ph)~X‖2
X (6)

This is our basic estimate and it holds for general η. The
left hand side defines a mesh dependent norm on the so-
lution space, and estimate (6) ensures convergence. How-
ever the norm in which (6) proves convergence is non-
standard.

We can make the estimate more explicit using the fol-
lowing result from [14] that when η = 1,

‖eh‖2
L2(Ω) ≤

C

h

 ∑
f :interior faces

‖[∇eh]f‖2
L2(f) + k2‖[eh]f‖2

L2(f)

+
∑

f :boundary faces
‖∂eh/∂n− ikeh‖2

L2(f).


This estimate and (6), together with (4) then proves (5).

Conclusion
We have summarized the proof of two basic error es-

timates for the UWVF. These show that the method con-
verges, at least when the exact solution is smooth. Efforts
are now underway to improve the power of h and the reg-
ularity needed for these results.
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Abstract
We study the classical combined field integral equation

formulations for time-harmonic acoustic scattering by a
sound soft bounded obstacle, namely the indirect formu-
lation due to Brakhage-Werner/Leis/Panich, and the di-
rect formulation associated with the names of Burton and
Miller. We obtain lower and upper bounds on the condi-
tion number, emphasising dependence on the frequency,
the geometry of the scatterer, and the coupling parameter.

Introduction
We consider the classical problem of scattering of a

time-harmonic acoustic wave by a bounded, sound soft
obstacle occupying a compact setΩ ⊂ Rd (d = 2 or 3)
with Lipschitz boundaryΓ. The wave propagates in the
exterior domainΩe = Rd \ Ω and we suppose that the
medium of propagation inΩe is homogeneous, isotropic
and at rest, and that a time harmonic (e−iωt time depen-
dence) pressure fieldui is incident onΩ. Denoting by
c > 0 the speed of sound, we assume thatui is an en-
tire solution of the Helmholtz equation withwave num-
ber k = ω/c > 0. We wish to find the resulting time-
harmonic acoustic pressure fieldu which satisfies the
Helmholtz equation∆u + k2u = 0 in Ωe and the sound
soft boundary conditionu = 0 on Γ := ∂Ωe, and is such
that the scattered part of the field,us := u − ui, satisfies
the Sommerfeld radiation condition.

Let Φ(x, y) denote the standard free-space fundamen-
tal solution of the Helmholtz equation, given, in the 2D
and 3D cases respectively, byΦ(x, y) := i

4H
(1)
0 (k|x−y|)

andΦ(x, y) := exp(ik|x−y|)/(4π|x−y|), for x, y ∈ Rd,

x 6= y, whereH(1)
0 is the Hankel function of the first kind

of order zero.
It was proposed independently by Brakhage & Werner,

Leis, and Panich (see [5]), as a means to obtain an integral
equation uniquely solvable at all wave numbers, to look
for a solution to the scattering problem in the form of the
combined single- and double-layer potential

us(x) :=
∫

Γ

∂Φ(x, y)
∂ν(y)

ϕ(y) ds(y)

−iη
∫

Γ
Φ(x, y)ϕ(y) ds(y), x ∈ Ωe, (1)

for some non-zero value of thecoupling parameterη ∈
R. (In this equation∂/∂ν(y) is the derivative in the nor-
mal direction, the unit normalν(y) directed intoΩe.) The
functionus, given by (1), satisfies the scattering problem
if and only if ϕ satisfies a second kind boundary integral
equation onΓ, see [5] or [4,§4]. This integral equation,
in operator form, is

(I + D − iηS)ϕ = g, (2)

whereI is the identity operator,S andD aresingle-and
double-layer potential operators, defined by

Sϕ(x) := 2
∫

Γ
Φ(x, y) ϕ(y) ds(y), x ∈ Γ, (3)

and

Dϕ(x) := 2
∫

Γ

∂Φ(x, y)
∂ν(y)

ϕ(y) ds(y), x ∈ Γ, (4)

andg := −2ui|Γ.
We treat (2) as an operator equation on the space

L2(Γ). The right hand sides of (3) and (4) are well-
defined, for general LipschitzΓ, almost everywhere on
Γ, as Cauchy principal values, and the operatorsD and
S so-defined are bounded operators onL2(Γ). Further,
choosingη 6= 0 ensures that (2) is uniquely solvable in
L2(Γ), that is

A := I + D − iηS (5)

is invertible as an operator onL2(Γ). See [1] for further
details, where, in fact, it is shown thatA is invertible as
an operator on the Sobolev spaceHs(Γ), for 0 ≤ s ≤ 1.

Let

D′ϕ(x) := 2
∫

Γ

∂Φ(x, y)
∂ν(x)

ϕ(y) ds(y), x ∈ Γ,

and A′ := I + D′ − iηS denote the formal adjoint
operators ofD andA, respectively. While the operator
A appears in the standard indirect combined field bound-
ary integral formulation of the exterior sound soft scatter-
ing problem, its adjointA′ appears in the standard direct
boundary integral formulation (see e.g. [5], [1], [2]).
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In this paper we are interested in upper and lower esti-
mates for thecondition number

cond A := ‖A‖ ‖A−1‖,
and so in estimates for the norms‖A‖ and‖A−1‖. Our
emphasis is on the limitk → ∞, on understanding the
dependence on the coupling parameterη, and on explor-
ing the influence of the shape ofΓ. (Note that, sinceA′ is
the adjoint ofA, ‖A′‖ = ‖A‖ and‖A′−1‖ = ‖A−1‖, so
thatcond A′ = cond A). These questions have received
attention before, see [6], [2], [3], [4], and the references
therein. But we note that, with the exception of recent
bounds in [2], [3], [4], rigorous estimates valid in the limit
ask → ∞ have not been obtained. Moreover, research
to date has focussed almost entirely on the circle/sphere
case where Fourier analysis methods are possible. The es-
timates we list below address these gaps in the literature
and show that the behaviour ofcond A as a function ofk
depends strongly, and in a subtle way, on the geometry of
Γ.

In the remainder of the paper we will summarise the
main results we have obtained; proofs will appear else-
where. Throughout, bya . b we will mean that for every
K > 0 there existsC > 0, such thata ≤ Cb for k ≥ K.
By a ≈ b we will mean thata . b andb . a.

A Summary of Previous Results
Most previous work has focussed on the case whereΓ

is a circle or sphere, whenA has spherical harmonics as
its eigenfunctions and the singular values ofA are known
explicitly. The following is the state of the art. The bound
on ‖A−1‖ is from [2] for η = k and from [4] otherwise.
The other bounds are from [2], [3].

Theorem 1 If Γ is a circle or a sphere, then‖S‖ .
k−2/3, ‖D‖ . 1, and ‖A−1‖ . 1 + k/|η|, so that, if
2/3 ≤ ε ≤ 1 and|η| ≈ kε, thencond A . k1/3.

We note that|η| ≈ k is the usual recommendation as the
best value for the coupling parameter for largek (e.g. [6]),
but that|η| ≈ k2/3 is suggested recently in [3].

The above bound on‖A−1‖ is a special case of the fol-
lowing more general result from [4], proved via a Rellich
type identity. Recall that we assume throughout thatΓ is
Lipschitz, so that this result holds for a piecewise smooth,
starlike, Lipschitz boundary.

Theorem 2 If Γ is piecewiseC2 and strictly starlike
(precisely, for some pointxc in the interior ofΓ and some
c > 0 it holds that(x − xc) · n(x) ≥ c, for almost all
x ∈ Γ), then‖A−1‖ . 1 + k/|η|.

New Bounds on‖S‖, ‖D‖, ‖A‖, ‖A−1‖ and cond A

Our first observation follows from the fact thatS and
K are smoothing operators on smooth parts ofΓ.

Lemma 3 In both 2D and 3D, if a part ofΓ is C2, then
‖A‖ ≥ 1, ‖A−1‖ ≥ 1.

For the general Lipschitz case we give in the next theorem
upper bounds on the norms ofS andD onL2(Γ) obtained
via interpolation. E.g. (where‖ · ‖p denotes the norm of
an operator considered as acting onLp(Γ)), we have that

‖S‖ = ‖S‖2 ≤ max{‖S‖1, ‖S‖∞}
= sup

x∈Γ

∫

Γ
|Φ(x, y)| ds(y).

This technique applies in modified form toD, and gives
bounds in both the 2D (d = 2) and 3D (d = 3) cases. (For
a proof for the 2D case whenΓ is smooth, see [2].)

Theorem 4 ‖S‖ . k(d−3)/2 and‖D‖ . k(d−1)/2.

We note the gap for largek between the bounds in The-
orems 1 and 4, especially in 3D. However, in the 2D
case the above results are almost sharp for some Lipschitz
boundaries as the following lower bounds show.

Theorem 5 In the 2D case: (i) ifΓ contains a straight
line section, then‖S‖ & k−1/2 and‖A‖ & 1 + |η|k−1/2;
(ii) there exists a LipschitzΓ such that‖D‖ & k1/2−ε for
everyε > 0.

The following is a sketch of the proof of the first state-
ment. Choose disjoint sections,Γ1 andΓ2, of the straight
line part of Γ, and chooseφ ∈ L2(Γ1) with φ(y) =
exp(iky · t) on Γ1 and φ zero elsewhere, wheret is a
unit vector parallel toΓ1 andΓ2, pointing fromΓ1 to Γ2.
Then, uniformly forx ∈ Γ2,

Sφ(x) ≈
∫

Γ1

|Φ(x, y)|ds(y) ≈ k−1/2.

Since alsoDφ = 0 on Γ2, this gives that‖Sφ‖ & k−1/2

and‖D− iηS‖ & |η|k−1/2 while ‖φ‖ . 1, so that‖S‖ &
k−1/2 and‖D − iηS‖ & |η|k−1/2.

This idea can be refined to give the following lower
bound on‖S‖.
Theorem 6 Suppose (in the 2D case) thatΓ is locallyC2

in a neighbourhood of some pointx∗ on the boundary.
Then‖S‖ & k−2/3. More generally, adopt a local coor-
dinate systemOX1X2 with origin at x∗ and theX1 axis
in the tangential direction atx∗, so that, nearx∗, Γ coin-
cides with the curve{x∗ + t∗X1 + n∗f(X1) : X1 ∈ R},
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for somef ∈ C2(R) with f(0) = f ′(0) = 0; here t∗

and n∗ are the unit tangent and normal vectors atx∗.
Then if, for someN ∈ N, Γ is locally CN+1 near x∗,
i.e. f ∈ CN+1(R), and if alsof ′(0) = f (2)(0) = · · · =
f (N)(0) = 0, then‖S‖ & k−(N+1)/(2N+1).

Note that it follows from Theorem 1 that the above bound
is sharp forN = 1 in the case of a circle and, by
Theorem 4, it is sharp in the limitN → ∞ when
k−(N+1)/(2N+1) → k−1/2. Similar lower bounds can be
given forD as follows.

Theorem 7 In the 2D case, supposex1 and x2 are dis-
tinct points onΓ, that Γ is C2 in (at least one-sided)
neighbourhoodsΓ1 andΓ2 of x1 andx2, and thatx1−x2

is not parallel to botht1 and t2, wheretj is the tangent
vector toΓj at xj . Then‖D‖ & 1. If x1 − x2 is parallel
to exactly one oft1 andt2, then‖D‖ & k1/8.

The only upper bounds on‖A−1‖ we know are Theo-
rems 1 and 2. The following 2D bound for a class of ‘trap-
ping’ geometries shows that‖A−1‖ grows more quickly
with k whenΓ is not starlike. This result is suggestive
that the choiceη ≈ k2/3 has merit.

Theorem 8 If Ωe contains a rectangle, two opposite sides
of which, distanced apart, are part ofΓ, then, for values
of k for whichkd = nπ, with n ∈ N, it holds forη . k
that ‖A−1‖ & k1/2. Thus, by theorem 5, ifΓ is also
piecewise smooth then, for|η| ≈ k2/3, cond A & k2/3,
while, for |η| ≈ k, cond A & k.

Combining Theorem 2, Lemma 3, Theorem 4, and The-
orem 5(i), we have the following bounds oncond A for
the usual choice|η| ≈ k.

Corollary 9 For |η| ≈ k: (i) for a starlike, piecewise
smooth obstacle ind dimensions,cond A . k(d−1)/2;
(ii) for a convex polygon in 2D the bound in (i) is sharp,
i.e. cond A ≈ k1/2.

Numerical Results
In this section we present approximations to operator

norms obtained by computing the norms of the corre-
sponding matrices when the operators are discretised with
a piecewise constant Galerkin boundary element method
with an orthonormal basis and five elements per wave-
length. In table 1 we present approximations to‖S‖ and
‖D‖ whenΩ is the unit circle. We also show estimated
values ofp and q, on the assumption that‖S‖ ∼ kp

and ‖D‖ ∼ kq. The results clearly match the upper
and lower bounds in theorems 1, 6 and 7. In table 2 we

present approximations to‖A‖ and‖A−1‖, with η = k,
for a domain satisfying the conditions of theorem 8 with
d = π/5. We also show estimated values ofp andq, as-
suming that‖A‖ ∼ kp and‖A−1‖ ∼ kq. The results are
consistent with the bound oncond A in theorem 8.

k ‖S‖ p ‖D‖ q

10 2.9156×10−1 -0.66 1.0611 -0.05
20 1.8431×10−1 -0.69 1.0215 -0.02
40 1.1394×10−1 -0.68 1.0078 -0.00
80 7.1116×10−2 -0.68 1.0061 -0.00

160 4.4380×10−2 -0.67 1.0029 -0.00
320 2.7914×10−2 1.0013
Table 1. Values of‖S‖ and‖D‖, unit circle.

k ‖A‖ p ‖A−1‖ q

10 4.9211 0.15 3.3989 0.65
20 5.4603 0.18 5.3373 0.68
40 6.1688 0.26 8.5387 0.73
80 7.4100 0.28 14.1509 0.73

160 8.9683 0.34 23.4338 0.67
320 11.3684 37.2691

Table 2. Values of‖A‖, ‖A−1‖, trapping domain.
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Abstract
To solve the time-harmonic Maxwell equations in ex-

terior domains at high frequency, volume based methods
have the drawback of needing an artificial boundary far
from the obstacle. Integral formulations enable one to
avoid this difficulty by solving a problem on the surface
of the obstacle, but imply dense systems with bad condi-
tion numbers. In this paper we describe a coupling of the
Ultra-Weak Variational Formulation (UWVF), a volume
based method using plane wave basis functions, and an
integral representation of the unknown field to obtain an
exact artificial boundary condition. The use of different
fast evaluation techniques is suggested.

Introduction
The Ultra-Weak Variational Formulation (UWVF) is

a volume based numerical method for solving the time-
harmonic Maxwell system on a bounded domain devel-
oped by B. Després and O. Cessenat ([2]). It uses local
plane wave solutions on a finite element mesh to approx-
imate the field. By varying the number of plane wave
basis functions from element to element the UWVF can
discretize the electromagnetic field with a coarser vol-
ume mesh in comparison to more classical methods like
low order finite elements or finite differences. However,
to approximate scattering on an unbounded domain, the
UWVF requires an artificial boundaryΓext sufficiently far
from the obstacle. A simple absorbing boundary condi-
tion on Γext (as used in the original UWVF) implies a
large domain around the obstacle and so a large number
of degrees of freedom.

In this paper we consider the use of an integral repre-
sentation of the unknown field onΓext due to C. Hazard
and M. Lenoir ([6]) as we suggested in [4]. In particu-
lar, the unknown on the artificial boundaryΓext is defined
thanks to the unknown field values on a third boundary
Σ taken closer to the boundary of the obstacleΓint. The
artificial boundaryΓext can then be taken very close to
the third boundaryΣ. However, this method requires the
evaluation of integral operators which are expensive by
direct means. A thorough study of the numerical com-

plexity show that the use of the integral representation
does not greatly increase the cost of the UWVF if the
integral calculation is performed using a Fast Multipole
Method (FMM) (see for example [5]). The first section of
this paper gives a brief presentation of the UWVF. In the
second section, we explain the application of the integral
representation and give a rigorous result on the numerical
complexity when using fast evaluation methods or not.
The last section presents encouraging numerical results
obtained using the FMM.

Ultra-Weak Variational Formulation
To solve a scattering problem for the time-harmonic

Maxwell equations in an exterior domainΩ we need to
find the electric fieldE and magnetic fieldH such that
the following equations hold:

∇∧ E − ıωµH = −m ,
∇∧ H + ıωεE = j ,
∇ · (εE) = 0 ,
∇ · (µH) = 0 ,





in Ω, (1)

wherem and j are given data functions specifying the
current sources,ε andµ are positive functions of position
andω > 0 is the angular frequency of the field. For use
with the UWVF, the boundary condition on∂Ω = Γint ∪
Γext is written in the following non standard form ([2])

− | √ε | E ∧ ν + (| √µ | H ∧ ν) ∧ ν
= Q(| √ε | E ∧ ν + (| √µ | H ∧ ν) ∧ ν) + g ,

(2)

whereQ = 0 onΓext andg is computed from the incident
wave to give a low order Absorbing Boundary Condition
(ABC).

The UWVF is based on the decomposition of the do-
main Ω into tetrahedra{Ωk}k=1,...,K and the unknowns
are defined on the boundaries of these tetrahedra. This
variational formulation is defined on the Hilbert space
V =

∏K
k=1 L2

t (∂Ωk) where L2
t (∂Ωk) is the space of

square integrable tangential fields on∂Ωk the boundary
of Ωk, and the scalar product is given by(X ,Y)V =∑

k

∫
∂Ωk

X/∂Ωk
Y/∂Ωk

. Under the assumption thatε and
µ are positive constants on eachΩk, (E,H) is found
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through the restriction of the field(Ek,Hk) to ∂Ωk,
where(Ek,Hk) = (E,H)/Ωk

. The method then solves
for an unknown impedance traceX ∈ V , defined by
X/∂Ωk

∈ L2
t (∂Ωk) and

X/∂Ωk
=
√

ε/∂Ωk
(Ek ∧ νk) +

√
µ/∂Ωk

((Hk ∧ νk)∧ νk) ,

whereε/∂Ωk
andµ/∂Ωk

are quantities defined by the val-
ues ofε andµ on each side of∂Ωk (see [4] for details),
andνk is the exterior normal to∂Ωk.

The UWVF of Maxwell’s equations ([2]) is then given
by findingX ∈ V such that

(X ,Y)V − (ΠX , FY)V = (̃b,Y)V for all Y ∈ V, (3)

for all Y ∈ V given byY/∂Ωk
=

√
ε/∂Ωk

(E′
k ∧ νk) +√

µ/∂Ωk
((H ′

k∧νk)∧νk) where the fields(E′
k,H

′
k) satisfy

the adjoint Maxwell problem

{
∇∧ E′

k − ıωµΩk
H ′

k = 0 in Ωk ,
∇∧ H ′

k + ıωεΩk
E′

k = 0 in Ωk .

In (3), b̃ ∈ V is derived from the right hand side of (1) and
g given in (2).Π andF are local operators defined in [4]
following [2], such thatΠ is the operator which involves
the boundary condition (2) through the functionQ.

By taking a finite dimensional subspaceVh ⊂ V and
using basis functionsZi, i ∈ J , a Galerkin discretization
of (3) leads to problem of findingXh =

∑
i∈J XiZi ∈ Vh

such that(Xh,Yh)V −(ΠXh, FYh)V = (̃b, FYh)V for all
Yh ∈ Vh. Equivalently, in matrix/vector form we seek to
computeX = [X1, · · · ,Xcard(J)]

T such that

(D − C)X = b , (4)

whereD is the matrix with(i, j)th entry(Zj , Zi)V andC
has(i, j)th entry given by(ΠZj , FZi)V . The data vector
b is derived from the right hand side above.

As usual for the UWVF, on eachΩk we use a basis gen-
erated by taking the impedance trace ofpk plane waves
satisfying the adjoint Maxwell system onΩk (pk/2 direc-
tions with two polarizations for each direction). At least
six plane waves (and usually more) are used per element.

The UWVF then leads to a system of size(
∑K

k=1 pk).
The number of plane wavespk must be chosen depend-
ing on the local wavelength and diameter of the element.
Suppose the electromagnetic parameters of the domain
are constant and define the wave numberκ = ω

√
εµ.

The UWVF enables one to reduce the number of ele-
ments in the mesh, in comparison with a more classical
volume method. Of course, the complexity of the method

is then linked to the number of elements in the mesh and
the number of basis functions per element. Let us intro-
duce another parameter:K0 denotes the average number
of tetrahedra taken in one dimension so thatK ∼ K3

0 . As
a volume method, the UWVF method leads to a sparse
system. The number of degrees of freedom is of order
K3

0 p and the complexity of the algorithm isO(K3
0 p2)

wherep denotes the average number of basis functions
per tetrahedra which typically satisfiesK0 p ∼ κ.

Use of an Integral Representation within the UWVF
For simplicity, we now supposeε = µ = 1 so thatΣ

can be taken equal toΓint (i.e. the scatterer is not pen-
etrable and the exterior medium is homogeneous). The
idea presented by C. Hazard and M. Lenoir in [6] consists
of replacing the low order absorbing boundary condition
−E ∧ ν + (H ∧ ν) ∧ ν = −E0 ∧ ν + (H0 ∧ ν) ∧ ν on
Γext by the boundary condition

−E ∧ ν + (H ∧ ν) ∧ ν
= −Es ∧ ν +(Hs ∧ ν) ∧ ν −E0 ∧ ν +(H0 ∧ ν) ∧ ν ,

where (Es,Hs) are given by the Stratton-Chu formula
([3]) in terms of field values onΣ = Γint involving the
tangential components of the fieldsE andH onΣ = Γint.
As shown in [4], these components can be computed from
the degrees of freedom of the UWVF.

The system (4) becomes(D −C − C̃)X = b whereC̃
couples the degrees of freedom onΓint andΓext. The ma-
trix C̃ can be split into different discrete integral operators
C̃i , i = 1, ..., 4 of the form

(C̃i Xh)kl =

∫

Σext
kk

ck Si(Xh) · FYkl dγext ,

whereΣext
kk is the face onΓext of a tetrahedron which in-

teracts with the exterior boundary,ck depends only on
ε and µ on Σext

kk , F is the local operator introduced in
(3), andSi is a global operator which comes from the
Stratton-Chu formula, for instance(S1(X ))(x) equals to
(
−
∫

Γint

fQ(y)∇yG(x, y) ∧ X (y) dγ(y)

)
∧ ν(x) ,

where fQ is a function involving Q and ε, ν is
the exterior normal to the surfaceΣ = Γint and
G(x, y) = exp(ıκ|x − y|)/(4π|x − y|) is the fundamen-
tal solution for the Helmholtz equation. These integral
operators can be evaluated by the FMM.

The integral representation aims to reduce the distance
of the absorbing boundary from the scatterer to a number
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of elements independent ofκ. We then have a number of
elements in the mesh of orderK2

0 . This reduces the com-
plexity related to the volume calculation. However the
cost of the integral calculation would be very large unless
treated carefully since the integral operators give rise to
a matrix with large dense blocks. This cost is controlled
thanks to the FMM.

A thorough study of the complexity of the new algo-
rithm leads to the results in Table 1 with or without the
integral representation (IR), using or not a 1-level (1L)
or multilevel (ML) FMM. We also studied the considera-
tion of a use of the FMM with no close interactions. This
would lead to an algorithm adapted to the case of meshes
with local refinements. Finally, the double mesh concept
introduced by Zhouet al ([1]) is considered as a way to
keep using relatively coarse meshes for the UWVF and
ensuring a good accuracy of the geometry for the integral
representation.

Table 1: Complexity estimates

Method Cost

UWVF K0κ
2

UWVF + IR κ2 + κ4

UWVF + IR + 1L-FMM κ2 + κ3

UWVF + IR + ML-FMM κ2 + κ2 ln2 κ

UWVF + IR + ML-FMM
with double mesh

κ2 + κ2 ln2(κ)p

UWVF + IR + 1L-FMM
without close interaction

κ2 + κ3

UWVF + IR + ML-FMM
without close interaction

κ2 + κ2 ln2 κ

Numerical Results and concluding remarks
The first numerical results obtained with a 1-level

FMM (see [4]) illustrate the theoretical statements about
the complexity of the algorithm. The results were ob-
tained for approximating the problem of scattering by a
perfectly conducting sphere, in particular the unit sphere
(Γint) with the wavenumberκ = 4m−1. The exterior
boundaryΓext is a concentric sphere. We tried different
meshes. They are named “Sxxx” where “xxx” denotes the
distance betweenΓint andΓext in centimeters. In Figure
1, we show the radar cross section predicted by the code
UWVF+IR+1L-FMM compared to the exact Mie series.
It gives very accurate results even for S025 when the code
UWVF applied to S200 is already lightly in disagreement
with the Mie series.
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Figure 1: UWVF+IR+1L-FMM (S025, S050, S075).

These first results show the strong benefit of the use
of the integral representation regarding the accuracy. We
plan to present results using a ML-FMM. In this case the
theoretical study predicts the same accuracy for a lower
cost.
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Abstract
The Parametrix is an usual and efficient theoretical tool

for hyperbolic systems and usually requires the hypoth-
esis of strictly hyperbolicity. But most hyperbolic sys-
tems coming from Physics are described by the general
”Friedrich systems” but are not strictly hyperbolic. If this
tool is applied to those systems, that hypothesis is not at
all necessary, and so, the parametrix covers a great part of
the waves propagation. Moreover it can describe complex
phenomena like waves coupling or medium-wave interac-
tions leading to instabilities.

Introduction
In the field of waves propagation, mathematical results

like existence, uniqueness, boundary conditions and con-
tinuity are fairly well-settled at the present time. But the
qualitative behavior of the solutions remains a difficult
task maybe why the phenomena are complex: One can
quote: interactions medium-wave like polarization or in-
jection of energy and instabilities, creation of one wave
by another like backscattering or creation of sound by
flow in aeroacoustic, or lateral or Rayleigh waves. In
addition the tools to predict the behavior of waves are
completely of different nature. For stratified media, the
Fourier transform leads to an ordinary differential equa-
tion and by the inverse Fourier transform and the steepest
descent method, a far-field approximation of the solution
is obtained. An another approach is the traditional per-
turbation method: if the medium is assumed quasi ho-
mogeneous, a fixed-point method can be exhibited by us-
ing the Green (Matrix-valued) function: this is the task
of the Lippmann-Schwinger method (or the Born method
when the first iteration is enough). Roughly speaking, the
multi-pole method is similar to a Taylor development of
the Schwarz Kernel in function of the derivatives of the
Green function. For high frequencies ( or rapidly oscillat-
ing initial conditions) the Wigner method is adequate but
doesn’t take into account the interaction between waves.
The goal of this presentation is to promote a method to
compute the Schwarz Kernel, the generalization to the in-
homogenous media of the Green function. One doesn’t
obtain this kernel stricto-sensus but a ”paramatrix” i.e. a
theoretical tool, which is well-known by the mathemati-

cians. This method is an important tool for the scatter-
ing theory. At the first sight, this method is not well-
suited to describe the physics of the wave propagation:
the general theory is rather difficult (at least for the au-
thor!): for example in [1] the entire demonstration covers
pp. 262-281. But if one applies it only to the Friedrich’s
systems, which cover the most important cases of waves,
this method seems understandable (c.f. [2]) and has deep
connections with physics like energetic balance. After a
short presentation of the ”Friedrich’s systems” of the lin-
ear hyperbolic systems, we give a sketch of this method
and how to get from Green Kernel in homogeneous case
to Schwarz Kernel in in-homogeneous one. In the previ-
ous works the parametrix method requires the hypothesis
of strict hyperbolicity, which is a too strong hypothesis
for covering the domain of usual waves: In fact the good
hypothesis is the strong hyperbolicity and we show ,even
in this case, that we are able to built a parametrix (at least
for Friedrich’s systems). Then we give some connections
with complex phenomena arising for waves propagation
in in-homogeneous medium like medium-waves or inter-
actions between elementary waves. To conclude we give
the present limits: they stay still important but they don’t
seem insurmountable.

Short presentation of the ”Friedrich system”
Acoustics, Aero-acoustics, Elasticity, Electromag-

netism, Quantic Mechanics can be described by first order
linear partial differential equations.
Definition:
The most general Friedrich system are described by:

∂0 φ+Ai(x) ∂i φ+B(x)φ = h(t, x) (1)

with Ai symmetric, h is the source, B the multiplica-
tion matrix The dispersion matrix J(x, ξ) = Ai.ξi (we
use the ”Einstein rule”) has real eigenvalues and is diag-
onalizable. If all the eigenvalues are simple the system
is strictly-hyperbolic, if not, the system is only strongly
hyperbolic (the case of weakly-hyperbolic systems con-
cerns un-diagonalizable matrices, they are not Friedrich
systems). Most systems cited supra are not strictly hyper-
bolic but strongly hyperbolic.
Energy balance:
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The energy balance of eq. (1 ) is:

∂0
1
2
Σφ2 + ∂i[

1
2
φtAi(x)φ] + φt.Σ.φ = φth

with Σ = B +Bt − ∂iA
i (2)

The matrix Σ has not a defined sign and so the system
can lose or gain energy. This balance allows essentially
the existence of instabilities. The systems described in [3]
can easily be putted in the form of eq. (1) . In this case the
matrix Σ is equal to 0 (no energetic action of the medium
on the waves).

Sketch of the parametrix method for Friedrich’s sys-
tems

Generalities
The general context is the pseudo-differential operators
context. Sk is the space of the (matrix-valued) symbol
homogeneous of order k in ξ. One tries to extend the x
in-dependent mathematical structure to the x dependent
case. We only deal with problem without boundary con-
ditions.
Homogeneous case
By use of the Fourier transform and the diagonalizibility
of the symbol matrix Aiξi the Green kernel is (see [2] for
more details):

K(t, x−y) =
∫
dξ

∑
k

exp(2iπ[(x−y).ξ)−λk(ξ)t]).Pk(ξ)

where λk(ξ) is the k-th eigenvalue of the symbol Aiξi
(homogeneous of degree 1 in ξ)and Pk(ξ) its projector
(homogeneous of degree 0 in ξ) The Green kernel (a con-
volution kernel) is the sum of elementary kernel associ-
ated with each eigenvalue. One can say that the solution
is the sum of different elementary waves. For t → 0 one
has K → δ(x− y).
Non-homogeneous case
For propagation in a non-homogeneous medium, the
parametrix generalizes the previous kernel:

K(t, x, y) '
∫
∼
dξdyΣkexp(2iπ[ψk(t, x, ξ)−y.ξ]).Qk(t, x, ξ)

(3)
where :

• ' is a parametrix, equal to left side up to a regular
function of S−∞

•
∫
∼ dξ is a oscillatory integral of a Fourier Integral

Operator (FIO)

• ψk(t, x, ξ) is the k-th phase function homogeneous
of order 1 in ξ

• Qk(t, x, ξ) are the amplitude (matrix-valued) func-
tions

• Qk(t, x, ξ) are symbols and have an ansatz
Qk(t, x, ξ) ∼ Σ∞j=0Q

−j
k (t, x, ξ) where each

Q−j
k (t, x, ξ) is homogeneous of order -j in ξ.

The clue is the homogeneity with respect to ξ, a kind of
ansatz with respect the small parameter is 1/|ξ| which
measures the level of inhomogeneities. Now we have to
apply the operator ∂0 φ+Ai(x) ∂i φ+B(x)φ to each kth
wave and identify the terms of same order of homogene-
ity in ξ with the special case for the zero-order:

2iπ[∂0 ψkI+∂i ψkA
i]Q−j−1

k +[∂0 I+Ai ∂i +B]Q−j
k = 0

(4)
The first step is to determine the phase functions thanks
the zero-order: There is a solution only if
det[∂0 ψkI + ∂i ψkA

i] = 0 and in that case, ψk is solu-
tion of the non-linear partial differential system of order
1: ∂0 ψk + λk(x, ∂i ψk) = 0 where λk(x, pi) is the kth
eigenvalue of Aipi. The resolution of that equation re-
quires the resolution of the bicharacteristic (Hamiltonian)
system with an initial value which is chosen, by analogy
with the uniform case, to be equal to xξ. In addition the
phase function is homogeneous of degree 1 in ξ :

dt

1
=

dxi

Diλ
= − dpi

∂i λ
=
dψ

0
(5)

where Di = ∂
∂pi

The solution is local in time, i.e. it does
not exist for any time. The second step consists in de-
termining the amplitude Matrices and it is rather compli-
cate. By using the ”mobil reference frame”, by setting
Q = XtQ̃, J = Xt.Λ.X , where X is the matrix of the
eigenvectors and Λ is diagonal, the recurrence relation (4)
can be written mutatis mutandis:

2iπ[Λ(x, ∂i ψk)−λkI]Q̃
−j−1
k +[∂0 I+Ãi ∂i +M̃ ]Q̃−j

k = 0
(6)

To keep it simple assume the symbol matrix J has only
2 eigenvalues λ1 and λ2. We begin determining the am-
plitude matrix of the kernel associated with the first wave
(first eigenvalue) and we omit the index and the ,̃ i.e:

Q̃k =
−∞∑
j=0

(
A(j) B(j)

C(j) D(j)

)
(7)
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(the remaining index concerns the degree of homogene-
ity). Eq.(6) becomes:[

0 0
0 λ2(x, ∂i ψ)− λ1(x, ∂i ψ)

]
.

[
A(j) B(j)

C(j) D(j)

]
−i/(2π)

[
L1

1 L2
1

L1
2 L2

2
].
]
.

[
A(j−1) B(j−1)

C(j−1) D(j1)

]
= 0 (8)

The operator L1
1 can be written by utilizing the

relationAi = Di(Aipi) in the ”mobil reference frame”:

L1
1 = I1(∂0 +Diλ1 ∂i) + M̃1

1

In the recurrence relation eq.(8) or more generally eq.(6)
there is not coupling from one column to another. Let
begin with the first column (A,C). For j = 0 one has
C(0) = 0. For j = −1, (8) gives L1

1(A
(0)(t, x, ξ) = 0 or

more explicitly:

∂0A
(0) +Diλ1 ∂iA

(0) + M̃1
1A

(0) = 0

If one expresses A(0)(x, ξ) in function of the constants of
the motion of (5), we have only the ordinary differential
equation to solve d

dtA
(0)+M̃1

1A
(0) = 0. When t = 0A is

equal to I1, so A(0) is determined. One has to check A(0)

(written in the initial frame) is homogeneous of degree 0
in ξ. Then for j=-1 thanks to (8) it is possible to compute
C(1) by:

(λ2 − λ1)(x, ∂i ψ).C(1) − i/(2π)L2
1(A

(0)) = 0

and C(1)is homogeneous of degree -1 in ξ. Then one can
compute A(1) thanks the initial condition A(1)(0) = 0.
By recurrence the first column is determined at each or-
der. The computing of the second column seems be the
same at the first sight but actually the initial condition
(t = 0) is missing. This condition is given thanks the
computation of the second column of the second kernel
(corresponding to λ2). Obviously this calculus doesn’t
depend on the simplicity of the eigenvalues.

Interpretation in terms of waves propagation
Of course the previous analysis promotes the high fre-

quency point of view.

quasi homogeneous media
When one studies the propagation through a medium

the first point is the existence of different elementary
waves. Those waves can be ”simple” if the dimension of
the eigenprojector is one or ”polarizable” if the dimension
is greater than 1. For constant or quasi constant medium

Rotational Mode
convected by flow

Figure 1: Hydrodynamic wave created by acoustic
wave in a shear layer

the highest terms (degree zero) shows that those waves
don’t interact between themselves: The elementary waves
propagate ”along their own rays” following their own law
of propagation (hamiltonian). The medium can absorb or
furnish energy to the wave and the level can be evaluated
thanks the projection of the matrix Σ of (2) on the relative
eigenspace. So instabilities can be explained.
next terms
The non-block-diagonal terms ( like C or B of the previ-
ous section) ) are equal to zero at the order zero but not at
order greater than 1: they explain the interaction between
different elementary waves. Wave of the first kind can
create wave of second kind (or be created c.f. figure 1)

Conclusions
This method allows one to understand , at high fre-

quency, phenomena like the energetic exchanges between
the mediums and the waves. Of course, some problems
remain: for instance

• boundary conditions,

• the structure of the temporal group,

• the parametrix is not valid for any time, so what are
exactly the limitations in time?

• what about numerical calculations?
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Abstract

Spectral methods were successfully used within fi-
nite element methods for solving Maxwell equations [1].
These formulations are based on the two families of
Néd́elec edge elements, with Gauss and Gauss-Lobatto
quadrature points. The purpose of our talk is to show how
these techniques can be applied to integral equations of
Maxwell problems, in time-harmonic domain. For these
formulations, the main advantage of the spectral elements
is to provide a cheap way to compute the double integral
of the Green’s function, with more accurate solutions.

High-Order Integral Methods

It is well known that high-order schemes provide a sig-
nificant reduction of the number of unknowns and yield
more accurate solutions. As the Method of Moment
(MoM) with Galerkin testing results in optimal conver-
gence for scattering problems, one should try to expand
MoM low-order basis functions into their higher-order
form [2]. Unfortunately, this increases dramatically ma-
trix fill time, thus rendering classical high-order MoM
useless. By contrast, high-order point-based discretiza-
tions such as the Nyström method, excel with their low
pre-computation time [3][4][5]. However, these schemes
do not enforce current continuity, and an increase of the
total number of unknowns is required to reach Galerkin’s
optimal far field error. Various authors have developed
high-order MoM schemes with efficient pre-computation
time. S.D. Gedney’s studies [6] are particularly interest-
ing : a transformation is performed on the outer integral
to speed up the matrix fill time.

Here we present a new, high-order, MoM formula-
tion which leads to optimal error with minimal pre-
computation time. Our scheme can be interpreted as a
point-based formulation too. It differs from the previous
ones in the sense that the acceleration’s technique ensues
in a natural way (no particular transformation is needed).
In fact, the main principle of our studies is close to the
one used in [5], but is performed onto an Hdiv-conformal
formulation, so that we enforce current continuity.

Discretization
Our research focuses on the field integral equations

(EFIE-MFIE-CFIE). Although no special treatment is re-
quired on their variational formulations, one should have
knowledge of the process performed to weaken the sin-
gular behaviour of the EFIE. Applying Stokes’theorem,
the use of Hdiv functions allows us to handle the double
gradient operator within the Dyadic Green’s function (1).
Therefore, we deal with divergence terms of basis func-
tions. (

k2Id +∇∇
)
G(r, r

′
) (1)

Our variational spaces slightly differ from the ones de-
scribed in [2] : the choice of the Lagrange polynomials
is made in order to fulfill a spectral elements method.
In other words, their roots have to be the Gauss-Lobatto
and/or Gauss quadrature rule points. Furthermore, the
two families of Ńed́elec edge elements have been im-
plemented on quadrilateral patches (which are under bi-
linear/quadratic/cubic parametrization).

Let Γ be the approximation of the surface scatterer. We
readΓh ={Ki}Ne

i=1, whereKi are the basic quadrilateral
elements. LetK̂ be the unit square andF the conform
mapping ofR3, such thatF(K̂)=K, K∈Γh. DF is the
Jacobian matrix ofF andJ=det(DF). (u, v) denotes the
2D-coordinates on̂K, and{e1, e2} the canonical basis of
R2.

The set of Lagrange polynomials in1D, whose roots
are the Gauss-Lobatto (Gauss) points of orderk, is read
GLk (Gk). We introduce two spaces on̂K :

Ûk,k+1 = (GLk+1 ⊗Gk) e1 ⊕ (Gk ⊗GLk+1) e2

V̂ k,k =
∑2

i=1 (GLk ⊗GLk) ei

The approximate space for first class of elements is :
Uk,k+1 = {Φ∈Hdiv(Γ) ;

∀K∈Γh,Φ|K∈|J |−1DF Ûk,k+1}
The approximate space for second class of elements is :

V k,k = {Φ∈Hdiv(Γ) ;
∀K∈Γh,Φ|K∈|J |−1DF V̂ k,k}

The divergence ofΦ|K(r) , r=F(u, v), is read :
div(Φ|K(r)) = |J |−1 ∂glk+1(u)× gk(v)
div(Φ|K(r)) = |J |−1 ∂glk(u)× glk(v)

with : glk∈GLk , gk∈Gk ,
Φ∈ Uk,k+1 andV k,k, respectively.
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Operators’ particularities

In order to complete the discretization’s intoduction,
one should emphasize the operators’ behavior which is
specific to the approximate space selected. The EFIE
is commonly considered as the most accurate one, but it
seems that this is only true for RWG basis functions (first
family on triangular mesh). Actually, using Rooftop ba-
sis functions (first family on quadrilateral mesh) makes
the CFIE more efficient, whereas the MFIE’s best results
are performed on the second family. These phenomenons
are showed in Figure 1. Here we employ usual quadrature
rules (Gauss) and low-order basis functions. The sphere’s
mapping is realized with straight-edge elements.

Figure 1: PEC sphere R=1m. Frequency = 1 GHz.
RMS error for MFIE-EFIE-CFIE with low-order basis

functions.

High-Order Spectral Elements
Hdiv Spectral Elements

The approximate spaces we have introduced, used
within Gauss and Gauss-Lobatto quadrature rules, de-
scribe spectral elements methods.

Let {(ξ, ω)gl
q , q = 1,k +1} be the1D Gauss-Lobatto

rule’s points and weights of orderk ((ξ, ω)g
q the Gauss’

ones). Then we have :

glki (ξgl
q ) = δq

i , gk
i (ξg

q ) = δq
i ; 1 ≤ i, q ≤ k+1 (2)

The Gauss-Lobatto rule gives us points on edges, so
that the Hdiv property is easily observed. The first family
is more complicated in the sense that we have to modify
the quadrature rule with the function’s direction. We work
on a GL/G quadrature rule on the first direction in2D,
G/GL rule on the second one.

Integral estimations of basis functions and their diver-
gence overK are achieved as follow :∀Φi,j ∈ V k,k,∫

K
Φi,j(r) ∂K ' ωgl

i ωgl
j DF(ξgl

i ,ξgl
j ) e (3)

∫
K
div(Φi,j(r)) ∂K ' ωgl

j

k+1∑
q=1

ωgl
q ∂glki(ξ

gl
q ) (4)

where1≤ i, j≤k+1 are the polynomial indexes.
The sum overq in (4) slow down the calculation. Re-
covering the Dyadic Green’s function (1) for far interac-
tions makes us evaluate each double integral on one pair
of quadrature points. To overcome the singular behavior
of self-term matrix elements, one has to develop quadra-
ture rules under polar coordinates and adaptative orders
in the inner integral.

Notice that the approximation’s properties of spectral
elements converge exponentially with respect to the or-
der. As a consequence, our technique isn’t effective with
low-order basis functions (order 0,1), for reasonable un-
knowns’ density. Moreover, Gauss rule converges faster
than Gauss-Lobatto. That’s the reason why accurate re-
sults come earlier using the first family, in comparison to
the second one.

Numerical Results
As we said in the first part, various authors have dealt

with point-based schemes. We propose to use our method
on simulations presented in [5][6].

• PEC sphere R=1m, freq.=1.2GHz

This case is computed in [5], using second-order basis
functions on triangular patches, and a 4-level MLFMA.
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We display our results for the first class of quadrilateral
elements. The MGCR solver is used with a relative error
norm of10−4.

Figure 2: PEC sphere R=1m. Frequency=1.2GHz.
CFIE = 0.5 EFIE + 0.5 MFIE

The use of the Dyadic Green’s function makes the pre-
computation time even lower than for low-order schemes.
As the number of far interactions increases quadratically
with the total number of unknowns, this behavior is am-
plified in large size problems. As an example, a 2.1GHz
test using60,000 unknowns was made with Rooftop func-
tions against five-order second-kind functions : 14h38 of
calculation and a6.7−3 rms error for Rooftop, versus 3h
and4.7−3 for the higher-order one.

• Sphere PEC R=1m, freq.=95MHz (koa = 2)

Results are given for both EFIE and MFIE in [6]. If we
are more accurate with the EFIE, this trend is reversed
with the MFIE. However, the polar quadratures intro-
duced to evaluate singular integrals aren’t strong enough
to reach extra-precision : we choose to ensure a10−3-
10−4 precision only, in order to limit the increase of
pre-computation time. Here the order of the mapping
function Fi is adaptative within the subspace’s choice :
V 6,6 → 6thorder.

Ope- Sub- nUnk Matrix fill RMS
rator space time (cpu-s) error

EFIE U3,4 1728 38 3.49−4

MFIE V 4,4 2160 19 1.00−4

CFIE U3,4 1728 53 2.59−4

CFIE V 6,6 2016 180 4.43−5

Conclusion
The spectral elements method is efficient in higher-

order MoM. The two families we’ve introduced provide
more accurate solutions and a significant reduction of the
matrix fill time.

Implementing a fast multipole method is the next
step to accomplish. Then, we will adapt the hybrid fi-
nite element-boundary integral method used within high-
order spectral elements, to handle inhomogeneous media.
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Abstract
In this work we propose a numerical implementation

of a Galerkin method for a boundary integral equation
appearing in high frequency problems. The numerical
scheme, proposed in [3], requires in practice a low num-
ber of unknowns to approximate the slow part of the so-
lution with high accuracy. However, the assembly of the
matrix requires the computation of double integrals of
highly oscillating functions. We show how these integrals
can be computed efficiently. Finally, we present some nu-
merical experiments to illustrate the theoretical results.

The continuous problem
Let Γ be a convex, closed and simply connected smooth

curve in R
2. For â a unit vector we construct the plane

wave ui(x) = exp(ikx.â) with k >> 1. The problem
we want to solve is∣∣∣∣∣∣

∆us + k2us = 0, on ext Γ
us|Γ = −ui|Γ

∂rus(z) − ikus(z) = o(|z|−1/2),

∂r denoting the radial derivative. The scattered wave can
be written in terms of the single layer potential

us = −Skλ := −

∫

Γ

φk(· − x)λ(x) dσ(x)

with λ = ∂n(ui +us) and φk the fundamental solution of
the Helmholtz equation.

The density λ, which has a clear physical meaning, is
the unique solution of the combined field integral equa-
tion (also known as Burton-Miller formulation)

Rkλ := 1

2
λ + Dkλ − ikVkλ = gk, (1)

where gk = ∂nui − ikui. In the expression above, Vk and
Dk are the single layer and the adjoint of the double layer
operator.

Numerical method
As a numerical solution of (1) we propose that given

by ∣∣∣∣∣∣

λh ∈ Xh∫

Γ

ξhRkλh =

∫

Γ

ξhgk, ∀ξh ∈ Xh

The discrete space Xh will be specified later. We assume
that a Cea’s lemma-type result holds

‖λ − λh‖L2(Γ) ≤ Bk min
ξh∈Xh

‖λ − ξh‖L2(Γ),

where Bk > 0 depends on k but it is independent of Xh

and λ. We point out that this result holds for the circle
and the sphere (see [3]), where Bk ≈ k1/3. The case of
an arbitrary curve remains as an open problem (see [2] for
some new results in this direction).

Figure 1: Partition of the curve

Consider γ : [0, L] → Γ an arc-length parameteriza-
tion, with L the length of the curve. Let 0 < t1 < t2 < L

be such that the plane wave impinges tangentially on Γ at
γ(t1) and γ(t2). We divide Γ into four well-defined zones
(see Figure 1): the illuminated part (I), the shadow (S)
and the transition zones (T), usually referred to as Fock
domains. Take ε, δ > 0 and define for appropriate con-
stants αi, βi, the intervals

Λ1 := [t1 − β1k
−1/3+δ , t1 + α1k

−1/3+ε]

Λ2 := [t2 − α2k
−1/3+ε, t2 + β2k

−1/3+δ ]

for the Fock domains and

Λ3 := [t1 + α1k
−1/3+ε, t2 − α2k

−1/3+ε]

Λ4 := [0, L] \
⋃

3

j=1
Λj .

corresponding to the illuminated and the shadow part re-
spectively.
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The discrete spaces are constructed as follows

Xh :=
⊕

3

j=1

{
χj pm exp(i k γ(·) · â)

∣∣∣ pm ∈ Pdj

}

where χj ∈ L∞(R) is the characteristic function of the
interval Λj and Pdj

the set of polynomials of degree dj .
Notice that in the shadow part, a zero approximation of
the function is used.
Theorem ([3]) Let ε = 1/9 > δ > 0. Then for all n and
di (i = 1, 2, 3) with 6 ≤ n ≤ di + 1, there exists Cn > 0
independent of k such that

‖λ−λh‖L2(Γ) ≤ Cn k5/9Bk

[ 3∑

i=1

[
k1/9

di

]n

+exp(−c0k
δ)

]
.

Restricting ourselves to the circle, where the precise
estimate Bk ≈ k1/3 is available, we check that taking
di ≈ k1/9 is enough to keep the accuracy of the solution
(notice that ‖λ‖L2(Γ) grows proportional to k as k goes to
infinity).

Numerical implementation
Each entry of the matrix of the Galerkin method re-

quires the approximation of double integrals of high os-
cillating functions. The applicability of the method relies
heavily on designing efficient quadrature rules for these
integrals. This problem can be reduced to the computa-
tion of

∫∫

Λi×Λj

exp(ikΨ(s, t))M(s, t) dsdt (2)

for large values of k. Here M is a non-oscillating, smooth
function, except on the diagonal where a logarithmic sin-
gularity occurs, and Ψ is the so-called phase function:

Ψ(s, t) = |γ(s) − γ(t)| − (γ(s) − γ(t)) · â.

The first term of Ψ comes from the asymptotics of the
fundamental solution φk for large values of k, whereas
the second term arises from the complex exponential in-
cluded in the discrete space.

For the sake of simplicity, we describe the quadrature
for Λ3 × Λ3, and we leave as a final comment how to
proceed in remaining cases. We first split D into D+∪D−

where D+ = {(s, t) | (s, t) ∈ Λ3 × Λ3, t ≥ s} (D− is
defined accordingly). Then, for the integral on D+, we
introduce the change of variables

s = s, τ = Ψ(s, t).

Letting Ψs = Ψ(s, ·), the jacobian is given by

j(s, τ) =
1

|∂tΨ(s,Ψ−1
s (τ))|

=
1

|Ψ′
s(Ψ

−1
s (τ))|

Lemma For all s, t ∈ Λ3, ∂tΨ(s, t) 6= 0.

Hence, the change of variable is valid. Let d ∈ R, and
r1(τ), r2(τ) functions describing the transformed domain
in such a way

∫∫

D+

exp(ikΨ(s, t))M(s, t)dsdt =

∫ d

0

f(τ)exp(ikτ)dτ,

with

f(τ) =

∫ r2(τ)

r1(τ)

M(s,Ψ−1

s (τ))j(s,Ψ−1

s (τ)) ds.

The oscillating term appears now written in a simpler
form. Next we apply modified Clenshaw-Curtis formu-
las, which roughly speaking, consist of replacing f by
a piecewise polynomial fm, which interpolates f at the
Chebyshev nodes in each subinterval, and take

∫ d

0

f(τ) exp(ikτ) dτ ≈

∫ d

0

fm(τ) exp(ikτ) dτ.

Notice that the latter integral can be now evaluated ex-
actly. Clearly, the error behaves as ‖f − fm‖Lp(0,d). The
function f is actually smooth, except at 0, d and at the
points where r1 or r2 fails to be smooth (usually, only
one). The use of refined meshes for fm is enough to ob-
tain good approximations for this integral.

On the other hand, the evaluation of f can be carried
out effectively using Gaussian rules. However, the ja-
cobian of the change of variables blows up as (τ, s) →
(0, t1). This phenomenon becomes relevant as k → ∞
(see the definition of Λ3), so that the evaluation of f has
to be done carefully in the vicinity of τ = 0 for large
values of k.

Approximation of the integral in the rest of the domains
The strategy developed above can be adapted to

approximate the remaining integrals, provided that
∂tΨ(s, t) 6= 0 in the domain of integration. This is satis-
fied, for k high enough, on Λ1 × Λ2. On the other hand,
for Λ1×Λ3 a geometric restriction on the domains, which
turns out to be very natural, must be satisfied.

Finally, the integration on the Fock domain has some
peculiarities. To gain insight on it, let D := Λ1 × Λ1 and
consider D+, for t ≥ s, and D−, t ≤ s as before. For D−
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the same techniques used before work again. The change
of variable, however, is not valid in D+ because

∂|α|
α Ψ(t1, t

+

1
) = 0, α ∈ {s, t, ss, st, tt}.

Hence k|Ψ(s, t)| ≤ Ck1/3 for (s, t) ∈ D+. Therefore
the oscillations of the integrand (see (2)) on D+ are not
so strong to rule out the use of standard rules, at least
for moderate values of k. For higher values of k, a new
splitting of D+ can be considered, so that in one of the
new subdomains the change of variables is again appli-
cable, whereas in the other one the integrand is almost
non-oscillating.

Numerical experiment
Let Γ be the unit circle and take â = (1, 0). As a test

problem we have taken
∫ b

a

∫ b

s

M(s, t) exp(ikΨ(s, t)) dsdt

(which corresponds to the integration in the illuminated
part) where a = π/2 + π/100 and b = 3π/2 − π/100.

We first take M1(s, t) = 1 and M2(s, t) = log(t − s)
for k = 0 (to have an exact solution to compare with).
Next table shows the number of points used in the eval-
uation, the error Ei of our formula for Mi, and the CPU
spent in the evaluation

# Points E1 E2 Time of CPU
5922 6.0E− 08 2.0E− 07 5.2′′

20341 4.9E− 10 1.4E− 9 15′′

67536 8.1E− 15 4.3E− 14 49′′

The experiments have been done in Matlab running on a
computer with a Core 2 Duo processor and 2GB of RAM
memory. Figure 2 shows the transformed domain and the
points used for the evaluation for the first rule. Let us
emphasise that the performance of the formula is better
as it seems at first sight. This is because the bulk of the
time is spent in the computation of Ψ−1

s . However, these
values should be computed only once, and can be reused
to compute more integrals on the same domain. This is
what we do in the next experiment with

M3(s, t) = H
(1)

0
(2k| sin( s−t

2
)|) exp(−2ik| sin( s−t

2
)|).

which is a complex non oscillating function. The quadra-
ture rules T1 with 5922 points and T2 with 67536 points
have been applied with the following result

k Time of CPU for T1 Time of CPU for T2

5 0.16′′ 0.58′′

50 0.17′′ 0.45′′

500 0.19′′ 0.47′′

5000 0.17′′ 0.45′′

Figure 2: Points use for the quadrature rule T1

Finally, the relative errors for T1, when T2 is taken as the
exact value, are presented here

k 50 500 5000 50000

Error 3.68E− 5 1.54E − 5 6.48E − 6 4.70E − 6
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Abstract
In this talk we discuss the numerical solution of the

problem of acoustic plane wave scattering by a 2D con-
vex smooth sound-soft object using hybrid numerical-
asymptotic methods.

In recent joint work with Vı́ctor Domı́nguez (Pam-
plona) and Valery Smyshlyaev (Bath) we developed
Galerkin methods with oscillatory basis functions for this
problem and proved that the resulting discretisations are
almost uniformly accurate as the wave number k in-
creases.

The key components of the analysis are:

(i) Estimates for the continuity and coercivity of the
boundary integral operators explicitly in terms of k.

(ii) A proper description of the asymptotic behaviour
of the solution in a format suitable for numerical
analysis, by further development of the classical
asymptotics results for this problem.

(iii) Design of suitable ansatz spaces for use in the
Galerkin method and the analysis of their consis-
tency error.

(iv) Construction of quadrature methods for the highly
oscillatory Galerkin integrals.

In the talk we will describe recent results on this pro-
gramme of work concentrating on items (i) - (iii). The
talk by Victor Dominguez in the same minisymposium is
linked to this talk and will concentrate on item (iv).

Some of the results presented in these two talks are in
the recent paper [1].

A recent review of high frequency boundary integral
methods is contained in [2].
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Abstract
This paper describes a new directional multilevel algo-

rithm for solving N -body or N -point problems resulted
from integral formulations of wave scattering applica-
tions. These problems are difficult since the kernel in-
volved is oscillatory. The starting point of our approach
is the observation that the interaction between two point
sets has a low rank separable representation as long as
they follow an angular separation condition. In order to
construct the separable representations numerically, we
introduce an efficient procedure based on random sam-
pling. Finally, the resulting low rank representations
are embedded in a hierarchical multiscale and multidi-
rectional framework to accelerate the far field computa-
tion in an optimal way. This new algorithm is proved to
have O(N log N) complexity, and the numerical results
demonstrate the effectiveness of the algorithm in engi-
neering examples.

Introduction
Boundary integral methods for high frequency scatter-

ing problems result in very large and dense linear sys-
tems of equations. For a scattering surface in three di-
mensions the number of unknowns typically scales as the
square of frequency in order to achieve a prescribed ac-
curacy. When iterative methods are used to solve these
systems a bottleneck is matrix vector multiplications with
very large matrices. If the kernel in the boundary integral
operator is smooth away from the diagonal the fast mul-
tipole method (FMM) provides an efficient technique for
the matrix vector multiplication, [2]. When the size of the
matrix is N ×N the computational complexity can be re-
duced from the standard O(N 2) to O(N log N) or O(N).
The original FMM does, however, not apply directly to
problems with the oscillatory kernels corresponding to
high frequency scattering. A new version is needed.

Our application is a potential formulation of the
Helmholtz equation in R3 and the challenge is to de-
velop a fast evaluation method for Gf, where the matrix
G = G(xj , xk) corresponds to a discretization of,

∫
G(x, y)f(y)dy, G(x, y) =

e2πi|x−y|

|x − y|
.

Even if the focus is on the Helmholtz kernel the technique
discussed here generalizes to other oscillatory kernels. In
[3] Rokhlin develops a fast solver for special oscillatory
kernels. It couples the original FMM to high frequency
asymptotics. Our new method is somewhat closer in form
to his original FMM.

The low computational complexity in the new method
is based on approximate low rank interaction between sets
of points. This is also the case in the original FMM when
applied to non-oscillatory kernels. The interaction be-
tween quadrature point sets that are well separated can be
efficiently approximated by a low rank interaction. This
is not true for highly oscillatory kernels. It is not enough
that the point sets are well separated but we show that they
should also satisfy directional constraints.

Algorithm

The new directional multilevel algorithm for solving
problems with highly oscillatory kernels can be proved
to have O(N log N) computational complexity for any
given accuracy. The key is to exploit low rank far field in-
teraction in different directions. The interaction between
a set of points contained in a ball of radius r and a well-
separated region has an approximate low rank represen-
tation, as long as the well-separated region belongs to a
cone with a spanning angle of O(1/r) and is at a distance
which is at least O(r2) away from the ball. See figure 1.

Figure 1: Boxes in an octree belonging to two
directionally separated regions.
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The directional low rank property follows from a direc-
tional separated representation of the Helmholtz kernel,

∣∣∣∣∣∣
G(x, y) −

J(ε)∑

j=1

aj(x)bj(y)

∣∣∣∣∣∣
≤ Cε.

A theorem states that there exist functions aj and bj such
that the number of terms J(ε) is independent of the fre-
quency, x and y as long as x and y belong to directionally
separated sets. For details see [1].

The proof is constructive but in practice a more effi-
cient algorithm is based on random sampling in order to
generate the separated, low rank representation. A sub-
set of the interaction matrix corresponding to direction-
ally separated sets is compressed. The compressed form
is achieved by QR decompositions applied to randomly
selected subsets of rows and columns. In the compressed
form a large number of points is replaced by a finite set of
equivalent densities, compare [4]. This random process
is imbedded in a hierarchical multiscale and multidirec-
tional strategy. A brief description of the algorithm is as
follows.

The first step is to construct an octree of boxes that
contain all quadrature points. See figure 1 for a sample of
such boxes. Then ascending in the octree visit the boxes
in the low frequency regime. These boxes have width less
than one wavelength and their outgoing non-directional
equivalent densities are computed, see [4]. The next step
is again to ascend in the octree and visit the boxes in the
high frequency regime. Here the new algorithm is used to
determine the outgoing directional equivalent densities.

We then descend in the octree and visit the boxes in the
high frequency regime. For every such box and for each
direction, transform the outgoing directional equivalent
densities to the incoming potentials. Finally go down the
octree and focus on the low frequency regime. Transform
the outgoing non-directional equivalent densities and add
to the incoming potentials.

Numerical Results

The new directional multilevel algorithm is highly ef-
ficiency already at a modest number of unknowns and
scales as predicted with larger number of points. See table
1. In this numerical example the focus is on the fast ma-
trix vector multiplications. The quadrature points are ran-
domly distributed on the surface. Other geometries give
similar substantial improvement over the standard O(N 2)
algorithm.

(K, ε) N Ta(sec) Speedup εa

(32, 1e-4) 1.87e+5 5.00e+1 8.34e+1 6.13e-4
(64, 1e-4) 7.46e+5 2.27e+2 2.90e+2 6.69e-4
(128,1e-4) 2.98e+6 1.04e+3 9.87e+2 6.89e-4
(256,1e-4) 1.19e+7 5.04e+3 3.25e+3 7.63e-4
(32, 1e-6) 1.87e+5 1.18e+2 3.44e+1 2.72e-6
(64, 1e-6) 7.46e+5 6.12e+2 1.07e+2 3.30e-6
(128,1e-6) 2.98e+6 3.07e+3 3.45e+2 4.16e-6
(32, 1e-8) 1.87e+5 2.38e+2 1.71e+1 6.34e-8
(64, 1e-8) 7.46e+5 1.29e+3 5.14e+1 8.10e-8
(128,1e-8) 2.98e+6 6.42e+3 1.64e+2 6.55e-8

Table 1: Results on an airplane model. K: number of
wavelengths across computational domain, ε: error tol-
erance, N : total number of unknowns, Ta: computation
time for new algorithm, Speedup: the speedup factor over
the O(N 2) algorithm, εa: error in computed matrix vec-
tor product.
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Abstract

A key component of surface integral equation based
simulation of acoustic/electromagnetic waves scattered
by three dimensional obstacles is the efficient evaluation
of several integrals defined on the surface of the obsta-
cles. The computational complexity of evaluating such
integrals depends on the incident wave frequency, scat-
terer size and shape, and singularities at observation di-
rections. In this work we describe algorithms for efficient
evaluation of such integrals for a class of smooth three di-
mensional scatterers with diameter that is a large multiple
of the wavelength of the incident wave.

Introduction

In this short presentation, we describe some oscilla-
tory surface integrals arising in a three dimensional ho-
mogeneous medium for time–harmonic acoustic waves
(corresponding details for electromagnetic waves are in
[4], [8], [9]) and briefly discuss some problems and effi-
cient approaches for evaluation of such integrals. We are
interested in computing an approximation to theradiating
solutionu of the exterior Helmholtz equation

4u(x) + k2u(x) = 0, x ∈ R3 \D, (1)

whereD ⊂ R3 is assumed to be a bounded connected
domain with boundary∂D and a connected complement
R3 \D. The fundamental requirement for our singularity-
free surface integral equation reformulation of (1) is that
there must exist a point insideD that is a suitable origin
for a spherical coordinate system, in which each compo-
nent of coordinatesx = (x1, x2, x3) on the two dimen-
sional surface∂D has a spherical-Fourier series represen-
tation through spherical angles(θ, φ). In (1), k > 0 is
called the wavenumber and we use the standard notion
of radiating solution[4], i.e. u satisfies the Sommerfeld
radiation condition

lim
r→∞

r (∂u/∂r − iku) = 0, (2)

wherer = |x| and the limit is assumed to hold uniformly
in all directionsx/|x|.

Problem Formulation
One of the advantages of using a surface integral ansatz

(combined with a surface integral equation) to represent
the exterior acoustic fieldu is that the radiation condition
(2) is automatically satisfied by the ansatz. For example,
assuming that (1) has a unique radiating solution, under
appropriate regularity assumptions, by Green’s theorem,
the radiating solutionu(x), for x ∈ R3 \D, can be rep-
resented as [4, Theorem 2.4]:

u(x) =
∫

∂D

[
∂Φ(x,y)
∂n(y)

u(y)− Φ(x,y)
∂u

∂n
(y)

]
ds(y),

(3)
where

Φ(x,y) :=
1
4π

exp(ik|x− y|)
|x− y|

(4)

is the fundamental solution of the Helmholtz equation and
n(y) denotes the unit outward normal to∂D at the point
y ∈ ∂D. Further, the radiating solutionu has the asymp-
totic behavior of an outgoing spherical wave [4, Theorem
2.5]:

u(x) =
eik|x|

|x|

{
u∞(x̂) +O

(
1
|x|

)}
,

as|x| → ∞ uniformly in all directionŝx = x/|x|. Here,
the functionu∞ is known as the acousticfar field pattern
of u, and it is defined on the unit sphere (denoted through-
out by∂B). Computation of the far field pattern plays an
important role in inverse scattering theory, to identify the
shape of the scatterer [4]. In electromagnetic scattering,
representation of the corresponding electric far field pat-
tern is required to compute the bistatic and monostatic
radar cross sections of the obstacle [8], [9].

For the exterior field ansatz (3), if we know the radiat-
ing solutionu and its normal derivative only on the sur-
face∂D, then a computable surface integral representa-
tion of the far field patternu∞ can be obtained, based on
the asymptotics of the fundamental solution:

Φ(x,y) =
eik|x|

4π|x|

{
e−ikx̂.y +O(

1
|x|

)
}
. (5)

In general, acoustic (and electric) far field repre-
sentation essentially involves replacingΦ(x,y) in
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the exterior acoustic (and electric) field ansatz by
e−ikx̂.y/(4π) [4], [7], [8], [9].

Using the direct representation formula (3) (or other
types of indirect representations [4], [7], [8], [9]), and de-
pending on the boundary condition associated with the
three dimensional Helmholtz equation (or the Maxwell
equations in electromagnetic case), the exterior radiating
solution and its far field pattern can thus be computed,
essentially by solving a surface integral equation (for the
unknown density in the exterior field ansatz) and evalu-
ation of various singularity-free surface integrals in the
exterior field ansatz (due to evaluation points away from
the surface∂D) and the far field formula. The boundary
condition is determined by the physical properties of the
obstacle (such as sound–soft, sound–hard, absorbing in
acoustic case; perfectly conducting, dielectric in electro-
magnetic case) and the type of incident wave, which has
wavelengthλ = 2π/k, impinging on the obstacle (such
as a plane wave).

For example, in the case of a scalar acoustic plane-
wave ui(x) := eikx.d̂ impinging on a sound-soft ob-
stacleD with a fixed directiond̂ ∈ ∂B, the total field
uT = ui + u must vanish on the surface∂D, and so the
boundary condition associated with the Helmholtz equa-
tion (1) for the exterior scattered field isu(x) = −ui(x)
for x ∈ ∂D. Using the fact that plane-wave is an entire
solution of the Helmholtz equation, (3), and the Green’s
formula for ui(x), the scattered and far fields can be
computed by evaluating the singularity-free surface inte-
grals [4]

u(x) = −
∫

∂D
Φ(x,y)v(y)ds(y), x ∈ R3 \ ∂D, (6)

u∞(x̂) = −
∫

∂D

e−ikx̂.y

4π
v(y)ds(y), x̂ ∈ ∂B, (7)

where the unknown density functionv := ∂uT

∂n satisfies
the weakly–singular surface integral equation

v +K′v − iSv = 2
∂ui

∂n
− 2iui, on ∂D (8)

with K′ being the normal derivative of the single-layer
acoustic operatorS, which is defined by

Sψ(x) := 2
∫

∂D
Φ(x,y)ψ(y)ds(y), x ∈ ∂D. (9)

High-frequency Problems
The example surface integrals described above exhibit

typical oscillatory behavior of integrals that arise in gen-
eral computational acoustic and electromagnetic scatter-
ing problems.

In three dimensional computational acoustics and elec-
tromagnetics, for high-frequency scattering (i.e. the di-
ameter of the obstacle iscλ with, say, c ≥ 100), the
computational cost of evaluating all of the highly oscil-
latory surface integrals required to discretize the weakly-
singular surface integral equation using standard fully-
discrete algorithms (using quadrature) is prohibitive. The
situation is similar for standard quadrature based evalu-
ation of singularity-free high-frequency surface integrals
for exterior field and radar cross section visualization us-
ing thousands of points and directions. The present work
is concerned with design and analysis of efficient algo-
rithms for approximating such high-frequency surface in-
tegrals.

For high-frequency problems, by considering the
boundary of a convex obstacle locally (in a leading or-
der approximation) as a plane at each point, one may use
appropriate asymptotics (physical optics or Kirchhoff ap-
proximation [13]) for the illuminated region and special
approximations for the shadow and transition zones to
reduce the number of unknowns and the number of in-
tegrals required for the discretization, with accuracy in-
creasing as the wavenumberk increases (specifically ac-
curacyO(k−α) for α > 0). Such an approach has re-
cently been implemented successfully and analyzed in
various ways for computational high-frequency acoustic
scattering by single and multiple two dimensional convex
obstacles in [2], [5], [6], [11], [12] and related references
therein. However, for high-frequency acoustic scatter-
ing by three dimensional convex obstacles one encounters
substantial difficulties in such approximations and com-
putations, for example in finding stationary points of var-
ious types, and efficient approximations in shadow and
transition regions. For recent, but limited progress, in this
area for acoustic scattering by three dimensional convex
obstacles, we refer to [1], [10] and references therein.

Three dimensional high-frequency scattering simula-
tions through surface integral equations have two main
difficulties: 1/r type singularities and high-oscillations.
For designing high-order algorithms, even for low fre-
quency problems, it is important to treat singularities
exactly. Such an analytic approach, for example, re-
quires specific parametric and coordinate details to take
advantage of the Jacobian in coordinate transformation
to cancel out the singularity. This approach combined
with a specific parameterization of the obstacle (as spec-
ified in the Introduction) was used to design the efficient
spectrally-accurate low to medium frequency three di-
mensional acoustic scattering algorithm in [7] and elec-
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tromagnetic scattering algorithm in [8], [9]. A similar
approach (with local polar coordinate system) was used
to design a high-order algorithm for acoustic scattering
in [3]. The ‘exact treatment of singularities’ approach is
crucial when tackling the difficulties associated with the
highly-oscillatory nature of various surface integrals aris-
ing in high-frequency scattering simulations. Although
algorithms and analysis in [7], [8], [9] are applicable for
any frequency problem, for practical realization these al-
gorithms are not efficient for very high-frequency case.

In this work we explore variants of the recent three di-
mensional scattering algorithms [1], [7], [8], [9], [10] for
high-frequency integrals defined on the surface of smooth
convex three dimensional obstacles that facilitate exact
treatment of singularities for acoustic and electromag-
netic scattering.

High-frequency scattering by a connected non-convex
three dimensional obstacle (and hence multiple scatter-
ing by non-convex obstacles) is an even more challeng-
ing open problem. Any algorithm that facilitates efficient
simulations to measure the bistatic and monostatic radar
cross section of three dimensional connected non-convex
obstacles with large diametercλ would be a major break-
through in scattering, even for the case50 ≤ c ≤ 500.
The asymptotics approximation approach may not be ef-
ficient or suitable for the three dimensional non-convex
case. We plan for a non-asymptotic based approach for
non-convex obstacle scattering using certain compression
techniques (such as those used in wavelets based algo-
rithms to compute approximate solutions of boundary in-
tegral equations).
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Abstract
We present a new approach to simulate waves on large

geometries. This method is based on newly developed Fi-
nite Elements, so-called Trigonometric Finite Wave Ele-
ments (TFWE), which are constructed by linear elements
as well as by trigonometric functions such that the one-
dimensional Helmholtz equation is exactly solved under
certain conditions. In comparison with the Transfer Ma-
trix Method the TFWE method offers as good results,
but it can be extended to higher dimensions and it can
be applied to time-dynamic problems. In two dimen-
sions the TFWE are non-conforming elements. The anal-
ysis of TFWE shows that these elements approximate
functions with certain oscillation properties more accu-
rate than standard Finite Elements. Thus, a Finite Ele-
ment discretization with TFWE leads to a smaller system
of equations, which eases the solving process. Numeri-
cal results obtained by applying the TFWE method to the
simulation of the wave equation for Distributed Feedback
lasers are presented.

Derivation and Convergence of the Trigonometric Fi-
nite Wave Elements

Our aim is to solve the two-dimensional wave equation

−2i
k2

ω

∂E

∂t
= −△E − k2E, (1)

which is coupled with a pair of partial differential equa-
tions for the carrier density called drift diffusion equation
(see [1]):

∂nA

∂t
= ∇(DA∇nA) +

nB

τcap

−
nA

τesc

− rrec,A,

∂nB

∂t
= ∇(DB∇nB) + ηi,leck

jinj

qdB

−
nB

τcap

dA

dB

+
nA

τesc

dA

dB

− rrec,B.

In standard simulations the above wave equation is
reduced to the following stationary one-dimensional
Helmholtz equation:

−
∂2E

∂x2
− k2E = 0 on Ω =]0, L[, (2)

where k : Ω → R is a piecewise constant function
such thatk is constant on the intervalssj =]pj−1, pj [,
j = 1, ...,N , pj = L

N
j andN ∈ N. Let us abbreviate

kj = k
(

pj−1+pj

2

)

.

A common and well-established method to solve the
time-periodic Helmholtz equation (2) is the Transfer Ma-
trix Method (TMM). The idea of this method is that the
solutions of (2) are contained inC1(Ω) and thatE has the
form

E(z) = αj exp(−ikjz) + βj exp(ikjz) for z ∈ sj , (3)

where the coefficientsαj andβj , j ∈ {1, ...,N}, have to
satisfy two continuity equations resulting from the conti-
nuity of E and dE

dz
at the grid pointspj.

But general simulations require time-dependent, two-
dimensional discretizations of (1), which cannot be ob-
tained by the TMM. Standard Finite Element methods
cannot be applied, as for resolving the wave appropri-
ately, a huge amount of grid points is needed. Further-
more, the Beam Propagation Method is not suitable, as
by this method it is very difficult to simulate internal re-
flections.
We propose a new Finite Element method, which pro-
vides for the one-dimensional Helmholtz equation as
good results as the TMM, but which can be extended to
two and three dimensions and can also be applied to time-
dynamic calculations. The new method is similar to the
method described in [2], however, the two-wave ansatz
cannot be applied to simulate internal reflections, which
appear in Distributed Feedback (DFB) lasers. Let us ex-
plain the new method in one dimension. The idea is to
construct new basis functions by multiplyingvh

pj
(z) with

trigonometric cosine and sine functions, which approxi-
mate the behavior of an oscillating wave. In case of linear
Finite Elements,vh

pj
(z) denotes the nodal basis function,

which is1 at pj and0 at all other grid pointspi, i 6= j,
whereh = L

N
is the mesh size of the discretization grid.

Now we can define the following basis functions at grid
point pj:

Bcos

j (z) := cos
(

k(z)(z − pj)
)

vh
pj

(z),

Bsin

j (z) := sin
(

k(z)(z − pj)
)

vh
pj

(z),
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and

Bmix
j (z) := mix

(

k(z)(z − pj)
)

vh
pj

(z)

:=

{

− sin
(

kj(z − pj)
)

vh
pj

(z) if z ≤ pj

sin
(

kj+1(z − pj)
)

vh
pj

(z) if z > pj.
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Figure 1: Cosine, Sine, and Mixed Basis Function

These basis functions are called Trigonometric Finite
Wave Elements and span the space

Vh :=
{

u ∈ H1(Ω)
∣

∣ u(z) =

N
∑

j=0

ajB
cos

j (z)

+bjB
sin

j (z) + cjB
mix
j (z),

aj , bj, cj ∈ C, c0 = cN = 0
}

.

Introducing suitable boundary conditions, which can be
handled by TMM as well as by TFWE, we can show
that the solutions (3) of the one-dimensional Helmholtz
equation derived by the TMM are contained in the space
spanned by the TFWE (see [3]).
An important advantage of the TFWE method in compar-
ison with the TMM is that it can be applied to general
wave number coefficientsk and in two and more dimen-
sions:
Let Ω =]0, L[×]0,W [ and let k ∈ L∞(Ω) such
that k is a continuous function on each subdomain
]H(j − 1),Hj[×[0,W ], j = 1, ...,m, whereH = L

m

andm ∈ N. Now, we introduce two meshsizeshx = L
Nx

and hy = W
Ny

and the meshsize tupleh := (hx, hy),
whereNx = nm, n ∈ N, and Ny ∈ N. This leads
to the grid pointspij := (xi, yj) := (ihx, jhy) and
grid cells rij = [xi−1, xi]×]yj−1, yj [, i ∈ {1, ...,Nx},

j ∈ {1, ...,Ny}, such that
⋃Ny

j=1

⋃Nx

i=1
r̄ij = Ω.

Now, let kh be the interpolant ofk at the mid-
points of each cellrij such that kh is piecewise

constant on
◦
rij . This means thatkh(x, y) :=

kij := k(xi−1+xi

2
,

yj−1+yj

2
) for every(x, y) ∈

◦
rij . We

construct the TFWE in two dimensions by taking the ten-
sor product of the one-dimensional TFWE and the linear
nodal basis functions iny-direction. Thus, we get the fol-
lowing basis functions at grid pointpij:

Bcos

ij (x, y) := cos
(

kh(x, y)(x − xi)
)

vhx
xi

(x)v
hy
yj (y),

Bsin

ij (x, y) := sin
(

kh(x, y)(x − xi)
)

vhx
xi

(x)v
hy
yj (y),

and

Bmix
ij (x, y) := mix

(

kh(x, y)(x − xi)
)

vhx
xi

(x)v
hy
yj (y),

where

mix
(

kh(x, y)(x − xi)
)

=

{

− sin
(

kh(x, y)(x − xi)
)

if x ≤ xi

sin
(

kh(x, y)(x − xi)
)

if x > xi.

As these basis functions are discontinuous iny-direction,
let us define the spaceΩh :=

⋃Nx

i=1

⋃Ny

j=1
rij and the cor-

responding seminorm

|u|H1(Ωh) :=
(

Nx
∑

i=1

Ny
∑

j=1

∫

rij

∣

∣

∣

∂u

∂x
(x, y)

∣

∣

∣

2

+
∣

∣

∣

∂u

∂y
(x, y)

∣

∣

∣

2

d(x, y)

)
1

2

.
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Then these TFWE span the space

V 2D
h :=

{

u ∈ H1(Ωh)
∣

∣ u(x, y) =

=

Ny
∑

j=0

Nx
∑

i=0

aijB
cos

ij (x, y) + bijB
sin

ij (x, y)

+cijB
mix
ij (x, y) ∀(x, y) ∈ Ω,

aij, bij , cij ∈ C, c0j = cNxj = 0
}

.

Remark. As H1(Ωh) * H1(Ω), the Finite Element
spaceV 2D

h
* H1(Ω) is non-conforming.

Let us consider the following weak problem derived
from a time discretization of (1):

Find u ∈ H1(Ω) such that a(u, v) = f(v), ∀v ∈

H1(Ω), where

a(u, v) :=

∫

Ω

(

∇u(x, y)∇v̄(x, y) − k2u(x, y)v̄(x, y)

+iβu(x, y)v̄(x, y)
)

d(x, y)

and β > 0.

Let us assume that the solutionu satisfies the Oscilla-
tion Assumption:

Assumption 1 (Oscillation Assumption) Let
u ∈ H2(Ωh) be a function oscillating with an an-
gular frequency ω similar to ck, where c is the velocity of
light. In mathematical notation this means that u can be
written as

u = u+ exp(ikx) + u− exp(−ikx),

where u+ exp(ikx) ∈ C(Ω), u− exp(−ikx) ∈ C(Ω),
|d

2u+

dx2 |
L2(Ω̂h)

≪ |d
2u

dx2 |L2(Ω), and |d
2u−

dx2 |
L2(Ω̂h)

≪

|d
2u

dx2 |L2(Ω).

Herein,|u|
X(Ω̂h)

defines theX-norm of the spacêΩh :=
⋃Nx

i=1

⋃Ny

j=1

◦
rij.

Theorem 1 Let u ∈ H2(Ω) satisfy Assumption 1.
Then, there exists a constant c independent of h :=
max{hx, hy} such that

|u − uh|H1(Ωh) ≤ ch
(

|u+|
H2(Ω̂h)

+ |u−|
H2(Ω̂h)

)

holds.

The proof of this theorem can be found in [3].

Application and Numerical Results
Finally, we present numerical simulation results for

the optical wave in DFB lasers achieved by the TFWE
method. We solved the weak form of (1) numerically,
where laser resonators of different size emitting at wave-
length1300nm were considered. In Figure 2 a laser res-
onator of size30µm × 130µm with a small stripe width
of size2µm was chosen, whereas in Figure 3 a laser res-
onator of size120µm × 130µm with a large stripe width
of size40µm is shown. Herein, the photon densityn is
defined byn = ǫ

2~ω
(|E|2).

Figure 2: Photon densityn: mode of first order is
achieved by a small stripe widths

Figure 3: Photon densityn: mode of higher order due
to a “large” stripe widths
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WHY IS A SHOCK NOT A CAUSTIC?
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Abstract

We discover, identify and examine an apparently

critical asymptotic paradox that underlies nonlinear

smoothed-shock formation. Fortunately for anyone mod-

elling shocks, the issue can be resolved by the newly dis-

covered ”higher order Stokes phenomenon”. A pedagog-

ical example is used to explain the problem, but we also

indicate the generality of the idea.

Introduction

A vast toolbox of asymptotic techniques exists for at-

tacking and interpreting smoothed nonlinear shock for-

mation, one of the most obvious being matched expan-

sions. Here we take an exponential asymptotic approach

and apply to the pedagogical problem of a Burgers equa-

tion that develops a smoothed shock.

ut + uux = ǫ2uxx,

u(x, 0) =
1

1 + x2
, ǫ → 0+,

for −∞ < x < +∞, t > 0. Within large classes, the

particular boundary data chosen does not change the main

conclusions of the work.

We use asymptotic expansions in ǫ that take into ac-

count exponentially small terms that grow spatially in x

to generate the shock wave transition. A smoothed shock

can be said to occur when two such exponential terms ex-

change dominance over a narrow range of x.

Thus far will be familiar territory to many, as there is an

intimate link between the matched asymptotic approach

and exponential asymptotics: the former is here the lead-

ing order behaviour of the latter.

Coalescence of exponents and caustics

From 1-D WKB analysis, it is well-known that “turn-

ing points” (or “caustics”) can arise in asymptotic approx-

imations when two exponents coalesce. The simplest ex-

ample of this is the expansion of the Airy function Ai(z)
which has expansions

2
√

πAi(z) ∼

{

z−1/4 exp(−2

3
z3/2), z → +∞,

2|z|−1/4 sin(2

3
|z|3/2 + π

4
), z → −∞.
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Figure 1: Comparison of asymptotic behaviours for the

Airy function (top) and Burgers (bottom, with ǫ = 0.05)

at points where the exponents involved are equal. For the

Airy function every term in the asymptotics is singular at

the caustic at z = 0. For Burgers, there is no such

divergence at the shock, where the exponents are also

equal as they exchange dominance.

As z → 0− the two exponents generating the sine func-

tion coalesce. Simultaneously the prefactor |z|−1/4 di-

verges and the expansion breaks down. A turning point or

caustic exists at z = 0. An exponential asymptotic study

shows that actually every term in the expansions are sin-

gular. This is because they take the asymptotic form of a

factorial divided by a power of the difference in the expo-

nents. For example for z > 0,

2
√

πAi(z) ∼ z−1/4 exp(−2

3
z3/2)

∞
∑

r=0

ar(z)

ar(z) ∼
(r − 1)!

2π(4

3
z3/2)r

, r → ∞.
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Exponential asymptotics shows that this behaviour of the

coefficients is generic at a turning point/caustic.

Nonlinear asymptotic paradox

Returning to the nonlinear smoothed shock, we now

encounter a paradox. If the shock transition is caused by

an exchange of dominance, and therefore the coalescence

of exponents, then why does the exponential asymptotic

(or matched asymptotic) expansion remain non-singular

at the shock position?

Higher order Stokes phenomenon

The resolution of this problem comes by considering

sub-sub-dominant terms. For then, once discovers the in-

fluence of the “Higher Order Stokes Phenomenon”.

At an ordinary “Stokes Phenomenon” an asymptotic

expansion can acquire an exponentially subdominant

term a set of parameters is crossed, the Stokes set. In a

single complex dimension, the Stokes sets are just lines

that run between turning points and/or infinity. In other

regions of parameter space, this may grow to dominate. In

the case of the Airy function Ai(z) a Stokes phenomenon

occurs across the Stokes line arg(z) = 2π/3 and a sec-

ond exponentially-prefactored contribution is born that

grows to help form the sinusoidal approximation when

arg(z) = π.

At a “Higher Order Stokes Phenomenon”, (HOSP) the

activity of a Stokes line changes. This may cause a Stokes

line to “switch off” at a perfectly regular point in space.

This effect was first observed by Berk et al [1], and then

discussed at length in different contexts by Kawai et al

[2], Howls et al [3] and Chapman and Mortimer [4].

The mechanism for the switching-off of the activity of

the Stokes line is a change in the Riemann-sheet structure

of the Borel plane, a natural dual space to work in when

attacking problems with exponential asymptotics. This

change in structure requires at least three singularities in

the Borel plane, each singularity corresponding to a dif-

ferent asymptotic contribution in the original coordinates.

At a HOSP, at least three Borel plane singularities are co-

linear, so that, as viewed from one of the singularities, a

second eclipses a third. At this eclipse the third singu-

larity passes through a cut from the second and onto a

different Riemann sheet from the first. The first and third

singularities can then no-longer interact directly, and so

a Stokes phenomenon between the associated asymptotic

contributions can no-longer take place. It is important to

stress that no change in the leading order or first subdom-

inant behaviour occurs at a HOSP. This partially explains

why their effects had not been noticed before, even in the

asymptotics of integrals involving three or more saddles.

Role of the HOSP in smoothed shocks

In the context of the Burgers example, we can show

that a higher order Stokes curve surrounds the shock re-

gion. The associated HOSP switches off the activity of

a Stokes line along the real axis in the shock region By

itself, the lack of a Stokes line on the real axis is of lesser

importance. That the associated Borel plane singulari-

ties have consequently changed the structure of the Borel

plane however is of vital importance. For then the singu-

larities that apparently coalesce (along with the asymp-

totic exponents) at the actual shock position as the expo-

nents change dominance, do not in fact do so, because

they are now on different Riemann sheets. This means

that, since the dominant behaviour of the coefficients can-

not involve the exponent arising from the singularity on

the different Riemann sheet, the individual terms in the

expansion cannot become singular at the shock. Hence

the exponential asymptotic (and so matched asymptotic)

expansion cannot become singular at the shock.
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Figure 2: Location of the Stokes, anti-Stokes,

higher-order Stokes lines, together with the poles,

caustics and shock location xs (a virtual caustic, due to

the HOSP) in the complex x-plane surrounding the

shock region for times after smoothed shock formation,

both for ǫ = 0.075. The numbers in brackets within a

Stokes region, denote the family of Borel singularities

that are contributing to the asymptotics.
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Full details and diagrams are included [4]. This ap-

proach is not dependent on the existence of a Cole-Hopf-

type solution to Burgers’ equation and can be generalised

to other Riemann-type nonlinear shock equations.
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Abstract
In this paper we concentrate on the highly oscillatory

integrals that arise in the 2D partition of unity bound-
ary element method in wave propagation. The integra-
tions are performed using the numerical steepest descent
method. The method is based on Cauchy’s integral theo-
rem and replaces the integral over the real interval by an
equivalent integral along a path in the complex plane such
that the integrand is no longer oscillatory along the path
and exhibits exponential decay.

Introduction
We address frequency domain problems of linear wave

scattering governed by the Helmholtz equation

∇2φ + k2φ = 0 (1)

wherek is the wavenumber, given byk = 2π/λ whereλ

is the wavelength, andφ is the acoustic pressure or wave
elevation.φ is complex since it contains both magnitude
and phase information. We consider the solution of (1) in
the unbounded 2D regionΩ resulting from the scattering
by an object of boundaryΓ of an incident plane wave,
φi = Aeika·x, whereA is the incident wave amplitude and
a is the unit vector describing its direction. The scattering
boundary,Γ, is considered in the present work to provide
a sound-hard Neumann condition

∂φ

∂n
= 0 (2)

wheren is the unit normal pointing outward fromΩ. Con-
ventional treatment of (1) to (2) yields a boundary integral
equation, assuming a smooth boundary, as

φ

2
+

∫

Γ

∂G∗

∂n
φdΓ =

∫

Γ

G∗ ∂φ

∂n
dΓ + φi (3)

where we collocate on the boundary,Γ, andG∗ is the
fundamental solution, or Green’s function. BEM discreti-
sation of equation (3) gives [1]

Hu − Gq = 0 (4)

where the terms in the influence matrices are found by
evaluation of the boundary integrals in (4) over a discreti-
sation ofΓ. Considering an arbitrary collocation point

and element of boundaryΓe, the integrations for the ma-
trix terms relating to node j on the element are

Hj =

∫

Γe

∂G∗

∂n
NjdΓ =

1
∫

−1

∂G∗

∂n
NjJdξ (5)

Gj =

∫

Γe

G∗NjdΓ =

1
∫

−1

G∗NjJdξ (6)

whereNj is the shape function for the nodej, andG∗ is
the fundamental solution, or Green’s function, given by

G∗ =
i

4
H0 (kr) =

1

4
[iJ0 (kr) − Y0 (kr)] (7)

wherer is the distance from the collocation point and
H0 (z) is a Hankel function of the first kind and of or-
der 0. We show the decomposition ofH0 (z) into Bessel
functions of the first and second kind,J0 (z) andY0 (z)
respectively. Substituting equation (7) into equations (5)
and (6) gives

Hj =

1
∫

−1

k

4

∂r

∂n
[Y1(kr) − iJ1(kr)]NjJdξ (8)

Gj =

1
∫

−1

1

4
[iJ0(kr) − Y0(kr)] NjJdξ (9)

Partition of Unity
Melenk and Babuka [2] presented the Partition of Unity

Method where the approximation space is enriched by
functions known to populate the solution. In the PUBEM,
we enrichNj in a plane wave expansion, leading to a set
of shape functionsNje

ik(xCosθq+ySinθq), q = 1, 2, ...,m,
giving

Hjq =

1
∫

−1

k

4

∂r

∂n
[Y1(kr) − iJ1(kr)]

Nje
ik(xCosθq+ySinθq)Jdξ (10)
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Gjq =

1
∫

−1

1

4
[iJ0(kr) − Y0(kr)]

Nje
ik(xCosθq+ySinθq)Jdξ (11)

The plane wave directions in the basis,θq, are usually
uniformly distributed around the unit circle. The values of
θq andm may be chosena priori according to the required
value ofτ , or may be selected adaptively according to an
error indicator.

Integration scheme
The numerical evaluation of the integrals (10) and (11)

requires the evaluation of the Bessel functions of the first
and second kind of orders 0 and 1. Press et al. [3] give
routines for evaluation of the Bessel functions and use
different formulae for|kr| < 8 and |kr| ≥ 8 . Because
of the overwhelming number of non-singular integrations
performed with|kr| ≥ 8 in PUBEM we concentrate on
this case.

Substituting the equations from [3], for|kr| ≥ 8 into
the integrals (10) and (11) gives

Gjq =

1
∫

−1

1

4

√

a0

kr

[

p0e
i(kr−b0+

π
2
) −

8

kr
q0e

i(kr−b0)

]

Nje
ik(xCosθq+ySinθq)Jdξ (12)

Hjq =

1
∫

−1

k

4

∂r

∂n

√

a1

kr

[

8

kr
q1e

i(kr−b1) − p1e
i(kr−b1+

π
2
)
]

Nje
ik(xCosθq+ySinθq)Jdξ (13)

wherea0, b0, p0, q0, a1, p1, q1 come from the series ap-
proximations to Bessel functions [3]. Equations (12) and
(13) give four integrals of the type

In =

1
∫

−1

fn (ξ) eikg(ξ)dξ (14)

In order to evaluate the oscillatory integrals of equation
(14) we use the numerical steepest descent method [4].
The method is based on Cauchy’s integral theorem and
replaces the integral over the real intervalξ ∈ (−1, 1) by
an equivalent integral along a path in the complex plane
such that the integrand is no longer oscillatory along the
path, but instead exhibits exponential decay. We denote
with h the complex plane. The required paths start at
h = (−1 + 0i) and are found to go to∞ before returning

to h = (+1 + 0i). The situation can be complicated by
the presence of stationary points inξ ∈ (−1, 1). In or-
der to simplify the method we start with the ideal case,
with no stationary points, as shown in Figure1, where
the arrowheads at c and d represent the curves going to
and coming back from∞ respectively. Rather than in-

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

Real

Im
ag

in
ar

y

a

c d

b

Figure 1: Integration paths in the complex planeh

tegrating the oscillatory integrals along the element from
a(-1,0) to b(1,0) we deform the integral path into the com-
plex plane to a-c, c-d, d-b shown in Figure 1. We choose
the integration paths a-c and d-b in the complex plane
such that

g (h) = g (ξ) + ip (15)

The integrals in equation (14) are then transformed to

In =

∣

∣

∣

∣

∣

∣

eikg(ξ)

∞
∫

0

fn (h) e−kp ∂h

∂p
dp

∣

∣

∣

∣

∣

∣

Γa−c

ξ=−1

−

∣

∣

∣

∣

∣

∣

eikg(ξ)

∞
∫

0

fn (h) e−kp ∂h

∂p
dp

∣

∣

∣

∣

∣

∣

Γb−d

ξ=1

(16)

The first term on the right hand side of equation (16) is
the integral along the path a-c in Figure 1, and the second
term considers path d-b; we have changed the direction
and sign of the second term. The integral along the path
c-d vanishes sincee−kp is zero atp = ∞. In equation
(16) ∂h/∂p is complex and is obtained from taking the
derivative of equation (15) giving

∂h

∂p
=

i

g′ (h)
(17)

We integrate each term of equation (16) using Gauss-
Laguerre numerical integration. The integrals along paths
a-c and b-d in Figure 1 are non-oscillatory and can be
integrated very accurately using very few Gauss points.
The integration paths given by equation (15) need only be
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found at the Gauss points for the Gauss-Laguerre integra-
tion. We do this by using Newton-Raphson iteration to
solve equation (15) using a linear truncated Taylor series
for g (h) from the previous Gauss point to find the starting
value for the Newton-Raphson iteration.

The case of stationary points is a little more involved.
A stationary point is located whereg′ (ξSP ) = 0, ξSP ∈

(−1, 1). Figure 2 shows the integration paths a-c, c-d, d-
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Figure 2: Integration paths in the complex planeh with
a stationary point atξSP = 0.1613

e-f, f-g, g-b for the integration with a stationary point at e,
ξSP = 0.1613. The integration path d-e-f crosses the real
axis at the stationary point, e atξSP . The integral along
the paths c-d and f-g vanishes sincee−kp is zero atp =
∞. The integrals in equation (14) are then transformed to

In =

∣

∣

∣

∣

∣

∣

eikg(ξ)

∞
∫

0

fn (h) e−kp ∂h

∂p
dp

∣

∣

∣

∣

∣

∣

Γa−c

ξ=−1

−

∣

∣

∣

∣

∣

∣

eikg(ξ)

∞
∫

0

fn (h) e−kp ∂h

∂p
dp

∣

∣

∣

∣

∣

∣

Γe−d

ξ=ξSP

+

∣

∣

∣

∣

∣

∣

eikg(ξ)

∞
∫

0

fn (h) e−kp ∂h

∂p
dp

∣

∣

∣

∣

∣

∣

Γe−f

ξ=ξSP

−

∣

∣

∣

∣

∣

∣

eikg(ξ)

∞
∫

0

fn (h) e−kp ∂h

∂p
dp

∣

∣

∣

∣

∣

∣

Γb−g

ξ=1

(18)

Notice there are two paths for increasingp at the station-
ary point, e, and care needs to be taken to distinguish be-
tween paths e-d and e-f in Figure 2 since they have oppo-
site signs in equation (18). The contribution along path
e-d has a negative sign since the path is coming back to
the real axis, and the contribution along path e-f has a
positive sign since the path is going away from the real

axis. At the stationary point we need both paths satisfying
equation (15); to do this, we take the quadratic truncated
Taylor series forg (h) giving two values for the starting
value for the Newton-Raphson iteration, at the first Gauss
point, one of which starts the curve e-d and the other of
which starts path e-f in Figure 2. Once we have found the
first Gauss point on the two curves we revert back to the
linear truncated Taylor series for subsequent points along
each curve.

At the stationary pointg′ (h) = 0, which means that
the∂h/∂p term in equation (18), given by equation (17),
is infinite. To overcome this we use a Telles type trans-
formation [5] where the Jacobian of the transformation is
zero at the singularity.

Results
Numerical tests on scattering by a cylinder of radius

a, with wavenumberk such thatka = 240π, show that
the scheme presented herein uses365 × 106 integration
points, comparing favourably with the8.8 × 109 points
used for comparable accuracy in previous works with
conventional Gauss-Legendre on the real interval.
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Abstract
Methods for the numerical simulation of high fre-

quency scattering problems invariably involve one or
more highly oscillatory integrals, either implicitly or ex-
plicitly. The presence of oscillatory integrals is explicit
in a natural way in integral equation methods, where the
kernel function of the integral operator under considera-
tion itself may be highly oscillatory. As such, methods
for the numerical evaluation of oscillatory integrals are
highly relevant for the construction of new methods for
solving such integral equations. In this paper, we explore
the relation between these two problems and we describe
an application to the case of high frequency scattering by
convex obstacles.

Introduction
The discretization of integral equations using bound-

ary element methods naturally leads to large and dense
matrices. For non-oscillatory problems, the dense matrix
is highly redundant. It can be compressed in many ways,
e.g., using wavelets, the fast multipole method or hier-
archical matrices. We will see that in some cases, per-
haps unexpectedly, much redundancy in the matrix rep-
resentation also appears in the highly oscillatory case.
The redundancy is in fact much higher than in the non-
oscillatory case. Also, it is more easily exploited numeri-
cally. Here, we will show how one can obtain a sparse, but
highly accurate, representation of a particular oscillatory
integral operator. The operator appears in the problem of
scattering by a smooth two-dimensional obstacle.

The method we describe has the characteristics of an
asymptotic method. There are two major issues that re-
quire special attention in such methods. The first is that
asymptotic expansions are generally divergent. The sec-
ond is the existence of the Stokes phenomenon: an asym-
potic expansion may change form discontinuously as one
parameter of the problem passes a crucial value. We will
see how both issues can be resolved by incorporating the
asymptotic behaviour of the solution into a more tradi-
tional boundary element method.

This work has been inspired by earlier results using
a similar approach. An efficient implementation that
also takes advantage of the localisation principle was de-

scribed in [1]. A compression of the matrix representation
was described in [2]. We believe the biggest differences
here, compared to the given references, is a more effec-
tive treatment of the oscillatory integrals involved and the
much improved sparsity that results. A detailed account
of the method can be found in [4].

Oscillatory integrals
Highly oscillatory integrals represent a challenge for

traditional quadrature approaches, such as composite in-
terpolatory Gaussian or Newton-Cotes quadrature. The
underlying polynomial interpolation requires resolving
the wavelengths of the integrand, which naturally leads
to a high computational cost for increasing frequency.

Now consider the following model integral,

I =

∫ b

a

f(x)eikg(x) dx (1)

with smooth functions f and g and a large frequency pa-
rameter k. This integral can be evaluated very effectively
by deforming the integration path onto the so-called paths
of steepest descent. This leads to a sum

I = F (a) − F (b) + O(e−kP ), k → ∞,

with P > 0 and with the line integrals F (x) given by

F (x) = eikg(x)

∫ P

0

f̃(p)e−kpdp, (2)

where f̃ is a smooth function that depends on f . This pro-
cedure turns the integrand into a non-oscillatory function
that exhibits exponential decay. The numerical evaluation
of F (x) leads to a numerical method that requires only
few evaluations of the original integrand. Moreover, the
accuracy increases rapidly with increasing frequency [5].

A different method was proposed in [3]. These authors
constructed a Filon-type quadrature rule using derivatives,

I ≈ Q[f ] :=
L∑

l=0

d∑

j=0

wl,jf
(j)(xl). (3)

The error of this rule behaves as O(k−s−1), where s de-
pends on the number of derivatives that are used. The
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number of quadrature points L is small and, more impor-
tantly, independent of k. This method has the advantage
that it has the form of a classical quadrature rule and that
it can be applied to functions f that are not analytic. The
weights wl,j in this quadrature rule are given by oscil-
latory integrals themselves – they can be evaluated very
efficiently using the method of [5] described above.

The succes of both of these methods hinges on the ex-
istence of an asymptotic expansion of I in terms of k−1,

I ∼

∞∑

j=0

ajk
−δ(j+1), k → ∞, (4)

where 0 < δ ≤ 1 depends on the behaviour of g. The
coefficients in this expansion depend solely on the be-
haviour of f and g near the critical points of the integrand.
They are the endpoints a and b of the integration interval
and the so-called stationary points: all points ξl ∈ [a, b]
such that g′(ξl) = 0. The quadrature points in (3) include
all the critical points. The coefficients aj themselves are
not computed or estimated.

An oscillatory integral equation
Consider the oscillatory integral operator

(Kf)(t) =

∫
1

0

i

4
H

(1)

0
(k|κ(t) − κ(τ)|)f(τ) dτ, (5)

that arises in the problem of two-dimensional time-
harmonic scattering by a bounded obstacle Γ, given by
κ : [0, 1] → Γ, with |∇κ(τ)| = 1 for simplicity. Since

H
(1)

0
(z) ∼

√
2

πz
ei(z− 1

4
π), z → ∞,

the integral Kf closely resembles the model integral (1).
One can evaluate Kf efficiently and very accurately us-
ing a Filon-type method,

(Kf)(t) ≈

L∑

l=0

d∑

j=0

wl,j(t)f
(j)(xl(t)).

The weights and the quadrature points now depend on t.
In general, the solution q of the integral equation Kq =

ui may itself be oscillatory. In some cases, one can pre-
dict the oscillatory behaviour of q. For example, if Γ is
convex and ui(t) = eikgi(t), geometrical optics predicts

q(t) = qs(t)e
ikgi

(t) (6)

where qs(t) is almost non-oscillatory. This holds in the
part of the obstacle that is visible to the incoming wave
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Figure 1: Location of the critical points τ ∈ [0, 1] as a
function of the collocation point t ∈ [0, 1].

ui(t). The function qs(t) is mildly oscillatory but rapidly
decaying in the shadow region. The transition occurs at
the so-called shadow boundaries – the points where the
incoming wave is tangential to the boundary Γ.

A sparse discretization
Our approach will be to substitute the ansatz (6) into

the integral equation and to solve for the function qs,

qs(t) ≈ qc(t) :=
N∑

m=1

cmφm(t). (7)

Collocating in the points tn, n = 1, . . . , N , yields the
system Ac = b with entries

An,m = (Kφmeikgi

)(tn) and bn = u(tn). (8)

Even if the basis functions φm are only locally supported,
the matrix A is dense. Row n corresponds to a discretisa-
tion of the oscillatory integral (Kqse

ikgi

)(tn). An alter-
native is to use a Filon-type method,

(Kqse
ikgi

)(tn) ≈

L∑

l=0

d∑

j=0

wl,j(tn)q(j)
s (xl(tn)). (9)

From (7) we obtain the necessary derivatives

q(j)
s (t) ≈ q(j)

c (t) =

N∑

m=1

cmφ(j)
m (t).

Hence, everything can again be expressed as a linear com-
bination of the coefficients cm. The typical locations of
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the critical points xl(tn) are shown in Figure 1. The diag-
onal corresponds to the singularity of the kernel function.
The other lines represent stationary points.

If the basis functions φm are locally supported, only
few basis functions are non-zero at the critical points. The
matrix representation based on (9) then becomes highly
sparse, with non-zero elements distributed approximately
as in Figure 1. However, the ansatz (6) is not valid
near the shadow boundaries. As a result, the Filon-type
quadrature rule does not apply. Following [1], the wave-
lengths are resolved in a small region of size O(k−1/3)
around the shadow boundaries. We approximate qs by 0
in the shadow region away from the shadow boundaries.
The Filon-type rule is now used only where it applies. For
other parts of the matrix, we revert to a small dense part
with elements elements An,m as given by (8). This leads
to a matrix Ã with a sparse structure as shown in Figure 2.

Accuracy and computation time
The construction of the sparse matrix requires the com-

putation of the weights

wl,j(tn), n = 1, . . . , N.

They are given by oscillatory integrals that can be com-
puted efficiently following [5]. These integrals become
easier to evaluate as the frequency increases. As an imme-
diate result, the computation time of the method actually
decreases with increasing frequency. Numerical results
on timing and accuracy can be found in [4].

There are two sources of errors in this scheme. First,
one has the error of the overall collocation scheme, de-
pending on the size of the boundary region and the num-
ber of unknowns. Second, an additional quadrature error
is introduced by using (9). The two sources of the error
can be analysed separately, since the sparse representa-
tion asymptotically approximates the dense matrix. This
is the subject of ongoing research. A similar approach
was already analysed in [6].

Concluding remarks
The dense matrix representation in this particular scat-

tering problem can be approximated asymptotically by a
small and highly sparse matrix, resulting in large savings.
This approximation improves with increasing frequency.
The two major disadvantages of asymptotic methods that
were mentioned in the introduction are resolved by con-
sidering the problem in a boundary element setting. At
lower frequencies, one can increase the size of the dense
parts to gradually fill up the matrix, reducing to a classi-
cal dence boundary element method discretization for qs.

The features of the transitional shadow boundary regions
are not captured in the ansatz that was used. This prob-
lem, too, is resolved by locally reducing to a regular dense
discretization.
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Figure 2: The sparse discretization matrix Ã.
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Abstract
High frequency waves through interfaces can be ap-

proximated, in the limit of infinite frequency, a Liou-
ville equation that corresponds to a Hamiltonian system
with a discontinuous Hamiltonian. We introduce an in-
terface condition– that corresponds to wave transmission
and reflection–for the Liouville equation, and then de-
velop numerical schemes using this interface condition.
The numerical schemes can capture the high frequency
waves through the interface without resolving the high
frequency. Extensions to thin quantum barriers and to the
computation of diffraction by using the Geometric The-
ory of Diffraction will also be discussed.

Introduction
By using the Wigner transform, the high frequency

limit of a linear symmetric hyperbolic system or the lin-
ear Schrödinger equation in quantum mechanics has the
limiting equation for the energy or density distribution
f(t, x, p) governed by the linear Liouville equation:

∂tf +∇pH · ∇xf −∇xH · ∇pf = 0 , (1)

f(x, p, 0) = |A0(x)|δ(p−∇S0(x)) . (2)

where A0(x) and S0(x) are the inital density (energy) and
phase respectively.

In the case of wave equation, H(x, p) = c(x)|p|, where
c(x) is the local sound speed, while for the Schrödinger
equation, H(x, p) = 1/2|p|2 + V (x) with V (x) the po-
tential.

Compared to the classical WKB analysis, the Wigner
approach is valid beyond the caustics, thus is valid glob-
ally in time. The above limit has been justified when H
is smooth.

When the medium is inhomogeneous, the potential
V (x) or the local wave speed c is discontinuous, cre-
ating a sharp potential barrier or interface where waves
can be partially reflected and partially transmitted as in
Snell-Descartes’ Law of Refraction. This gives rise to
new mathematical and numerical challenges not faced in
the smooth Hamiltonian case.

Methods
For problem (1)-(2), we introduce an interface condi-

tion at the point of interface, say x = 0, for p > 0, [2]:

f(0+, p+) = αT f(0−, p−) + αRf(0+,−p+) (3)

H(0−, p−) = H(0+, p+) (4)

For a sharp interface, 0+ = 0−. Here αT and αR are the
transmission and reflection coefficients respectively,

0 ≤ αT , αR ≤ 1 , αT + αR = 1 .

(3) is the conservation of density. The first term on the
right hand side corresponds to the transmission, while the
second term corresponds to the reflection. For wave re-
flection, the velocity or momentum simply changes sign.
For transmission, however, the momentum or velocity
changes according to the Hamiltonian or energy conser-
vation (4). In geometrical optics, (4) is equivalent to the
Snell Law of Refraction.

We now define the solution to (1)-(2) by solving the
Liouville equation (1) on both sides of the interface, and
then connect the solution through the interface condition
(3)-(4). This provides a mathematically well-posed initial
value problem to the linear Liouville equation (1) which
is a linear transport equation with singular (discontinuous
and measure-valued) coefficients. This also motivates our
numerical methods.

The basic idea of our numerical method [1] is to incor-
porate (or immerse) the interface condition (3)-(4) into
the numerical flux in the x-direction. This gives a class
of finite difference schemes that are L1 and L∞ stable,
under a hyperbolic CFL condition ∆t = O(∆x,∆p). We
have also developed finite volume methods and particle
methods.

Applications
This method is very generic. We will discuss its ap-

plications in semiclassical limit of the linear Schrödinger
equation [1], geometric optics [2], elastic wave [3], and
even diffuse interfaces [5].

We will also extend it to a semiclassical computation of
thin quantum barriers [4]. The basic idea is the following:
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• Solve a time-independent Schrodinger equation for
the local barrier/well to determine the scattering data
(in 1d these are αT and αR)

• Solve the classical liouville equation elsewhere, us-
ing the scattering data at the interface

Since we solve the (stationary) quantum mechanics
only in a preprocessing step, this ”multiscale” method al-
lows us to compute the quantum tunneling with a compu-
tational cost of classical mechanics.

We have also generalized the interface condition (3)-(4)
to include the diffraction effect by utilizing the Geomatric
Theory of Diffraction [6].
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Abstract

To solve wave scattering problems in unbounded media
using the finite element method, it is necessary to trun-
cate the domain at some artificial boundary and to apply
a suitable non reflecting boundary condition (NRBC) al-
lowing the outgoing waves to radiate away towards in-
finity. Usually, an approximation of the Sommerfeld ra-
diation condition is applied at a sufficiently large dis-
tance from the scatterer, which leads to solutions in large
computational domains. Such techniques are practical at
low wave numbers where the artificial boundary is only
a few wavelengths from the scatterer. As the wave num-
ber increases, the distance between the scattering object
and the artificial boundary increases as well in terms of
the wavelength, and hence the use of NRBC based on
asymptotic expansions become computationally expen-
sive. In this work, exact and approximate NRBC are
implemented with the Partition of Unity Finite Element
Method (PUFEM) to solve short wave scattering prob-
lems governed by the Helmholtz equation in two dimen-
sions. A comparison of the performance of the NRBC is
carried out based on the accuracy of the results, ease of
implementation and computational cost.

Introduction

Many authors have developed finite elements which in-
corporate knowledge about the problem to be solved. The
approach is based on the enrichment of the solution space
by analytical solutions to the Helmholtz equation usually
in the form of plane waves. These elements are capa-
ble of containing many wavelengths per nodal spacing
and therefore allow us to relax the traditional requirement
which consists to take around ten nodal points per wave-
length. The reader is directed to reference [1] for a survey
of the activity which took place up to 2004. More recent
work could be found, for example, in [2], [3] and [4]. Re-
garding the NRBC for exterior wave problems, again so
much activity has been taking place in this area. The used
references are [5] and [6], among others. In this work, two
type of exact NRBC are implemented, namely the Robin
boundary condition and the DtN map. In the case of ap-

proximate boundary conditions, three different boundary
conditions are used. Those are of Bayliss, Gunzburger
and Turkel (BGT), Engquist and Majda (EM), and Feng
(F). Different orders of the approximate boundary condi-
tions are also considered. The problem of interest is a
simple model of an acoustic plane wave scattering from
a rigid circular cylinder, for which the exact solution is
known.

Formulation
The problem of a plane wave scattered by a rigid object

D in unbounded media is considered in two dimensions.
The incident plane wave of potentialΦi is scattered by
the rigid body of boundaryΓS. The diffracted potentialΦ
satisfies the following problem

(∇2 + k2)Φ = 0 outside D (1)

∇Φ · n = −∇Φi · n on ΓS (2)

lim
r→∞

r
1

2 (
∂Φ

∂r
− ikΦ) = 0 (3)

where∇2 denotes the Laplacian operator,∇ is the gra-
dient vector operator,k is the wave number,n is the out-
ward normal vector to the line boundaryΓS and i is the
complex imaginary such thati2 = −1. The time variable
is removed by considering a harmonic steady state. The
region of interestΩ around the scatterer is bounded by an
artificial circular boundaryΓR of radiusR at which spe-
cial conditions must be imposed to appear transparent to
the propagating waves.
The differential equation (1) is multiplied by an arbitrary
weight functionΨ and then integrated by parts inΩ to
give the weak form
∫

Ω

(

∇Ψ · ∇Φ − k2ΨΦ
)

dΩ −

∫

ΓR

Ψ∇Φ · n dΓ

=

∫

ΓS

Ψ∇Φi · n dΓ (4)

where the integral along the outer boundaryΓR is treated
by considering different NRBC.
The computational domainΩ is meshed inton-noded fi-
nite elements and the diffracted potentialΦ is expressed
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as a combination of plane waves.

Φ =
n

∑

j=1

m
∑

l=1

Nj(η) eikξ
l

j ·r Al
j (5)

where the coefficientsAl
j are the amplitudes of the set

of m plane waves associated with each vertexj. The
plane waves are chosen to be evenly distributed such that
ξ

T
l = (cos αl, sin αl) with αl = 2πl/m. The geome-

try of each finite element is described by the coordinate
transformationr = T (η) between the global coordi-
natesr = (x, y) and the local coordinatesη = (η, ζ) ∈

[−1, 1]2. A Galerkin weighting is adopted and therefore
the weighting functionsΨ are products of polynomial
shape functions and chosen plane waves. A high order
Gauss-Legendre integration scheme is used to evaluate
the element matrices, which are of dimensionnm × nm.

Numerical results - example
We consider the problem of a horizontal plane wave

of unit amplitude impinging a rigid circular cylinder of
unit radius,a. The computational domain extension is
given by1 ≤ R/a ≤ 1.25. The measure of the accu-
racy of the model is based on theL2 norm error,ǫ2 =
||Φ − Φ̃||L2(Ω)/||Φ̃||L2(Ω) × 100%, whereΦ̃ is the exact
solution of the diffracted potential. We also define the pa-
rameterτ as the number of degrees of freedom (DOF) per
wavelength used to solve the problem. A mesh containing
one layer of 9-noded finite elements around the cylinder
and 23 elements in total is used ( Figure 1). At each nodal
point we use 30 plane waves. Figure 2 shows an example
of contour plots of the real part of the diffracted potential
around the cylinder forka=100 when the DtN boundary
condition is imposed on the outer boundaryΓR. In this
case, 60 integration points are employed per element in
each spatial direction for the evaluation of the element
matrices and 3 DOF are used to model each wavelength.
TheL2 error is very satisfactory,ǫ2 = 0.1%.
Further results compare the accuracy of different local
and non-local NRBC at relatively high wave numbers.
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Abstract
We consider the numerical solution of the problem of

time-harmonic acoustic scattering in two dimensions by
a sound soft convex polygon. Standard boundary or fi-
nite element methods with piecewise polynomial approx-
imation spaces have a computational cost that grows at
least linearly with respect to the frequency of the incident
wave. By including in the approximation space the prod-
ucts of plane wave basis functions with piecewise polyno-
mials supported on a graded mesh, with the grading opti-
mally adapted to the decay of the diffracted waves away
from corners of the polygon, it has previously been shown
that an error of best approximation that depends only
logarithmically on the frequency of the incident wave
can be achieved. To achieve this result via a Galerkin
scheme requires the numerical evaluation of many highly
oscillatory double integrals; to avoid this difficulty, a re-
lated collocation scheme has also previously been pro-
posed. Some potential improvements to this scheme are
discussed here.

Introduction
We consider the numerical solution of the exterior

Helmholtz problem

∆us + k2us = 0, in D := R2\Υ, (1)

whereΥ is a convex polygon andk > 0 (the wavenum-
ber) is some arbitrary positive constant, with boundary
condition

us(x) = −ui(x) := −eikx.d, x ∈ Γ, (2)

whereΓ is the boundary ofΥ andd is the direction of
the incident wave, together with the Sommerfeld radia-
tion condition

lim
r→∞

r1/2

(
∂us

∂r
(x)− ikus(x)

)
= 0, (3)

wherer = |x| and the limit holds uniformly in all di-
rectionsx/|x|. This boundary-value problem can arise
when modelling the scattering of an acoustic incident

plane wave by an infinite sound soft cylinder with polyg-
onal cross section. Here we are concerned with solving
(1)–(3) numerically in the case thatk may be large.

Integral equation formulation
Using Green’s theorem we can write the total acoustic

field u(x) := us(x) + ui(x) as

u(x) = ui(x)−
∫

Γ
Φ(x,y)

∂u

∂n
(y) ds(y),

whereΦ(x,y) := (i/4)H(1)
0 (k|x − y|) is the standard

fundamental solution for the Helmholtz equation andn
is the normal vector directed out ofΥ. Thus our prob-
lem reduces to finding the complementary boundary data
∂u/∂n ∈ L2(Γ), and to do this we solve the well known
second kind integral equation

(I + K)
∂u

∂n
= f, onΓ\{S}, (4)

whereS is the set of corners ofΩ, f := 2∂ui/∂n+2iηui,
and forv ∈ L2(Γ)

Kv(x) := 2
∫

Γ

(
∂Φ(x,y)
∂n(x)

+ iηΦ(x,y)
)

v(y) ds(y),

whereη is a coupling parameter, withη ∈ R\{0} en-
suring that (4) has a unique solution (we refer to [3] for
details).

To achieve a good approximation to the solution of (4)
whenk is large, we begin by separating off the leading
order asymptotic behaviour in the limitk → ∞. To that
end, we defineφ := 1

k
∂u
∂n −Ψ, where

Ψ(x) :=
{

2
k

∂ui

∂n (x) on illuminated sides
0, on shadow sides,

and then we solve numerically

(I + K)φ = F := f −Ψ−KΨ. (5)
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Approximation space and boundary integral methods
It is shown in [3] that the solutionφ of (5) can be writ-

ten as

φ(s) = eiksv+(s) + e−iksv−(s), for s ∈ [0, L],

wherex(s), s ∈ [0, L] parametrisesΓ, and where the
functionsv+ andv− and all their derivatives are highly
peaked near the corners of the polygon and rapidly de-
caying away from the corners. The oscillatory nature of
φ(s) is thus represented exactly by the termse±iks, and
so to approximateφ all that is required is to approximate
the smooth functionsv±. These functions decay suffi-
ciently quickly away from the corners of the polygon that
they can be approximated by piecewise polynomials on
a graded mesh, with the number of degrees of freedom
required to maintain the accuracy of their bestL2 approx-
imation growing only logarithmically with respect tok as
k →∞.

More specifically, the approximation space used in [1]
and [3] is defined as follows: forA > λ = 2π/k >
0, q > 0, N = 2, 3, . . ., the meshΛN,A,λ,q :=
{y0, . . . , yN+N̂A,λ,q

} consists of the pointsyi = λ
(

i
N

)q
,

i = 0, . . . , N , together with the pointsyN+j :=

λ
(

A
λ

)j/N̂A,λ,q , j = 1, . . . , N̂A,λ,q, whereN̂A,λ,q = dN∗e,
the smallest integer greater than or equal toN∗, with
N∗ = − log(A/λ)

q log(1−1/N) . AssumingLj > λ, j = 1, . . . , n,
whereLj denotes the length of thejth side of the poly-
gon, we defineqj := (2ν+3)/(2π/Ωj−1), j = 1, . . . , n,
(whereΩj is the external angle at thejth corner, andν
denotes the degree of the approximating piecewise poly-
nomial) and the two meshes

Γ+
j := L̃j−1 + ΛN,Lj ,λ,qj

, Γ−j := L̃j − ΛN,Lj ,λ,qj+1
,

whereL̃j :=
∑j

m=1 Lm.
Letting e±(s) := e±iks, s ∈ [0, L], we then define

VΓ+
j ,ν := {σe+ : σ ∈ ΠΓ+

j ,ν},

VΓ−j ,ν := {σe− : σ ∈ ΠΓ−j ,ν},

for j = 1, . . . , n, where

ΠΓ+
j ,ν := {σ ∈ L2(0, L) : σ|(L̃j−1+ym−1,L̃j−1+ym)

is a polynomial of degree≤ ν,

for m = 1, . . . , N + N̂Lj ,λ,qj
,

andσ|(0,L̃j−1)∪(L̃j ,L) = 0},

ΠΓ−j ,ν := {σ ∈ L2(0, L) : σ|(L̃j−ỹm,L̃j+ỹm−1)

is a polynomial of degree≤ ν,

for m = 1, . . . , N + N̂Lj ,λ,qj+1
,

andσ|(0,L̃j−1)∪(L̃j ,L) = 0},

with the points of the meshΛN,Lj ,λ,qj
given by

y0, . . . , yN+N̂Lj,λ,qj
, and the points of the mesh

ΛN,Lj ,λ,qj+1
given byỹ0, . . . , ỹN+N̂Lj,λ,qj+1

.

Our approximation space is then the linear span of⋃
j=1,...,n{VΓ+

j ,ν ∪ VΓ−j ,ν}. Note that on each side of the

polygon this gives us two overlapping meshes, one graded
to each corner.

The question then arises of how to select the bestL2

approximation from the approximation space. In [3] a
Galerkin scheme is proposed, for which both stability and
convergence are proved. However, the implementation of
this scheme requires the evaluation of many highly oscil-
latory double integrals, typically of a form similar to∫ −a

−b

∫ d
c

[
H

(1)
0 (k

√
s2 + t2) + itH

(1)
1 (k

√
s2+t2)√

s2+t2

]
.eik(σjt−σms) dt ds,

where0 ≤ a < b, 0 ≤ c < d, σj , σm = ±1. Numeri-
cal evaluation of these integrals by standard (e.g. Gaus-
sian quadrature) schemes can be prohibitively expensive,
with the number of degrees of freedom needing to grow
like k2 to maintain accuracy ask → ∞. To avoid this
difficulty, an alternative collocation scheme is proposed
in [1]. Implementation of this scheme only requires eval-
uation of highly oscillatory single integrals, typically of a
form similar to∫ b

a

[
H

(1)
0 (k

√
s2
m + t2)+

itH(1)
1 (k

√
s2
m + t2)√

s2
m + t2

]
eikσjt dt,

(6)
wherea < b, σj = ±1, and the collocation pointssm

are defined as the midpoints of the intervals of the graded
meshes. Numerical results in [1] suggest that this col-
location scheme achieves a similar level of accuracy to
that attained by the Galerkin scheme of [3], but with a re-
duced computational cost (the cost of evaluating the inte-
grals (6) by standard Gaussian quadrature need only grow
with order k to maintain accuracy ask → ∞). How-
ever, the nature of the approximation space means that
this naive choice of collocation points may lead to ill-
conditioned systems. Moreover, the mesh grading pro-
posed in both [3] and [1] near the corners of the polygon
does not appear to be optimal in some ways. We now
consider possible improvements to the scheme of [1].
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Proposed improvements to the collocation scheme
Mesh grading near each corner

For the scheme of [1], we defineαj = 1−π/Ωj , where
Ωj is the external angle at thejth corner: ifΩj = π then
there is no corner at all, in which caseαj = 0; if Ωj = 2π
so that the corner becomes a sharp point, thenαj = 1/2.
For all other values ofΩj , αj ∈ (0, 1/2). In [1], [3], the
grading of the mesh near the corner isqj = (2ν+3)/(1−
2αj). However, in the case thatΩj = π, i.e. if there is no
corner, then this givesqj = 2ν + 3, which seems to be
too severe. Ideally, asΩj → π the grading would satisfy
qj → 1, for all ν. At the other extreme we would expect
that asΩj → 2π, i.e. as the corner becomes a sharp point,
then we should haveqj → ∞, which is exactly what we
see. InL2, whenΩj = 2π the decay isr−1/2, and thus
in L2 everything blows up asΩj → 2π. However these
results can be improved: inL2, a reduced mesh grading
can be applied. Alternatively, we could work inL1.

Specifically, the main approximation result in [3] is
Theorem 4.2, which states that for a functionf ∈ C∞

that satisfies

|f (m)(s)| ≤ Cmkm(ks)−α−m,

for ks ≤ 1, whereα ∈ (0, 1/2), then ifq = (2ν+3)/(1−
2α) it follows that

‖f − P ∗
Nf‖2 ≤ Cν

(1 + log kL
C )1/2

k1/2Nν+1
,

whereC andCν are absolute constants,L is the length of
the boundary, andP ∗

N is the orthogonal projection onto
the approximation space. Although this grading is opti-
mal in the sense that it allows us to derive identical error
bounds on each mesh interval (equidistributing the error),
in fact, we can show that the same approximation result
holds inL2 for anyq satisfying

2ν + 2
1− 2α

< q ≤ 2ν + 3
1− 2α

.

To achieve a mesh grading that makes more sense as
Ωj → π, i.e. to achieve a grading that becomes uniform
as the corner disappears, it is necessary to work inL1 near
the corner andL2 away from the corner.

Improved definition of collocation points
The collocation points of [1] were defined as the mid-

points of each interval ofΓ+
j andΓ−j . However, as the

meshes overlap this leaves open the possibility that two
mesh points may be very close to each other, leading to
ill-conditioned systems. Instead, we now use an alterna-
tive algorithm for determining the collocation points that

should result in a well-conditioned system. The idea is
to split each side of the polygon in half, so that the grid
points corresponding to theeiks are bunched in one half
and well spaced in the other, and the grid points corre-
sponding to thee−iks are bunched in the other half, and
well spaced where the others are bunched. Collocation
points are then defined first on the bunched halves, as the
midpoints of each interval. It remains to place colloca-
tion points on the widely spaced halves. In [1] these were
placed at the midpoints, but here we propose computing
the two “dense” collocation points to either side of the
midpoints, and then moving the points to the midpoints
of the “dense” points, so as to maximise the distance be-
tween collocation points. Numerical experiments on a
range of examples indicate that this approach leads to an
improvement in the conditioning of the linear system.

Integral evaluation
Numerical evaluation of integrals of the form (6) which

arise in the collocation scheme can be expensive. To
maintain accuracy ask → ∞, the number of degrees of
freedom required by standard Gaussian quadrature must
grow at least with orderk, due to the oscillatory nature
of the integrand. Instead, we propose to use the numer-
ical method of steepest descents approach developed by
Huybrechs and Vandewalle in [4], which is well adapted
to evaluating integrals of this type. Indeed the cost of this
scheme does not increase ask →∞.

Further details will appear in [2].
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Abstract
The traditional Gaussian beam summation method is

based on Lagrangian ray tracing and local ray centered
coordinates. We propose a new Eulerian formulation of
Gaussian beam theory which adopts global Cartesian co-
ordinates, level sets and Liouville equations, yielding uni-
formly distributed Eulerian traveltimes and amplitudes in
phase space simultaneously for multiple sources. The
time harmonic wavefield can be constructed by summing
up Gaussian beams with ingredients provided by the new
Eulerian formulation. Numerical experiments indicate
that the Gaussian beam summation method yields accu-
rate asymptotic wave fields even at caustics. The new
method may be used for seismic modeling and migration.

Introduction
The method of Gaussian beam summation is powerful

for seismic wave modeling and migration in the high fre-
quency regime; see [1] and references therein. In contrast
to the geometrical ray theory in which the ray amplitude
is unbounded at caustics, a Gaussian beam constructed
around a central ray always has guaranteed regular be-
havior at caustics and interference of multiple arrivals is
achieved by summing up a bundle of Gaussian beams.
We propose a purely Eulerian Gaussian beam summation
method that combines the Gaussian beam ansatz intro-
duced in [5] with the paraxial Liouville formulation de-
veloped recently in [3]; the resulting Eulerian method is
easy to implement and computationally efficient.

Gaussian beams are approximate asymptotically valid
solutions to hyperbolic partial differential equations
which are concentrated near a single curve through the
domain. The existence of such solutions has been known
to the applied mathematician since sometime in the
1960s, and these solutions have been used to obtain re-
sults on propagation of singularities in hyperbolic PDEs
([2], [5]).

Traditional Gaussian beams are constructed by using
local ray coordinates. As a result, one has to compute the
normal distance from every observation point to the cen-
tral ray of every Gaussian beam, which is computationally

cumbersome and expensive. To overcome this difficulty,
one may use local geographical coordinates in the vicin-
ity of an observation point, which only partially solves
the problem. To implement Gaussian beam summation in
a global Cartesian coordinate, we adopt the ansatz pro-
posed in [5] and [6] to construct Gaussian beams along
central rays without resorting to local ray-centered co-
ordinates. Mathematically, this ansatz constructs an ap-
proximate traveltime function with an imaginary part as
a Taylor expansion around a central ray by using travel-
time derivatives on the central ray; to some extent, the ap-
proximate traveltime function in the traditional Gaussian
beam summation can be obtained from the new approxi-
mate traveltime function by using a local ray-centered co-
ordinate transformation. To have an Eulerian formulation
capturing multiple arrivals and caustics, we adopt Liou-
ville equations in a paraxial setting ([3]) to parametrize
multiple sources and receivers; see these papers and the
references therein for recent progress in Eulerian geomet-
rical optics.

Methods
Eikonal Equations

Consider the reduced wave equation for U(x, z, ω),

∇2U(x, z, ω) +
ω2

v2(z, x)
U(x, z, ω) = −δ(x− xs)δ(z − zs), (1)

in the physical domain,

Ω = {(x, z) : xmin ≤ x ≤ xmax, 0 ≤ z ≤ zmax},

where ω is frequency, v(z, x) the velocity at point (z, x),
and (zs, xs) the coordinates of a source point.

Applying the standard geometrical optics ansatz to the
above equation, we have the eikonal and transport equa-
tions for traveltime τ and amplitude A:

(
∂τ

∂x

)2

+

(
∂τ

∂z

)2

=
1

v2(x, z)
, (2)

∇τ · ∇A+
1

2
A∇2τ = 0, (3)

with corresponding initial conditions.
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In some seismic applications, the traveltime field is
needed only in regions where

∂τ

∂z
≥

cos θmax

v
> 0,

i.e., along downgoing rays making an angle ±θmax,
θmax < π

2
with the vertical; this is the so-called sub-

horizontal rays, where sub-horizontal means oriented in
the positive z-direction. To enforce this condition, we
modify the eikonal equation as an evolution equation in
depth, resulting in the following form of the eikonal equa-
tion,

∂τ

∂z
−

√
1

v2
−

(
∂τ

∂x

)2

= 0, z ≥ 0, (4)

τ(0, x) = τ0(x), Im τ0 ≥ 0, (5)
∇τ |z=0 = ξ(x), (6)

where τ0(x) and ξ(x) are given complex smooth func-
tions satisfying the compatibility conditions:

∂τ0

∂x
= ξ1(x), (7)

ξ2(x) −

√
1

v2(0, x)
− ξ2

1
(x) = 0. (8)

At the point source, (zs, xs) = (0, xs), we specify ini-
tial conditions,

τ0(xs) = 0, (9)

ξ1(xs; θs) =
sin θs

v(0, xs)
, |θs| ≤ θmax <

π

2
, (10)

where (xs, θs) ∈ Ωp,

Ωp = {(x, θ) : xmin ≤ x ≤ xmax,−θmax ≤ θ ≤ θmax}.

Accordingly, we construct an approximation of τ in the
neighborhood of the source by,

τ0(x;xs) = τ0(xs) + ξ1(xs; θs) · (x− xs) (11)

+i
ε

2
(x− xs)

2 cos2 θs, (12)

where ε is a positive number. The constructed τ0 satisfies
the required initial condition at the source.

To apply Gaussian beam theory ([5], [6]) we let the
axis, or central ray, of a beam be given by x = X(z),
travel time by τ = T (z) and, we introduce the Hamilto-
nian

H(z, X, p) = −

√
1

v2(z,X)
− p2, (13)

where p(z) = τx(z,X(z)). Then we need from the ray
tracing system,

Ẋ(z) = Hp = p
q

1

v2
−p2

, X|z=0 = xs; (14)

ṗ(z) = −HX = −vX

v3

q

1

v2
−p2

, p|z=0 = ξ1(xs; θs); (15)

Ṫ (z) = 1

v2

q

1

v2
−p2

, T |z=0 = τ0(xs); (16)

here ˙ denotes the total derivative with respect to z. To
emphasize the dependence on the initial conditions, we
will write X = X(z) = X(z;xs, θs), p = p(z) =
p(z;xs, θs), and T = T (z) = T (z;xs, θs); for the sake of
clarity of notation we may also suppress the dependence
on (xs, θs) when it is clear from the context.

Next we consider the variations of X(z;xs, θs) and
p(z;xs, θs) along the ray with respect to the initial point
xs = α, and we define B(z;xs, θs) = ∂p(z;xs,θs)

∂α
and

C(z;xs, θs) = ∂X(z;xs,θs)

∂α
. Then we have the following

dynamic ray tracing (DRT) system,

Ḃ(z) = −HX,pB −HX,XC,B(0) = iε cos2 θs, (17)
Ċ(z) = Hp,pB +Hp,XC,C(0) = 1, (18)

where ε > 0,

Hp,p =
1

(1 − v2 p2)
√

1

v2 − p2

,

HX,X =
(v vX,X − 3v2

X)(1 − v2 p2) + v2

X

v4(1 − v2 p2)
√

1

v2 − p2

,

Hp,X = HX,p =
p vX

v (1 − v2 p2)
√

1

v2 − p2

.

The width of the beam is
√

2/(εω cos2 θs) in the x-
direction and is

√
2/(εω), independent of θs, orthogo-

nally to the beam axis. Then Gaussian beam theory im-
plies that Im(BC−1) remains positive if it is positive ini-
tially, i.e. if ε is positive.

Because τx = p and τxx = δp/δx =
(∂p/∂α)/(∂x/∂α) = B/C , near a central ray emanat-
ing from xs with the initial takeoff angle θs we have the
following approximate solution in the neighborhood of
X ,

τ(z, x;xs, θs) = T (z;xs, θs) + p(z) · (x−X(z))

+
1

2
(x−X(z))2B(z)C−1(z), (19)

where p, X , B and C depend on (xs, θs) as well. Let
the angle the central ray of a beam makes with the z-
direction at z be the arrival angle Θ(z;xs, θs), and let
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p(z) = sin Θ(z)

v(z,X(z))
. Then, by the ray tracing system (14),

(15) and (16), we have

dX
dz

(z) = tan Θ, X(0) = xs, (20)
dΘ

dz
(z) = 1

v
(vz tanΘ − vx), Θ(0) = θs, (21)

dT
dz

(z) = 1

v(z,X(z)) cos Θ(z)
, T |z=0 = 0, (22)

where θs varies from −θmax ≤ θs ≤ θmax < π/2. As a
result, the DRT system, (17) and (18), becomes

Ḃ(z) = −HX,pB −HX,XC,B(0) = iε cos2 θs, (23)
Ċ(z) = Hp,pB +Hp,XC, C(0) = 1, (24)

where ε > 0, HX,X , HX,p, and Hp,p are defined accord-
ingly.

Finally, the amplitude along a paraxial ray is

A(z;xs, θs) =

√
C(0)v(z,X(z)) cos θs√

v(zs, xs)C(z;xs, θs) cos Θ(z)
, (25)

which is nonzero everywhere.
We note that when the paraxial assumption is not avail-

able, we may construct the Gaussian beam summation di-
rectly by using the approach presented in [5] and [6].

Lagrangian Gaussian beam superposition

The wavefield due to one Gaussian beam parameter-
ized with initial take-off angle θs is

Ψ(z, x;xs, θs) = ψ0A(z;xs, θs) exp[iωτ(z, x;xs, θs)] ,
(26)

where τ(x, z;xs, θs) is given by (19) with p(z) =
sinΘ(z;xs,θs)

v(z,X(z;xs,θs))
. Here the radiation factor

ψ0 =
1

4π
exp

[
iπ

2

]
, (27)

and can be determined by the stationary phase method.
To compute the wavefield generated by a point source

at xs, we integrate over all the possible rays emanating
from the source,

U(z, x;xs) =

∫ π/2

−π/2

Ψ(z, x;xs, θs)dθs. (28)

What does equation (28) mean? According to equa-
tions (20) and (21), given xs, θs ∈ [−θmax, θmax], there is
one ray emanating from the source xs and take-off angle
θs to reach (X(z;xs, θs),Θ(z;xs, θs)) ∈ Ωp at depth z;
varying θs from −θmax to θmax traces out a curve,

γ(z;xs) ⊂ Ωp,

where γ(0;xs) = {(xs, θs) : −θmax ≤ θs ≤ θmax} is a
vertical line in Ωp. We note that γ(z;xs) can be consid-
ered as a curve parametrized by θs, while the z-variable
indicates the evolution of the curve under the ray tracing
equations (20) and (21). Consequently, the summation
formula (28) simply states that at depth z the integration
is carried out with respect to the curve parameter θs along
the curve γ(z;xs).

To carry out the above summation process, we need
to choose a numerical quadrature formula, solve the ray
tracing equations and the dynamical ray tracing system
with takeoff angles at the quadrature sampling points,
construct a Gaussian beam along each ray, and sum up
Gaussian beams to obtain wavefield at each observation
point. Because the above process is based on the La-
grangian ray tracing, we look for an Eulerian approach
using Gaussian beams.

Eulerian Gaussian beams

We apply the level set based Eulerian method for com-
puting multivalued traveltimes in paraxial formulation as
developed in [3] and references therein to construct Eule-
rian Gaussian summation methods; see [4] for more de-
tails.
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Abstract
Taking inspiration from a previous work on the con-

struction of some “inherently pre-conditioned” integral
equations [4] for scattering problems, we present a new
class of boundary integral equations for transmission
problems of electromagnetism. As the previous one, the
new formalism is dependent of the choice of a boundary
operator playing the role of a preconditioner. We propose
few models of such preconditioning operators whose vo-
cation is to approach as well as possible an optimal op-
erator identified as a the exterior Calderón projector of
the transmission problem. Indeed, if the preconditioning
operator is taken as the Calderón projector, the resulting
equation becomes trivial (the underlying operator is the
identity). For this reason, the linear systems resulting
from the discretization of such a formalism are suspected
to be well-conditioned.

Introduction
A motivation of this work is to give a continuation to

the integral equation method elaborated at ONERA since
1998 [5] to speed up the resolution time of the perfect
electrical conductor (PEC) problem in the time-harmonic
domain. The method is based on a generalized combined
source integral equation [6] [7] [4] depending on the
choice of a boundary operator whose vocation is to ap-
proximate as close as possible the exterior admittance of
the conductor. Indeed, the construction of the equation is
done in such a way that in the limiting case where this ap-
proximation is exact, the integral operator to be inverted
becomes the identity. An efficient approximation allows
in practice to reduce by half the computational time of
problems involving more than 300 000 unknowns, and
containing big cavities [3] [2] [1]. Such encouraging
results call for an extension of the method. See for in-
stance in these proceedings, the extension we propose in
an other abstract to the impedance boundary-value prob-
lems.

Here, we are interested in application of the methodol-
ogy to transmission problems formally read as

Find E ∈ W such that BE = (u,v) (1)

where u, v are current distributions D ′
T (Γ) on a bounded

closed surface Γ of R
3, B a two-components boundary

trace operator, and W being the space of all radiating
electric fields defined on R

3\Γ and having a tangential
trace on Γ.

We set Ω− (resp. Ω+) the volume enclosed in (resp.
exterior to) Γ to which is associated a wave number k−

(resp.k+). The application from Ω− (resp. Ω+) of the
tangential trace operator γEH = (n×, 1

ik
n ×∇) is noted

γ−
EH (resp. γ+

EH ), n being the outward unit normal to Γ.
Now and for all the sequel, we restrict the study to the

classic transmission problem governed by the jump trace
operator

B = γ+

EH − γ−
EH . (2)

Framework of the new formalism
We call Calderón potential the underlying potential C

induced by the resolution of the well-posed problem (1)
equipped with B = γ+

EH + γ−
EH , i.e. C(u,v) = E. In

the particular case k− = k+ the Calderón potential, we
decide to note V , is known explicitly as

V(u,v) = Lv −Ku

where L = 1

ik
∇×∇ × G, K = ∇× G and G being the

well-known vector potential.
For any potential U : D′

T (Γ) → W , we adopt the
following notations

U+ = U|Ω+ U+ = γ+

EHU+ .

The general framework of our new formalism consists
to seek the solution E of (1)-(2) in the form

E
+ = V+C̃+(u′,v′) E

− = −V−(Id − C̃+)(u′,v′)

where (u′,v′) is a solution of the boundary equation

(
V +C̃+ + V −(Id − C̃+)

)
(u′,v′) = (u,v) (3)

and C̃+ a boundary operator being an approximation of
the Calderón projector C+. The main feature of this for-
malism is that if C̃+ = C+, then the underlying operator
of (3) is the identity. Therefore, it is expected that a good
approximation of C+ should results in a well-conditioned
equation (3).
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Approximation of the Calderón projector
We recall that the exterior admittance operator Y +

links the components of the Cauchy data of any field
E ∈ W+ as

Y + : n×E 7→ n×H .

We analogously define the interior admittance operator
Y−. Reading C+ with the admittance operators gives

C+ =

(
A −Y +A

Y +A A

)
(4)

where A = Y +(Y +−Y−)−1. One can show that modulo
a −1 order operator, A is equal to

Ã =
k+k−

k+ + k−
(

1

k+

Πloop +
1

k−
Πstar) (5)

where Πloop and Πstar are the projectors onto the
solenoidal and irrotational currents of the Helmoltz de-
composition. Coming back to (4) and noticing that
(Y +)2 = −Id, we suggest to adopt as an approximation
of C+

C̃+ =

(
Ã −Ỹ +Ã

Ỹ +Ã −(Ỹ +)2A

)
(6)

where Ỹ + is an approximation of Y + we have to build.

Approximation of the exterior admittance
The problem to deal with a good approximation of the

exterior admittance of a surface pervade number of nu-
merical problems in wave propagation simulation. Many
solutions have been proposed going from the basic Som-
merfeld condition to the more advanced techniques of
perfect matched layers. Therefore, we don’t pretend in
this early work to present an optimal solution resulting
from comparisons between different competitive solu-
tions. Nevertheless, the experience we get in the numeri-
cal implementation of this kind of formalism for the PEC
problem, suggests some solutions which are perhaps rel-
evant.

Let us recall that we aim a model Ỹ + of admittance
leading to an equation (3)-(6)-(5) always well-posed at
any frequency and being a compact perturbation of iden-
tity, in order to deal after discretization with a well-
conditioned linear system easy to solve iteratively. The
model designed for the PEC problem and having given
proof of its efficiency uses a quadratic partition of unity

(POU) (Up, χp)
1 as follows

Ỹ + = −
2

ik+

n×
∑

p

χp

(
∇G∇ · +k2

+G
)
χp , (7)

G being the convolution with the elementary solution of
the Helmholtz equation. But the problem we have to
face when reusing this model is that the resulting equa-
tion (3) can only be shown injective without the Fred-
holm property (compact perturbation of identity). On the
other hand, modifications claimed to restore the Fredholm
property seems to ask harshly the question of injectivity.
For instance, the Fredholm property can be preserved if
instead of a quadratic POU we have a regular POU whose
each χp function is associated to a cut-off function χp

such that χp = 1 on the support of χp. Then, equation (3)-
(6)-(5) equipped with

Ỹ + = −
2

ik+

n×
∑

p

χp

(
∇G∇ · +k2

+G
)
χp (8)

is a compact perturbation of identity. Although the proof
of the injectivity is probably unreachable without further
constraints on the cut-off functions χp, such a model is
attractive and should be experimented in the future.

A mid-term solution able to preserve in (3) both the
injectivity and the Fredholm property is given by this new
model

Ỹ + = −
2

ik+

n× (∇
∑

p

χpG0χp∇ · + k2

+

∑
p

χpGχp)

where {χp}p is once again a quadratic POU, and G0 the
convolution with the elementary solution of the Laplace
equation.
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Abstract
Time harmonic acoustic scattering by convex polygons

is considered. Standard schemes with piecewise polyno-
mial approximation spaces have a computational cost that
grows at least linearly with respect to the wavenumber.
Here we extend a h-version Galerkin boundary element
method scheme for this problem developed by Chandler-
Wilde and Langdon to an hp-version of the BEM, for
which we demonstrate an exponential convergence rate
with respect to the order of the polynomials whilst main-
taining only logarithmic dependence on the wavenumber.
The question of how to set up the stiffness matrix with
work independent of the wavenumber is also addressed.

1 Introduction
Consider time harmonic acoustic scattering by convex

polygons. An integral equation based method effective
for high frequencies was recently proposed in [1]. Using
a detailed regularity analysis of the solution, an h-version
trial space was proposed that has approximation proper-
ties depending only logarithmically on the wavenumber.
The key features are the ability to identify the leading or-
der (in the wavenumber) behaviour of the solution and
a precise characterization of the solution behaviour near
the vertices of the polygon. Since the approximation or-
der is fixed, the achievable convergence rate is algebraic.
Here, we begin in §2 by reformulating as an integral equa-
tion. In §3 we extend the scheme of [1] to the hp-version
of the BEM, for which the solution can be approximated
at an exponential rate from the trial space; the problem
size required to achieve a given accuracy grows only log-
arithmically with the wavenumber. Numerical results are
presented in §4. In §5 we address the question of how to
set up the stiffness matrix with work independent of the
wavenumber. Finally in §6 we present some conclusions.

2 Integral equation formulation
Consider acoustic scattering of a time harmonic inci-

dent plane wave ui(x) := eikd.x by a sound soft convex
polygon Ω. Here d denotes the direction of the incident
wave, with |d| = 1. The total acoustic field u satisfies

−∆u− k2u = 0, in R2\Ω̄, u = 0, on ∂Ω,

with us := u − ui satisfying the Sommerfeld radiation
condition, where ∂Ω denotes the boundary of Ω. To solve,
we begin by reformulating as a boundary integral equa-
tion for the unknown Neumann data ∂nu:(

1
2
I +K ′ + iηV

)
∂nu = f := ∂nu

i + iηui, (1)

where V ψ(x) :=
∫
∂Ω Φ(x,y)ψ(y) dy and K ′ψ(x) :=∫

∂Ω
∂Φ(x,y)
∂n(x) ψ(y) dy are the usual single and double layer

potentials, with Φ(x,y) := i
4H

1
0 (k|x − y|) denoting the

fundamental solution of the two-dimensional Helmholtz
problem and n the unit outward normal. The classical
Galerkin method for solving (1) is then:
given VN ⊂ L2(∂Ω) find ψN ∈ VN such that〈(

1
2
I +K ′ + iηV

)
ψN , v

〉
L2

= 〈f, v〉L2 , for all v ∈ VN .

(2)
It remains to choose a good approximation space VN .

3 Design of an hp-BEM space
As shown in [1], the total acoustic field can be decom-

posed into the incident field ui, the “reflected” field ur,
and the “diffracted” field ud. For high frequencies, the
leading order behaviour of ∂nu (away from the corners)
consists of the incident and reflected fields, giving

∂nu ∼ Ψ :=
{

2∂nu
i on lit sides,

0 on shadow sides.

The idea is then to write ∂nu = Ψ+kφ, and solve for the
diffracted part φ. Thus we want to design an approxima-
tion space VN in such a way that φ can be approximated
well. To achieve this, it is shown in [1] that for each edge
Γj = {Aj + s

Lj
(Aj+1 −Aj) : s ∈ (0, Lj)} (with Aj and

Aj+1 the corners of the edge, Lj the length of the edge
and ωj the external angle at the corner Aj as shown in
figure 1), the diffracted part φ can be written in the form

φ(s) = eiksv+
j (s) + e−iksv−j (Lj − s).

Further, with αj = 1− π
ωj
∈ (0, 1/2), v+

j satisfies∣∣∣(v+
j )(m)(s)

∣∣∣ ≤ Cm!km

{√
m+ 1(ks)−αj−m for ks ≤ 1

(ks)−1/2−m for ks ≥ 1
,
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Figure 1: Notation for a polygon edge

form = 0, 1, . . ., with an analogous result holding for v−j .
This is used in [1] to design an h-version Galerkin scheme
with an approximation space consisting of the products of
plane waves with piecewise polynomials supported on a
graded mesh, with the mesh grading adapted in an optimal
way to the rates of decay of φ away from the corners, such
that the number of degrees of freedom required to achieve
a prescribed level of accuracy need only grow logarithmi-
cally with respect to k in order to maintain accuracy as
k → ∞. Here we achieve a similar result, but by using
an hp ansatz space we improve the convergence rate such
that the approximation error decreases exponentially with
respect to the order of the polynomials. Our hp ansatz
space consists of a geometric mesh with L layers refined
towards the vertexAj of the edge Γj , as shown in figure 2.
We then have the following approximation result.

Figure 2: hp ansatz space

Theorem 1 Let T +
L (T −

L ) be a geometric mesh with
O(L) layers refined towards Aj (Aj+1), and define

V +
N := eiks × piecewise polynomials of degree p on T +

L ,

V −
N := e−iks× piecewise polynomials of degree p on T −

L ,

and α = min{αj , αj+1} ∈ (0, 1/2). Then there exists
a constant b such that for VN := V +

N + V −
N (so that

dimVN ∼ pL),

inf
v∈VN

‖φ−v‖L2(Γj) . k−1/2
[
k1/2−αe−bL +

√
log ke−bp

]
.

Thus if we choose L ∼ log k + p we then have

inf
v∈VN

‖φ− v‖L2(Γj) . k−1/2(1 +
√

log k)e−bp,

. k−1/2e−bp+log(log k),

and thus exponential convergence with respect to p, pro-
vided p & log(log(k)), with dimVN ∼ p2 + p log k.

4 Numerical results
As a numerical experiment we consider scattering by a

square of side length 2π, whose sides lie on the x1 and x2

axes, with incident angle π/4 measured from the down-
ward vertical. The L2 errors (scaled by

√
k) and relative

L2 errors are shown in table 1. The “exact” solution φwas
computed using the h-version scheme of [1], with many
degrees of freedom. The number of degrees of freedom
used here for each problem is denoted by DOF.

Table 1: Errors for hp scheme, scattering by a square

k p L DOF
√
k‖φ− φN‖2

‖φ−φN‖2
‖φ‖2

5 0 1 16 2.3× 100 1.0× 100

1 3 64 5.4× 10−1 2.5× 10−1

2 5 144 1.1× 10−1 5.1× 10−2

3 7 256 4.5× 10−2 2.1× 10−2

10 0 1 16 2.3× 100 1.1× 100

1 3 64 4.9× 10−1 2.3× 10−1

2 5 144 1.1× 10−1 5.4× 10−2

3 7 256 6.5× 10−2 3.1× 10−2

20 0 1 16 1.9× 100 9.5× 10−1

1 3 64 4.9× 10−1 2.4× 10−1

2 5 144 1.0× 10−1 5.2× 10−2

3 7 256 4.1× 10−2 2.1× 10−2

40 0 1 16 1.9× 100 9.8× 10−1

1 3 64 5.1× 10−1 2.7× 10−1

2 5 144 9.3× 10−2 4.9× 10−2

3 7 256 3.7× 10−2 2.0× 10−2

5 Quadrature for oscillatory integrals
In order to set up the linear system (2) it is necessary to

evaluate many highly oscillatory double integrals, some
of which have singularities (due to the singularities in V
and K at x = y). As a model integration problem we
consider the numerical evaluation of∫ 1

s=0

∫ 1

t=0
eik{±s±t+d(s,t)}κ(s, t)g(s, t) dsdt, (3)

where κ has a singularity at s = t = 0, g is smooth, and
d(s, t) represents the distance between the points x(s)
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Figure 3: Geometry for model integration problem

and y(t), as shown in figure 3. To evaluate (3), we split
the inner integral into t < s and t > s, and consider
a quadrature routine for the integration over the triangle
{(s, t) : 0 < s < 1, 0 < t < s} (the method for the
case t > s follows analogously). Making the substitution
τ := ±s± t+ d(s, t), we get the integral∫

τ
eikτ

∫
s
κ(s, t(s, τ))g(s, t(s, τ))

∂t

∂τ
ds︸ ︷︷ ︸

=:f(τ)

dτ.

Then the function f(τ) has a singularity only at τ =
0. The evaluation of oscillatory integrals of the form∫ b
a eikxf(x) dx in the case that f is smooth has received

much recent attention in the literature (see e.g. [2]). For
polynomials π, integrals of the form

∫ 1
0 eikxπ(x) dx can

be evaluated analytically. The classical Filon quadrature
approach is then to approximate the function f by a poly-
nomial Ipf , so∫ 1

0
eikxf(x) dx ≈

∫ 1

0
eikx(Ipf)(x) dx =: Fp(k, f).

This approach yields the error estimate∣∣∣∣∫ 1

0
eikxf(x)− Fp(k, f)

∣∣∣∣ ≤ ‖f − Ipf‖L1(0,1).

In the case that f is singular one can use an hp-Filon
quadrature approach. Assuming that f has a “typical”
singularity at x = 0, we define TL to be the geometric
mesh on (0, 1) with L layers refined towards 0, similar
to the mesh shown in figure 2. We define Ip,Lf to be the
piecewise polynomial approximation to f on TL, and then
make the approximation∫ 1

0
eikxf(x) dx ≈

∫ 1

0
eikx(Ip,Lf)(x) dx =: Fp,L(k, f).

This yields the error estimate∣∣∣∣∫ 1

0
eikxf(x)− Fp,L(k, f)

∣∣∣∣ ≤ ‖f − Ip,Lf‖L1(0,1).

Choosing L ∼ p leads to exponential convergence, with
workO(Lp+p2) independent of k. Numerical results for
a simple model example are shown in figure 4.

Figure 4: Numerical evaluation of∫ 1
0

∫ s
0

eik(s+t+
√

s2+t2)s
(s2+t2)5/4 dtds

6 Conclusions
In this paper we have designed an hp-BEM space that

can approximate, in L2, the solution ∂nu at an exponen-
tial rate (with respect to the polynomial degree p), sub-
ject to the weak side constraints p & log(log k), and
L ∼ log k + p, where L is the number of layers of
geometric refinement. The total problem size is then
N ∼ Lp ∼ p(p+ log k). To deal with integrands that are
highly oscillatory and that have singularities, we propose
an hp-Filon quadrature technique, giving k-independent
exponential convergence (in the number of quadrature
points) for the absolute errors.
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Abstract
Acoustic and electromagnetic wave scattering prob-

lems can be formulated as the Helmholtz equation with
appropriate boundary conditions. The computational cost
of standard schemes for these problems grows in direct
proportion to the frequency of the incident wave. Re-
cently Chandler-Wilde and Langdon have proposed a
novel Galerkin boundary element method to solve the
problem of acoustic scattering by a sound soft convex
polygon, with computational cost that depends only log-
arithmically on the frequency. They achieved this by in-
corporating into the approximation space the products of
plane wave basis functions with piecewise polynomials
supported on a graded mesh, with smaller elemets adja-
cent to the corner of the polygon. In this paper we ex-
tend their scheme to problems of scattering by curvilinear
polygons.

1 Introduction
Consider the two-dimensional problem of scattering of

a time-harmonic acoustic incident plane wave

ui(x) = eikx.d, in D := R2\Ω,

whered ∈ R2 is a unit vector representing the direction
of the incident field. The scattered fieldus := u − ui

(whereu denotes the total field) satisfies

∆us + k2us = 0 in D, us = −ui on Γ,

and also the Sommerfeld radiation condition (see
e.g. [3]), whereΓ denotes the boundary of the obstacle
Ω. Using Green’s theorem and following the usual cou-
pling procedure we obtain a second kind boundary inte-
gral equation for∂u

∂n

1

2

∂u

∂n
(x) +

∫

Γ

(

∂Φ(x,y)

∂n(x)
+ iηΦ(x,y)

)

∂u

∂n
(y) ds(y)

= f(x), x ∈ Γ, (1)

where ∂u
∂n

∈ L2(Γ) is the unknown boundary data,

Φ(x,y) := i
4
H

(1)

0
(k|x − y|) is the fundamental solu-

tion of the Helmholtz equation in2D, H
(1)

0
is the Hankel

function of first kind of order zero,n is the normal di-
rection directed out ofΩ, f(x) := ∂ui

(x)

∂n
+ iηui(x), and

η ∈ R\{0} is the coupling parameter. The total field
throughoutD is determined by

u(x) = ui(x) −

∫

Γ

Φ(x,y)
∂u

∂n
(y)ds(y), x ∈ D.

In this paper we consider the numerical solution of (1) in
the case thatΓ is a curvilinear polygon. In§2 we intro-
duce our numerical method, in§3 we present some nu-
merical results and in§4 we present our conclusion.

2 Galerkin Boundary Element Method
We begin by parametrising (1) on the boundary of a

curvilinear polygon such as that shown in Fig.1.

Figure 1: Scattering by a curvilinear polygon

We write the boundary asΓ =
⋃nsd

j=1
Γj , whereΓj ,

j = 1, ..., nsd are thensd sides of the polygon, ordered so
thatΓj , j = 1, ..., nsh, are in shadow, (so thatnj .d > 0
for j = 1, ..., nsh), and Γj , j = nsh + 1, ..., nsd are
illuminated, (so thatnj .d < 0 for j = nsh + 1, ..., nsd),
with j increasing anticlockwise as shown in Fig 1.
Here nj = (nj1, nj2) is the normal derivative to the
line Γj . For simplicity we assume here thatnj .d 6= 0
∀ j = 1, ..., nsd. If this were not the case, special
care would be needed in the “transition zone” around
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the shadow boundarynj .d = 0, (see e.g. [4]). We
denote the vertices of the polygon byPj = (pj , qj),
for j = 1, ..., nsd. We setPn+1 = P1, so that for
j = 1, ..., nsd, Γj is the line joiningPj with Pj+1.

If we denoteγj(s), for j = 1, ..., nsd as the arc length
parameterisation of the curveΓj thenx ∈ Γ can be rep-
resented by

x(s) = Pj + γj

(

s −

j−1
∑

m=1

Lm

)

,

for s ∈ (Pj , Pj+1) j = 1, ..., nsd, (2)

whereLj is the length ofΓj , j = 1, ..., nsd. The interior
angle given byφj ∈ (0, π), j = 1, ..., nsd is the angle
between the tangents toΓj−1 andΓj at Pj . The angle of
the incident plane wave is given byθ, which is measured
anticlockwise from the downward vertical as shown in
Fig 1.

We rewrite (1) in parametrised form as

φ(s) +

∫ L

0

K(s, t)φ(t)dt = F̃ (s), (3)

where φ(s) :=
1

k

∂u

∂n
(x(s)), L =

nsd
∑

j=1

Lj ,

K(s, t) := 2

(

∂Φ(x(s),x(t))

∂n(x(s))
+ iηΦ(x(s),x(t))

)

|x
′

(t)|

andF̃ (s) := 2

k
f(x(s)). We begin by separating the lead-

ing order behavior, in the limit ask → ∞. We define

Ψ(s) :=

{

2

k
∂ui

∂n
(x(s)), on illuminated sides,
0, on shadow sides,

thenϕ(s) := φ(s) − Ψ(s) represents the difference be-
tween the exact solution of (3) and the solution in the high
frequency limit. Substituting into (3) we get

ϕ(s) + Kϕ(s) = F (s), s ∈ [0, L]. (4)

where Kψ(s) := 2

∫ L

0

K(s, t)ψ(t)dt,

F (s) :=
2

k
f(s) − Ψ(s) − 2

∫ L

0

K(s, t)Ψ(t)dt.

We are going to solve (4) by a Galerkin boundary ele-
ment method. We use the same mesh grading and ap-
proximation space as that used byChandler-Wilde and

Langdon in [1,2] for the case whereΓj is a straight line.
For A > λ := 2π/k we define a composite graded mesh
on [0, A], with a polynomial grading on[0, λ] and a ge-
ometric grading on[λ, A]. For N = 2, 3, ..., the mesh
ΛN,A,qj

:= {y0, ..., yN+NA
} consists of the pointsyi :=

λ(i/N)qj , i = 0, ..., N , whereqj := (2ν + 3)/(1 − 2αj)
(where αj := 1 − π/(2π − φj)), together with the
points yN+j := λ(A/λ)j/NA , j = 1, ..., NA,, where
NA = ⌈N∗⌉, is the smallest integer greater than or equal
toN∗, with N∗ = − log |A/λ|/(qj log(1−1/N)) chosen
to ensure a smooth transition between the two parts of the
mesh. We choose our approximate spaceVΓ,ν to be the
union over all sides of polygon of piecewise polynomials
of orderν supported on the meshΓ+

j multiplied byeiks,
with piecewise polynomials of orderν supported on the
meshΓ−

j multiplied bye−iks, whereΓ+

j := Pj +ΛN,A,qj

andΓ−
j := Pj+1 −ΛN,A,qj+1

. Then our Galerkin method
approximationϕN ∈ VΓ,ν is defined by

(ϕN , ρ) + (KϕN , ρ) = (F, ρ), for all ρ ∈ VΓ,ν . (5)

3 Numerical Results

Figure 2: Scattering by a two sided curvilinear polygon

We solve (1) on a two sided curvilinear polygon, which
is parametrised by

x(s) = aj + r cos(s/r − bj)
y(s) = r sin(s/r − bj)

(6)

for (x(s),y(s)) ∈ Γj , where

a1 = −a, b1 = cos−1(a/r)
a2 = a, b2 = 3 cos−1(a/r) − π
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with r = 3 and a = 1.5, as shown in Figure 2. We
take here the incident angleθ = π/2, andν = 0 in (5).
We fix N = 4 and increasek. The actual and relativeL2

errors are shown in Table 1. Hereφ is computed using the
same method with a larger number of degree of freedom.
HereMN denotes the total number of degrees of freedom.
It is clear from the results that the relative errors remain
roughly constant ask increases.

Table 1: Relative errors, Scattering by curvilinear poly-
gon

k MN

∥

∥φ − φN

∥

∥

∥

∥φ − φN

∥

∥

2
/
∥

∥φ
∥

∥

2

5 20 2.1058x10−1 3.8363x10−1

10 24 1.2401x10−1 3.3347x10−1

20 24 7.9625x10−2 3.0512x10−1

40 28 5.3473x10−2 3.0133x10−1

4 Conclusions
In this paper we have described a Galerkin scheme

for solving a second kind boundary integral equation on
the boundary of a curvilinear polygon. We have demon-
strated the robustness of the numerical scheme as the
wavenumber increases by numerical experiments. Ideas
regarding the rigorous error analysis of this problem will
appear in [5].
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A fast method for solving the radiosity equation is con-
sidered by using the Fast Multipole Method (FMM), in
the context of heat transfer calculations. This equation
models radiative exchanges between gray diffuse surfaces
without participating media [10]. The radiosity equation
plays also an important role in obtaining realistic image
in computer graphics [17]. This equation writes, for a
polyhedral surface S of R

3:

∀x ∈ S, B(x) = ε(x)σT 4(x)

+ ρ(x)

∫

S

V (x, y) G(x, y)B(y)dσy ,

with B the radiosity, ε the emissivity, ρ the reflectivity,
T the temperature and σ the Stefan-Boltzmann constant.
The visibility V (x, y) equals 1 if the two points x and y

see each other ([x, y]∩S = {x, y}) and cancels otherwise.
The radiosity kernel G is given by:

G(x, y) =
(x − y).nx(y − x).ny

|x − y|4
, (1)

where nx is the inner unit normal to the surface S at point
x.After discretization of the whole surface by finite ele-
ments, the size of the system generated can be quite large,
and consequently the cost of solving this system is impor-
tant in time (with an iterative method: O(N 2) where N

is the number of elements) and memory.
Three classes of fast methods to solve this problem

have been developed. Firstly, classical hierarchical meth-
ods (HM) for sets of plane surfaces and their general-
ization to initial curved surfaces with clustering [17] in
computer graphics, and secondly a H-matrix approxima-
tion, constructing with ACA, of the system matrix in heat
transfer [2] and thirdly methods based on an expansion of
the integral kernel: panel clustering [1] and FMM [8] in
computer graphics. In the first class, a hierarchical rep-
resentation of interactions between initial plane surfaces
(or shape factor matrix) is constructed by adaptively sub-
dividing planar surfaces into sub-surfaces according to a
local error of interaction between two surfaces. The cost
of this method is linear with respect to the refined sur-
faces, but quadratic in the initial plane elements of dis-
cretization. An improvement of HM, clustering has a

quasi-linear cost in the initial plane surfaces by grouping
elements into volume clusters. In practice, HM and clus-
tering encounter problems of iterative robustness and pre-
diction of accuracy which are unacceptable in radiative
heat transfer. In ACA, the low rank block of the original
matrix is approximated by a combination of a few rows
and a few columns of this block which is constructed al-
gebraically. Moreover, there is no guarantee for a good
approximation in some configurations. Panel clustering
reduces the cost in grouping elements of discretization.
This method applied to the radiosity equation [1] is based
on the clustering of elements with the same unit normal.
Hence, this panel clustering does not allow to accelerate
radiosity equation for an initial curve surface.

To accelerate iterative solution of the radiosity equa-
tion, we propose then to use FMM as in [8] [11]. This
method was introduced for N-body problems [13] and
used in many other physical applications: electromagnet-
ics problems [4], [14], [18], molecular dynamics [20] ...
Based on an expansion of the kernel of the integral equa-
tion, this method reduces the interaction generated by the
kernel between elements of the mesh to interactions be-
tween multipole boxes and so accelerates matrix-vector
products of iterative methods. By using the multi-level
FMM (MLFMM), we can evaluate solution system with
a cost of O(N ln(N)) for the unoccluded case (V ≡ 1).

A FMM expansion for a kernel K approximates inter-
actions between two points x and y inside boxes Bx0

and
By0

respectively of centers x0 and y0, by a separation of
variables x and y: mainly

K(x, y) '
∑

i

Li(x, x0)
∑

i′

Ti,i′(x0, y0)Mi′(y, y0),

where Ti,i′ is the transfer or M2L operator,Li and Mi are
respectively the local and multipole functions. The ra-
diosity kernel (1) depends on the surface, due to the nor-
mal. Thus, to construct a FMM independent of the sur-
face for this equation, we need to investigate a FMM ex-
pansion for an auxiliary kernel that doesn’t depend on the
surface. We are interested in this work on a FMM expan-
sion for 1/r4 as in [8] [11].

A FMM method based on a Taylor expansion for
smooth kernels has been proposed in [19]. A limitation of

99



this method is the computing with accuracy of the deriva-
tives of kernel (operators of transfer steps is defined with
these derivatives).

A multipole expansion based on the expansion of 1/rγ

(γ ∈ N
∗) with the Gegenbauer polynomials was used to

solve the Fokker-Planck-Landau’s equation (γ = 3) [9].
In [7], this multipole expansion is expressed with Spheri-
cal Harmonics (SH) to solve the radiosity equation (γ =
4). With the multipole expansion in [7] and a formula in
[16], Karapurkar et al. introduced a FMM expansion for
the radiosity kernel with SH [8] (SH method). The Rota-
tional Translation Coaxial Decomposition (RTCD) of [6],
primary used for Laplace’s equation (γ = 1), uses proper-
ties of SH to accelerate transfers between boxes. In [11],
the RTCD was extended for γ ∈ N

∗ and it was used to
improve the FMM proposed in [8] to solve the radiosity
equation.

In [11], we have discussed a new fast method for gen-
eral kernels inspired by the method of Gimbutas and
Rokhlin [5]: Reduced SVD method (R-SVD). The result-
ing scheme is based on an approximation of the kernel by
the truncation of a reduced Singular Value Decomposi-
tion of an expansion of tensor products of Legendre poly-
nomials. The approximation of the kernel defined by an
expansion of tensor products is equivalent to an interpola-
tion of the kernel. This approximation is calculated with
evaluations of kernel on interpolation points and hence is
applicable to a wide variety of kernels. A proof of con-
vergence of the approximation given by tensor products
for an asymptotic smooth kernel is given in [3].

Previously in [11], we have introduced a comparison
process for surface interaction problems or for particles
interaction problems with particles on a surface, that takes
into account the empty boxes in the octree, for different
MLFMMs in the non adaptive case. This process was
used to compare theoretically MLFMMs for the kernel
1/r4 [11] and for the radiosity kernel [12].

For the radiosity equation, a comparative study of these
multilevel fast multipole methods (Taylor method, SH
method, RTCD method and R-SVD method) will be pre-
sented, based on numerical experiments; the conclusions
obtained will be compared to the one of the theoretical
comparisons of [11] [12].
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Abstract
We present a multiple-patch phase space method for

computing trajectories on two-dimensional manifolds
possibly embedded in a higher-dimensional space. The
dynamics of trajectories are given by systems of ordi-
nary differential equations (ODEs). We split the manifold
into multiple patches where each patch has a well-defined
regular parameterization. The ODEs are formulated as
escape equations, which are hyperbolic partial differen-
tial equations (PDEs) in a three-dimensional phase space.
The escape equations are solved in each patch, individ-
ually. The solutions of individual patches are then con-
nected using suitable inter-patch boundary conditions.
Properties for particular families of trajectories are ob-
tained through a fast post-processing.

We apply the method to two different wave propaga-
tion problems: the creeping ray contribution to mono-
static radar cross section computations and the multival-
ued travel-time of seismic waves in multi-layered media.

Introduction
We present a fast, multiple-patch phase space method

for computing trajectories on two-dimensional compact
manifolds possibly embedded in a higher-dimensional
space. The dynamics of the trajectories we consider are
given by systems of ODEs in a phase space. In many
problems we need to compute a large number of trajecto-
ries, i.e., the dynamical systems of ODEs need to be inte-
grated for many different initial conditions. Examples in-
clude seismic migration, tomography and geodesics com-
putation in computational geometry and robotics.

Our motivation for this comes from high frequency
wave propagation problems, where the problem of scat-
tering of a time-harmonic incident field by a bounded
scatterer is considered. The total field is split into an in-
cident and a scattered field. The scattered field in the re-
gion outside the scatterer is given by the Helmholtz equa-
tion. The computational cost of direct numerical simula-
tions grows algebraically with the frequency. Therefore,
at high frequencies, numerical methods based on approx-
imations of the Helmholtz equation are needed. A survey
of this research effort is given in [1].

Recently, the authors extended the fast phase space

method [2] to efficiently computing all possible creep-
ing rays on a hypersurface, [3]. This method is based
on escape equations which are time-independent PDEs in
a three-dimensional phase space. The escape solutions,
computed by a fast marching method, contains informa-
tion for all incident angles. The phase and amplitude of
the field are then extracted by a fast post-processing. It is
computationally attractive when the solution is sought for
many different sources but with the same index of refrac-
tion. However, it is only applicable for the scatterer sur-
faces with simple geometries. It assumes that the surface
is represented by a single parameterization, and therefore
surfaces with coordinate singularities cannot be treated,
and the singularity has to be excised. This problem can
be resolved by splitting the scatterer surface into several
simpler surfaces (patches) with explicit parameterizations
such that multiple patches collectively cover the scatterer
surface in a non-singular manner.

In this paper, we consider a two-dimensional compact
manifoldM embedded inRd and compute trajectories on
the manifold. We first consider the case when the man-
ifold is represented by a single regular parameterization
and modify the fast phase space method [2], [3] to a more
general class of problems. Second, we consider the case
when the manifold is represented by an atlas of charts
and modify the single-patch phase space method to this
case. We present applications in computing creeping rays
and seismic waves, together with sample numerical re-
sults from a prototype implementation of the scheme.

Multiple-Patch Phase Space Scheme
We consider a two-dimensional compact manifoldM

embedded inRd and want to compute trajectories onM .
Since we are interested in applications to wave propaga-
tion problems, it is natural to consider the trajectories as
rays, and we will use this terminology henceforth. We
consider two cases: when the manifold is represented by
a single regular parameterization, and when the manifold
is represented by an atlas of charts. In both cases, dynam-
ics of rays are given by systems of three first-order ODEs,
set in a phase space. These equations describe the rate of
change of the rays’ location and direction together with
any other information transported along the ray trajecto-
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ries.
We let M be represented by a single regular parame-

terization. First, the system of ODEs are formulated as
time-independent Eulerian PDEs in phase space, known
as escape equations. These equations are linear hyper-
bolic equations and are solved by a version of Fast March-
ing algorithm [2]. PDE solutions give the escape point,
length and other information for rays with all possible
starting points in the phase space. These solutions are
then post-processed to extract properties for particular ray
families.

For the more complicated and realistic case when the
manifoldM cannot be represented by one regular param-
eterization, we letM be described by an atlas of charts
or multiple patches. The system of ODEs in each chart
(patch) are formulated as escape PDEs and solved numer-
ically on a fixed computational grid in phase space. The
solutions to the PDEs in each chart are then connected us-
ing suitable inter-patch boundary conditions. Information
for a particular family of rays are extracted through a fast
post-processing.

Discretizing the phase space domain intoN3 grid
points, the total complexity of the algorithm, includ-
ing solving the escape PDEs and post-processing, is
O(N3 log N). This is expensive for computing the field
for only one source point. For example by using wave
front tracking or solvers based on the surface eikonal
equation, the complexity isO(N2). However, if the solu-
tions are sought for many source points, the phase space
method can be more efficient. See next section for such
an example.

Application to Wave Propagation Problems
We consider the application of the multiple-patch phase

space method to compute two different types of wave
propagation problems; creeping ray computations, where
the computational domain is a two-dimensional scatterer
surface embedded inR3, and seismic wave computations,
where the domain is a two-dimensional multi-layered
medium with different wave speeds in each layer.

First, we consider a balloon, as a scatterer surface. We
split the surface into multiple patches (Figure 1a) and
compute the contribution ofbackscattered creeping rays
to mono-static RCS, i.e., the rays that propagate on the
surface of the scatterer and return in the opposite direc-
tion of incident waves. We assume that the incoming
amplitudes are one at attachment points on the shadow
line and compute the backscattered amplitude at detach-
ment points on the shadow line. The escape PDEs de-
scribing creeping rays are solved in each patch, individ-

ually. The creeping rays on the scatterer are then com-
puted by connecting all individual solutions. The inter-
patch boundaries are treated by the continuity of charac-
teristics. Figure 1b shows the amplitude of backscattered
rays in a polar coordinate system for all incident direc-
tionsΨ ∈ [0, 360].
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Figure 1: Figure (a) shows the balloon divided into 6
patches. Figure (b) shows total amplitude of the

backscattered creeping rays (with frequencyω = 1) for
all illumination directions.

Next, we consider a multi-layered mediumM = [0, 6]2

consisting of three layers with different wave speeds (Fig-
ure 2b). The equiarrival curves, i.e., the locus of all points
in physical domain which have the same travel-time, from
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a source point atx0 = (3, 6) are shown in Figure 2a. The
inter-patch boundaries are treated by Snell’s law and the
law of reflection.

(a)

(b)

Figure 2: Figure (a) shows the equiarrival curves of
seismic rays for a source point on the top of the domain.
Figure (b) shows the medium consisting of three layers

and the wave speed field.

We can track both reflected and transmitted ray fam-
ilies. Figure 3 shows the equiarrival curves of reflected
rays from the bottom interfaces, being trapped in the mid-
dle layer.

Conclusion
We have modified the single-patch phase space method

for computing creeping rays to a multiple-patch method
for computing trajectories on two-dimensional manifolds
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Figure 3: The equiarrival curves of reflected seismic
rays from the bottom interfaces.

possibly embedded in a higher-dimensional space. The
dynamics of trajectories are given by systems of first-
order ODEs in a phase space. We split the manifold into
multiple patches where each patch has a well-defined reg-
ular parameterization. The escape equations, which are
hyperbolic PDEs in a three-dimensional phase space, are
derived and solved in each patch, individually, using a
second-order version of the fast marching method. The
solutions of individual patches are then connected using
suitable inter-patch boundary conditions. Properties for
particular families of trajectories are obtained through a
fast post-processing. For some applications, the com-
plexity of the method is attractive. Such applications in-
clude mono-static and bi-static RCS computations, an-
tenna coupling problems, and travel-time computations
of seismic waves when the solution is sought for many
different sources.
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Abstract

We present a wavefront method based on Gaussian
beams for computing high-frequency wave propagation
problems. Unlike standard geometrical optics, Gaussian
beams compute the correct solution of the field also at
caustics. The method tracks a front of Gaussian beams
with two particular initial values for width and curva-
ture which allows the direct recreation of any other beam
propagating from the initial front into the medium. This
is used to approximate the field with different, optimally
chosen, beams in different points on the front.

Introduction

The Gaussian beam method is an asymptotic method
for computing high-frequency wave fields in smoothly
varying inhomogeneous media. It was proposed by Popov
[1], based on an earlier work of Babic and Pankratova [2].
The method was first applied by Katchalov and Popov [3]
and Cerveny et al. [4] to describe high-frequency seis-
mic wave fields by the summation of paraxial Gaussian
beams. It was later applied to seismic migration by Hill
[5], [6]. For a rigorous mathematical analysis of Gaus-
sian beams we refer to [7]. The main advantage of this
method is that Gaussian beams give the correct solution
also at caustics where standard geometrical optics breaks
down.

In the Gaussian beam method, the initial/boundary
condition for the wave field is decomposed into ini-
tial conditions for Gaussian beams. Individual Gaussian
beams are computed by ray tracing, where quantities such
as the curvature and width of beams are calculated from
ordinary differential equations (ODEs) along the central
ray of the beams. The contributions of the beams concen-
trated close to their central rays are determined by Taylor
expansion. The wave field at a receiver is then obtained as
a weighted superposition of the Gaussian beams situated
close to the receiver.

In this paper, we present a wavefront method for com-
puting Gaussian beams. Wavefront methods have been
been very successful for standard geometrical optics as
they provide a simple mechanism for controlling the res-
olution and accuracy of the numerical approximation [8].
Using them with Gaussian beams is not as straightforward

since the beam method strongly depends on the distri-
bution and width of the beams at the initial front. We
show how one can use two canonical beams in the wave-
front method and from these afterwards recreate any other
beam. This is used to approximate the field with different,
optimally chosen, beams in different points on the front.
We present a numerical example to verify the efficiency
of the algorithm.

Gaussian Beam Equations
We consider a ray Ω in a two-dimensional Cartesian

coordinate system x, y

dx

dτ
= V cos θ

dy

dτ
= V sin θ

dθ

dτ
=

∂V

∂x
sin θ −

∂V

∂y
cos θ

(1)

where τ is the real-valued travel-time along the ray, vari-
able V = V (x, y) is the wave propagation velocity and θ

is the angle between the tangent of the ray and the positive
x-axis. We introduce the orthogonal ray-centered coordi-
nates τ, q, where q is the axis perpendicular to the ray at
point τ with the origin on the ray. In these coordinates,
the paraxial Gaussian beam solution closely concentrated
about the central ray Ω is given by

u(τ, q, ω) = A(τ, q) exp {iωT (τ, q)}, (2)

where ω is the angular frequency, and the complex-valued
amplitude A and the phase T are given by Taylor expan-
sions

A ≈ A(τ, 0) =
√

V (x(τ), y(τ))/Q(τ), (3)

T ≈ T (τ, 0) + qTq(τ, 0) +
q2

2
Tqq(τ, 0) = τ +

q2

2

P (τ)

Q(τ)
.

(4)

The complex-valued scalar functions P and Q satisfy the
dynamic ray tracing system

dQ

dτ
= V 2 P

dP

dτ
= −

1

V
(Vxx sin2 θ−

− 2Vxy sin θ cos θ + Vyy cos2 θ) Q

(5)
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Note that the Gaussian beam wavefield is evaluated only
at a region along its central ray at which the ray-centered
coordinate system is regular, that is, a region at which the
normals to the ray do not intersect.

As initial data for (5), we choose

Q(0) = Q0 > 0, P (0) = i. (6)

One can show that this choice will guarantee that two im-
portant conditions are satisfied along the ray:

1. Q(τ) 6= 0,

2. Im(P (τ)/Q(τ)) > 0.

The first condition guarantees the regularity of the Gaus-
sian beam (with finite amplitudes at caustics). The sec-
ond condition guarantees the concentration of the solution
close to the ray.

Now assume that we want to compute the wave field
in a two-dimensional domain generated by an incoming
wave at x = 0. We first decompose the incoming wave
into Gaussian beams and compute them. The wave field at
a fixed receiver point R is then calculated by a weighted
summation of paraxial Gaussian beams connected with
rays Ωm passing in the vicinity of R,

U(R) =
∑

m

Ψm um(τR, qR, ω), (7)

where um(τR, qR, ω) is the wave field of the Gaussian
beam (2) concentrated close to the ray Ωm. The weight
Ψm, the initial position, direction and Q0 for each beam
are chosen such that U at τ = 0 approximates the incom-
ing wave at x = 0.

Choice of Shape of Gaussian Beams
In order to have a good accuracy in the Taylor expan-

sions (3)-(4), we should have beams which are as narrow
as possible. We show here how to choose the initial data
Q0 to achieve this.

We specify two real-valued solutions of (5), (Q1, P1)
and (Q2, P2), by the initial conditions

(Q1, P1) (0) = (1, 0), (Q2, P2) (0) = (0, 1). (8)

It is easy to show that the complex solutions of (5) with
the initial data (6) can then be expressed as

Q = Q0 Q1 + i Q2, P = Q0 P1 + i P2. (9)

The half-width of the Gaussian beam will then be

L(τ) :=

(
1

2
ω Im(P/Q)

)−1/2

=

(
2(Q2

0
Q2

1
+ Q2

2
)

ω Q0

)1/2

.

(10)

We then choose the Q0 which gives at a receiver a mini-
mum value of the quantity L(τ),

Q
opt
0

(τ) =

∣∣∣∣
Q2(τ)

Q1(τ)

∣∣∣∣ . (11)

Note that Q0 is a function of τ , meaning that we have dif-
ferent optimal initial conditions at different points along
the beam central ray.

Wavefront Method
In this section we will show how to construct the

wavefront Gaussian beam method. We assume the exact
phase space wave front is described by (x(τ, r), θ(τ, r))
at travel-time τ , where x = (x, y) and θ is the angle
between the front’s normal and the x-axis. The vari-
able r represents the parameterization along the front in-
duced by the parameterization of the source. Let x

n
j ≈

x(n∆τ, j∆r) and θn
j ≈ θ(n∆τ, j∆r), where (j, n) rep-

resents a marker (grid point) on a front at τ = n∆τ .
We initialize the markers on the initial front at τ = 0
as (x0

j , θ
0

j ) = (x(0, j∆r), θ(0, j∆r)). Each marker is
then updated by a standard ODE-solver, applied to the ray
tracing system (1). When the resolution of the wave front
deteriorates, new markers are inserted and computed by
interpolation from the old markers. We add a new marker
between markers (j, n) and (j + 1, n) if

|xn
j+1 − x

n
j | ≥ TOL or |θn

j+1 − θn
j | ≥ TOL,

for some tolerance TOL. In parallel with computing
(xn

j , θn
j ), we also compute the real-valued functions

(Q1, P1) and (Q2, P2) by solving the dynamic ray tracing
system (5) with the initial conditions (8). We note that via
(9) we can recreate beams with any initial Q0 value from
these.

Now assume we want to compute the wave field at
a marker (j, n) on the front at τ = n∆τ . We choose
a region R on the front in both sides of the marker
in which the Taylor expansion of travel-times of Gaus-
sian beams are accurate enough. We discretize R into
2M + 1 grid points. For each grid point we find the
Gaussian beam passing through it. By interpolating x

n
j

and θn
j we obtain the points and directions on the initial

front of those beams. Similarly we can approximate the
(Q1, P1) and (Q2, P2) values of the beams by interpo-
lation. From these we pick the optimal initial Q0 value
of each beam according to (11). Next, we compute Ψm

with m = 1, . . . , 2M + 1 such that U in (7) at τ = 0 lo-
cally approximates the wave field at the initial front. The
complex-valued functions P, Q at each grid point in R are
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then obtained by (9). The total wave field at the marker
(j, n) is calculated by (7) with um given by (2)-(4). Fi-
nally, the wave field carried by all markers on wave fronts
are interpolated down on a regular cartesian grid.

Remark 1. Note that in wave front construction it is com-
putationally more efficient to rewrite the Gaussian beam
solution (2) and the summation (7) in the Cartesian coor-
dinates and avoid computing q. See [9].

Numerical Example
We consider a rectangular domain D = [0, 200] ×

[0, 40] with a variable V . A point source at the origin
generates a wave that is refracted as it propagates through
the domain. Figure 1a shows the central rays of the Gaus-
sian beams, and Figure 1b shows the corresponding wave
fronts. The total wave field is shown in Figure 2 along the
line y = 0 with x ∈ [100, 135]. The amplitude is bounded
at the caustic (x = 120) but increases with higher fre-
quency, as expected.
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Figure 1: Figure (a) shows the central rays of Gaussian
beams from a point source at the origin. Figure (b)

shows the corresponding wave fronts.
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Abstract
We present recent progress on representing high-

frequency waves traveling anisotropic electromagnetic
and elastic materials. The main issue addressed by this
work is how to handle multiple characteristics, for which
standard geometrical optics techniques fail. This failure
manifests itself in a blowup of the polarisation vector.
Naively, the resolution to this problem lies in the use of
polar coordinates in phase space. There is also an inter-
esting connection with the harmonic oscillator, through
the use of a Hermite transformation that is used in our
construction.

Introduction
The study of wave propagation in anisotropic media

where the wave speeds depend on direction of propaga-
tion is very challenging. A better understanding of a geo-
metrical optics representation of such waves would be of
significant practical benefit, both to academics and prac-
titioners alike.

The propagation of singularities and geometrical optics
solutions for scalar partial differential operators of real
principal type like the acoustic wave equation is well un-
derstood. By Egorov’s theorem, one may conjugate the
operator via an invertible Fourier integral operator to the
operatorDxn . The construction of the solution basically
follows directly from this result ([4]).

However, most differential equations in mathematical
physics have characteristics with variable multiplicity and
do not fit the principal type model. In such instances,
striking phenomena occur when the characteristic (wave)
speeds co-incide. An example of such a phenomenon is
that of conical refraction in a biaxial crystal [1], such as
topaz. Melrose and Uhlmann [8] constructed a microlocal
parametrix for the Cauchy problem for Maxwell’s equa-
tions in a biaxial crystal with double involutive charac-
teristics. Singularities along the double characteristics
(optical axis) propagate along a cone; the cone of coni-
cal refraction (see [10]). The propagation of singularities
for a class of symmetric systems with double character-
istics satisfying a generic condition has been extensively
studied in [5] and [6]. The propagation of singularities
depends on the behavior of the bicharacteristic flow near

the double characteristic variety.

Figure 1: Splitting of a single ray impinging on a
biaxial crystal into an internal ray conoid. This is the

classic example of (internal) conical refraction,
associated to multiple characteristic speeds crossing.

A step toward the construction of parametrices for
generic symmetric systems was realized in [3]. Braam
and Duistermaat consider a system of symmetric pde’s,
and microlocally conjugate it to normal form, when the
system satisfies a generic condition

Our main goal here is to develop a high-frequency so-
lution operator of the Cauchy problem associated to the
Braam-Duistermaat normal form, and apply this to solve
the Cauchy problem for a generic class of Maxwell’s
equations as well as a generic class of equations of elasto-
dynamics.

1 Reduction to Normal Form
To start, we recall the main result of ([3], theorem 5),

which states that under generic conditions, one may con-
jugate a symmetric system of partial differential equations
to a first order block system:





Dt + Dx1
x1Dx2

0
x1Dx2

±(Dt − Dx1
) 0

0 0 E±
1



 (1)

where both signs can ocurr andE±
1

is an elliptic opera-
tor. In this sense, it suffices to understand the solution
for the upper2× 2-block sub-system. The conjugation is
achieved by pre- and post- multiplication of the original
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partial differential operator by Fourier integral operators
of the appropriate order (this is why a first order system
appears above).

Multiplying across the negative cofactor matrix of the
upper2 × 2 block of (1), yields the system

(

±∂2
t ∓ ∂2

x1
− x2

1
∂2

x2
+ R±

2
+ P±

1
+ R±

0

)

(2)

where

P±
1

= A±∂x2
+ R±

1

A± =

[

0 ±1
−1 0

]

(3)

andR±
2
, R±

1
are second order scalar and first order non-

scalar operators respectively, whose symbols are flat and
vanish respectively at the double characteristic setΣ2, de-
fined by

Σ2 := {(t, x, τ, ξ) : τ = ξ1 = x1 = 0} (4)

2 Conjugation to Principal-Type
From now on, we concentrate on the plus sign in the

normal form. A key step in our construction is to now
conjugate the latter operator by an Singular integral oper-
ator associated to the Hermite transformation

x1 =
√

2k/η2 cos θ

ξ1 = −
√

2kη2 sin θ

x2 = y2 + (k/2η2) sin 2θ
ξ′ = η′

x′′
i = y′′i

(5)

Notice that this transformation pulls back the principal
symbol of the normal form (2) to the operator on the circle
times a reduced number of space-time variables:

P := ∂2

t − 2∂θ∂y2
(6)

This new operator is therefore of principal-type.

3 Solution Operator
Since we have now obtained an operator of principal-

type, one might be tempted to think that the solution from
here on in is simple, based on our opening remarks, but
this is not true since we are dealing with a system. In fact
the solution operator for the Cauchy problem

Pu = 0

u|t=0 = u0, ut|t=0 = u1 (7)

turns out to be a formed by a Fourier-series-integral pair.
The solution operator for the case ofu1 = 0 for example
is of the form

u =
∑

±,k≥0

∫

[

eiφ
(1)

±
(t,k,η′

) 0

0 eiφ
(2)

±
(t,k,η′

)

]

ei( (4k+1)(θ−θ̃)+(y′−ỹ′
)·η′ )e±(t, y′, k, η′) u0(θ̃, ỹ′) dθ̃dỹ′dη′ (8)

whereφ
(j)
± are phase functions to be determined ande± is

a2 × 2 matrix of symbols also to be determined. Appro-
priate initial conditions on the matricese± can be given
to recover the initial conditions onu.

Remarks:

1. Thek = 0 Fourier coefficient term does not prop-
agate singularities within the double characteristic
variety. The underlying reason for this is due to
the fact that time-derivative coefficient in the trans-
port operatorM± contains a factor

√
kη2 (for large

k), whereas in [8], the coefficient contained a factor
analogous tok which necessitated a conical refrac-
tion correction term that led to propagation of singu-
larities within the double characteristic variety. The
k > 0 terms propagate singularities along character-
istics of the principal type operator (6).

2. Due to the brevity of this article we have hidden
many details, and in particular the appearance of the
operatorP+

1
in the standard form (2) creates a quite

a complication in the construction of the solution.

3. Notice that we have only taken positive frequencies
as the data is in the image of Hermite transformation
and we have only taken every other odd frequency
due to the fact that after rescalingθ, the data are odd
under a shift by a quarter cycle.

4. We also need to examine the specific pde systems
governing electromagnetism and linear elasticity. In
solving the Cauchy problem associated to (1), we are
implicitly assuming that the canonical transforma-
tion in [3] applied to bring the original partial differ-
ential operator to the normal form can be chosen so
that it preserves the space-likeness of{(t, x) : t =
0} and so we still have to check that this can be ar-
ranged in the case of electromagnetism and linear
elasticity.
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4 Propagation of singularities
To understand how singularities of solutions to (2)+

propagate (c.f. [3]), we have seen that it is sufficient to
understand propagation of singularities of the differential
operatorP . It is easy to compute the characteristics of
this simple characteristic operator. If we then transform
these characteristics back via the singular Hermite trans-
formation, we find that singularities are propagated along
curves of the form

t(s) = −τ0s

τ(s) = τ0

x1(s) =
√

α/β sin(2βs)
x2(s) = 2αs − (α/2β) sin(2βs)
xi(s) = x0

i , 3 ≤ i ≤ n

ξ1(s) = ξ0

1
cos(2βs)

ξi(s) = ξ0

i , 2 ≤ i ≤ n

(9)

whereα is zero exactly at a double characteristic point,
α ≪ β andx0

i , ξ
0

i are constants. Also,τ0 must be such
that the above curve lies in Char(P ).

We can obtain a qualitative picture of the propagation
of singularities near the double characteristic points by
examining (9) forα ≪ β. In the case of (2)+, we ob-
serve a narrowly winding helix (withx2 almost propor-
tional to the parametrization of (9), andx1, ξ1 oscillating
with small amplitude). The qualitative propagation of sin-
gularities described here agrees with the description in [3]
and ([2], fig. 4).

5 Concluding Remarks
We have presented a compressed summary of how one

can develop high-frequency solutions for wave equations
in generic anisotropic materials. For more details we refer
the reader to [9].
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Abstract

This paper investigates the evolution of the distribution
of propagating modes in a graded-index multimode op-
tical fibre with random imperfections. For large diame-
ter fibres, the high number of propagating modes can be
handled by moving to a continuum limit, which leads to
differential equations of diffusion type.

Introduction

Large diameter multimode fibres are finding increas-
ing application in short- and medium-distance networks
for communications in buildings, aircraft, trains, cars,
etc. Their attractiveness stems from their low cost, and
from the ease by which they may be spliced together (be-
cause of their large core size) and excited using inexpen-
sive sources, couplers, splitters and connectors. In prac-
tice, the small random variations of the optical and ge-
ometrical properties of fibres from the ideal model are
impossible to avoid. These perturbations may be micro-
scopic random bends, ellipticity of the cross-section, or
index of refraction fluctuations, introduced during man-
ufacture. Perturbations having a sufficiently high spatial
frequency influence the signal propagation as a result of
mode coupling; their cumulative effects may become im-
portant after a long propagation length so that they need
to be taken into account when calculating the power at-
tenuation, the signal distortion and the bandwidth of the
fibre. This is particularly relevant to plastic optical fi-
bres for which experimental and theoretical results indi-
cate that the modes are highly coupled [1], [2]. Mode
coupling mechanisms, radiation loss and intermodal dis-
persion are conveniently described by the coupled power
theory [3] describing the evolution of the average optical
power carried by the propagating modes. When the num-
ber of guided modes becomes too large, a direct algebraic
treatment of the coupled system is ruled out because of
the computational overhead. In this paper, we show that
the coupling process can be ideally described in terms of
a diffusion equation in which the mode number is treated
as a continuous variable.

Evolution equations
We aim to study the propagation of electromagnetic

waves with frequency ω, [E,H](r)e−iωt in perturbed
round optical fibres of internal core radius a with a re-
fractive index of the form n2(r) = n2

0
(1 − 2∆[(X/a)2 +

(Y/a)2])−δn2(r) in the waveguide region X2+Y 2 ≤ a2

and n2(r) = n2
c in the infinite cladding, X2 + Y 2 > a2.

Here r = (X,Y,Z) is the position vector, Z is the guide
axis and X,Y are the transverse coordinates. We call
κ the vacuum wavenumber and we introduce the usual
waveguide parameter V = κn0a

√
2∆, which is large for

multimode fibres. The profile height parameter ∆ is as-
sumed to be small and backscattering is ignored so that,
under the appropriate scaling

x = (x, y) = (X,Y )

√
V

a
and z = Z

√
2∆

a
, (1)

the problem can be formulated as the following
Schrodinger-type equation for the envelope of the trans-
verse electric field Ψ as

i
∂Ψ

∂z
= (H + δH)Ψ, (2)

where H is the z-independent Hamiltonian

HΨ = −1

2

(

∂2

∂x2
+

∂2

∂y2
− v

)

Ψ. (3)

The potential v stands for the quadratic well of finite
depth v(x) = |x|2 where |x| ≤

√
V and v(x) = V oth-

erwise. We introduce the small parameter ε which char-
acterizes the relative amplitude of the perturbation δn2

and we define the normalized perturbation shape func-
tion h̄ as δn2 = ε(n2

0
− n2

c)h̄ so that |h̄| ∼ 1. The z-
dependent perturbed Hamiltonian can then be shown to
be δH(x, z) = 1

2
εV h̄(x, z). Following the standard per-

turbation theory [3], [4], [5], Ψ is expanded in the eigen-
mode basis of the unperturbed operator H as

Ψ(x, z) =
∑

n

an(z)Ψn(x)e−iβnz (4)

+
∑

l

∫

al(β, z)Ψl(β,x)e−iβzdβ. (5)
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The first summation extends over all the discrete spectrum
of the guided modes satisfying the eigenvalue problem

HΨn = βnΨn. (6)

Guided modes propagate without attenuation and their
propagation constants lie in the range 0 < βn < βc

where βc = V/2 is the cut-off wavenumber. The integral
in (5) extends over the continuum spectrum of H corre-
sponding to the radiation modes and the discrete summa-
tion extends over their azimuthal dependence (index l).
Now, if the guided modes are weakly coupled over a dis-
tance which is large compared to the correlation length of
the random process δH then the ensemble average power
An(z) = 〈|an(z)|2〉 can be shown to satisfy the master
equation system [3], [6]:

1

ε2
dAn

dz
=

∑

m

Wn→m(Am −An) − αnAn, (7)

where the transition probability matrix coefficients
Wn→m are given from the spectral density of the cou-
pling coefficients

Cn,m(z) =

∫

R2

Ψn(x)h̄(x, z)Ψm(x)dx (8)

evaluated at the wavenumber spacing (βm − βn), i.e.,

Wn→m = β2

c 〈|F [Cn,m](βm − βn)|2〉 (9)

where the operator F stands for the usual Fourier trans-
form. Therefore, the condition for appreciable coupling
between the two modes is that the perturbation h̄ must
both induce a substantial overlap integral in Cn,m and
have spatial frequency support at βm − βn. The posi-
tive quantities αn take into account the averaged coupling
between mode n and the modes of the continuum of the
radiation modes.

The continuous model
In the limit of large V , the set of orthonormal functions

Ψn(x) = ψν(x)ψµ(y) (we identify the mode index n (in
bold) with the multi-index (ν, µ)) where

ψν(x) =
1√

π1/22νν!
Hν(x)e

−x2/2 (10)

and Hν denote the usual Hermite polynomials, are good
approximations to the exact solutions of (6) except for
modes near cut-off, βn ≈ V/2 (the eigenvalues are given
by βn = ν + µ+ 1). These latter high order modes carry
non-negligible power in the vicinity of the core-cladding

interface and therefore suffer from very high radiation
loss, so we can ignore them by imposing the cut-off con-
dition An = 0 for ν + µ ≥ βc. Now, we assume that the
normalized perturbation h̄ is sufficiently regular so that it
can be fairly approximated by its truncated Taylor expan-
sion as

h̄(x, z) =

(

h̄+ x
∂h̄

∂x
+ y

∂h̄

∂y
+ . . .

)

(0, 0, z). (11)

Here, derivatives of h̄ are random functions of the waveg-
uide axis z and participate in the mode mixing dynamics.
Using both the polynomial expansion (11) and the ana-
lytical form of the guided modes (10), it can be shown
[7] that there exists a polynomial series ws(ν̃, µ̃) where
s ∈ Z

2 and (ν̃, µ̃) ∈ R
2 (the continuous counterpart of

n = (ν, µ)) such that the transition probability matrix
from mode n to mode n + s has the analytical form

Wn→n+s = β2

c 2ws(n + s/2). (12)

This form is perfectly suited for a continuous approach
(see [8] for the 1D case). Let us introduce a continu-
ous function Ã(ν̃, µ̃, z) such that Ã(n, z) = An(z) for
all guided modes. By direct application of Taylor’s the-
orem, the transition probability operator may be written
formally as

∑

m

Wn→m(Am −An) = β2

c

∑

s∈Z2

∂

∂s

(

ws

∂Ã

∂s

)

(n)

+ β2

cT (Ã)(n), (13)

where ∂
∂s

≡ s ·
(

∂
∂ν̃ ,

∂
∂µ̃

)

stands for the directional deriva-

tive and the term T (Ã) contains the Taylor series remain-
der. Let us now employ the small parameter ε = 1/V .
As the number of guided modes goes tends to infinity,
i.e. ε → 0, it can be shown that the function ws admits
the asymptotic limit: ws(ñ) = W 0

s (u, v) + O(ε), where
(u, v) are the normalized continuous variables (u, v) =
2ε(ν̃, µ̃) = β−1

c ñ. Similarly, we may assume that there
exits a regular function γ such that γ(n) = αn for all
modes below cut-off and admitting the regular expansion:
γ(ñ) = γ0(u, v) + O(ε). Thus, at leading order, the dis-
crete evolutionary coupled system (7) can be modelled as
the following diffusion-like equation

1

ε2
∂Ã

∂z
= DÃ = (∇ · D∇− γ)Ã, (14)

where ∇ ≡ (∂/∂u, ∂/∂v)T and D is the symmetric ma-
trix

D =
∑

s=(ζ,η)∈Z2

(

ζ2 ζη
ζη η2

)

W 0

s (u, v), (15)
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V ε λ1 (dis.) λ2 (dis.)
20 0.05 -3.34 -9.34
40 0.025 -3.49 -9.71
80 0.0125 -3.58 -9.93
120 0.0083 -3.61 -10.0
∞ 0 -3.67 (cont.) -10.1 (cont.)

Table 1: Evolution of the first two eigenvalues of the dis-
crete system (7) as V increases. The last line corresponds
to the continuous diffusion operator (17).

which can be interpreted as a diffusion tensor controlling
the average transfer of modal power at the ‘mode number’
ñ = βc(u, v).

Applications
Let us consider typical deformations observed in opti-

cal fibres as illustrated in Figure 1 (bar symbol denotes the
normalized coordinates x̄ = X/a and ȳ = Y/a). We sup-
pose that the microbending and ellipticity perturbations
δx, δy, δa and δb are independent random processes with
respect to the normalized waveguide axis z. The associ-
ated diffusion tensor then has the diagonal form

D =

(

Cδxu+ Cδau
2 0

0 Cδyv + Cδbv
2

)

, (16)

where constants Cδx, Cδy , Cδa and Cδb respectively con-
tain the spectral density of the processes δx, δy, δa and
δb. The solution of (14) can be conveniently obtained via
projection on the eigenmode basis Ui verifying

DUi = λ̃iUi. (17)

There is no analytical solution to this eigenvalue prob-
lem in the general case. To simplify the analysis, we
consider the microbending problem where the horizon-
tal and vertical deviations are statistically identical, i.e.
we take Cδx = Cδy in (16) and we ignore the elliptic-
ity: Cδa = Cδb = 0. In the lossless scenario (γ = 0),
it can be shown that (17) is separable and admits ana-
lytical solutions. In Table 1, we compare the first two
eigenvalues of the discrete system (7) with its continu-
ous counterpart (17) (we take Cδx = 1 and eigenmodes
are conveniently normalized to yield comparable results)
demonstrating that the theoretically predicted behaviour
is achieved.
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Abstract
Finite element (FE) approximations to the solution of

Maxwell’s equations can be based upon different formu-
lations as boundary value problems. We investigate two
different approaches in frequency domain: the classical
curl-curl formulation and a mixed formulation which ex-
plicitly takes into account the equation of continuity for
conducting media. The frequency dependent condition
number of the FE system matrix is computed for a ho-
mogeneous medium model problem. It reveals that the
mixed approach introduces stability for low frequencies.
Additionally, largely unequal weights given to the two
partial differential equations of the mixed formulation
significantly affect the matrix condition number.

The study is extended to an anisotropic Perfectly
Matched Layer (PML). The resulting coefficients of the
partial differential equation (PDE) as a function of fre-
quency can be bounded by introducing a complex fre-
quency shift. However, anisotropy grows with decreas-
ing frequency in the relevant frequency range and, thus,
deteriorates the matrix condition number.

Introduction
Electromagnetic methods in geophysics cover a broad

frequency spectrum. Even at the highest frequencies
used, the damping of electromagnetic waves cannot be
neglected because of the inherent electrical conductivity
present within the earth. Therefore, it is interesting to
study the damped wave equation over a frequency range
of several orders of magnitude.

Numerical simulations are a key tool to understand-
ing the physics of geophysical measurements, interpret-
ing their data and improving acquisition techniques. Re-
stricting ourselves to time harmonic fields and Fourier
synthesizing if required we end up with a system of lin-
ear equations which is obtained by the Finite Element
Method (FEM) from frequency domain Maxwell’s equa-
tions [1]. This paper presents a numerical experiment
with different formulations of boundary value problems
that lead to stable or unstable behaviour of the frequency
dependent FE system matrix condition number.

A model problem
Consider the unit cube Ω = [0, 1]3 m3 with homo-

geneous constitutive parameters magnetic permeability
µ = µ0, electric permittivity ε = 8ε0 and electric con-
ductivity σ = 0.01 S/m. µ0 and ε0 denote the free space
quantities which are related to the vacuum speed of light
c = 1/

√
µ0ε0 ≈ 3 · 108 m/s. We will examine the solu-

tion of the frequency domain Maxwell’s equations for fre-
quencies f = 105 . . . 108 Hz.

The domain Ω is discretized by a regular mesh con-
sisting of 53 hexahedrons of size h = 0.2 m. Maxwell’s
equations are numerically solved using FEMSTER [2]
with a family of quadratic FE base functions (p = 2).
Therefore, a sufficient sampling of wavelengths of at least
ten samples is provided. The algorithm of Higham and
Tisseur [3] is combined with a direct solver from PAR-
DISO [4], [5] to estimate the 1-norm FE system matrix
condition number κ1.

Boundary value problems
Standard curl-curl equation approach

A standard approach of solving Maxwell’s equations
in frequency domain is combining them to form a second
order PDE that reads in terms of the electric field vector
E as

curl(µ−1 curl E)− iω(σ − iωε)E = iωjs. (1)

Here, i denotes the imaginary unit, ω = 2πf the angular
frequency and js an applied source current density. If E
is a sufficiently smooth solution of eq. (1) and ω 6= 0, the
divergence of eq. (1) can be taken, revealing that E also
fulfils the equation of continuity

− div(σ − iωε)E = div js. (2)

To complete the PDE (1) posed on Ω, homogeneous
Dirichlet or Neumann boundary conditions are applied on
the boundary Γ = ∂Ω,

n×E = 0 (3)

or n× (µ−1 curl E) = 0, (4)

where n is the outward normal vector on Γ.
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Figure 1: Frequency dependence of the 1-norm FE
system matrix condition number for the Dirichlet

boundary condition problems.

The condition number κ1 of the resulting FE system
matrix is depicted by the continuous line ‘α = 0, β = 0’
(cp. eqs (5) and (6)) in Figs 1 and 2. The kernel of the
curl operator causes κ1 to increase exponentially with de-
creasing frequency. For small ω, the curl-curl term domi-
nates the zeroth order term and the solution can be spoiled
by gradients of a scalar function. This behaviour can be
avoided using a mixed formulation.

Mixed approach
The equation of continuity (2) is explicitly taken into

account by extending the system of equations (1) and (2)
by a scalar variable V ,

curl(µ−1 curl E)− iω(σ − iωε)E
+ α(σ − iωε) grad V = iωjs (5)

−α div(σ − iωε)E + βV = α div js, (6)

where α is a scalar constant and β a scalar function. These
assumptions ensure that the resulting discrete system has
a symmetric coefficient matrix. The appropriate boundary
conditions read

n×E = 0, V = 0 (7)

or n× (µ−1 curl E) = 0, n · grad V = 0. (8)

Taking the divergence of eq. (5) we learn that V implicitly
fulfils

−α2 div(σ − iωε) grad V + iωβV = 0. (9)

The choice β 6= 0 leads to a denser FE system matrix
than β ≡ 0. In the case of the Neumann boundary condi-
tion (8), however, the zeroth order term iωβV is crucial:
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Figure 2: Frequency dependence of the 1-norm FE
system matrix condition number for the Neumann

boundary condition problems. Note that the matrix is
singular for α = c, β = 0.

If β ≡ 0, the solution of eq. (9) in terms of V is non-
unique and κ1 = ∞. For all other cases, a constant κ1 is
achieved for low frequencies using the mixed formulation
(Figs 1 and 2).

The particular value of α is important. It can be inter-
preted as giving appropriate weights to both differential
equations and the two unknowns E and V . Fig. 3 illus-
trates that the matrix condition number, as a function of α,
has a pronounced minimum and is exponentially increas-
ing away from the minimum. Note that, for the choice of
PDEs (5) and (6), α is in the order of the vacuum speed
of light c.

Extension to Perfectly Matched Layers
Most geophysical simulation problems are naturally

posed on unbounded domains. Numerical methods like
the FEM usually require the restriction to a bounded do-
main. The unavailability of appropriate boundary con-
ditions for the auxiliary boundary introduced to obtain
a finite simulation volume makes attractive the tech-
nique of Perfectly Matched Layers (PML) [6]. There-
fore, we extend our model study by a Complex Fre-
quency Shifted (CFS), anisotropic PML [7] which re-
places all scalar constitutive parameters η = µ, ε, σ by
tensors η diag(1/d, d, d), where

d = 1 + i
bxn

ω + iω0
(10)

can be considered as a complex valued stretching of the
first spatial coordinate x. y and z remain unaffected.
In particular we choose n = 1, b = 3.45 · 108 Hz/m,
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Figure 3: Dependence of the 1-norm FE system matrix
condition number κ1 on the weight constant α for the

Dirichlet boundary condition and β = 0.

ω0 = 8.485 · 105 Hz. The complex frequency shift iω0
guarantees that the constitutive parameters are bounded
for low (real) frequencies ω. However, for ω ' ω0, the
anisotropy factor, i. e., the ratio of the largest and smallest
tensor eigenvalues increases with decreasing frequency.
A constant level is only reached at lower frequencies. The
effect of growing anisotropy can be seen in Fig. 4. The
important role of the weight constant α observed before
is confirmed.

Conclusions
Taking explicitly into account the divergence condi-

tion, i. e., the equation of continuity, may render stable
the resulting boundary value problem and its discrete FE
equivalent when solving the frequency domain Maxwell’s
equations for low frequencies. Giving matching weights
to the curl-curl equation and the equation of continuity
has been illustrated to be important. An approximately
well-balanced formulation can be obtained if eq. (5) is
divided by the vacuum speed of light c and rewritten in
terms of wavenumber k = ω/c instead of the angular fre-
quency ω.

The mixed approach works well for the classical
Maxwell’s equations. Their anisotropic PML extension
introduces additional frequency dependencies and a low
frequency instability. Introduction of a complex fre-
quency shift to the PML establishes bounds to all coef-
ficients of the boundary value problem and its discrete
FE equivalent. However, the anisotropy, introduced to
improve the performance of boundary conditions, signif-
icantly deteriorates the FE system matrix condition num-
ber for low frequencies.
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Figure 4: Dependence of the 1-norm matrix condition
number κ1 on the weight constant α for the CFS PML

with Dirichlet boundary condition and β = 0.
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Abstract
A new technique to derive an embedding formula is

considered. Instead of a differential operator, a pseudo-
differential one is proposed. The advantage is that for
wedge problems one can obtain an embedding formula
smoothly depending on the opening angle.

An overview of the embedding procedure
One possible method to derive an embedding formula

is as described in [1]. It consists of three steps:
1. Apply a differential operatorK to the fieldu. The

differential operator should both eliminate the incident
wave and maintain the boundary conditions.

2. Using reciprocity express the local asymptotics of
the solution in terms of the so-called “edge Green’s func-
tions” ûj , i.e. specially constructed multipole fields with
sources located at the edges.

3. Compensate the singularities at the edges by adding
an appropriate combination of edge Green’s functions.
By applying the uniqueness theorem, establish an iden-
tity of the form K[u] =

∑
j Cj ûj , whereCj are con-

stants depending on the angle of incidence. If necessary,
it is possible to convert this formula into a relation for
directivities.

Currently (see [1]) an embedding formula is available
for wedge-like geometries, having rational angles, like
πqj/pj . The derivation of embedding formulae requires
the application of a differential operator of orderP , which
is the least common multiple of allpj in the configura-
tion. The most disturbing issue relating to embedding is
the absence of continuity of the formula vs. the angles of
the structure.

Pseudo-differential operator
Here we propose to replace the differential operator

with a pseudo-differential one. The pseudo-differential
operator has a continuous parameterµ, which in the sim-
plest case should be equal toπ/Φ, whereΦ is the opening
angle; thus the new operator can handle problems with ir-
rational angles.

Unfortunately, currently the embedding formula is con-
structed only for wedges, so its practical value is ques-
tionable, however it gives a better understanding of em-
bedding procedure.

The main problem under consideration is as follows: In
the sectorial area0 < ϕ < Φ, 0 < r < ∞ the field obeys
the Helmholtz equation

∆u + k2
0u = 0 (1)

with time dependence of all variables having the form
e−iωt.

The Dirichlet boundary conditions are considered so:

u = −e−ik0x cos ψ at ϕ = 0, (2)

u = 0, atϕ = Φ (3)

We introduce a family of integral operators

Kµ[u](x, y) =
∫

Γ
[wµ∂nu− u ∂nwµ] dl, (4)

where

wµ(ρ, α) = H(1)
µ (k0r) cos[µ(π − α)], (5)

and the contour of integration is shown in Fig. 1. Note
that for each point(x, y) we define its own contour.

Figure 1: Contour of integration

The trigonometric function in (5) is chosen to eliminate
the integral of∂nu along the straight parts of the contour.

Properties of the operator
Several propositions concerning the operatorKµ can

be proved.

1
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1. The operatorKµ maps solutions of the Helmholtz
equation into solutions of Helmholtz equation.

2. If µ = n, n is an integer, then

Kn[u] = 4ei(n−1)π/2Tn

(
i

k0

∂

∂x

)
, (6)

whereTn is the Tchebyshev’s polynomial. The operator
on the right-hand side has been introduced in [1] for ra-
tional angles.

3. Let

v(r, ϕ) = exp{−ik0r cos(ψ − ϕ)} (7)

be a plane wave coming from directionψ. Then

Kµ[v](x, y) = G(ψ) v(x, y), (8)

where

G(ψ) = 4e−i(µ+1)π/2 cos[µ(π − ψ)]. (9)

4. Let the field obey boundary condition (2). Then

[Kµ −G(ψ)]u = 0. (10)

5. Let u satisfy boundary condition (3) and radiation
condition. Let us also define

µ = πm/Φ, (11)

wherem is an integer, then

Kµ[u] = 0 atϕ = Φ.

6. Let u satisfy the radiation condition, thenKµ[u] also
satisfies radiation condition.

7. We set

v(r, ϕ) = Jν(k0r)e±inuϕ, ν > 0. (12)

with 0 < µ < ν, then Kµ[v] near the origin obeys
Meixner’s conditions.

If ν ≥ µ then near the origin the field is as follows:

Kµ[v] = −4eπi(ν−µ) sin(πν)H(1)
ν−µ(k0r)e±iνϕ+Meixner terms

(13)

All these properties enable one to use the operatorsKµ in
the embedding procedure instead ofTn(i/k0∂x).

The work is supported by EPSRC, RFBR-07-02-00803
and NSh-1575.003.2 grants.
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Abstract
We outline a computational model of syntactic lan-

guage processing based on Smolensky’s Fock space
representations of symbolic expressions using spherical
wave functions. Symbolic computation, regarded as non-
linear operators acting upon these waves, provides a dis-
crete sequence of training patterns that could be used to
solve the inverse problem of neural field theories in or-
der to determine the synaptic connectivity/weight kernels.
The solutions of a neural field equation should then pro-
vide a model of event-related brain potentials that are
elicited by syntactic processing problems.

Introduction
The difference between linguistic competence and per-

formance becomes most obvious in the processing of gar-
den path sentences such as “the lawyer charged the defen-
dant was lying” [1], where an initially preferred interpre-
tation of “the defendant” as an direct object of “charged”
has to revised. Psycholinguistics investigates such ef-
fects that are due to processing strategies in performance
rather than to syntactic competence e.g. by means of
event-related brain potentials (ERP). Figure 1 illustrates
the spatio-temporal ERP dynamics elicited by the pro-
cessing of dispreferred object-verb-subject (ovs) sen-
tences (solid curves) compared to default subject-verb-
object sentences (svo) (dotted curves) in German [2], [3].
Evidently, the brain waves related to the disambiguating
words diverge around 600 ms after stimulus presentation
where the ovs condition exhibits a syntactic positivity
shift (P600).

Complementarily, computational psycholinguistics [4]
is concerned with computational models of such exper-
imental data that can provide insights into the nature of
the cortical processes. Here, we shall outline a model of
language-related brain waves in a neural field theory [5].

Fock Space Representations
The construction of our computational model com-

prises four steps: (1) a context-free toy grammar (CFG)
and a processing automaton (the parser) [6] are (2) rep-
resented by activation vectors and a dynamics in a neural
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Figure 1: ERPs from a language processing
experiment. “CONTR” refers to svo, “VERB” to ovs.

network using Smolensky’s [7] tensor product represen-
tations. However, (3) these representations exhibit several
disadvantages (cf. [8]) which could be remedied in an in-
finite setup, leading to (4) a representation by spherical
wave functions.

Grammars
The sentence material of the ERP experi-

ment [2], [3], L = {svo, ovs}, can be gener-
ated by the CFG [6] G = G1 ∪ G2, where G1 =
({s, v, o}, {S, V P}, {S → sV P, V P → vo}, S) and
G2 = ({s, v, o}, {S, V P}, {S → V Ps, V P → ov}, S)
where G1, G2 are locally unambiguous CFGs [9] reflect-
ing the different processing strategies: G1 generates the
string svo while G2 supplies ovs.

Following [7], structured symbolic expressions such as
lists or trees can be represented as activation vectors in a
neural network by tensor products

v =
⊕

n

fn ⊗ rn (1)
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of “filler”, fn, and “role” vectors, rn, respectively. For
the given case, elementary “fillers” are the variables
s, v, o, S, V P ∈ R5 of G, regarded as “spins”, and
“roles” are the positions ROOT = |0〉, LEFT DAUGHTER

= |1〉, and RIGHT DAUGHTER = |2〉 ∈ R3 of a labeled
binary tree.

Equation (1) allows for recursion. In our example, the
phrase structure tree for the sentence svo, [Ss[V Pvo]],
assumes the representation S|0〉 ⊕ s|1〉 ⊕ V P |02〉 ⊕
v|12〉 ⊕ o|22〉, where |k1k2〉 is the “two-particle state”
|k1〉 ⊗ |k2〉. In general, these vectors are elements of the
“many particle” Fock space

F =
∞⊕

n=1

VF ⊗
n⊗

k=1

VR (2)

where VF is a finite vector space spanned by the elemen-
tary fillers (analogous to particle spins) and VR is a vector
space of elementary roles.

Parsers
Since the grammars G1, G2 are locally unambiguous,

the strings svo and ovs can be deterministically pro-
cessed, e.g. by top-down parsers which successively
construct the phrase structure trees by predicting the in-
put [6]. Let us here consider the grammar G1. The stack
of a top-down parser is initialized with the start sym-
bol of a grammar, S|0〉. As S is a nonterminal symbol,
the content of the stack is replaced by the tensor prod-
uct representation of the unique rule expanding S, i.e., by
S|0〉 ⊕ s|1〉 ⊕ V P |2〉. Next, the parser finds the nonter-
minal filler V P which is replaced by the representation
V P |0〉 ⊕ v|1〉 ⊕ o|2〉, yielding the complete tree given
above. Therefore, the automata are described by maps
α : F → F acting in the following way: each nontermi-
nal filler fn occurring in Eq. (1) is recursively replaced by
a complex filler corresponding to the rule with left-hand-
side fn.

A similar approach using minimalist grammars [10]
gave the state space trajectories in a two-dimensional
PCA projection of a 275,562-dimensional Fock space,
shown in Fig. 2 [8].

Problems
The trajectories plotted in Fig. 2 were obtained by us-

ing linearly dependent role vectors because the dimension
of the activation space became 1,879,048,192 using lin-
early independent ones [8]. Unfortunately, the treatment
of these representations was numerically not feasible.

However, the very high space dimensions required
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Figure 2: PCA projections of a “minimalistic” Fock
space representation for language processing. (a)

Trajectory of the svo parse, (b) that of the ovs parse.

even for finite language models is only one problem of
Smolensky’s proposal. Others are

• the processing of lists of unbounded length or of trees
with arbitrary recursion depth, respectively, requires
infinite dimensional spaces,

• but, only vertices have symbolic representations
(brain state in-the-box model [7]); therefore

• most states occupy a meaningless vacuum; meaning-
ful states are rather improbable.

Smolensky’s solution of the dimensionality problem
to use always finite-dimensional representations with lin-
early dependent role and/or filler vectors does not seem
to be appropriate as it leads to cross-talk [7], thereby pre-
venting a faithful mapping between the symbolic and the
connectionist dynamics. Thus, Smolensky stresses that
there is no implementation of symbolic processes in neu-
ral dynamics [11]. Since we are looking for such imple-
mentations, yet, we shall allow for infinite-dimensional
Fock spaces to encounter the dimensionality problem in
the following.

Wave functions
Our starting point are the linearly independent ele-

mentary role vectors of our CFG model. These can
be identified with a triplet of angular momentum states:
|0〉 ∼= |1, 0〉, |1〉 ∼= |1,−1〉, |2〉 ∼= |1, 1〉, which, in
turn, have an L2(S) representation by spherical harmon-
ics |`m〉 ∼= Y`m(ϑ, ϕ) at the unit sphere S. This appears
as a suitable choice as these functions are often used as
basis functions of EEG waves and neural fields.

In the next step, tensor products of the role vectors
are to be computed. In our notation, |12〉, e.g., denotes
the left daughter of the right daughter of the tree’s root,
and is given as |12〉 = |1〉 ⊗ |2〉 = |1,−1〉 ⊗ |1, 1〉 ∼=
Y1,−1(ϑ1, ϕ1)Y1,1(ϑ2, ϕ2).
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In quantum theory, the product states |`1m1〉 ⊗ |`2m2〉
belong to different multipletts with total angular momen-
tum ` given by the Clebsch-Gordan sums |`,m, `1, `2〉 =∑

m1,m2=m−m1
〈`1m1`2m2|`m`1`2〉|`1m1`2m2〉 [12].

Thus, we can map the roles described by the tensor
products |`1m1〉 ⊗ |`2m2〉 onto a family of spherical
wave functions Y`m(ϑ, ϕ) obeying the triangle relation
|`1 − `2| ≤ ` ≤ `1 + `2. Finally, a phrase structure tree
will be represented by “spinors”

Ψ(ϑ, ϕ) =
∑
`,m

f`mY`m(ϑ, ϕ) (3)

with the elementary fillers f`m denoting the tree labels.

Neural Field Theory
In the preceding sections we outlined a way how

to represent symbolic content by tensor products in an
infinite-dimensional Fock space of spherical wave func-
tions Y`m(ϑ, ϕ). Correspondingly, symbolic computa-
tion, such as language processing α, will be represented
by (presumably nonlinear) operators Aα : Ψ(ϑ, ϕ) →
Φ(ϑ, ϕ). A time-discrete trajectory of these wave func-
tions {Ψt|t ∈ N0} describes a cognitive process with ini-
tial condition Ψ0.

These functions can be regarded as stationary solutions
of a neural field equation [5]

τ(x)
∂Ψ(x, t)

∂t
+ Ψ(x, t) =

=
∫ t

−∞
dt′

∫
S

dx′ w(x, x′) ×

× G(t− t′) f

[
Ψ

(
x′, t′ − ||x− x′||

c

)]
(4)

at the unit sphere, x = (ϑ, ϕ). Here, τ(x) describes the
neural time constants, the kernel w(x, x′) the synaptic
connectivity and weights, G(t − t′) the postsynaptic im-
pulse response, f the activation function and c the propa-
gation velocity of neural activity.

Regarding Ψt as training patterns for the field equa-
tion, the inverse problem of determining the kernel
w(x, x′) from the solutions Ψt, entails a cognitive imple-
mentation by a neural field theory. Such a model would
be able to predict the dynamics of ERPs evoked by pro-
cessing problems such as garden path sentences [1], [2],
[3].
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Abstract

Many of the equations describing the dynamics of neu-
ral systems are written in terms of firing rate functions,
which themselves are often taken to be threshold func-
tions of synaptic activity. Dating back to work by Hill
in 1936 it has been recognized that more realistic mod-
els of neural tissue can be obtained with the introduction
of state-dependent dynamic thresholds. In this paper we
treat a specific phenomenological model of threshold ac-
commodation that mimics many of the properties origi-
nally described by Hill. Importantly we explore the con-
sequences of this dynamic threshold at the tissue level,
by modifying a standard neural field model of Wilson-
Cowan type. As in the case without threshold accommo-
dation classical Mexican-Hat connectivity is shown to al-
low for the existence of spatially localized states (bumps)
in both one and two dimensions. Importantly an analysis
of bump stability in one dimension, using recent Evans
function techniques, shows that bumps may undergo in-
stabilities leading to the emergence of both breathers and
traveling waves. Moreover, a similar analysis for travel-
ing pulses leads to the conditions necessary to observe a
stable traveling breather. In the regime where a bump so-
lution does not exist direct numerical simulations show
the possibility of self-replicating bumps via a form of
bump splitting. Simulations in two space dimensions
show analogous localized and traveling solutions to those
seen in one dimension. Indeed dynamical behavior in this
neural model appears reminiscent of that seen in other
dissipative systems that support localized structures, and
in particular those of coupled cubic complex Ginzburg-
Landau equations. Further numerical explorations illus-
trate that the traveling pulses in this model exhibit parti-
cle like properties, similar to those of dispersive solitons
observed in some three component reaction-diffusion sys-
tems.

A full account of this work can be found in S Coombes
and M R Owen 2007Exotic dynamics in a firing rate
model of neural tissue with threshold accommodation,
AMS Contemporary Mathematics ”Fluids and Waves -

Recent Trends in Applied Analysis”, to appear1.

Introduction

The mathematical modeling of neural tissue can trace
its roots back to work by Beurle [3] in the 1950s and later
by Griffith [11], [12] in the 1960s. To overcome the dif-
ficulties of modeling the large numbers of neurons and
synapses in even a small piece of cortex these authors ad-
vocated continuum descriptions in which space is con-
tinuous and macroscopic state variables are mean firing
rates. These early models were later improved and refined
in the work of Wilson and Cowan [22], Nunez [20] and
Amari [1], and are still in use today as models of large
scale brain activity. We shall refer to such models and
their variants as neural field theories. To date neural field
theories have found applications in understanding brain
slice preparations [14], EEG rhythms [16], [19], visual
hallucinations [9], [4], short term memory [17], motion
perception [10], representations in the head-direction sys-
tem [23] and feature selectivity in the visual cortex [2].
For recent reviews of the dynamics of neural fields we re-
fer the reader to [5], [6]. Typically they take the form of
integral or integro-differential equations. Although they
do not capture the details of the fast ionic currents un-
derlying spiking neural behavior, neural field theories can
incorporate realistic non-local axo-dendritic synaptic in-
teractions provided that spike-trains can be replaced by
firing rates. In practice this assumption seems to be use-
ful when dealing with slow synaptic interactions. The fir-
ing rate in such models is often taken to be a threshold
function of the synaptic activity. Typically, as a constant
current is increased, most cortical neurons switch from a
resting constant potential to an active mode. In the ac-
tive mode, either trains of spikes are generated or bursts
of spikes. Since the majority of cells in cortical networks
fire repetitively [21], we shall focus our attention on this
case. A common choice to fit the firing rate function is
a sigmoid function of pre-synaptic activityu in the form

1http://eprints.nottingham.ac.uk/archive/00000457/
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f = f(u− h), where

f(u) =
1

1 + exp(−βu)
. (1)

Here the parameterh is identified as a threshold whilst
β measures the steepness of the sigmoid. Interestingly
the notion of a threshold goes back a long way in the
history of neuroscience. Even in the absence of any de-
tailed model of neural tissue Hill [13] in 1936 described
the fruitfulness of thinking of neural tissue as possessing
a threshold for excitability. Indeed, at the single neuron
level the notion of a threshold model can be traced back
as far as 1907 to Lapicque [18].

In more detail we will discuss a generic neural field
model with synaptic activityu = u(x, t), x ∈ R, t ∈ R+,
governed by the integral equation

u = η ∗ w ⊗ f(u− h). (2)

Here, the symbol∗ represents a temporal convolution in
the sense that

(η ∗ f)(x, t) =
∫ t

0
η(s)f(x, t− s)ds, (3)

and⊗ represents a spatial convolution such that

(w ⊗ f)(x, t) =
∫ ∞

−∞
w(y)f(x− y, t)dy. (4)

The functionη(t) (with η(t) = 0 for t < 0) represents
a synaptic filter, whilstw(x) is a synaptic footprint de-
scribing the anatomy of network connections. Typically,
however, neural field theories such as the one above do
not incorporate any of the slow intrinsic processes known
to modulate tissue response. In particular we are drawn
to the observation of Hill that thresholds are dependent
upon the state of the tissue. We quote directly from his
1936 paper2 [13]:
. . . . The critical value of V required for excitation,
i.e., the threshold U, might have been constant and
independent of the previous history of the nerve. If the
current lasts only for a very short time this is true. If,
however, the current lasts longer, the threshold rises, as
is shown by the well-known fact that a slowly increasing
current has a higher threshold than a quickly increasing
one. The change of threshold is gradual, it takes place
as a consequence of, and at a speed determined by, the
change of “local potential” produced in the nerve by

2We are indebted to John Rinzel for bringing the work of A V Hill
to our attention.

the passage of current. There is, therefore, a second
time-factor in electric excitation, viz., that defining the
rate of change of threshold U.
We shall use the term “accommodation” to describe the
fact that the threshold U rises when the “local potential”
V is maintained. It is known that “accommodation”
disappears of itself, i.e., U reverts gradually to its
original value U0 when the nerve is allowed to return to
its original resting state . . .

If we identify the “local potential” described by Hill
with synaptic activityu then a simple phenomenological
model of threshold accommodation can be written as

ht = −(h− h0) + κg(u− θ). (5)

Hereh andh0 are identified with theU andU0 described
by Hill, whilst the nonlinear functiong(u) describes the
effects of the accommodation process on the threshold
evolution. We also assume that accommodation is itself
a threshold process and interpretθ as a threshold for ac-
commodation, whilst the parameterκ > 0 measures the
strength of accommodation. For later convenience we
write the dynamics forh in the integrated form

h = h0 + κηh ∗ g(u− θ), (6)

whereηh(t) = e−t for t > 0 and is zero otherwise. In the
absence of threshold accommodation (i.e. withκ = 0) it
is known that models with short-range excitation and long
range inhibition, or so-called Mexican-hat connectivity,
can support spatially localized solutions. Indeed such so-
lutions are known to exist for sufficiently steep sigmoids
[15] and has motivated much analysis in the limit that the
firing rate functionf approaches a Heaviside step func-
tion, i.e. asβ → ∞ in (1). To illustrate how the form of
nonlinear threshold accommodation (5) can lead to exotic
dynamics at the network level, we will focus on the case
of Mexican-hat connectivity with Heaviside firing rate
function. Moreover, so that we may study instabilities of
spatially localized states in a tractable mathematical fash-
ion we will also restrict our attention to the case thatg(u)
is also a Heaviside. Hence, throughout the rest of this
paper we work with the choiceg(u) = f(u) = H(u),
whereH is a Heaviside function such thatH(x) = 1 for
x ≥ 0 and is zero otherwise. Moreover, we shall take
η(t) = αe−αtH(t) andw(x) = (1− |x|)e−|x|, represent-
ing an exponential synaptic response in a network with
short-range excitation and long-range inhibition. The ex-
tension to other synaptic filters and footprints is straight-
forward [7]. A preliminary account of the work in this
paper first appeared in [8].
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Abstract
We discuss a state-space approach to dynamical model-

ing of multivariate time series obtained from spatially ex-
tended dynamical systems; as an example we consider the
human electroencephalogram (EEG). Since the assumed
true states are unobserved and high-dimensional, their es-
timation represents an “ill-posed” inverse problem. By
discretizing both time and space and assuming a stochas-
tic autoregressive dynamics, derived from a wave equa-
tion, it is possible to recast the problem as a filtering prob-
lem and apply the Kalman filter to it. Additional approx-
imations are introduced into the Kalman filter in order to
obtain an efficient implementation by exploiting the spa-
tial structure of the problem, yielding the “spatiotemporal
Kalman filter”. The model is fitted to time series data us-
ing likelihood maximization.

Introduction
In many fields of science (such as oceanography, geo-

physics, engineering, physiology or medicine) spatially
extended systems are studied which evolve in time ac-
cording to some possibly complicated dynamics. It is a
typical situation that the relevant state variables of such
systems cannot be observed directly, but only through an
observation function; in many cases this function per-
forms a projection of the high-dimensional true state
space of the system onto an observation space of much
lower dimension. The task of retrieving estimates of the
true states from such observations represents a typical in-
verse problem. Due to the absence of a simple invertible
relationship between state and observation such problems
are ill-posed, i.e. the solutions (“inverse solutions”) are
unstable and ambiguous.

As an example, we mention the neural activity of
human brain, which can be observed noninvasively by
recording the electroencephalogram (EEG). The resulting
multivariate time series represent only an indirect reflec-
tion of the actual brain dynamics taking place in space
and time. For purposes of clinical diagnosis and brain
research, it would be desirable to obtain estimates of the
unobserved internal states of brain, i.e. estimates of the
sources of the EEG; these estimates would then also be

functions of space and time. This task represents the in-
verse problem of EEG generation.

Most previous attempts to solve this inverse problem,
e.g. Low Resolution Electromagnetic Brain Tomography
(LORETA) [1], were ignoring the temporal dimension of
the problem, i.e. they processed the data sampled at each
instant of time independently. Here we present a frame-
work for a dynamical approach to this problem, taking
into account all data sampled until a given instant of time
and connecting them by a dynamical model. This is ac-
complished by casting the problem into the shape of a
state space filtering problem.

Model
Let the unobserved true states of the system be given

by a vector field j(r, t), where r and t denote space
and time, respectively; in the case of the human brain,
j(r, t) denotes the primary current density, i.e. the field
of current dipoles resulting from synaptic transmission
processes in neural dendrites. In the linear approxima-
tion, the dynamics in a spatially extended passive medium
can be described by stochastic partial differential equa-
tions, such as the linear wave equation

∂2 j(r, t)
∂t2

+2ζω
∂ j(r, t)

∂t
+ω2j(r, t) = b

∂2 j(r, t)
∂r2

+η(r, t)

where η(r, t) denotes a stochastic driving noise term.
In practical work, the volume of brain is discretized

into a rectangular grid of voxels, and also the wave equa-
tion is transformed into a discrete-time dynamical model;
the resulting model for the evolution of the primary cur-
rent density j(v, t) (where v labels voxels) represents
a linear state space model. By stacking the j(v, t), a
global state vector X(t) is defined; let Nv and Nx de-
note the number of voxels and the dimension of X(t),
respectively; since the dimension of j(v, t) is 3, we have
Nx = 3Nv.

The state space model is then given by two equa-
tions: First by the second-order multivariate autoregres-
sive model (derived from the wave equation)

X(t) = A1X(t− 1) + A2X(t− 2) + H(t) (1)
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where A1, A2 denote transition parameter matrices (of
size 3Nv×3Nv), and H denotes the global gaussian white
noise vector, for which we define the covariance matrix1

CH = E (HH†); and second by the linear observation
equation

Y(t) = KX(t) + E(t) , (2)

where Y(t) denotes the vector of observations (such as
EEG voltages), with dimension Ny, K denotes an obser-
vation matrix of dimension Ny × Nx, and E(t) denotes
a vector of observational gaussian white noise, with di-
mension Ny, for which we define the covariance matrix
CE = E (EE†).

Method of analysis
The observation matrix K (in the case of the EEG also

known as lead field matrix) can approximately be derived
by electromagnetic theory; since usually Ny ¿ Nx, solv-
ing equation (2) for Y(t) by least-squares methods re-
quires techniques like pseudo-inversion and regulariza-
tion (as employed in the LORETA method). This needs
to be done for each time point t, ignoring the temporal
order of the data (and, thus, the dynamical model equa-
tion (1)), such that a considerable amount of information
is discarded.

Spatiotemporal Kalman filter
As an alternative, we propose to apply Kalman filtering

to the state space model consisting of equations (1) and
(2). It is well known that, for given estimates of the model
parameters A1,A2,CH, CE , the Kalman filter provides op-
timal linear estimates of the states X(t) in an efficient
way. Since the Kalman filter operates by predicting states
and observations, it can fully utilize the information con-
tained in the temporal ordering of the data, including the
direction of time. We also mention that a further improve-
ment of the state estimates can be obtained by applying an
additional smoothing filter which runs backwards through
time (while the Kalman filter runs forward). For a detailed
presentation of Kalman filtering and smoothing we refer
to Grewal & Andrews [2].

However, due to the large state space dimension Nx

(which can easily exceed 10000), it is advisable to sim-
plify the application of the Kalman filter, in order to avoid
explicit numerical operations with huge matrices. For this
purpose, we have designed a spatiotemporal Kalman fil-
ter. Its core idea is to replace a single (3Nv)-dimensional
filtering problem by a set of Nv coupled 3-dimensional

1E (.) denotes expectation.

filtering problems, each of which is localized at a single
voxel. Details can be found in Galka et al. [3].

This simplification becomes possible only by assuming
that CH is diagonal; this, however, is a strong assump-
tion which in general will not be true for the set of local
state vectors j(v, t). But if we take a second-order spa-
tial derivative of j(v, t), it is reasonable to expect that the
non-zero off-diagonal elements of CH will become much
smaller. We denote this transformation by X̃(t) = LX(t);
L denotes a Laplacian matrix. Consequently we formu-
late the filtering problem entirely in X̃(t) instead of X(t);
the lead field matrix K then has to be replaced by KL−1.

Note that equation (1) represents an autoregressive
model of second order, while state space models always
need to be first-order models; by augmenting the state
vector X̃(t) by a time-delayed copy X̃(t − 1), equation
(1) can easily be rewritten as a first-order autoregressive
model, but at the price of doubling the effective state
dimension. The transition parameter matrix of the new
model is given by the (6Nv × 6Nv) matrix

(
A1 A2
I 0

)
.

Instead of using a time-delayed copy, as done in [3],
also a time-advanced copy may be used, which has the
advantage of avoiding the “temporal blurring” of the com-
ponents of the state vector: The advanced components of
the augmented state vector have then the interpretation of
“predicted future states at time t” [4]. In this case the new
transition parameter matrix is given by

(
A1 I
A2 0

)
.

Parameter estimation
The model, as presented above, depends on a set of 4

parameter matrices, A1, A2, CH, CE , which are unknown
and need to be estimated from the data as well; this step
requires computation-intensive numerical optimization.
As the quantity to be maximized we choose the logarith-
mic likelihood:

L =
Nt∑

t=1

(
log |R(t)|+∆Y†(t) R−1(t)∆Y(t)+Ny log(2π)

)

where ∆Y(t) denotes the observation prediction error
(i.e. the innovation) of the Kalman filter at time t, |R(t)|
the determinant of the observation prediction error covari-
ance matrix at time t and Nt the length of the analyzed
time series. The Kalman filter readily provides ∆Y(t)
and |R(t)| during its forward pass through the data.

In order to decrease the dimension of the parameter
space, a number of constraints need to be applied: Most
elements of A1,A2 are set to zero, only the diagonal val-
ues may be non-zero, but they assume only two common
values for all voxels, say a1 and a2; for A1 also those ma-
trix elements corresponding to directly neighboring pairs
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of voxels are allowed to be non-zero, but again they all
assume a common value, say b1. Also CH and CE are
constrained to be diagonal with one common value each,
say ση and σε. Through these constraints the number of
parameters is reduced to 5.

We note that choosing a non-zero value of the parame-
ter b1 has the important benefit of ensuring observability
of the state space model [3]; it is precisely this property
which renders it possible – at least in theory –, to obtain
estimates of the unobserved state vector from an observa-
tion vector of much smaller dimension, provided a time
series of sufficient length is analyzed.

The numerical optimization is carried out by a se-
quence of Broyden-Fletcher-Goldfarb-Shanno (BFGS)
secant method steps and Nelder-Mead simplex method
steps; convergence can be accelerated by limiting some
steps to subsets of parameters. Still the optimization pro-
cedure easily consumes hours, if not days, of time, de-
pending on the time series length Nt, the number of EEG
channels Ny and the number of voxels Nv. Typical values
of our analyses are Nt = 512, Ny = 18, Nv = 3433.

Results
We have applied the state space modeling, as described

above, to various simulated and real time series, both for
human EEG; for the detailed results see [3]. For the case
of simulations we can compare directly the inverse solu-
tion with the true sources; we find that if the true dynam-
ical model is employed (i.e. the model which has created
the data), the inverse solution becomes very close to the
true states. This is not a trivial result, since at each time
point we are still estimating 3*3433 unknown states from
just 18 observed values.

On the other hand, employing simple dynamical mod-
els leads to inverse solutions which are similar to
LORETA solutions. This motivates the search for im-
proved dynamical models.

We have also derived an estimator of the log-like-
lihood of LORETA, which can be compared with the log-
likelihood of the state space model. This comparison re-
veals the state space model to provide a considerably bet-
ter modeling of given data than LORETA. Furthermore
we have derived estimators of the error of the inverse so-
lutions for LORETA and for state space modeling (in fact,
such error estimates are provided naturally by the state es-
timation covariance matrix of Kalman filtering), and we
find that state space modeling achieves much smaller er-
rors than LORETA (where the error renders the solutions
statistically insignificant most of the time). These results
were obtained both for simulations and for real EEG data.
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Abstract
Cortical dynamics of resting brain exhibits sponta-

neous neuronal activity. We study neuronal dynamics of
a human anatomical network, represented as a connec-
tion matrix, by modelling neuronal masses at each loca-
tion by FitzHugh-Nagumo oscillators and also incorpo-
rating time-delayed coupling. We identify the stability
region in the connectivity strength and time delay plane
and show its robustness by subjecting the model to per-
turbations. The complex spatiotemporal data is analysed
by principal component analysis to reveal the underlying
functional connectivity. We find strong evidence that pre-
frontal, parietal and cingulate cortex forms an active net-
work in a resting brain.

Introduction
Neuronal oscillations have intrigued neuroscientists

over the last few decades. Following the pioneering work
of Hodgkin-Huxley single neuron oscillations have been
well studied [1] while the collective behaviour of assem-
bly of neurons, neuronal masses, has evoked new in-
terests in understanding behavioural patterns. Cortical
neurons exhibit behaviour dependent oscillating networks
that have manifold implications. Neuronal oscillations in
cortical networks have been detected in a resting brain,
say, during sleep and are conjectured to play crucial role
in information processing, memory, perception and con-
sciousness [2].

Functional imaging studies have been widely used in
detecting task related neural activity. In such studies a
task or stimulus is responsible for inducing change in
brain activity pattern and imaging techniques such as
positron emission tomography (PET) or functional MRI
(fMRI) are used to detect associated responses in differ-
ent regions. However, it is expected to see changes in
brain activity patterns due to external stimuli. But under-
standing fluctuations in a resting or idling brain are more
intriguing and interesting as it leads to cognitive process-
ing. One is interested in questions like which areas of

brain are activated and what are the functional relation-
ships. Recent studies of functional connectivity in resting
brain has revealed that a specific set of prefrontal and pari-
etal cortical regions show significant increase in activity
during cognitive tasks [3], [4].

Emergence of sophisticated imaging experimental
tools has now made it possible to represent the cortical
connections by pathways identified by anatomical tracing
techniques. These facilitate theoretical investigation by
emulating neuronal dynamics on cortical regions. Recent
work of Honey et al [5] identifies functional network from
connection matrix of macaque neo-cortex by using infor-
mation theoretical measures. They have identified exis-
tence of clusters linking prefrontal and parietal regions.

In this paper, we investigate neural activity using an
anatomical connection matrix of human cortex compris-
ing of 38 sensory areas. We study dynamics on the
anatomical network by modelling neuronal masses at
each location by FitzHugh-Nagumo[6] oscillators and in-
corporating time-delayed coupling. We identify the sta-
bility region in the connectivity strength and time delay
plane and show its robustness by subjecting the model to
perturbations. The complex spatiotemporal data is anal-
ysed by principal component analysis to reveal the un-
derlying functional connectivity. We find strong evidence
that prefrontal, parietal and cingulate cortex are actively
involved in a resting brain in agreement with existing
imaging studies [3], [4], [5].

Methods
We simulated the neuronal dynamics on a connection

matrix of human neo-cortex. The connectivity matrix is
a weighted matrix comprising of 38 sensory nodes. This
is a sparse matrix with weights ranging from 1, 2, and 3
and has some unknown connections, where experimental
evidences are not strong enough to establish the connec-
tion. We assume the unknown weights to be zero and have
also studied by substituting them with random weights
with no change in results. The connection graph has 599

129



edges, with connection density = 0.42603, characteristic
path length = 1.633 and clustering index = 0.568.

We simulate neuronal dynamics by assuming each neu-
ronal mass is governed by an oscillator of the kind of
FitzHugh-Nagumo model given by

u̇(t) = g(u, v) = τ

[

v + γu −
u3

3

]

(1)

v̇(t) = h(u, v) = −
1

τ
[u − α + bv − I] (2)

whereu andv represent the fast and slow variables re-
spectively. The network model with the coupling term
having coupling strength c is given by:

u̇i(t) = g(ui, vi) − c

N
∑

j=1

fijuj(t − ∆tij) (3)

v̇i(t) = h(ui, vi) (4)

wheref represents the connection matrix and the time
delays are computed from the distance matrix d and v is
the propagation velocity,

∆tij =
dij

v
(5)

The simulations are carried out for rest state dynamics
i.e. there is no external stimulus,I = 0, and parameter
values are set as followsα = 1.05, b = 0.2, γ = 1.0,
τ = 1.25. We vary the connection strength, c, and prop-
agation velocity, v, to obtain the stability region from the
spatiotemporal data. The stability diagram is shown in
Figure 1.

It is interesting to see that by varying propagation ve-
locity it is possible to stabilize/destabilize the system.To
check for robustness we have varied the system parame-
ters and recalculated the stability criteria. We observe that
for moderate perturbations in the parameters the stabil-
ity feature is robust and qualitative features are retained.
While the above results confirm the resilience of the net-
work we expect the stability feature to breakdown for ran-
dom connectivity matrices. Starting from the connectiv-
ity matrix we rewire the edges by a probability,p, and by
varyingp obtain a completely random graph forp = 1.0
[7]. Now, performing the simulation and obtaining the
stability index we observe that the stability feature is de-
stroyed by systematically increasingp. This shows that
the stability diagram is intrinsic feature of the underlying
cortical network.

The aim of this work is to establish the functional rela-
tionship between different cortical regions. The instabil-
ity that sets in the system is oscillatory in nature and tun-
ing c or v it is possible to stabilize/destabilize the system.

The nodes that set into oscillations will exhibit strong cor-
relations depending on their functional connectivity. We
have used principal component analysis on the spatiotem-
poral data to identify the dominant connectivity. The PCA
is carried out on the spatiotemporal data in the following
way: let the parameters be set to point A in Figure 1,
which is a stable region and let the system run and set-
tle to its fixed point and then tune the propagation veloc-
ity, v, such that the system is destabilized. The time at
which v is decreased is indicated by the arrow and the
corresponding time series is shown in Figure 2. Now per-
forming PCA in moving windows it will be possible to
see how many nodes are dominant as the system scans
through stable to unstable region.

A typical result of PCA is shown in Figure 3. It is
clearly evident that as destabilizing oscillations do set in
the system, the spatiotemporal dynamics can have low di-
mensional representation in terms of two modes. Plotting
the spatial modes for subsequent windows show that they
have identical structure and we set a threshold -0.3, and
identify those nodes having values below the threshold
are most relevant. Thus we can identify the underlying
functional network. (For the results shown in Figure 2 and
3 the network thus identified is shown in Figure 4.) The
nodes are obtained from the first dominant PCA mode. It
is observed that these areas are primarily involved in rest
state brain irrespective of the region in parameter space
we have analysed.

Illustrations and References
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Figure 1: Stability diagram: A indicates the stable
region lying between two unstable regions forc = 0.03.
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Introduction
Magneto- and Electroencephalograms have been used

for decades to measure electrophysiological brain data. In
particular, the responses to short stimuli, so called event-
related fields (ERFs) and potentials (ERPs) have been
used as putative magneto- and electrophysiological corre-
lates of perceptual and cognitive operations. However, the
exact neurobiological mechanisms underlying their gen-
eration are largely unknown. This is unfortunate, because
MEG and EEG measure temporally well-resolved activ-
ity related directly to neuronal dynamics. Being able to
infer about the system underlying these dynamics would
make it possible to test cognitive hypotheses that see the
brain as a dynamic hierarchical network.

Previous studies have shown that ERP-like responses
can be reproduced by brief perturbations of model corti-
cal networks [1], [7], [5], [6], [10]. The parameterization
of these models is neurobiologically plausible and makes
them valuable tools to look at the system ‘brain’.

In particular, the Jansen & Rit neural mass model [5]
explains ERPs by the output of a few coupled damped os-
cillators. When one combines dynamic networks of these
cortical oscillators with the M/EEG observation function
(i.e., the leadfield), one obtains a full spatiotemporal for-
ward model for evoked responses [7]. Inversion of this
forward model can be done using a Bayesian expectation-
maximization (EM) algorithm [1].

Dynamic Causal Modelling
In Fig. 1, the ordinary differential equations of the tem-

poral model aspect are shown. This coupled system, con-
sisting of three neural masses (pyramidal cells, excitatory
and inhibitory interneurons), describes the dynamics of
one cortical area. For a bifurcation analysis of this model,
see [4]. Output is generated as the depolarisation of the
pyramidal cells, which causes extra-cellular current due
to a voltage difference between their apical and basal den-
drites. Interesting inferences can be made by postulating
the differences between ERPs (e.g., different conditions
of an experimental paradigm) due to a modulation of con-
nection strength, either within- or between areas [8].

The full spatiotemporal model is inverted using a
Bayesian Expectation-Maximization algorithm [2], [1],
under the assumption of a normal observation error. We

Figure 1: System of coupled 1st order differential
equations describing the dynamics of a single cortical

area. He,Hi, τe, τi are the maximum amplitudes and the
decay times of a transmembrane-potential function, the
function S is a sigmoid, u is the input, the matrix C the
input efficacy, and γ1, γ2, γ3, γ4 control the connections

strengths between subpopulations. Matrices AF , AB, AL

encode (long-range) connections strengths between
cortical areas.

use informative priors on most of the parameters, which
are known to lie in some physiological range.

Importantly, the model evidence can be used for model
comparison to select the best model among several can-
didate models. These candidate models can be predic-
tions derived from competing cognitive or neurophysio-
logical hypotheses. Results are typically reported over
subjects, and the posterior means of the best model are in-
spected using confidence intervals. In a first application,
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we have shown that the mismatch-negativity (MMN), a
well-known M/EEG phenomenon, can be explained by
a modulation of forward and backward connections, and
can thus be construed as learning about the auditory envi-
ronment [3].

Currently, our group uses this model, and variants of it,
for analysis of evoked responses, time-frequency power
data (Chen et al., in preparation), and local field po-
tentials [9]. Ongoing work aims at making the model
stochastic, i.e., allowing noise on the states x to take into
account uncertainty about the neuronal states. The inver-
sion of the stochastic model will be done using a Varia-
tional Bayes algorithm (Daunizeau et al., in preparation).

Conclusions
Dynamic Causal Modelling (DCM) is a new tool to

analyse electrophysiological data based on neural mass
models and their Bayesian inversion. The difference to
conventional M/EEG analysis approaches is that DCM
operates with physiologically grounded parameters, i.e.,
inferences can be related to the underlying system, the
brain.
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Abstract
We discuss the uniqueness and non-uniqueness of cur-

rent reconstruction problems from measurements of the
magnetic field outside of the region where the currents
flow. Current reconstructions are of importance for mag-
netic brain imaging, where event related magnetic fields
can be used to find regions of enhanced activity within
the brain. Here, we study the mathematical theory behind
such reconstructions. In particular, we will analyse the
null-space N(W ) of the Biot-Savart integral operator W
and provide characterizations ofN(W ) andN(W )⊥. We
will construct particular elements in the null-space. Fur-
ther, for the reconstruction of currents in single wire-lines
or with a discrete set of sources, we will prove uniqueness
for source reconstruction.

Introduction
We assume that we know the current distribution j in

the domain Ω ⊂ R3. We need to model the magnetic field
from which we target to reconstruct the current density
j. Magnetic fields H of currents j are calculated via the
Biot-Savart integral operator, defined by

(Wj)(x) :=
1
4π

∫
Ω

j(y)× (x− y)
|x− y|3

dy, x ∈ R3 (1)

for j ∈ L2(Ω). For details about this representation and
its relation to Maxwell’s equations we refer to [5]. The
problem of magnetic tomography consists of solving the
equation

Wj = Hmeas on ∂G, (2)

where G is some domain with sufficiently smooth bound-
ary such that Ω ⊂ G and Hmeas denotes some measured
magnetic field on ∂G. Here, we need to supply appropri-
ate conditions on the current densities j under considera-
tion via the spaces on Ω and ∂G.

The simulation of currents has been studied in [5]. The
uniquenss and non-uniqueness of current reconstructions
is our topic here. Different approaches to current and ob-
stacle reconstruction from measured magnetic fields are
under development, compare [1], [2], [8], [7]. In partic-
ular, a general Tikhonov regularization approach is em-
ployed in [5], the point source method for field recon-
structions and the no-response test in [4]. We also would

like to refer to related work on real data reconstructions
for the industrial fuel-cell application of magnetic tomog-
raphy in [2]. Here we relate these results to the medical
application, where currents and sources in the brain are
under investigation.

Non-uniqueness for source reconstructions
An important problem for magnetic tomography is

given by the uniqueness question. Does a magnetic field
measured on ∂G determine the current distribution in Ω?
This question naturally leads to basic subproblems. First,
do the measurements on ∂G determine the analytic mag-
netic field in the exterior of Ω? Second, if the field is
determined on Ωe, does it uniquely determine the current
distribution j in Ω. We will first give a simple exam-
ple which demonstrates the strong non-uniqueness of the
general magnetic tomography problem.

Consider a vectorial function m ∈ C2
0 (Ω) and define

j := 4m. We calculate

(Wj)(x) = curl
∫

Ω

1
4π

1
|x− y|

4m(y)dy

= curl
∫

Ω
4y

1
4π

1
|x− y|

m(y)dy

= 0, x 6∈ Ω (3)

where we used Green’s second theorem and4y
1

|x−y| = 0
for y 6= x. The full nullspace is characterized via the
following result [1].

THEOREM 1.1 The nullspace of the Biot-Savart integral
operator (1) is given by the set

N(W ) =
{
curl v : v ∈ H1

0 (Ω),div v = 0
}
. (4)

Thus there is a large nullspace. Special elements of the
nullspace have been constructed in [1], compare Figure 1.

Connected to the uniqueness question is the character-
ization of the orthogonal space N(W )⊥ of the nullspace
N(W ) with respect to the L2(Ω) scalar product

(ϕ,ψ)L2(Ω) =
∫

Ω
ϕ(y)ψ(y) dy. (5)

The space N(W )⊥ is particularly interesting since the
standard Tikhonov regularization projects the solution
density j onto the space N(W )⊥.
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The following theorem is due to Kühn [4], extending
results of [1].

THEOREM 1.2 The orthogonal space of N(W ) is char-
acterized by

N(W )⊥ = {j ∈ Hdiv =0(Ω) : ∃q ∈ L2(Ω)
s.th. curl j = grad q}, (6)

where Hdiv =0(Ω) denotes the set of densities j in H1

with div j = 0.

An important conclusion of this result now follows
from div j = 0 via curl curl = −4 + grad div . We
derive

4j = −curl curl j = −curl grad q = 0 (7)

for each element of N(W )⊥. Equation (7) is to be under-
stood in H−1(Ω). Thus the cartesian components of the
current density j are weak solutions to Laplace’s equa-
tion and via standard regularity results they are also a
strong solution to Laplaces equation. As it is well known
solutions of the Laplace equation satisfy a maximum-
minimum principle, i.e. these functions take their max-
imum or minimum on the boundary of a domain. This
is a strong limitation to the reconstruction algorithm via
Tikhonov regularization which needs to be investigated
further.

Uniqueness of ohmic currents with known back-
ground and of source locations

Here we show some further uniqueness results in mag-
netic tomography. We call currents ohmic when they do
not have sources in the set Ω. A result about ohmic cur-
rents has been shown in [4], [1].

THEOREM 1.3 Let j be an ohmic current in Ω, i.e. the
current does not have any cources in the interior. Then
we have

j ⊥σ N(W ) (8)

with orthogonality with respect to the scalar product

(ϕ,ψ)σ :=
∫

Ω
ϕ(y) · σ(y)−1ψ(y)dy. (9)

The theorem shows that if σ is known, then the currents
are in exactly the right space for unique reconstruction.
However, if σ would be known we could calculate the cur-
rents by solving the forward problem and would not need
the magnetic field measurements. Usually σ is unknown,

that is the crucial point. In this sense the result of Theo-
rem 1.3 does not help to answer the uniqueness question
nor does it provide an algorithm for the reconstruction.
However, if σ is close to a homogeneous function, then
the scalar product is close to the standard L2 scalar prod-
uct and we can employ an approximation argument. In
this case we conclude that Tikhonov regularization will
calculate a reasonable reconstruction by projecting onto
the space N(W )⊥ instead of the close space N(W )⊥σ .

We now finish with some uniqueness results for partic-
ular settings.

THEOREM 1.4 The current in a discrete wire grid G is
uniquely determined by its magnetic field measured on the
boundary ∂G outside of the domain Ω containing G.

The result [1] is due to the fact that the magnetic field
H(x) generated by a wire line γ with non-vanishing cur-
rent has a singularity for x→ γ.

Next, assume that the current is coming from a finite
set of discrete sources

Hj(x) = βj ×∇Φ(x, zj), x ∈ R3 (10)

where
Φ(x, z) =

1
4π

1
|x− z|

, x 6= z, (11)

with source points z1, ..., zN , zj 6= zk for j, k ∈ N ∈ N
and source strength βj ∈ R3, which also describes the di-
rection of the local current βj . This model for biomedical
imaging is described in [3], Chapter 7.3. In this case, the
measured magnetic field H is given by

H(x) =
N∑

j=1

βj ×∇Φ(x, zj), x ∈ R3 (12)

With the same argument as for Theorem 1.4 we derive the
following basic result on source reconstruction.

THEOREM 1.5 The location zj as well as the direction
and strength βj of any set of discrete sources is uniquely
determined by its magnetic field measured on the bound-
ary ∂G outside of the domain Ω containing the source
points z1, z2, ..., zN .

Proof. First, we note that as shown in [5] the mea-
surements of H on ∂G uniquely determine H in the
exterior of G. By analyticity of the fields in M :=
R3 \ {z1, ..., zN} it determines the field in M . Clearly, in
zj , j = 1, ..., N , the fields are singular. Thus the source
points zj are uniquely determined by the field itself.
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The strength of the singularity can now be used to both
calculate the length and direction of the vector βj , i.e. the
direction and strength of the sources, as follows. We note
that the gradient ∇Φ(x, z) has the direction

d = − x− z

|x− z|
. (13)

The vector product β × d is zero only if d ‖ β, which
determines the direction of β from the knowledge of H
up to a sign. The size and sign of β can now be calculated
for example by evaluation of H(x) at a point x such that
x− z ⊥ β and division by |x− z|. �

Figure 1: Element of the nullspace of the Biot-Savart
integral operator.
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T.: ”Magnetotomography - A New Method for
Analysing Fuel Cell Performance and Quality.”
Journal of Power Sources 143 (2005), 67-74.

[3] Kaipio, J. and Sommersalo, E.: Computational and
Statistical Methods for Inverse Problems Springer
2004.
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The brain is a multi-scale system with a complex hier-
archical organization, which has been studied using sev-
eral experimental techniques. This hierarchical organi-
zation varies from the level of the single neuron to that
of whole brain regions. As these scales change, so the
techniques for modelling the recorded activity alter from
probabilistic (in some sense) to structured. Equally, the
temporal dynamics vary from discrete events (i.e. spikes)
to continuous rhythmic activity as may be observed via
scalp EEG. Systematic experimental results on the multi-
scale characteristics of the brain have motivated a num-
ber of theoretical approaches. In particular, under the dy-
namical hypothesis [1], mathematical models have been
proposed to successfully describe these levels of exper-
imentally recorded phenomena. For example, at the
microscale, the Hodgkin-Huxley model [2] and related
conductance-based models successfully explain the tem-
poral dynamics of an individual neuron. Whilst at the
macroscopic scale, Neural field models [3], [4], [5], Neu-
ral mass models [6], [7], [8] and models based on Popula-
tion density [9] are employed to describe dynamical activ-
ity of LFP and EEG. To analyse complex systems, tech-
niques such as separation of scales can be employed to
enable mathematical analysis. However, it is not apparent
that a physiological equivalent of separation of scales ex-
ists in the brain and is still a source of debate among neu-
roscientists. One explanation for the uncertainty of this
approach in neuroscience is the fact that many processes
in the brain operate on several spatial and/or temporal
scales, hence providing strong interactions between them.
For instance, neurons produce spikes whose timing is in
some cases up to a millisecond precise [10]. On the other
hand, there are examples showing that a lot of informa-
tion is transmitted between neurons via variations in the
average firing rate, which occur in the time scales of hun-
dreds of milliseconds [11]. Thus, it is unclear when and
how to ‘coarse-grain’ in order to move from one scale to
another, as well as if this procedure is valid at all. Despite
this, mathematical techniques have been developed, two
approaches in particular are widely used to study neural
field models. One approach by Ermentrout [12] utilizes
thermodynamic theory which describes the activity of all
neurons within a population by a single macroscopic vari-

able. A similar derivation, which holds for averaging over
Poisson inputs for a large network, used in conductance
based models was introduced by Shriki [13].

One area of importance is the modelling of human EEG
using macroscopic models, as it has been suggested that
tracking dynamical changes in this models could be ap-
plicable in diagnosis of neurological disorders [14], [15].
The purpose of this talk is to give an overview of our re-
cent work in this area, focussing on the use of macroscale
models in studying human EEG. In particular we observe
that the transition to generalized seizure states is linked to
bifurcations arising out of a variation of a parameter rep-
resenting the strength of connectivity between cortex and
the specific relay nuclei in the thalamus. Since the param-
eters of these macroscale models considered are lumped
together, they do not have a direct physical interpretation.
However, by developing a mapping between scales, some
understanding of the relationship between parameters at
the macroscale and physiological parameters of reduced
conductance-based models can be obtained. We will dis-
cuss techniques for achieving such mappings, as well as
outline how these approaches may be used in epilepsy
seizure prediction.

137



References
[1] T. V. Gelder. The dynamical hypothesis in cognitive

science. Behavioral and Brain Sciences, 21:615–
665, 1988.

[2] A. L. Hodgkin and A. F. Huxley. A quantitative de-
scription of membrane current and its application to
conduction and excitation in nerve. Journal of Phys-
iology, 117:500–44, 1952.

[3] H. R. Wilson and J. D. Cowan. Excitatory and
inhibitory interactions in localized populations of
model neurons. Biophysical Journal, 12:1–24,
1972.

[4] P. L. Nunez. Neocortical Dynamics and Human
EEG Rhythms. Oxford University Press, 1995.

[5] V. K. Jirsa and H. Haken. Field theory of electro-
magnetic brain activity. Phys. Rev. Lett., 77:960,
1996.

[6] W. J. Freeman. Mass Action In The Nervous Sys-
tem. Examination of the Neurophysiological Basis
of Adaptive Behavior through the EEG. Academic
Press New York San Francisco London, 1975.

[7] F. H. Lopes da Silva, A. Hoeks, H. Smits, and L. H.
Zetterberg. Model of brain rhythmic activity. the al-
pha rhythm of the thalamus. Kybernetik, 15:27–37,
1974.

[8] B. H. Jansen and V. G. Rit. Electroencephalogram
and visual evoked potential generation in a mathe-
matical model of coupled cortical columns. Biol.
Cybern, 73(357-366), 1995.

[9] A. Omurtag, B. W. Knight, and L. Sirovich. On the
simulation of large populations of neurons. Journal
of computational neuroscience, 8:51–63, 2000.

[10] M. J. Berry, D. K. Warland, and M. Meister. The
structure and precision of retinal spike trains. Proc.
Natl. Acad. Sci. USA, 94(10):5411–5416, 1997.

[11] A. Borst and F. E. Theunissen. Information theory
and neural coding. Nat. Neurosci., 2(11):947–957,
1999.

[12] B. Ermentrout. Reduction of conductance based
models with slow synapses to neural nets. Neural
Comp., 6:679–695, 1994.

[13] O. Shriki, D. Hansel, and H. Sompolinsky. Rate
models for conductance-based cortical neuronal net-
works. Neural Comp., 15:1809–1841, 2003.

[14] M. Breakspear, J. A. Roberts, J. R. Terry, S. Ro-
drigues, N. Mahant, and P. A. Robinson. A unifying
explanation of primary generalized seizures through
nonlinear brain modeling and bifurcation analysis.
Cerebral Cortex, 16:1296–1313, 2006.

[15] S. Rodrigues, J. R. Terry, and M. Breakspear. On the
gensis of spike-wave activity in a mean-field model
of human thalamic and cortico-thalamic dynamics.
Physics Letters A, 355:352–357, 2005.

138



CORTICAL WAVES AND THE DEVELOPMENT OF CORTICAL ANATOMY

J. J. Wright†,‡,∗ and P.D. Bourke§

†Liggins Institute and Department of Psychological Medicine, University of Auckland, Auckland, New Zealand.
‡Brain Dynamics Centre, University of Sydney, Sydney, Australia.

§WASP, University of Western Australia, Perth, Western Australia, Australia.
∗Email: jj.w@xtra.co.nz

Abstract

The transmission of waves through the neurons of the
cortical mantel, and the development of synapses related
to learning, can give rise to the complex structure of neu-
ral connections which emerges during growth of the vi-
sual cortex.

Synaptic connections in V1

In the visual cortex (V1) and cortex generally, the den-
sity of synaptic couplings generated by each neuron de-
clines with distance from the soma of the cell of origin,
at two scales — that of the local intra-cortical connec-
tions (at the V1 macrocolumnar scale), versus the longer
intracortical connections [10], [4], [7]. Thus, visual infor-
mation can reach each macrocolumn-sized area, from the
whole, or a substantial part, of V1. It has been proposed
[17] that via the mediation of waves of brain activity, local
maps of synaptic connections emerge at the macrocolum-
nar scale, which form a tiling of V1, each local map being
a representation of the visual field — the global map —
projected to V1 by the visual pathway.

Cortical waves and synchronous fields

At all scales, the cortex of the brain supports travel-
ing waves of depolarization of the cortical cells, medi-
ated by axonal and dendritic transmission. Theoretically,
these waves selectively eliminate of out-of-phase activ-
ity during wave interference [15], [9], [16], [5] explain-
ing the observed occurrence of synchronous oscillation
(e.g., [11]). Because of the decline of synaptic density
with distance, the spatial covariance (the magnitude of
synchronous oscillation) between any pair of pyramidal
neurons in V1 declines with distance Thus, covariance of
activity (the average magnitude of synchronous oscilla-
tion) in V1 declines with distance at both the global, V1,
scale, and the local, macro-columnar, scale. This effect
can provide a metric for organization of the local maps
from the global map, as follows.

Learning rules and constraints on stable solutions
At each synapse the co-incidence of pre and post

synaptic activity, rQϕ, over a short epoch, t, is given by

rQϕ ∝
∑

t

Qe(t)× ϕe(t) , (1)

where Qe(t) ∈ [0, 1] is the postsynaptic firing rate, and
ϕe(t) ∈ [0, 1] is the presynaptic firing rate. A Heb-
bian multiplication factor, Hs, operating on the gain of
synapses at steady rates of pre- and post-synaptic firing,
in simplest form, is

Hs = Hmax exp(−λ/rQϕ) , (2)

where λ is a suitable constant.

With changes in rQϕ, Hs can increase or decline over
time. Fields of synchronous oscillation organize the val-
ues of rQϕ through the cortical field.

Synapses can approach a stable state only by approach-
ing either one of two extremes – with rQϕ approaching
a maximum (saturated state) or a minimum (sensitive
state) respectively. (These states can correspond to dif-
ferent physiological forms on different time scales.)

Competition occurring for metabolic resources within
axons adds a further constraint to stable end-points for
synaptic development [6] — viz: the proportion of satu-
rated and sensitive synapses must be uniform along ax-
ons.

Overall synaptic stability
All positions in V1, {Pj,k}, can be given an ordered

numbering in the complex plane, 1 . . . , j, . . . , k, . . . , 2n,
and all positions within a representative macrocolumn lo-
cated at P0, {pj,k}, can be similarly numbered. The total
perturbation of synaptic gains in all the synapses from V1
entering the macrocolumn, Ψ(pP ), and the total pertur-
bation of synaptic gains within the macrocolumn, Ψ(pp),
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can be written

Ψ(pP ) =
j=n∑
j=1

k=n∑
k=1

σSAT (pjPk)SSAT (pjPk) + (3)

j=n∑
j=1

k=n∑
k=1

σSENS(pjPk)SSENS(pjPk)

Ψ(pp) =
j=n∑
j=1

k=n∑
k=1

σSAT (pjpk)SSAT (pjpk) + (4)

j=n∑
j=1

k=n∑
k=1

σSENS(pjpk)SSENS(pjpk) ,

where σSAT (pjPk, pjpk) and σSENS(pjPk, pjpk) are
densities of synapses approximately saturated, or
approximately sensitive, and SSAT (pjPk, pjpk) and
SSENS(pjPk, pjpk) are the corresponding variations of
synaptic gains over a convenient short epoch. Since den-
sities of synapses decline with distances of cell separa-
tion, then as a simple arithmetic property of sums of prod-
ucts, approximation to minimization of Ψ(pp) requires
synapses connecting neurons separated by short distances
to most closely approach either maximum saturation, or
maximum sensitivity. An analogous requirement is im-
posed on minimization of Ψ(pP ), and metabolic unifor-
mity requires that both sensitive and saturated synapses
from each axon must remain locally in equal ratio.

A stable solution meeting these requirements can be
found in a unique topology, mapping the global to
the local map This can be described by renumbering
{Pj,k} as {Pj1,j2,k1,k2}, and {pj,k} as {pj1,j2,k1,k2},
the subscript numbers 1, . . . , j1, . . . , j2, . . . , n, (n +
1), . . . , j2, . . . , k2, . . . , 2n can be ascribed in the global
map so that j1 and j2 are located diametrically opposite
and equidistant from P0, while in the local map j1 and j2
have positions analogous to superimposed points located
on opposite surfaces of a Möbius strip. This generates a
Möbius projection (the input map) from global to local,
and a Möbius ordering within the local map. That is,

P 2
jm

|Pjm|
→ pkm, m ∈ {1, 2} (5)

and
pjm → pkm m ∈ {1, 2} . (6)

Evolution of these patterns of synaptic connections is
shown in Figs. 1 and 2. In Eq. (5) the mapping of
widely separated points in the global map converge to co-
incident points on opposite surfaces of the local map’s

Möbius representation. In Eq. (6) the density of satu-
rated synaptic connections now decreases as |j1 − k1|
and |j2 − k2|, while the density of sensitive couplings
decreases as |j2− k1| and |j1− k2|.

Anatomically, this requires j1 and j2 in the local map
to represent two distinct groups of neurons. To attain
maximum synaptic stability within the local map an in-
tertwined mesh of saturated couplings forms, closed after
passing twice around the local map’s centre, with sensi-
tive synapses locally linking the two turns of the mesh
together. In this fashion both saturated and sensitive
synapses decline in density with distance, as required.
The input map is of corresponding form, conveying an
image of the activity in V1 analogous to projection onto
a Möbius strip.

Since the projection of the global map upon the lo-
cal map conserves relative correlations in the global map
as a function of distance, convergence toward the sta-
ble configuration will be facilitated by a modification of
the Hebbian rule with a recently demonstrated physio-
logical basis — the spatio-temporal learning rule [13],
[14] in which covariance among afferent synapses, as
well as pre-postsynaptic neurons, facilitates the strength
of synaptic connection.

Figure 1: Initial conditions for local evolution of
synaptic strength. Left. The global field (V1) in polar
co-ordinates. Central defect indicates the position of a

local area of macro-columnar size. Polar angle is shown
by the color spectrum, twice repeated. Middle. Zones of
random termination (shown by color) of lateral axonal
projections from global V1 in the local area. Central
defect is an arbitrary zero reference. Right. Transient

patterns of synchronous oscillation generated in the local
area, mediated by local axonal connections.

Monosynaptic interactions between adjacent local
maps

Adjacent local maps form in approximately mirror im-
age relation, as shown in Fig. 3, because in that config-
uration homologous points within the local maps have
densest saturated and sensitive synaptic connections, thus
meeting minimization requirements analogous to those of
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Figure 2: Evolution of synaptic strengths to their
maximally stable configuration. Left. The global field

(V1), as represented in Fig. 1. Middle. Saturated
synaptic connections input from the global field now

form a Möbius projection of the global field, afferent to
the local neuronal field, and forming a local map. Right.
Saturated local synapses, within the local map, form a
mesh of connections closed over 0− 4π radians. The

central defect now corresponds to the position within the
local map, of the local map within the global map.

Sensitive synapses (not shown) link adjacent neurons as
bridges between the 0− 2π and 2π − 4π limbs of the

mesh of saturated connections (Wright 2006).

Eq. (3) and Eq. (4).

Figure 3: Organization of saturated coupling within and
between local maps, and the approximate mirror

symmetry of orientation preference in adjacent local
maps (Wright 2006).

Conformity to experimental data
These principles can accounts for response preferences

of V1 neurons to visual stimuli, orientation preference
singularities, linear zones and saddle points, connections
between cells of similar orientation preference in adja-
cent macrocolumns [3], ocular dominance columns [8],
occurrence of direction preference fractures always in
odd numbers around singularities [12] and the dynamic
variation of orientation preference with stimulus velocity,
stimulus orientation relative to direction of motion, and
stimulus extension, discovered by Basole et al. [2].
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Abstract
An analytical continuation method for the reconstruc-

tion of perfectly conducting bodies was introduced by
Çayören et al [1]. The method based on a special rep-
resentation of the scattered field in terms of single layer
potential and Taylor series expansion, and yields very ac-
curate results in the illuminated part of the object for a
single illumination at a fixed frequency. In this study, a
procedure is proposed to improve the resolution of the re-
constructions by using multi-view configuration. The nu-
merical studies shows that this approach yields quite ac-
curate reconstructions and is robust against noise on the
data.

Introduction
In [1], a simple method to determine the shape of a

2D PEC target located in an infinite homogeneous space
was introduced. In that work the body, whose size is
assumed to be comparable to the wavelength, is recon-
structed using a single plane wave at a fixed frequency
by measuring the corresponding the scattered field over
a circular domain. The basic idea of the method is that
the region external to the body can be fictitiously sepa-
rated into two parts by a circle which covers the object.
Such a circle is chosen close to the minimum one enclos-
ing the scatterer, whose radius is either a priori known or
extracted through a simple processing of measured data
[2]. The scattered field in the region external to the cir-
cle is then expressed in terms of a single-layer potential
[3], whose density function is achieved solving a prop-
erly regularized inverse problem. Conversely, the field
inside the circle is represented through a Taylor series ex-
pansion [4], whose (few) coefficients are computed using
the field arising from the single-layer potential represen-
tation. By applying the condition that the total electric
field must vanish on the unknown boundary the problem
is recast as the solution of a non-linear equation which is
solved through the application of the Newton’s method.
Despite its simplicity, the method is quite general as it
can reconstruct both convex and concave surfaces in the
low frequency region. For high frequencies the method
gives only satisfactory reconstructions in the illuminated
part and is not robust against the noise on data.

In this work, the method is extended to the multi-
incidence case. To this aim the body is illuminated by a
certain number of plane waves and for each illumination
the reconstruction is obtained through the method given
in [1]. Then by taking the reconstructed portions in the
illuminated parts and combining them with an averaging
procedure at the connection points, a new reconstruction
is obtained. This new approach provides quite accurate
reconstructions in the high frequency regime.

An Analytical Continuation Method for Shape Recon-
struction

The two-dimensional scattering problem which is con-
sidered here is illustrated in Figure 1. In this configura-
tion D is a perfectly conducting cylindrical body whose
boundary ∂D is defined by the parametric equation ρ =
f(φ), φ ∈ (0, 2π) where (ρ, φ) are the cylindrical polar
coordinates. The body D is located in a homogeneous
infinite space whose electromagnetic constitutive param-
eters are ε, µ0 and σ.
The inverse scattering problem considered here consists
in recovering the shape of the body D, i.e., the function
f(φ), from a set of measurements of the scattered wave on
a circular domain. To this aim, the body D is illuminated
by N time-harmonic plane waves ~Ei

n = (0, 0, ui
n(ρ, φ))

with incidence angles θn, n = 1, ..N .
For each incident field the region outside the object is

separated into two parts by a circle which is assumed to
be the minimum one with radius a covering the object.
The scattered field in the region ρ > a is represented in
terms of a single layer potential

us
n(ρ, φ) =

i

4

∫ 2π

0
H

(1)
0 (k

√
ρ2 + a2 − 2ρa cos(φ− τ) )Ψn(τ)adτ,

(1)
with an unknown density function Ψn on the circle ρ = a

[3], where H
(1)
0 denotes the zero order Hankel function

of the first kind while k is the wavenumber.
Then the use of the measured data on the circle ρ = R,

say us
n(R, φ), leads the following equation for the un-

known density function Ψn

AΨn = us
n(R, φ) (2)
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Figure 1: Geometry of the problem.

where the integral operator A is given by

AΨ =

i

4

∫ 2π

0
H

(1)
0 (k

√
R2 + a2 − 2Ra cos(φ− τ) )Ψ(τ)adτ.

(3)
The operator A has an analytic kernel and therefore the
equation (2) is ill-posed. For this reason, some kind of
regularization has to be applied and only an approxima-
tion of the sought function Ψn can be achieved. Here we
applied the truncated SVD algorithm as a regularization
procedure [5].

Let us now turn to the interior region f(φ) < ρ < a.
Within the approximation introduced by the TSVD inver-
sion the total field un = us

n + ui
n in this region can be

obtained by using the field us
n(ρ, φ) given by (1). In par-

ticular, un(ρ, φ) is expanded into a Taylor series in terms
of ρ around the circle ρ = β, where a ≤ β, see Figure 1,
as follows [4]:

un(ρ, φ) =
M∑

m=0

cn
m

(
ρ− β

λ

)m

+Rn
M (ρ, φ), ρ ∈ (f(φ), β].

(4)
with coefficients

cn
m =

λm

m!
∂mun(β, φ)

∂ρm
(5)

and remainder term Rn
M (ρ, φ), where λ is the wavelength.

The m’th order derivatives of un(ρ, φ) at ρ = β ap-
pearing in the right hand side of (5) can be obtained from
(1).

Since the total field un(ρ, φ) in the whole region ρ >
f(φ) can be estimated through (1) and (4), the reconstruc-
tion of the boundary ∂D can now be achieved by search-
ing those points where this latter field vanishes which
leads the non-linear equation

Fn(f) = 0 (6)

where Fn is the operator given by

Fn(f) =
M∑

m=0

cn
m

(
ρ− β

λ

)m

= 0. (7)

after neglecting the remainder term. Note that, for given
data, the coefficients cn

m in (7) are all known. Thus the
reconstruction problem is reduced to the solution of non-
linear equation (6) for the unknown function f . This non-
linear equation is solved through a linearization procedure
in the Newton sense which results in the iteration proce-
dure

F ′
n(fi)∆fi+1 = −Fn(fi), i = 0, 1, 2, 3, .... (8)

for ∆fi+1 to obtain a sequence of approximations through
fi+1 = fi + ∆fi+1.

Note that the solution of (6) is a function of incident di-
rection thus for each illumination the above method will
give a solution fn, n = 1, ..N . As mentioned earlier
the above method yields satisfactory reconstructions of
the illuminated part of the object for the high frequency
regime. Thus each solution fn has an accurate part in
the illuminated region of the object. By considering this
fact one can get a high resolution image by combining
the accurate parts of each reconstructed surface function
fn. In this procedure, the reconstructions at the connec-
tion points are obtained by simply averaging two adjacent
solutions.

Numerical Results
In this section we provide some numerical results

which demonstrate the validity and effectiveness of the
method. In all cases, the body is illuminated by plane
waves of incidence directions θ1 = 0, θ2 = π/2, θ3 = π
and θ4 = 3π/2 and the body is assumed to be located in
free-space. The scattered field data are synthetically gen-
erated by solving the associated forward problem through
the mixed double and single-layer potential approach [3].
The number of measurement points is 200 and a random
noise is added to the simulated data. In particular, a ran-
dom term nl|us

m|e2irdπ is added to each scattered field
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Figure 2: Exact geometry (dashed line) ; reconstructed
shape with noisy data (solid line); .

value us
n, nl being the noise level and rd a random vari-

able between 0 and 1. As a first example we consider a
kite shaped object. In this case the operating frequency
is chosen as f = 700MHz. The number of terms which
is taken in the Taylor expansion is M = 4. The radius
of the minimum circle covering the object is chosen as
a = 0.275 and the scattered field is expanded in to Taylor
series around the circle β = 0.325. Figure 2 illustrates the
exact and reconstructed shapes for a given data contain-
ing 5% noise. As it can be observed, the reconstruction is
quite accurate and is quite robust against noise on data.

The second example is related to a ”potato”-shaped
body. The exact and reconstructed shapes are presented
in Figure 3 where the reconstruction is obtained for a =
0.32, β = 0.38, M = 4, and f = 600MHz. From
the illustrative examples given above, one can conclude
that the proposed method is capable of providing quite
satisfactory reconstructions in the multi-view configura-
tion. With the proposed approach the method given in [1]
is extended to the high frequency regime. Note that, as
only few seconds are required on a standard PC to achieve
these results, the method is indeed very fast, simple and
effective.
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Figure 3: Exact geometry (dashed line) ; reconstructed
shape with noisy data (solid line); .
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Abstract
We study the reconstruction ofthree-dimensional

rough surfaces via a potential approach. Using single-
layer potentials for the solution of shape reconstruction
problems has first been suggested by Kirsch-Kress in the
case of bounded obstacles. We describe the original re-
alization and discuss its advantages and problems. Then,
we survey recent modifications by Schulz-Potthast using
therange-testof Sylvester, Kusiak and Potthast and a hy-
brid method as realized by Serranho and Kress. Numer-
ical results in three dimensions for field reconstructions
via the potential ansatz are shown.

Introduction
We consider the scattering of time-harmonic acoustic

waves by an unbounded rough surface in three dimen-
sions. The corresponding direct problem is formulated
by the Helmholtz equation, the Dirichlet boundary con-
dition and some radiation property, [1]. Our aim is to
reconstruct the shape of the surface by recovering the to-
tal field from the knowledge of some measured values on
a planeΓh as well as the incident plane waveui and the
boundary condition.
The unknown rough surfaceΓ is a surface which can
be described by an strictly positive, bounded continuous
function i.e.

Γ =
{
x ∈ R3 : x3 = f(x1, x2)

}
and, for(x1, x2) ∈ R2,

f− < f(x1, x2) < f+.

Notations. In the following x, y, z denote
points in R3 with coordinates (x1, x2, x3) resp.
(y1, y2, y3), (z1, z2, z3). The points mirrored at the
x − y plane will be denoted byx′, y′, z′ as abbreviation
for (x1, x2,−x3) resp.(y1, y2,−y3), (z1, z2,−z3).

The Direct and the Inverse Problem
We consider the scattering by the surfaceΓ in the up-

per half-space bounded, where the incident field is due
to a point source inz ∈ R3 be defined byui(x) =
Φ(x, z), whereΦ is the standard fundamental solution of

the Helmholtz equation

Φ(x, y) :=
1
4π

eik|x−y|

|x− y|
, x, y ∈ R3, x 6= y .

The formulation of a well-posed boundary integral equa-
tion can be found in [1],[2]. The numerical treatment is
investigated in [4].

For the inverse problem we assume the knowledge of
the incident field and measurements of the scattered field
on a finite plane with heighth to the origin. The goal is
to reconstruct the total field and the unknown scattering
surface. Here, we discuss the reconstruction of the field
via a single-layer approach as suggested by Kirsch-Kress
1986, see [3]. We will discuss recent work on this method
and related algorithms as given by the range test and a
hybrid scheme.

The mathematical and computational modelling of the
two- and three-dimensional direct and inverse problem
for bounded obstaclesis well studied, [3], [12]. Further-
more, the Kirsch-Kress Method and its relations to other
similar methods as well as its convergence for bounded
obstacles is discussed in [9] and in [10]. The inverse prob-
lem forunbounded rough surfacesin two dimensions can
be found in [8], where the rigorous analysis of the point
source method is discusssed.

The Kirsch-Kress Method
We define the single layer potential via

Sϕ(x) :=
∫

Γt

G(x, y)ϕ(y)ds(y) (1)

for all x ∈ R3\Γt. Here,G is the half-space Green’s
function for the Helmholtz equation

G(x, y) = Φ(x, y)− Φ(x, y′), x, y ∈ R3, x 6= y

andΓt is a test surface given by

Γt =
{
x ∈ R3 : x3 = t, t > 0

}
(2)

where we assume that0 < t < f+. We define the hori-
zontal finite measurement plane by

Γh =
{
x ∈ R3 : x3 = h, |x1| ≤ A, |x2| ≤ A

}
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for a given constantA > 0 andh > f+. We consider the
knowledge of the scattered field onΓh. For the solution
of the inverse problem, we make the ansatz

us(x) = −v(x)− Φ(x, z′) , x ∈ Γh,

i.e. the near field data is given by the sum of the mirrored
point sourceΦ(·, z′) and a remainderv. Then we seek
the partv(x), x ∈ Ω of the scattered field in form of a
single layer potential, i.e. solve approximately the integral
equation

Sϕ(x) = v(x) , x ∈ Γh . (3)

The single layer potential is well defined and it is a
bounded operator fromL2(Γh) to L2(R3\Γt) . Specially,
we will work with the restriction

Shϕ(x) :=
∫

Γt

G(x, y)ϕ(y)ds(y) (4)

for x ∈ Γh, whose adjoint operator is given by

S∗
hϕ(y) =

∫
Γh

G(x, y)ϕ(x)ds(x) (5)

for y ∈ Γt. The restriction of the single layer potential is
injective and has a dense range. For approximately solv-
ing the integral equation we apply the Tikhonov regulari-
sation, that is to solve the equation

αϕα + S∗
hShϕα = S∗

hv (6)

with a regularisation parameterα > 0 instead of solving
Sϕ(x) = v(x) , x ∈ Γh. The approximate total field is
then evaluated via the densitiyϕα i.e.

Sϕα(x) = vα(x) , x ∈ R3\Γt , (7)

and

uα = ui − vα − Φ(·, z′) = −vα + G(·, z′). (8)

The zeros of the exact total field represent the location of
the scattering surface in case of Dirichlet boundary con-
dition. Therefore, we seek the scattering surface as the
location of the minimum ofuα in a norm sense.

Kirsch and Kress originally used the potential approach
with some fixed auxilliary surfaceΓ. However, if the
scattered fieldus is not analytically extensible up the the
whole domain aboveΓ, then the equation (3) is not solv-
able and in general the single-layer potential does not
converge towards the scattered field in neighborhood of
the unknown surface. Kirsch and Kress overcame this

problem by a combination of the solution of (3) with the
search for the unknown shape. This leads to an optimiza-
tion problem in which both the field and the surface is
reconstructed simultaneously.

The simultaneous optimization within the Kirsch-
Kress scheme is much more costly than solving just the
linear equation (3) and subsequently evaluating the min-
imum curve to find the unknown shape. Different alter-
natives have been suggested and tested recently, one of
which is the search of a proper surfaceΓ via a range-
test by Kusiak, Potthast and Sylvester. Secondly, one
could try to set up an iterative method for the search of
Γ in which the potential approach for field reconstruction
is just one tool. This has been carried out via ahybrid
methodby Kress and Serranho.

The Range Test
For finding a surfaceΓ on which the single-layer po-

tential yields reasonable reconstructions to the scattered
field we use the range-test suggested by Sylvester, Ku-
siak and Potthast [5]. A detailed discussion for the case
of bounded obstacles is contained in [9] and [10]. The
basic idea of the range-test is to check the solvability of
the equation (3). This can be carried out either by obser-
vation of the norm‖ϕα‖ of its solution in the limitα → 0
as suggested in the original paper [5] or by use of the ap-
proximation quality of the right-hand side suggested by
Jakubik and Potthast [7]. Note that the range-test is a
generalized sampling schemeas investigated in [12].

The Hybrid Method
As an alternative solution to overcome the solvability

issue for the Kirsch-Kress method Kress and Serranho
[6] recently suggested to combine the potential approach
with an iterative method, such that the single-layer is used
for field reconstructions on some iteration surface which
is modified following a local Newton method. Some con-
vergence analysis for this approach can be found in [11].

Numerical Examples
We choose a discretization of the finite planesΓh

and Γt with points xj,h = (xj
1, x

j
2, h) resp. xj,t =

(xj
1, x

j
2, t), j = 1, ..., N . Then, the discretisation of the

Tikhonov euqation leads to the matrix equation

αI + S∗
hShϕα = S∗

hv , (9)

where we take notice of the numerical treatment of the
singularity in the kernels of these operators introduced
in [4]. In the following examples we chooseα = 10−6
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and reconstruct the total field via the single layer poten-
tial ansatz for given incident field. Let the source point
be in(−3, 0, 15) and the test surfaceΓt with t = 0.5 for
solving the inverse problem.

Figure 1: Simulated field via multi-section method,
point source in(−3, 0, 15)
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Abstract
We consider the scattering of time harmonic elec-

tromagnetic plane waves by a bounded, inhomoge-
neous, anisotropic dielectric medium. We use the lin-
ear sampling method to determining the support of the
anisotropic inhomogeneity. Furthermore, we show that
under certain assumptions a lower bound on the norm of
the (matrix) index of refraction can be obtained from a
knowledge of the smallest transmission eigenvalue corre-
sponding to the medium. Numerical examples are given
showing the efficaciousness of our estimates.

Introduction
Anisotropic material play a special role in electromag-

netic inverse scattering theory. This is due to the fact that
from far field data only the support D of the scatterer is
uniquely determined [2], [11] and little can be said about
the material properties of the scatterer [9]. This remains
true even if multifrequency data is used. Although spe-
cific information about the material properties may be un-
available, there remains the possibility of obtaining upper
or lower bounds on certain norms of the (matrix) index of
refraction and it is to this task that this paper is directed.
In particular, are there certain inequalities that the index
of refraction must satisfy for a given measured far field
pattern? For the case of a dielectric isotropic scatterer,
this question was considered in [4] and [8] where it was
shown that if the (scalar) index of refraction is greater
than one then it is bounded below by λ(D)/k2 where
λ(D) is the first Dirichlet eigenvalue for the Laplacian in
D of the scattering obstacle and k is the first transmission
eigenvalue [3]. Since D and k can be determined from the
far field data [4], this then provides a lower bound for the
index of refraction. In [6] it was shown that a similar in-
equality is valid in the case of a dielectric anisotropic me-
dia where the supremum of the (scalar) index of refraction
is replaced by the Euclidean norm of the (matrix) index of
refraction. We end this section by mentioning that, in all
the above cases, the support of the inhomogeneity D van
be reconstructed by using the linear sampling method [1]
[3], without essentially requiring any a priori information
on the physical properties of the scattering object.

Inverse scattering problem
We consider the scattering of electromagnetic waves by

an anisotropic dielectric at fixed frequency. For a particu-
lar polarization and geometry the corresponding forward
problem in the R2-case is given by the following set of
equations, where D is the support of the scattering object
such that R2 \D is connected

∇ ·A∇w + k2 w = 0 in D

∆u + k2 u = 0 in De

w − u = 0 on ∂D
∂w

∂νA
− ∂u

∂ν
= 0 on ∂D

u = us + ui

limr→∞
√

r

(
∂us

∂r
− ikus

)
= 0,

where us is the scattered field, ui is the given incident
field and ν is the outward normal vector to the (piecewise
smooth) boundary ∂D of D. In the case of plane waves
the incident field is given by ui := eikx·d, d ∈ Ω := {x :
|x| = 1}. We assume that A is a real valued 2× 2 matrix-
valued function whose entries are piecewise continuously
differentiable functions in D with (possible) jumps along
piecewise smooth curves such that A is symmetric and
ξ̄ · A ξ ≥ γ|ξ|2 for all ξ ∈ C2 and x ∈ D where γ is a
positive constant. It can be shown [7] that the scattered
field us has the asymptotic behavior

us(x) =
eikr

√
r

u∞(x̂, d) + O
(
r−3/2

)
(1)

as r → ∞ uniformly in x̂ where u∞ is the far field pat-
tern.

The inverse scattering problem we are concerned with
is to determine D and A from a knowledge of u∞(x̂, d)
for all x̂, d ∈ Ω and a range of frequencies k. In [3] it
is proven that D is uniquely determined from the above
data. However, it is also know [9] that the matrix A is
not uniquely determined from the far field pattern for all
d even if they are known for a range of frequencies k.
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Solution of the inverse problem
We now define the far field operator F : L2(Ω) →

L2(Ω) by

Fg(x̂) :=
∫

Ω
u∞(x̂, d)g(d) ds(d) (2)

and introduce the far field equation

(Fg)(x̂) = γe−ikx̂·z g ∈ L2(Ω), z ∈ D (3)

where γ = eiπ/4
√

8πk
and γe−ikx̂·z is the far field pattern of

the fundamental solution Φ(x, z) := i
4H

(1)
0 (k|x − z|) to

the Helmholtz equation in R2 with H
(1)
0 being a Hankel

function of the first kind of order zero. A reconstruction
of D can be obtained by using the linear sampling method
which characterizes the support D from a solution of the
far field equation (3) (see e.g [3]).
In particular, from [3] we have that the far field operator
F : L2(Ω) → L2(Ω) defined by

(Fg) (x̂) :=
∫
Ω

u∞(x̂, d)g(d)ds(d) (4)

is injective with dense range provided k is not a transmis-
sion eigenvalue, i.e. a value of k for which the (homoge-
neous) interior transmission problem

∇ ·A∇w + k2 w = 0 in D

∆v + k2 v = 0 in D

w − v = 0 on ∂D
∂w

∂νA
− ∂v

∂ν
= 0 on ∂D

has a nontrivial solution w, v ∈ H1(D). It is not known,
except for the case of spherically stratified media [8],
whether transmission eigenvalues exists. Now, assuming
that k is not a transmission eigenvalue, ∂D can be char-
acterized from the behavior of ‖g‖L2(Ω), where g is an
approximate solution of (3). Having determined D, we
now want to recover information about A. We will make
use of transmission eigenvalues (which we avoided when
determining D) to obtain a lower bound for the Euclidian
norm of A. Due to the lack of injectivity and the dense-
ness of the range of the far field operator F , when k is a
transmission eigenvalue the L2-norm of the (regularized)
solution to

(Fg)(x̂) = Φ∞(x̂, z0), for a fixed z0 ∈ D (5)

can be expected to be large for such values of k (this is nu-
merically verified in [6]). A validating example is shown

in Figure 1. In particular, if D is the circle with radius
0.5 and A = 1/4I , Figure 1 shows that the transmission
eigenvalues (known to exists) computed by separation of
variables and by the above remark using symthetic data
perfectly coincide

k

||g||
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Figure 1: ‖g‖ in terms of the wave number k for the
circle. The peaks coincide with the computed

transmission eigenvalues using separation of variables.

Following the idea of [5] and [10], by making an appro-
priate change of variable and rewriting the interior trans-
mission problem in an equivalent variational form for a
fourth order boundary value problem, in [6] it is shown
that: Assume that ξ̄ · (A−1− I)−1 ξ ≥ α|ξ|2 in D and for
all ξ ∈ C2 where α > 0 is a constant. Then

1. The set of transmission eigenvalues is discrete and
does not accumulate at 0.

2. All transmission eigenvalues (if they exist) are such
that k2 ≥ α

1 + α
λ(D) where λ(D) is the first

Dirichlet eigenvalue of −∆ on D.

Recalling that ‖A−1‖2 = sup‖ξ‖=1(ξ̄ · A−1 ξ) (e.g. the
largest eigenvalue), the above result implies the following
main result: Assume that ‖A−1(x)‖2 ≥ δ > 1 for all
x ∈ D, then

sup
D
‖A−1‖2 ≥

λ(D)
k2

(6)

where k is a transmission eigenvalue and λ(D) is the first
eigenvalue of −∆ on D. Unfortunately, if 0 < β ≤
‖A−1(x)‖2 ≤ δ < 1 for all x ∈ D, all we can say is
that a transmission eigenvalue satisfies k2 ≥ λ(D).

Hence, (6) provides a lower bound for the suprimum
of the Euclidean norm of al matrices A that give rise to
the measured far field pattern. Note that λ(D) can be
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computed since D is reconstructed by the linear sampling
method, whereas the first transmission eigenvalue using
the remark following (5).

We end by showing a numerical example for estimating
the constant index of refraction in the case of the L-shape
D := {[−0.5, 0.5]×[−0.5, 0.5]}\{]0, 0.5]×]0, 0.5]}. In
the following A = 1/nI . For more numerical examples
see [6].
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Figure 2: ‖g‖ in terms of the wave number k for the
L-shape with A = 1/4I

n 2. 3. 4. 6. 9. 12. 16.
k0 15.5 8.1 6.3 4.5 3.3 2.8 2.3
nmin 0.2 0.6 1. 1.9 3.5 4.9 7.2

Table 1: First transmission eigenvalues (k0) and lower
bounds of the index of refraction (nmin) for the L-shape.
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Abstract
We investigate an iterative boundary integral based

method for the reconstruction of the shape of a plane
acoustically sound-soft obstacle from the knowledge of
the far field pattern for only one incoming wave. The
method is based on the representation of the scattered
field as a combined acoustic double and single-layer po-
tential together with the corresponding boundary integral
for the far field. Compared with methods based on only
the acoustical single-layer operator this new procedure
produces accurate approximations for a wider range of
wave-numbers.

Introduction
In the exterior problem for (linearised) acoustical scat-

tering of a planar obstacle by time-harmonic waves one
wishes to find a solution to the Helmholtz equation

∆u + k2u = 0 in R2 \ D, (1)

whereD is a bounded plane domain with smooth bound-
ary Γ and k > 0 the wave number, subject to certain
boundary conditions. For simplicity, we assume that the
obstacle is sound-soft, i.e., the pressure on the boundary
Γ is zero so

u = 0 on Γ. (2)

This direct scattering problem is to findu = ui + us,
whereui(x) = eikx·d andd is the unit direction of the in-
coming wave, such thatu solves (1)–(2) and the scattered
waveus satisfies the Sommerfeld radiation condition

lim
r→∞

r1/2

(

∂us

∂r
− ikus

)

= 0, where r = |x|,

uniformly in all directions. This direct scattering problem
has a unique smooth solution. The far field patternu∞

describes the asymptotic behavior of the scattered field at
large distances from the obstacle. We consider the inverse
problem;
Reconstruct the boundaryΓ from the knowledge of the far
field pattern for only one direction of the incoming field.
This type of problem is common in applications such as

medical imaging, non-destructive testing, radar and sonar
obstacle detection where information is to be extracted
from knowledge of the influence that the obstacle has on
propagating waves. According to Colton and Sleeman [2]
we have uniqueness for the inverse problem, e.g. identifi-
ability if the obstacle is contained in a disc with radiusR

andkR < C (the constantC is computable≈ 3.83, see
Gintides [3]).

Many different methods and procedures have been de-
veloped for the stable approximation of the solution to
this inverse scattering problem, for an overview see, for
example, the monograph by Colton and Kress [1].

One method, denoted as Method A, which was first
considered by Sleeman [10], for the detection of a sound-
soft obstacle was analysed and implemented by Jo-
hansson and Sleeman [7]. Independently, Ivanyshyn
and Kress [6] proposed a related approach denoted as
Method B and which is an extension of the inverse algo-
rithm introduced by Kress and Rundell [8] for the Laplace
equation. Both these methods are based on boundary in-
tegral equations for the incident field and the far field
pattern, respectively, see further Ivanyshyn and Johans-
son [4], [5]. In [5] it was noted that the integral equations
are solvable if the wave number is not an interior Dirich-
let or Neumann eigenvalue. One has proposed, see [1],
to find the solution of (1)–(2) in the form of a combined
double and single-layer potential. This coupled integral
equation is uniquely solvable for all wave numbersk > 0.

In this paper we modify Method A for analytical
boundaries and base it on the representation of the scat-
tered field as a combined double and single-layer poten-
tial. Given an approximation of the boundary, we solve
this coupled integral equation for a density and then up-
date the boundary approximation using this density and
the integral representation of the far field pattern, see Sec-
tion 2. Numerical investigations are presented in Section
3.

1 Boundary integral formulation
Assume for simplicity that the boundaryΓ is given by

z(t) = (z1(t), z2(t)), t ∈ [0, 2π], (3)
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wherez is analytic and2π-periodic with positive orienta-
tion and|z′(t)| > 0. We define the parameterised single-
layer operator

S(z, ϕ)(t) =

∫

2π

0

Φ(t, τ)ϕ(τ) |z′(τ)| dτ, (4)

and the double-layer operator

K(z, ϕ)(t) =

∫

2π

0

∂Φ(t, τ)

∂[z′(τ)]⊥
ϕ(τ) dτ, (5)

where[z′(t)]⊥ = (z′
2
(t),−z′

1
(t)) is the outward normal

to Γ, Φ(t, τ) is the fundamental solution to the Helmholtz
equation andt ∈ [0, 2π]. We search for the scattered field
as a combined double and single layer potential and there-
fore have to find a densityϕ satisfying

ϕ(t)

2
+ K(z, ϕ)(t) − iηS(z, ϕ)(t) = −ui(z(t)), (6)

where the coupling parameterη 6= 0 is real valued. We
also introduce the corresponding far field integral opera-
tors

S∞(z, ϕ)(θ) = γ

∫

2π

0

e−ikx∞(θ)·z(τ) ϕ(τ) |z′(τ)| dτ,

and

K∞(z, ϕ)(θ) = −γ

∫

2π

0

ik g(θ, τ)e−ikx∞(θ)·z(τ) ϕ(τ) dτ,

whereg(θ, τ) = [z′(τ)]⊥ · x∞(θ) andγ = eiπ/4/
√

8πk.
Then the equation for the far field can be written as

K∞(z, ϕ)(θ) − iηS∞(z, ϕ)(θ) = u∞(θ), (7)

for θ ∈ [0, 2π]. Note that (7) is a non-linear and ill-
posed equation forz. We assume thatz′ and thereby also
[z′(t)]⊥ are known and therefore linearise (7) with respect
to z viewing z′ as independent ofz, by searching for an
updateh in the form

h(t) = q(t)[z′(t)]⊥, t ∈ [0, 2π]. (8)

From Theorem 3 in [9] we get.

Lemma 1.1. The mappings fromC2[0, 2π] →

B(C[0, 2π], C[0, 2π]) given by z 7→ S∞(z, · ) and
z 7→ K∞(z, · ) are Fréchet differentiable(viewingz′ and
[z′(t)]⊥ as independent ofz) with derivatives

(S′
∞[z, ϕ]q)(θ) = −i

∫

2π

0

E(θ, τ)ϕ(τ) q(τ) |z′(τ)| dτ,

and

(K ′
∞[z, ϕ]q)(θ) = −k

∫

2π

0

E(θ, τ) g(θ, τ)ϕ(τ) q(τ) dτ.

whereE(θ, τ) = kγe−ikx∞(θ)·z(τ) g(θ, τ).

The linearised version of (7) is then

(K ′
∞ − iηS′

∞)q = u∞ − K∞ + S∞. (9)

Remark. The equation (7) can be linearised in several
ways. Assuming thatz′ is unknown, one should also lin-
earize the terms|z′| and[z′]⊥.

2 The iterative procedure for reconstruction of the
boundary

The method presented here is a variant of the method
considered in [7].

1. Givenz andz′ solve (6) forϕ.

2. Updatez asz = z + h with h found from (8)–(9).

The procedure is then continued by repeating the two
steps until a suitable stopping criteria is satisfied.

To numerically solve (6) for the densityϕ, given a
parametrisationz, it is effective to apply the Nyström
method, see Chapter 3.5 in Colton and Kress [1] for the
details.

Given a densityϕ and an approximationz we find the
correction from (9) using Tikhonov regularization. To
justify the use of the Tikhonov regularization we have

Theorem 2.1. The operatorA := K ′
∞ − iηS′

∞, where
η > 0, is injective and has dense range inL2([0, 2π]).

3 Numerical results
In order to illustrate the mathematical theory, we re-

construct a boundary curve with the parameterisation

z(t) = (cos t+0.65 cos 2t−0.65, 1.5 sin t), t ∈ [0, 2π].

We choose the wave numberk = 1.4 and the direction
of the incoming wave tod = (1, 0). To avoid the “in-
verse crime”, the corresponding far field pattern is numer-
ically generated at 64 points equally distributed around
the unit circle by solving the classical equations (uncou-
pled). Each of the components ofz is approximated by

p(t) = a0 +
7

∑

m=1

(am cos mt + bm sin mt), t ∈ [0, 2π].
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The initial guess is a circle with radiusR = 0.4 located
outside the obstacle. Tikhonov regularization is employed
to (9) with the regularizing parameter decreasing with the
number of iterations, and anH2-penalty term is used to
get smoother reconstructions. The coupling parameter is
η = 5. In Figure 1a), the reconstruction after 5 (⋄⋄⋄), 15
(−−−) and 30 (−.−) iterations, respectively, are shown.
The analytical boundary curve is displayed as a solid line
and the dotted line is the initial guess. Both the posi-
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Figure 1: Reconstruction of a kite contour, exact data

tion and shape of the initial guess can be changed and the
method produce similar results as long as the guess is not
too far from the obstacle. However, the guess must be
on the same “side” as the wave is coming from. Also
the wave number can be changed. As compared with
method A in [4], the procedure presented here can be ap-
plied for a wider range of wave numbers. Increasing the
degree of the trigonometrical approximation does not im-
prove the reconstruction substantially. Larger values of
the coupling parameter give the same type of accuracy in
about the same number of iterations. However, ifη was
chosen smaller than 3, then less accurate approximations
are obtained.

Then 10 sets of noisy data were generated as

uδ
∞ = u∞ + δ

‖u∞‖L2

‖η‖L2

η, (10)

with the noise levelδ = 0.03 and η = η1 + iη2 with
η1 andη2 being normally distributed random variables.
In Figure 1b), the best (− − −) and the least accurate
(−.−) approximation are shown together with the analyt-
ical boundary curve (—) and the initial guess (· · · ). Noise
affects most on the shadow side as expected.
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Abstract
We study wave splitting procedures for acoustic scat-

tering problems. The idea of these procedures is to split
some scattered field into a sum of fields coming from dif-
ferent spatial regions such that this information can be
used either for inversion algorithms or for active noise
control.

We will show uniqueness for the general splitting prob-
lem and describe a solution algorithm via single-layer po-
tentials.

Introduction
Inverse problems for acoustic and electromagnetic

waves play an important role in many scientific and en-
gineering applications. Medical imaging for example
uses several techniques from the area of inverse problems
as basic ingredients for medical examinations. Nonde-
structive testing employs inverse problems techniques for
quality control. For a given incident wave, the impene-
trable obstacle D will generate a scattered wave outside
D, which is in general governed by the Helmholtz equa-
tion for acoustic waves or Maxwell equations for electro-
magnetic waves. The scattered wave and its far-field pat-
tern contain information about the scatterer D such as the
boundary shape and boundary type. The reconstruction
of an obstacle D from the far-field pattern of its scattered
wave is one of the central research topics in inverse scat-
tering theory, see for example [4] and the topical review
[6].

We present an efficient way to reconstruct the scattered
wave from the far-field pattern caused by multiple obsta-
cles. The basic idea is to split the far-field pattern into
several parts which are essentially related to each obsta-
cle. Correspondingly, the scattered wave is also decom-
posed. Please observe that our splitting avoids any ap-
proximation as for example employed for the Born ap-
proximation or physical optics approximation. Using this
idea based on general potential theory or Green repre-
sentation formula and combining it with the point source
method, we propose a scheme which provides a recon-
struction of the scattered wave at all points outside of
some scatterer D with several components. This splitting

method enables the recovery of the scattered wave out-
side of multiple obstacles. The method proposed in this
paper, except for its intrinsic importance in wave recov-
ery, is also applicable to shape reconstruction for multiple
obstacles.

We remark that the splitting procedure in its simplest
realization uses potential operators which have been con-
stituents of the field reconstruction method of Kirsch-
Kress [1], however used in a different way. Also, the
range-test of Sylvester-Kusiak-Potthast [5] employs these
operators. In fact, we can use the range-test to find appro-
priate domains G1 and G2 for which the splitting is valid.

Uniqueness for wave splitting
Here, we will restrict our attention to the simplest case

where a field is defined in the exterior of a domain G
which consists of two parts.

Assume that two domains G1 and G2 with G1∩G2 = ∅
and C2−smooth boundary are given such that

D1 ⊂ G1 and D2 ⊂ G2. (1)

Set G := G1 ∪G2.
We first address the uniqueness problem for wave split-

ting. Consider domains Gj as given in Definition (1). As-
sume that we are given a decomposition us = us

1 + us
2 of

the scattered field us such that

1. us
j satisfies the radiation condition for j = 1, 2;

2. for j = 1, 2 the field us
j soles the Helmholtz equa-

tion in the exterior of Gj .

3. Both (us
j)

+ and
∂(us

j)
+

∂ν exist in ∂Gj , where

(us
j)

+|∂Gj
:= lim

x∈Rm\Gj , x→∂Gj

us
j(x).

Then the splitting of us is unique, i.e. for every further
splitting us = ũs

1 + ũs
2 with ũs

j meeting conditions 1 – 3,
we obtain us

j(x) = ũs
j(x) for x ∈ Rm \Gj with j = 1, 2.

For a proof of this uniqueness result we refer to [3].
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Construction of the wave splitting
Denote by Φ(·, ·) the free-space fundamental solution

to the Helmholtz equation ∆u + κ2u = 0 in R3. For G
given in Definition 1, the single-layer potential

(Sϕ)(x) :=
∫

∂G
Φ(x, y)ϕ(y)ds(y), x ∈ R3, (2)

is a well-known tool in scattering theory. We express the
scattered wave by single-layer approach

us(x) := (Sϕ)(x), x ∈ Rm \G. (3)

The far field pattern of Sϕ is given by the operator

(S∞ϕ)(x̂) := γ

∫
∂G

e−iκx̂·yϕ(y)ds(y), x̂ ∈ S (4)

with γ = 1/(4π) in R3 and γ = eiπ/4/
√

8πκ in R2, S
is the unit sphere in Rm. Here, the density ϕ lives on
∂G = ∂G1 ∪ ∂G2. We denote

ϕj(y) := ϕ(y) for y ∈ ∂Gj (5)

and denote the corresponding single-layer potential oper-
ators by Sj , i.e.

(Sjϕj)(x) :=
∫

∂Gj

Φ(x, y)ϕj(y)ds(y), x ∈ Rm (6)

and we have
Sϕ = S1ϕ1 + S2ϕ2. (7)

The splitting of the far field of a scatterer D =
D1

⋃
D2 is obtained from the following three steps.

1. Solve the far-field equation

S∞ϕ = u∞ (8)

to generate density function ϕ defined in ∂G, where
S∞ is given via (4).

2. Define two functions

us
j(x) := (Sjϕj)(x), x ∈ Rm \Gj , j = 1, 2,

(9)
which can be considered as a scattered wave outside
Gj , in the sense that it solves the Helmholtz equation
in Rm \Gj and meets the radiation condition.

3. Compute the far field patterns of us
j defined by

u∞j := S∞j ϕj , j = 1, 2. (10)

In this way, the far field pattern u∞ is decomposed as

u∞ = u∞1 + u∞2 . (11)

Correspondingly, the scattered wave us related to u∞

has the splitting

us(x) = us
1(x) + us

2(x), x ∈ Rm \G (12)

from the linear superposition principle and Rellich
lemma, where us

j is computed via (9). Moreover, us
j out-

side Gj is the scattered wave related to u∞j with j = 1, 2
again from Rellich lemma, noticing us

j(x) defined by (9)
is a radiating field.

Numerical Results
Here we demonstrate the splitting and also the recon-

struction of the field via the point source method when
carried out for the different parts of the field separately.

First, we show a simulation of the total field for twodi-
mensional acoustic scattering by a sound-soft obstacle in
Figure 1.

Figure 1: Simulated total acoustic field for an incident
plane wave coming from above.

Second, we plot the field ui + us
1 in Figure 2. This

field is defined outside of G1 and is a radiating solution
to the Helmholtz equation. An analogous image with G1

replaced by G2 could be shown for ui + us
2. Then we

show a plot of the field ui + us
1 + us

2 in the exterior of G
in Figure 3.

Clearly, the representation of the field u via splitting
holds only in the exterior of the domain G = G1 ∪ G2.
However, to reconstruct the field in the exterior of D1 ∪
D2 we can now apply reconstruction methods separately
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Figure 2: Sum of the incident field and the part us
1 of

the field.

Figure 3: Total acoustic field via splitting for an
incident plane wave coming from above

to u∞1 and u∞2 . For example, Figure 4 shows the result
of the point-source method for field reconstructions [4],
[7], [2] [8] applied to reconstruct us

1 in the exterior of D1

and us
2 in the exterior of D2 and then adding the two fields

plus the incident field to obtain a reconstruction of the full
total field.
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Abstract
The theory of elasticity of hemitropic materials has re-

cently been the object of rigorous mathematical analysis.
The main features and results are briefly reviewed here.

Introduction
Recent technological and industrial developments, and

the progress in biological and medical sciences, require
the use of generalized and refined models for elastic ma-
terials. In a generalized solid continuum the usual dis-
placement field has to be supplemented by a microro-
tation field. Such materials are called micropolar, or
Cosserat, solids. An isotropic micropolar solid may be
HEMITROPIC (equivalent terms arenoncentrosymmetric,
acentric, chiral), i.e., isotropic with respect to all proper
orthogonal transformations, but not with respect to mirror
reflections.

Materials may exhibit chirality on the atomic scale, as
in quartz and in biological molecules (DNA), as well as
on a large scale, as in composites with helical or screw–
shaped inclusions, certain types of nanotubes, bone, fab-
ricated structures such as foams, chiral sculptured thin
films, and twisted fibers (for details see, e.g., [1], [4], [5],
[6], [7], [8], [9], [10], [11], [17], [18], and the references
therein).

Mathematical models describing the properties of elas-
tic hemitropic materials have been proposed in the mid
1960s by Aero and Kuvshinski [1], [2] (for historical
notes see also [4], [5], [16], and the references therein).

In the mathematical theory of hemitropic elasticity, the
asymmetric force stress tenor and the moment stress ten-
sor are introduced; they are kinematically related to the
asymmetric strain tensor and the torsion (curvature) ten-
sor via the constitutive equations. All these quantities are
expressed in terms of the components of the displacement
and the microrotation vectors; the latter satisfy a system
of two coupled second order partial differential equations
of dynamics. When the mechanical characteristics (dis-
placements, microrotations, body force and body couple
vectors) have harmonic time dependence (i.e. each of
them is represented as a product ofexp(−iσt) (σ being
a real frequency parameter) and a function of the spatial
variablex only), we have the correspondingsteady state

oscillation equations(in particular ifσ = 0 we have the
equations of statics, while if σ is complex we have the so
calledpseudo–oscillation equations, which are related to
the dynamical equations via the Laplace transform).

A rigorous mathematical analysis of different aspects
of the theory of hemitropic elasticity, for the steady state
and the pseudo–oscillation equations, is the object of re-
cent investigation, see [3], [12], [13], [14], [15].

Length limitations to papers in these Proceedings do
not allow the inclusion of any details for the referred to
results in the following sections.

Governing Equations – Fundamental Solution
The time–harmonic equations oh hemitropic elasticity

We consider the equations of hemitropic elasticity in
the form

(µ + α)∆u(x) + (λ + µ− α) grad div u(x)
+(κ + ν)∆ω(x) + (δ + κ− ν) grad div ω(x)
+2α curlω(x) + %σ2u(x) = −%F (x),

(κ + ν)∆u(x) + (δ + κ− ν) grad div u(x)
+2α curlu(x) + (γ + ζ)∆ω(x)
+(β + γ − ζ) grad div ω(x) + 4ν curlω(x)
+(Iσ2 − 4α)ω(x) = −%G(x),

whereu is the displacement vector,ω is the microro-
tation vector,∆ is the Laplacian,α, β, γ, δ, ζ, κ, λ, µ, ν
are the material parameters, [1],% is the mass density of
the material,I is a constant characterizing the so called
spin torque corresponding to the interior microrotations
(i.e. moment of inertia per unit volume) andσ is the an-
gular frequency of the considered time–harmonic fields.
F andG are, respectively, the spatial parts of the body
force and body couple vectors per unit mass. We remark
that instead ofζ the symbolε is normally used for the
corresponding material parameter; nevertheless, we em-
ploy the standard use ofε as the period of the coefficient
functions for the homogenization procedure. Note that
the microrotation vectorω in the theory of hemitropic
elasticity is kinematically distinct from the macrorotation
vector 1

2 curlu. Further, note that when the parameters
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α, β, γ, δ, ζ, κ, ν, I are all equal to0, the above system
becomes the well known reduced Navier equation of clas-
sical linear elasticity.

The fundamental matrix
Let us introduce the matrix differential operator corre-

sponding to the above system:

L(∂, σ) :=
[

L(1)(∂, σ) L(2)(∂, σ)
L(3)(∂, σ) L(4)(∂, σ)

]
6×6

,

where

L(1)(∂, σ) := [(µ + α)∆ + %σ2]I3 + (λ + µ− α)Q(∂),

L(2)(∂, σ) = L(3)(∂, σ) := (κ + ν)∆I3

+(δ + κ− ν)Q(∂) + 2αR(∂),

L(4)(∂, σ) := [(γ + ζ)∆ + (Iσ2 − 4 α)]I3

+(β + γ − ζ)Q(∂) + 4νR(∂).

HereIk stands for thek × k unit matrix and

R(∂) :=

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0


3×3

, Q(∂) := [ ∂k∂j ]3×3.

Due to the above notation, our system can be rewritten
in matrix form as

L(∂, σ)U(x) = Φ(x),
U(x) = (u(x), ω(x))>, Φ(x) = (−% F (x),−% G(x))>.

A long technical procedure, [12], leads to the following
form for the fundamental matrix

Γ(x, σ) =
6∑

j=1

Γ(j)(x, σ),

where

Γ(j) =
[

L(4)(∂, σ)M(∂) −L(2)(∂, σ)M(∂)
−L(2)(∂, σ)M(∂) L(1)(∂, σ)M(∂)

]
`j(x),

M(∂) = a(∂)[a(∂)− b(∂)∆]I3

+
[
a(∂)b(∂) + [c(∂)]2

]
Q(∂)

+c(∂)[a(∂)− b(∂)∆]R(∂),

with

a(∂) = [(µ + α)(γ + ζ)− (κ + ν)2]∆∆
+[(µ + α)(Iσ2 − 4α) + (γ + ζ)%σ2 + 4α2]∆
+%σ2(Iσ2 − 4α),

b(∂) = −[(µ + α)(β + γ − ζ) + (λ + µ− α)(β + 2γ)
−(δ + κ− ν)2 − 2(κ + ν)(δ + κ− ν)]∆
−[(β + γ − ζ)%σ2 + (λ + µ− α)(Iσ2 − 4α)− 4α2],

c(∂) = 4 [α(κ + ν)− ν(µ + α)]∆− 4ν%σ2,

and

`j(x) = qj
eikj |x|

|x|
,

wherek1, ..., k6, q1, ..., q6 are given, [12], in terms of the
parametersα, β, γ, δ, ζ, κ, λ, µ, ν, %, σ, I. This represen-
tation shows that the entries of the matrixΓ(j)(x, σ), and
its derivatives, satisfy the Sommerfeld radiation condi-
tions at infinity.

Solvability of BVPs
Based on the construction of the fundamental solution,

and on the corresponding Green’s formulae, [12], general
integral representations can be derived for the solutions
of the equations of hemitropic elasticity in bounded and
unbounded domains; this is done by means of potential
type integrals. The properties of the arising single– and
double–layer potentials, as well as of certain boundary in-
tegral operators (generated by these potentials) have been
studied, [12]. Uniqueness and existence theorems for so-
lutions to the Dirichlet, Neumann, and mixed boundary
value problems have been proved (by the BIEs method
and the theory of pseudodifferential operators) for the
case of the pseudo–oscillation equations in smooth do-
mains ([12]) and in Lipschitz domains ([15]), and for the
case of the steady state oscillation equations ([14]).

Representation Formulae
In the case of the steady state oscillation equations gen-

eral representation formulae for the displacement and mi-
crorotation vectors by means of metaharmonic functions,
solutions of the Helmholtz equations, with different wave
numbers have been derived in [13]. There it is proved
that the six components of the field vectors (three dis-
placement and three microrotation components) can be
expressed by six scalar metaharmonic functions. More-
over, it is shown that this correspondence is one–to–one.
In particular, these representation formulae are applied
to the construction of explicit solutions of two canonical
boundary value and transmission problems for composed
solids with spherical interface. In the first case both com-
ponents are hemitropic with different material constants,
and on the interface there are transmission conditions re-
lating limiting values of the displacement, microrotation,
force stress, and couple stress vectors (twelve conditions).
In the second problem the interior ball is a usual isotropic
elastic material described by the classical Lamé model,
while in the exterior part there is a hemitropic material: in
this case, the interface conditions relate the correspond-
ing displacement and force stress vectors, and, in addi-
tion, on the interface there are given, either components
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of the microrotation vector, or the couple stress vector
(in total nine conditions). The solutions of these prob-
lems are represented in the form of Fourier–Laplace se-
ries, which, along with their first derivatives, are abso-
lutely and uniformly convergent in closed domains, if the
boundary data satisfy appropriate smoothness conditions.

Homogenization
The periodic homogenization problem for the elastic-

ity theory of linear hemitropic materials is studied in [3].
The weak convergence of the solutionswε corresponding
to the material of periodε > 0 to a limit w0, which is
identified as the solution corresponding to an analogous
“limit” homogeneous problem, is established. The coef-
ficients of hemitropic elasticity of the limit problem are
explicitly described in terms of an auxiliary cell problem.
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Abstract
This lecture focuses upon one of the possible genera-

tive mechanisms for what are often termed Rogue Waves
or sometimes Freak Waves. These are very big waves
that appear occasionally in the deep ocean. Such waves
have been reported by mariners for centuries, but have
only been taken seriously fairly recently. They are un-
like tsunamis in a number of ways. First, they persist in
relatively small portions of space-time, unlike tsunamis
which can propagate coherently for thousands of miles.
Secondly, they are of truly large amplitude even in the
deep ocean, whereas tsunamis are of small amplitude in
deep water, often unnoticeable there in fact. Their exis-
tence only becomes clear when they enter shallower wa-
ter. And while we have a pretty clear idea of the ways
tsunamis can be generated, it is otherwise with Rogue
waves.

Concurrence
One of the suggested mechanisms for the generation of

Rogue waves is what we will call concurrence. Roughly
speaking, this simply amounts to the possibility that small
waves spread out in the ocean might, on occasion, get
together en masse and add up to something really signifi-
cant. It is our purpose to investigate the plausibility of this
mechanism within the mathematical framework of classi-
cal water wave models. What is reported is joint work
with Jean-Claude Saut (see [1], [2], [3]).

We begin with the Korteweg-de Vries model

ut + ux + uux + uxxx = 0.

It is elementary to see that for the linearized version of
this equation, a kind of dispersive focusing can occur by
placing shorter and shorter wavelength compo- nents out
near x = +∞. It is an interesting bit of analysis to
see that the initial value problem for thenonlinear KdV
equation has the same property, which we termdispersive
blow-up.

An immediate ob jection to this analysis as far as its ap-
plication to Rogue waves is concerned is that the model
is uni-directional and we are making use of waves trav-
eling in the wrong direction. This can be remedied by
consideration of a Boussinesq system of equations, which

does allow for two-way propagation of waves. It turns out
this system also exhibits the dispersive blow-up phenome-
non. Moreover, this latter result can be generalized to a
fully three dimensional Boussinesq system. Thus, an ini-
tial wave and velocity configuration that is too small to
even bed seen with the naked eye can, in this approxi-
mation, concentrate wave components and, in finite time,
lead to a wave with a infinite amplitude. A further ob
jection can be raised, which is that the foregoing the-
ory makes use of the unbounded group and phase veloci-
ties that obtain within certain of the Boussinesq (and the
KdV) approximations. As the full Euler equations do not
possess this property, it is still not clear whether or not the
theory might pertain to the development of real Rogue
waves by concurrence. A final result was mentioned,
that grows out of the preceding. Another way of look-
ing at what was established for the KdV equation and for
Boussinesq systems is that these equations are not well
posed inL∞-type spaces. That is, no matter how small
the initial data is restricted as far as its maximum values
are concerned, the resulting solution can take on values
as large as we like in finite time. Looked at this way, the
issue is clarified. The authors have been able to show that
at least the linearized, two-dimensional Euler equations
are not well posed inL∞, thereby coming closer to being
able to say that concurrence is a possible mechanism for
the formation of Rogue waves.
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Extended Abstract
We construct the Dirichlet to Neumann map for the linear
heat equation posed on a domain whose boundary varies
with time.
Let q(x, t) satisfy the heat equation in a simply connected
domain D,

qt(x, t) = qxx(x, t), (x, t) ∈ D ⊂ R2. (1)

Suppose that there exists a solution q(x, t) with sufficient
smoothness all the way to the boundary of D, denoted by
∂D. Then, the following global relation is valid for all
values of the complex constant k,

∫

∂D
e−ikx+k2t[q(x, t)dx + (qx(x, t)

+kq(x, t))dt] = 0, k ∈ C. (2)

Indeed the heat equation is equivalent to the equation

[
e−ikx+k2t(qx(x, t) + kq(x, t))

]
x

−
[
e−ikx+k2tq(x, t)

]
t
= 0,

and then (2) follows from Green’s theorem.
Equation (2) relates the Dirichlet and Neumann bound-
ary values of the solution q(x, t), thus it characterizes the
Dirichlet to Neumann correspondence.
Let us consider the following moving boundary value
problem for the heat equation (1), see Figure 1,

D : 0 < t < T, l(t) < x < ∞; l̈(t) > 0, l(0) = 0, (3)

q(x, 0) = q0(x), 0 < x < ∞;
q(l(t), t) = g0(t), 0 < t < T, (4)

where T is a positive constant, the functions l(t), g0(t),
q0(x) have sufficient smoothness and q0(x) has sufficient

Figure 1: The domain D in the (x, t)–plane

decay for large x. In this particular case, the global re-
lation (2) becomes the following equation, which is valid
for Im k ≤ 0:

∫ T

0
ek2t−ikl(t)

[
qx(l(t), t) + (l̇(t) + ik)g0(t)

]
dt

= q̂0(k)− ek2T

∫ ∞

l(t)
e−ikxq(x, T )dx (5)

where q̂0(k) denotes the Fourier transform of the initial
condition q0(x). In summary:
Let q(x, t) satisfy the heat equation (1) in the domain
D defined in equations (3), with the initial and bound-
ary conditions (4). Suppose that there exists a solution
q(x, t) with sufficient smoothness and decay; the problem
of characterizing the associated Dirichlet to Neumann
map, reduces to the problem of solving the global rela-
tion (5) for the unknown function qx(l(t), t) in terms of
the known functions q̂0(k) and g0(t). This solution must
be independent of q(x, T ).
Regarding the unknown functions q(x, T ), we note that
the evolutionary nature of the heat equation implies that
this function does not contribute to the solution (q(x, t)
cannot depend on the future time T ).
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We prove that the function qx(l(t), t) = g1(t) satisfies the
following Volterra integral equation

3
4

g1(t) =
1

2
√

π
[

1√
t

∫ ∞

0
e−

(l(t)−x)2

4t q̇0(x)dx

−
∫ t

0

e
− (l(t)−l(s))2

4(t−s)

√
t− s

ġ0(s)ds] +
∫ t

0
g1(s)K(s, t)ds, (6)

where the function K(s, t) is defined by the equations

K(s, t) = − 1
2π

∫ ∞

0
[1− i

2
(

ν√
ν2 − l̇(s)ν

+

+

√
ν2 − l̇(s)ν

ν
)B(ν, s, t)]dν, (7)

B(ν, s, t) = (
√

ν2 − l̇(s)ν + iν) exp[−ν(l̇(s)− ϑ(t, s))

(s− t) + i

√
ν2 − l̇(s)ν (2ν − ϑ(t, s))(s− t)], (8)

ϑ(t, s) =
l(t)− l(s)

t− s
.

Using the mean value theorem it follows that ϑ(t, s) =
l̇(τ), s < τ < t. This implies that the real part of the ex-
ponential in the right hand side of (8) is negative; hence,
the kernel K(s, t) decays exponentially as ν →∞.
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Abstract
We argue that critical behaviour near the point of gra-

dient catastrophe of the solution of the Cauchy problem
for the focusing nonlinear Schrödinger equation iε ψt +
ε2

2 ψxx + |ψ|2ψ = 0 with analytic initial data of the form
ψ(x, 0; ε) = A(x) e

i
ε
S(x) is approximately described by

a particular solution to the Painlevé-I equation. The criti-
cal behaviour near the point of gradient catastrophe of the
solution of the Cauchy problem for any Hamiltonian per-
turbation of the Hopf equation ut + uux = 0, is approx-
imately described by a particular solution of the second
member of the Painlevé-I hierarchy.

Introduction
It is well known that the solution of the Cauchy prob-

lem for the Hopf equation

ut + uux = 0, u(x, t = 0) = u0(x), (1)

(x ∈ R), reaches a point of gradient catastrophe
(xc, tc, uc) in a finite time. The solution of the viscos-
ity or conservative regularization of the above hyperbolic
equation display a considerably different behavior. In-
deed the solution of the conservative regularization has an
oscillatory behaviour near the point of gradient catastro-
phe for the Hopf equation (see e.g. [1]). All the Hamil-
tonian perturbations up to the order ε4, ε � 1, of the
hyperbolic equation (1) have been classified in [2]. They
are parametrized by two arbitrary functions c(u), p(u),
namely

ut + uux +
ε2

24
[
2c uxxx + 4c′uxuxx + c′′u3

x

]
+

ε4
[
2p uxxxxx + 2p′(5uxxuxxx + 3uxuxxxx)+

p′′(7uxu2
xx + 6u2

xuxxx) + 2p′′′u3
xuxx

]
= 0,

(2)

where the prime denotes the derivative with respect to u.
For c(u) = 24, p(u) = 0 one obtains the Korteweg -

de Vries (KdV) equation ut + uux + ε2uxxx = 0, and for
c(u) = 48u and p(u) = 2u the Camassa-Holm equation
[3] up to order ε4; for generic choices of the functions
c(u), p(u) equation (2) is apparently not an integrable
PDE. However it admits an infinite family of commuting
Hamiltonians up to order O(ε6).

It is argued in [2] and numerically proven in [4] that
the generic behaviour of the solution of the Cauchy prob-
lem of (2) near the point of gradient catastrophe for the
Hopf equation is described by a particular solution of the
second member of the Painlevé-I hierarchy.

Next we consider the semi-classical limit of the focus-
ing nonlinear Schrödinger (NLS) equation for the com-
plex valued function ψ = ψ(x, t)

i ε ψt +
ε2

2
ψxx + |ψ|2ψ = 0, (3)

with initial data

ψ(x, 0; ε) = A(x) e
i
ε
S(x). (4)

Here ε > 0 is a small parameter. Properties of vari-
ous classes of solutions to this equation have been exten-
sively studied both analytically and numerically [5], [6],
[7], [8], [9],[10], [11]. One of the striking features that
distinguishes this equation from the defocusing case, is
the phenomenon of modulation instability [12]. Namely,
slow modulations of the plane wave solutions develop fast
oscillations in finite time. Introducing the slow variables

u = |ψ|2, v =
ε

2i

(
ψx
ψ
− ψ̄x

ψ̄

)
(5)

the equation can be recast into the following system:

ut + (u v)x = 0
(6)

vt + v vx − ux +
ε2

4

(
1
2
u2
x

u2
− uxx

u

)
x

= 0.

The initial data for the system (6) coming from (4) do not
depend on ε:

u(x, 0) = A2(x), v(x, 0) = S′(x). (7)

The simplest explanation of the modulation instability
then comes from considering the so-called dispersionless
limit ε → 0. In this limit one obtains the following first
order quasilinear system

ut +v ux + u vx = 0

vt − ux + v vx = 0

 . (8)
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This is a system of elliptic type because of the condition
u > 0. Indeed, the eigenvalues of the coefficient matrix(

v u
−1 v

)
are complex conjugate, λ = v ± i

√
u. So, the Cauchy

problem for the system (8) is ill-posed in the Hadamard
sense. Even for analytic initial data the life span of a typ-
ical solution is finite, t < tc. The x- and t-derivatives
explode at some point x = xc when the time approaches
tc. This phenomenon is similar to the gradient catastrophe
of solutions to nonlinear hyperbolic PDEs.

For the full system (6) the Cauchy problem is well-
posed for a suitable class of ε-independent initial data
(see details in [13], [14]). However, the well-posedness
is not uniform in ε. The solutions to (8) and (6) are essen-
tially indistinguishable for t < tc; the situation changes
dramatically near xc when approaching the critical point.
Namely, the solution develops a zone of rapid oscillations
for t > tc. They have been studied both analytically and
numerically in [7], [9], [11]. However, no results are
available so far about the behaviour of the solutions to
focusing NLS at the critical point (xc, tc). We argue that
the solution of NLS near a critical point is approximately
described by a solution of the Painlevé-I equation.

Painlevé equations and Universality conjecture
In [2] it is argued that the behaviour of the solution to

the Hamiltonian perturbation (2) of the hyperbolic equa-
tion (1) near the point (xc, tc, uc) of gradient catastrophe
for the solution of (1), up to shifts, Galilean transforma-
tions and rescalings, essentially depends neither on the
choice of solution nor on the choice of the equation.
Main Conjecture 1. [2] This behaviour is described near
the point (xc, tc, uc) by

u(x, t, ε) ' uc+

a ε2/7U
(
b ε−6/7x̄; c ε−4/7(t− tc)

)
+O

(
ε4/7

)
,

(9)

x̄ = x− xc − 6uc(t− tc), t̄ = t− tc,

where a, b, c are some constants that depend on the choice
of the equation and the initial data evaluated at the critical
point (xc, tc, uc) and U = U(X;T ) is the unique real
smooth solution to the fourth order ODE

X = 6T U −
[
U3

6
+

1
24
U2
X +

1
12
U UXX

+
1

240
UXXXX

]
,

(10)

which is the second member of the Painlevé-I hierarchy.
The relevant solution is characterized by the asymptotic
behavior

U(X,T ) = ∓(X)
1
3 ∓ 2T

X
1
3

+O(X−1), X → ±∞,

(11)
for each fixed T ∈ R. The existence of a smooth solution
of (10) for all X,T ∈ R satisfying (11) is proved in [16].
The Main Conjecture 1 is supported numerically in [4].

Regarding the generic solution of the NLS equations
near the critical point (xc, tc, uc, vc) for the system (8),
it is described in terms of a particular solution of the
Painlevé-I equation

Ωζζ = 6Ω2 − ζ. (12)

Recall that the general solution to this equation is a mero-
morphic function on the complex ζ-plane. Among the
many solutions, the relevant solution for our problem is
the so called tritronquée solution, namely a solution Ω0

with the asymptotic behaviour of the form

Ω0 = −
(
ζ

6

)1/2 [
1 +O

(
ζ−

3
4
(1−ε)

)]
. (13)

Such solution is analytic for large ζ in the sector [17]

| arg ζ| < 4π
5
. (14)

Main Conjecture 2. Part 1. [15] The tritronquée solu-
tion Ω0(ζ) has no poles in the sector

| arg λ| < 4π
5
. (15)

We are now ready to describe the conjectural univer-
sal structure behind the critical behaviour of generic solu-
tions to the focusing NLS.
Main Conjecture 2. Part 2. [15] Any generic solution
to the NLS equations near the critical point (xc, tc, uc, vc)
behaves as follows

u(x, t; ε) + i
√
ucv(x, t; ε) ' uc + i

√
ucvc − t̄ reiψ+

2 ε2/5(3r
√
uc)2/5e

2iψ
5 Ω0(ζ) +O

(
ε4/5

)
(16)

ζ =
(

3r
u2
c

)1/5

e
iψ
5

[
−uct̄+ i

√
uc(x̄− vct̄) + 1

2re
iψ t̄2

ε4/5

]
where Ω0(ζ) is the tritronquée solution to the Painlevé-I
equation (12),

x̄ = x− xc, t̄ = t− tc,
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ū = u− uc, v̄ = v − vc,

and r and φ depend on the initial data evaluated at the
critical point. Numerical evidence for Main Conjecture 2
is given in [15] using spectral methods [18].
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différentielles du second ordre. Ann. École Norm 30
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Abstract
In the coastal ocean, the interaction of a density strati-

fied flow with topography generates large-amplitude, hor-
izontally propagating internal solitary waves. Often these
waves are observed in regions where the waveguide prop-
erties vary in the direction of propagation. We consider
an extended Korteweg-de Vries equation, with variable
coefficients, and use this model to describe the shoaling
of internal solitary waves over the continental shelf and
slope, based on the asymptotic theory of slowly-varying
solitary waves together with some numerical simulations.
We shall emphasize the critical role played by those spe-
cial locations where the coefficient of either the quadratic,
or the cubic, nonlinear term vanishes.

Introduction
An appropriate model equation is the variable-

coefficient extended Korteweg-de Vries (veKdV) equa-
tion [1]

At + αAAx + βA2Ax + δAxxx = 0 . (1)

Here (x, t) are transformed variables related to the usual
space and time variables (χ, τ) by

t =
∫ χ dχ

c
, x = t− τ , (2)

while c(χ) is the linear long wave speed for the relevant
internal wave mode, whose amplitude η(χ, τ) is related
to the transformed amplitude by A(x, t) =

√
Qη. Q is

the linear magnification factor, defined so that Qη2 is the
wave action flux. The coefficients α(t), β(t) and δ(t) of
the nonlinear and dispersive terms respectively vary spa-
tially, and are determined by the stratification and topog-
raphy of the oceanic waveguide (see [2] for full formulas).
Note that although t is a variable along the spatial path of
the wave, we shall subsequently refer to it as the “time”.
Similarly, although x is a temporal variable, in a reference
frame moving with speed c, we shall subsequently refer
to it as a ”space” variable.

The evKdV equation (1) possesses two relevant con-

servation laws, ∫ ∞

−∞
A dx = constant , (3)∫ ∞

−∞
A2 dx = constant , (4)

representing conservation of mass and momentum re-
spectively.

Slowly-varying solitary waves
We now suppose that the coefficients α, β, δ in the

evKdV equation (1) are slowly varying, and write

α = α(T ) , δ = δ(T ) , T = στ , σ << 1 . (5)

These definitions enable us to define the slowly-varying
condition that the width of the solitary wave should be
much less than 1/σ. We then invoke a multi-scale asymp-
totic expansion of the form

A = A0(X, T ) + σA1(X, T ) + · · · , (6)

X = x− 1
σ

∫ T

V (T ) dT . (7)

A is defined over the domain −∞ < X < ∞, and we
require that A remain bounded in the limits X → ±∞.
Since we can assume that δ > 0 small-amplitude waves
will propagate in the negative X-direction, and so we can
suppose that A → 0 as X → ∞. However, it will tran-
spire that we cannot impose this boundary condition as
X → −∞.

The leading term is the solitary wave,

A0 =
H

1 + B coshKφ
, (8)

where V =
αH

6
= δK2 , B2 = 1 +

6δβK2

α2
. (9)

The amplitude is a = H/1 + B, and all parameters vary
with T , that is B = B(T ) etc. The family of solutions
(8) depend on a single parameter, which can conveniently
be taken as B. For β < 0 there is just one branch of
solutions, with 0 < B < 1; they range from small-
amplitude solitary waves of KdV-type with the familiar
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“sech2”-profile when B → 1, to a limiting wave of ampli-
tude −α/β as B → 0; this limiting wave is characterized
by a flat top, and is sometimes called a “table-top” wave.
For β > 0 there are two branches; one has 1 < B < ∞
and ranges from small-amplitude KdV-type waves when
B → 1, to arbitrarily large waves with a “sech”-profile as
B → ∞. The other branch has has the opposite polarity,
exists for −∞ < B < −1, and ranges from arbitrar-
ily large waves with a “sech”-profile to a limiting alge-
braic solitary wave of amplitude −2α/β. Solitary waves
with smaller amplitudes cannot exist, and are replaced by
breathers.

The determination of how B in (8) varies with T is
found either by considering the next-order term in the ex-
pansion, or equivalently by using the conservation law for
momentum (4). At leading order the solitary wave (8) is
substituted into (4) to give

G(B) = constant| β3

δα2
|1/2 , (10)

where G(B) = |B2 − 1|3/2

∫ ∞

−∞

du

(1 + B coshu)2
.

The integral term in G(B) can be explicitly evaluated, see
[1], and so these expressions provide explicit formulae for
the variation of B(T ) as the environmental parameters
vary.

But since the conservation of momentum completely
defines the slowly-varying solitary wave, we see that this
cannot simultaneously conserve total mass (3). This is
also apparent when one examines the solution for A1,
from which it is readily shown that although A1 → 0
as X →∞, A1 → D1 as X → −∞ where

V D1 = −M0T , and M0 =
∫ ∞

∞
A0dX . (11)

This non-uniformity in the slowly-varying solitary wave
is well-known. The remedy is the construction of a trail-
ing shelf As of small amplitude O(σ) but long length-
scale O(1/σ), which thus has O(1) mass, but O(σ) mo-
mentum.

Results
The analysis of the adiabatic transformation of a soli-

tary wave in section 2 shows that the critical points where
α = 0 (or where β = 0) are sites where we may expect a
dramatic change in the wave structure [1]. Suppose first
that α passes through zero, but that β < 0, O < B < 1
at the critical point T = 0 where α = 0. Then as α → 0,

it follows from (10) that B → 0 and the wave profile ap-
proaches the limiting “table-top” wave. But in this limit,
K ∼ |α|, and so the amplitude approaches the limiting
value a ∼ −α/β. Thus the wave amplitude decreases to
zero, but the mass M0 of the solitary wave grows as |α|−1

and so the amplitude D1 of the trailing shelf grows as
1/|α|4 (11). Essentially the trailing shelf passes through
the critical point as a disturbance of the opposite polarity
to that of the original solitary wave, which then being in
an environment with the opposite sign of α, can generate
a train of solitary waves of the opposite polarity, riding on
a pedestal (see [3]).

Next, let us suppose that at the critical point where
α = 0, β > 0. In this case, 1 < |B| < ∞ and there
are the two sub-cases to consider, B > 0 or B < 0, when
the the solitary wave has the same or opposite polarity to
α. Then, as α → 0, |B| → ∞ as |B| ∼ 1/|α|. It follows
from (9) that then K ∼ 1, D ∼ 1/|α|, a ∼ 1,M0 ∼ 1.
It follows that the wave adopts the “sech”-profile, but
has finite amplitude, and so can pass through the critical
point α = 0 without destruction. But the wave changes
branches from B > 0 to B < 0 as |B| → ∞, or vice
versa. An interesting situation then arises when the wave
belongs to the branch with −∞ < B < −1 and the am-
plitude is reducing. If the limiting amplitude of−2α/β is
reached, then there can be no further reduction in ampli-
tude for a solitary wave, and instead a breather will form.
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Abstract
This paper presents an existence proof for modulat-

ing pulse solutions to a wide class of quadratic quasi-
linear Klein-Gordon equations. Modulating pulse solu-
tions consist of a pulse-like envelope advancing in the
laboratory frame and modulating an underlying wave-
train; they are also referred to as ‘moving breathers’ since
they are time-periodic in a moving frame of reference.
The problem is formulated as an infinite-dimensional dy-
namical system with three stable, three unstable and in-
finitely many neutral directions. By transforming part of
the equation into a normal form with an exponentially
small remainder term and using a generalisation of local
invariant-manifold theory to the quasilinear setting, we
prove the existence of small-amplitude modulating pulses
on domains in space whose length is exponentially large
compared to the magnitude of the pulse.

Introduction
Consider the equation

∂2

t u = ∂2

xu − u

+ f1(u, ∂xu, ∂tu)∂2

xu + f2(u, ∂xu, ∂tu), (1)

in which

(i) f1, f2 are analytic;

(ii) fi(a,−b,−c) = fi(a, b, c), i = 1, 2. (2)

We seek modulating pulse solutions of the form

u(x, t) = v1(ξ, η), ξ = x − cgt, η = k0(x − cpt),

where

(i) v1(ξ, η) is 2π-periodic inη and has a pulse-like
profile in ξ;

(ii) cp = c′p − ε2 and cg = 1/cp, wherec′p is the
linear phase velocity(1 + k2

0
)1/2/k0 for a periodic

wave train with wavenumberk0.

Heuristic arguments show that one cannot in general
expect a ‘genuine’ pulse solution for whichv1(ξ, η) de-
cays to zero asξ → ±∞ (see below), and several rigor-
ous ‘non-existence’ results in this direction have indeed

been published ([1], [2]). A robust result can however be
obtained by generalising the definition of ‘pulse’ to in-
clude solutions which (i) do not necessary tend to zero as
ξ → ±∞ but certainly become very small for large val-
ues ofξ; (ii) do not necessarily exist for allξ ∈ R but
certainly exist forξ in a very large interval ofR [3].

Theorem

Fix a positive real numberk0. There exist positive con-
stantsε0 andc∗ with the property that for eachε ∈ (0, ε0]
equation (1) admits an infinite-dimensional, continuous
family of modulating pulse solutions. These solutions sat-
isfy

v1(ξ, η) = v1(−ξ,−η),

|v1(ξ, η) − hε(ξ, η)| ≤ e−c⋆/2
√

ε

for all η ∈ R andξ ∈ [−ec⋆/2
√

ε, ec⋆/2
√

ε], in which

hε(ξ, η) = ±ε

(

2Č1

πČ2

)1/2

sech(Č
1/2

1
εξ) cos η

+ O(ε3/2e−εθ|ξ|), 0 < θ < Č
1/2

1

(so that lim
ξ→±∞

hε(ξ, η) = 0 uniformly in η ∈ R) andČ1,

Č2 are positive constants (see Figure 1).

cg

cp

O(e−c / 2
√

ε) O(ε)

O(ec / 2
√

ε)

Figure 1: A modulating pulse solution

In this paper we sketch the proof of the above theorem.
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Spatial dynamics
We formulate the equation forv1(ξ, η) as a system for

(v1, v2), wherev2 = ∂ξv1, so that

∂ξv1 = v2, (3)

∂ξv2 = −cε
3k

2

0∂
2

ηv1 − cε
4v1

+ gε
0(v)∂2

ηv1 + gε
1(v) + gε

2(v)∂ηv2, (4)

wherecε
3
, cε

4
andgε

0
, gε

1
, gε

2
are respectively constants and

analytic functions with

gε
j (v) = gε

j (v1, ∂ηv1, v2), j = 0, 1, 2;

the superscriptε denotes a quantity which depends ana-
lytically uponε. We study the above system in the space

X s = Hs+1

per (0, 2π) × Hs
per(0, 2π), s > 0,

so that its phase space (the domain of the vector field on
its right-hand side) isX s+1. Notice thatgε

j is actually a
bounded operator onX s.

An important consequence of the discrete symmetry
(2) is that the system (3), (4) isreversible, that is invariant
under the transformation

ξ 7→ −ξ, (v1, v2) 7→ S(v1, v2),

where thereverser S : X s → X s is defined by

S(v1(η), v2(η)) = (v1(−η),−v2(−η)).

A solution to (3), (4) is said to besymmetric if it is invari-
ant under the above transformation.

Spectral analysis
We may express an element ofHs

per(0, 2π) as a Fourier
series

v1(η) =

√

1

2π
v1,0

+

√

1

π

∞
∑

m=1

{v1,m,o sin(mη) + v1,m,e cos(mη)}

Using this Fourier-series representation we find thatX s

decomposes into a direct sum⊕m∈N0
Em of subspaces,

where
E0 = {(v1,0, v2,0)}

and
Em = Em,o ⊕ Em,e,

Em,o = {(v1,m,o, v2,m,o)}, Em,e = {(v1,m,e, v2,m,e)}.

for m ∈ N. We can compute the spectrum of the lineari-
sation of (3), (4) by separately examining its restriction to
each of these subspaces.

m = 0: We have two simple, real eigenvalues±λ0,ε =
±(1 + k2

0
)1/2 + O(ε2) in E0.

m = 1: In E1,o we have a geometrically simple and al-
gebraically double zero eigenvalue forε = 0, while for
ε > 0 we have two simple real eigenvalues±λ1,ε which
satisfy the equation(λ1,ε)

2 = 2k0ε
2(1+ k2

0
)3/2 +O(ε4).

The same result holds inE1,e.

m > 1: We have two simple purely imaginary eigenval-
ues inEm,o given by±iωm,ε. The same result holds in
Em,e.

The eigenvalue picture is summarised in Figure 2. For
ε > 0 we have a two-dimensional strongly hyperbolic
part X s

sh
= E0, a four-dimensional weakly hyperbolic

partX s
wh

= E1 and an infinite-dimensional central part
X s

c = ⊕∞
m=2

Em of phase space; we denote the corre-
sponding spectral projections by respectivelyPsh, Pwh

andPc.

Im

Re

Im

Re

ε > 0ε = 0

Figure 2: The spectrum of the linearised problem

A simplified problem
An examination of Figure 2 shows a qualitative differ-

ence in the spectral nature of the weakly hyperbolic sub-
space forε = 0 andε > 0. This observation suggests that
any bifurcation phenomena take place at leading order in
this subspace. We therefore write

z = Pwh(v), q = Psh,c(v),

wherePsh,c = Psh + Pc, and formulate (3), (4) as the
coupled system

∂ξz = Kz+F ε(z, q), K =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









(5)
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and

∂ξq1 = q2, (6)

∂ξq2 = −cε
3k

2

0∂
2

ηq1 − cε
4q1 +

= gε
3
(z, q) + hε(z)

︷ ︸︸ ︷

Psh,c(g
ε
1(z, q))

+ Psh,c(g
ε
0(z, q)∂2

ηq1) + Psh,c(g
ε
2(z, q)∂ηq2), (7)

wheregε
3
(z, 0) = 0.

Observe that

(i) hε(z) = 0 ⇒ {q = 0} is invariant;

(ii) For hε = 0 the flow in{q = 0} is controlled by
the fourth-order dynamical system

∂ξz = Kz + F ε(z, 0). (8)

Using the scaled variablešξ = εξ, z1(ξ) = εž1(ξ̌),
z2(ξ) = ε2ž2(ξ̌), one can write (8) as

∂ξ̌ ž1,1 = ž2,1,

∂ξ̌ ž2,1 = Č1ž1,1 − Č2ž1,1(ž
2

1,1 + ž2

1,2) + O(ε),

∂ξ̌ ž1,2 = ž2,2,

∂ξ̌ ž2,2 = Č1ž1,2 − Č2ž1,2(ž
2

1,1 + ž2

1,2) + O(ε).

For ε = 0 this system has a two-dimensional invariant
subspace{(ž1,e, ž2,e)} containing two symmetric homo-
clinic solutions (Figure 3).

ž1,e

ž2,e

Figure 3: The(ž1,e, ž2,e) coordinate plane forε = 0

Lemma

Two symmetric homoclinic solutionspε to (8) persist for
ε > 0 and are estimated in unscaled coordinates by

|pε(ξ)| ≤ cεe−ε|ξ|.

In the special casehε = 0 we have therefore found two
symmetric homoclinic solutions(z(ξ), q(ξ)) = (pε(ξ), 0)
of (5)–(7), that is two symmetric modulating pulses which
decay to zero asξ → ±∞.

A nonexistence result
The above ‘persistence’ lemma shows that the homo-

clinic solutions in Figure 3 survive a small perturbation
(the re-introduction of theO(ε) terms) to become homo-
clinic solutions of (8). It would therefore appear reason-
able to try another ‘persistence’ argument to show that
the pulses(pε, 0) also survive a small perturbation (the
re-introduction ofhε) to become homoclinic solutions of
(5)–(7). The following heuristic argument however shows
that he homoclinic solutions found in{q = 0} generically
do not persist forhε 6= 0.

(i) Let us proceed formally by comparing (5)–(7) to a
high-dimensional dynamical system. A homoclinic
solution corresponds to a curve in phase space along
which the stable and unstable manifolds intersect.
Each of these manifolds is three dimensional (see
Figure 2), and in general one cannot expect two
three-dimensional manifolds in a high-dimensional
phase space to intersect.

(ii) The situation is of actually worse than the above
‘thought experiment’ indicates. Equations (5)–(7)
constitute a quadratic, quasilinear wave equation,
and any discussion of its stable and unstable mani-
folds requires a global well-posedness result for this
equation which is not available in a sufficiently gen-
eral form.

Nevertheless, sincehε = 0 is the ‘good case’ logic would
dictate that a problem in whichhε is very small should,
in an appropriate sense, be ‘close’ to this good case. The
following lemma shows thathε can be made exponen-
tially small with respect to the bifurcation parameterε; its
proof, which relies upon the analyticity of our equations,
uses ideas from a recent normal-form theory for analytic
dynamical systems [4].

Lemma

There exists a change of variable which preserves the
structure and yields the estimate

‖hε‖ ≤ cεe−c⋆/
√

ε

in the new variables.

Existence theory
We look for solutions of the form(z, q) = (pε + Z, q),

(Z, q) ∈ C[0, ec⋆/2
√

ε] with

‖(Z(ξ), q(ξ))‖ ≤ e−c⋆/2
√

ε, ξ ∈ [0, ec⋆/2
√

ε]
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(see Figure 4). These solutions remain exponentially
close to an approximate pulsepε for ξ in an exponentially
long interval[0, ec⋆/2

√
ε], they constitute ‘half-pulses’.

Lemma

There exists a continuum of such solutions(Z(ξ), q(ξ)),
the initial data(Z(0), q(0)) of which form a manifold
W cs in the infinite-dimensional phase spaceX s+1.

v

ξ

e−c /2
√

ε

ec /2
√

ε

pε

Figure 4: Solutions with initial data onW cs

The above solutions are found by combining dynami-
cal systems methods, in particular the construction of the
‘centre-stable manifold’ [5], and Kato’s iteration scheme
for quasilinear evolutionary equations [6].

Geometric arguments
The final step is to extend the ‘half-pulses’ constructed

above to ‘full pulses’ which remain exponentially close to
an approximate pulsepε for ξ in an exponentially long in-
terval [−ec⋆/2

√
ε, ec⋆/2

√
ε]. We proceed by examining the

geometry of the infinite-dimensional phase spaceX s+1.
Define the “symmetric section”Σ = Fix S and observe

that a solutionv(ξ) of (3), (4) on[0, e c⋆/2
√

ε ] with v(0) ∈
Σ can be extended to a symmetric solution

ṽ(ξ) =

{

v(ξ), ξ ≥ 0

Sv(−ξ), ξ < 0

on [−e c⋆/2
√

ε, e c⋆/2
√

ε ]. Observe that

(i) pε(0) lies inΣ;

(ii) W cs is constructed in terms of solutions which
are perturbations ofpε.

Our approach is therefore to solve

(I − S)v(0) = 0, v(0) ∈ W cs

perturbatively aroundpε(0) (see Figure 5).

Lemma

W cs intersectsΣ in an infinite family of points (parame-
terised byPc(I − S)v(0)).

Σ

pε

Figure 5: Symmetric pulses as perturbations ofpε
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The inverse scattering transform for an integrable dis-
cretization of the de- focusing nonlinear Schrodinger
(IDNLS) equation with non-vanishing bound- ary values
at innity is constructed. This problem was previously
studied and many important results were established. In
this talk, a suitable trans- formation of the scattering prob-
lem is introduced in order to address the open issue of an-
alyticity of eigenfunctions and scattering data. Moreover,
the inverse problem is formulated as a Riemann-Hilbert
problem on the unit circle, and a modication of the stan-
dard procedure is required in order to deal with the de-
pendence of asymptotics of the eigenfunctions on the po-
tentials. Finally, soliton solutions and small amplitude
limit solutions are obtained.

Introduction

We discuss the inverse scattering transform (IST) for a
semi-discrete (discrete in space, continuous in time) ver-
sion of the nonlinear Schrödinger (NLS) equation.

The NLS equation

iqt = qxx − 2σ |q|2q (1)

is a universal model for weakly nonlinear dispersive
waves, and σ = −1 corresponds to anomalous disper-
sion (focusing NLS), σ = 1 normal dispersion (de-
focusing NLS). In the case of normal dispersion NLS ad-
mits soliton solutions with nontrivial boundary conditions
(so called dark/gray solitons)

q(x, t) = q0e
2iq2

0
t { cos α+

+i sinα tanh [sinα q0(x − 2q0 cos α t − x0)] } ,

where q0, α and x0 arbitrary real parameters. Such solu-
tions satisfy the boundary conditions

q(x, t) → q±(t) = q0e
2iq2

0
t±iα as x → ±∞ .

The initial-value problem for the NLS equation on the in-
finite line (−∞ < x < ∞) can be solved via IST. In
particular, the IST for NLS under nonvanishing boundary
conditions was first studied in [1].

The differential-difference equation

i
d

dt
qn =

1

h2
(qn+1 − 2qn + qn−1)−σ|qn|

2(qn+1+qn−1) ,

(2)
which is referred to here as the integrable discrete NLS
(IDNLS) equation, is a O(h2) finite-difference approxi-
mation of NLS. The equation admits a Lax pair and the
corresponding scattering problem is usually referred to
as the Ablowitz-Ladik scattering problem (cf. [2], [3]
and the monograph [4]). Besides being used as a ba-
sis for numerical schemes for its continuous counterpart,
the IDNLS equation has also numerous physical appli-
cations, related to the dynamics of anharmonic lattices,
self-trapping on a dimer, Heisenberg spin chains etc.

The purpose of this work is to develop the IST under
nonvanishing boundary conditions for the following sys-
tem of differential-difference equations on the doubly in-
finite lattice

i
d

dτ
Qn = Qn+1 − 2Qn + Qn−1 − QnRn (Qn+1 + Qn−1) ,

(3a)

−i
d

dτ
Rn = Rn+1 − 2Rn + Rn−1 − QnRn (Rn+1 + Rn−1) ,

(3b)

with n ∈ Z. Equations (3) include the IDNLS equa-
tions (2) via the reductions Rn = σQ∗

n, with Qn = hqn

and τ = t/h2. The IST for Eqs. (3) with vanishing
boundary conditions was studied in [3]. The case of in-
terest here, namely Eqs. (3) with Rn = Q∗

n and nonva-
nishing boundaries, was also studied in [5], and we of-
ten refer to some key results already established there.
In some important respects, however, we part from the
approach in [5], and we solve the problem differently,
most notably by relaxing the implicit requirement in [5]
that the eigenfunctions be entire functions of the scatter-
ing parameter (which otherwise precludes the possibility
of studying non-soliton solutions). We establish the an-
alyticity properties of eigenfunctions and scattering data
from the direct scattering problem for potentials in a suit-
able function class, we formulate the inverse problem as
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a Riemann-Hilbert problem which also takes into account
the asymptotic dependence (at large and small values of
the scattering parameter) of the eigenfunctions on the po-
tentials, and we discuss the small-amplitude and contin-
uum limits of the problem.

The first step will be the discussion of the direct scat-
tering problem. As in the continuous case, the spectral
parameter of the associated scattering problem for the
IDNLS equation is an element of a two-sheeted Riemann
surface. Unlike the continuous system, however, for the
discrete problem the Riemann surface has four branch
points, located on the unit circle. The Riemann surface in
the discrete case is genus 1, that is, topologically equiv-
alent to a torus. In spite of this, due to the symmetries
in the location of the branch points, the elliptic Riemann
surface admits an involutive automorphism. Following
[5], we therefore introduce an algebraic parametrization
for the uniformization coordinate. The study of the an-
alyticity of the scattering eigenfunctions is performed in
terms of the uniformization variable. In [5] the eigen-
functions are assumed to be entire, and the equations of
the inverse problem derived accordingly, which imposes
strong restrictions on the class of admissible potentials.
We show that in general the eigenfunctions are analytic
inside or outside the unit circle of the uniform variable

when
n
∑

j=∓∞
|Qj − Q∓| < ∞ for any finite n, where

Q± = limn±∞ Qn.

Then we discuss the asymptotic behavior of the eigen-
functions for relevant values of the scattering parameter
and show this behavior explicitly depends on the poten-
tials. We also discuss the properties of the scattering coef-
ficients and their symmetries, as well as the discrete spec-
trum.

The inverse problem is formulated as a Riemann-
Hilbert (RH) problem associated with analytic eigenfunc-
tions. The formulation must be modified with respect to
the standard case in order to take into account that the
asymptotic behavior of the eigenfunctions for relevant
values of the scattering parameter explicitly depends on
the potentials, which are unknown in the inverse prob-
lem. The RH problem is then transformed into a closed
linear system of algebraic-integral equations.

We obtain the time evolution of the scattering data. We
discuss soliton solutions and we show how to obtain the
small amplitude from the RH problem and to compare it
to the Fourier transform solution obtained from the lin-
earized equation. Finally, we briefly discuss the contin-
uum limit of the discrete IDNLS.
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Abstract
Three dimensional nonlinear free surface flows are

considered. The fluid is assumed to be inviscid and in-
compressible and the flow to be irrotational. Both the ef-
fects of gravity and surface tension are included in the dy-
namic boundary condition. The fully nonlinear problem
is solved numerically by boundary integral equation tech-
niques. Free surface flows generated by moving distur-
bances are presented. Both steady and unsteady solutions
are discussed. Extensions to interfacial flows are also pre-
sented. In addition three dimensional solitary waves are
considered.

1 Discussion of the results
Three-dimensional capillary-gravity waves generated

by a moving disturbance moving at a constant velocity
c on or below a free-surface are considered. The fluid
is assumed to be of infinite depth and steady solutions
in a frame of reference moving with the disturbance are
sought. A classical application is the calculation of the
wave pattern generated by a moving ship. The problem
is often modelled by potential flow and by neglecting sur-
face tension. It is then necessary to impose the radiation
condition which requires that there is no energy coming
from infinity. This condition requires that the waves are
behind the disturbance. It can easily be imposed numeri-
cally by forcing the free-surface to be flat at some distance
in front of the disturbance (see for example [1] and [2]).

For small disturbances (insects or probes), the effect of
surface tension can be significant. The situation is then
more complicated. There is a minimum valuecmin of
c such that there are no waves on the free-surface when
c < cmin. The value ofcmin is given by

cmin = (
4gT

ρ
)1/4 (1)

whereT is the coefficient of surface tension (assumed to
be constant),ρ is the fluid density andg is the acceleration
of gravity. For an interface between water and air,cmin ≈
0.23ms−1.

Parau, Vanden-Broeck and Cooker ([3] and [4]) calcu-
lated numerically nonlinear solutions forc < cmin. They
showed that the free surface profiles are characterised by
decaying oscillations in the direction of the motion of the

disturbance and monotonic decay in the direction perpen-
dicular to the direction of motion of the disturbance. As
the size of the disturbance approaches zero, the solutions
reduce to either a uniform stream or a three-dimensional
solitary wave. There are both elevation and depresssion
solitary waves. Typical profiles are shown in Figures 1
and 2. We note that our numerical results are consistent
with the asymptotic results of Kim and Akylas [5] and
Milewski [6] and with the rigourous findings of Groves
and Sun [7].
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Figure 1: Depression solitary gravity-capillary wave for
c

cmin
= 0.92. Only the portion of the wave fory > 0 is

shown. The vertical scale is exaggerated by a factor of
20.

Whenc > cmin, two different wave systems can occur
on the free-surface. Analytic solutions have been derived
by assuming a small disturbance and seeking a solution
as a small perturbation around a uniform stream. These
linear results show that the radiation condition forces the
waves of longer wavelength to accur behind the distur-
bance and those of shorter wavelength to occur at the front
of the disturbance.

We supplement the linear theories forc > cmin with
nonlinear computations. Since waves occur both at the
front and at the back of the disturbance, the radiation con-
dition cannot easily be imposed (as it was the case when
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Figure 2: Elevation solitary gravity-capillary wave for
c

cmin
= 0.92. Only the portion of the wave fory > 0 is

shown. The vertical scale is exaggerated by a factor of
20.

T = 0). Here we adapt to the nonlinear regime a tech-
nique introduced by Rayleigh to calculate analytically lin-
ear solutions. The idea is to include a dissipative term
in the dynamic boundary condition. This term is char-
acterised by an artificial viscosityµ > 0 known as the
Rayleigh viscosity. Rayleigh showed that the linear prob-
lem withµ 6= 0 has a unique solution and that the correct
solution satisfying the radiation condition is selected by
taking the limitµ → 0.

We show that nonlinear solutions satisfying the radia-
tion condition can be calculated numerically by using a
boundary integral equation formulation in which a small
Rayleigh viscosityµ > 0 is introduced. The boundary
integral equation formulation is based on ideas developed
by [1], [2], [3] and [4]. For simplicity we assumed that
the disturbance is a distribution of pressure with bounded
support (qualitatively similar results can be obtained for
different disturbances, for example moving submerged
objects). We note that related approaches were used be-
fore for two-dimensional free-surface flows. A typical
three dimensional solution forµ = 0.1 is shown in Figure
3.

Our solutions are not truly non-dissipative becauseµ 6=
0. The effect ofµ 6= 0 on the solutions can be estimated
by comparing solutions withµ 6= 0 to known solutions
with µ = 0. These known solutions include the solutions
with T = 0 of Parau and Vanden-Broeck [2] and the solu-
tions of Parau, Vanden-Broeck and Cooker ([3] and [4])
for c < cmin. In both cases we show that the effect of
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Figure 3: A typical solution forµ = 0.1.

µ 6= 0 is relatively small, providedµ is small.
We also present nonlinear time dependent results ob-

tained by a boundary integral equation formulation. In
particular we show how the steady gravity-capillary solu-
tions described in the first part of the talk can be computed
as the long time behaviour of a time dependent calcula-
tion.

We conclude by presenting extensions of the results for
interfacial flows.
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Abstract
The Foldy relation, classical in multiple scattering,

gives the effective wavenumber of the average coherent
field propagating in a layer filled with scatterers randomly
arranged. The determination of this relation, based on av-
eragings does not lead to its validity range. To quantify
numerically this range (scatterers size, distance between
scatterers, shape of the scatterers...) in Foldy’s relation,
we determine, thanks to a Monte-Carlo method, the av-
eraged acoustic wave scattered in time harmonic regime
and in 2D by rigid obstacles. To reduce the calculation
times, we have developed a method based on finite el-
ements coupled to an integral representation, similar to
the boundary element method, which allows to reduce the
number of freedom degrees.

We have studied the influence of the cylinders density
on the quality of Foldy’s approximation. We find a good
agreement only for low densities. For scatterers with a
more complex shape, we have made some concluding
tries with square shapes.

Introduction
The Foldy’s relation [1] gives in time harmonic regime,

thanks to a statistical averaging, the characteristics of a
homogeneous effective medium equivalent to a layer ran-
domly filled with scatterers. This relation indicates that if
k denotes the wave number of the Helmholtz equation de-
scribing the medium without scatterers (k = ω/c where
ω is the frequency and c the sound speed), then the pres-
ence of scatterers leads to an effective wave number K
(complex, the effective medium is dissipative). It reads
K = k + (2n/ik)f where f only depends on the nature
and on the geometry of one scatterer and n is the scatter-
ers density.

The average process to derive this result does not give
clearly the validity ranges of Foldy’s relation except that
ka ¿ 1 and na2 ¿ 1 where a is the “radius” of a scat-
terer. Our goal is to develop a finite element method in
order to calculate the effective wave number and to deter-
mine the validity range of Foldy’s relation: scatterer size,
mean distance between scatterers, scatterer shape, bound-
ary conditions on the scatterers, choice of randomness in

the scatterers distribution... Recently experimental mea-
sures of K showed that Foldy’s formula becomes inaccu-
rate even for small surface densities (beyond 6%) [2].

The equations
The function ptot denotes the total pressure in the fluid,

pinc is the incident wave (plane in practice) sent on the
scatterers. Then the scattered pressure p = ptot − pinc

satisfies :
(
∆ + k2

)
p = 0 (Ω),

∂p

∂n
= −∂pinc

∂n
(Γ),

+ p is outgoing at infinity.

Ω denotes the exterior of the scatterers and Γ is the scat-
terers boundary, chosen rigid. In the case of cylindrical
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Figure 1: Problem in a bounded domain

obstacles, a semi-analytical resolution of the problem can
be performed thanks to summations of Bessel’s and of
Hankel’s functions [3]. For obstacles of complex geom-
etry, it is necessary to use a finite element method. To
reduce to a bounded calculation domain, the scatterers
are surrounded by a curve Σ (see Fig. 1) on which it is
required to write a condition to select the “outgoing so-
lution”. This is achieved using the integral representation
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of the outgoing solution. This method is similar to the
boundary element method. For a given configuration of
scatterers, the problem to solve reads:

(
∆ + k2

)
p = 0 (Ω),

∂p

∂n
= −∂pinc

∂n
(Γ),

(
∂

∂nx
+ λ

)
p(x) =

∫

Γ

[
p(y)

(
∂

∂nx
+ λ

)
∂G(x− y)

∂ny

+
∂pinc(y)

∂ny

(
∂

∂nx
+ λ) G(x− y)] dΓy (Σ).

G(x) = H
(1)
0 (k|x|)/4i is the Green function in 2D and

n is the outgoing normal from Ω. To ensure that this
bounded problem is equivalent to the problem in the open
space, a parameter λ is introduced such that =m(λ) 6= 0.
In the sequel, as an example we have considered cylin-
drical scatterers for which Ω becomes a union of crowns.
The numerical method is performed thanks to the finite
element code MELINA [4].

Monte-Carlo procedure
Mesh generation

The mesh of N crowns around N randomly placed
scatterers is built in a rectangle of height H and of width
L. In this aim first a reference crown’s mesh is built. Then
N random locations are chosen in the rectangle and the
reference mesh is duplicated in each of these points (see
Fig. 2). To adjust the size of the scatterers, a scale is also
applied, whose ratio is deduced from the scatterers sur-
face density ρ that is desired. This density is defined by
ρ = NπR2

Γ/Stot where Stot = H × L is the rectangle
surface, which imposes the radius RΓ of the scatterers.

As the scatterers are not punctual and since we im-
pose no crown to overlap, the scatterers configurations do
not follow a uniform statistic law. Moreover the mini-
mal distance between two centers of scatterers is fixed to
dmin = 5RΓ which reinforces the correlation, especially
for larger densities.

Calculation of the coherent field
The frequency k and the incident wave pinc = eikx

being fixed, for each of the Nconf scatterers configuration
is calculated the scattered field in each crown and then
on a grid (see Fig. 2), independent of the configuration,
thanks to the integral representation formula. A typical
scattered field obtained on the grid is drawn on Fig. 3.

The procedure to determine the mean field is the fol-
lowing:

Figure 2: Mesh with the grid

Figure 3: Scattered pressure on the grid for a particular
scatterers (in black) configuration

• for i = 1, Nconf , the ith mesh is generated and the
scattered field pi is calculated on the grid,

• for j = 1, Ngrid (number of points on the grid) the
mean field is determined according to the formula
pmean(Mj) =

∑Nconf

i=1 pi(Mj)/Nconf .

Results
Influence of the number of configurations

For a density ρ = 0.1 the total pressure ptot =
pinc + pmean has been calculated for N = 100 cylin-
ders, Nconf = 5 (Fig. 4) and Nconf = 44 (Fig. 5). In the
last case a plane wave is guessed but is still polluted. To
get a “clean” plane wave 180 configurations are required.
Then to extract the effective wave number K, first a verti-
cal average is performed p̃tot(x) =

∫ h
0 ptot(x, y)dy. This

improves the quality of the coherent wave (more regular).
Then by seeking a representation of the pressure in the
form of a plane wave p̃tot(x) = AeiKx, A and K are
identified by a less squares method. In practice to choose
Nconf , K(Nconf ) is calculated up to become constant. In
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Figure 4: Nconf = 5

Figure 5: Nconf = 44

the worst case we obtained Nconf = 200 (obtained for
ρ = 0.1).

Influence of the scatterer density
The Foldy relation is valid if the density ρ is small.

Numerically we wanted to establish if there is a density
above which the Foldy model becomes inaccurate. Draw-
ing the imaginary parts of Knum and Kfoldy (for a cylin-
der, f = −∑∞

n=−∞ J ′n(kRΓ)/H ′
n(kRΓ) [5]) versus the

density (see Fig. 6) we get that these two values remain
close for ρ ≤ 0.1. Concerning the real parts (see Fig. 7),

0 0.05 0.1
ρ

0

0.05

0.1

Im(K)

Figure 6: − : =m(Knum), −− : =m(Kfoldy)

<e(Knum) remains close to <e(KFoldy) for ρ ≤ 0.05
and then becomes more distant. Finally the amplitude |A|

0 0.05 0.1
ρ

3.9

3.95

4

4.05

Re(K)

Figure 7: − : <e(Knum), −− : <e(Kfoldy)

is found to decrease continuously versus the density, start-
ing from 0.9 for ρ = 0.005. |A| = 1 found by Foldy is
not recovered: this is due to the fact that we do not study
a layer of infinite height and consequently some acoustic
energy is lost vertically. Our finite element method can
easily be extended to non-cylindrical scatterers. Square
scatterers have been considered, randomly placed and ori-
ented. The obtained average pressure is still a plane wave,
more attenuated than in the case of cylinders of same size
(extra scattering by the corners).
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Abstract
This work focuses on the determination of the two ef-

fective parameters that characterize a multiple scattering
medium sought as an effective (homogenized) medium,
namely the effective sound speed ce and the effective den-
sity ρe. By considering only the single scattering pro-
cesses, it is possible to derive the effective parameters, an
approach that is valid for small scattering strength. Cal-
culations are performed in 1D and exemplified by numer-
ical results. Calculations in 2D concerns scatterers that
behave as a combination of a monopole and a dipole. The
results for cylinders in the low frequency limit are shown
to be in agreement with results derived by a CPA type
method.

1 Introduction
The problem of how a wave propagates through many

scatterers is old and the literature is vast on the subject.
A well established result is that the wave propagates as
in a homogeneous medium with complex index or com-
plex sound speed ce. Solving the Green function of the
multiple scattering medium is an example of how deriv-
ing the effective sound speed ce. By using this approach,
it is implicitly said that the scatterers fill the whole space.
A problem that has received much less attention concerns
the boundary conditions that have to be applied at an “in-
terface” between a medium free of scatterer and a medium
filled with scatterers. In other words, the characterization
of the homogenized (effective) medium needs an effective
density ρe to be determined, in addition to the effective
sound speed.

The present study focuses on this problem by consid-
ering the very simple configuration of a unique scatterer
able to move in an half space, say x ≥ 0. The “mean”
field averaged over all possible positions of the scatterer
allows to define the reflexion and transmission coeffi-
cients of the interface x = 0. Generalizing this result
to a N -scatterer problem is possible for small scatter-
ing strength, in which case the presented results corre-
sponds to the first order expansion in the weak scattering
strength. In 1D, we get ρe/ρ = 1+n[f(π)−f(0)]/(2k2)
(with n the density of scatterers), a result that shows that
the effective parameter ρe is linked to the anisotropy of
the scatterer. In 2D, a scatterer with a monopole and a

dipole contributions is considered f(θ) = f1 + f2 cos θ.
It is shown that ρe/ρ = 1 − nf2/k

2 with the same con-
clusion. The effective celerity ce is also deduced and
is shown to agree with the usual leading order result
K2 = k2 − nf(0)/k in 1D and K2 = k2 − nf(0) 2D.

The 1D case is exemplified with numerical results in
the case of a scattering due to a change in density. The 2D
case is exemplified for scattering by cylinders in the low
frequency limit. The results are shown to be in agreement
with the results (at leading order) of Ref. [1], [2] using
a CPA type approach. The main conclusion is that this
childlike approach allows to derive meaningful results.

2 The one scatterer problem
We consider a unique scatterer at position r1 with x1 >

0. The scatterer is characterized by its scattering function
f(r − r1) so that the field solution of (∆ + k2)u = 0 in
the presence of the scatterer and an incident wave uinc is

u(r) = uinc(r) + f(r− r1)G
0(r− r1)u

inc(r1), (1)

with G0 the Green function of the free space. If the scat-
terer moves in the half space x > 0 (with a probability
distribution p(r1)), the mean field 〈u〉 is

〈u〉(r) = uinc(r)+

∫
dr1p(r1)f(r−r1)G

0(r−r1)u
inc(r1).

(2)
For an incident wave eikx, the solution is sought in terms
of an effective medium as

〈u〉(x < 0) = eikx + ree
−ikx,

〈u〉(x > 0) = tee
iKx,

(3)

where K is the effective wavenumber and (te, re) the ef-
fective transmission and reflexion coefficients of the “fic-
tive” interface at x = 0. The effective parameters (ρe, ce)
are simply deduced with

ce =
k

K
c, ρe =

Kte
k(1 − re)

ρ. (4)

Of course, this “one scatterer problem” (with density
n = 1/L in 1D, n = 1/S in 2D, L,S → ∞) is not
very pertinent to describe an homogenized medium and
the problem is then to generalized the result to a N scat-
terer problem. This is possible if multiple scattering pro-
cesses can be neglected which means that the results hold
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when the scattering strength f is small. In that case, the
results correspond to first order expansion in f .

3 Derivation in 1D
3.1 Derivation of the effective parameters

In 1D, f takes two values f(0), x > x1 and f(π), x <
x1 and we easily get, with n ≡ 1/L (for N scatterers, it
is sufficient to define n = N/L)

〈u〉(x < 0) = eikx + nf(π)/(2ik)

∫ L

0

dx1e
2ikx1e−ikx,

〈u〉(x > 0) = eikx + nf(0)/(2ik)

∫ x

0

dx1e
2ikx1e−ikx

+nf(π)/(2ik)

∫ L

x
dx1e

ikx,

(5)
from which we deduce (L→ ∞)

re = nf(π)/(4k2), te = 1 + re,
K = k − nf(0)/(2k),

(6)

where the derivation has been done expanding the solu-
tion sought in Eqn. (3) at first order in f and identifying
with the expressions of Eqn. (5). The field 〈u〉 is found to
be continuous across the interface while its first derivative
〈u〉′ verifies [〈u〉′] = n[f(0) − f(π)]/(2ik). We finally
get

ce/c = 1 + nf(0)/(2k2),

ρe/ρ = 1 + n[f(π) − f(0)]/(4k2).
(7)

As previously said, this result is expected to be valid for
a N scatterer problem for weak scattering f . It can be
noticed that the effective sound speed depends only on the
forward scattering (a classical result) while the effective
density is found to differ from the background density ρ
only when the scatterers are anisotropic.

3.2 Example of scattering due to density change
We consider the case where the scattering is due to a

change in density from the background density ρ to the
density ρ0 in scatterers of size a. We introduce the filling
fraction ϕ ≡ na, the fraction of length occupied by the
scatterers (ϕ < 1). The corresponding scattering func-
tions can be easily derived and we find two limits for
weak scattering

• For small relative change in density δρ/ρ ≡ (ρ0 −
ρ)/ρ � 1, we get f(0) � O[(δρ/ρ)2] and f(π) �
2(δρ/ρ)k sin ka+ [(δρ/ρ)2]. We thus have

ρe/ρ = 1 + ϕ(δρ/ρ) sin ka/(2ka) +O[(δρ/ρ)2].
(8)

The result is exemplified on fig. 1(a), where the
average field is numerically calculated. The first
derivative 〈u〉′ exhibits a discontinuity that, for fi-
nite size scatterer ka, appears to be not well located
at x = 0. This discontinuity is responsible for the
effective density ρe 	= ρ.

• For small scatterer size or low frequency limit ka�
1, we get f(0) � −k2aδρ2/(ρρ0) + kO[(ka)2],
f(π) � k2a(ρ2

0
− ρ2)/(ρρ0) + kO[(ka)2]. We thus

have

ρe/ρ = 1 + ϕ(δρ/ρ)/2 +O[(ka)2]. (9)

The result is exemplified on fig. 1(b). This low fre-
quency limit is probably a better limit to clearly de-
fine a discontinuity (occurring on the small length
a).

Note that, in this example, the scattering function f(0)
is real, so their is no attenuation occurring at first order.
Attenuation would appear at second order in the small pa-
rameter.
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Figure 1: Illustration of the discontinuity of the the first
derivative 〈u〉′(x), responsible for an effective density ρe 	= ρ.
(a) the calculation is performed by averaging 1000 realizations
of 100 randomly placed scatterers with ka = 0.5, δρ/ρ = 0.5,
ϕ = 0.5 (b) same representation for 100 averages of 200
randomly placed scatterers with ka = 0.05, δρ/ρ = 1,

ϕ = 0.5. The plain line shows the numerical result and dotted
line the analytical derivative of Eqn. (3).

4 Derivation in 2D
In general, the 2D scattering function is expressed as

a function of the angle θ that forms the direction of r −
r1 with the incident wavenumber direction. I have not
found a way to treat the general case f(θ). Instead, I
consider the case of a scattering function that contains a
monopole and dipole contributions f(θ) = f1 + f2 cos θ
[with cos θ = (x− x1)/|r − r1|].

〈u〉(r) = eikx +

∫
dr1p(r1)f(θ)

H
(1)

0
(k|r − r1|)

4i
eikx1.

(10)
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The calculation are straightforward and we get, with n =
N/S (S is the surface occupied by the cylinders)

re = n(f1 − f2)/(4k
2), te = 1 + re,

K = k − n(f1 + f2)/(2k),
(11)

from which we deduce [〈u〉] = 0, [〈u〉′] = −inf2/k and

ρe/ρ = 1−nf2/k
2, ce/c = 1+n(f1+f2)/(2k

2). (12)

Again, it can be seen that only the dipole contribution
(non isotropic) gives an effective density different from
the background density. Also, it can be noticed that the
expression for the effective sound speed agrees with the
usual law K2 � k2 − nf(0)/2.

4.1 The case of cylinders
A cylinder of radius a, with density ρ0 and sound speed

c0 in a background of density ρ and sound speed c has
typically a monopole and dipole scattering contributions
in the limit of low frequencies:

f1 = π(ka)2 [1 − ρc2/(ρ0c
2

0
)] +O[(ka)2],

f2 = 2π(ka)2(ρ− ρ0)/(ρ + ρ0) +O[(ka)2].
(13)

Introducing the filling fraction ϕ ≡ nπa2, we get for
the density (the effective velocity has a more complicated
form)

ρe/ρ = 1 − 2ϕ(ρ− ρ0)/(ρ + ρ0). (14)

Notably, for impenetrable cylinder ρ0 → ∞, we have

ρe/ρ � 1 + 2ϕ, ce/c � 1 − ϕ/2. (15)

These results are the linearized version (leading order)
of the results obtained in Ref. [1] using a CPA-type ap-
proach. The same expression ρe/ρ � (1 + ϕ)/(1 − ϕ)
would be obtained if te was recasted in the form

te �
1

1 − n(f1 − f2)/(4k2)
, (16)

instead of the linearized version of Eqn. (11). This re-
semble to the observation that K2, rather than K is a
good candidate for expansion. However, in the absence
of physical argument, it appears hazardous to chose 1/t
rather than t (this lack is the price to pay for using a crude
modelization).

In Ref. [1], it is considered the case of different cylin-
ders, namely cylinders with different densities and filling
fractions. This refinement is straightforward in the pre-
sented approach since the average over f with respect
to the scattering characteristics can be performed inde-
pendently of the average over the scatterer positions. It

is thus sufficient to replace f by 〈f〉c in the calculation,
where 〈.〉c means average over the characteristics of the
scatterer.

In Ref. [2], the problem of water waves propagating
in periodic cylinder arrays is considered (again in a CPA
type approach). In that case, the density has to be replaced
by the height h = 1/ρ and the effective sound speed c =√
gh. It is straightforward that

he/h � 1 − 2ϕ, ge/g � 1 − ϕ/2, (17)

results that appear again as a linearization of the results
obtained in Ref. [2]. Again, if 1/t was linearized instead
of t, the same expression would be obtained.

As a conclusion, the elementary approach based on sin-
gle scattering process is shown to be sufficient to derive
the effective parameters of a homogenized medium. No-
tably in 1D, it offers a nice image, because of its simplic-
ity, of what happens in a random medium: the Eqn. (5)
contains many physical informations on the reflexion and
transmission processes but as well on the origin of the at-
tenuation. Works are in progress to iterate at second order
and, notably, to get informations on the hole correction.
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Waves and faults propagating in an inhomogeneous lattice structure
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1 Abstract
We analyse a square lattice containing point masses

connected by linearly elastic massless bonds. The lattice is in-
homogeneous and it represents a stratified structured medium.
The layers differ by particle masses, so that the cell of period-
icity includes three particles, as shown in Fig. 1.

A moving fault, which is crack-like, is introduced as
a line of broken bonds, and the growth of such a fault is con-
sidered as a sequence of breaks of the bonds. We note that
there is no crack edge singularity, which normally appears for
stress components in the continuum model.

Figure 1: Inhomogeneous lattice structures: (a)
Undamaged lattice, (b) Lattice with a crack.

2 Introduction

Waves in periodic structures is a classical topic
(see, for example, [1], [2]). The relatively recent ad-
vance in the design of band-gap materials has resulted
in a series of publications related to control of wave
propagation within periodic structures ([3], [4], [5], [6],
[7]).

There is also a steadily increasing number of
papers on fracture in lattices. Numerical simulations
of atomic lattices were initiated by the work [8], [9].
The first analytical solution for a string-like 2-D lattice
model was obtained in [11]. Such lattice models were
then studied in [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27].

The main results on dynamic fracture in struc-
tured media are summarized in [28].

In this paper, we discuss an analytical model,
which gives the displacement field around a crack-like
fault propagating in an inhomogeneous lattice. It is
also shown that the propagation of the fault can be con-
trolled via an appropriate choice of physical parameters
of the lattice.

3 The lattice

In Fig. 1, the particles are shown as black or
white discs, and they are assumed to have the massm1

or m2, respectively.

The normalization is introduced in such a way
that(2m1+m2)/3 = 1 (the average density), andc = 1
(the low-frequency wave speed).

The equations of motion are written for three
particles within the elementary cell of the periodic
structure. The displacement is denoted byuj,m,n,
where(m,n) is the multi-index giving the position of
the cellme(1) + 3ne(2), whereasj = 0, 1, 2 is the in-
dex, which sets the particle position within the cell. The
equations of motion of the intact lattice have the form:

3
2 + µ

ü0,m,n = u0,m−1,n + u0,m+1,n + u1,m,n

+u2,m,n−1 − 4u0,m,n ,

3µ

2 + µ
ü1,m,n = u1,m−1,n + u1,m+1,n + u2,m,n

+u0,m,n − 4u1,m,n ,

3
2 + µ

ü2,m,n = u2,m−1,n + u2,m+1,n

+u0,m,n+1 + u1,m,n − 4u2,m,n ,

(1)

whereµ = m2/m1.

4 Lattice with a propagating fault. The Wiener-
Hopf problem

Consider a crack-like fault,m < vt, t >
−∞, propagating between the layers (0,m, 0) and
(2,m,−1), as shown in Fig. 1b, with a constant speed,
v > 0. We follow the ”steady state” formulation and
hence assume that the displacementuj,m,n(t) depends
only on the variablesj, η = m − vt andn. The dis-
placement functions will be denoted byuj,n(η). The
following symmetry relations hold

u0,n(η) = −u2,−n−1(η) ,

u1,n(η) = −u1,−n−1(η) ,

u2,n(η) = −u0,−n−1(η) . (2)

In terms of the Fourier transformuF
j,n(k) of uj,n(η)

with respect toη, the equations for the undamaged lat-
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tice (see (1)) become

S2u
F
0,n − uF

1,n − uF
2,n−1 = 0 ,

S1u
F
1,n − uF

0,n − uF
2,n = 0 ,

S2u
F
2,n − uF

0,n+1 − uF
1,n = 0 ,

(3)

with

S1(k) = 4− 2 cos k +
3µ

2 + µ
(0 + ikv)2 ,

S2(k) = 4− 2 cos k +
3

2 + µ
(0 + ikv)2 . (4)

For the lattice with the crack Eqs. (3) are valid
for n > 0 and forn < −1. For the upper half-plane we
use the representation

uF
j,n(k) = uF

j (k)λn(k) ,

uF
j = uF

j,0 ,

|λ| ≤ 1 . (5)

For anyn > 0 equations (3) become

S2u
F
0 − uF

1 − uF
2 /λ = 0 ,

S1u
F
1 − uF

0 − uF
2 = 0 ,

S2u
F
2 − λuF

0 − uF
1 = 0 .

(6)

It follows that

λ = P −
√

P 2 − 1 ,

P =
1
2

(S1S2
2 − 2S2 − S1

)
. (7)

For particle displacementsu0,0(η) on the crack face, we
shall use the representation

uF
0,0(k) = u+(k) + u−(k) ,

u±(k) = [u0,0(η)H(±η)]F , (8)

whereH is the Heaviside unit step function. Letσ
denote the traction on the boundary of the upper half-
plane. It is assumed that the crack faces are traction
free, i.e. forη < 0 we have

σ(η) = 0 , σ− = 0 , (9)

whereas forη > 0

σ(η) = 2u0,0(η) , σ+ = 2u+ . (10)

Accordingly, we modify the first equation in the system
(6), and using the relation

(S1S2 − 1)uF
1 = (S2 + η)uF

0 (11)

we arrive at the functional equation of the Wiener-Hopf
type for the functionsu±(k)

Q1(k)u+(k) +Q2(k)u−(k) = 0 ,

Q1(k) = S2 + 1− S2 + λ

S1S2 − 1
,

Q2(k) = S2 − 1− S2 + λ

S1S2 − 1
, (12)

whereS1,2 andλ are defined in (4) and (7), respectively.

5 Applications
The analytical solution for the dynamic fracture

problem in an inhomogeneous lattice has been used to
establish the connection between the crack The partic-
ular attention is given to waves corresponding to those
crack-speed-dependent regions of the wavenumber axis
whereλ = ±1 and whereλ is complex, that is, where
P 2 ≤ 1 [ see (7)].
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Figure 2: The energy ratioG0/G as a function of the
crack speedv for different values of the lattice contrast

parameterµ. For the diagram on the leftµ = 20, whereas for
the diagram on the rightµ = 2.

We evaluate the local energy release rateG0,
which is equal to the bond critical strain energy, as well
as the global energy release rateG. The ratioG0/G
characterizes dissipation associated with the propagat-
ing fault within the lattice, and the results of sample
computations are shown in Fig. 2. We note a consider-
ableenergy ratio drop-downfor high-contrast lattices.

Theenergy ratio drop-downregion corresponds
to a highly increased dissipation, and hence to a strong
increase of the crack resistance. Thus the above-
mentioned increase in the lattice contrastµ creates
an energy barrier against further increase of the crack
speed. For the case of a crack in the inhomogeneous
lattice with2 < µ < 10, there exists a stability interval
for sufficiently low crack speeds. We note that such an
interval does not exist for a crack in a uniform lattice,
as first noted in [16].
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Abstract
We consider the problem of low frequency wave prop-

agation through periodic fibre reinforced media where the
periodic cell contains numerous fibres and hence the ma-
terial possesses complex microstructure. We show how a
recent homogenization scheme developed by Parnell and
Abrahams [1], [2], based on classical asymptotic theory,
can efficiently and reliably model such media.

Introduction
Inhomogeneous materials possessing complex mi-

crostructure are ubiquitous in science and industry. Equa-
tions governing low frequency wave propagation through
such media possess rapidly varying coefficients and this
poses substantial difficulties for direct numerical simula-
tions. Homogenization theory eliminates these variations
by replacing such coefficients with appropriately defined
averaged quantities. This gives rise to the notion ofeffec-
tive material properties. Note the importance oflow fre-
quency propagation - i.e. the wavelength of propagating
waves is much larger than the characteristic lengthscale
of the microstructure. This is the so-called notion ofsep-
aration of scales and the process of homogenization can
only be carried out in this regime.

Many models have been developed for periodic com-
posites. Multipole schemes based on the pioneering work
of Rayleigh were developed by Zalipaev et. al. [3] and
eigenstrain methods have also been used [4]. Perhaps
the most well known scheme however is the method of
asymptotic homogenization [5]. This is popular as it gives
an algorithmic approach for determining effective prop-
erties. The main difficulty in its formulation is finding
the solution to the resultingcell problem. For fibre rein-
forced media, techniques using complex variable theory
and Weierstrassian elliptic functions have been developed
in the statics context by Sabina et. al. [6]. It was consid-
ered in the low frequency elastodynamic context by Par-
nell and Abrahams [1], [2].

Traditionally, fairly simple microstructures have been
modelled, such as one fibre per periodic cell. However
in reality, materials possess complex microstructure and
therefore there is great motivation for introducing numer-
ous fibres into the periodic cell. The approach of Parnell
and Abrahams is ideally suited to such developments and

we shall describe this scheme here. Expressions are given
for all thirteen effective elastic properties for monoclinic
materials in terms of the solution to the cell problem.

Asymptotic homogenization and the cell problem
We work in Cartesian coordinates where thex3 axis

runs parallel to the fibres. The cross section of the mate-
rial in thex1x2 plane is then defined by aperiodic cell D

of area|D| which tesselates the entire plane. For ease of
exposition here let us assume that each phase is isotropic.
A typical periodic cell is made up from the host phaseD0

(of area|D0|), of mass densityρ0 and Lamé moduliλ0

andµ0 and embedded in this host phase at arbitrary loca-
tions areN fibresDr (of area|Dr|) of mass densitiesρr

and Lamé moduliλr andµr, for 1 ≤ r ≤ N . Again for
clarity, we assume that the fibres are of circular cross sec-
tion. This structure restricts the symmetry to be at most
monoclinic (13 elastic constants).

The location of the(s, t)th periodic cell in thex1x2

plane is defined by the lattice vectorR(s, t) = q(sl1 +
tl2) for s, t ∈ Z, so thatq is the characteristic length-
scale of the periodic cell (and thus the microstructure) and
l1, l2 ∈ R × R are vectors whose components areO(1).

Neglecting body forces, definingx = (x1, x2, x3),
scaling elastic properties on the host shear modulus
µ0 and nondimensionalizing lengthscales onq, Navier’s
equations for time harmonic waves of frequencyω in such
a material are given by

(p(x) + m(x))
∂2uj

∂xi∂xj

+ m(x)
∂2ui

∂xj∂xj

+ ǫ2d(x)ui = 0. (1)

where we adopt Einstein’s convention of summation over
repeated subscripts. We have defined

m(x) =

{
mr = µr/µ0, x ∈ Dr,

m0 = 1, x ∈ D0,
(2)

p(x) =

{
pr = λr/µ0, x ∈ Dr,

p0 = λ0/µ0, x ∈ D0,
(3)

d(x) =

{
dr = ρr/ρ0, x ∈ Dr,

d0 = 1, x ∈ D0.
(4)
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and the nondimensional parameterǫ = qk0 ≪ 1 where
k0 = ω2ρ0/µ0 is the shear wavenumber in the host ma-
terial. Therefore a separation of scales exists and we
can perform an analysis based on asymptotic homoge-
nization. Boundary conditions on the fibre boundaries
∂Dr, r = 1, 2, ..,N are continuity of displacement and
traction, i.e.

[uj]
+

− = 0 [σijnj ]
+

− = 0 (5)

whereσij is the Cauchy stress tensor and where we have
used the notation[f(x)]+− to denote the jump in the func-
tion f(x) across∂Dr.

Asymptotic homogenization proceeds by defining the
multiple scale variables

xα,= ξα, xj =
1

(ǫ + L2ǫ2 + ...)
zj , (6)

whereL2 ∈ R and Greek and Roman indices range from
1-2 and 1-3 respectively. On introducingξ = (ξ1, ξ2) and
z = (z1, z2, z3) we note from (6) that these are short and
long lengthscales respectively and there is no microscale
in thex3 direction.

An expansion inǫ is performed for the displacements

uk(ξ, z) = uk0(ξ, z) + ǫuk1(ξ, z) + O(ǫ2) (7)

and since the material is doubly periodic with respect to
ξ, we insist that eachukj possesses this symmetry.

Using (6) and (7) in the governing equation (1) and
boundary conditions (5) and equating orders inǫ we ob-
tain a hierarchy of problems, one associated with each
order inǫ. As usual theO(1) problem shows thatuk0 is
(explicitly) independent ofξ so that

uk0(ξ, z) = Uk(z). (8)

At O(ǫ) it is advantageous to write theuk1 in separable
form:

uk1(ξ, z) = Nkpm(ξ)
∂Up(z)

∂zm

. (9)

This gives rise to the resultingcell problem for Nkpm(ξ).
The subscriptsp and m merely alter theforcing in the
boundary conditions of the cell problem as we will see in
(13)-(18), so it is useful to employ the bold font notation
Nk = Nkpm. On denoting the derivative ofNk with re-
spect toξα by Nk,α the governing equations for the cell
problems (in therth phase) are of the form

(pr + mr)N
r
α,1α + mrN

r
1,αα = 0, (10)

(pr + mr)N
r
α,2α + mrN

r
2,αα = 0, (11)

mrN
r
3,αα = 0, (12)

where we note again that the Greek alphabet denotes sum-
mation over the indices1 and2 only. Boundary condi-
tions are continuity ofN0

k andNr
k, r = 1, ..,N across

each∂Dr and

[
(pr + 2mr)N

r
1,1 + prN

r
2,2

]
+

−
n1

+
[
mr(N

r
1,2 + Nr

2,1)
]+

−
n2 = Ar1n1 + Brn2, (13)

[
(pr + 2mr)N

r
2,2 + prN

r
1,1

]
+

−
n2

+
[
mr(N

r
1,2 + Nr

2,1)
]
+

−
n1 = Brn1 + Ar2n2, (14)

[mrN
r
3,α]+−nα = Cr

αnα. (15)

Here we have defined

Arj = Arj
pm = (pr − p0)δpm + 2(mr − m0)δjpδjm,

(16)

Br = Br
pm = (mr − m0)(δ1pδ2m + δ2pδ1m), (17)

Cr
α = Cr

αpm = (mr − m0)(δαmδ3p + δαpδ3m). (18)

Note that the cell problem forN3 is decoupled from that
for N1 andN2. The former is associated withanti-plane
motion and the latter is associated within-plane motion.

The homogenized wave equation
We obtain the effective wave equation governing the

leading order displacementUk(z) by integrating the gov-
erning equation atO(ǫ2) over the periodic cell, employ-
ing Green’s theorem and imposing the necessary bound-
ary conditions and double periodicity inξ. This gives

c∗
11

U1,11 + c∗
66

U1,22 + c∗
55

U1,33 + c∗
16

U2,11 + c∗
26

U2,11

+ c∗45U2,33 + 2c∗16U1,12 + (c∗12 + c∗66)U2,12

+ (c∗13 + c∗55)U3,13 + (c∗36 + c∗45)U3,23

+ d∗U1,= 0 (19)

c∗16U1,11 + c∗26U1,22 + c∗45U1,33 + c∗66U2,11 + c∗22U2,22

+ c∗
44

U2,33 + (c∗
12

+ c∗
66

)U1,12 + 2c∗
26

U2,12

+ (c∗
36

+ c∗
45

)U3,13 + (c∗
23

+ c∗
44

)U3,23

+ d∗U2 = 0, (20)

c∗55U3,11 + c∗44U3,22 + c∗33U3,33 + 2c∗45U3,12+

(c∗13 + c∗55)U1,13 + (c∗23 + c∗44)U2,23

+ (c∗36 + c∗45)(U1,23 + U2,13) + d∗U3 = 0, (21)
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whereUk,j denotes the derivative ofUk with respect to
zj . The form of these effective wave equations is iden-
tical to that which governs wave propagation in a mon-
oclinic homogeneous elastic medium with (engineering)
elastic modulic∗ij . The coefficients therefore define the
correspondingthirteen effective elastic moduli.

The effective elastic moduli can be written as

c∗
11

= pV + 2mV + S11 + 2T1111, (22)

c∗
22

= pV + 2mV + S22 + 2T2222, (23)

c∗
33

= pV + 2mV , (24)

c∗44 = mV + T3232, (25)

c∗55 = mV + T3131, (26)

c∗66 = mV + T1212 + T2112, (27)

c∗
12

= pV + S11 + 2T2211 = pV + S22 + 2T1122, (28)

c∗
13

= pV + S11, (29)

c∗23 = pV + S22, (30)

c∗45 = T3123 = T3213, (31)

c∗16 = 2T1112 = T1211 + T2111, (32)

c∗
26

= 2T2212 = T1222 + T2122, (33)

c∗
36

= T1233 + T2133 = 0, (34)

where

pV =
N∑

r=0

φrpr, mV =
N∑

r=0

φrmr, (35)

Spm =

N∑
r=1

(pr − p0)H
r
ββpm, (36)

Tiβpm =
N∑

r=1

(mr − 1)Hr
iβpm. (37)

Here we have defined the so-calledH-tensor,

Hr
kβpm =

1

|D|

∫
2π

0

N r
kpm(ξ)nr

β dθr, (38)

and the normal to therth fibre isnr = (cos θr, sin θr),
where we have introduced the local polar coordinate sys-
tem centred on therth fibre with associated angleθr.
The volume fraction of each phase is defined byφr =
|Dr|/|D|. The effective mass density is given by

d∗ =
N∑

r=0

φrdr. (39)

The solution to the cell problem
A detailed description of the solution to the cell prob-

lems can be found in [1], [2] and we refer the reader to
these articles for more details. The methods used to solve
these cell problems are based on complex variable theory,
the Cauchy-Goursat solution for in-plane problems and
multipole expansions of doubly periodic functions, spe-
cially constructed to enable complex microstructure to be
modelled.

In summary, local solution expansions forNr
k = N r

kpm

are posed inside the fibres and the host. In order to sat-
isfy the double periodicity condition, these solutions must
be matched to expansions of appropriately defined doubly
periodic basis functions. In particular a doubly periodic
basis set is assigned to each fibre within the periodic cell
so that for complex microstructures, the solution com-
prises the superposition ofN doubly periodic functions.

By implementing this scheme in Mathematica, the so-
lutionsNr

k and thus the effective modulic∗ij can be com-
puted accurately and reliably.
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Abstract
This paper considers the peculiarities arising in numer-

ical implementations of theories for enhanced continua.
Firstly, governing equations of such theories are often not
strongly elliptic. We propose a technique for reformulat-
ing the governing equations that does not affect their trun-
cation error. Secondly, we discuss non-physical bound-
ary layers that correspond to extraneous integrals and are
characteristic to higher-order governing equations. It is
established that the effect of these boundary layers may be
minimised by formulating appropriate boundary condi-
tions. To this end, a new asymptotic procedure for deriv-
ing such boundary conditions is proposed and illustrated
by a simple one-dimensional example.

Introduction
Nowadays, effective continuum theories for micro-

structure are well understood and routinely used for nu-
merical modelling. These theories are, essentially, lead-
ing order terms long-wave approximations of the associ-
ated multi-scale formulations (either discrete or contin-
uum). The use of effective continua remains justified as
long as the separation between macro- and micro-scales
is well-pronounced. The numerical accuracy of these
models may be further improved by taking into account
higher-order refinements; this results in a variety of en-
hanced continuum (“strain gradient”) theories. Unfortu-
nately, the presence of higher-order terms in governing
equations also results in certain unwanted features that
complicate the associated computational schemes.

Consider linear harmonic vibrations of a crystalline
solid, governed by the equations

σmi,m = ρω2ui , (1)

σmi = cmilkεlk = cmilkul,k , (2)

where σ is the stress, ε the strain, u the displacement,
and cmilk the tensor of effective elastic constants. Com-
mas denotes differentiation with respect to the implied
spatial variable and summation over repeated indices is
assumed. Equations (1)–(2) may be obtained as long-
wave limits for lattice structures describing arrangements
of atoms within crystals. As frequency increases, the as-
sumptions implied in (1)–(2) become less accurate and

higher-order corrections may be taken into the account.
For a centro-symmetric solid they may be given by

σmi = cmilkεlk + `2dmilkerεlk,er , (3)

with tensor dmilker describing weak dispersion produced
by micro-structure with a characteristic length scale
`2. When constitutive equations (3) are suitably non-
dimensionalised, parameter `2 may be interpreted as the
ratio between a typical grain size and the wavelength.

Local stability of enhanced continua
Constitutive equations (3) are derived within the con-

text of a perturbation procedure and only meaningful
when `2 ¿ 1. It is, therefore, not surprising that (1)–
(3) with `2 À 1 may violate positive-definiteness of the
energy functional and result in a non-uniqueness, see [1].
In elastodynamics this is usually referred to as the loss of
strong ellipticity. A traditional phenomenological solu-
tion to this problem involves replacing the plus sign in (3)
with a minus. However, the resulting models feature un-
realistic dispersion and cannot be easily linked to explicit
descriptions of micro-structure.

In scalar problems it is always possible to use equa-
tions of motion (1) to replace strain gradients in (3) with
inertia corrections. In application to formally identical
higher-order asymptotics for plates and shells, the authors
of [2] term such models as the theories with modified iner-
tia. Theories with constitutive equations similar to (3) im-
ply non-local response and require formulating additional
boundary conditions. In contrast, theories with modified
inertia can be used for modelling harmonic vibrations on
bounded domains using the original boundary conditions
for underlying effective continuum.

The described procedure works only for scalar prob-
lems or vector problems that may be reformulated in
terms of scalar potentials, see [3]. However, this ap-
proach may be generalised by noticing that since (3) im-
plies σmi,m ∼ ρω2ui, an arbitrary superposition of

cmilkuk,lm + `2dmilkerul,kerm = ρω2ui + O(`4) , (4)

`2cmilkuk,lm = `2ρω2ui + O(`4) , (5)
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results in a theory with the same truncation error O(`4).
While it is not known at present whether this proce-
dure would enable one to ensure strong ellipticity for a
three-dimensional solid with general anisotropy, paper [4]
demonstrates that strong ellipticity is achievable at least
in two-dimensional materials with cubic symmetry.

Boundary conditions: a model example
Since the equation obtained by superimposing (4)–(5)

are singularly perturbed, they feature extraneous integrals
corresponding to short-wave boundary layers. The sit-
uation is best described by considering a simple model
problem for an enhanced continuum governed by

∂2u

∂x2
+ ω2u− α2`2 ∂4u

∂x4
= 0 , (6)

in the semi-infinite domain Γ = {x|x > 0}. Equation (6)
has two particular integrals. The first of them, ū, is given
to the leading order by

∂2ū

∂x2
+ ω2ū ∼ 0 , (7)

and is, essentially, a thought for homogenised solution
that is physically relevant. The second integral u∗ is de-
scribed to the leading order by

∂2u∗
∂x2

− α2`2 ∂4u∗
∂x4

∼ 0 , (8)

and describes a spurious non-long-wave boundary layer

u∗ = Ce−x/α` . (9)

Suppose that we want to solve a Dirichlet problem on Γ
and pose a boundary condition of the form

u|x=0 = f . (10)

Every solution of (6) u = ū + u∗ and, therefore, so-
lutions of boundary value problem (6), (10) would im-
plicitly assume the distorted boundary condition given by
ū|x=0 = f − u∗|x=0. Thus, in order to solve Dirichlet
problem for the governing equation (6) we need to find a
way of ensuring that ū|x=0 = f .

Fourth-order differential equation (6), certainly, re-
quires a second boundary condition that cannot be ex-
trapolated by considering the effective continuum. We
can use this opportunity to fix the boundary layer and en-
sure the physicality of the solution. Let us, for example,
consider the second boundary condition

∂u

∂x

∣∣∣∣
x=0

=
∂ū

∂x

∣∣∣∣
x=0

+
∂u∗
∂x

∣∣∣∣
x=0

= F1 , (11)

with the function F1 to be chosen later. By referring to (9)
it is possible to conclude that u∗|x=0 = 0 when

F1 =
∂ū

∂x

∣∣∣∣
x=0

. (12)

This implies that the numerical scheme for solving the
boundary value problem (6), (10) may be implemented in
two steps. Firstly, the leading order problem (7) must be
solved subject to (10) to find the leading order of ū. Sec-
ondly, the resulting leading order solution must be dif-
ferentiated to define F1 in the additional boundary condi-
tion (11). This technique may be iterated to obtain higher-
order corrections and generalised to work for the vector
problems and with more complex boundary layers.

For some problems it may also be possible to find
purely analytic solutions. For example, if we introduce
another second boundary condition

∂2u

∂x2

∣∣∣∣
x=0

=
∂2ū

∂x2

∣∣∣∣
x=0

+
∂2u∗
∂x2

∣∣∣∣
x=0

= F2 , (13)

straightforward application of (7) and (9) yields

1
α2`2

u∗|x=0 = −ω2ū|x=0 − F2 . (14)

Thus, in order to satisfy the required boundary condition
ū|x=0 = f we have to select

F2 = −ω2f . (15)
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WAVE PROPAGATION ACROSS RIPPLE BEDS
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Introduction

When a train of surface gravity waves propagate across
a region of non-uniform depth, reflection of waves occur.
For small bed gradients and small changes in the depth
of the fluid, the reflection is often very weak. An excep-
tion can occur if the bed is rippled – i.e. the bed contains
a section with a number of periodically repeating undu-
lations. In this case very significant wave reflection can
occur within certain bands of wave frequency – see figs.
1a,b. Such ripple beds do occur naturally in coastal loca-
tions, their formation being a result of interaction with the
coastline and self-inforcement through the morphology of
the bed [1]. The high reflective property of periodic ‘sand
bars’ can be a useful feature in coastal protection.

There have been many contributions in the literature
towards the study of wave reflection by ripple beds. This
is partly because the ripple bed configuration turns out to
provide a stern test of the performance of approximation
models developed for use in more general topographical
wave scattering problems. There have also been specific
efforts to exploit particular features of ripple beds (small-
ness in the gradient and amplitude) to predict reflection
by a number of ripples. However, it has only been un-
til fairly recently that approximate models (originally in
the form of the ‘modified mild-slope equations’ [2]) have
been able to accurately predict reflection by ripple beds
when compared against experimental data [3]. The fact
that, until even more recently [4], no accurate numeri-
cal results based upon the exact linear water wave theory
have been available to compare against is a measure of the
level of difficulty of this problem, and is the main subject
of the present paper.

Of course, the phenomenon of high reflection by a large
number of periods of a rippled bed is readily identifi-
able as ‘Bragg reflection’, a term originating from X-ray
crystallography. That is, there are intervals of frequency
where there exist coherent multiple reflections. The larger
the number of periods, the greater the reflection (as a
very rough first approximation, one finds that the reflected
wave amplitude is proportional to the number of periods).
For a wave train progressing from constant depth to an
infinite number of ripple periods one expects total reflec-
tion over certain frequency bands. In this context, Bragg

reflection is also readily identifiable as being associated
with passing and stopping bands occurring in infinite pe-
riodic structures.

The preceding paragraph hints at the other main pur-
pose of this work, namely to identify close connections
between the scattering by finite, infinite and semi-infinite
periodic ripple beds. In this sense, the present physical
setting of ripple beds is somewhat unimportant and it is
only the periodicity and the presence of a source of scat-
tering into multiple wave modes within that period which
is important.

Scattering by N ripples
We set out to accurately compute the wave reflection

by a ripple bed with N periods. In order to make this
a computationally feasible exercise, the periodicity must
be exploited so that the value of N is relatively unimpor-
tant for computational purposes. Thus the scattering by a
single period is considered and is encapsulated in either
a scattering matrix S , or a transfer matrix P . The for-
mer relates incoming to outgoing wave amplitudes, and
the latter relates wave amplitudes from left to right of the
single ripple. The problem of resolving the reflection for
an N -period ripple bed is then simply found by coupling
each single period to its neighbour. This is done most
easily by noting that the transfer matrix PN for N pe-
riods is just the product of P with itself N times – i.e.
PN . In order to retain the full accuracy required, not
only do the wave amplitudes associated with right- and
left-propagating waves have to be incorporated into the
definition of S and P , but so do the amplitudes of the in-
finite set of evanescent waves which come from separat-
ing variables in the depth variable. In practice, we work
with a truncated set of M evanescent wave modes from
the outset implying an approximation has been made, but
assume that M will eventually be treated as a numerical
parameter to determine whatever accuracy is desired. The
method by which the 2(M+1)×2(M+1) matrices S and
P (which, incidentally, are related to one another) are de-
termined is based upon an integral equation formulation
whose details we shall not need to go into. Suffice to say
that in the formulation of integral equations, no approx-
imation is made to the boundary of the bed nor the gov-
erning equations, whilst the formulation itself and subse-

195



quent numerical approximation to the solution of the inte-
gral equations and S and P ensures that certain important
structural identites associated with S and P are retained.
In particular, it can be shown that P has certain properties
associated with its eigenvalues, λi, i = 0, . . . , 2M + 1,
namely that λiλj = 1, λi = λk for some j, k not equal to
i. Hence, eigenvalues occur either in real reciprocal pairs
or complex conjugate pairs with unit modulus. It is useful
to employ the spectral representation,

P = XΛX−1,

where

X−1 =

(
X11 X12

X21 X22

)
, Λ =

(
∆ 0
0 ∆−1

)
,

where ∆ = diag{λ0, . . . , λM} in which the eigenvalues
are ordered to contain those complex eigenvalues with ar-
gument in (0, π) followed by the real eigenvalues with
decreasing magnitude less than unity. Now PN = PN =
XΛNX−1 and it follows, by some careful matrix algebra
designed to remove occurrences of ∆−N , that the scatter-
ing matrix SN for N periods can be written as

SN = −

(
X22 ∆N

X21

∆N
X12 X11

)−1(
X21 ∆N

X22

∆N
X11 X12

)

and is numerically robust. The reflection and transmis-
sion coefficients for N periods are identifiable as four el-
ements in the top left positions of the 2 × 2 block parti-
tion of SN . Thus, the solution of the scattering problem
is essentially determined, and it remains to establish, nu-
merically, what values of M are required for a certain
desired accuracy – see fig. 2. It is noted that if M = 0,
the scattering process is approximated by the coupling of
propagating waves only, a situation often referred to as
the wide-spacing approach.

An infinitely-periodic ripple bed
For an infinitely-periodic ripple bed, Bloch-Floquet

theory can be invoked to reduce the problem, again, to
a single period (of length `), with ‘periodic’ boundary
conditions of the form φ(0, y) = µφ(`, y), φx(0, y) =
µφx(`, y) where φ(x, y) is the potential satisfying
Laplace’s equation in the fluid, x and y are horizontal
and vertical coordinates. The parameter µ ∈ C is often
written as eiβ` to make the periodicity condition explicit,
where β ∈ R implies a passing band and there is no de-
cay or growth at infinity; if β 6∈ R then there is a stopping
band as waves decay in one direction along the array. The

parameter µ(k) may be regarded as an eigenvalue depend-
ing upon a wavenumber k = 2π/λ (λ is the wavelength)
characterising the frequency. A passing band is thus as-
sociated with µ(k) taking values on the unit circle in the
complex plane and since φ satisfies a homogeneous prob-
lem, so does φ̄, and so µ̄(k) must also be an eigenvalue.

Numerical approximations to values of µ(k) can be
found by formulating a new (homogeneous) integral
equation for a single period of the bed satisfying the peri-
odic boundary conditions on x = 0 and x = `. Further-
more, the structure of the integral equation itself shows
that values of µ occur either as complex conjugates on
the unit circle or as real reciprocal pairs. Indeed, there are
not just two eigenvalues for any given value of k: there
are an infinite number of eigenvalues, µ = µi, i = 0, . . ..
If µi ∈ R for all i, then k lies in a stopping band. If any
pair exist on the unit circle as conjugates, then k lies in a
passing band.

Connections between the problems
By revisiting the scattering problem in which the fun-

damental quantity P connects amplitudes across a single
period, but now imposing the periodicity conditions on φ,
we are able to argue that the eigenvalues, λi, of P , coin-
cide with µi for the infinitely-periodic (Bloch) problem,
in the limit as M → ∞. Numerically (tab. 1) it is ob-
served that for finite, but increasing, values of M ≥ 0,
values of λi approximate with ever greater accuracy the
numerically obtained values of µi although no a priori
estimates can be made on the proximity of λi to µi for
any given value of M . We are able to go further and es-
tablish connections between the eigenvectors of P and the
eigenfunctions of the Bloch problem.

These relationships allow us – in principle at least –
to use the solution of the Bloch problem to deduce re-
flection and transmission scattered wave amplitudes for
an N -period ripple bed, for any N ≥ 1. Conversely,
by solving the scattering problem by a single period, we
can deduce eigenvalues and eigenfunctions for the Bloch
problem.

A final result is that the onset of Bragg resonance is
now precisely defined as being those critical values of k at
which eigenvalues of infinitely-periodic problem switch
from real pairs to complex conjugate pairs. That is, when
µ = ±1 or β` = 0, π. Here, it is easy to infer that these
values refer simply to standing waves over the infinite pe-
riodic bed. If the bed has left-right symmetry then the
critical values of k which bound intervals of Bragg reso-
nance are just the sloshing frequencies for a single period
of the bed contained between vertical walls aligned with
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Figure 1: Reflection coefficient, |R|, against
wavenumber for: (a) sinusoidally-varying bed, N = 4,

h(x) = 1 − 0.32 sin(πx/3.2); (b) doubly-sinusoidal bed,
N = 4, h(x) = 1 − 0.4(sin(πx/2.4) + sin(πx/1.2)).
Dashed curves modified mild slope equation, ref. [2].

the two different planes of symmetry. This interpretation
can be regarded as a more sophisticated version of earlier
work on ripple beds, which often quotes the Bragg reso-
nance criteria as k` = π; this corresponds to the sloshing
frequency for a vertically-walled vessel of width ` with a
horizontal base.

A selection of numerical results demonstrating the fea-
tures described above will be presented in the talk and, if
time permits, a brief summary of the procedure used for
considering scattering by a semi-infinite periodic ripple
bed will be given.
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Figure 2: Convergence of reflected coefficient, |R|,
with M = 0, 2, 4, 6: vertical scale measures |R − Re|

where Re uses M = 10. Curves correspond to
configurations in fig. 1

Table 1: Comparison of eigenvalues of P , with increas-
ing M , from the scattering problem with those from the
Bloch problem

Scattering: arg(λ0) λ1 × 102 λ2 × 104 λ3 × 106

M = 0 1.73112 - - -
M = 1 1.72830 0.77453 - -
M = 2 1.72781 0.95100 0.21621 -
M = 3 1.72781 0.95224 0.42772 0.3989
M = 4 1.72781 0.95225 0.44779 0.1900
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1.72781 0.95227 0.44802 0.2494

propagation over sinusoidally varying topography.”,
J. Fluid Mech., vol. 144, pp. 419-443, 1984.

[4] R. Porter, D. Porter, “Scattered and free waves over
periodic beds”, J. Fluid Mech., vol. 483, pp. 129-
163, 2003.

197
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Abstract
The problem of scattering of ultrasound by particles in

the long wavelength limit is well known to be solvable
in terms of Rayleigh expansions of the scattered fields.
Such solutions are numerically ill conditioned and recent
work with O. G. Harlen, M. J. Holmes, V. J. Pinfield, M.
J. W. Povey and Y. Qui has sought to identify alterna-
tive methods. The scattered fields are expressed in terms
of a power series expansion in the parameter Ka, (the
wavenumber multiplied by the particle radius), which is
small in the long wavelength region. The formulation is
valid for all values of the thermal wavelength. The so-
lution overlaps the limiting solutions for small thermal
wave length, based on the geometrical theory of diffrac-
tion, [1], and very large thermal wavelength, based on low
frequency theory, [2], previously developed.

Introduction
Ultrasound spectroscopy is an important technique

for characterizing the physical properties of dispersions,
emulsions, gels and solutions of biomolecules. It de-
pends on a strong theoretical basis which relates ultra-
sound properties to particle size and the physical proper-
ties of materials. The key problems were solved for spher-
ical particles by Rayleigh [3] and Epstein and Carhart [4].
The aim of this paper, based on the work of Pinfield.et.
al, [5] is to formulate a numerically stable solution to the
single scattering problem in such a way as to allow its ex-
tension to multiple scatterers and to nonspherical scatter-
ing particles. For Ka � 1, Kleinman’s approach [6] can
be used wherein the scattered field is reformulated to sat-
isfy the radiation condition and is expressed in a certain
power series inKa. For thermal waves in which La� 1,
where L is the thermal wavenumber, the Kleinman ap-
proach [2] can be used. When La � 1 the thermal wave
can be studied [1] on the basis of the geometrical theory
of diffraction. The idea here uses the Kleinman approach
to separate the radiative terms of the waves and to de-
fine a series expansion convergent in the long acoustic
wavelength limit. The significant departure from previ-
ous work is that all wave modes are expanded as a series
in Ka, leaving dependence on L implicit in the coeffi-
cients. This avoids assumptions on the size of La.

Methods
Assuming an harmonic time dependence e−iωt propa-

gational and thermal modes satisfy

(∆ +K2)φ = 0, (∆ + L2)ψ = 0,

where K and L are the complex acoustic and thermal
wavenumbers respectively. To calculate the ultrasound
field produced by a dispersion of particles we first con-
sider the effect of a sound wave on a single spherical par-
ticle of radius a immersed in an infinite uniform fluid.
Together with radiation conditions we have the following
boundary conditions across the surface of the particle.

∂

∂r
(φ0 + φ+ ψ) =

∂

∂r
(φ′ + ψ′),

(φ0 + φ+ ψ) = ρ̂(φ′ + ψ′),

Γcφ0 + Γcφ+ Γtψ = Γ
′
cφ
′ + Γ

′
tψ
′,

Γc
∂

∂r
(φ0 + φ) + Γt

∂ψ

∂r
= τ̂

(
Γ

′
c

∂φ′

∂r
+ Γ

′
t

∂ψ′

∂r

)
,

where primed quantities refer to inside the particle,

ρ̂ =
ρ

′

ρ
, τ̂ =

τ
′

τ
,

where ρ is density, τ is thermal conductivity and φ0 is
the incident field. The method of solution assumes the
following expansion forms for the various field quantities:

φ0 =
∞∑

n=0

∞∑
s=0

(iKa)n+2s
(r
a

)n+2s
Fn(s)Pn(cos θ),

φ = eiK(r−a)φ̃, ψ = eiL(r−a)ψ̃,

(φ̃, ψ̃) =
∑
m

(iKa)m(φ̃m, ψ̃m),

φ̃m =
∞∑

n=0

∑
j=0

Anmj
rj

aj

an+1

rn+1
Pn(cos θ),

ψ̃m =
∞∑

n=0

n+1∑
j=0

Bnm
hnj

(Lr)j
Pn(cos θ).

For the interior fields we assume the expansions

φ
′
=

∑
m

(iKa)mφ
′
m,

1
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where

φ
′
m =

∞∑
n=0

∑
j=0

A
′
nmj

rj

aj

rn

an
Pn(cos θ).

The interior thermal field is written as

ψ
′
= eiL

′
(r−a)ψ̃

′
+ − eiL

′
(r−a)ψ̃

′
−,

where

{ψ̃′
+, ψ̃

′
−} =

∑
m

(iKa)m{ψ̃′
+m, ψ̃

′
−m}

with

ψ̃
′
+m =

∞∑
n=0

n+1∑
j=1

B
′
nme

2iL
′
a jnj+

(L′r)j
Pn(cos θ),

and

ψ̃
′
−m =

∞∑
n=0

n+1∑
j=1

B
′
nm

jnj−
(L′r)j

Pn(cos θ).

These forms are substituted into the boundary conditions
and equating powers of Ka to zero. Complicated re-
currence relations result which are nevertheless solvable.
Full details are given in [5].

Results
Here we relate our scattering results for a single parti-

cle to the wavenumber for a dispersion of particles. The
approach used is the multiple scattering theory due to
Lloyd and Berry [7]. We write, for large r, the scattered
field φ in the form

φ =
eiKr

r
f(θ)

where

f(θ) =
1
iK

∞∑
n=0

(2n+ 1)TnPn(cos θ).

The far field coefficients Tn are found to be given by

Tn =
e−iKa

(2n+ 1)

∞∑
m=0

(iKa)m+1Anmn.

The multiple scattering result for the wave number of the
dispersion B is(
B

K

)2

= 1 +
3φ
K2a3

f(0) +
9φ2

4K4a6

(
f2(π)− f2(0)

)
− 9φ2

4K4a6

(∫ π

0
dθ

1
sin(θ/2)

(
d

dθ
f2(θ)

))

which to second order gives(
B

K

)2

= 1− 3iφ
K3a3

(T0 + 3T1 + 5T2)

− 27φ2

K6a6

(
T0T1 +

10
3
T0T2 + 2T 2

1 + 11T1T2 +
230
21

T 2
2

)
.

Note that here the symbol φ refers to the volume fraction
of the dispersed particles.

Numerical experiments of the method have been car-
ried out for sunflower oil in water with a particle diameter
of 1µm [5] which show that it is numerically stable and
covers all thermal wavelengths. Furthermore it is superior
and more straightforward to implement than other meth-
ods. It can also be generalized to non spherical particles.
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Abstract
We study the slowing down and transmission of

wave packets incident at a high-contrast rapidly os-
cillating periodic medium. Employing tools of “non-
classical” (high-contrast) homogenization we formally
derive asymptotically explicit two-scale equations dis-
playing the desired effects of simultaneous slowing down
and transparency. Those are interpreted in terms of the
“coupled-resonances” effects from the standpoint of two-
scale homogenization.

Introduction
The aim of this work is to study mathematically

the effects of slowing down of wave packets in multi-
dimensional high contrast periodic media by means of
“non-classical” high contrast homogenization. The topic
of slowing down of waves has been of active recent in-
terest in physics and engineering in relation with the so-
called “slow-light” effect: although ordinary optical ma-
terials do reduce speed of light in accordance with their
refractive index, the reduction is very limited. Diamond
for example, having one of the highest refractive indices,
slows down light only by factor of 2.4. To slow down
a light pulse significantly requires hence special condi-
tions. As well as being of great intrinsic interest, slow
and frozen light effects open up new possibilities for ar-
eas as diverse as optical communications, data storage,
synchronizing devices for fast optical elements and much
smaller electronics, etc.

Slow light has presently been generated using a variety
of techniques, from introducing large material dispersion
to using structurally dispersive “coupled resonances”, e.g.
[1]. Mathematical aspects of slowing down wave pack-
ets in truncated one-dimensional periodic structures were
studied in [2],[3]. The goal has been to device media for
which the group velocity in the periodic medium is small
and the transmission coefficient for the truncated period-
icity is not too small, i.e. to find media where a slowing
down of wave packets co-exists with a transparency.

The present work studies the problem of existence
and initiation of slow wave packets in a prototype multi-

dimensional scalar (“acoustic”) periodic media. This
is achieved by employing methods of recently emerged
“non-classical” homogenization theory for high-contrast
periodic media, e.g. [4], [5]. Namely, upon introducing
the small parameters δ of contrast in the properties of the
medium and ε of the periodicity size, the asymptotic be-
haviour of the packets depends on the relation between
δ and ε. One can then see that, in the appropriate set-
ting, there is only one critical scaling δ(ε) ∼ ε2, the so-
called “double-porosity” scaling, when the phenomena at
the micro and macro scales are coupled in a non-trivial
way.

We show that the implementation of the above method-
ology of high-contrast homogenization for the problem of
incidence of a wave packet at a periodic medium leads
to asymptotically explicit predictions demonstrating both
the effects of slowing down and transparency. On the
other hand, the resulting multi-scale asymptotics for the
slow wave packets appears to be qualitatively consis-
tent with the coupled-resonators effect: the key two-scale
ansatz displays microscopic oscillations only in the small
inclusions (the resonators), coupled via a slower varying
field in the surrounding matrix. The present work con-
tains only a formal asymptotics analysis. The problem
of rigorous justification and error bounds requires in par-
ticular a detailed analysis of the boundary layer, cf. [5]
where such a rigorous analysis has been executed for a
somewhat similar problem.

Problem statement
We consider a wave process described by the equation

vtt − div (aε(x)∇v) = 0,

with x = (x1, x
′) ∈ R

n, n ≥ 2, and variable “stiffness”
aε(x), depending on small parameter ε describing both
the rapid oscillations and the high contrast of the medium
as follows (Figure 1). For x1 < 0 the medium is uniform,
i.e. aε(x) = a0 is constant; for x1 > 0 the medium is
periodic with periodicity cell of size ε: aε(x) = ãε(x/ε),
where ãε(y) is 1-periodic in y with respect to all of its ar-
guments, i.e. with reference periodicity cell Q = [0, 1)n.
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Figure 1: Geometric configuration: incidence at a
rapidly oscillating high contrast medium

The periodically extended inclusions Q2 are disconnected
and the matrix Q1 = Q\Q2 is connected, ãε(y) = a1 in
Q1 and ãε(y) = a2ε

2 in Q2.
Consider a wave packet incident from the left half-

space, i.e.

vε(x, t) =

∫

|ω−ω0|<d

uε(x, ω)α(ω − ω0)e
−iωtdω,

with angular frequencies from an interval of small size 2d
around ω0 and with

uε(x, ω) =

{
uinc(x1, ω) + uε

r(x, ω), x1 < 0
uε

t (x, ω), x1 > 0,

where uinc(x1, ω) = exp(ik0(ω)x1) are the incident

plane waves, k0(ω) = ωa
−1/2

0
, and uε

r and uε
t form the

“scattered” (respectively, reflected and transmitted) com-
ponent, ε-periodic in x′. It can then be shown that, for
ω within the bands of the Bloch spectrum of the periodic
medium and small enough ε,

ur ∼ Rε(ω) exp(−ik0(ω)x1)

for x1 → −∞ where Rε is the reflection coefficient, and
for x1 → +∞ ut behaves as a single Bloch wave prop-
agating in the direction x1. This all determines the solu-
tion of the scattering problem uniquely up to possible ex-
ponentially decaying surface waves along the “interface”
x1 = 0 which do not matter for describing the transmitted
field for x1 > 0 when ε → 0.

Anticipating that, for ω close to ω0 and small ε, the
transmitted field is macroscopically described by a “ho-

mogenized” field

uhom(x1, ω) = T (ω)

(
k0(ω)a0

k(ω)ah

)1/2

exp(ik(ω)x1)

(1)
with dispersion relation k(ω), the group velocity for the
homogenized transmitted wave packet is given by

Vg(ω0) = (dk/dω)−1(ω0)

and the (normalised) transmission coefficient by T (ω0).

High-contrast homogenization
It appears that, away from the “interface” x1 = 0 con-

taining a localized boundary layer, the limit problem for
the transmitted field uε

t (x, ω) is two-scale, i.e.

uε
t (x, ω) ∼ u(0)(x, x/ε)+εu(1)(x, x/ε)+ε2u(2)(x, x/ε)+...

In contrast to the classical homogenization, due to the
high contrast the main-order term u(0)(x, y) retains the
dependence on the “fast” periodic variable y = x/ε, al-
though only in the “soft” phase Q2: for x1 > 0,

u(0)(x, y) =

{
uhom(x1) if y ∈ Q1

uhom(x1) + v(x1, y) if y ∈ Q2.

Application of an appropriately modified method of two-
scale asymptotic expansions then results in a coupled sys-
tem of equations for uhom and v (cf. [5] Appendix A).
In particular, the macroscopic part uhom solves following
homogenized equation with highly nonlinear dependence
on the spectral parameter λ = ω2:

−∇ ·

(
Ahom∇uhom

)
= β(ω2)uhom. (2)

Here Ahom is the standard “porous” homogenized matrix
with void inclusions (i.e. infinite contrast), and β(λ) is an
explicit function introduced by Zhikov [4]:

β(λ) = λ + λ2

∞∑

j=1

〈ϕj〉
2

λj − λ
. (3)

Here λj and ϕj are the eigenvalues and the orthonormal
eigenfunctions of the Laplace operator on Q2 with Dirich-
let boundary conditions, 〈ϕj〉 :=

∫
Q2

ϕj(y)dy. The val-
ues of β(λ) are negative in the gaps of the limit operator
and positive on its bands. For n = 3 and Q2 being balls
β(λ) is computable in elementary functions [6].
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Assuming for simplicity that Ahom is isotropic i.e.
Ahom = ahI (I is the unit matrix), the homogenized dis-
persion relation and group velocity are found from (2) to
be

k(ω) =
(
β(ω2)/ah

)1/2

, (4)

Vg(ω0) =

(
ahβ(ω2

0
)
)1/2

ω0β′(ω0)
. (5)

In particular, near the right ends of the “limit” bands i.e.
for ω0 → (λj)

1/2 − 0 with 〈ϕj〉 6= 0, we have

Vg(ω0) ∼ (ah)1/2λ
−3/2

j 〈ϕj〉
−1(λj − ω2

0)
3/2 → 0.

On the other hand, the limit reflection and transmission
coefficients are found from the standard one-dimensional
calculation for the original uniform medium for x1 < 0
and the homogenized medium for x1 > 0. Namely, we
consider

u(x1, ω0) = uinc(x1, ω0) + R(ω0) exp(−ik0(ω0)x1)

for x1 < 0, and u(x1, ω0) = uhom(x1, ω0) for x1 > 0
described by (1), (4), with the standard continuity condi-
tions at x1 = 0 for u and for the “fluxes”:

u(x−0) = uhom(x+0), a0u
′(x−0) = ah(uhom)′(x+0).

(The latter continuity conditions for the “homogenized
fluxes” is consistent with the anticipated boundary layer
analysis, cf. [5].) The result is:

R(ω0) =
(a0)

1/2ω0 −
(
ahβ(ω2

0
)
)1/2

(a0)1/2ω0 +
(
ahβ(ω2

0
)
)1/2

, (6)

with T (ω0) = (1 + R(ω0))(k(ω0)a
h/(k0(ω0)a0)

1/2 for
the transmission coefficient. In particular, R = 0 (zero
reflection) corresponds to β(ω2

0
) = (a0/ah)ω2

0
.

The main result

We show that, for appropriately chosen ω0 and suffi-
ciently small ε, one can achieve simultaneously as small
group velocity Vg and as small reflection coefficient as
desired. More precisely:

For any ∆1 > 0 and ∆2 > 0 there exists ω0 such that
|Vg(ω0)| < ∆1 and |R(ω0)| < ∆2.

The result follows from an explicit analysis of (5) and
(6), and properties of the function β(λ).

Discussion
The reported results suggest the possibility of initiating

in high contrast periodic media wave packets moving with
slow speeds. Analysis shows that for achieving simulta-
neously a slow group velocity and a significant transmis-
sion one should in fact go to “higher frequency” bands of
the Bloch spectrum. Microscopically, this seems to dis-
play coupled resonances and “metastability”-type effects:
the described multi-scale asymptotic structure indicates
that the oscillations are restricted to the soft inclusions,
persisting there for sufficiently large times but eventually
passing over to the neighbouring oscillators, etc, which
represents macroscopically a slowly moving wave packet.

The reported work contains only a formal asymptotics
analysis. The problem of rigorous justification and error
bounds in somewhat similar problems of homogenization
for high contrast media was addressed e.g. in [4], [5].
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1 Introduction
Wave scattering by arrays of bodies is an important

problem in several physical contexts, including the theory
of antennae and the design of offshore structures. If both
the array and the incident field are periodic, the problem
is relatively straightforward [1], [2]. Here we are con-
cerned with scattering by a periodic array which has one
or more elements removed; we refer to such an array as
beingdefective. We will demonstrate a method whereby
for a given wavenumber, scatterer size and separation, the
field generated when a plane wave impinges on a defec-
tive array can be constructed from the solution to certain
canonical problems. The angle of incidence and the con-
figuration of the defect (i.e. which scatterers are removed
from the array) areembedded; the canonical problems
need not be solved again if these parameters are changed.

2 General theory
Consider the scattering of a plane wave by a defective

linear array of identical circular cylinders. All lengths
are nondimensionalised with reference to the distance be-
tween the axes of adjacent cylinders. Thus, we position
the array so that its elements are centred at the points
(j, 0) in the (x, y) plane,j ∈ Z \ D. Here,D denotes
the defect set, the members of which correspond to the
scatterers that are removed from the array. For simplicity,
we consider sound soft scatterers in the long wave limit
ka≪ 1, wherek is the wavenumber, anda is the cylinder
radius, although the method is not restricted to this case.
The total field is given by

φt = φi + φs (1)

in which φs does not include any contributions that are
incoming toward the array, and

φi = eik(x cosψ0+y sinψ0), (2)

whereψ0 is the angle of incidence; see figure 1. All of
the terms in equation (1) satisfy the Helmholtz equation
(∇2 + k2)φ = 0, and the Dirichlet boundary condition
φt = 0 must be satisfied on the surface of the scatterers.
Now the total field is composed of the incident wave, plus
a contribution radiating from each of the scatterers. This

latter component can be written in the form

φs =
∑

j∈Z\D

Aj H
(1)

0
(krj) +O(ka), (3)

whereH
(1)

0
(·) represents the Hankel function of the first

kind with order0, andrj is the distance is the distance
from the centre of scattererj, i.e.rj =

√

(x− j)2 + y2.
The coefficientAj is an as yet unknown amplitude. Close
to the surface of scattererp, any incoming field can be
expressed in the form

φi

p = Dp J0(krp) +O(krp), (4)

for some constantDp, whereJ0(·) is the Bessel function
of order zero. Therefore, in order to satisfy the Dirichlet
boundary condition to leading order, we must have

Ap = −Z0Dp, (5)

where

Z0 =
J0(ka)

H
(1)

0
(ka)

=

[

1 +
2i

π
ln(ka)

]−1

+O(ka). (6)

The field incoming toward scattererp consists of the inci-
dent wave, plus the radiation from all of the other scatter-
ers. Evaluating this t the pointrp = 0 yields an expression
for Dp, in view of (4). Equation (5) then becomes

Ap + Z0

∑

j∈Z\D

j 6=p

Aj H
(1)

0
(k|j − p|) = −Z0e

ikp cosψ0 ,

p ∈ Z \ D. (7)

The convergence of this infinite linear system is ex-
tremely slow, becauseAj 6→ 0 as|p| → ∞, and therefore
it relies on the increasing magnitude of the argument of
the Hankel function. Rather than attempting to solve it
directly, we employ the infinite array subtraction method
[3]. The essential idea is that, as|p| → ∞ (i.e. far from
the defect),Aj → Bj , whereBj is the amplitude coeffi-
cient that appears in place ofAj if D = ∅, i.e.

Bp + Z0

∑

j∈Z

j 6=p

Bj H
(1)

0
(k|j − p|) = −Z0e

ikp cosψ0 ,

p ∈ Z. (8)
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Figure 1: Schematic diagram of a defective array withD = {0}.

To obtainBj , note that in this case the entire problem
is quasi-periodic, and soBj = eikj cosψ0B0. If this is
inserted into equation (8) a simple calculation shows that

B0 = −Z0/[1 + Z0σ0(k cosψ0)], (9)

where
σ0(t) = 2

∑

j∈N

cos(jt)H
(1)

0
(kj). (10)

This is the Schl̈omilch series of order zero; it can be eval-
uated using the Twersky formula [1]

σ0(t) = −1 −
2i

π

(

C + ln
k

4π

)

−
2i

γ(t)
−

∑

j∈Z\{0}

2i

γ(t+ 2jπ)
−

i

|j|π
. (11)

Here,C is Euler’s constant, andγ(t) = (t2 − k2)1/2,
with branches chosen so thatγ(0) = −ik, andγ(t) =√
t2 − k2 for realt with |t| > k.
To apply the infinite array subtraction, write

Aj = eikjs cosψ0B0 + Cj , (12)

substitute this into (7) and take known terms to the right
hand side. The result is a linear system forCj , which is
expressed in a compact form by defining coefficientsCj
for the absent scatterers; thus

Cj = −eijk cosψ0B0, j ∈ D, (13)

and then

Cp + Z0

∑

j∈Z

j 6=p

Cj H
(1)

0
(k|j − p|) = 0, p ∈ Z \ D. (14)

The meaning of equations (13) and (14) is clarified by
writing the total field in the form

φt = φi +
∑

j∈Z

[

eikj cosψ0B0 + Cj

]

H
(1)

0
(krj)

+O(ka). (15)

Thus, equation (13) ensures that there is no radiation em-
anating from the absent scatterers. Equation (14) ensures
that the field

φc =
∑

j∈Z

Cj H
(1)

0
(krj) (16)

satisfies the boundary condition on all of the scatterers
centred at(j, 0), j /∈ D. This is necessary because the
fieldφt −φc clearly satisfies these independently. In fact,
the effect of infinite array subtraction is to replace the in-
cident wave with a distribution of line sources positioned
at(j, 0), j ∈ D, with amplitudes given by (13). The quan-
tity φc is the total field that occurs when the defective ar-
ray is excited by the source distribution.

3 Single absent scatterer
If the defect set has only one member, then we shall

assume without loss thatD = {0}. The dependence of
Cj uponψ0 is entirely due to the amplitude of the source
located at the origin which is given by (13). Therefore, we
introduce a new set of coefficients which we shall denote
C1

j , and require that these satisfy the linear system (14),
subject toD = {0}, and

C1

0 = 1. (17)

It then follows immediately that

Cj = −eijk cosψ0B0C
1

j (18)

for all j. Thus,ψ0 has now been embedded; solving (14)
once is sufficient to yield the solution at all angles of in-
cidence. Note thatC1

−j = C1

j by symmetry. Also, if the
source is translated from the origin to(qs, 0), q ∈ Z, we
simply replaceC1

j with C1

j−q. This is crucial when con-
sidering defect sets with multiple members.

4 Multiple defects
If more than one scatterer is absent from the array

we can still constructCj using the coefficientsC1

j . To
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achieve this, translate the source to each point(qs, 0)
q ∈ D, and allocate it an arbitrary amplitude coefficient
aq. We then take the total field represented by (16), with
Cj replaced byaqC1

j−q for eachq and superimpose these
upon eachother. The resulting field is still given by (16),
but now with

Cj =
∑

q∈D

aqC
1

j−q, j ∈ Z. (19)

This satisfies the boundary condition atrp = a, for all
p /∈ D. Indeed, it is evident that (19) is a solution to (14).
To see this, recall that the set of coefficientsC1

p−q is a
solution to (14) subject toD = {q}. If (19) is substituted
into (14), then, sincep ∈ Z \ D, p = q cannot occur.

It remains to enforce the correct source amplitudes at
the points(q, 0), q ∈ D by selecting appropriate values
for the coefficientsaq. Thus, from equations (13) and
(19), it follows that

−eijk cosψ0B0 =
∑

q∈D

aqC
1

j−q, j ∈ D. (20)

Since this is a finite linear system, as opposed to the in-
finite system (14) the configuration of the defect has now
been embedded, along withψ0.

5 The canonical source problem
It remains to solve the canonical problem of an array

with a single scatterer replaced by a source with unit am-
plitude. To achieve this, we represent the coefficientsC1

p

as as integrals using a method closely related to that in
[4]. The key idea is to choose the dependence of the in-
tegrand upon the parameterp in such a way that the sum
in (14) can be evaluated analytically. A natural choice of
ansatz is therefore

C1

p =
1

2πi

∫ π

−π

f(t)eipt dt, (21)

wheref(t) does not depend uponp. When this is substi-
tuted into (14) (withD = {0}), we find that
∫ π

−π

f(t)[1 + Z0σ0(t)]e
ipt dt = 0, p ∈ Z \ {0}. (22)

This is clearly satisfied if

f(t) = F0[1 + Z0σ0(t)]
−1, (23)

whereF0 is a constant chosen to satisfy (17).
Now, for anyk, there existsv ∈ Z such that±(k +

2vπ) ∈ [−π, π]. These are branch points of the function

f(t). The path of integration in (21) must pass abovet =
−(k + 2vπ), and belowt = k + 2vπ in order to yield
outgoing waves at infinity. If we takep > 0 (for p < 0 we
can use the symmetry relationC1

−p = C1
p ) and close the

contour in the upper half plane, the2π periodicity off(t)
means that the only contribution comes from the branch
point. This can be asymptotically for largep. Indeed, a
straightforward calculation shows that, asp→ ∞,

C1

p ∼ e3iπ/4 F0

2Z0

√

k/(2π)eipkp−3/2. (24)

6 Concluding remarks
A method for solving the problem of scattering by a pe-

riodic array with one or more missing elements has been
demonstrated in the limitka ≪ 1. For any angle of inci-
dence, and any finite set of defects, the scattered field is
constructed from the solution to a single canonical prob-
lem. An exact integral solution to this canonical problem
is then derived. Evaluating this integral by quadrature can
yield much more accurate results than inverting (14) by
truncation. Furthermore, analysis of the integral can yield
important results such as the leading order behaviour of
the coefficientsCp for largep.

For larger scatterers an extra degree of complexity is in-
troduced because the number of canonical problems to be
solved turns out to be equal to the number of modes used
in modelling the field radiating from each array element.
Nevertheless, the same method can be applied, and in this
case there are significant savings in computation time, as
well as increased accuracy. Again, important results such
as the amplitude of any surface waves that may be excited
can be accurately obtained, and these will be shown at the
meeting. The method also works for the case of an array
with a finite number of scatterers replaced by objects of a
different shape, under certain geometrical restrictions.
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Abstract
Some electromagnetic materials present at a particu-

lar frequency an effective dielectric permittivity and/or
magnetic permeability which are negative. We consider
here a scalar model problem for the simulation of wave
transmission between a classical material and a “nega-
tive” one. Introducing additional unknowns, we proposed
in [4] some new variational formulations of this problem,
which are of Fredholm type if the contrast of permittiv-
ity is large enough, and therefore suitable for a finite ele-
ments discretization. We prove here that, surprisingly, the
natural variational formulation of the problem, although
not “coercive plus compact”, is also suitable for a finite el-
ements discretization. Moreover, this numerical approach
is less costly than the previous ones.

1 Introduction
In electromagnetics, a number of materials can be

modelled at a given frequency by taking negative val-
ues for their dielectric permittivity and/or magnetic per-
meability. A superconductor can be represented as a
material with a negative dielectric permittivity (the Lon-
don model) while homogenization theory applied to left-
handed meta-materials leads to negative effective dielec-
tic permittivity and magnetic permeability. From mathe-
matical and numerical points of view, this leads to unsual
questions. In particular, the simulation of wave transmis-
sion between a classical material and a “negative” one re-
quires extra care. The difficulty is obvious when consider-
ing the natural variational formulation of the scalar model
problem:

div

(

1

ε
∇u

)

+ ω2µu = 0 (1)

when ε presents a sign shift through some interfaceΣ.
Using integral representations onΣ, it has been proved
that this transmission problem is ill-posed if the coeffi-
cient ε takes opposite constant values on each side ofΣ
(that is aconstrastequal to−1) and well-posed other-
wise, under the assumption thatΣ is smooth [1]. More
generally (non smooth interface and/or coefficients), the
problem is well-posed for a large or a small absolute value
of the contrast, but not for a contrast close to−1 [2].

Following an idea of [3], we proposed in [4] some
new variational formulations of this transmission prob-
lem, which are proved to be of Fredholm type (for suit-
able contrasts) and well adapted for a finite elements dis-
cretization. The extension to the vector case (Maxwell’s
equations) is presented in [5].

The drawback of these formulations, especially for 3D
vector problems, is their cost, since an additional vector
unknown is introduced. This led us to consider more care-
fully the natural variational formulation of the problem,
which gave surprisingly good numerical results.

The object of this paper is to explain this phenomenon
in the scalar case : we prove “directly” that problem (1) is
well-posed and that a standard finite element discretiza-
tion converges in a classical manner.

2 The continuous problem
2.1 Setting of the problem

Let Ω be an open, bounded domain ofR
3 with Lip-

schitz boundary, which is split in two sub-domainsΩ−

andΩ+ with Lipschitz boundaries. LetΣ = ∂Ω− ∩ ∂Ω+

denote the interface andΓ± = ∂Ω± \ Σ. We consider
two functionsε andµ defined inΩ such thatε, µ and1/ε
belong toL∞(Ω). We suppose moreover thatε is strictly
positive onΩ+ and strictly negative onΩ−.

Let f ∈ L2(Ω). We consider the following problem :
Findu ∈ H1

0
(Ω) such that:

∫

Ω

1

ε
∇u.∇v − ω2µu v = f v, ∀v ∈ H1

0
(Ω). (2)

2.2 The abstract theorem
SupposeV is a Hilbert space,a andc are continuous

bilinear forms onV andl is a continuous linear form on
V , and consider the following variational problem :

Findu ∈ V such that
a(u, v) + c(u, v) = l(v) ∀v ∈ V.

(3)

Then we have the
Theorem: Suppose :

1. There exists an isomorphismT of L(V ) and a posi-
tive constantα such that

|a(u, Tu)| ≥ α‖u‖2

V ∀u ∈ V.
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2. The operatorK associated to the bilinear formc by
Riesz representation is compact onV .

Then problem (3) is well-posed if and only if uniqueness
holds (i.e.l = 0 ⇒ u = 0).

Proof: Problem (3) is clearly equivalent to the follow-
ing:

Findu ∈ V such that
a(u, Tv) + c(u, Tv) = l(Tv) ∀v ∈ V.

(4)

sinceT is bijective, and this new problem is of Fredholm
type.

2.3 Well-posedness
To apply the previous theorem to problem (2), we de-

fine the operatorT as follows:

∀u ∈ H1

0 (Ω) Tu =

{

u in Ω+

−u+ 2Ru in Ω−
(5)

whereRu is defined as the unique solutionψ ∈ H1(Ω−)
of:















div

(

1

ε
∇ψ

)

= 0 in Ω−

ψ = u on Σ
ψ = 0 on Γ−

(6)

Notice thatTu belongs toH1

0
(Ω) since it is continuous

acrossΣ and that there exists a constantC depending only
on the geometry such that:

∫

Ω−

1

|ε|
|∇(Ru)|2 ≤ Cκ(ε)

∫

Ω+

1

ε
|∇u|2 (7)

where the generalized contrast is defined (in absolute
value) by:

κ(ε) =
supx∈Ω+

ε

infx∈Ω−
|ε|
.

Moreover,T is clearly continuous and bijective, withT =
T−1. Finally, setting

a(u, v) =

∫

Ω

1

ε
∇u.∇v

elementary calculations give,∀u ∈ H1

0
(Ω):

a(u, Tu) =

∫

Ω

1

|ε|
|∇u|2 − 2

∫

Ω−

1

|ε|
|∇(Ru)|2 (8)

so that, by (7),a(u, Tu) is coerciveunder the condition
κ(ε) < 1/C. The abstract theorem then applies in a
straightforward manner, using the compactness of the em-
bedding ofH1

0
(Ω) intoL2(Ω).

3 The discrete problem
3.1 The abstract theorem

Consider again the same hypotheses as in subsection
2.2. NowVh denotes a family of finite-dimensional sub-
spaces ofV such that :

lim
h→0

inf
vh∈Vh

‖v − vh‖V = 0 ∀v ∈ V, (9)

and we consider the following discrete problem:

Finduh ∈ Vh such that
a(uh, vh) + c(uh, vh) = l(vh) ∀vh ∈ Vh.

(10)

Moreover we suppose that there exists an operatorTh

of L(Vh) and two positive constantsβ andγ independent
of h such that∀h:

1. ‖Th‖ ≤ γ.

2. |a(uh, Thuh)| ≥ β‖uh‖
2

V ∀uh ∈ Vh.

Then we have the
Theorem: Problem (10) is well-posed forh small

enough. Moreover, the following error estimate holds:

‖u− uh‖V ≤ inf
vh∈Vh

‖u− vh‖V . (11)

3.2 The finite element error
We suppose now thatε is regular onΩ− and thatVh

are classical finite element spaces associated to a quasi-
uniform family of triangulations ofΩ (preserving the in-
terfaceΣ). We setVh(Ω±) = {u|Ω±

|u ∈ Vh} and
V 0

h (Ω±) = Vh(Ω±) ∩H1

0
(Ω±).

We define the operatorTh as follows:

∀uh ∈ Vh Thuh =

{

uh in Ω+

−uh + 2Rhuh in Ω−
(12)

whereRhuh is defined as the unique solutionψh ∈

Vh(Ω−) of:






ψh = uh onΣ,
∫

Ω−

1

ε
∇ψh.∇φh = 0 ∀φh ∈ V 0

h (Ω−).
(13)

To prove thatTh is bounded uniformly with respect toh,
we just have to consider operatorRh. Letuh ∈ Vh. Then:

‖Rhuh‖H1

0
(Ω−)

≤ ‖(R−Rh)uh‖H1

0
(Ω−)

+‖Ruh‖H1

0
(Ω−)

.

Moreover, sinceuh ∈ H1

0
(Σ), Ruh ∈ H3/2(Ω−) and the

classical error estimate reads:

‖(R−Rh)uh‖H1

0
(Ω−)

≤ K ′h1/2‖uh‖H1

0
(Σ)
.
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Then, since the family of triangulations is quasi-uniform,
the usual inverse inequality holds:

‖uh‖H1

0
(Σ)

≤ K ′′h−1/2‖uh‖H
1/2

00
(Σ)
.

Putting all together and using the continuity of the trace
application, we get finally for some positive constantK

independent ofh:

‖Thuh‖H1

0
(Ω)

≤ K‖uh‖H1

0
(Ω)
.

This is the key result. Then one can easily establish in-
equalities similar to (7) and (8) inVh, and prove well-
posedness and convergence for the discrete problem.

4 Some numerical results
For the numerical validation, we consider a rectangular

domainΩ splitted byΣ in two squaresΩ+ andΩ−. The
coefficientε takes constant valuesε± ∈ R

± in Ω±. In or-
der to verifya posteriorithe error estimates (11), we use
regular triangulations ofΩ and we solve (2) with anad
hocsource termf so that the solutionu is known exactly.
The evolution of the relative error

e =
‖u− uh‖H1(Ω)

‖u‖H1(Ω)

as a function of the mesh diameterh is plotted on figure 1,
in the particular case of a contrastκ = ε+/|ε−| = 2.75:
the black line corresponds to a linear interpolation and the
blue line to a quadratic one. The light-blue line (resp. the
green line), which slope is equal to one (resp. two), is
introduced just as a reference. We observe a convergence
in agreement with the theoretical estimates.

fig. 1
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Abstract
We study the asymptotic behaviour of the spectrum of

the three-dimensional Maxwell operator in a bounded pe-
riodic heterogeneous dielectric mediumT = [−T, T ]3,
T > 0, as the structure periodη, such thatη−1T is a
positive integer, tends to0. The domainT is extended
periodically to the whole ofR3, so that the original op-
erator is understood as acting in a space ofT-periodic
functions. We use the so-called Bloch wave homogenisa-
tion technique which, unlike the classical homogenisation
method, is capable of characterising a renormalised limit
of the spectrum (called theBloch spectrum). The related
procedure is concerned with sequences of eigenvaluesΛη

of the order of the square of the medium period, which
correspond to the oscillations of high-frequencies of or-
derη−1. The Bloch-wave description is obtained via the
notion of two-scale convergence for bounded self-adjoint
operators, and a proof of the “completeness” of the limit-
ing spectrum is provided.

Introduction
The problem of determining the effective properties of

a composite periodic medium in the context of electro-
statics is an old one, and has been studied extensively,
starting with the paper [11] by Lorenz. However, when
the electric fields exhibit time-dependence one moves into
the area of electromagnetism, which is a less-developed
subject, at least in the context of the effective response of
periodic composite media. In this respect it may be help-
ful to recall that although practitioners often make use of
the traditional static formulae in the dynamic regime, this
technique, generally known as the “quasi-static limit”,
tacitly relies on a set of assumptions about the fields in
the material; namely, that their wavelengths are long in
comparison with the typical size of heterogeneity. In this
respect it seems to be of interest to investigate the material
response when the wavelengths and the average period of
variations in the conducting properties become compara-
ble, thus inducing significant scale interactions. Whether
the material then supports the imposed oscillations, such
as an externally applied electric signal, becomes a non-
trivial question, requiring a new averaging procedure of
some sort.

There are several recent examples of similar kind,
where the limiting procedure has exhibited a strong de-
pendence on the precise way in which the underlying
length-scales become small, seee.g. [12], [14]. Most of
them are due to some sort of contrast in the properties at
different points of the composite, which makes it possi-
ble to have comparatively short waves in selected parts of
the medium. It seems equally plausible to imagine, how-
ever, that the external frequency is high enough already
to warrant the existence of scale interaction effects in
the medium. Several works investigating this possibility
have been written by Allaire and Conca, in the context of
fluid-solid structures [2], [4], as well as for a scalar ellip-
tic equation with Dirichlet boundary conditions [3]. The
present paper deals with an analogous problem in the con-
text of electromagnetic waves. In order to avoid technical
complications unrelated to the aim of the present study,
we restrict ourselves to the case of periodic boundary con-
ditions, thus excluding a possibility of the emergence of
a “boundary layer spectrum”, seee.g. [3]. Throughout,
we use bold type to denote various spaces of vector func-
tions, such asL2, or C∞

per; the subscript “per” will refer
to the respective spaces of periodic functions. We use the
notationσ(A) for the spectrum of an operatorA.

1 Formulation
Consider an isotropic dielectric medium occupying the

domainT = [−T, T ]3 ⊂ R3 of fixed period2T > 0,
which is extended periodically toR3 and composed of
(η−12T )3 periodicity cells with a small periodη ∈ Ξ,
where the setΞ is defined byΞ := {η > 0 : η−1T ∈ N}.
Such a composite medium can be a model of what is
known as the photonic crystal [13]. The analysis of elec-
tromagnetic modes in such a medium amounts to looking
for pairs1 (Λη,Hη) ∈ IR+ × Hper(curl,T), Hη 6≡ 0,
such that

curl
(
ε−1(x,x/η)curlHη

)
= Λ−1

η Hη, (1.1)

whereε(x,x/η) is the (matrix) relative permittivity of
the medium at the pointx. The set of all first el-

1The spaceHper(curl,T) is defined as the closure of the set
C∞per(T) of T-periodic infinitely smooth vector functionsϕ with re-
spect to the norm‖ϕ‖L2(T) + ‖curlϕ‖L2(T).
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ementsΛη in such pairs is referred to as the spec-
trum of (1.1), and we denote it byση. We assume that
ε(x,y) ∈ Cper

(
T, [L∞(Y )]9

)
, whereY := [0, 1]3, and

thatε(x,y) ≥ I for a.e. (x,y) ∈ T × Y, which, in the
case when the medium is isotropic, means thatε(x,y) is
bounded below at almost every point by the permittivity
of vacuum. If follows from the above two conditions that
the operator in the left-hand side of (1.1) is uniformly el-
liptic (or “coercive”). The equation (1.1) is understood in
the weak sense,i.e.∫

T
ε−1(x,x/η)curlHη(x) · curlϕ(x)dx

= Λ−1
η

∫
T

Hη(x) ·ϕ(x)dx

for anyϕ ∈ C∞
per(T). Note in particular that for any so-

lution of (1.1) one hasdiv Hη = 0.

2 Convergence of spectra
In order to study the spectrum of (1.1) for eachη ∈

Ξ, consider the Green operatorGη in L2(T) defined for
everyf ∈ L2(T) by Gηf = uη, whereuη is the unique
solution (by the Lax-Milgram lemma, seee.g. [10]) in
Hper(curl,T) of the problem

curl
(
ε−1(x,x/η)curluη

)
+ uη = f . (2.2)

Clearly, Gη is self-adjoint and it can also be shown
that it is compact; we can thus writeσ(Gη) =
{0, 1}

⋃
{Λ̃k

η}k≥1, where for eachη the sequencẽΛk
η con-

verges to 0 ask → ∞. In the above union we include
every eigenvalue as many times as is its multiplicity, so
that to each̃Λk

η is associated a normalised eigenfunction2

uk
η ∈ L2

sol(T) such that‖uk
η‖L2(T) = 1 and the family

{uk
η}k≥1 is an orthonormal basis ofL2

sol(T). The eigen-

valuesΛ̃k
η are related to the eigenvalues of (1.1) by the

formulaΛ̃k
η = (Λk

η + 1)−1Λk
η.

The aim of this paper is to study the asymptotic be-
haviour of the spectrumση when the periodη goes to zero
along the setΞ. It is known (seee.g. [9], [8]) that when
f ∈ L2(T), the solutionsuη of (2.2) converge strongly
in L2(T) to a limit uhom, which is a unique solution in
Hper(curl,T) of the homogenised problem:

curl
(
ε−1
hom(x)curluhom

)
+ uhom = f , (2.3)

2The spaceL2
sol(T) is defined to consist of those functions in

L2(T) whose divergence vanishes, with the Hilbert structure induced
from L2(T). Denote byH1

per(T) the closure ofC∞per(T) in the norm
‖ϕ‖L2(T) + ‖∇ϕ‖L2(T). Then the divergencedivu of a vector func-
tion u ∈ L2(T) is a functional onH1

per(T) defined by the formula
〈divu, ϕ〉 = −

∫
T

u(x) · ∇ϕ(x)dx.

where the effective matrixεhom(x) is given by

εhom(x)ξ · ξ

= inf
Φ∈H1

per(Y )

∫
Y

ε(x,y)
(
ξ +5Φ(y)

)
·
(
ξ +5Φ(y)

)
dy

(2.4)
for anyξ ∈ R3.

Further, asη → 0, the restrictions toL2
sol(T) of the op-

eratorsGη converge in norm to the restriction toL2
sol(T)

of the limit operatorG defined for everyf ∈ L2(T)
by Gf = uhom, whereuhom is the solution of (2.3).
This fact follows from the weak compactness of the
unit ball in L2(T) and the above mentioned result that
when a sequence offη ∈ L2

sol(T) weakly converges to
f ∈ L2

sol(T) one has the strong convergence inL2(T)
of Gηfη to Gf . [The proof of an analogous statement
can be found in [3, Theorem 2.2].] Clearly,G is a com-
pact self-adjoint operator and for its spectrum one has
σ(G) = {0, 1}

⋃
{Λ̃k}k≥1, where the eigenvalues̃Λk are

listed in the decreasing order andlimk→+∞ Λ̃k = 0. The
min-max principle implies that|Λ̃k

η − Λ̃k| ≤ ‖Gη − G‖.
Therefore, the above convergence in norm yields the con-
vergence of each individual eigenvalueΛ̃k

η labelled in the
decreasing order, and therefore of each eigenvalueΛk

η of
(1.1). In particular, whenη → 0, the setsση converge (in
the Hausdorff sense3) to

{
(1−Λ)−1Λ : Λ ∈ σ(G)

}
. How-

ever, this convergence result alone does not say anything
about the asymptotic behaviour of sequences of eigenval-
uesΛk(η)

η whenη → 0, wherek(η) → ∞ (which cor-
responds to high frequenciesΛ−1

η ), and this is the issue
that we address in the present work. It turns out that the
behaviour of the eigenvaluesΛη asη → 0 depends on
the way they are scaled withη. In particular, three differ-
ent limiting operators can be constructed, depending on
whether the limit ofη−2Λη is finite, infinite, or zero. The
first case, which is of greatest interest in applications, cor-
responds to a limiting operator with a band-gap spectrum.

3 Main results
We first recall the concept of two-scale convergence for

sequences inL2(T) and adapt it to sequences of bounded
self-adjoint operators. This adaptation is then utilised to
characterise the limit spectrum of the typelimη→0 η−2ση.
Via a change of variable, we look for pairs(µη,Hη) ∈
IR+ ×Hper(curl,T), Hη 6≡ 0, such that

η2curl
(
ε−1(x,x/η)curlHη

)
+ Hη = µ−1

η Hη. (3.5)

3We say that ση converge to σ in the Hausdorff sense if
max{supλ1∈ση

infλ2∈σ |λ1 − λ2|, supλ2∈σ infλ1∈ση |λ1 − λ2|} →
0 asη → 0.
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This transformation of (1.1) into (3.5) keeps unchanged
the eigenfunctions and changes the eigenvaluesΛη to
µη = (η2 + Λη)−1Λη, ensuring thatµη ∼ 1 if Λη ∼ η2.

The problem (3.5) generates a bounded operatorSη de-
fined for eachf ∈ L2(T) by Sηf = vη, wherevη is the
unique solution inHper(curl,T) of the problem

η2curl
(
ε−1(x,x/η)curlvη

)
+ vη = f .

It can be shown thatSη converge weakly to the iden-
tity operator, but this fact does not provide any infor-
mation on the behaviour of the spectra ofSη. The latter
issue can be handled using the notion of two-scale con-
vergence [1], whereby the limit operatorSK defined for
everyK ∈ N acts on the spaceL2(T×KY.) The (renor-
malised) limit ofση will then be determined by studying
the spectraσ(SK), K ∈ N, via the Bloch-wave decompo-
sition. For this, we introduce a family of limit problems,
whereby for every(x,θ) ∈ T × Y , we look for pairs
(µ(x,θ),v(y)) ∈ R×Hper(curl, Y ) that satisfy (in the
weak sense) the equation

curly
(
ε−1(x,y)curly

(
v(y)e2πiθ·y))

+ v(y)e2πiθ·y

= µ(x,θ)−1v(y)e2πiθ·y. (3.6)

Note that for the spectrumσ(x,θ) of the problem (3.6)
we haveσ(x,θ) = {0, 1}

⋃
{µk(x,θ)}k≥1, where the

sequenceµk(x,θ) converges to0. It can be shown that
for each fixedk, the eigenvalueµk(x,θ) is a continuous
function of (x,θ) (cf. [3]). We then define the Bloch
spectrum (band spectrum) by

σBloch := {0, 1} ∪
⋃
k≥1

[
min
(x,θ)

µk(x,θ),max
(x,θ)

µk(x,θ)
]

In order to show thatlimη→0 σ(Sη) ⊂ σBloch we: 1)
Construct “approximate eigenfunctions” for the permit-
tivity matrix ε(x,y) “frozen” at a certain valuex = x0,
and then 2) Use the so-called “Bloch measure” technique
(cf. [3]) to show that asη → 0, the Bloch components
of these approximate eigenfunctions correspond to Bloch
eigenvalues concentrating nearµ.

Finally, we characterise the limit spectrum for other
scalings. An appropriate multi-scale generalisation of the
two-scale convergence method [5] is used to study the
spectra of the typesa−2

η ση, whereaη � η or aη � η.
It tuns out that outside the scaling regimeaη ∼ η there
is no interaction between the homogenisation scaleη and
the singular perturbation scaleaη. One of two things can
happen instead: eitherη is much smaller thanaη in which

case the homogenisation occurs first and the singular per-
turbation concerns the homogenised system; orη is larger
thanaη and it turns out that the singular perturbation oc-
curs first at a microscopic scale making the homogenisa-
tion irrelevant.

4 Further work
There are several possible directions in which our re-

sults could be developed. First, the issue of whether
non-periodic boundary conditions could be treated in a
similar way, which is of special importance in the elec-
tromagnetic context. Secondly, the high-frequency spec-
trum analysis can be considered in the context of high-
contrast periodic composites, which has received consid-
erable attention recently in the finite-frequency regime,
see [14], [6]. Depending on the exact relationship be-
tween the contrast parameterδ, the period of oscillations
η and the wavelengthaδ,η, the limiting problem could
possess some or other type of spectrum, possibly lead-
ing to a number of new effects in the limit of vanishing
parameter values. The band-gap features of the “high-
contrast high-frequency” case can then be exploited in
creating localised modes in the spectrum by adding a
compact perturbation to the limiting operator. This will
translate in a suitably rescaled perturbation of the original
composite with finiteδ, η, which possesses the mentioned
localisation properties in a controlled way asδ andη vary.
These aspects of the high-frequency spectral asymptotics
for periodic media will be studied elsewhere.
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Abstract
We analyse transport properties of linear water

waves propagating within a square array of fixed
square cylinders. The main focus is on achieving
Negative Refraction thanks to anomalous dispersion
in fluid filled periodic structures. In the limit case
when the cylinders come close to touching, the array
can be approximated by a lattice of thin water chan-
nels (for which dispersion curves are given in closed
form and thus frequencies at which Negative Refrac-
tion occurs). Applications lie in water wave lenses
through inverted Snell-Descartes law.

Introduction
In 1967, Victor Veselago proposed to use negative

refraction to make a convergent flat lens [1]. In 2000,
John Pendry further shown that this flat lens over-
comes the diffraction limit through enhancement of
evanescent waves via plasmon resonances occurring
on the boundaries when its refractive index is close
to −1 [2]. Using photonic crystals, it is possible to
achieve such a negative refraction index [3]. Alike
photonic crystals, negative refraction has been exper-
imentally demonstrated for liquid water waves propa-
gating within arrays of circular cylinders, also leading
to lensing effects [4].

In this paper, we analyse focussing effects for wa-
ter waves propagating in arrays of square cylinders
with close to touching edges. We carry out a sim-
ple asymptotic analysis providing us with dispersion
curves in close form. Our analytical estimates are in
good agreement with finite element computations.

Set up of the spectral problem
Let us consider a water tank filled an array of fixed

rigid circular cylinder. We look for harmonic liquid
surface waves characterized by their velocity poten-
tial Φ:

Φ(x1, x2, x3, t) = <e
(
φ(x1, x2) cosh(κx3)e−iωt

)
,
(1)

where t is the time variable, ω is the wave frequency
and x3 is the vertical coordinate which is perpendic-

ular to the horizontal plane (x1−x2). For simplicity,
x3 = 0 corresponds to the bottom of the water tank
within which surface waves are propagating. Further-
more, κ is a spectral parameter linked to the reduced
potential φ through the Helmholtz equation

∇2φ + κ2φ = 0 , (2)

where κ is the spectral parameter linked to the wave-
frequency through the dispersion relation

ω2 = gκ(1 + d2
c) tanh(κh) , (3)

where dc is the water capillarity, h the water depth
and g the acceleration caused by gravity.

The Helmholtz equation (2) is supplied with a Neu-
mann (no flow) boundary condition

∂φ

∂n
= 0 , (4)

on each rigid cylinder with a fixed boundary S.
These water waves propagating in a periodic struc-

ture are sought in the form of Floquet-Bloch waves,
hence φ are functions of finite energy in a basic
Y = [0; 1]2 (repeated periodically) such that

φ(x1 + 1, x2 + 1) = φ(x1, x2)ei(k1+k2) , (5)

where the Bloch vector k = (k1, k2) ∈ Y ∗ = [0, π]2,
where Y ∗ is the so-called first Brillouin zone. This
square cell Y ∗ in reciprocal space can be further
reduced to a square triangle ΓMX with vertices
Γ = (0, 0), X = (0, π) and M = (π, π), as depicted
on Figure 1(b) if the inclusion within the cell Y in
physical space exhibits a four-fold symmetry.

Asymptotic estimates of dispersion curves
Using local coordinates, we have

Πj
ε =

{
(x1, x2) : aj < x1 < bj , | x2 |< εhj/2

}
,

(6)
where ε is a small non-dimensional parameter, and
aj , bj and hj are given constants denoting respec-
tively the end points and thickness of the j-th bridge.
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Figure 1: (a) Square array of square cylinders of
pitch 1 where the blue region is filled with water;
(b) Corresponding reduced Brillouin zone ΓXM ;

(c) Selected region of the square array showing four
square cylinders separated by four thin bridges Πj

ε

within which water flows (blue region). (d)
Corresponding lattice structure.

Let us introduce the scaled variable

ξ =
x2

ε
, (7)

The rescaled Helmholtz equation in Πj
1 is

{( 1
ε2

∂2

∂ξ2
+

∂2

∂x2
1

)
+ κ2

}
φj = 0 . (8)

The potential φj is approximated in the form

φj ∼ φ
(0)
j (x1, ξ) + ε2φ

(1)
j (x1, ξ) . (9)

We derive that the leading order term in (9) satisfies

d2φ
(0)
j

dx2
1

+ κ2φ
(0)
j = 0 , aj < x1 < bj . (10)

This equation is supplied with Floquet-Bloch bound-
ary conditions at the endpoints 1, .., 4 on Fig. 1 as
well as an equilibrium condition at the central point
0 [5]:

0 =
4∑

j=1

d2φ
(0)
j

dx2
1

|x1=0 . (11)

This leads us to the asymptotic dispersion relation

sin(κl) (cos(k1l) + cos(k2l)− 2 cos(κl)) = 0 . (12)

For a wave propagating in the ΓX direction, k1 = k2,
so that (12) reduces to κ = k1. This has important
practical consequences as it gives the frequency at
which focusing of water waves occurs for a slab lens
consisting of close to touching square cylinders.

Analysis of anomalous dispersion and lensing
effect

To analyze the transport of water wave energy
within the array of cylinders, we need to link the
dispersion relation to that of propagation of energy.
This can be done in a way similar to what was dis-
cussed for electromagnetism in [3] by noting that the
group velocity of Floquet-Bloch water waves is de-
fined as

Vg = ∇k(ω) =
∂ω

∂k1
e1 +

∂ω

∂k2
e2 . (13)

This group velocity corresponds to the speed at which
the amplitude of the water wave propagates. This is
easily seen to be equal to the average velocity (taken
over the basic cell) of the energy flow.

The essential condition for the all angle negative
refraction (AANR) effect is that the equifrequency
surfaces (EFS) should become convex everywhere
about some point in the reciprocal space, and the size
of this EFS should shrink with increasing frequency.
Further the EFS should be larger than the free space
dispersion surface and the frequency should be within
the first Bragg zone [3].

As can be seen in Figure 2, the analytical formula
(12) compares very well with the finite elements com-
putations for a filling fraction of 0.9. The starred
curve on Figure 2 corresponds to this case for a depth
of water of h = 6mm. Its intersection with the acous-
tic band provides us with the frequency at which neg-
ative refraction occurs. We note that this frequency
is around flens1 = 2π Hz, which is a straightforward
consequence of (3) and (12). We check in Figure 3
that the corresponding EFS satisfy the criteria for
AANR and we observe on Figure 4 that for a har-
monic source set at this frequency, there is indeed an
image forming on the other side of the array.

Perspectives: experimental setup
We now want to check our numerical results

against experimental values. In our experimental
setup we consider a water tank that consists of a
rectangular glass bottom covered by a thin layer of
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water surrounded by four absorbing sides (foam) act-
ing as Perfectly Matched Layers. A flat rectangular
slab of about 200 cylinders is placed in the middle of
the vessel. A small vibrator serves as a point source
generator. Both frequency and amplitude of the vi-
brator can be tuned by a signal generator. We then
observe the vertical displacement of the liquid surface
ξ which is related to the reduced potential φ by

ξ(x1, x2, t) = <e

(
− iω

g
φ(x1, x2)e−iωt

)
. (14)

Figure 4: Water-wave lensing for one source at
frequency flens1 = 6.28 ∼ 2π Hz, through an array
of 212 square cylinders of side length 9.5mm. The
pitch of the array is 10mm, the depth of water is

h = 6mm and the capillarity dc = 0.109mm.

Unlike electromagnetic waves in the micro-wave
regime, ξ provides a readily observable evidence of
negative refraction (inverted Snell-Descartes law).
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Abstract
In this talk we shall discuss the calculation of the spec-

tra of PDEs arising in models of photonic crystal fibers
(PCFs) in both periodic and non-periodic cases.
For periodic PCF problems, under the assumptions of
TE and TM polarizations, we derive error estimators for
approximated eigenvalues and eigenvectors, arising from
discretization of a typical cell problem. We give numeri-
cal illustrations of how the adaptivity copes with internal
interfaces in the device and with high contrast media.
We shall also give illustrations of the use of our error es-
timates in an adaptive procedure for finding spectral gaps
and related trapped modes in devices with defects.

Introduction
We consider eigenvalue problems arising from the

modelling of photonic crystal fibers (PCFs) and in par-
ticular we are interested in computing the first gaps in
the spectrum of periodic structures and trapped modes
arising in structures with defects. In order to locate the
gaps we split the Maxwell’s equations into the TE and
TM modes. Then we apply the Bloch-Floquet transform
obtaining two families of eigenvalue problems on a two-
dimensional primitive cell P parameterized by the quasi-
momentum κ.

In this talk we solve both families of problems using
linear finite elements on triangular meshes and we pro-
pose a reliable and efficient a posteriori error estimate to
drive mesh adaptivity. The a posteriori error estimator
we use is based on residuals. This kind of estimate is
quite common in finite element methods for partial dif-
ferential equations, but there are relatively few results for
eigenvalue problems, with some exceptions being [1], [2],
[3], [4] and [5]. The approach presented in [4] and [5] is
different because eigenvalue problems are treated as stan-
dard non linear problems. We are not aware so far of any a
posteriori error estimates or mesh adaptivity for photonic
eigenvalue problems.

A new a posteriori error estimator for PC
Let Th be a conforming and shape regular mesh of tri-

angles. We denote with Fh the set of all the edges of the
elements of the mesh Th. We assume to have already cho-

sen a preorientated unit normal vector ~nF for each edge
F . On the mesh Th we define the piecewise constant func-
tion hτ which assumes, at any point in the interior of any
element τ , the value of the diameter of τ . Furthermore,
we define on the edges Fh the function hF , which as-
sumes in the interior of each edge F the length of F .

The estimation of the error is a sum of local residu-
als coming from the interior of the elements and from the
edges of the mesh. For a computed eigenpair (λh, uh),
we denote the residual contribution from the interior of
the elements by RI(uh, λh). In addition we define the
residual from the edges of the elements for a computed
eigenpair (λh, uh) by the functional RF (uh). The esti-
mator ηTE for the TE mode is defined in the following
way:

ηTE :=
{ ∑

τ∈Th

h2
τ

Mτ
‖RTE

I (uh, λh)‖2
0,τ

+
∑

F∈Fh

hF

MF
‖RTE

F (uh)‖2
0,F

}1/2

,

(1)

where Mτ is an element wise constant function depending
on the dielectricity of the materials and MF is an edge
wise constant function also depending on the coefficients
of the problem. Instead, the estimator ηTM for the TM
mode is defined as:

ηTM :=
{ ∑

τ∈Th

h2
τ‖RTM

I (uh, λh)‖2
0,τ

+
∑

F∈Fh

hF ‖RTM
F (uh)‖2

0,F

}1/2

.

(2)

We have proved the reliability for both error estimators
in the energy norms of the error and in the error for the
eigenvalues. In the following theorems we have collected
the two reliability results. Since eigenvalue problems are
non-linear, we have the appearance of high order terms in
the results of Theorem 1 and Theorem 2. If the computed
eigenvalue is close enough to the true one, we have that
these terms decay to 0 quicker than the leading term when
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the size of the mesh shrinks to 0. In [6] there is a very in-
sightful a priori analysis for eigenvalue problems. It is
explained that when the mesh size is small enough, the
computed eigenvalues cluster around the true ones and the
number of computed eigenvalues in the clusters depend
on the multiplicity of the true eigenvalues. In addition,
when the mesh size goes to 0 the points in the clusters
converge to the true eigenvalues and also the correspond-
ing computed eigenfunctions converge to true eigenfunc-
tions. So each computed eigenvalue λh converges to a
unique true eigenvalue λ, when the mesh size shrinks to 0.
Furthermore, for each computed eigenpair (λh, uh) it is
possible to uniquely identify a true eigenpair (λ, u) such
that λh converges to λ and u is the eigenfunction of λ that
minimize the distance to uh for a chosen norm. We use
the notation . to hide a constant independent of the mesh
diameter, provided the meshes are shape regular, and we
denote by ‖|· ‖|P the energy norm related to the consid-
ered problem.

Theorem 1 (Reliability for the TE mode). Let (λh, uh) be
an eigenpair of the TE mode problem computed on a mesh
Th for some value of the quasimomentum κ. Let (λ, u) be
the corresponding true eigenpair of the continuous prob-
lem for the same value of κ. Then we have that the error
estimator (1) bounds the error in the energy norm as:

‖|u− uh ‖|TE
P . ηTE + high order terms.

Also, the error estimator (1) bounds the error for the
eigenvalues as:

0 ≤ λh − λ . (ηTE)2 + high order terms.

Theorem 2 (Reliability for the TM mode). Let (λh, uh)
be an eigenpair of the TM mode problem computed on a
mesh Th for some value of the quasimomentum κ. Let
(λ, u) be the corresponding true eigenpair of the con-
tinuous problem for the same value of κ. Then we have
that the error estimator (2) bounds the error in the energy
norm as:

‖|u− uh ‖|TM
P . ηTM + high order terms.

Also, the error estimator (2) bounds the error for the
eigenvalues as:

0 ≤ λh − λ . (ηTM )2 + high order terms.

In addition, we have also proved the global efficiency
for the two error estimators. As for the reliability, also in
the results for the global efficiency we have higher order
terms coming from the non-linearity of the problems.

Theorem 3 (Global efficiency for the TE mode). Let
(λh, uh) be an eigenpair of the TE mode problem com-
puted on a mesh Th for some value of the quasimomen-
tum κ. Let (λ, u) be the corresponding true eigenpair of
the continuous problem for the same value of κ. Then we
have that the error in the energy norm bounds the error
estimator (1) as:

ηTE .‖|u− uh ‖|TE
P + high order terms.

Theorem 4 (Global efficiency for the TM mode). Let
(λh, uh) be an eigenpair of the TM mode problem com-
puted on a mesh Th for some value of the quasimomentum
κ. Let (λ, u) be the corresponding true eigenpair of the
continuous problem for the same value of κ. Then we
have that the error in the energy norm bounds the error
estimator (2) as:

ηTM .‖|u− uh ‖|TM
P + high order terms.

Finally, we have developed a computationally efficient
way to calculate the bottom part of the spectrum in the
periodic case. In order to be computationally efficient,
our method exploits mesh adaptivity by solving a lot of
eigenvalue problems for different values of the quasimo-
mentum κ using the same properly refined mesh for all
of them. Furthermore, in a separate piece of work, an
adaptive procedure similar to the one used here has been
proved to converge for simplified model elliptic eigen-
value problems. All our results are supported by numeri-
cal evidence showed at the end of the paper.
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Abstract
We analyse numerically the acoustic stop band

properties of an array of orthotropic coated cylin-
ders. These coated cylinders behave either as neutral
inclusions (leading to an invisible material) or local
resonators (leading to a perfect mirror) depending
upon the wave frequency range. We also give the
eigenfield within the cloak in closed form for a fre-
quency on the lower-edge of the first stop band.

Introduction
In 1994, McPhedran, Nicorovici and Milton [1]

studied a coated cylinder within which the permit-
tivity was complex with a negative real part (but the
permeability was kept to 1). In 2006, the last two
authors further proposed to cloak a countable set of
line sources using anomalous resonance when it lies in
the close neighborhood of a cylindrical coating filled
with negative refractive index material [5]. A geo-
metric route to cloaking was independently proposed
the same year by Pendry, Shurig and Smith [6] and
Ulf and Philbin [7] in the ray optics limit. A numer-
ical proof of cloaking was subsequently provided in
the intense near field limit (full electromagnetic wave
simulation) in [9]. The elastodynamic counterpart of
invisibility cloaks, known as neutral inclusions [2],
was discussed by Milton et al. in [8]. We extend this
latter work to a periodic array of cylindrical acoustic
cloaks.

Governing equations
Let us consider a cylindrical elastic object we want

to cloak located within a disk of radius R1. We can
use the same route to cloaking as that proposed in
electromagnetism by Pendry et al. [6]. For this, we
consider a geometric transformation which maps the
field within the disk r ≤ R2 onto the annulus R1 ≤
r ≤ R2:





r′ = R1 + r(R2 −R1)/R2 , 0 ≤ r ≤ R2

θ′ = θ , 0 < θ ≤ 2π

z′ = z , z ∈ RI ,

(1)

where r′, θ′ and z′ are ’radially contracted cylindri-
cal coordinates’. Moreover, this transformation maps
the field for r ≥ R2 onto itself by the identity trans-
formation.

In this paper, we focus on the case of anti-plane
shear elastic waves.

This change of co-ordinates is characterized by the
transformation of the differentials through the Jaco-
bian:

Jrr′ =
∂(r, θ, z)

∂(r′, θ′, z′)
=




1
α 0 0
0 1 0
0 0 1


 . (2)

where α = (R2 − R1)/R2 for 0 ≤ r ≤ R2 and α = 1
for r > R2.

The elastic properties of the transformed medium
are described by the matrix

T=JTJ/det(J) , (3)

which is a representation of the metric tensor, as rec-
ognized by Milton et al.[8]. The only thing to do in
the transformed coordinates is to replace the materi-
als (often homogeneous and isotropic) by equivalent
ones that are inhomogeneous and orthotropic whose
elastic parameters are given by

µ′ = µT−1 , and ρ′ = ρT−1 . (4)

We note that there is no change in the wave-speed v
of shear waves in the transformed medium:

(µ′ρ′−1)
1/2

=
√

µ

ρ
Id = v , (5)

since the density ρ and the shear modulus µ suffer
the same transformation. Here, Id denotes the 3× 3
Identity matrix, and ρ′ and µ′ are 3× 3 matrices.

In the transformed medium, the acoustic wave
equation thus writes

1
r2
∇r,θ ·

(
µ

[ r−R1
r 0
0 r

r−R1

]
∇r,θ u

)

+ρ
r −R1

α2r
ω2u = 0 ,

(6)
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where ∇r,θ = (r∂/∂r, ∂/∂θ).
These acoustic waves propagating in a periodic

structure are sought in the form of Floquet-Bloch
waves, hence the out-of-plane displacement u is a
function of finite energy in a basic cell Y = [0, d]2

(repeated periodically) such that

u(x1 + d, x2 + d) = u(x1, x2)ei(k1+k2)d , (7)

where x1 = r cos θ, x2 = r sin θ and k = (k1, k2) is
the Bloch vector which describes the first Brillouin
zone Y ∗ = [0, π/d]2. This square cell Y ∗ in recip-
rocal space is further reduced to a square triangle
ΓMX with vertices Γ = (0, 0), X = (0, π/d) and
M = (π/d, π/d) if the inclusion within the cell Y in
physical space exhibits a four-fold symmetry (which
is obviously the case for a coated circular inclusion).
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Figure 1: Dispersion curves for a homogeneous
elastic medium (normalised elastic parameters

µ = 1 and density ρ = 1) with enforced
Floquet-Bloch conditions on a square array of pitch

d. We plot the normalised radian frequency
ωd/v = 2 (where v is the shear waves velocity as
given by formula 5), versus | k | (when the Bloch
vector k describes the first Brillouin zone ΓMX).

Analysis of stop bands
On figures 1 and 2 we compare computations for

a homogeneous elastic medium (µ = ρ = 1) with
enforced Floquet-Bloch boundary conditions to that
of an array of inclusions (µ = 2, ρ = 2) or radius R1 =
0.2d surrounded by an ”invisibility cloak” (µ′ and ρ′

as given by 4) of radius R2 = 0.2d. As one would
expect some of the corresponding dispersion curves
reported on Figures 1 and 2 are indeed superimposed.
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Figure 2: Same as Figure caption 1 for a square
array (pitch d) of circular cylinders of radius 0.2d

and normalised elastic parameters µ = 2 and
density ρ = 2, surrounded by a coating of inner and

outer radii R1 = 0.2d and R2 = 0.4d.

But surprisingly, we observe the appearance of a stop
band around the normalised eigenfrequency 2 which
is associated with a defect mode (see Figure 3). The
split of the acoustic band of Figure 1 leading to the
appearance of the stop band on figure 2 is typical for
locally resonant structures such as arrays of coated
inclusions [3] and split ring resonators which behave
like Helmholtz resonators [4].

Frequency estimate for the first localised
mode

Let us now assume that u(r, θ) = u(r) i.e. u is
axi-symmetric. In this case, (6) reduces to

µ
d

dr
u + µ(r −R1)

d2

dr2
u + ρ

r −R1

α2
ω2u = 0 , (8)

for R1 < r < R2.
The general solution of (8) is expressed in terms of

Bessel functions of first and second kind:

u(r) = AJ0

(
(r −R1)ω

vα

)
+ BY0

(
(r −R1)ω

vα

)
,

(9)
where A and B are arbitrary constants. In the case
of the first localised mode (axi-symmetric, see figure
2), we observe that the core of the inclusion moves
freely whereas the outer boundary of the coating is
clamped, hence we set u′(R1) = 0 and u(R2) = 0.
The eigenfrequency should thus satisfy

Y0(ωR2/v)/J0(ωR2/v) = 0 . (10)
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1

0
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Figure 3: 2D plot of the first mode associated
with the normalised eigenfrequency ωd/v = 1.95 for

a Bloch vector k = (π/d, π/d). The elastic and
geometric parameters are those of Figure caption 2.

For R2 = 0.4d, this gives the normalised frequency
estimate ωd/v ∼ 2.22 which is in reasonable agree-
ment with the finite elements’ solution ωd/v = 1.98.

Conclusion and perspectives
The frequency estimate (10) provides us with the

lower edge of the stop band of figure 2. An interest-
ing feature of (9) is that the field is singular on the
inner boundary of the coating (r = R1). This was
numerically observed in the case of transverse elec-
tromagnetic waves scattered by a cylindrical object
surrounded by such a coating (known as invisibility
cloak)[9]: the elastic parameters ρ and µ then play
the role of the permittivity and/or permeability of
the coating depending upon the light polarization.
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Introduction
One of physical motivations for the reported study is

wave localization in photonic crystal fibers (PCF). Those
are optical materials representing geometrically a peri-
odic medium (whose physical properties vary across the
fiber but not along it), with the defect being its “core”,
which is a propagating “channel” or a waveguide: elec-
tromagnetic waves of certain frequencies (the “band gap”
frequencies) fail to propagate in the surrounding peri-
odic medium and hence remain localised inside the PCF,
which allows for them to propagate along the core for
long distances with little loss. Mathematically, the prob-
lem reduces to an appropriate spectral problem at the
cross-section of the PCF. This is that of characterisa-
tion of localised modes or eigenfunction (whenever such
exist) in the band gaps in the Floquet-Bloch spectrum
for the Maxwell’s operator in the surrounding periodic
medium with a fixed “propagation constant” (the wave
vector along the fiber). The latter cross-sectional geom-
etry is a periodic medium “perturbed” by a big size het-
erogeneity (domainΩR = {x : xR−1 ∈ Ω see below).
The problem is hence first in detecting the band gaps in
the periodic medium without defects and then in finding,
in the presence of a defect, the “extra point spectrum” in
the gaps as well as the associated eigenfunctions, the lo-
calised states. In the present work we aim at detecting
such localised modes in an asymptotically (with respect
to size of defect and properly chosen wave number) ex-
plicit way due to defects periodic medium applying and
appropriately developing further the tools of (high con-
trast) “non-classical” homogenization theory.

The problem
We consider Maxwell’s equations,

∇∧ H = ǫ
∂E
∂t

,

∇∧ E = −µ
∂H
∂t

,

∇ · ǫE = 0, ∇ · µH = 0.

In what follows we assume thatµ = 1 andǫ doesnot
depend onx3. We are interested in time harmonic fields

with fixed dependence on third variable,

H(t, x1, x2, x3) = eiω(t+kx3)H(x1, x2),

E(t, x1, x2, x3) = eiω(t+kx3)E(x1, x2),

wherek is a real parameter.
Then we arrive at scalar equations for TE and TM

cases, see [1]:

∇ · (ǫ − k2)−1∇H3 + ω2H3 = 0,

∇ · ǫ(ǫ − k2)−1∇E3 + ǫω2E3 = 0.

Let � = (0, 1)×(0, 1) be a reference unit cell andQ0 do-
main with smooth boundary such thatQ0 ⊂ �. We define
periodic spreading˜Q0 of Q0 i.e ˜Q0 = {x = (x1, x2) :
x + m ∈ Q0,m ∈ Z

2} and define periodic electric per-
mittivity: ǫp = ǫ0, in ˜Q0 and ǫp = ǫ1, in R

2 \ ˜Q0 (we
assume thatǫ0 > ǫ2). Let us introduce a ”big” defect: we
fix domainΩ and define defect:ΩR = {x : xR−1 ∈ Ω, },
R > 0. Thenǫd = ǫ1, in ΩR andǫd = ǫp in R

2 \ΩR. We
perform rescalingx → x/R and arrive at problem with
finite size defect in media with small period:

A
d,p
R (k2)u := −R−2∇·

(

(ǫd,p(x/R)−k2)−1)∇u

)

= λu,

B
d,p
R (k2)u := −R−2∇·

(

ǫd,p(x/R)(ǫd,p(x/R)−k2)−1)∇u

)

= ǫd,p(x/R)λu,

which are spectral problems for self-adjoint operators
A

d,p
R (k2) andB

d,p
R (k2). Properties of this operators are

very similar and we consider only operatorA
d,p
R (k2).

Homogenization
Spectral theory ensures that the “unperturbed” operator

A
p
R(k2) (ǫ = ǫp) has a band structure, whose (essential)

spectrum persists under the perturbation, so the only “ex-
tra” spectrum may be the point spectrum in the gaps, with
corresponding eigenvalues exponentially decaying at in-
finity. If the size of the defect is much larger than that of
the periodicity, one could hope to “homogenize” the pe-
riodicity when the underlying big parameterR tends to

1
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infinity. However, the “classical” homogenization is of
no use in the present context since the (constant coeffi-
cients) homogenized operator ceases having the band gap
structure (effectively accounting only for the behaviour at
the bottom of the spectrum of the original operator). We
employ instead ahigh contrast (“non-classical”) homoge-
nization, introducing another small parameter of contrast
δ = ǫ1 − k2. It is known, see [1] that ifδ → 0 then
gaps appear in spectrum of operatorAR(k2). But here
we are going to apply different strategy based on homog-
enization approach which is now natural since we have
small periodicity cells. The limit behavior then depends
on the relation betweenδ and R, and one can see that
there is only one “critical” scalingδ(R) ∼ R−2, the so-
called “double-porosity” scaling, when the phenomena at
the micro and macro scales are coupled in a non-trivial
way, see [2] for precise details.

It then appears that the “limit” problem (in contrast to
the classical homogenization) is “two-scale”, and recently
developed techniques oftwo-scale convergence appear an
appropriate tool, see e.g. [3] for recent developments and
further references therein. In particular, one can well de-
fine the two-scale limit operatorA0, which is self-adjoint
in a subspace ofL2(Rn ×Q) (Q in the periodicity cell in
the “fast” variabley). The unperturbed part of the limit
operator has an explicitly described band-gap structure,
cf. [3], and we show that the perturbed limit operator may
develop explicit extra point spectrum in the gaps [2]. We
show that extra point spectrum converges to point spec-
trum of following spectral problem with nonlinear depen-
dence on spectral parameter:

−∇ · a1∇u0(x) = λ0u0(x), x ∈ Ω, (1)

− a1∇ ·Ahom∇u0(x) = β(λ0)u0(x), x ∈ R
n\Ω, (2)

(u0)− = (u0)+ ,

(

∂u0

∂n

)

−

=

(

Ahom

ij

∂u0

∂xj

ni

)

+

, x ∈ ∂Ω2. (3)

WhereAhom
ij is a standard porous matrix for Laplacian in

˜Q1, a1 = lim R−2(ǫ1 − k2)−1 anda0 = (ǫ0 − ǫ1)
−1 and

finally

β(λ) := λ + λ2
∑

j: 〈ϕj〉y 6=0

〈ϕj〉
2
y

λj − λ
(4)

is the function introduced by Zhikov [3], see Figure 1,
λj and ϕj(y) be the eigenvalues and the (normalized)

eigenfunctions respectively of−a0∆y in Q0 with Dirich-
let boundary conditions on∂Q0 (∆y is the Laplace oper-
ator).

3
21 λλ

λλ

β

0

Figure 1: Functionβ(λ)

We then prove that, for big enoughR, near every eigen-
valueλ0 there exists an eigenvalueλ(R) of the original
operatorAd

R(k2) (ǫ1 − k2 ∼ R−2), with an error bound

|λ(R) − λ0| ≤ C R−1/2.

The proof employs a Rayleigh-type variational principle,
with appropriately modified formal asymptotic approx-
imations serving as test functions, and the above error
bound is an the effect of a boundary layer in the high-
contrast homogenization, see [2] for details.

Let us notice that ifQ0 andΩ are balls then spectral
problem (1)-(3) admits an explicit solution in terms of
special functions.
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INVISIBILITY DEVICES: GENERAL RELATIVITY IN ELECTRICAL ENGINEERING
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Abstract
The recent breakthroughs in invisibility devices are a

result of advances in theoretical optics and in material
science. On the theoretical side, invisibility devices are
an example of transformation media—media that, as far
as electromagnetism is concerned, perform active coordi-
nate transformations. General relativity provides the the-
oretical tools for calculating the material properties re-
quired to achieve a given transformation. The develop-
ment of electromagnetic metamaterials allows electrical
engineers to implement the design recipes of transforma-
tion media.

Introduction
Recently, the first prototype of an invisibility device

was made at Duke University, USA [1], inspired by the-
oretical work at Duke, Imperial College [2] and St An-
drews [3] (see Fig. 1). So far, such a device operates
for fixed frequencies in the microwave region of the elec-
tromagnetic spectrum, thus making objects invisible for
specific microwave eyes only. Nevertheless, Science and
Scientific American [5] regarded this demonstration as
one of the major research and technology breakthroughs
of 2006. This cloaking device vividly illustrates one of
the recent advances in material science, namely the de-
velopment of electromagnetic metamaterials [4], and it is
also based on a new theoretical concept, transformation
media [2], [3], [6]. A transformation medium performs
an active coordinate transformation: electromagnetism
in physical space, including the effect of the medium,
is equivalent to electromagnetism in transformed coordi-
nates where space appears to be empty. The sole function
of the device is to facilitate such a transformation.

The theory of transformation media requires us to con-
sider transformations between arbitrary coordinate sys-
tems, and the most efficient mathematical tools for deal-
ing with arbitrary coordinates are provided by differential
geometry, which also underpins Einsteins general relativ-
ity. Cloaking thus combines some highly abstract ideas
that normally belong to the physics of curved space, gen-
eral relativity, with one of the latest and most active trends
in engineering. The practical use of general relativity in
electrical engineering may seem surprisingly unorthodox:

Figure 1: Duke cloaking device [1]. The picture shows
the 2D microwave cloaking structure (background

image) with a plot of the material parameters that are
implemented. A metamaterial made of cells etched in
circuit board guides microwave radiation around the

interior of the cloak without causing significant
distortions. Such devices turn out to represent
applications of general relativity in electrical

engineering [6].

relativity is associated with the physics of gravitation and
cosmology, the physics of black holes or the expanding
universe. Due to the development of transformation me-
dia, however, the theoretical tools for dealing with these
exotic systems can also be used to design engineering de-
vices.

Theory
An invisibility device is supposed to guide light around

any object put inside it as if the object were not there. The
recipe [2] for invisibility employs an optical medium that
mimics a transformation from straight to curved coordi-
nates. To understand why, imagine the following thought
experiment: suppose one sends a grid of laser beams
through a transparent material. The medium bends the
light grid, but suppose this grid fits the lines of a curved
coordinate system. Since light itself spans the coordi-
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Figure 2: Two-dimensional invisibility device. The
active coordinate transformation performed by the

device; the transformation consists of blowing up the
origin in the left grid into the hole seen on the right grid

so that the grid inside the dark circle gets squeezed.

Figure 3: Two-dimensional invisibility device. The
effect of the transformation of Fig. 2 on light rays; no

light penetrates the inner cylinder.

nates, all light rays are straight lines here, relative to this
system, regardless how curved they appear in physical
space. All the medium does is a coordinate transforma-
tion from Cartesian coordinates. Now, if this transforma-
tion contains a hole, if real space is not fully covered, the
medium acts as an invisibility device where everything
inside is hidden. However, not all transparent media per-
form coordinate transformations. (Otherwise, invisibility
would be commonplace.) A combination of Maxwells
electromagnetism and Einsteins general relativity clari-
fies the precise recipes for invisibility devices [6]. Light
is an electromagnetic wave subject to Maxwells equa-
tions for the electric field E, the displacement D, the
magnetic induction B and the magnetic field H. Remark-
ably, Maxwells equations are the same in any coordinate
system, no matter how curved. Einsteins general rela-

tivity supplements them with the constitutive equations
that connect E and B to D and H [6]. If the medium is
designed to fit the constitutive equations of transformed
space, it performs the transformation [2], [3], [6]. Light
follows the curved coordinate lines and they may be cho-
sen to guide any light around a region of space. Anything
placed there is invisible see Figs. 2 and 3.

Perfect invisibility devices such as that described in
Figs. 2 and 3 require anisotropic media. For devices based
on isotropic media invisibility can be perfect within the
accuracy of geometrical optics [3]. A recipe for invisi-
bility in this case is given by the theory of optical con-
formal mapping [3]. This theory is based on the fact
that conformal transformations of the two-dimensional
Helmholtz equation are equivalent to transforming the
refractive-index profile: in this case the active coordinate
transformation performed by the medium is a conformal
mapping. Fig. 4 shows an example of a conformal invisi-
bility device.

The practical demonstration of invisibility [1] requires
the use of artificial metamaterials [4], because naturally
occurring materials have not sufficiently strong electro-
magnetic properties. What are metamaterials? All ma-
terials consist of atoms, but usually an electromagnetic
wave does not interact with them on an individual basis.
The wave averages over volumes roughly the size of the
wavelength cubed. The engineers of metamaterials cre-
ate sub-wavelength structures in otherwise normal mate-
rial, for example the cells in the ordinary circuit board
shown in Fig. 1, designer structures that electromagnetic
waves would not resolve; and so they make their very own
electromagnetic atoms. In contrast to natural atoms, the
artificial ones are controllable. This is easiest for elec-
tromagnetic waves with sizeable wavelengths, say a few
centimetres, like the radio waves used by mobile phones
or radar, but exotic metamaterials for visible light have
been already demonstrated [8].

So far, electromagnetic cloaking [1] relies on
highly dispersive metamaterials, because the theoreti-
cal recipes [2], [3] require the use of materials with
anomalous phase-velocity dispersion [7], which limits the
performance of cloaking devices to single frequencies.
Cloaking devices or devices based on similar principles
will first find applications in wireless technology, because
currently the most-advanced metamaterials are those that
respond to electromagnetic radiation with wavelengths of
a few centimetres, commonly used by mobile phones,
Bluetooth or radar. Applications for visual light are con-
ceivable, because one could use modern nanotechnology

226



for scaling down the principal structures of microwave
metamaterials to sizes below optical wavelengths. First
advances in this field have been published already [8].
The tantalizing ideas of invisibility are likely to motivate
significantly more research on optical metamaterials that,
in combination with new theoretical concepts for avoid-
ing dispersion, can pave the way towards optical cloaking.
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Figure 4: Light propagation in a conformal invisibility
device. The device consists of an exterior and an interior
layer with a clear boundary. The invisible region is the
black disk in the centre. The top figure illustrates how

light is refracted at the boundary between the two layers
and guided around the invisible region. In the bottom

figure light simply flows around the interior layer.
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The confinement of electromagnetic energy to volumes
below the diffraction limit leads to a concomitant field en-
hancement, enabling a wealth of opportunities for sens-
ing and spectroscopy. One of the challenges is to create
such confinement in a controlled manner, and to channel
electromagnetic energy from conventional, wavelength-
scale devices such as planar waveguides and optical fi-
bres down to the nanoscale. The field of plasmonics holds
the promise of achieving this via the excitation of electro-
magnetic surface modes at the interface between a con-
ductor and a dielectric. Depending on the exact geometry
and the frequency of the electromagnetic radiation, a deep
sub-wavelength mode size is possible.

In the first part of the talk, we will present results for
the controlled focusing of electromagnetic radiation at
frequencies from the visible to the THz regime to sub-
wavelength volumes, with a view to applications in bi-
ological sensing. While for visible and near-infrared fre-
quencies conical metallic tips coupled to conventional op-
tical waveguides are a convenient means for nanoscale
focusing, at lower frequencies the situation is more chal-
lenging. Here, the frequency of excitation is far below the
intrinsic plasma frequencies of metallic conductors, and
surface plasmon polaritons acquire the character of de-
localized Sommerfeld-Zenneck waves. Sub-wavelength
energy localization can however be achieved periodic
surface structuring, leading to designer electromagnetic
surface modes termed spoof surface plasmon polaritons.
While structured planar surfaces enable a new infrastruc-
ture for THz technology, corrugated cylindrical and con-
ical structures show a high promise for the guiding and
super-focusing of THz radiation (Figure). Analytical and
numerical electromagnetic modelling of such structures
will be discussed, and first implementations be presented.

In the second part of this talk, we will discuss various
approaches for confining electromagnetic energy at visi-
ble and near-infrared frequencies using hybridized modes
in designer cavities consisting of planar metallic struc-
tures with nanoscale gaps. Results from finite differ-
ence time domain simulation and near-field optical spec-
troscopy will be presented, and implications for biosens-
ing discussed.

Figure 1: Focusing of electromagnetic radiation at
0.6THz on a corrugated conical taper via spoof surface

plasmon polaritons.
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Abstract
There is much current interest in electromagnetic

cloaking of objects, by exploiting structured materials.
One approach has been pioneered by J.B. Pendry [1] and
U. Leonhardt [2], and exploits metamaterials to create
electromagnetic guiding around the region to be shielded
(internal cloaking). A second approach [3], [4] uses elec-
tromagnetic resonances in a coated cylinder, designed to
have a resonant interaction between its coating and the
surrounding material, to quench polarization responses in
dipoles within an analytically-determined cloaking region
surrounding the cylinder (external cloaking). We have
extended the treatment of [4] to include interacting sys-
tems of polarizable dipoles or quadrupoles, and present
animations illustrating that resonant cloaking still works
for complicated assemblies of dipoles, or for higher order
multipoles, and that the cloaking region does not depend
on the details of the entity to be cloaked. We comment on
the resolution inherent in the external cloaking process,
which is linked to the material properties of the metama-
terial composing the shell of the cloaking cylinder.
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Abstract
We present a mathematical model describing propaga-

tion of elastic waves in a composite medium containing
an array of two-phase inclusions. Each inclusion con-
sists of a core and a finite width coating; the displace-
ments and tractions are assumed to remain continuous
across each interface. We consider two types of prob-
lems: transmission problems for waves interacting with
a finite thickness composite slab, and spectral problems
for doubly periodic arrays of inclusions. In the case when
all the interface boundaries are circular, we derive series
representations of the Rayleigh type for the components
of the displacements and analyse transmission/dispersion
diagrams. We look for stop bands, the intervals of fre-
quencies corresponding to waves that cannot propagate
through the structure. Numerical examples illustrate the
effect of the material properties of the coating on the po-
sition and the width of stop bands.

Scattering problem for a finite stack of gratings
We first analyse the propagation of elastic waves in an

elastic medium containing an array of two-phase circular
cylindrical inclusions. The cylinders are of infinite length
with their axes parallel to thez-axis; they are periodically
spaced in the (horizontal)x-direction. The array is finite
in the (vertical)y-direction, and the spacing between the
cylinder axes isD. Each cylindrical inclusion is of radius
rc, and it consists of a core of radiusr1 surrounded by
a coating of widthrc − r1. All three phases - the core,
the coating and the surrounding matrix - are isotropic and
linearly elastic with the elastic moduliλi, µi and densi-
tiesρi (wherei = 0, 1, 2, is for the core, the coating and
the elastic matrix, respectively); they are bonded in such
a way that the displacements and tractions remain contin-
uous across each interface.

We assume that the incident wave is a time-harmonic
plane wave propagating in thexy-plane, and it excites
reflected and transmitted plane waves respectively above
and below the stack; the direction of the incident wave is
characterised by the angleθi. Our objective is to study
the scattering of such a wave by the stack and, in particu-
lar, to look for band gaps, the intervals of frequencies for
which waves cannot propagate through the structure.

The vectorsu(i), i = 0, 1, 2, of the amplitudes of the

elastic displacements satisfy the equation of motion in
each phase

µi∆u(i)(x) + (λi +µi)∇∇ ·u(i)(x) + ρiω
2u(i)(x) = 0,

(1)
and the continuity conditions on the interface boundaries

[σn] = 0, [u] = 0, (2)

whereσ denotes the stress tensor, andω is the angular
frequency.

Since we consider plane waves only, the problem can
be de-coupled into two: out-of-plane shear (scalar) prob-
lem and in-plane (vector) problem. The out-of-plane
shear problem (for theuz-component) is formally identi-
cal to the problem of scattering of electromagnetic waves
in the case where the magnetic field vectors of both in-
cident and scattered fields are aligned with thez-axis
(Hz polarisation), we do not discuss it here and refer the
reader to [1], [2].

For the coupled in-plane problem, we use the scalar
and vector potentialsϕ(i) andΨ(i) = (0, 0, ψ(i)) for di-
latational and shear waves, such that

u(i) = ∇ϕ(i) + ∇× Ψ(i), i = 0, 1, 2.

These potentials satisfy the Helmholtz equations

(∆ + k
(i)2

d )ϕ(i) = 0, (∆ + k(i)2
s )ψ(i) = 0, (3)

wherek(i)

d = ω/v
(i)

d , k
(i)
s = ω/v

(i)
s , andvd, vs are the ve-

locities of dilatational (typed) and shear (types) waves
respectively. The interface conditions couple the poten-
tials:

[

∂ϕ

∂r
+

1

r

∂ψ

∂θ

]

= 0,

[

1

r

∂ϕ

∂θ
−
∂ψ

∂r

]

= 0, (4)
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∂ψ

∂r
+

2

r2
∂2ψ
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)]

= 0,

(5)
[

2µ
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1
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∂2ψ
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−
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−

1
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∂ϕ
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−
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r2
∂2ϕ

∂θ2

)

−k2

d(2µ+ λ)ϕ

]

= 0, (6)
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where(r, θ) are the polar coordinates associated with the
centre of every inclusion. All potentialsϕ(i) andψ(j) sat-
isfy the quasi-periodicity conditions

ϕ(j)(x+D, y) = ϕ(j)(x, y)eik0xD, (7)

ψ(j)(x+D, y) = ψ(j)(x, y)eik0xD, (8)

wherek = (k0x, k0y) is the Bloch vector, andD is the
spacing between the inclusions.

We first construct the solution of the scattering problem
for a single grating by writing the multipole expansions
for the potentialsϕ(j) andψ(j):
• within the core (j = 0, r < r1):

ϕ(0) =

∞
∑

l=−∞

Cd
l Jl(kdr)e

ilθ, ψ(0) =

∞
∑

l=−∞

Cs
l Jl(ksr)e

ilθ,

• within the coating (j = 1, r1 < r < rc) and the sur-
rounding matrix (j = 2, r > rc):

ϕ(j) =

∞
∑

l=−∞

[A
(j,d)

l Jl(kdr) +B
(j,d)

l Yl(kdr)]e
ilθ,

ψ(j) =
∞
∑

l=−∞

[A
(j,s)

l Jl(ksr) +B
(j,s)

l Yl(ksr)]e
ilθ,

whereJl andYl are the Bessel functions of the first and
second kind respectively.

Using the interface conditions (4)-(6) we eliminate the
coefficientsCd andCs and couple the two sets of the mul-
tipole coefficientsA andB. We then reduce the problem
to finding the coefficientsB(2) using the Rayleigh identity
[2]. The system of equations for the multipole coefficients
B

(2,d)

l andB(2,s)

l has the form

iM
(dd)

l B
(2,d)

l + iM
(ds)

l B
(2,s)

l +

∞
∑

m=−∞

Sd
l−mB

(2,d)

m

= −iδd(−1)l
((χ0d + ik0x)/kd)

−l

√
χ0d

, (9)

iM
(sd)

l B
(2,d)

l + iM
(ss)

l B
(2,s)

l +

∞
∑

m=−∞

Ss
l−mB

(2,s)
m

= −iδs(−1)l
((χ0s + ik0x)/ks)

−l

√
χ0s

, (10)

whereSd, Ss are the lattice sums, the other notations are
the same as in [2]. The expressions and numerical algo-
rithms for calculation of the lattice sums are given in in
[1]-[3].

The system (9), (10) is truncated prior to its numerical
solution, sol is restricted to the range[−L,L], with L

typically exceeding2ksrc to guarantee rapid convergence
of results.

The reflection and transmission coefficientsρd
p, ρ

s
p and

τd
p , τ

s
p , which form the reflection and transmission matri-

cesR andT for a single grating, are evaluated from the
reconstruction equations [2]. The scattering matrices for
a single grating are then employed in a recurrence proce-
dure [1], [2] to find the total reflection and transmission
matrices for a stack ofN gratings. The results of numer-
ical calculations for normal incidence (θi = 0) are given
in the next section.
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Figure 1: Transmittanceslog(E(dd)

T ) (solid line) and

log(E
(ss)

T ) (dashed line) versus̄ω = ωD/vs for a stack
of 20 gratings of coated inclusions of total radius

rc = 0.3 in Al matrix: (a)Cu circular core (r1 = 0.15)
andTa coating ; (b)Ta circular core (r1 = 0.15) and
Cu coating. The dispersion diagrams (c) and (d)

correspond to doubly periodic arrays of such inclusions.

Numerical examples and discussion
In Figs 1a and 1b we plot the total transmittances

Edd
T =

∑

p∈Ωd

|τd
p |

2, Ess
T =

∑

p∈Ωs

|τ s
p |

2

for a stack of 20 gratings. The dispersion diagrams 1d and
1c correspond to doubly periodic arrays; they were gener-
ated by solving a homogeneous system (9), (10) with the
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lattice sums for a doubly periodic array of inclusions, and
then verified by independent finite element computations
(Comsol 3.2).

The diagrams 1a and 1c (for inclusions withCu core
andTa coating) show a stop band for̄ω ∈ [3.88, 4.11];
the diagrams 1b and 1d (which correspond to inclusions
with Ta core andCu coating) exhibit a more narrow stop
band in the range of frequencies[4.58, 4.69]. This exam-
ple clearly shows the effect of the material arrangement
within the inclusion on the position and the width of the
stop band.

The other issue we want to address in this paper is
standing waves or localised vibration modes which may
form in arrays of high contrast coated inclusions [4]. In
Fig. 2 we present results of finite element computations
(Comsol 3.2) for doubly periodic arrays of two-phase in-
clusions withTa core andMg coating inAl matrix: the
diagram 2a corresponds to the case of a circular core,
and the diagram 2b is for an elliptical core of the same
area. As both diagrams of Fig. 2 show, the amplitude
of the elastic displacements is almost zero outside the in-
clusions, and it changes quite rapidly near the interface
boundary: uniformly along the entire interface boundary
for the circular core, and near the points of the largest
curvature for the elliptical core.
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(a)

(b)

Figure 2: Localised vibration mode for a square array
of (high contrast) coated inclusions of total radius
rc = 0.3 with Ta core (of radiusr1 = 0.15) andMg

coating inAl matrix; both diagrams show the amplitude
of the elastic displacements:(a) circular core of radius
r1 = 0.15, (b) elliptical core of the same area as in (a)

with a = 0.25, b = 0.09.
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Abstract
In this paper we consider the numerical computation

of band gaps in photonic crystal fibres. We approximate
the solution to a variational eigenvalue problem using the
planewave expansion method (spectral Galerkin method).
As well as presenting implementation and error analysis
results we consider solving a modified problem where the
piecewise constant coefficient function is replaced with
a smooth function. The error analysis for the smooth
problem is also presented and we answer the question:
Is smoothing worth it?

Introduction
Photonic crystal fibres (PCFs) [1] are optical fibres that

have a core surrounded by cladding. The structure of
a PCF is described by its refractive indexn. n is con-
stant along the length of the fibre (z-axis) and we write
n = n(x, y). The functionn(x, y) is a piecewise constant
function representing the refractive index of two materi-
als. Light will be described by its frequencyω and its
propagation constant in thez-directionβ.

For certain designs of cladding and fixed frequencyω,
light propagation in the cladding may be forbidden for
some values ofβ. These values ofβ are calledband gaps.
If light is forbidden in the cladding and is permitted in
the core then we have adefect mode. We are interested
in finding band gaps and defect modes by approximating
the solution to Maxwell’s equations.

We restrict ourselves to the case wheren = n(x).
Physically, this is the case of a radially symmetric PCF
or a planar PCF. Using time harmonic, source free
Maxwell’s equations for a non-magnetic material the
problem decouples into two eigenvalue problems

d2hx

dx2
+ γ(x)hx = β2hx on R (TE)

d2hy

dx2
+ γ(x)hy −

dη(x)

dx

dhy

dx
= β2hy on R. (TM)

whereγ(x) := 4π2

λ2

0

n2(xΛ), η(x) := log
(

n2(xΛ)
)

, hx

is the x-component of the magnetic field,hy is the y-
component of the magnetic field,Λ is the period of the
microstucture in the cladding andλ0 is the wavelength

of light relative to Λ. The remaining components of
the magnetic and electric fields are uniquely determined
givenβ, hx andhy.

Here we will mainly concentrate on the TE (trans-
verse electric) mode problem. To make the operator in
(TE) positive definite we multiply it by−1 and shift it
by a constantK (sufficiently large). We apply the su-
percell method [1], [2] with supercell widthL followed
by a Floquet transform. This reduces (TE) to a fam-
ily of eigenproblems on the period cellQ := [−L

2
, L
2
].

The variational form of the reduced problem is: for fixed
ξ ∈ [− π

L
, π
L
], find eigenpairs(λ, u) where λ ∈ C and

u ∈ H1
p (Q) := {u ∈ H1(Q) : u(L

2
) = u(−L

2
)} with

‖u‖H1 = 1 such that

a(u, v) = λ b(u, v) ∀v ∈ H1

p (Q), (1)

a(u, v) :=
∫

Q

(

d
dx

+ iξ
)

u
(

d
dx

+ iξ
)

v + (K − γ) uv dx

b(u, v) :=
∫

Q
uv dx.

The operator associated with (1) is compact and has dis-
crete spectrum. As functions ofξ the eigenvaluesλ(ξ)
form bands which coincide with the continuous spectrum
of the operator in (TE) [3]. The bands may overlap or
have gaps (band gaps). To compute these bands it is suf-
ficient to solve (1) forξ = 0 and π

L
[3]. We are only

interested in the low end of the spectrum of (TE) and thus
in a few of the smallest eigenvalues of (1).

In this work we study two methods to solve (1).
Method 1 applies the standard planewave expansion
method [1], [4]. In Method 2 we modify the prob-
lem by (artificially) smoothingγ(x) and then apply the
planewave expansion method to the modified problem.
This is a commonly used approach in Theoretical Physics
to improve the convergence properties of the planewave
expansion method [4], [5]. However, we show here that
smoothing does not pay off and that the convergence rates
to the exact solution are not improved. We present an er-
ror analysis for both methods and include some numer-
ical results which confirm the sharpness of our theoreti-
cal results. We also include numerical results for the TM
(transverse magnetic) mode problem. Unfortunately, due
to the nonstandard “convective” termdη(x)

dx

dhy

dx
in (TM),
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we have so far not been able to fully extend our conver-
gence analysis to this case. For details and proofs of the
implementation and error analysis please refer to [6].

In the following, C . D (for two quantitiesC,D)
means thatC/D is bounded above independent of the dis-
cretisation parametersN , M and∆ (defined below).

Method 1 - discontinuous refractive index
We approximate (1) by using the planewave expansion

(spectral Galerkin) method. We replaceH1
p(Q) in (1)

with SN := span{ei2πnx/L : |n| ≤ N} ⊂ H1
p(Q) to

get the following finite dimensional problem: for fixed
ξ ∈ [− π

L
, π
L
], find eigenpairs(λN , uN ) whereλN ∈ C and

uN ∈ SN with ‖uN‖H1 = 1 such that

a(uN , vN ) = λNb(uN , vN ) ∀vN ∈ SN . (2)

This problem is equivalent to a(2N + 1) × (2N + 1)
matrix eigenvalue problemAu = λNu whereu is the
vector of Fourier coefficients ofuN . According to the
definition of a(·, ·) we can writeA := D − V + KI

whereD is diagonal (derivative contributions froma), V

is Toeplitz (Fourier coefficients ofγ) and I is the iden-
tity matrix. The smallest few eigenvalues ofA are found
using a subspace iteration method, and we use the pre-
conditioned conjugate gradient method (PCG) for the re-
quired linear system solves. Matrix-vector products with
A can be computed inO(N log N) operations using two
Fast Fourier Transforms (FFTs). Moreover, we have an
optimal preconditioner forA.

Theorem. Let C > 1 and DA := diag(A). Then there
exists a K such that κ(D−1

A A) ≤ C .

The following theorem gives a sharp convergence re-
sult in the case of the TE problem (with discontinuousγ).

Theorem. Let (λN , uN ) be an eigenpair of (2). Then
there exists an eigenpair (λ, u) of (1) such that

‖u − uN‖H1 . N−3/2 and |λ − λN | . N−3.

The above result uses exact Fourier coefficients of
γ(x). In practice we may need to approximate these coef-
ficients. A method for approximating them is to compute
a discrete Fourier transform ofγ(x) sampled on a uni-
form grid of M points (using one FFT). In this case there
is an additional term in the error bounds.

Corollary. Let γ(x) be sampled at M points and let
(λN , uN ) be an eigenpair of (2). Then there exists an
eigenpair (λ, u) of (1) such that

‖u − uN‖H1 . N−3/2 + M−1

|λ − λN | . N−3 + M−1.

This shows that if we chooseM = O(N) (as e.g. in
[1], [5]), then we get suboptimal convergence. However,
since this method only requires one extra FFT, we may
chooseM = N3/2 at no significant extra cost to recover
optimal convergence for the eigenfunction error. The
eigenvalue error is still suboptimal in this case. Choosing
largerM (e.g. M = O(N3)) becomes computationally
infeasible.

Method 2 - smoothed refractive index
A standard way to smoothγ(x) [5] is to replace it

with γ̃(x) := G ∗ γ(x) where G(x) is the Gaussian
1√
2π∆

exp(− x2

2∆2 ), ∗ represents convolution and∆ is a
specified length scale. Larger values of∆ result in more
smoothing. We carry out the error analysis by splitting the
error into two parts: the error introduced by smoothing
and the error introduced by using planewave expansion.

Theorem. Let (˜λN , ũN ) be an eigenpair of (2) where γ

has been replaced by γ̃. Then there exists an eigenpair
(λ, u) of (1) such that

‖u − ũN‖H1 . ∆3/2 + ∆−pN−p−3/2

|λ − ˜λN | . ∆3/2 + ∆−2pN−2p−3
∀p ∈ N∪{0}.

Although the eigenfunction error bound is sharp our
numerical results (see Fig. 3) show that in practice|λ −
˜λN | = O(∆2) for largeN . Note that this is not the square
of the eigenfunction error as one might expect.

We are still free to choose∆. By balancing the two
error terms for the eigenvalues in the above theorem, we
see that the minima in the eigenfunction and in the eigen-
value error are attained for∆ = O(N−2) and p = 0.
The minima areO(N−3/2) andO(N−3), respectively.
Thus, asymptotically, Method 2 converges no faster than
Method 1 for any amount of smoothing. The numerical
results below confirm this (see Fig. 4). The situation is
the same, if the sharper eigenvalue error bound from our
numerical computations is used (i.e.O(∆2)). In this case
the minima are attained for∆ = O(N−3/2).

Numerical Results
We finish by presenting a selection of numerical results

that support our theoretical results in the previous section.
We chooseγ(x) as in Figure 1 with1.0 ≤ n(x) ≤ 1.4 and
λ0 := 0.5. The reference solutions have been computed
with N = 216 − 1 and we plot the errors for the 1st and
12th eigenpairs as representative examples. Figures 2 and
4 show that our bounds from the previous sections are
sharp with respect toN , while Figure 3 shows that our
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bound on|λ − ˜λN | is not sharp and that in practice it
behaves likeO(∆2). The eigenfunction result is sharp in
this case. Figure 5 demonstrates that the errors for the TM
problem behave in a similar way to the TE problem except
that the convergence rates are slower. This is expected
because the eigenfunctions for the TM problem are only
C(Q), and notC1(Q).
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Figure 1: Plot ofγ(x) used in our computations.
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Figure 2: Plot of the errors for Method 1.
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Figure 3: Plot of errors vs.∆ for Method 2.
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Figure 4: Errors for Method 1 and Method 2.

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N

re
la

tiv
e 

ei
ge

nv
al

ue
 e

rr
or

 / 
H

1 e
ig

en
fu

nc
tio

n 
er

ro
r

 

 

1

 1

1

 0.5

1st eval, ξ=0
1st eval, ξ=π/L
1st efun, ξ=0
1st efun ξ=π/L
12th eval, ξ=0
12th eval, ξ=π/L
12th efun, ξ=0
12th efun ξ=π/L

Figure 5: Errors for Method 1 applied to TM mode.
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Abstract
Planar photonic crystals (PhCs) are a versatile platform

for compact optical devices. The strong dispersive effects
that can be obtained in such structures, and the ability to
control these effects via structural tuning provide unique
opportunities to control light propagation. Here we use
structural tuning to design a compact directional coupler
(DC) with a coupling length of less than5µm. We con-
sider also the issue of coupling light in and out of the
device and demonstrate an efficient input/output coupler.
Both experimental and numerical results are presented to
verify the operation of the directional coupler.

Introduction
Switching and modulation of light are critical opera-

tions in photonic circuits. Switches based on the DC ge-
ometry can be used as passive wavelength-selective de-
vices, or as active switches when dynamic tuning is in-
corporated into the design. When implemented in PhCs,
directional couplers with coupling lengths below10 µm
can be achieved [1]–[4].

Recently, Yamamotoet.al. [4] reported a theoretical
study of DCs and proposed an idealised bandstructure for
obtaining short coupling lengths and wide bandwidths. A
PhC directional coupler was designed such that the dis-
persion curves of the coupled modes approximated the
ideal geometry, and 2D numerical results were presented.
Here we present an alternative DC geometry using a sim-
ilar design approach and analyse its coupling properties
using 3D numerical techniques. In addition, we consider
the issue of coupling light in and out of the structure and
report on the fabrication and experimental demonstration
of the device.

Directional coupler design
Directional couplers operate due to the mode splitting

that occurs when two waveguides are placed close to-
gether, resulting in a pair of coupled modes with even
and odd symmetry. The strength of the coupling is de-
termined by the difference in propagation constants of
the two modes,∆k = |ke − ko|, whereke andko are
the wavevectors of the even and odd modes respectively.
Light input into one waveguide propagates through the
DC as a superposition of the two modes, whose relative

phase changes with distanceL as ∆kL. After propa-
gating a lengthLc = π/∆k, all of the incident light is
coupled into the other waveguide. In practice, disper-
sion between the coupled modes means that the coupling
lengthLc is a function of frequency, and hence the band-
width over which coupling occurs is limited. If the disper-
sion curves of the odd and even modes are parallel, then
Lc remains constant, but this limits use of the DC as a
switch. To overcome this, Yamamotoet.al. [4] proposed
that the ideal DC design for wide bandwidth switching
should have an abrupt change inLc over a narrow fre-
quency range, withLc taking two different constant val-
ues on either side of this transition. By operating close
to the transition frequency, a small change in the refrac-
tive index could induce a large change inLc resulting in
switching from one output waveguide to the other.

To obtain a practical PhC directional coupler design
with dispersion properties close to the ideal ones de-
scribed above requires considerable structural modifica-
tion. The proposed design in Ref. [4] was obtained by
starting with two coupled W1 waveguides then changing
the radii and positions of several rows of holes. Here we
use a similar approach, however we change only the radii,
and not the position of the holes.

r1

rcr2

r0

r2

Figure 1: Diagram of the directional coupler geometry
considered here. The dispersion curves are modified by

varying the radii of several rows of holes.

Figure 1 illustrates the DC geometry that we consider.
The PhC is taken to be a Si membrane of thickness
220 nm with air above and below, and the regular holes
in the lattice have radiusr0 = 0.33a, wherea is the lat-
tice period. In the following resultsa = 430 nm. The
dispersion curves are calculated using a freely-available
3D planewave method [2]. We consider first the disper-
sion properties of two coupled W1 waveguides with all
holes of radiusr0 = 0.33a. The dispersion curves of
the coupled modes are plotted as dashed-dotted curves in

1
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Fig. 2(a), and the corresponding coupling length is shown
in Fig. 2(b). Note thatLc changes smoothly with fre-
quency and is only less than10a for a narrow range of
frequencies belowωa/2πc = 0.276, and thus the dis-
persion properties are far from those required for wide
bandwidth switching described above.
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Figure 2: (a) Dispersion curves and (b) coupling length
for the W1 and modified DCs and the input/output

sections.

We modify dispersion curves by changing the size of
the holes indicated in Fig. 1. The way in which the hole
sizes change the dispersion curves is complex, however
some intuition can be gained by considering the relative
field distributions of odd and even modes [4]. For in-
stance the odd mode has a nodal line half way between
the two waveguides, so it is little affected by changes to
rc, whereas the even mode has a non-zero field in this
region and is thus moved relative to the odd mode. Sim-
ilar arguments can be used to understand the effects of
the other holes, however it is not in the scope of this pa-
per to detail these. Additional distortion to the dispersion
curves can be induced by avoided crossings between the
guided waveguide modes and modes in the photonic crys-
tal cladding, an effect used by Petrovet.al. to obtain low
group velocity modes in PhC waveguides [5].

The solid curves in Figs. 2(a) and (b) show the dis-
persion curves and corresponding coupling length for our
modified directional coupler design withr1 = 0.29 a,
r2 = 0.38 a and rc = 0.39 a. Both figures show that
the bandwidth in whichLc < 10 is significantly larger
than for the unmodified W1 DC, and Fig. 2(b) shows that
Lc changes rapidly at approximatelyωa/2πc = 0.2745.
For frequencies below this,Lc changes only slowly with
frequency, as desired for wide bandwidth coupling. At
frequencies above the transition frequency,Lc changes
rapidly, but provided the coupler lengthL << Lc at these
frequencies, light will not couple between the waveg-
uides, so the change inLc does not affect the overall op-
eration of the DC.

The modified DC geometry presented above was de-
signed without considering how to to couple light in and

out of the waveguides. In general, coupling from a high-
index dielectric waveguide to a standard W1 PhC waveg-
uide is relatively efficient at frequencies well away from
the W1 mode cutoff. Close to the cutoff frequency how-
ever, the group velocity of the W1 mode approaches zero
and as a result the coupling losses increase rapidly [6].
This has consequences for the modified DC design, since
the rapid change inLc results from a low-group velocity
region in the dispersion curve of the even mode, and the
coupling losses can be significant [7]. Here we include a
modified section of PhC at the front and rear of the DC
that acts as a transition region between the ridge waveg-
uide and the DC, as shown in Fig. 3. This input/output
section is designed such that both modes both have rel-
atively large group velocities and thus couple efficiently
to the ridge waveguides. At the same time, the modes in
the transition region couple into the DC section with rel-
atively low losses. The dashed curves in Fig. 2(a) and (b)
show the dispersion curves andLc for the input and out-
put sections withr1 = 0.29a andr2 = rc = r0. Since the
coupling length in these sections is more than ten times
their total length, they do not contribute significantly to
the directional coupling behaviour.

1 mm

coupling
section

input output

L

Figure 3: Scanning electron microscope image of a
PhC DC fabricated in a Si membrane with input/output

sections and coupling section of lengthL.

Simulation and experimental results
We consider first the transmission properties of the

modified DC with the input and output sections on the
front and rear. Figure 4 shows 3D finite-difference time-
domain (FDTD) results calculated for DC lengths ofL =
4a andL = 8a with a = 430 nm. Clear directional cou-
pling behaviour is seen even for the DC of length4a,
corresponding to a coupling length of less than2µm.
Note also that the peak in theL = 4 drop spectrum
at λ ≈ 1573 nm corresponds closely to a peak in the
through spectrum of theL = 8 device, indicating that
there the input and output sections have little effect on the
coupling behaviour as expected.
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Directional couplers with both unmodified W1 waveg-
uides and the modified design were fabricated in Si us-
ing e-beam lithography and reactive-ion etching, one of
which is shown in Fig. 3. The through and drop trans-
missions were measured and compared to the 3D FDTD
simulations. In the first set of fabricated devices, the hole
sizes were somewhat larger than the designed size, so
FDTD simulations were repeated forr0 = 0.34 and the
other holes were scaled accordingly. Figure 5(a) shows
the measured and calculated spectra for the unmodified
W1 coupler of lengthL = 16a. Directional coupling is
clearly observed, and an extinction ratio of two orders of
magnitude is measured for the first drop wavelength. The
simulated and measured spectra show excellent agree-
ment.

Figure 5(b) shows the spectra for the modified DC of
length L = 8a. While the agreement with the simu-
lated spectra is not as good as that for the W1 coupler,
both spectra have common features. The discrepancy is
thought to be due to variations in the relative hole sizes
of the fabricated devices as the coupling properties are
very sensitive to changes in these parameters. Further re-
finement in the fabrication process is expected to improve
these results and enable us to fabricate a DC with the de-
signed hole sizes.

Conclusions
We have proposed a modified directional coupler de-

sign for achieving short coupling lengths and wide band-
widths and demonstrated its operation both numerically
and experimentally. Excellent agreement between simu-
lation and experiment was found for the unmodified W1
coupler after the simulations were corrected to account
for larger hole sizes than designed. These results are
promising for future experimental demonstration of wide-
bandwidth coupling in an ultra-compact directional cou-
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Figure 5: Comparison of measured and calculated
transmission spectra for two DC geometries. (a)

Unmodified W1 DC with all holes of the same radius
r0 ≈ 0.34 and lengthL = 16a. (b) Modified DC

geometry withr0 ≈ 0.34, r1 ≈ 0.299, r2 = rc ≈ 0.391
and a coupling section of lengthL = 8a.

pler.
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Abstract
We investigate the band gap structure of the frequency

spectrum for transverse electric (TE) polarized electro-
magnetic waves in a high-contrast two-component peri-
odic dielectric medium made of a background medium
with periodic inclusions. We perform a high-order sensi-
tivity analysis with respect to the index ratio. Our method
is based on integral equation formulations and analysis
of meromorphic operator-valued functions based on gen-
eralized Rouché’s theorem. We establish a connection
between the band structures and the Dirichlet eigenvalue
problem on one inclusion. The first-order term of the ex-
pansion is given explicitely by a simple variational for-
mulation.

Introduction
Photonic crystals are structures of high dielectric con-

trast materials arranged in a periodic array. They have
attracted enormous interest in the last decade because
of their unique optical properties. Such structures have
been found to exhibit interesting spectral properties with
respect to classical wave propagation, including the ap-
pearance of band gaps [1], [2]. Incident electromagnetic
waves with frequencies located in the band gaps are re-
flected by the photonic crystal and their magnitude de-
creases exponentially inside it.

Photonic crystals present then very interesting potential
applications in waveguides and resonant cavities. In fact,
because of the exponential localization, they can be used
as cladding for waveguides and cavities within the band
gap, where a cladding width of few wavelengths should
sufficient to have an efficient localization [3].

However, it appears that there are only few results on
the existence of spectral gaps for photonic crystals, and
these are essentially based on one-dimensional calcula-
tions and separation of variables [4].

An important example of photonic crystals consists in
a background medium with an array of arbitrary-shaped
inclusions periodic along each of the two orthogonal co-
ordinate axes in plane, the dielectric contrast between the
background medium and the inclusions being high. In

this paper, we adopt this specific model to demonstrate
our technique and results. We give a full understanding of
the relationship between variations in the index ratio and
variations in the band gap structure of the photonic crys-
tal. We provide an asymptotic expansion of the spectrum
using integral approach and the generalized Rouché’s the-
orem.

Carrying out a band structure calculation for a given
photonic crystal involves a family of eigenvalue prob-
lems, as the quasi-momentum is varied over the first Bril-
louin zone. We show that these eigenvalues are the char-
acteristic values of meromorphic operator-valued func-
tions that are of Fredholm type with index 0. Then we
proceed from the generalized Rouché’s theorem to con-
struct their complete asymptotic expressions as the index
ratio goes to infinity.

Our results could be used to design a new tool based
on a boundary integral perturbation theory for the opti-
mal design problem in photonic crystals. Since the limit-
ing situation reduces to the spectra of the Laplacian with
Dirichlet boundary conditions and a related operator both
in some canonical domains, say disks or ellipses, the idea
would be to start with these easy-to-calculate spectra and
compute the gradient of some target functionals using our
asymptotic expansions with respect to the contrast and the
shape of the inclusions. This method would be particu-
larly suitable for optimizing photonic crystal waveguides
[5].

Problem formulation
We consider a photonic crystal as specified in the in-

troduction and we denote by k the dielectric contrast be-
tween the background medium and the inclusions. We
assume that the structure has unit periodicity and define
the periodic domain Y = R

2/Z2, which can be identified
with the unit square [0, 1]2. Let D be a bounded domain
with a connected Lipschitz boundary strictly included in
[0, 1]2 and representing the support of the intersection be-
tween the periodic inclusions and the unit cell [0, 1]2 , see
figure 1.
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We seek eigenfunctions uα of:





k∆uα + ω2uα = 0 in Y \D,
∆uα + ω2uα = 0 in D,
uα|+ = uα|− on ∂D,

k ∂uα

∂ν

∣∣∣∣
+

= ∂uα

∂ν

∣∣∣∣
−

on ∂D,

e−iα.xuα is Y -periodic.

(1)

For each quasi-momentum variable α and k, let
σα(D, k) be the (discrete) spectrum of (1). Then the spec-
tral band of the photonic crystal is given by

∪α∈[0,2π]2σα(D, k).

We shall investigate the behavior of σα(D, k) as k →
+∞.

Integral representation
Let Gα

ω be the two-dimensional quasi-periodic Green’s
function satisfying

(∆ + ω2)Gα
ω(x, y) =

∑

n∈Z2

δ(x− y − n)ein·α, (2)

and let Sα,ω
D be the quasi-periodic single layer potential

associated to Gα
ω , that is, for a given density ϕ ∈ L2(D),

Sα,ω
D φ(x) =

∫

∂D

Gα
ω(x, y)ϕdσ(y), x ∈ R

2.

Then Sα,ω
D φ(x) satisfies the Helmholtz equation in D and

Y \ D and the classical jump formulae on ∂D. It is also
α-quasi-periodic in Y .

Using the quasi-periodic single layer potential, we
show that solutions to (1) have an integral representation
which will be useful for the asymptotical expansion of
eigenvalues.

Theorem 1 Suppose ω2 is not an eigenvalue of −∆ in
Y \ D with homogeneous Dirichlet condition on ∂D

and α-quasi-periodic condition on ∂Y , and suppose that
ω2/k is not an eigenvalue of −∆ in D with homogeneous
Dirichlet condition on ∂D.

Then, any non trivial solution (ω2, u) to problem (1)
can be represented as follows:

u(x) =

{
Sα,ω

D φ(x), x ∈ D,

S
α, ω

√
k

D ψ(x), x ∈ Y \D,
(3)

where (φ, ψ) ∈ L2(∂D) × L2(∂D) is solution to the in-
tegral equation system:





Sα,ω
D φ− S

α, ω
√

k

D ψ = 0, on ∂D,(
−

1

2
I + (Kα,ω

D )∗
)
φ

−k
(

1

2
I + (K

α, ω
√

k

D )∗
)
ψ = 0, on ∂D.

(4)

This defines a bijection between the eigenvectors u of (1)
and the solutions (φ, ψ) to the system (4).

Here (Kα,ω
D )∗φ is given by

(Kα,ω
D )∗φ = p.v.

∫

∂D

∂Gα
ω(x, y)

∂νx

φ(y)d σ(y).

This integral representation allows us to transform the
eigenvalue problem into a characteristic value problem.
To do so, we define the operator valued function Aα

k (ω),
defined for ω ∈ C, by

Aα
k (ω) :=




Sα,ω
D −S

α, ω
√

k

D

1

k

(
1

2
I − (Kα,ω

D )∗
)

1

2
I + (K

α, ω
√

k

D )∗


 .

(5)
Actually, ω2 is an eigenvalue of problem (1) if and only
if ω is a characteristic value of Aα,k. The characteris-
tic value definition can be found in [6], in our case it is
equivalent to the values of ω for which Aα,k(ω) is not
invertible.

We can show that Aα
k is Fredholm analytic with index

0 in C\iR− and hence the generalized Rouché’s theorem,
see [7], can be applied to Aα

k .
Suppose that α 6= 0, then it has been proved in [8]

that the nth eigenvalue of problem (1) will converge to
the nth eigenvalue of the Dirichlet-Laplacian in D as
k → +∞. As a consequence, the application of the gen-
eralized Rouché’s theorem gives us the following result:

Proposition 1 Suppose α 6= 0 and let ω2
0,n be the nth

eigenvalue (supposed single) of the Dirichlet-Laplacian
in D. Let V be a tubular complex neighborhood of
]ω0,n−1 + η, ω0,n + η[. (η is supposed small enough)
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Then, for k large enough, ωα
k , the nth eigenvalue of

problem (1) belongs to ]ω0,n−1+η, ω0,n+η[, and satisfies:

ωα
k−ω0,n =

1

2iπ
tr

∫

∂V

(ω−ω0,n)
(
Aα

k

)−1
(ω)

dAα
k

dω
(ω) dω.

Asymptotical expansion of characteristic values
Now, in order to get an expansion of the characteris-

tic values, we operate an expansion of Aα
k as k → +∞.

Suppose α 6= 0, then we have the following expansion as
ω → 0

Gα
ω(x, y) = Gα

0 (x, y) −
+∞∑

l=1

ω2l
∑

n∈Z2

ei(2πn+α)·(x−y)

|2πn+ α|2(l+1)

︸ ︷︷ ︸
:=−Gα

l
(x,y)

.

(6)
This expansion induces an expansion of Aα

k in the form

Aα
k (ω) = Aα

0 (ω) +

+∞∑

l=1

1

kl
Aα

l (ω). (7)

Injecting this expansion into Proposition 1, we get the fol-
lowing result.

Theorem 2 Suppose α 6= 0. Let ω2

0
be a single eigen-

value of the Dirichlet-Laplacian in D. Then, there exists
a unique eigenvalue (ωα

k )2 of problem (1), located in a
tubular complex neighborhood V of ]ω0,n−1+η, ω0,n+η[,
and the following asymptotic expansion holds:

ωα
k−ω0 =

1

2iπ

+∞∑

p=1

1

p

+∞∑

n=p

1

kn
tr

∫

∂V

(Aα
0 )−p(ω)Bα

n,p(ω)dω,

where

Bα
n,p(ω) = (−1)p

∑

n1+...+np=n

ni≥1

Aα
n1

(ω) . . .Aα
np

(ω),

(Aα
0 )−1(ω) =

(
(Sα,ω

D )−1 (Sα,ω
D )−1Sα

D,0(
1

2
I + (Kα

D,0)
∗)−1

0 (1

2
I + (Kα

D,0)
∗)−1

)
.

Finally, we can get explicitely the first order term of the
expansion. In fact, for α 6= 0, if ω2

0
is a single eigenvalue

of the Dirichlet-Laplacian in D and u0 is its associated
eigenvalue. Suppose v is the α-quasi-periodic solution to
the problem





∆v0 = 0 in Y \D,
∂v0

∂ν

∣∣∣
+

=
∂u0

∂ν

∣∣∣
−

on ∂D,

then there is an eigenvalue (ωα
k )2 of problem (1) that will

converge to ω2
0

and we have

ωα
k − ω0 = −

1

k

∫
Y \D |∇v0|

2dx

2ω0

∫
D
|u0|2dx

+O(k−2).

Similar results exist for the case α = 0.
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Abstract
We consider a model of leaky quantum wire in three di-

mensions. The Hamiltonian is a singular perturbation of
the Laplacian supported by a line with the coupling which
is bounded and periodically modulated along the line. We
demonstrate that such a system has a purely absolutely
continuous spectrum and its negative part has band struc-
ture with an at most finite number of gaps. This result
is extended also to the situation when there is an infinite
number of the lines supporting the perturbations arranged
periodically in one direction.

Introduction and main results
The characteristic feature of Schrödinger operators

which are periodic with respect to some, but not all space
directions is the appearance of surface states, see [1] and
the references in [7], [9]. On physical grounds one ex-
pects that these states are not bound but correspond to
additional channels of scattering, i.e., that the spectrum
of the corresponding operator is purely absolutely con-
tinuous. This question in different models was recently
addressed in [4], [5], [6], [7] and [8].

In [2] we consider a model of a quantum wire de-
scribed by a Hamiltonian with an interaction supported on
a straight line inR3. In contrast to the case of a straight
line in R2 where the Hamiltonian can be defined natu-
rally through the associated quadratic form [6], now the
operator has to be defined by means of boundary condi-
tions involving generalized boundary values as, e.g., in
[3]. We recall how to construct a self-adjoint operatorH
in L2(R3) which corresponds to the formal expression

H = −∆ + σ(x)δ(|y|).

Hereσ is a bounded, real-valued and2π-periodic function
and coordinates inR3 are denoted by(x, y), x ∈ R, y ∈
R2. The operatorH can be viewed as a Schrödinger-type
operator with singular potentialσ(x)δ(|y|) describing the
interaction of a quantum-mechanical particle with a quan-
tum wireΓ := R× {(0, 0)}. Our main result is

Theorem 1 The spectrum of the operatorH is purely ab-
solutely continuous.

We also investigate the scattering betweenH andH0,
the standard self-adjoint realization of−∆ in R3, and
prove

Theorem 2 The wave operators

W± := s− lim
t→±∞

exp(itH) exp(−itH0).

exist, satisfyR(W+) = R(W−) and arenotcomplete.

The existence of the wave operators implies that the in-
terval σac(H0) = [0,∞) is contained in the absolutely
continuous spectrum of the operatorH. Moreover, the
identityR(W+) = R(W−) implies the unitarity of the
scattering matrix. The non-completeness of the wave op-
erators is due toguided states, i.e., states that are localized
near the wireΓ for all times. In particular, all states corre-
sponding to the negative spectrum ofH are guided states.
We prove the following

Theorem 3 The negative spectrum of the operatorH is
non-empty and has band structure with at most finitely
many gaps.

The existence of guided states with positive energy is
an interesting, mostly open problem.

The results presented in Theorems 1–3 remain true
if the operatorH is replaced by the operator−∆ +∑

n∈Z σ(x)δ(y1 − 2πn)δ(y2) describing an infinite fam-
ily of periodically arranged wires.

Ingredients of the proofs
We briefly explain some of the mathematical ideas in-

volved in the proofs of Theorems 1–3. By means of Flo-
quet theory the operatorH can be represented as a direct
integral ∫ ⊕

(− 1
2
, 1
2
)
H(k) dk

of operatorsH(k) acting inL2(Π) whereΠ := (−π, π)×
R2. The operatorsH(k) correspond to the formal expres-
sion

H(k) = (−i∂x + k)2 −∆y + σ(x)δ(|y|)
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acting on functions inΠ which are periodic with respect
to the variablex. The investigation of the operatorH
reduces to the study of the fibersH(k). Note that the fun-
damental domainΠ is unbounded, so the operatorsH(k)
have non-empty continuous spectrum.

The absolutely continuous part of the spectrum of
H(k) can be studied by scattering theory. We prove that
the resolvent difference(H(k) + γ)−1 − (H0(k) + γ)−1

for sufficiently largeγ belongs to the trace class, which
implies the existence of the fiber wave operators and the
invariance of the absolutely continuous spectrum of the
fiber operators.

We derive a limiting absorption principle for the opera-
torsH(k), which implies the absence of singular contin-
uous spectrum of the fiber operators.

The absolute continuity of the spectrum of the origi-
nal operatorH will be established by controlling the de-
pendence of the eigenvalues of the fiber operatorsH(k)
on the quasi-momentumk. A particular difficulty to be
overcome is the existence of eigenvalues which are em-
bedded in the continuous spectrum. We “separate” them
from the remaining spectrum by characterizing them, in
the spirit of the Birman-Schwinger principle, as param-
etersλ for which a certain operatorA(λ, k) on the wire
(−π, π) has eigenvalue0. The latter operator is of the
form of a Schr̈odinger operator,A(λ, k) = A0(λ, k) + σ,
whereσ enters as an electric potential andA0(λ, k) repre-
sents an effective kinetic energy, growing logarithmically
in Fourier space. The operatorA(λ, k) has discrete spec-
trum and its eigenvalues depend, away from crossings,
analytically onλ andk. Moreover, they are non-constant,
as can be seen using Thomas’ method of complexifying
the quasi-momentumk [10]. These facts imply the abso-
lute continuity of the spectrum of the original operatorH,
as claimed in Theorem 1.

The assertion of Theorem 3 concerning the negative
spectrum of the operatorH follows from the fact that the
fiber operatorsH(k) have, for anyσ, at least one and at
most a finite number of eigenvalue below their essential
spectrum.

The existence of the wave operatorsW± on the whole
plane and the equality of their ranges is a consequence of
the existence and completeness of the wave operators for
the fiber operators. Indeed, the wave operatorsW± turn
out to be given by the direct integral of the wave opera-
tors for the fiber operators. The non-completeness of the
wave operatorsW± is a consequence of Theorems 1 and
3, namely the existence of negative absolutely continuous
spectrum. This concludes the proof of Theorem 2.

Finally, we remark that the above scheme of proof is
applicable in the more general setting of partially periodic
problems [8].
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Abstract
We consider a three-dimensional linear elastic plate

with stress-free boundary conditions in the special case of
zero Poisson’s coefficient. Perturbing the plate by a local
change of Young’s modulus or by a hole in the material
means perturbing the corresponding differential operator
by additional second-order terms or additional stress-free
boundary conditions. We show that under such pertur-
bations infinitely many eigenvalues arise in the essential
spectrum which accumulate to a non-zero threshold. Fur-
thermore, we state estimates on the accumulation rates.

Introduction
We consider a homogeneous and isotropic linear elastic

medium on the domain G = R
2 × J with J = (−π

2
, π

2
).

For functions u ∈ H1(G; C3) we set

ε(u) = 1

2
(∇u+ (∇u)T ). (1)

Let 〈ε(u), ε(u)〉C3×3 =
∑

3

i,j=1
εij(u) εji(u). Then

a0[u] = 2

∫

G

〈ε(u), ε(u)〉C3×3 dx, u ∈ H1(G; C3) (2)

is the quadratic form of the elasticity operator

A0 = − (∆ + grad div) (3)

in L2(G; C3) for zero Poisson coefficient with stress-free
(Neumann-type) boundary conditions. Here we have cho-
sen a suitable set of units such that Young’s modulus E
fulfils E = 2.

Let f ∈ L∞(R2; [0, 1]) be a function of compact sup-
port which is extended to G by f(x) = f(x1, x2) for
x = (x1, x2, x3) ∈ G. The function f describes a lo-
cal perturbation consisting in an area of reduced Young’s
modulus. For α ∈ (0, 1) we consider the operator Aα

corresponding to the quadratic form

aα[u] = 2

∫

G

(1 − αf)〈ε(u), ε(u)〉C3×3 dx (4)

with u ∈ H1(G; C3).
On the other hand, we study holes in G of shape

Ω = Ω0 × J , where Ω0 ⊂ R
2 is a bounded, connected

Lipschitz-domain. This corresponds to the investigation
of the operator AΩ being (3) on G\Ω with Neumann-type
boundary conditions. In fact, this problem is investigated
by studying the operator AΓ, Γ := ∂Ω0 × J , which is (3)
on G\Γ with Neumann-type boundary conditions. The
operators AΩ and AΓ are rigorously defined by suitable
quadratic forms.

The perturbations give rise to local oscillations of the
plate which are situated around the perturbation. These
oscillations are called trapped modes and correspond to
eigenvalues of Aα and AΓ, respectively, which are em-
bedded into their essential spectra. We show that there
arise infinitely many eigenvalues νk, k ∈ N, for each of
the two perturbation types. The eigenvalues accumulate
at a finite threshold Λ > 0. We study the accumulation
rate and show that

ln(Λ − νk) = −2k ln k + o(k lnk) as k → ∞. (5)

Symmetries and spectral structure
In order to distinct eigenvalues from the surrounding

essential spectrum we make use of spatial and internal
symmetries of the elasticity operator. Let

H1 := {u ∈ L2(R2 × J ; C3) | u1/2 symmetric in x3,

u3 antisymmetric in x3}

H4 := {u ∈ H1 |

∫

J

u1/2 dx3 ≡ 0 in L2(R2; C)}.

Then H4,H
⊥
4

reduce Aα for α ∈ [0, 1) and AΓ. Note
that this is valid only for the elasticity operator with zero
Poisson’s ratio. Let

A(4)

α := Aα|D(Aα)∩H4
, A

(4)

Γ
:= AΓ|D(AΓ)∩H4

.

While σe(Aα) = σe(AΓ) = [0,∞) we have σe(A
(4)

α ) =

σe(A
(4)

Γ
) = [Λ,∞) for some Λ > 0. We study eigenval-

ues of A(4)

α and A(4)

Γ
below Λ which are also eigenvalues

of Aα and AΩ, respectively.
There is a close connection between the behaviour of

the eigenvalues and the lower bound of the essential spec-
trum. For a closer look on σe(A

(4)

0
) we apply the unitary
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Fourier transform Φ in (x1, x2) and consider

ΦA
(4)

0
Φ∗ =

∫ ⊕

R2

A(4)(ξ) dξ,

where ξ ∈ R
2 is the Fourier coordinate with respect

to (x1, x2). The operators A(4)(ξ) are self-adjoint in
L2(J ; C3) and have purely discrete spectrum. Let us de-
note by λj(ξ) the infinite series of eigenvalues of A(ξ) in
non-decreasing order including multiplicities.

The crucial point is that the minimum Λ of the lowest
branch λ1(ξ) is attained on the whole circle {ξ ∈ R

2 :
|ξ| = κ} for some κ > 0. This corresponds to infinitely

many wave functions wξ(x) = ψ(ξ, x3)e
iξ·(x1

x2
) with min-

imal kinetic energy. Here ψ(ξ, ·) denotes the eigenfunc-
tion of A(ξ) with respect to λ1(ξ). The infinite degener-
ation of the essential spectral minimum leads to infinitely
many eigenvalues when a perturbation is applied.

Existence of eigenvalues
Let us consider the case of additive perturbation. The

existence of infinitely many eigenvalues of A(4)

α below Λ
is proven by finding a suitable series of k-dimensional test
spaces Ek ⊂ H1(G; C3) ∩H4, such that

sup
u∈Ek:‖u‖=1

aα[u] < Λ (6)

for all k ∈ N. Then the existence result follows by apply-
ing Glazman’s lemma which is an easy consequence of
the variational principle [2, 10.2.2]. As basis of the test
space Ek we choose k linearly independent wave func-
tions wξj with |ξj | = κ, j = 1, . . . , k, and apply a suit-
able cut-off function in order to obtain L2-integrable test
functions.

The operator A(4)

Γ
with boundary perturbation Γ cannot

be treated directly. Instead we consider its inverse which
can be interpreted as an operator with bounded additive
perturbation. Let R := (A

(4)

0
)−1, RΓ := (A

(4)

Γ
)−1. Then

RΓ = R+ (RΓ −R) and the existence result is obtained
by finding k-dimensional test spaces Fk ⊂ H4 such that

inf
u∈Fk:‖u‖=1

〈RΓu, u〉 > Λ−1. (7)

The test spaces are constructed using functions A0(wξj ζ)
where |ξj | = κ and ζ are suitable cut-off functions.

Result on the accumulation rate
The existence of infinitely many trapped modes below

Λ relies on the strong degeneration of the spectral mini-
mum of A(4)

0
. To obtain results on the accumulation rate

for eigenvalues at Λ we follow the approach of [3]. There
two difficulties arise. On the one hand, we have to modify
the method in such a way that it is applicable to differ-
ential operators with additive perturbations of the same
differential order. On the other hand we need a refined
analysis which deals with super-polynomial accumula-
tion rates of eigenvalues as they occur for our problems.
Note that this special behaviour rests on the combination
of a compactly supported perturbation which is applied to
a strongly degenerated operator.

The case of an additive perturbation

Let us consider the elasticity operator A(4)

α with addi-
tive perturbation. The asymptotics for the eigenvalue ac-
cumulation at Λ can be obtained by studying the counting
function n−(τ,A

(4)

α ) which denotes the number of eigen-

values below τ of A(4)

α . In order to obtain (5) it is suffi-
cient to prove that

lim
τ→0

n−(Λ − τ,A
(4)

α )

w−1(τ)
= 1 (8)

wherew(t) := t−2t. The first step in proving (8) is the ap-
plication of a modified version of the Birman-Schwinger
principle [1]. This allows to substitute the counting of
eigenvalues of A(4)

α by the counting of eigenvalues of
some compact operator, the so-called Birman-Schwinger
operator. In our case this operator is given by

Yα(τ) :=

(
Λ − τ

A
(4)

0
− Λ + τ

) 1

2

Vα

(
Λ − τ

A
(4)

0
− Λ + τ

) 1

2

(9)
in H4, where

Vα = U∗
√
αf(I − α

√
f UU∗

√
f)−1

√
αf U (10)

and Uv =
√

2ε((A
(4)

0
)−1/2v) for v ∈ H4. Note that Vα is

bounded for α ∈ (0, 1) since f ∈ L∞(R2; [0, 1]). Denot-
ing by n+(1,Yα(τ)) the number of eigenvalues of Yα(τ)
larger than one, our version of the Birman-Schwinger
principle states that

n−

(
Λ − τ,A(4)

α

)
= n+ (1,Yα(τ)) . (11)

for τ ∈ (0,Λ) and α ∈ (0, 1). Thus, we have to study
the spectrum of Yα(τ) in more detail. It turns out that the
main spectral asymptotics of Yα(τ) can be obtained by
considering the behaviour of Yα(τ) on the wave functions

in the strongly degenerated spectral minimum of A(4)

0
.

Applying a suitable reduction argument it is possible to
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relate the spectral asymptotics of Yα(τ) to an integral op-
erator K on L2({ξ ∈ R

2 : |ξ| = κ}) having the smooth
kernel

k(η, ξ) =
1

(2π)2

∫

G

f(x) e
i(η−ξ)·(x1

x2
)×

× 〈ϕ1(η, x3), ϕ1(ξ, x3)〉C3×3 dx.

(12)

Here ϕ1(ξ, x3) = λ1(ξ)
−1/2

√
2ε(wξ)(x)e

−i(x1
x2

)·ξ for
x ∈ R

2 × J . We obtain that

lim
τ→0

n+(1,Yα(τ))

w−1(τ)
= lim

τ→0

n+(τ,K)

w−1(τ2)
. (13)

The eigenvalues of K can be estimated by a direct calcu-
lation which gives

lim
τ→0

n+(τ,K)

w−1(τ2)
= 1. (14)

Combining (11), (13) and (14) we obtain (8).

The case of a boundary perturbation

Let us consider the operator A(4)

Γ
. As for A(4)

α , the ac-

cumulation rate for the eigenvalues of A(4)

Γ
at Λ is ob-

tained by investigating the number of eigenvalues above
one for a suitable compact Birman-Schwinger operator.
In this case the Birman-Schwinger operator is given by

Y(τ) :=

(
1

(Λ − τ)
−R

)− 1

2

BΓ

(
1

(Λ − τ)
−R

)− 1

2

(15)
in H4 for τ ∈ (0,Λ). Here R = (A

(4)

0
)−1 and BΓ =

(A
(4)

Γ
)−1 − (A

(4)

0
)−1. As before, the main term in the

eigenvalue asymptotics is obtained by restricting Y(τ) to

the wave functions in the spectral minimum of A(4)

0
. Es-

pecially the behaviour of the operator BΓ has to be de-
scribed. This is done using the terminology of elastic po-
tential theory. As for the problem with additive pertur-
bation, the reduction process leads to an integral operator
on L2({ξ ∈ R

2 : |ξ| = κ}) with a smooth kernel. The
kernel is much more difficult than for the case of additive
perturbation. But it is still possible to obtain the desired
asymptotics by direct estimates on the eigenvalues of this
operator.
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Abstract
We present a new method for solving Helmholtz-type

scattering and resonance problems. Physical solutions are
characterised by their Laplace transform in radial direc-
tion, which belong to the Hardy space of the negative
complex half plane. After another transformation a sym-
metric variational formulation in the Hardy space of the
complex unit disc is derived. Using a Galerkin method
with respect to the monomial basis of this Hardy space
we obtain super-algebraic convergence. Uniqueness and
equivalence to usual characterisations of physical solu-
tions can be proven.

Introduction
Let K ⊂ Rd, d = 2, 3 be a smooth, closed subset of

Ba := {x ∈ Rd : |x| ≤ a}. We consider two types
of problems: First to find for some known κ > 0 and
some boundary values f ∈ H1/2(∂K) a solution u to the
scattering problem

−∆u(x)− κ2u(x) = 0, x ∈ Rd \K, (1a)

u(x) = f(x), x ∈ ∂K, (1b)

r(d−1)/2

(
∂u

∂r
(x)− iku(x)

)
→ 0, r= |x|→∞.(1c)

Second, we consider the corresponding resonance prob-
lem to find eigenpairs (κ2, u) where κ is now a complex
number with <(κ) > 0 and u a nontrivial solution to

−∆u(x) = κ2u(x), x ∈ Rd \K, (2a)

u(x) = 0, x ∈ ∂K, (2b)

u satisfies a radiation condition. (2c)

It can be shown with the help of Rellich’s lemma that
=(κ) < 0 for solutions to (2). It turns out that the Som-
merfeld condition (1c) is not a valid characterisation of
outgoing waves in this case since the resonance functions
u grow exponentially at infinity. Alternative radiation
conditions will be discussed below. All that follows also
holds true for other boundary conditions on ∂K and other
differential equations in Ba \K.

Radiation conditions
We split the domain Rd \K into a bounded interior do-

main Ωint := Ba \ K and a unbounded exterior domain
Ωext := Rd \ Ba. Radiation conditions for =(κ) < 0
can be formulated with the help of integral representa-
tions of the exterior solution using the outgoing funda-
mental solution of the free Helmholtz equation or with
the help of series representations. The former conditions
lead to FEM-BEM coupling methods, the latter to classi-
cal infinite elements. However, both approaches have the
disadvantage that they destroy the eigenvalue structure of
the resonance problem (2).

Therefore, we use the pole condition as an alternative
radiation condition. A function u : Rd \ Ba → C sat-
isfies the pole condition if its Laplace transform in radial
direction

û(s, x̂) :=
∫ ∞

0
e−sru

(
r + a

a
x̂

)
dr,

defined initially for <(s) > 0, has a holomorphic exten-
sion to the lower complex half plane C− := {s ∈ C :
=(s) < 0} for each x̂ ∈ ∂Ba. It has been shown in [1] for
κ > 0 that the pole condition is equivalent to (1c) (strictly
speaking additional uniformity conditions w.r.t. x̂ are re-
quired), and similar results can be shown for complex κ.
Introducing the Hardy space H−(R) of L2 boundary val-
ues of holomorphic functions in C−, we can formulate
the radiation condition as

û(•, x̂) ∈ H−(R) for all x̂ ∈ ∂Ba. (3)

Note that the eigenvalue equation (2a) for the physical
exterior solution translates into an eigenvalue equation for
û.

Hardy space infinite elements: idea
The idea of Hardy space infinite elements is to incorpo-

rate the radiation condition in the form (3) by a Galerkin
method in the Hardy space H−(R). In the interior do-
main an arbitrary standard finite element space can be
used. Due to the lack of a convenient basis of H−(R),
we perform a further transformation to the Hardy space
H+(S1) of L2-boundary values of holomorphic functions
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in the unit disk {z ∈ C : |z| < 1}. It can be shown
that the Möbius function M : R → S1, M(s) := s+iκ0

s−iκ0

induces a unitary mapping M : H−(R) → H+(S1),
(Mϕ)(z) := ϕ(M−1(z))

√
2iκ0

z−1 . The parameter κ0 with
<(κ0) > 0 will act as a tuning parameter in the algo-
rithms to be discussed below. Note that the monomials
(2π)−1/2zn, n = 0, 1, . . . form a natural orthonormal ba-
sis of H+(S1).

It is beyond the scope of this extended abstract to derive
a variational formulation of the problems (1) and (2) in
appropriate tensor product spaces involving H+(S1) (see
[2]). We start from a finite dimensional approximation of
the exterior solution of the form

u

(
a + r

a
x̂

)
=

N∑
n=0

un(r)
(r + a)(d−1)/2

ϕn(x̂), (4)

for r > 0 and x̂ ∈ ∂Ba where the functions ϕn form a ba-
sis of the trace space corresponding to the finite element
space in Ωint, and the radial functions un are chosen such
that Un := MLun belong to a finite dimensional sub-
space of H+(S1). Here Lun denotes the Laplace trans-
form of un.

It remains to discuss the coupling of the interior and
exterior spaces. Since (Lun)(s) ∼ un(0)s−1 as |s| → ∞
and M(∞) = 1, we have

un(0) = −
√
−2iκ0Un(1).

Therefore, the interior and the exterior domain can be
coupled naturally by introducing the values of the solu-
tion on the coupling boundary, u0,n := un(0)

a(d−1)/2 as com-
mon degrees of freedom. More precisely, we choose Un

of the form

Un(z) = c0u0,n + (z − 1)Ũn(z), z ∈ S1 (5)

with c0 := −a(d−1)/2
√
−2iκ0

and Ũn as polynomial of degree
≤ m restricted to S1.

Since Un ∈ H+(S1) ∩ C∞(S1) by virtue of results in
[1], it follows that Ũn ∈ H+(S1) ∩ C∞(S1). There-
fore, by the approximation properties of trigonometric
polynomials, we can expect super-algebraic convergence
as m → ∞, which is in fact shown in [2]. This con-
vergence property holds true for the interior solution and
for the transformed exterior solution in the Hardy space
norm, but not for the exterior solution (4) in any reason-
able norm.

Figure 1: Example of an infinite element for nodal
quadratic finite elements in the interior.

Local element matrices
Due to the ansatz (4) the local element matrices of the

infinite elements (cf. Fig. 1) have a tensor (or Kronecker)
product structure. More precisely, the local element ma-
trices for the transformed bilinear form corresponding to
the exterior Helmholtz equation (1a) have the form

M x̂
el ⊗M r

el + Sx̂
el ⊗ Sr

el − κ2
(
M x̂

el ⊗M r
κ,el

)
(6)

where M x̂
el denotes the local boundary element mass ma-

trix corresponding to the bilinear form
∫
∂Ba

uv dx, and
Sx̂

el denotes the local boundary element stiffness matrix
corresponding to the bilinear form

∫
∂Ba

∇x̂u∇x̂v dx. In
the second factors M r

el, Sr
el, and M r

κ,el, the first rows cor-
respond to the values u0,n, i.e. the degrees of freedom
shared with the interior elements. These matrices are
given by

M r
el =

d− 1
2a

(
1

0

)
+

1
ad−1

T̃>+ T̃+ −
Cd

ad−1
T̃>− D̃−2

a T̃−,

Sr
el =

1
ad−1

T̃>− D̃−2
a T̃−, M r

κ,el =
1

ad−1
T̃>− T̃−,

with Cd := (1−d)(3−d)
4 ,

T̃± :=

 c0 ±1
1 ±1

. . . . . .

 and

D̃a := a id +
1

2iκ0


−1 1
1 −3 2

2 −5 3
. . . . . . . . .

 .

Numerical examples
In a first example, we studied the scattering of plane

incident waves with different wave numbers κ by a kite-
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Figure 2: H1/2(∂Ba) error in the Dirichlet data for
different wave numbers and radii

shaped obstacle (see Fig. 2). First, a reference solu-
tion was computed by an integral equation method as de-
scribed in [3, Section 3.5]). Then we used the computed
Neumann data of the scattered wave on spheres of radius
2 and 3.5 as initial data for the the Hardy space infinite
element method (HSM) and compared the Dirichlet data
computed by the HSM with the data computed by the in-
tegral equation method. The error plot in Fig. 2 clearly
exhibits fast convergence with respect to the degrees of
freedom in the Hardy space H+(S1). As for other meth-
ods (e.g. PML or standard infinite elements), the error for
a fixed number of degrees of freedom in the exterior do-
main is the smaller the larger the distance of the coupling
boundary to the scatterer. Surprisingly, we observed a
smaller error for larger wave numbers.

As a second example we computed the resonances of
a square with a small opening as shown in Fig. 3 using
the HSM. The computations were done with the finite el-
ement solver NGSOLVE, an add-on of the mesh generator
NETGEN [4]. In Fig. 3 three different eigenfunctions are
plotted. The first two correspond to interior eigenvalues
of the Laplace operator in a closed square and the third

Figure 3: resonance functions of an open square

Figure 4: resonances of an open square;
•: resonances computed by the HSM;

�: exact eigenvalues of the closed square;
◦: exterior resonances of a sphere with the same

circumference as the closed square;

to an exterior resonance, which depends mainly on the
circumference of the square (see also Fig. 4). The asymp-
totic behavior of these types of resonances has been stud-
ied intensively (see [5] and references therein). The reso-
nances in the third quadrand are computational artifacts.
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Quantum waveguides
Consider the Dirichlet Laplacian −∆Ω on straight tube

Ω = R × ω, where ω ⊂ R
d−1 is a rather general cross-

section. The spectrum of this operator is obviously purely
absolutely continuous and covers the interval [λ1(ω),∞),
where λ1(ω) is the lowest eigenvalue of the Dirichlet
Laplacian on ω. If −∆Ω is perturbed by an attractive
potential or by a local geometrical perturbation of the
waveguide, eigenvalues below λ1 might appear. The cor-
responding bound states, called trapped modes, are the
main object of our interest.

Assume, for example, that a local potential perturbation
V has been added. The corresponding Schrödinger oper-
ator

−∆Ω − V

has the essential spectrum [λ1(ω),∞). In addition, some
discrete eigenvalues below λ1, trapped modes, will ap-
pear. In [2] an upper bound on the sum of the moments of
these eigenvalues has been obtained:

Theorem 1 (Exner, Weidl). For x ∈ Ω we write x =
(x′, xd). Let ψ1(x

′) be the eigenfunction associated with
λ1(ω). For any σ ≥ 1

2
we have

tr(−∆Ω − αV − λ1)
σ
− ≤

c1α
σ+

1

2

∫

R

(∫

ω

V (x′, xd)|ψ1(x
′)|2dx′

)σ+
1

2

dxd

+c2 α
σ+

d
2

∫

Ω

V σ+
d
2 dx , (1)

where (−∆Ω − αV − λ1)− denotes the negative part of
the operator −∆Ω − αV − λ1.

From the weak coupling asymptotics follows that (1) fails
for any σ < 1

2
. In the borderline case σ = 1

2
, then (1)

gives

tr(−∆Ω − αV − λ1)
1

2

− ≤

c1α

∫

R

(∫

ω

V (x′, xd)|ψ1(x
′)|2dx′

)σ+
1

2

dxd

+c2 α
d+1

2

∫

Ω

V
d+1

2 dx. (2)

Note that this inequality has the optimal behaviour in
α in the weak coupling regime, when α→ 0, [5], as well
as in the strong coupling regime, when α → ∞. Indeed,
for small α the r.h.s. of (2) is dominated by the first term,
which is linear in α. On the other hand, for α large the
r.h.s. of (2) is dominated by the second term, which gives
the correct Weyl asymptotic behaviour. Analogous esti-
mates hold also for trapped modes induced by geometri-
cal deformations, [1].

Quantum layers
Here we consider trapped modes in quantum layers,

which concern a conducting plate Ω = R
2 × (0, d) with

an electric potential V decaying at infinity. We will study
the shifted Hamiltonian

Hα = −∆Ω − αV −
π2

d2
in L2(Ω) , (3)

with Dirichlet boundary conditions at ∂Ω. The essential
spectrum of the operator Hα covers the half line [0,∞).
Let us denote by −λ̃j the non decreasing sequence of neg-
ative eigenvalues of Hα. Our goal is to find an analog of
inequality (2). Because of the different dimensionality of
the system we have to replace the square root function
on the l.h.s. of (2) by a different one. We introduce the
family of functions Fs : (0,∞) → (0, 1] such that

∀ s > 0 Fs(t) :=





| ln ts2|−1 0 < t ≤ e−1s−2 ,

1 t > e−1s−2 .
(4)

In order to formulate our result we need some notation.
The space L1(R+, L

p(S1)) in polar coordinates (r, θ) in
R

2, is defined as the space of functions f such that

‖f‖L1(R+,Lp(S1)) :=

∫ ∞

0

(∫
2π

0

|f(r, θ)|p dθ

)1/p

r dr <∞ .

(5)
Moreover, given s > 0 we denote B(s) := {x ∈ R

2 :
|x| < s}. We then have

Theorem 2 (Kovařı́k, Vugalter, Weidl). There exist posi-
tive constants C1, C2, C3 such that
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∑

j

Fs(λ̃j) ≤ C1 α ‖Ṽ ln(x2

1 + x2

2)‖L1(B(s))

+ C3 α ‖Ṽ ‖L1(R+,Lp(S1)) + C2 α
3/2 ‖V 3/2‖L1(Ω) ,

(6)

where

Ṽ (x1, x2) =
2

d

∫ d

0

V (x1, x2, x3) sin2

(π x3

d

)
dx3 .

Notice that (6) has the right asymptotic behaviour in
both weak and strong coupling limits. Namely, in the
weak coupling limit the r.h.s. is dominated by the term
linear in α, while in the strong coupling limit prevails
the term proportional to α3/2. Also here the result can
be extended to the case of geometrically induced trapped
modes, [4].
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Abstract
The Rayleigh-Sommerfeld diffraction formula is com-

monly used for the evaluation of the scattered electromag-
netic field outside the computational domain. However
standard numerical methods lack the precise computation
of the arising high–frequency integral with infinite inte-
gration domain. In this paper we propose a numerical
method for the computation of the Rayleigh-Sommerfeld
integral which is based on the computed near field data
within the computational domain including the perfectly
matched layer domain. In the presentation on the con-
ference we will discuss the algorithm’s application to the
light beam characterization of a resonant optical device
such as a laser cavity.

Introduction
The situation one typically encounters in optical simu-

lations is as depicted in Figure 1. An optical device with
a complex geometry is embedded in an inhomogeneous
surrounding. Prominently, an integrated optical device,
or an optical grating such as a phase shift lense is placed
on a substrate which might consist of several glass lay-
ers. A pure near field simulation is of little practical in-
terest. Instead, engineers are typically interested in field
properties many wavelength away from the obstacle. In
this paper we tackle the problem to compute the scattered
field in the half space above the structure. This is com-
monly done by the evaluation of Rayleigh-Sommerfeld
integral [1] which we will introduce in the next section.
For a numerical evaluation we exploit complex continu-
ation properties of the solution in combination with the
Perfectly Matched Layer (PML) method. To keep the
notation simple we will restrict ourself to the Helmholtz
equation in 2D in this presentation. The obtained results
are readily generalized to 3D and Maxwell’s equations.

Rayleigh-Sommerfeld integral
The cartesian coordinates are denoted by(x, z). The

scatterer is located in the lower half spacez < 0. The
material in the upper half spacez > 0 has constant and
isotropic optical properties. The permittivity and the per-
meability in the upper half space is denoted byε+ and
µ+. We aim to compute the scattered field in the upper
half spacez > 0 by means of the Rayleigh Sommerfeld

Ω

Figure 1: Typical mounting of an optical device.Ω
denotes the computational domain.

integration formula which we formally derive here.
In the homogeneous upper half space each field com-

ponentEx, Ey and Ez of the electric field satisfies the
scalar Helmholtz equation

−∆u(x, z) − k2

+
u(x, z) = 0

with k+ = ω
√

ε+µ+. The Fourier transform on the hyper
planez = 0 is defined as

û(kx) =
1

(2π)(d−1)/2

∫

Rd−1

u(x′, 0)e−ikx·x
′

dx′.

Using the inverse Fourier transform and assuming thatu

is outward radiating in the upper half space one formally
gets

u(x, z) =
1

(2π)(d−1)/2

∫

Rd−1

û(kx)eikzze+ikx·x dkx

=
1

(2π)(d−1)/2

∫

Rd−1

u(x′, 0)
1

(2π)(d−1)/2

∫

Rd−1

eikx·(x−x′
)eikzz dkx dx′

with kz =
√

k2
+
− |kx|2. To evaluate the kernel

K(x′) =
1

(2π)(d−1)/2

∫

Rd−1

eikx·(x−x′
)eikzz dkx

observe thatK(x′) is equal to the inverse Fourier trans-
form of the functionv(kx) = exp(ikzz) at (x − x′).
Therefore we must find the function whose Fourier trans-
form is equal tov(kx). By Weyl’s representation of a di-
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verging spherical wave we have

̂{Gz(x′)} =
i(2π)1/2

4πkz

eikzz, and hence

̂{∂zGz(x′)} = −
(2π)1/2

4π
eikzz = −

(2π)1/2

4π
v(kx),

whereGz is the shifted Green function to the Helmholtz
equation above,

−∆Gz(x
′, z′) − k2

+Gz(x
′, z′) = δ(0, z′ − z).

In the two dimensional case we haveGz(x
′, z′) =

i/4H
(1)

0
(k+R) with R = |(~0, z) − (x′, z′))| and with the

zero order Hankel functionH(1)

0
of first kind.

Eventually one gets the first Rayleigh–Sommerfeld
diffraction integral

u(x, z) = −2

∫

Rd−1

u(x′, 0)∂zGz(x − ~x′) dx′. (1)

With rp = |(x, z) − (x′, 0)| and

∂zGz(x − ~x′) = −
izk+

4rp

H
(1)

1
(k+rp)

and with the asymptotic behaviour of the Hankel func-
tion |H

(1)

1
(r)| ∼ r−1/2 for large valuesr, one proves that

the Rayleigh–Sommerfeld diffraction integral (1) is abso-
lutely convergent,

∫ ∞

−∞

|u(x′, 0)
iz

4rp

H
(1)

1
(k+rp)| ≤ C · z

∫ ∞

1

r−3/2 < ∞

for any bounded fieldu(x′, 0).

PML: Evaluation of Rayleigh-Sommerfeld integral
The slow decay property of the Green function

Gz(x) ∼ |x|−1/2 makes a direct numerical evaluation
of the Rayleigh–Sommerfeld diffraction integral (1) pro-
hibitively expensive. But as we will see a complex defor-
mation of Rayleigh–Sommerfeld diffraction integral will
yield an exponentially fast convergence to the true value
with the size of the integration domain. Furthermore
the arising integrand is available from the PML method.
From the Rayleigh–Sommerfeld diffraction integral (1)
one sees that forz > 0 the scattered fieldu(x, z) pos-
sesses a complex extension inx to s ∈ C with ℜs > a

andℑs ≥ 0 for anya > 0. Hence after shifting the hyper

planez = 0 a bit we may assume that such a complex ex-
tension also exists forz = 0. Now we split the Rayleigh–
Sommerfeld diffraction integral into three parts,

∫ ∞

−∞

u(x′, 0)
iz

4rp

H
(1)

1
(k+rp) dx′ =

∫ −a

−∞

u(x′, 0)
iz

4rp

H
(1)

1
(k+rp) dx′ +

∫ a

−a

u(x′, 0)
iz

4rp

H
(1)

1
(k+rp) dx′ +

∫ ∞

a

u(x′, 0)
iz

4rp

H
(1)

1
(k+rp) dx′.

The second term is evaluated numerically. To evaluate the
first or the third term we use Cauchy’s contour integral
theorem,

∫ A

a

u(x′, 0)
iz

4rp

H
(1)

1
(k+rp) dx′ =

∫ A+iσ(A−a)

a

u(s, 0)
iz

4rp

H
(1)

1
(k+rp) ds+ (2)

∫ A

A+iσ(A−a)

u(s, 0)
iz

4rp

H
(1)

1
(k+rp) ds.

We show that the second integral vanishs forA → ∞.

Due to the boundedness ofu(s, 0) for s ∈ C+,A = {z ∈

C : ℜz > A, ℑz ≥ 0} we have

|

∫ A

A+iσ(A−a)

u(s, 0)
1

rp

H
(1)

1
(k+rp) ds| ≤

CA max
s∈C+,A

1

|rp|
· max

s∈C+,A

|H
(1)

1
(k+rp)|.

Recall thatrp =
√

(x − s)2 + z2 so thatrp ∼ s for
‖s‖ → ∞ and hence|rp| ≥ CA for s ∈ C+,A andA

large enough. Together with the asymptotic behaviour of
the Hankel functions this shows that the right hand side
in the unequality above is zero in the limitA → ∞.

For A → ∞ the first integral term in Equation (2) can
be cast into the form

γ

∫ ∞

0

u(a + γτ, 0)
iz

4rp,γ

H
(1)

1
(k+rp,γ) dτ

with γ = 1 + iσ and rp,γ =
√

(x − (a + γτ))2 + z2.

This integral has very favorable properties with respect
to a numerical integration. The integrand is essentially
the product of the complex continued solution field as it
appears in the PML method and a Hankel function with
complex arguments. Asymptotically both factors are ex-
ponentially decaying. But the Hankel function contribu-
tion might first increase exponentially for small values of

254



τ depending on the position of the evaluation point. How-
ever, typically the exponential decay of the PML solution
over-compensates the growth of the second factor so that
an exponential decay of the integrand is observed even
for small values ofτ . Thus the integration domain can be
truncated with a controllable loss of accuracy.

Remarks

An adaptive PML method as proposed in our paper [2]
is designed for an optimal convergence within the com-
putational domain. It does not guarantee that the chosen
discretization in the perfectly matched layer is appropri-
ate for an accurate evaluation of the complex deformed
Rayleigh-Sommerfeld integral. In our code we therefore
do not use the PML data obtained from the near field sim-
ulation directly. Instead we recompute the complex de-
formed solution and use an adaptive method to guarantee
convergence.

For 3D it is necessary to use a polar like coordinate
system in thez = 0 hyperplane. Such a(ξ, η) coordinate
system with a radial like variableξ and angular like vari-
ableη was introduced in [3]. In the PML method only
a complex deformation in the radial likeξ−direction is
used. A deformed Rayleigh-Sommerfeld integral in polar
coordinates can be derived.

Numerical example: Waveguide notch

As a numerical example we consider a notch in a
waveguide, c.f. Figure 2. The waveguide has a width
w = 0.2µm and a permittivity ofǫwg = 11.42µm. The
waveguide is buried0.4µm deep in a substrate with per-
mittivity ǫsub = 10.05µm. In our simulation the wave-
guide’s fundamental mode enters the computational do-
main from the left and is scattered by an air filled defect
of width wN = 0.6µm. We evaluated the exterior field
above the structure at a distance ofδz = 5µm. In a first
setting we used a rectangular computational domain with
an vertical extension of1µm above the structure. In hor-
izontal direction we used a small slit of2µm around the
notch. The exterior field values were computed by the
Rayleigh-Sommerfeld integral formula as proposed in the
previous section. In a second setting we chose a compu-
tational domain sufficiently large to contain all evaluation
points. The computed exterior domain data are given in
Figure 3. The solid lines correspond to the first setting and
the marks to the second setting. Both computed data are
in a very good agreement. We will study the convergence
of the proposed method in more detail in the presentation.

LH

wN

Figure 2: Waveguide notch. A dielectric integrated
waveguide (dark gray) is disrupted by an air filled notch.
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Figure 3: Exterior field values for waveguide notch
problem. (real part:◦, imaginary part:△, absolute

values:�).
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Abstract
Numerical methods for solving the time domain

Maxwell equations most often rely on cartesian meshes
and are variants of the finite difference time domain
method originating in the seminal work of Yee[6]. How-
ever, in the recent years, there has been an increasing
interest in discontinuous Galerkin time domain methods
dealing with unstructured meshes since the latter are par-
ticularly well suited for the discretization of geometri-
cal details that characterize applications of practical rel-
evance. Similarly to Yee’s finite difference time do-
main method, discontinuous Galerkin time domain meth-
ods generally rely on explicit time integration schemes
and are therefore constrained by a stability condition that
can be very restrictive on highly refined or unstructured
meshes. An implicit time integration scheme is a natural
way to obtain a time domain method which is uncondi-
tionally stable. The present study aims at investigating
the applicability of an implicit time integration scheme in
conjunction with a discontinuous Galerkin approximation
method for solving the time domain Maxwell equations
on unstructured triangular meshes.

Introduction
In the numerical treatment of the time domain Maxwell

equations, finite difference time domain (FDTD) methods
based on Yee’s scheme[6] are still prominent because of
their simplicity (a time explicit method defined on carte-
sian meshes) and their non-dissipative nature (they hold
an energy conservation property which is an important
ingredient in the numerical simulation of unsteady wave
propagation problems). Unfortunately, when dealing with
complex geometries, the FDTD method is not always the
best choice since local refinements of the grid, albeit pos-
sible in the form of subgridding techniques [4], has an
adverse effect on accuracy and efficiency. In particular,
local refinement translates in a very restrictive time step
in order to preserve the stability of the explicit leap-frog
scheme used for time integration in the FDTD method.
Finite element time domain (FETD) based on unstruc-
tured meshes can easily deal with complex geoemtries

however they induce heavy computations or require ac-
curate and efficient lumping of mass matrices. Finite
volume time domain (FVTD) methods on unstructured
meshes also appeared as an alternative to FDTD meth-
ods, but they suffer from numerical diffusion resulting
from the use of upwind schemes, and their extension to
high-order accuracy is a tedious task.

Discontinuous Galerkin time domain (DGTD) methods
can handle unstructured meshes and deal with discontin-
uous coefficients and solutions [5]. They can be seen as
generalizations of the FVTD methods, where the finite
element approximation is piecewise constant inside ele-
ments. The different achievements of the FVTD methods
are now being extended in the context of DGTD methods
which enjoy a renewed favor nowadays and are used in a
wide variety of applications [1] as people rediscover the
abilities of these methods to handle complicated geome-
tries, media and meshes, to achieve a high order of accu-
racy by simply choosing suitable basis functions, to allow
long-range time integrations and, last but not least, to re-
main highly parallelizable [3]. However, DGTD methods
suffer from the same limitation concerning the allowable
time step on locally refined unstructured meshes. In this
study, we investigate the applicability of an implicit time
integration strategy in order to overcome the stability con-
straint that apply to explicit DGTD methods for solving
the two-dimensional Maxwell equations on unstructured
triangular meshes.

Implicit DGTD methods
The starting point of this study is the explicit DGTD

method presented in [5]-[3] for solving the three-
dimensional time domain Maxwell equations on unstruc-
tured tetrahedral meshes. Beside a standard discontinu-
ous Galerkin formulation [1], this method is based on two
basic ingredients: a centered approximation for the cal-
culation of numerical fluxes at inter-element boundaries,
and an explicit leap-frog time integration scheme. The
implicit DGTD method proposed here differs from its ex-
plicit counterpart in the time integration scheme which
is a Crank-Nicholson scheme. The resulting implicit
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DGTD method is non-dissipative and unconditionally sta-
ble. This method requires the resolution of a sparse linear
system at each time step but, for non-dispersive materi-
als, the coefficient of this system are time independent,
a feature that can be taken into account to minimize the
additional computational overhead.

Sample of numerical results
We present here a sample of results aiming at a prelim-

inary comparison between the explicit, leap-frog based
DGTD method and the implicit, Crank-Nicholson based
DGTD method. Both methods have been developed in
the framework of high-order polynomial interpolation (Pp

nodal basis for p ≥ 0) on unstructured triangular meshes
for the resolution of the two-dimensional transverse mag-
netic Maxwell equations. The implicit DGTD method
proposed here requires the resolution of a sparse linear
system at each time step however, for non-dispersive ma-
terials, the coefficient of this system are time independent,
a feature that can be taken into account to minimize the
additional computational overhead. Consequently, in this
study, we decided to use a LU factorization method for
sparse matrices more precisely, the MUMPS multifrontal
sparse matrix solver [2]. The sparse matrix characterizing
the implicit DGTD method has a block structure where
the size of a block is 3np × 3np, np being the number of
degrees of freedom associated to a nodal polynomial basis
of the space Pp i.e np = ((p+1)(p+2))/2. This matrix is
factored once for all before the time stepping loop. Then,
each linear system inversion amounts to a forward and a
backward solve using the triangular L and U factors.

The test case that we consider here is the propagation
of an eigenmode in a unitary square cavity with perfectly
conducting walls. This test case allows a direct compar-
ison with an exact solution. Here, it will also be used
to demonstrate that we cannot take advantage of the pro-
posed implicit DGTD-Pp method if the underlying mesh
is uniform (or quasi-uniform) while substantial reductions
of the computing time can be achieved in the case of a
non-uniform mesh. For this purpose, we make use of two
triangular meshes:

• a uniform mesh consisting of 1681 vertices and 3200
triangles. The non-dimensioned time step corre-
sponding to CFL-P0=1 is (∆t)u = 0.017678 m
(the physical time step is defined by (∆t)u =
(∆t)u/3.108 s). For the interpolation orders p ≥ 1,
the time step actually used is CFL-Pp×(∆t)u where
CFL-Pp is the CFL number associated to the DGTD-
Pp method.

• a non-uniform mesh consisting of 1400 vertices and
2742 triangles. The ratio between the largest and
smallest edges of this mesh is 178. In this case,
the minimum and maximum values of the time step
are respectively given by (∆t)m = 0.000434 m and
(∆t)M = 0.070617 m. The time step used in the
simulations is CFL-Pp × (∆t)m.

For the explicit DGTD-Pp method, CFL-Pp ≤ 1 and
the actual value is dictated by stability issues while CFL-
Pp can be set to an arbitrarily large value for the implicit
DGTD-Pp method but is constrained in practice by accu-
racy issues. Results are given on Fig. 1 and Fig. 2 in the
form of the time evolution of the L2 error between the nu-
merical and exact solutions. The simulations were carried
out for ten periods. Computing times are summarized in
Tab. 1 and 2. It is clear from these results that a second or-
der implicit time integration scheme is not a good option
if the underlying mesh is uniform. Indeed, the numeri-
cal dispersion introduced by the Crank-Nicolson scheme
notably degrades the overall accuracy of the calculation.
However, if a non-uniform mesh is used then an implicit
scheme becomes a viable strategy despite the computa-
tional overhead of the solution of a linear system at each
time iteration. Taking into account the time behavior of
the L2 error on Fig. 1 and 2, we see that a CFL value of
12.0 (respectively 4.0) for the implicit DGTD-P1 method
(respectively DGTD-P2 method) yields an acceptable so-
lution. For these values of the CFL, the gain in overall
computing (CPU) times between the implicit and explicit
methods is respectively equal to 3.3 and 2.2 (note that the
given CPU times include the factorization times).

Time integration Method CFL-Pp CPU time
Explicit DGTD-P1 0.3 15 sec
Implicit - 1.0 44 sec

- - 1.5 30 sec
Table 1: Eigenmode in a PEC cavity - Uniform mesh
CPU times (AMD Opteron 2 GHz based workstation)

Time integration Method CFL-Pp CPU time
Explicit DGTD-P1 0.3 443 sec
Implicit - 12.0 133 sec

- - 24.0 67 sec
Explicit DGTD-P2 0.2 2057 sec
Implicit - 2.0 1923 sec

- - 4.0 938 sec
- - 6.0 620 sec

Table 2: Eigenmode in a PEC cavity - Non-uniform mesh
CPU times (AMD Opteron 2 GHz based workstation)
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Figure 1: Eigenmode in a PEC cavity - DGTD-P1 method
L2 error versus time : uniform mesh (top) and non-uniform mesh (bottom)
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Figure 2: Eigenmode in a PEC cavity - Non-uniform mesh
DGTD-P2 method: L2 error versus time

Closure
We are investigating the potential benefits of using an

implicit DGTD-Pp method for solving the time domain
Maxwell equations on unstructured triangular meshes.
This method is non-dissipative, second order accurate
in time an p + 1-th order accurate in space. For two-
dimensional problems, a direct solver based on a LU fac-
torization such as the one adopted in this study is gener-
ally considered as the optimal strategy, at least from the
computing time point of view. Preliminary numerical re-
sults suggest that an implicit discontinuous Galerkin time
domain is a viable numerical strategy for solving elec-
tromagnetic wave propagation problems on locally re-
fined unstructured meshes. Ongoing works are concerned
with the assessment of the proposed implicit DGTD-Pp

method on test cases for which local refinement of the
mesh is motivated by physical or/and geometrical fea-
tures.
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Abstract
The motivation for a higher order solution procedure

for wave scattering problems is explained and the devel-
opment of a hybrid method is discussed. Details of the
method are given to elucidate its properties and results of
some simple wave scattering examples are presented for
validation and to enable the possibilities offered by the
approach to be assessed.

Introduction
To achieve fully developed solutions for practical time

domain wave propagation and scattering problems, in-
tegration through a significant amount of time is often
necessary. Consequently, approximation with low or-
der spatial schemes can prove to be inappropriate, as re-
sults employing practical domain discretisation can be
highly inaccurate. Since the first applications of higher
order spatial schemes, much interest has been generated
by the potential of these methods to exhibit exponential
p-convergence. In this way, it is believed that the ulti-
mate goal of a more efficient numerical scheme may be
achieved.

Spectral element formulations have been shown to of-
fer accurate and efficient solutions [1]. The approach
employs a specific set of Gauss-Legendre-Lobatto (GLL)
points to define the interpolation functions, with a corre-
sponding quadrature method for integration. This leads to
a diagonal mass matrix. However, at present, these prop-
erties can only be achieved on quadrilateral meshes. An
alternative procedure for triangles has been proposed [2],
but the use of Fekete points, and the corresponding infe-
rior quadrature, results in lower solution accuracy.

Higher order discontinuous Galerkin methods ap-
plied to triangular meshes have numerous benefits. An
element-wise variational statement enables the use of the
consistent mass matrix, as inversion is on a local, ele-
ment level. This avoids the computational expense as-
sociated with the requirement for assembly and inversion
of a global mass matrix. Accurate reproduction of the
complex surfaces often encountered in industrially inter-
esting problems can be critical and is best achieved with
an unstructured triangular mesh. However, the increase
in nodal points, due to the discontinuous nature of the

scheme, leads to more computational work.
For scattering simulations, which involve the interac-

tion between an incident wave, generated by a source in
the far field, and a scattering object, this naturally leads
to the requirement for a hybrid method. A diagonal mass
matrix spectral element method (SEM) will be applied to
a structured quadrilateral mesh in the regular regions of
the domain, while in the more geometrically complex re-
gions surrounding the scatterer, a spectral discontinuous
Galerkin (DG) method will be applied to an unstructured
triangular mesh. An example of such a hybrid grid can be
seen in Figure 1.

The purpose of this paper will be to provide a brief
introduction to the method and offer an indication of the
results which can be achieved.

Governing Equations

The governing equations considered here can be ex-
pressed as a single vector equation

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0 (1)

where, for acoustic waves,U = [ut, vt, pt]T ,
F = [pt, 0, ut]T , G = [0, pt, vt]T . Here p is the
pressure andu and v are the velocities in thex and y
directions respectively. However, the definition of the
vectors asU = [Et

y,−Et
x, Ht

z]
T , F = [Ht

z, 0, Et
y]

T ,
G = [0,Ht

z,−Et
x]T whereEx and Ey are the elec-

tric field intensities in thex andy directions respectively
andHz is the magnetic field intensity in thez direction,
gives the governing equations for a transverse electric
(TEz) polarization of Maxwell’s electromagnetic equa-
tions. Similarly, the definitionU = [−Ht

y,H
t
x, Et

z]
T ,

F = [Et
z, 0,−Ht

y]
T , G = [0, Et

z,H
t
x]T produces the

equations for a transverse magnetic (TMz) polarization.
The linearity of the governing equations enables the to-

tal wave field, indicated by the superscriptt, to be decom-
posed into its incident and scattered components. There-
fore, as our interest lies mainly in the scattered wave field,
(1) can be rewritten solely in terms of this component,
thus enabling its direct calculation.
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Solution Procedures

Previous research [3], examining the accuracy of var-
ious temporal discretisation schemes applied to wave
propagation problems involving extended integration
times, concluded in the recommendation that a Taylor-
Galerkin scheme be used for temporal approximation.
Applying an explicit one-step second order Taylor-
Galerkin (TG2) scheme to (1) leads to a semi discrete
form. Higher order schemes, such as the third order
(TG3) and fourth order (TG4) Taylor Galerkin schemes,
are available [4] but have not been implemented to date.
From here, standard forms of the variational statements
for the governing equation are obtained in the usual
weighted residual manner for both the continuous SEM
and the spctral DG parts of the domain.

For the structured quadrilateral elements, which con-
stitute the SEM part of the domain, the interpola-
tion functions are constructed from a tensor prod-
uct of two one-dimensional interpolation functions
N(x, y) = P (x) ⊗ Q(x), each of which is formed by
Lagrange interpolation through Gauss-Legendre-Lobatto
(GLL) points. The diagonal form of the mass matrix can
then be achieved by utilising GLL quadrature for the eval-
uation of the mass matrix integral. As discussed in [5],
the integration properties of GLL quadrature ensure that
the accuracy of this approximation is maintained and the
resulting solution is sufficiently close to that of the con-
sistent mass form.

The triangular element interpolation functions are
formed directly by performing Lagrange interpolation
through the two-dimensional set of Fekete points [2].
These points were chosen because of their interpolation
properties and as they coincide with GLL points along
the boundaries of the elements. This simplifies the appli-
cation of the coupling procedure, a standard Roe flux cal-
culation, between both parts of the hybrid mesh. As noted
previously, a corresponding diagonal treatment for the tri-
angular element mass matrix results in a loss of accuracy.
Therefore, using the alternative spectral DG formulation,
the consistent form of the mass matrix can be used, for
which integration is performed here using standard Gauss
quadrature.

The infinite domains encountered in wave scattering
problems must be truncated to enable the creation of prac-
tical computational models. Therefore, an appropriate
treatment must be applied at these artificial boundaries.
In this work, this is achieved by addition of a perfectly
matched layer (PML) [6].

Results
Validation of the computational procedure was per-

formed using a standard model of a circular perfectly
electrically conducting (PEC) scatterer for which an exact
analytical solution is available. Figure 1 shows the hybrid
mesh used for this model and theHs

z scattered wave field
for a TEz polarization of the EM wave equations, while
Figure 2 illustrates the corresponding scattering width us-
ing varying element order. The electrical length of this
model was2λ. Convergence to the exact solution, as the
polynomial order is increased on this mesh, is evident.

     
 
 

(a) (b) 

Figure 1: (a) Hybrid mesh and (b)Hs
z scattered wave

field for a TEz polarization of the EM wave equations
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Figure 2: Scattering width for a circular scatterer of
electrical length2λ using varying element order

Further validation was achieved by increasing the com-
plexity of the model and comparing the computational
model with the exact solution for a scatterer of electrical
length15λ. Figure 3 shows that the numerical solution
for the scattering width obtained using5th order elements
is indistinguishable by visual inspection from the exact
solution.

As an example of the use of the approach in a predictive
mode, a TEz model of a simple PEC dihedral scatterer is
considered. For this model, the point of intersection of
the legs of the dihedral is located at the origin with the
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legs lying along the negativex-axis and the positivey-
axis. Convergence of the scattering width with increasing
element order, for an incident wave propagating in the
positive x-direction (incident directionθ = 180o), can
be seen in Figure 4. Scattered wave distributions ofHs

z

for four different incident wave directions are presented
in Figure 5.
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Figure 3: Scattering width for a circular scatterer of
electrical length15λ using 5th order elements

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

-200 -150 -100 -50  0  50  100  150  200

Sc
at

te
ri

ng
 w

id
th

theta

1st order
2nd order
3rd order
4th order
5th order

Figure 4: Scattering width for a dihedral scatterer using
varying element order

Conclusion
A hybrid SEM / spectral DG method for wave scatter-

ing problems has been introduced and validated against
an analytical solution. Subsequently, a further scattering
example was presented to demonstrate the possible out-
put of the method. Initial results seem promising, how-
ever, further work is needed to assess the relative compu-
tational advantages be be gained.
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(a) (b) 

(c) (d) 

Figure 5: Scattering field distribution for various
incident directions (a)-(d)θ = 180o, 150o, 135o, 120o
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Abstract
We present a new local time-stepping method for the
wave equation. The scheme is explicit, conserves a dis-
crete energy and is stable under an optimal CFL condi-
tion. We illustrate the efficiency of the method and vali-
date the theory with numerical results.

Introduction
Adaptivity and mesh refinement are certainly key for the
efficient numerical solution of partial differential equa-
tions. However, locally refined meshes impose severe
stability constraints on explicit time-stepping schemes,
where the maximal time step allowed by a CFL condi-
tion is dictated by the smallest elements in the mesh.
When mesh refinement is restricted to a small region,
the use of implicit methods, or a very small time step in
the entire computational domain, are very high a price
to pay. To overcome that stability restriction, we pro-
pose local time-stepping schemes, which allow arbitrar-
ily small time steps where small elements in the mesh
are located. When combined with a symmetric finite ele-
ment discretization in space with an essentially diagonal
mass matrix, the resulting fully discrete scheme is explicit
and exactly conserves a discrete energy. Starting from the
standard second order “leap-frog” scheme, time integra-
tors of arbitrary order of convergence are derived. Numer-
ical experiments illustrate the efficiency of these methods
and validate the theory.

1 Local time-stepping
We consider the scalar wave equation

utt −∇ ·
(

c2 ∇u
)

= f in (0, T ) × Ω, (1)

with appropriate initial and boundary conditions. HereΩ
is a bounded domain inIRd, d = 2, 3. The source term
f lies in L2(0, T ;L2(Ω)) and we assume that the speed
of propagation,c(x), is piecewise smooth, bounded, and
strictly positive.

Starting from the weak formulation of (1), we then
consider either standard conforming finite elements with
mass lumping [2] or a recent symmetric interior penalty
discontinuous Galerkin (DG) formulation [1] for the spa-

tial discretization of (1). Both eventually lead to a second-
order system of ordinary differential equations of the
form:

M
d2y

dt2
+ Ky = F, (2)

where bothM , K arem×m symmetric positive definite
(SPD) matrices, wherem denotes the number of degrees
of freedom in the discrete solution. Moreover,M1/2 can
be obtained at low cost, sinceM is (block-)diagonal. For
F = 0 the energy

E[y](t) = ẏ⊤Mẏ + y⊤Ky

is conserved in time. Hence, we now seek time discretiza-
tions of (2), which also conserve (a discrete version of)
the energy.

We letF = 0 and multiply (2) byM−1/2 to obtain

d2z

dt2
+ M−1/2KM−1/2z = 0, (3)

with z = M1/2y. Next, we setA = M−1/2KM−1/2,
which is also symmetric positive definite, and thus rewrite
(3) as

d2z

dz2
+ Az = 0 . (4)

The (exact) solutionz(t) of (4) satisfies

z(t + ∆t) − 2z(t) + z(t − ∆t) =

−∆t2
∫

1

−1

(1 − |θ|)Az(t + θ∆t) dθ.
(5)

The integral on the right-hand side of (5) represents a
weighted average ofAz(s) over the interval(t − ∆t, t +
∆t), which needs to be approximated in any numerical al-
gorithm. For instance, if we simply replaceAz(t + θ∆t)
by Az(t) in (5) and evaluate the remainingθ-dependent
integral, we obtain the well-known second order leap-frog
scheme with time step∆t,

zm+1 − 2zm + zm−1

∆t2
= −Azm, zm ≃ z(tm), (6)

which, however, would require∆t to be comparable in
size to the smallest elements in the mesh.
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Instead, following [3], [4], we now split the vectorz(t)
in two parts:

z(t) = (I − P )z(t) + Pz(t) = z[coarse](t) + z[fine](t) .

The projection matrixP is diagonal: its diagonal entries,
equal to zero or one, identify the unknowns associated
with the locally refined region, that is where smaller time
steps are needed. To circumvent the severe CFL restric-
tion on∆t in (6), we shall treatz[fine](t) differently from
z[coarse](t) in

z(t + ∆t) − 2z(t) + z(t − ∆t) =

−∆t2
∫

1

−1

(1−|θ|)A
[

z[coarse](t+θ∆t)+z[fine](t+θ∆t)
]

dθ.

Thus, we replace

A
[

z[coarse](t + θ∆t) + z[fine](t + θ∆t)
]

by
Az[coarse](t) + APq(θ∆t),

whereq(τ) solves the differential equation

d2q

dτ2
(τ) = −A(I − P )z(t) − APq(τ), (7)

q(0) = z(t), q′(0) = 0. (8)

Using Taylor expansions, we can show that the exact so-
lution q of (7-8) satisfiesq(∆t) = q(−∆t) and

2(q(∆t) − q(0)) = ∆t2Az(t) + O(∆t4),

whereas the exact solutionz of (4) satisfies

z(t + ∆t) − 2z(t) + z(t − ∆t) = ∆t2Az(t) + O(∆t4).

Then we obtain that :

z(t + ∆t) − 2z(t) + z(t − ∆t) =

2(q(∆t) − q(0)) + O(∆t4).
(9)

2 Algorithm
For each time step∆t, the algorithm to advancez(t) from
t to t + ∆t proceeds as follows :

1. We solve (7) with the leap-frog scheme usingp time
steps each of size∆τ = ∆t/p, p ≥ 1, which yields
q(∆t);

2. We updatez(t + ∆t) by using (9).

Here, a key observation in (7) is that the termA(I −

P )z(t) is independent ofτ . For time step of size∆t, this
algorithm therefore requires only one multiplication by
(I−P )A andp multiplications byPA. Thosep multipli-
cations, however, only affect the unknowns in the highly
refined region whereP is nonzero, and hence the addi-
tional work will be small if the refined region only occu-
pies a fraction of the entire mesh.

3 Energy and stability
We have proved that the resulting overall algorithm is
second-order accurate in time and is equivalent to

z(t + ∆t) − 2z(t) + z(t − ∆t) = −∆t2Apz(t), (10)

with

Ap = A −
2

p2

p−1
∑

j=1

(

∆t

p

)

2j

α
p
j (AP )jA.

The matrixAp is symmetric and we can therefore deduce
from (10) the conservation of the discrete energy

En+1/2 =
1

2

〈(

I−
∆t2

4
Ap

)

zn+1 − zn

∆t
,
zn+1 − zn

∆t

〉

+
1

2

〈

Ap
zn+1 + zn

2
,
zn+1 + zn

2

〉

,

where the brackets denote the standard euclidean inner
product onIRm. This energy corresponds to the energy
conserved by the leap-frog scheme with time step∆t with
Ap replaced byA).

The above local time-stepping scheme will then be stable
if and only if the matricesI − ∆t2

4
Ap andAp are both

positive definite. Because of the projection matrixP , it
is not possible to easily deduce the eigenvalues of these
two matrices from the eigenvalues ofA and to obtain an
analytical CFL condition of the new scheme. However, it
is (experimentally) usually comparable to that of the stan-
dard leap-frog scheme without local refinement. If a small
overlap across at most three elements is allowed into the
coarse region immediately next to the refined region, the
CFL condition is optimal, in the sense that the same time
step can be used.

4 Numerical results
To illustrate the versatility of the method, we consider
a computational domain that consists of two rectangles
connected by a very narrow channel. We use the IP-DG
formulation [1] with P 3 elements on a triangular mesh,

264



Figure 1: Left: The solution is shown at timet = 0.2 .
Right: the highly refined mesh inside the narrow channel.

which is highly refined inside the narrow region, as shown
in the right frame of Fig. 1. Since the mesh size inside the
refined region is about 17 times smaller than in the sur-
rounding coarse region, we takep = 17 local time steps
for every time step∆t.

As shown in Fig. 1, the wave is initiated by a pulse in the
upper region, which propagates outward until it impinges
on the boundaries. A fraction of the wave then penetrates
the channel and generates a circular outgoing wave as it
reaches the opposite lower region. Further reflections oc-
cur as the wave moves back and forth inside the chan-
nel, subsequently generating multiple circular waves in
the upper and lower domains.
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Abstract
We present a new non conforming space-time mesh re-

finement method for symmetric first order hyperbolic sys-
tem. This method is based on the use of a discontinuous
Galerkin approximation and a discrete energy conserva-
tion.

Introduction
In this paper, we are interested in a non conforming

space-time mesh refinement method for wave propaga-
tion in aeroacoustic, in the spirit of previous work in wave
equation [3], [4], electromagnetism [5] and elastodynam-
ics [1]. We develop a method which is applicable to
zero order perturbations of symmetric hyperbolic systems
in the sense of Friedrichs (Linearized Euler equations,
Maxwell’s equations and elastodynamics’ equations are
of this type). The method is based on the one hand on the
use of a conservative higher order discontinuous Galerkin
approximation for space discretization and a finite differ-
ence scheme in time, on the other hand on appropriate dis-
crete transmission conditions between the grids. We use a
discrete energy technique to drive the construction of the
matching procedure between the grids and guarantee the
stability condition. Moreover, under suitable geometrical
conditions on the grids, this method is quasi explicit.

1 First order symmetric hyperbolic systems
SupposeΩ is a bounded and open domain inR

d, d ≥ 1,
we consider a first order symmetric hyperbolic system in
the sense of Friedrichs inΩ × [0, T ]:


















find u : Ω × [0, T ] 7→ R
m such that:

M∂tu +

d
∑

j=1

Aj∂xj
u + Bu = f , in Ω×]0, T ],

u(x, 0) = u0(x), in Ω,

(1)

whereM , Aj, j = 1, · · · , d andB arem × m matrices:
Ω 7→ R

m×m, f is m vector: Ω × [0, T ] 7→ R
m andu0

is m vector. We assume thatM is positive definite and
Aj , j = 1, · · · , d are symmetric.
We complete the system (1) by the boundary condition:

(A(n) − N)u = 0 onΓ×]0, T ]. (2)

Here,Γ denotes the boundary ofΩ, n = (n1, · · · , nd)
t

the unit outward normal toΓ, A(n) =
∑d

j=1
njAj and

N is am × m matrix which satisfies:
{

N + N t ≥ 0,

ker(A(n) − N) + ker(A(n) + N) = R
m.

(3)

Under these assumptions and smoothness conditions
Friedrichs [6] showed that (1)-(2) has a unique solution.

Energy identity
We denote by(., .) (resp.< ·, · >) the inner product in

[L2(Ω)]m (resp. [L2(Γ)]m) and div A =
∑d

j=1
∂xj

Aj .
If we define the energy ofu at time t by: E(t) =
(M(x)u,u), we can show that this quantity verifies:

Theorem 1

dE

dt
= (f ,u) +

1

2

[

(divAu,u) −
(

(B + Bt)u,u
)]

−
1

4
< (N + N t)u,u > .

We remark that, iff = 0, we have an energy conserva-
tion (respectively dissipation) when1

2
divA − B andN

are antisymmetric (resp.divA − (B + Bt) is positive
definite). In the general case we obtain the followingL2-
estimation:

‖u(t)‖ ≤ eαt

(

‖u0‖ +

∫ t

0

e−αs ‖f(s)‖ ds

)2

,

whereα is a positive constant depending on‖divA‖∞
and‖B‖∞.

2 Conservative discontinuous Galerkin method
The method developed here is applicable in the general

case, but to simplify this study we limit ourselves to the
conservative case, in particular we consider the matrices
Aj , j = 1, · · · , d are constants,B = 0, f = 0 andΩ =
R

d.

2.1 Space discretization
We consider a meshTh of our domainΩ = ∪K∈Th

K,
we denote bynK the unit outward normal to∂K and
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ΣKL = ∂K ∩ ∂L for all K,L in Th.
We introduceVK the finite-dimensional sub-space of
[H1(K)]m, VK = [Pr(K)]m, where [Pr(K)]m is the
set polynomials of maximum degree≤ r. We consider
the conservative discontinuous Galerkin approximation,
obtained by the usual Galerkin procedure with centered
fluxes [2]:






find uh(t) : [0, T ] 7→ Vh such that:

d

dt
m(uh,vh) + ah(uh,vh) = 0, ∀vh ∈ Vh,

(4)

with Vh = [L2(Ω)]m ∩
∏

K∈Th

Vk, uh = (uK)K , vh =

(vK)K and the bilinear forms:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m(uh,vh) =
∑

K

∫

K

M(x)uK · vK dx,

ah(uh,vh) = −
∑

K

∑

j

∫

K

Aj uK · ∂xj
vK dx

+
∑

K,L

∫

ΣKL

A(nK)
uK + uL

2
· vK dσ

We show that the bilinear formah is antisymmetric:

ah(uh,vh) = −ah(vh,uh) ∀uh,vh ∈ Vh. (5)

Remark 1 We remark that using this last equality we can
rewriteah in the form:

ah(uh,vh) =
1

2
[ah(uh,vh) − ah(vh,uh)]

=
1

2

∑

j,K

∫

K

[

Aj ∂xj
uK · vK − Aj uK · ∂xj

vK

]

dx

+
1

4

∑

K,L

∫

ΣKL

[A(nK)uL · vK − A(nK)vL · uK ] dσ.

The antisymmetric property ofah allow us to obtain a
semi-discrete energy conservation:

dEh

dt
= 0, Eh(t) = mh(uh,uh).

2.2 Time discretization and stability analysis
For the time discretization we construct a totally ex-

plicit centered finite difference scheme, by approximating
the system (4) attn = n∆t with the leap-frog scheme:







find un
h ∈ Vh, such that∀vh ∈ Vh :

mh(
un+1

h − un−1

h

2∆t
,vh) + ah(un

h,vh) = 0,
(6)

Using the antisymmetric property ofah we have the iden-
tity:

E
n+1/2

h − E
n−1/2

h

∆t
= 0,

whereE
n+1/2

h is the discrete energy at timetn+1/2 de-
fined by:

E
n+1/2

h =
1

2

[

‖un+1

h ‖2

mh
+ ‖un

h‖
2

mh

]

+2∆t ah(un+1

h ,un
h),

where‖uh‖
2
mh

= mh(uh,uh), ∀uh ∈ Vh.
In order to establish a sufficient stability condition, thanks
to the energy discrete conservation, it suffices to show that
the energyEn+1/2

h is a positive quadratic form. This is
true if the following stability condition is satisfied:

∆t‖ah‖ ≤ 1; ‖ah‖ = sup
uh,vh∈Vh\{0}

ah(uh,vh)

‖uh‖mh
‖vh‖mh

.

3 Space-time mesh refinement
3.1 Space mesh refinement

We suppose thatΩ is a union of two domainΩc andΩf

separated by a surfaceΣ = Ωc ∩ Ωf , and we consider a

meshT c
h (resp. T f

h ) of Ωc (resp. Ωf ). We introduce the
following sets :

Il = {(K,L) /ΣKL ⊂ Ωl}, ∀ l ∈ {c, f},

I = {(K,L) /ΣKL 6= ∅, K ⊂ Ωc, L ⊂ Ωf}.

We denoteul,h = uh|Ωl
and V

l
h = Vh ∩ [L2(Ωl)]

m,
∀ l ∈ {c, f}. Thanks to the remark 1, we can rewrite the
variational formulation (4) as follows:



































find ul,h(t) : [0, T ] 7→ V
l
h such that:

d

dt
mc(uc,h,vc,h) + ac

h(uc,h,vc,h) + bh(uf,h,vc,h) = 0,

d

dt
mf (uf,h,vf,h) + a

f
h(uf,h,vf,h) − bh(vf,h,uc,h) = 0,

∀ (vc,h,vf,h) ∈ V
c
h × V

f
h,

(7)
where the bilinear formsbh, andml

h, ∀ l ∈ {c, f} are
defined by:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ml(uh,vh) =
∑

K∈T l
h

∫

K

M(x)uK · vK dx,

bh(uf,h,uc,h) =
1

4

∑

(K,L)∈I

∫

ΣKL

A(nk)u
f
L · uc

K dσ.
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and al
h is an antisymmetric bilinear form onVl

h × V
l
h,

∀ l ∈ {c, f}:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

al
h(uh,vh) =

1

2

∑

K∈T l
h

∑

j

∫

K

[

Aj ∂xj
uK · vK − Aj uK · ∂xj

vK

]

dx+

1

4

∑

(K,L)∈Il

∫

ΣKL

[A(nK)uL · vK − A(nK)vL · uK ] dσ.

3.2 Time discretization and stability analysis

Our aim is to determine an explicit numerical scheme
in the case of space-time mesh refinement, and for which
we can establish the conservation of the discrete energy
quantity. This will permit us to ensure the stability of the
scheme.
We suppose that the fine meshT f

h of Ωf is finer than the
coarse meshT c

h of Ωc, more precisely, the space stephf

of T f
h is twice smaller thanhc of T c

h ; hf = hc/2. We
mention that we extended the method presented below to
a general mesh refinement;hc = h/qc, hf = h/qf with
qc < qf .
For time discretization of the system (7), we use a cen-
tered scheme like in (6). Given that we want to keep
the ratio time step over space step constant on all com-
putational domain, we approachuh at even timest2n in
coarse mesh, and at odd timest2n+1/2 in fine mesh (see
figure 1). In this way, after time discretization, the system
(7) is rewritten in the form:



























































































mc
h(

u2n+2

c,h − u2n−2

c,h

4∆t
,vc,h) + ac

h(u2n
c,h,vc,h)

+bh([uf,h]2n,vc,h) = 0,

m
f
h(

u
2n+3/2

f,h − u
2n−1/2

f,h

2∆t
,vf,h) + a

f
h(u

2n+1/2

f,h ,vf,h)

+bh([uc,h]2n+1/2,vf,h) = 0,

m
f
h(

u
2n+1/2

f,h − u
2n−3/2

f,h

2∆t
,vf,h) + a

f
h(u

2n−1/2

f,h ,vf,h)

+bh([uc,h]2n−1/2,vf,h) = 0,

∀ (vc,h,vf,h) ∈ V
c
h × V

f
h.

Here, [uf,h]2n (resp. [uc,h]2n+1/2 and [uf,h]2n−1/2) is
an approximation ofuf,h (resp. uc,h) at time t2n (resp.
t2n+1/2 andt2n−1/2). Using the antisymmetric property

of ac
h anda

f
h, and if we take:

[uc,h]2n+1/2 = [uc,h]2n−1/2 =
(

u2n+2

c,h + u2n+2

c,h

)

/2,

[uf,h]2n =
(

u
2n+3/2

f,h + u
2n+1/2

f,h

)

/4

+
(

u
2n−1/2

f,h + u
2n−3/2

f,h

)

/4,

(8)

we show that the last numerical scheme has a conservative
discrete energy:

E2n+1

h − E2n−1

h

2∆t
= 0, with E2n+1

h = E2n+1

c,h + E2n+1

f,h ,

whereE2n+1

l,h , l ∈ {c, f} is the discrete energy oful,h

in Ωl:

E2n+1

c,h =
1

2

[

‖u2n+2

c,h ‖2

mc
h

+ ‖u2n
c,h‖

2

mc
h

]

+ 2∆t ac
h(u2n+2

c,h ,u2n
c,h),

E2n+1

f,h =
1

2

[

‖u
2n+3/2

f,h ‖2

mc
h

+ ‖u
2n+1/2

f,h ‖2

m
f
h

]

+ ∆t a
f
h(u

2n+3/2

f,h ,u
2n+1/2

f,h ).

The sufficient stability condition is assured thanks to:

∆t‖ac
h‖ ≤ 1 and∆t‖a

f
h‖ ≤ 2.

This implies that we have the same CFL stability condi-
tion in coarse and fine grid (hf = hc/2).

X

X

X

X

X X

Ωf

2n

2n + 3/2

2n + 1/2

2n − 1/2

2n − 3/2

uh

Eh

Ωc

2n + 2

2n − 2

Figure 1: Time distribution of the unknowns and of the
energy quantities

The matrix system associated to our numerical scheme is
given by:











































































M c
h

U2n+2
c − U2n−2

c

4∆t
+ Ac

h U2n
c,h

+Bh [Uf ]2n = 0,

M
f
h

U
2n+3/2

f − U
2n−1/2

f

2∆t
+ A

f
h U

2n+1/2

f

+Bh [Uc]
2n+1/2 = 0,

M
f
h

U
2n+1/2

f − U
2n−3/2

f

2∆t
+ A

f
h U

2n−1/2

f

+Bh [Uc]
2n−1/2 = 0,

(9)
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where [Uf ]2n, [Uc]
2n+1/2 and [Uc]

2n−1/2 are given
by (8), M c

h andM
f
h are the local mass matrices,Ac

h and

A
f
h are the local stiffness matrices, andBh is the coupling

stiffness matrix (transmission matrix).

The system (9) is quasi explicit under suitable ge-
ometrical conditions on the grids. The numerical
simulations for Linearized Euler equations will be
presented during the conference.
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1 Abstract
We investigate explicit higher order time discretizations
of linear second order hyperbolic problems. We study the
even order (2m) schemes obtained by the modified equa-
tion method. We show that the corresponding CFL upper
bound for the time step remains bounded when the order
of the scheme increases. We propose variants of these
schemes constructed to optimize the CFL condition. The
corresponding optimization problem is analyzed in detail.
The corresponding optimal schemes are constructed and
their asymptotic complexity for large order is analyzed.

2 Introduction
We are concerned here with a very classical problem,
namely the numerical approximation of second order hy-
perbolic problems, more precisely problems of the form

d2u

dt2
+ Au = 0, (1)

whereA is a linear unbounded positive self-adjoint op-
erator in some Hilbert spaceV . This appears to be the
generic abstract form for a large class of wave propaga-
tion problems, withA is a second order differential oper-
ator in space, of elliptic nature. During the past 4 decades,
a considerable literature has been devoted to the construc-
tion of numerical methods for the approximation of (1).
The most recent research deals with the construction of
higher order in space and energy preserving methods for
the space semi-discretization of (1) (using finite differ-
ences, finite elements, discontinuous Galerkin methods -
see for instance [3] and the references therein). These
methods lead us to consider a family (indexed byh > 0,
the approximation parameter which tends to 0 - typically
the step size of the computational mesh) of problems of
the form:

d2uh

dt2
+ Ahuh = 0, (2)

where the unknownuh is a function of time with value in
some Hilbert spaceVh (whose norm will be denoted‖ · ‖,
even if it does depend onh) andAh denotes a bounded
self-adjoint and positive operator inVh.

In what follows, we are interested in the time discretiza-
tion of (2) by explicit finite difference schemes. More
specifically, we are interested in the stability analysis of
such schemes and its influence on the choice of the time
step. The energy preserving nature of the continuous
problem can be seen as a consequence of the time re-
versibility of this equation. That is why we shall favor
centered finite difference schemes which preserve such a
property at the discrete level.

The most well known scheme is the classical second or-
der leap-frog scheme (un

h ∈ Vh denotes an approximation
of uh(tn), tn = n∆t)

un+1

h − 2un
h + un−1

h

∆t2
+ Ahun

h = 0. (3)

which is stable under the condition.

∆t2

4
‖Ah‖ ≤ 1. (4)

Next we investigate one way to construct more accurate
(in time) discretization schemes for (2). This is particu-
larly relevant whenAh represents someO(hk) space ap-
proximation ofA with k > 2: one would like to adapt the
time accuracy to the space accuracy.

Most of the mathematical details and proofs of our results
can be found in [5].

3 The modified equation approach
This approach [6], [2], [4], [1] consists at looking at the
Taylor expansion of the truncation error of (3) and replac-

1
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ing higher order time derivatives by powers ofAh. One
than obtain the scheme(Sm), of order2m:

un+1

h − 2un
h + un−1

h

∆t2
+ A

(m)

h (∆t) un
h = 0,

A
(m)

h (∆t) = Ah Pm(∆t2Ah),

(5)

where the polynomialPm(x) is defined by,

Pm(x) = 1 + 2

m−1
∑

l=1

(−1)l
xl

(2l + 2)!
. (6)

This scheme remains energy preserving and explicit.
Moreover, the computational cost for one time step of the
scheme of order2m is m times larger than the computa-
tional cost for one time step of the second order scheme.
However, this additional cost could be counterbalanced if
one would be able to choose the time step proportionally
to m. Unfortunately, one has the following result

Theorem 3.1 The stability condition ofSm (see (5)) is

∆t2 ‖Ah‖ ≤ αm, (7)

where

αm := sup{ α / ∀ x ∈ [0, α], 0 ≤ xPm(x) ≤ 4}.

We have that

lim
m→+∞

α2m = 4π2, lim
m→+∞

α2m+1 = π2. (8)

Our goal, next, is to modify the schemeSm in order to be
able to use a much larger time step than the one allowed
by (7), without increasing too much the cost per time step.

4 Modified schemes: an optimization approach
For an integerk, we denote byPk the set of polynomials
of degree less or equal tok. For a givenR ∈ Pk−1, we
construct an explicit schemeSm(R) of order2m by:

un+1

h − 2un
h + un−1

h

∆t2
+ Pm(∆t2Ah)un

h

+ ∆t2m Am
h R(∆t2Ah) Ahun

h = 0,

(9)

The cost per time step ofSm(R) is at most(m + k)/m
times larger than the one ofSm. One can show that the
stability condition of this new scheme is:

∆t2 ‖Ah‖ ≤ αm(Rk), (10)

where we have defined,

αm(R) = sup { α / ∀ x ∈ [0, α], 0 ≤ QR(x) ≤ 4 }.

(11)

with QR(x) = x [ Pm(x) + xm R(x) ].

The natural idea, in some sense, to get an optimal scheme
would be to solve the optimization problem:

FindRm,k ∈ Pk−1 / αm(Rm,k) = sup
R ∈ Pk−1

αm(R).

(12)
A priori, this is a difficult optimization problem since the
functionR 7→ αm(R) is discontinuous [5]. However one
can show the following theorem:

Theorem 4.1 For any k ≥ 1, the optimization problem
(12) admits a unique solutionR = Rm,k, character-
ized by the following optimality condition: there exists
k points

0 < τk < · · · < τ1 < τ0 = αm(R) (13)

such that, ifQR(x) = x [ Pm(x) + xm R(x) ]

QR(τj) + QR(τj+1) = 4, j = 0, . . . , k − 1. (14)

>From the theoretical point of view, it is interesting to
know the behavior of:

αm,k = sup
R ∈ Pk−1

αm(R) (15)

which fixes the maximum value of∆t for the optimal
scheme.Sm,k := Sm(Rm,k). One first obtains an upper
bound:

Theorem 4.2 For k ≥ 0,

α1,k = 4(k + 1)2,

αm,k ≤ 4 (m + k)2, for m ≥ 2.
(16)

More interesting is a lower bound. We consider the case
k = m, for which the cost per time step is only twice the
one of (3).

Theorem 4.3

αm,m ≥ βm = 2
1

m (2m)!
1

m , with βm ∼
4m2

e2
(17)

This means that for the optimal schemesSm,m, ∆t can
be chosen proportionally tom. In other words, one can
achieve the2mth order accuracy with a computational
cost which remains bounded whenm increases: the cost
per time step is2m times larger than the one for (3) but
the time step can be chosenCste × m larger.

2
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5 Computational issues

It appears quite difficult to solve numerically the problem
(12) with standard optimization algorithms.

Fortunately, exploiting the optimality condition, we have
been able to design anad hocalgorithm based on the pa-
rameterization of the polynomialsR by the pointsτj sat-
isfying (13, 14) coupled to a Newton’s strategy [5].

We have been able to determine the optimal polynomials
Rm,k for 1 ≤ k ≤ 8 and1 ≤ m ≤ 8 and to obtain the
following tables for the coefficientsαm,k.

Table 1: Computed values of the firstαm,k ’s, k ≤ 4

k = 0 k = 1 k = 2 k = 3 k = 4

m = 1 4.00 16.00 36.00 64.00 100.00
m = 2 12.00 32.43 60.56 96.61 140.64
m = 3 7.57 23.40 45.72 75.06 111.58
m = 4 21.48 44.03 73.45 110.01 153.83
m = 5 9.53 31.61 58.23 90.77 129.90
m = 6 30.72 57.23 89.78 128.89 174.84
m = 7 9.85 37.37 68.93 108.35 151.08
m = 8 37.08 70.89 107.67 150.35 199.32

Table 2: Computed values of the firstαm,k ’s, k ≥ 5

k = 0 k = 5 k = 6 k = 7 k = 8

m = 1 4.00 144.00 196.00 256.00 324.00
m = 2 12.00 192.66 252.67 320.68 396.69
m = 3 7.57 155.38 206.51 265.04 331.00
m = 4 21.48 204.98 263.51 329.49 402.92
m = 5 9.53 175.84 228.71 288.59 355.23
m = 6 30.72 227.71 287.61 354.59 428.71
m = 7 9.85 199.56 255.61 317.90 357.95
m = 8 37.08 254.89 317.22 386.35 462.27

6 Numerical experiments

The schemesSm,k have been implemented for the case of
the2D wave equation, when a higher order discontinuous
Galerkin method is used for the space discretization (see
[7] for more details).

The corresponding numerical results will be presented
at the conference and the actual efficiency of our new
schemes will be discussed in terms of accuracy and com-
putational cost.
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Abstract
The discontinuous Galerkin method excels at solving

time-dependent hyperbolic conservation laws. It is pos-
sible to use high-order explicit time-stepping methods
and high-order spatial approximations without incurring
heavy numerical linear algebra overheads. We demon-
strate how it is possible to use a co-volume mesh based
filter in 2D to improve the CFL condition for discontinu-
ous Galerkin methods with limited impact on accuracy.

Introduction
The discontinuous Galerkin (DG) method, originally

introduce for simulating neutron transport [1], has gained
traction as a competitive method for solving time-
dependent hyperbolic conservation laws in partial differ-
ential equation form. In [2] we showed how using DG
with high-order polynomial approximation suffers from
an undesirable time step size restriction, and that this may
be overcome with a judicious application of a gradient fil-
ter. Specifically, we showed theoretical and experimental
results indicating that adding a staggered grid based fil-
ter to the formulation increases the allowable time step
size by a factor proportional to the order of the polyno-
mials being used for approximation. This combination in
fact yields time step sizes comparable to those allowable
for typical finite difference based schemes. Furthermore,
it was demonstrated that the filter does not appreciably
reduce the order of accuracy achievable for sufficiently
smooth solutions. The results in that paper were specific
to one-dimensional and tensor-product one-dimensional
computations.

In this paper we outline one possible way to extend the
staggered mesh filter approach to meshes of unstructured
triangles. The approach relies on the construction of a co-
volume mesh, and the use ofL2 projection of the solution
from the primal unstructured mesh of triangles onto the
space of piecewise polynomial functions supported on the
co-volume mesh of vertex centered polygons, and subse-
quent projection back to the primal mesh. We will show
experimental results indicating that this filter does effect
accuracy slightly, but not in a disastrous way. However,
this is still a work in progress and we will also discuss
some issues with the conditioning of the discrete projec-

tion operators.

Formulation
Given the two-dimensional TM Maxwell’s equations

∂Hx

∂t
= −

∂Ez

∂y
, (1)

∂Hy

∂t
=

∂Ez

∂x
, (2)

∂Ez

∂t
=

∂Hy

∂x
−
∂Hx

∂y
, (3)

valid in a doubly periodic domainΩ we consider the
following variational statement for the upwind discon-
tinuous Galerkin method applied. Given a triangulation
of K simplices covering the domain,Ω =

⋃

1≤k≤K Dk

we seek of a finite dimensional approximation to the
magnetic and electrical fields, given by(Hx,Hy, Ez) ∈

(V h)3 that satisfies

(

φ,
∂Hx

∂t
+
∂Ez

∂y

)

Dk

= (φ,−ny [R])∂Dk ,

(

ψ,
∂Hy

∂t
−
∂Ez

∂y

)

Dk

= (ψ, nx [R])∂Dk ,

(

χ,
∂Ez

∂t
+
∂Hx

∂y
−
∂Hy

∂x

)

Dk

= (χ,− [R])∂Dk ,

for all (φ,ψ, χ) ∈
(

V h
)3

. The notation

R− = −n−y H
−
x + n−xH

−
y + E−

z (4)

R+ = −n−y H
+

x + n−xH
+

y + E+

z (5)

[R] =
R+ −R−

2
(6)

corresponds to the internal and external traces and jump
of the incoming characteristic variable on an element
face with outward facing normal(nx, ny). In what fol-
lows we assume a piecewise polynomial spaceV h =
∪1≤k≤KP

n
(

Dk
)

(see [3] for further details).
In addition to the primal grid, we will require a co-

volume mesh defined as the union of polygons formed
by joining the centers of the element of all elements
sharing each vertex (see example in Figure 1). We will
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also associate a polynomial space to each vertex, us-
ing the lower triangular part tensor-product of M’th or-
der one-dimensional Legendre polynomial spacesW h =
⋃

1≤v≤Nv
PM (Ev) for polygonal co-volumesEv given

Nv mesh vertices. ExpressingQ = (Hx,Hy, Ez)
t the

Figure 1: Example of doubly periodic primal mesh
(dotted line) and covolume mesh (solid lines).

semidiscrete scheme reads

dQ

dt
= DQ . (7)

By a straight forward application of inverse inequalities
for polynomials, we can estimate that after spatial dis-
cretization the discrete DG Maxwell’s derivative operator,
D, will have a spectral radius that grows in proportion to
n2

h
. The goal of this paper is to outline the construction of

a filter matrixF that we use to control the spectrum ofD
and we instead solve

dQ

dt
= FDQ . (8)

The filter matrixF is considered to be a3 × 3 block ma-
trix, with the same sub-matrix on each of the three di-
agonal blocks. The block filter is the product of twoL2

projection operators given byΠp→c : V h → W h that
projects functions from primal mesh to a function sup-
ported by the co-volume mesh withΠc→p : W h → V h

projecting in the reverse direction. The former is defined
uniquely as the linear operator that satisfies

(φ,Πp→cψ)
Ω

= (φ,ψ)
Ω
, (9)

for all φ ∈ W h and for allψ ∈ V h. A similar definition
holds forΠc→p. After discretization the filter matrixF
has structure

F =





Πc→pΠp→c 0 0
0 Πc→pΠp→c 0
0 0 Πc→pΠp→c



 .

(10)

In the following results section we outline the impact of
this filter matrix on the spectral radius of the new filtered
DG derivative matrix, and also on the accuracy of the so-
lution to a time-dependent simulation.

Results
To illustrate the quite dramatic impact of the co-volume

based filter on the eigenspectrum of the DG spatial opera-
tor (based on polynomial ordersN = M = 7 for the pri-
mal and co-volume mesh in Figure 1 we show the eigen-
values of

Dα = (1 − α)D + αFD , (11)

for α = 0, 0.2, 0.4, 0.6, 0.8, 1.0 in Figure 2. It is immedi-
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Figure 2: Top: eigenspectra of the discrete upwind DG
Maxwell’s operatorDα on a doubly periodic mesh with
K = 46 triangular elements and polynomial order

N = 7 for α = 0, 0.2, 0.4, 0.6, 0.8, 1.0. Bottom: close
up of the well resolved eigenvalues on the imaginary axis

(’+’) and exact eigenvalues (’o’).

ately obvious that the eigenvalues ofDα are pushed into
a smaller and smaller part of the complex plane as the
amount of filtering used is increased, i.e. asα increases.
At the same time a zoom of the complex plane near the
origin and imaginary axis shows that well resolved, phys-
ical eigenvalues of the discrete operators are not visibly
modified by the filtering. However, we do notice that
as the amount of filtering is increased damped spurious
modes from the unfiltered upwind DG spatial operator
are pushed close to the origin and become much more
slowly decaying spurious eigenvalues. Thus we recom-
mend a compromiseα = N−1

N
in line with similar find-

ings in [2]. In Table 1 we compare the spectral radii of
D0,D(N−1)/N , andD1. The latter two clearly grow more
slowly than the former with increasingN . To address
the impact of the filter on the accuracy of the numeri-
cal method, we computed the error in the well resolved
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Table 1: Comparison of spectral radiii of filtered and un-
filtered upwind DG Maxwell’s operators(M = N).

N ρ
(

D0
)

ρ
(

D(N−1)/N
)

ρ
(

D1
)

1 30.49 30.49 6.76
2 52.39 26.33 11.08
3 78.90 28.74 15.47
4 110.84 29.10 20.47
5 149.22 32.12 25.73
6 190.73 33.84 31.30
7 242.27 39.14 36.75
8 294.58 42.82 42.11

physical eigenvalues for the casesα = 0, (N − 1)/N ,
and 1 with N = M = 7. It is clear that the filter
does have an impact on the accuracy of the discrete reso-
nances. In a further experiment we increased the polyno-
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Figure 3: Error in the first forty eigenvalues of the
unstabilized, and stabilized upwind DG Maxwell’s

operatorDα with N = M = 7.

mial order used for the co-volume mesh fromM = 7 to
M = 8. This time the errors in the discrete eigenvalues
are closer to the errors of the unfiltered discrete eigen-
values, as shown in Figure 4 and the spectral radius of
the filtered operators does not dramatically increase de-
spite of the enhanced resolution on the co-volume mesh,
as shown in Table 2.

Summary & Comments
Experiments have been presented to show the impact

of a co-volume based filter on the symptotic growth of the
spectral radius of DG based discrete derivative operators
and the accuracy of their physically correct eigenvalues.

Table 2: Comparison of spectral radiiiDα for different
polynomial orders on the primal and co-volume meshes
(M = N + 1).

N ρ
(

D0
)

ρ
(

D(N−1)/N
)

ρ
(

D1
)

1 30.49 30.49 8.81
2 52.39 27.02 13.67
3 78.90 28.72 18.19
4 110.84 31.74 23.16
5 149.22 33.21 28.43
6 190.73 35.11 33.94
7 242.27 40.39 39.64
8 294.58 45.95 45.30
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Figure 4: Error in the first forty eigenvalues of the
unstabilized, and stabilized upwind DG Maxwell’s

operatorDα with N = 7 andM = 8.

We will address other issues including the need for a more
robust construction of the filter operator, to improve the
conditioning of the inter-grid projection operators.
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Abstract
We construct a new class of absorbing boundary con-

ditions for elliptical shaped boundaries to be used when
solving acoustic scattering problems by elongated obsta-
cles. These conditions result from alocal approximation
of the DtN operator expressed in Fourier series. Their
main features are : (a) they are exact for the first n modes,
and (b) they are easy to implement and parallelize, and
(c) they retain the local structure of the computational
scheme. We assess the computational efficiency of these
conditions, with respect to the wavenumber and to the ec-
centricity of the artificial boundary, by conducting an an-
alytical study as well as a numerical investigation. The
analysis reveals that one may avoid excessive computa-
tional cost at low wavenumber for many practical appli-
cations. It also provides guidelines for satisfactory per-
formance.

Introduction
Exterior Helmholtz problems are classical mathemat-

ical models for studying scattering problems arising in
many applications such as as sonar, radar, geophysical ex-
ploration, nondestructive testing, etc... Despite their sim-
plicity, this class of problems is not completely solved
particularly from a numerical point of view. For exam-
ple, the computation of the solutions of these problems
requires first to limit it to a finite domain. This is of-
ten achieved by surrounding the given scatterer(s) (or ra-
diator) by an artificial boundary that is located at some
distance (measured in multiples of wavelength of inter-
est) from its surface. A so-called “nonreflecting” bound-
ary condition is then prescribed on the artificial bound-
ary to represent the “far-field” behavior of the scattered
field. The challenge here is the development of a sim-
ple but reliable as well as cost-effective computational
procedure for representing the far-field behavior of the
scattered. The quest for such conditions is ongoing. In
1982, Bayliss et al constructed a second order absorbing
boundary conditions constructed we call here BGT2 that
assumes however a circular or spherical artificial bound-
ary. When applied for solving elongated scatterers, this

condition often leads to larger than needed computational
domains, which hampers computational efficiency. More-
over, the computational cost may become prohibitively
expensive in the low frequency regime.

Our objective here is to construct approximate bound-
ary conditions that can accommodate elliptical-shaped
boundaries that are primary candidates for elongated scat-
terers and can be easily implemented in any finite element
code. These conditions are Robin-type boundary condi-
tions. We construct them by approximating the Dirichlet-
to Neumann (DtN) operator represented in Fourier series
in terms of Mathieu functions (for 2D problems) and pro-
late spheroidal functions (for 3D problems). The key re-
quirement in the construction process of these conditions
is that they are exact for the first modes. We then inves-
tigate mathematically and numerically the performance
of these conditions with respect to the wavenumber and
to the eccentricity of the artificial boundary. The math-
ematical analysis is conducted analytically in the OSRC
context. Because of space limitation, we consider in this
abstract the two-dimensional case and only a summary of
these results are reported.

Second-order local DtN boundary conditions in ellip-
tical coordinates

We restrict the presentation to the case of two-
dimensional Helmholtz problems. Then, in the elliptical
coordinates(ξ, θ), it is possible to approximate the DtN
operator, through suitable algebraic manipulations only,
and construct a class of Robin-type boundary conditions
that are exact for the firstn cylindrical modes. Example
of such absorbing boundary conditions is the following
second order local DtN boundary condition:

∂u

∂ξ
=

√
1 − e2

e(a0 − a1)
[(a0α1 − a1α0)u + (α1 − α0)∆θu]

(1)
where∆θ is the following second order differential oper-
ator:

∆θ =
∂2

∂θ2
−

(eka)2

2
cos 2θI (2)

The constantsa0 anda1 are the characteristic numbers of
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the periodic Mathieu functions [1], and the constantsα0

andα1 are given by:

αn =
Re(3)n

′
(eka, e−1)

Re(3)n (eka, e−1)
(3)

whereRe
(3)

n is the even radial Mathieu function of third
type [1], k is the wavenumber,a the semi-major of the
considered elliptical boundary,e its eccentricity.

The local boundary condition (1) is called a second or-
der absorbing boundary condition because this condition
is exact for the first two even modes. More examples of
such absorbing boundary conditions can be found in [2].

Mathematical analysis
In order to investigate analytically the performance of

the second order local DtN boundary condition (1), we
use the specific impedance which is a practical tool for
measuring the efficiency of absorbing boundary condi-
tions in the context of on-surface radiation conditions
(OSRC). This non-dimensional quantity measures the ef-
fect of the truncated medium in physical terms. It pro-
vides a convenient indicator of the performance of a given
approximate representation. In the elliptical coordinates
system, the specific impedance can be expressed as fol-
lows:

Z =
ieka U(ξ0, θ)

∂U(ξ, θ)

∂ξ
|ξ=ξ0

(4)

whereξ0 defines the boundary of the elliptical obstacle
(radiator or scatterer).

Therefore, the specific impedances of thenth elliptic
cylindrical even mode on the surface of an elliptical cylin-
der atξ = ξ0 are:

• The exact specific impedance (zexact2e
n ):

zexact2e
n = ieka

Re
(3)

n (eka, e−1)

∂Re
(3)

n

∂ξ
(eka, e−1)

, n ≥ 0

• The approximate specific impedance (zDtN2e
n ) corre-

sponding to the second order DtN boundary condi-
tion (1):

zDtN2e
n =

ika (a0 − a1)
√

1 − e2

(a0α1 − a1α0)
︸ ︷︷ ︸

Ae

−cn (α1 − α0)
︸ ︷︷ ︸

Be

Similarly, the exact specific impedanceZexact2

θ cor-
responding to the two-dimensional sound-soft scattered
field u, by an incident plane wave with an incident an-
gle θ0, can be computed easily in terms of Mathieu func-
tions using the Fourier series representation ofu [2]-[3],

while the corresponding approximate specific impedance
ZDtN2e

θ is given by:

ZDtN2e

θ =
ika

√
1 − e2 (a0 − a1)

Ae − Be

(

ikaλ + (ka)2
(

∂λ

∂θ

)2

+
(eka)2

2
cos 2θ

)

(5)
whereλ = cos θ cos θ0 +

√
1 − e2 sin θ sin θ0.

The following result states the asymptotic behavior of
the specific impedances aska → 0.

Theorem
• The asymptotic behavior of the specific impedances

of the nth elliptic cylindrical mode aska → 0 is
given by:

zexact2e

n ∼
4π

(n!)2

(
ka

2

)
2n+1

− i
ka

n
; n ≥ 2 (6)

zDtN2e

n ∼
π

2n2
(ka)3 − i

ka

n2
if n ≥ 2 (7)

• The asymptotic behavior of the specific impedances
of the scattered field on the surface of an elliptical
cylinder aska → 0 is given by:

Zexact2

θ ∼ ZDtN2e

θ ∼ 1 − i
1

2ka
(8)

The previous theorem reveals that the asymptotic
behavior of both the exact and the DtN2e specific
impedances are identical in the case of scattering prob-
lems. However, for radiator problems the situation is dif-
ferent since it depends on the order of the modes. More
specifically, the theorem states that for higher modes,
the real part ofzexact2e

n tend to zero faster for very low
wavenumberka than the corresponding part ofzDtN2e

n ,
while the imaginary part ofzexact2e

n tend to zero slower
than the corresponding part ofzDtN2e

n . This indicates that,
for higher modesn, DtN2e will perform poorly and there-
fore may not be appropriate.

Numerical investigation
We have performed several numerical experiments to

investigate the effect of the wavenumberka and the ec-
centricity e on the performance of the DtN2e condition.
Such investigation includes a performance comparison
with the exact specific impedances as well as with the
approximate specific impedancesZBGT2 corresponding
to the second order Bayliss-Gunzburger-Turkel condition
(BGT2) [4]. The results depicted in Fig. 1 and Fig. 2.
are obtained forka = 0.1, 1, 10 in the case of a bound-
ary with a mild eccentricitye = 0.4 and a very elon-
gated boundarye = 0.9. The results obtained in the
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case of scattering problems indicate, as predicted analyt-
ically, that the range of satisfactory performance of the
DtN2e condition extends to relatively low wavenumbers
(ka = 0.1) for all values of eccentricity.

Illustrations

Radiator problem, moden = 2 even
ka = 0.1
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Figure 1: Absolute value of the specific impedance for the second

even elliptic cylindrical mode for the exact (—), the even DtN2 (+ +

+) and the BGT2 (� � �) for e = 0.4 (left) ande = 0.9 (right).

Scattering problem,θ0 = 0
ka = 0.1
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Figure 2: Absolute value of the specific impedance for the exact

(—), the even DtN2 (+ + +) and the BGT2 (� � �) for e = 0.4 (left)

ande = 0.9 (right).
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Abstract
We consider the numerical solution of a two-

dimensional dissipative acoustic vibration problem
in an unbounded domain, under the assumption of
time-harmonic dependence. With this aim, we im-
plement a standard finite element method combined
with an exact PML technique with finite thickness,
which allows recovering the solution of the scattering
problem stated in the original unbounded domain. In
its construction, this exact PML technique overcomes
the dependence of parameters for the discrete prob-
lem. Taking into account different meshes, formed by
triangles or quadrilaterals, the numerical accuracy of
our method and the robustness of the numerical so-
lution used in the discretization are illustrated with
some numerical tests, where we consider acoustic flu-
ids and rigid porous media.

Introduction
We focus our attention on a time-harmonic dissipa-

tive acoustic scattering problem in two dimensions:
computing the fluid pressure field scattered by a rigid
obstacle surrounded by an acoustic fluid or a rigid
porous medium, filling the whole space.

We denote by Ω the domain occupied by the rigid
obstacle and g the Neumann data on its boundary
∂Ω. We consider the following Neumann bound-
ary value problem for the Helmholtz equation, which
models the wave propagation for frequency ω > 0 and
a complex wave number k(ω) with Re(k(ω)) > 0:

−∆u− k(ω)2u = 0 in R2 \ Ω,

∂u

∂n
= g on ∂Ω,

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0,

where u is the pressure field and the last equation is
the Sommerfeld radiation condition. Classically, for
linear acoustic problems k(ω) = ω/c > 0, being c the

fluid sound speed. However if rigid porous materi-
als are taken into account, then the wave number is
complex and satisfies Re(k(ω)) > 0 (see for instance
[1]). For instance, in Darcy like porous model [2],
k(ω) =

√
(ρω2 + is)/c2, being ρ the fluid mass den-

sity at rest and s the flux resistivity of the porous
medium.

The first problem to be tackled for the numeri-
cal solution is to truncate the computational domain
and, consequently, to reduce the original scattering
domain to a bounded domain where we focus our in-
terest.

An exact PML technique
To truncate the computational domain we use the

PML technique, introduced by Bérenger in [3]. As it
is well known, this technique is based on introducing
damping terms in a layer surrounding the domain of
interest. These terms depend on a absorbing func-
tion σ, which plays a key role on the construction of
the PML. Classically, σ is positive and it is chosen
constant or quadratic (see for instance [3]).

Moreover, the governing equations in the PML do-
main can be formally obtained by means of a complex
stretching of variables from the standard Helmholtz
equation. For instance, if the PML is written in
Cartesian coordinates for the x-direction, and this
layer is placed between x = L and x = L∗, the com-
plex stretching of variable x̂ is defined by

x̂ = x + i

∫ x

L
σ(ξ) dξ,

where σ(s) is an absorbing function; for instance, a
typical choice is the quadratic function

σ(ξ) =
σ∗

ω
(L− ξ)2, (1)

with σ∗ > 0.
Instead, we use the exact PML studied in [4] and

[5], which is based on an absorbing function σ with
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unbounded integral, for instance,

σ(ξ) =
1

k(ω)
1

L∗ − ξ
. (2)

With this kind of choice, it has been proved for k(ω)
real and positive that the exact solution is theoret-
ically recovered, even though the thickness of the
PML is finite [4]. In spite of the use of non-integrable
absorbing functions, the resulting discrete problem is
well posed and no numerical drawbacks arise in its
implementation [5].

Let us remark that if the wave number is com-
plex, then the absorbing function is complex valued
as well. In fact, by using a plane wave analysis, it is
easy to check that if Im(k(ω)) 6= 0, then it is neces-
sary to chose a complex absorbing function σ to re-
cover the theoretical accuracy results with the PML
technique. Moreover, if σ were positive and k(ω)
complex, then spurious reflections would arise from
the outer boundary of the PML for any absorbing
function.

Numerical accuracy and robustness
The associated coupled fluid/PML weak problem

leads to a complex-symmetric (non-Hermitian) pres-
sure formulation, which we discretize with standard
finite elements. We use a triangular mesh and linear
finite elements in the fluid domain.

It has been shown in [5] that if bilinear elements on
a structured quadrilateral mesh are used inside the
PML domain and a non-integrable absorbing func-
tion like (1) is considered, then the accuracy of this
method improves that of the same discrete problem
with quadratic absorbing functions.

In spite of the fact that the absorbing function is
not integrable, for quadrilateral meshes and bilinear
elements, all the coefficients in the element matrices
are bounded and this discretization leads to a well
posed finite element problem. Moreover, the use of
unbounded absorbing functions overcomes the prob-
lem of tuning optimal parameters for the PML.

The use of structured quadrilateral meshes in the
PML domain could become a drawback, since match-
ing meshes on the fluid should be created separately.
Moreover, triangular meshes in the fluid domain turn
out useful to fit more precisely the shape of the scat-
terer.

One of the aims of this work is to study the in-
fluence of using triangular meshes inside the PML.
More precisely, instead of the quadrilateral meshes

used typically for Cartesian PML, which are aligned
with the Cartesian directions, we consider unstruc-
tured quasi-uniform regular triangular meshes. We
compare their accuracy and robustness with respect
to those formed by quadrilaterals.

Analogously to the discrete problem with quadri-
lateral meshes and bilinear elements, if we use tri-
angular meshes and linear elements in the PML do-
main, then all the coefficients in the element matri-
ces are bounded and we compute them with standard
quadrature formulas.

To illustrate the performance of our method, we
consider that the obstacle Ω is the unit circle centered
at the origin and the Neumann data is

g(x, y) =
i

4
H(1)

0

(
k(ω)

√
(x− 0.5)2 + y2

)
,

where H(1)
0 is the Hankel function of first kind and

order zero and k(ω) = ω/c.
We have used uniform refinements of the mesh

shown in Figure 1. The number N of elements
through the thickness of the PML is used to label
each mesh.

−2.25 0 2.25
−2.25

0

2.25

N = 2

Figure 1: Structured triangular mesh in the
scattering problem.

Table 1 shows the relative errors obtained using
a structured triangular mesh in the PML domain
with 0.25m of thickness (see Figure 1). When the
quadratic absorbing function is used, the parameter
σ∗ has been computed to minimize the error. We
check that also in the case of the triangular meshes,
the use of unbounded functions improves the accu-
racy of the method.
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Table 1: Comparison of PML methods with un-
bounded and quadratic absorbing functions for ω =
250 rad/s and c = 340 m/s.

Unbounded (1) Quadratic (2)
Mesh Error(%) σ∗ Error(%)
N = 2 2.7233 20.53 c 18.3060
N = 4 0.6757 28.94 c 4.7286
N = 8 0.2826 37.57 c 1.3783

Numerical results show the accuracy and the ro-
bustness of the exact PML technique for the above
mentioned two-dimensional discrete scattering prob-
lems involving acoustic fluids and rigid porous media,
as well.
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Abstract
In [4], [5] a nonreflecting boundary condition(NBC)

for time-dependent multiple scattering was derived,
which is local in time but nonlocal in space. Here, based
on a high-orderlocal nonreflecting boundary condition
(NBC) for single scattering [6], we seek a local NBC for
time-dependent multiple scattering, which is completely
local both in space and time. To do so, we first develop
a high order representation formula for a purely outgoing
wave field, given its values and those of certain auxiliary
functions needed for the artificial boundary condition. By
combining that representation formula with a decomposi-
tion of the total scattered field into purely outgoing contri-
butions, we obtain the first exact, completely local, NBC
for time-dependent multiple scattering. The accuracy and
stability of this local NBC is evaluated by coupling it to
standard finite element and finite difference methods.

1 Local NBC for single scattering
We wish to calculate numerically the time dependent

field u scattered from a bounded scattering region in
three-dimensional space. In this region, there may be one
or more scatterers, and the equation foru may have vari-
able coefficients and source terms. As usual, we surround
the scattering region by an artificial boundaryB, and con-
fine the computation to the regionΩ bounded byB – see
Fig. 1. Then, a nonreflecting boundary condition (NBC)
is needed atB, which guarantees that the solution of the
problem inΩ coincides with the solution of the original
problem in the unbounded region.

We letB be the sphere of radiusR and assume thatu
satisfies the homogeneous wave equation,

utt − c2∆u = 0, (1)

outsideB. Then, Hagstrom and Hariharan [6] derived the
following exact NBC in three space dimensions:

(1

c

∂

∂t
+

∂

∂r
+

1

r

)

u = w1, (2)
(1

c

∂

∂t
+

k

r

)

wk =
1

4R2

(

k(k − 1) + ∆S

)

wk−1 + wk+1,

for k = 1, 2, . . ., and w0 = 2u. Here, ∆S denotes
the Laplace-Beltrami operator in spherical coordinates
(r, θ, φ),

∆S =
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2
. (3)

Ω
B

Γ

Ψ1

Ψ2

x

y

Figure 1: Wave scattering from an obstacleΓ. The
computational domain,Ω, is bounded by the artificial

boundaryB, where the local NBC (2) is imposed.
Subsequent evaluation of the solution in other

sub-domains,Ψ1,2 is possible via (4) by using past
values ofu andwk atB.

In two dimensions, a similar expansion is available;
however, it is no longer exact but only asymptotic in in-
verse powers of R. The boundary condition (2) islocal
in space and time and does not involve high-order deriva-
tives, but instead an infinite sequence of auxiliary vari-
ableswk defined onB. In practice, only a finite num-
ber,P , of auxiliary variables is used. Then, the boundary
condition remains exact for any combination of spherical
harmonics up to orderP , while the error introduced at
B generally behaves likeR−2P−1. Hence,P can always
be chosen large enough to reduce the error introduced at
B below the discretization error inside the computational
domain, at any fixedR. Because it does not involve high-
order derivatives, this local boundary condition is easily
combined with standard numerical methods and enables
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arbitrarily high order implementations. Recently, it was
extended to the time dependent Maxwell equations [2].

When the solution consists of a finite sum of spher-
ical harmonics up to orderP , the local NBC (2) with
k = 0, . . . , P becomes exact. Then, the past values of
u and the auxiliary functionswk at r = R determine the
solutioneverywhere outside Ω through the following ex-
act (analytical) representation:

u[P ](r, θ, φ, t) (4)

=
R

r

P∑

k=0

2k−1

k!

(

R
(

1 −
R

r

))k

wk(R, θ, φ, t − r−R
c

).

For a general wave field, equation (4) yields an approx-
imate evaluation formula foru in the exterior region,
whose accuracy improves with increasingP (or R).

2 Local NBC for multiple scattering
When the scatterer consists of several obstacles, which

are well separated from each other, the use of a single
artificial boundary to enclose the entire scattering region
becomes too expensive. Instead it is preferable to en-
close every sub-scatterer by a separate artificial bound-
ary Bi. Then we seek an exact boundary condition on
B =

⋃
Bi, where eachBi surrounds a single computa-

tional sub-domainΩi. This boundary condition must not
only let outgoing waves leaveΩi without spurious reflec-
tion from Bi, but also propagate the outgoing wave from
Ωi to all other sub-domains, which it may reenter subse-
quently. To derive such an exact boundary condition, an
analytic representation of the solution everywhere in the
exterior region is needed, as in (4).

For simplicity, we consider a scattering problem with
two bounded disjoint scatterers, each surrounded by a
sphereBi of radius,Ri i = 1, 2. Hence, the entire ar-
tificial boundaryB = B1∪B2 and the computational do-
mainΩ = Ω1 ∪ Ω2. In contrast to the situation of single
scattering above, we cannot simply expandu outsideB

as a superposition of purely outgoing wave fields. In fact,
since part of the scattered field leavingΩ1 will reenterΩ2

at later times, and vice versa,u is not outgoing ousideΩ.
Thus, the boundary condition we seek atB must not only
let outgoing waves leaveΩ1 without spurious reflection
from B1, but also propagate those waves toΩ2, and so
forth, without introducing any spurious reflections.

Following [5], we first decompose the scattered fieldu

in two wave fields,u = u1+u2, whereui is purely outgo-
ing as seen fromΩi. The two wave fieldsu1 andu2 both
solve the homogeneous wave equation (1) outsideΩ, and
their sum coincides withu. The outgoing fielduout

1
, as

seen fromΩ1, is fully determined by its boundary values
on B1, while the incoming fielduin

12
is fully determined

by its boundary values onB2. Hence,

uout
1

+ uin
12

= u|B1
,

uout
2 + uin

21 = u|B2
,

(5)

whereuout
i is the outgoing wave field fromΩi anduin

ij is
the incoming wave propagating fromΩj to Ωi.

Next, we applyc−1∂t+∂ri
+R−1

i in local spherical co-
ordinates(ri, θi, φi) to u on each artificial boundary com-
ponentBi, i = 1, 2. This yields the following exact local
NBC for multiple scattering:

B1u|B1
=

(1

c

∂

∂t
+

∂

∂r1

+
1

R1

)

u|B1

= B1u
out
1 + B1u

in
12 onB1,

B2u|B2
=

(1

c

∂

∂t
+

∂

∂r2

+
1

R2

)

u|B2

= B2u
out
2

+ B2u
in
21

onB2.

(6)

To evaluateB1u
out
1

we use (2) atB1, whereas to eval-
uateB1u

in
12

we use (4) foru2 on B1. The needed past
values ofwk are stored on eachBi at regular time and an-
gular intervals and calculated, as needed, via local spline
interpolation [1]. Because those values are time-retarded,
they are already known, so that the entire scheme remains
explicit in time. Remarkably, the information transfer (of
time retarded values) between sub-domains occurs only
across those parts of the artificial boundary, where outgo-
ing rays intersect neighboring sub-domains, i.e. typically
only across a fraction of the artificial boundary.

x

y

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

Figure 2: Contour lines acrossB obtained either from
the numerical solution for0.5 ≤ r ≤ 1 or the evaluation
formula (4) forr > 1; the source is located at(0.4, 0).

284



3 Numerical Experiments
We shall now illustrate the accuracy of the local NBC

(2) and the evaluation formula (4). To do so, we consider
an outgoing spherical wave generated by a Gaussian point
source located at distanced = 0.4 from the origin. Its
time dependence is determined by

g(t) = e−(t−α)
2/σ2

, α = 0.3, σ = α
7 log 10

(7)

and vanishes outside the time window[0, 0.6]. This exact
solution is used to initialize the numerical solution inside
the computational domainΩ = {(r, θ) | r ∈ [0.5, 1], θ ∈

[0, π])} and we impose (2) for varyingP on the artificial
boudary located atR = 1.

Inside Ω we use standard second-order finite differ-
ences on a regular polar grid. The auxiliary functions
wk in (2) are advanced concurrently withu as in [6].
Outside the computational domain in the regionΩext =
{(r, θ) | r ∈ [1.0, 1.5], θ ∈ [0, π])} directly adjacent to it,
the solution is evaluated using (4). As shown in Fig. 2,
the contour lines acrossB are smooth.

In Fig. 3 we compare the numerical solution along a ray
at a fixed time for varyingP with the exact solution. Next,
the totalL2-error insideΩ vs. the mesh sizeh is shown
in Fig. 4. ForP = 4 we observe the expected global
second-order convergence up to the finest mesh chosen
here. Further mesh refinement generally requires increas-
ing the value ofP .
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Figure 3: Evaluation of the solution atθ = π/2 and
t = 1 for varyingP .
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Figure 4: The totalL2-error is shown vs. the mesh size
h for varyingP .
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Abstract
Techniques to simulate unbounded domains are typi-

cally classified into three categories: (a) exact global ab-
sorbing boundary conditions (global ABCs), (b) approxi-
mate local absorbing boundary conditions (local ABCs),
and (c) perfectly matched layers (PML). While there exist
links between global and local ABCs, PML has always
been thought of as a conceptually disparate technique.
We have recently shown that there is a simple but illu-
minating link between local ABCs and PML. This link,
which is based on continued fraction ideas, has led to
a new ABC called the perfectly matched discrete layers
(PMDL), which is superior to the PML as well as the lo-
cal and global ABCs.

Introduction
Domain truncation techniques are of paramount impor-

tance in accurate modeling of wave propagation in un-
bounded domains. The primary goal of these methods is
to accurately simulate the effect of the truncated exterior.
Many methods, developed in the past thirty years, can be
classified into three categories that have their respective
advantages and disadvantages:

(a) Global ABCs (e.g. [1]), which attempt to exactly
capture the effect of the exterior through Green’s func-
tions. The obvious advantage is their accuracy. How-
ever, these methods render the computation global in both
space and time and are often prohibitively expensive.

(b) Local ABCs (e.g. [2,3]), which approximate the
Green’s functions with the goal of local computation.
Their main advantage is the computational efficiency.
The disadvantage is that the extension to corner regions
and evanescent waves are not well-developed. Further-
more, the treatment of more complex elastic wave equa-
tion is not well established.

(c) PML [4], which is based on the ideas of material
damping. PML is very effective because of its ability to
attenuate waves while avoiding any interface reflections
by perfectly matching the impedance. The power of PML
lies in its flexibility. The disadvantage is that, a PML,
when discretized, loses its perfect-matching property and
tends to be less efficient than local ABCs.

The above classes of boundary conditions, especially

the PML, are considered conceptually disparate by many
researchers. In this talk, we present a new boundary con-
dition that links the three types of boundary conditions.
Specifically, a simple yet powerful discretization method
is presented for the PML, which preserves the perfect-
matching property of the impedance even after discretiza-
tion. Due to this property, the method is named perfectly
matched discrete layers (PMDL). Originally named the
continued-fraction ABC (CFABC), this boundary condi-
tion combines the accuracy of global ABCs, efficiency of
local ABCs, and the flexibility of PML [6]. The rest of
the abstract contains a brief summary of the underlying
ideas.

Figure 1: Model problem

Perfectly Matched Discrete Layers (PMDL)
Consider the model problem of replacing a full space

with a left half-space representing the interior, and an ab-
sorbing boundary codition representing the exterior on
the right (see Figure 1). An option for the absorbing
boundary condition is the PML. The PML can either be
viewed as an attenuating medium or as stretching the do-
main into complex space. While both versions are equiv-
alent, we consider the complex-stretching version for the
purposes of discussion. When the complex-stretching
PML is discretized with the help of finite elements or fi-
nite differences, the resulting mesh could be viewed as
a regular mesh modified with complex element lengths.
The complex-length finite element mesh contains dis-
cretization errors, and accurate solution typically requires
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small elements.

Figure 2: PMDL mesh is almost similar to PML, but
midpoint integration is performed in conjunction with

linear finite element discretization

The key idea of PMDL is to eliminate the discretization
error with the help of modified integration, thus facilitat-
ing the use of large elements. Specifically, we showed
that if midpoint integration rule is used in conjunction
with linear finite element interpolation (Figure 2), the
discretization error in the impedance disappears; the in-
tegration error completely cancels the error due to dis-
cretization. Since perfect matching is achieved even after
discretization, we call this modification perfectly matched
discrete layers (PMDL). It is also shown in [6] that PMDL
presents a continued-fraction approximation of the ex-
terior Greens function and hence it is formerly named
continued-fraction ABC (CFABC). The PML/CFABC in-
herits the flexibility of PML, and as explained below, it
can be made as accuate as global ABCs, and as efficient
as local ABCs.

Reflection coefficient
Reflection coefficient is the ratio of the amplitude of

artificial reflections to that of the incident wave, and is
often used as the error measure of ABCs. The reflection
coefficient for the PMDL can be derived as [6]:

R =
n∏

j=1

∣
∣
∣
∣

k − 2i/Lj

k + 2i/Lj

∣
∣
∣
∣

2

, (1)

where k is the wavenumber in the direction normal to
the boundary and Lj are the lengths of PMDL/CFABC
layers. Due to the complex stretching of PML,
PMDL/CFABC layers have complex or imaginary lengths
and the reflection coefficient is less than unity for real k,
indicating the effectiveness for propagating waves. Fur-
thermore, it is easy to see that the reflection coefficient

exponentially converges to zero with respect to the num-
ber of PMDL/CFABC layers. This is in contrast with the
conventionally discretized PML, which is polluted with
discretization errors that have polynomial dependence on
the element size. PMDL/CFABC does not have this error,
and the only error is from the truncation of the number of
layers.

Treatment of Evanescent Waves

Typically, many local ABCs neglect special treatment
of evanescent waves with the argument that the com-
putational boundaries can be placed far enough so that
the evanescent waves decay by the time they reach the
boundary. However, in situations where the waves decay
very slowly, the ABCs are to be placed very far from the
scatterer, making the computation very expensive. PML
does treat evanescent waves to some extent, but still re-
quires a rather large number of layers to simultaneously
treat evanescent waves of varying rates of decay. Global
ABCs, as they are exact, treat evanescent waves, but are
extremely expensive.

PMDL/CFABC can be made to accurately treat evanes-
cent waves by a simple modification. By examin-
ing the expression for the reflection coefficient, making
PMDL/CFABC lengths Lj real, one can make the re-
flection coefficient less than unity for evanescent waves
(complex k). We call this real-length PMDL region the
padding region. The difference between PMDL padding
and regular (real) finite element mesh is that PMDL
padding attains exponential convergence, facilitated by
the use of midpoint integration. Many times, in situations
where slowly decaying evanescent waves exist, the solu-
tion accuracy is significantly improved by using just one
or two PMDL padding elements. When both evanescent
and propagating waves are to be absorbed, the padding
region is simply laced with regular PMDL/CFABC, re-
sulting in so-called padded PMDL [7].

PMDL for more Complex Waves (e.g. elastic waves)

The basic ideas of PMDL, namely imaginary stretching
and midpoint integration resulting in exponential conver-
gence, extend to more complex equations such as the elas-
tic wave equation. In fact, it is shown in [5] that the ideas
of PMDL/CFABC are applicable to problems where the
governing equation is linear and second-order in space.

Representative Numerical Example

PMDL/CFABC has been tested for a wide range of
problems including acoustic wave equation, dispersive
acoustics, and elastic wave equations, for various geo-
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metrics including full space, half-space and wave guide.
Figure 3 contains an example result that illustrates the ef-
fectiveness of PMDL/CFABC.

Figure 3: An illustrative result for PMDL: a polygonal
computational domain is laced with three PMDL layers
all around the boundary to simulate full space. Clearly,
the wave front is well-absorbed with just three layers,

indicating the effectiveness of PMDL

Discussion
The discretization of the PML presented above, namely

linear finite elements with midpoint integration, while
simple, has significant implications. Essentially the in-
tegration error eliminates the discretization error, thus
preserving the perfect-matching property even after dis-
cretization. The resulting PMDL/CFABC preserves the
perfect matching of the impedance and high accuracy can
be achieved with just three to five discrete layers. Typ-
ically, regular discretization of the PML requires much
larger mesh.

The PMDL/CFABC is linked closely to Engquist-
Majda boundary conditions as it is closely linked to the
continued fraction approximation of the exterior Green’s
function [8,9]. The reflection coefficient of the PMDL
is very similar to that of Higdon’s multi-directional ab-
sorbers. Since Engquist-Majda and Higon’s boundary
conditions have already been linked to existing local
ABCs by other researchers, PMDL can be considered a
local ABC, thus inheriting their effectiveness in approxi-
mating the Green’s function.

Finally, since padded PMDL/CFABC can be efficient
in treating propagating as well as evanescent waves, it is

similar to global ABCs in thier accuracy.
In conclusion, by unifying the concepts underlying var-

ious boundary conditions, PMDL/CFABC combines the
accuracy of the global ABCs, efficiency of local ABCs
and the flexibilty of PML. This talk would present further
details of the ideas and performance of PMDL/CFABC.
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Abstract
The Perfectly Matched Layers (PML) method, intro-

duced in [1], attracted much attention. This method is
in common use for a numerical analysis of a wide class
of problems. For some problems the convergence of the
method has been proved mathematicaly, see e.g. [2–5].

In this work, we introduce the PML method for the
stationary Schrödinger equation in a “half-plane” with
periodic boundary and Dirichlet or Neumann boundary
conditions. Under rather weak assumptions on the po-
tential, we construct the PML of infinite length for the
original problem supplied with special radiation condi-
tions. Under more restrictive assumptions on the poten-
tial, the special radiation conditions are equivalent to the
classical ones. Solving the problem with the PML of fi-
nite length, we obtain an approximation for the solution
of the original problem with radiation conditions in the
computational domain. We prove that the error of this ap-
proximation tends to zero with an exponential rate as the
length of PML tends to infinity.

Statement of the problem and preliminaries
Let P be an upper “half-plane” in R2 with smooth 2π-

periodic boundary ∂P. Let E = {(y, t) ∈ P : |y| < π}
be the periodicity cell of P. We set Υ± = {(y, t) ∈ P :
y = ±π} and Υ0 = ∂E \ {Υ+ ∪ Υ−}. As it usually
is, the problem in P reduces to a quasi-periodic boundary
value problem in the periodicity cell E. We consider the
stationary Schrödinger equation

(∆ + k2 + q(y, t))u(y, t) = F(y, t), (y, t) ∈ E, (1)

with the quasi-periodicity conditions

∂j
yu(π, t) = e2πiα∂j

yu(−π, t), j = 0, 1, (2)

where (±π, t) ∈ Υ±, and Dirichlet (or Neumann) bound-
ary conditions

u(y, t) = 0 (or ∂νu(y, t) = 0), (y, t) ∈ Υ0. (3)

Here α ∈ [0, 1), ∂y = ∂/∂y, ∂ν = ∂/∂ν, and ν is the
outward normal to Υ0. The parameter k is a fixed real
number that does not coincide with a threshold value, i.e.

k2 6= (n + α)2 for all n ∈ Z. In this section we assume
that the potential q is a smooth real-valued function in P,
q(y, t) = q(y + 2π, t) for all (y, t) ∈ P, and q(y, t) → 0
as t → +∞ uniformly in y ∈ [−π, π].

For all n ∈ Z we set λ±n = ∓
√

k2 − (n + α)2, where
we choose the main branch of the square root. Let N =
{n ∈ Z : |n+α| < |k|}. To the problem (1–3) with q ≡ 0
there correspond incoming waves w+

n and outgoing waves
w−n , where

w±n (y, t) = exp(iλ±n t + i(n + α)y), n ∈ N,

N = {n ∈ Z : |n + α| < |k|}.
Let Π = {(y, t) : |y| < π, t ∈ R}. We denote by
H`

β(Π) the space with norm ‖eβ·; H`(Π)‖, where H`(Π)
is the Sobolew space, eβ : (y, t) 7→ expβt, and β ∈ R.
Let H`

β,α(Π) denote the subspace in H`
β(Π) of all func-

tions satisfying the quasi-periodicity conditions (2) on the
boundary ∂Π of Π. As is known (e.g., see [6]), the map
Aβ = {∆+k2} : H2

β,α(Π) → H0
β(Π) is an isomorphism

if β 6= =λ±n for all n ∈ Z. Let qT (y, t) = q(y, t) for
t ≥ T and qT (y, t) = 0 for t < T , y ∈ [−π, π]. Let β be
such that 0 < β < |=λ±n | for all n ∈ Z \N. We set

w±,T
n = w±n +

∞∑

m=1

(
(A−β)−1qT

)m
w±n , n ∈ N, (4)

where T is a large number such that the series∑
(A−1

−βqT )mw±n converges with respect to the norm in
the space H2

−β(Π). The functions (4) do not depend on
the choice of β, satisfy the quasi-periodicity conditions
(2) on ∂Π and the equation

(
∆ + k2 + qT (y, t)

)
u(y, t) = 0, (y, t) ∈ Π. (5)

The relation w±,T
n = w±n mod H2

β,α(Π) holds. We de-
fine

F(u) = − lim
R→+∞

=
∫ π

−π
u(y, t)(du(y, t)/dt)dy|t=R.

The value F(u) is the flow of the energy that a wave u
transmits to the infinity; e.g. −F(w+

n ) = F(w−n ) > 0.
For the functions (4) we have F(w±,T

n ) = F(w±n ).
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We denote by H`
β(E) the weighted Sobolev space with

norm ‖eβ·;H`(E)‖.

Theorem 1. (see e.g. [6]) Let β and T be the same as in
(4) and let F ∈ H0

β(E). Then for a solution u ∈ H2
−β(E)

to the problem (1–3) the inclusion

u−
∑

n∈N

(an(T )w−,T
n + bn(T )w+,T

n ) ∈ H2
β(E) (6)

is valid for some coefficients an(T ) ∈ C and bn(T ) ∈ C;
moreover,

F(u) =
∑

n∈N

(|an(T )|2F(w−n ) + |bn(T )|2F(w+
n )

)
.

Complex scaling and radiation conditions
Here, for simlicity, we assume that the right hand side

F of the equation (1) has a compact support. Denote

KT
φ = {z ∈ C : z = T + eiψt, 0 ≤ ψ ≤ φ, t ≥ 0}.

In addition to the previous assumptions, we suppose that
for some T0 > 0 and φ > 0 the potential q can be con-
tinued to a function R × KT0

φ 3 (y, z) 7→ q(y, z) ∈ C,
which is analytic in z, smooth 2π-periodic in y, and un-
formly tends to zero as |z| → +∞, z ∈ KT0

φ . Let
ET = {(y, t) ∈ E : t < T}. By applying the complex
scaling t → T + eiφ(t − T ) for t ≥ T (complex change
of variables) to the original problem (1–3), we obtain the
problem
(
∆ + k2 + q(y, t)

)
vT (y, t) = F(y, t), (y, t) ∈ ET , (7)

(
∂2

y + e−2iφ∂2
t + q

(
y, T + eiφ(t− T )

)

+ k2
)
vT (y, t) = 0, (y, t) ∈ E \ ET ,

(8)
∂j

yv
T |Υ+ = e2πiα∂j

yv
T |Υ− , j = 0, 1, (9)

vT = 0 (or ∂νv
T = 0) on Υ0 (10)

with the contact conditions

∂j
t v

T (y, T−) = eiφj∂j
t v

T (y, T+), j = 0, 1, |y| ≤ π.
(11)

Here ∂j
t v

T (y, T−) and ∂j
t v

T (y, T+) denote the limits of
∂j

t v
T (y, t) as t tends to T from the left and from the right

side correspondingly.

Theorem 2. Assume that for all γ > 0 there is no non-
trivial solution to the homogeneous problem (1-3) in the

space H2
γ(E). Let T be a sufficienly large positive number

and let φ < π/2. Then the following assertions hold.
(i) There exists a unique solution vT ∈ H1(E) to the

problem (7-10). This solution is in the space H1
γ(E) if

|γ| < min
n∈Z

{=(eiφλ−n )}.

(ii) Let UT (y, T + eiφ(t− T )) = vT (y, t) for (y, t) ∈
E \ ET . Then UT can be continued to an analytic in z
function (−π, π)×KT

φ 3 (y, z) 7→ UT (y, z) ∈ C.
(iii) Let uT (y, t) = vT (y, t) for (y, t) ∈ ET and

uT (y, t) = UT (y, t) for (y, t) ∈ E \ ET . Then uT is
a solution to the problem (1-3) from the space H2

−β(E).
The inclusion

uT −
∑

n∈N

cn(T )
(

w−,T
n +

∑

m∈N

dn
m(T )w+,T

m

)
∈ H2

β(E)

(12)
holds with some cn(T ) ∈ C and dn

m(T ) ∈ C. The co-
efficients cn(T ) depend on the right hand side F , the
parameter T , and the potential q, while the coefficients
dn

m(T ) depend on the parameter T and the potential q
only, |dn

m(T )| → 0 as T → +∞.
(iv) Let dn

m(T ) (n,m ∈ N) be arbitrary complex co-
efficients with sufficiently small modules. Then for every
F ∈ H0

β(E) there exists a unique solution uT to the prob-
lem (1-3) such that the inclusion (12) is satisfied for some
coefficients cn(T ) ∈ C.

Theorem 2 shows that there exists a unique solution uT

of the original problem (1–3) satisfying the inclusion (12)
for some cn(T ) ∈ C. This solution is related to a unique
solution vT ∈ H1(E) of the problem (7–10) by the com-
plex scaling. From the inclusion (12) it follows the equal-
ity F(uT ) =

∑ |cn(T )|2(F(w−n ) +
∑ |dm

n (T )|2F(w+
n )),

the flux F(uT ) is negative. We call the inclusion (12)
radiation conditions. In the case of sufficiently rapid
decay (say, with exponential rate) of the potential q as
|t| → ∞, t ∈ KT

φ , we are able to get the asymptotics

of the functions w±,T
n (y, t) as t → +∞ in terms of the

waves w±n (y, t). Then the radiation conditions (12) take
the well known form, the solution uT satisfies the radia-
tion conditions

|uT (y, t)−
∑

n∈N

Cnw−n (y, t)| = o(1), t → +∞, (13)

with some coefficients Cn ∈ C. Moreover, it turns out
that uT is independent of T , the coefficients dn

m(T ) tend
to zero and cn(T ) tend to Cn as T → +∞ with the same
rate as q(y, t) goes to zero as t → +∞. In particular, if
the potential q has a compact support, then for some large
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T we have qT = 0, w±,T
n ≡ w±n , and dm

n (T ) ≡ 0. In this
case the coefficiens in (12) are independent of T , from
(12) we get (13) with Cn ≡ cn.

The assertion (iv) of Theorem 2 shows the well-
posedness of the statement of the problem (1–3) with ra-
diation conditions (12) in the general case.

Perfectly Matched Layer method
We search for an approximation of a solution uT to

the problem (1–3) with radiation conditions (12) in some
bounded domain EL, 0 < L < T . Since a solution
vT ∈ H1(E) to the problem (7–11) and uT are coincident
on ET (see Theorem 2), one can search for an approx-
imation of vT instead of an approximation of uT . The
advantage is that vT is in the space H1

γ(E), 0 < γ <

min{=(eiφλ−n )}, of functions “exponentially decreasing”
at infinity , while uT /∈ H1(E). It is clear that vT has
these properties because of the perfecly matched equation
(8). In other words, the equation (8) describes a perfectly
matched layer (PML) of infinite length.

We truncate the domain E at a finite distance R. By
ΥR we denote the boundary of truncation, ΥR = ∂ER \
∂E. Let us also set Υ±,R = {(y, t) ∈ Υ± : t < R}.
With the aim of approximating vT by a solution vT,R to
some problem in the bounded domain ER, we introduce
the problem

(
∆ + k2 + q

)
vT,R = F in ET , (14)

(
∂2

y+e2iφ∂2
t + q

(
y, T + eiφ(t− T )

)

+ k2
)
vT,R(y, t) = 0, (y, t) ∈ ER \ ET ,

(15)

∂j
yv

T,R|Υ+,R = e2πiα∂j
yv

T,R|Υ−,R , j = 0, 1, (16)

vT,R = 0 (or ∂νv
T,R = 0) on Υ0, (17)

∂j
t v

T,R(y, T−) = eiφj∂j
t v

T,R(y, T+), j = 0, 1, (18)

vT,R = 0 (or ∂νv
T,R = 0) on ΥR, (19)

where as artifitial boundary conditions on ΥR we take
Dirichlet (or Neumann) boundary conditions. The equa-
tion (15) describes a PML of the finite length R− T .

Theorem 3. Let the assumptions of Theorem 2 be fulfilled.
There exists R0 > T such that for all R > R0 the problem
(14-19) admits a unique solution vT,R ∈ H1(ER). This
solution vT,R converges to the solution vT ∈ H1(E) of
the problem (7–11) in the sence that

‖vT,R − vT ; H1(ER)‖ ≤ Ce−γ(R−T ), R > R0, (20)

where 0 < γ < minn{=(eiφλ−n )}.

Corollary 4. From (20) it follows the estimate

‖uT − vT,R; H1(EL)‖ ≤ Ce−γ(R−T ) (21)

for the error of approximation of a solution uT to the
problem (1–3) with radiation conditions (12) by a solu-
tion vT,R to the problem (14–19) with PML.

This shows that under a rather weak assumptions on the
potential the PML method is exponentially convergent, it
gives a close approximation of a solution uT to the orig-
inal problem (1–3) with radiation conditions (12). Some
more restrictive assumptions on the potential q allow us
to rewrite the radiation conditions (12) in the well known
form (13).
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Abstract
The problem of global-regional model interaction

(sometimes referred to in the literature as “model nest-
ing”) is considered. Following the introduction, Carpen-
ter’s lateral boundary scheme [1] and its relation to Som-
merfeld’s absorbing boundary condition is presented and
analyzed in the context of the scalar wave equation. Car-
penter’s boundary scheme is then compared with other
possible boundary conditions and is shown to yield bet-
ter results. In the third part, the shortcomings of Car-
penter’s lateral boundary scheme are demonstrated in the
case of a two dimensional model problem and a new lat-
eral boundary scheme, which is based on the Hagstrom-
Warburton (H-W) family of high-order absorbing bound-
ary conditions [2], is presented. This lateral boundary
scheme is then extended further and investigated using a
two-dimensional model problem with wave-guide geom-
etry.

1 Introduction
The use of artificial boundaries to enclose a region of

interest in a much larger, or unbounded, domain is a com-
mon practice. It is well known in the context of wave
problems that if one is not careful, waves that impinge on
an artificial boundary from within the computational do-
main may give rise to spurious reflections that might pol-
lute the numerical solution inside the region. Most of the
problems discussed in the literature are concerned with
the development and use of Absorbing Boundary Condi-
tions (ABCs), which eliminate or significantly reduce the
spurious reflections from the boundary of the computa-
tional domain (see, for example, the reviews in [3], [4],
[5] and references therein). In Numerical Weather Pre-
diction (NWP), for example, a commonly used ABC is
the one developed by Orlanski [6].

In this talk, however, a somewhat different setup is con-
sidered. This setup, which is sometimes called ‘nesting,’
arises in NWP as well as in other fields involving waves
in very large domains [7]. In this setup (an illustration
of which is shown in Fig. 1), one distinguishes between a
Global Model (GM), in which the atmospheric equations
are solved over the entire spherical surface of the globe,
occupying the domain ��� , and a regional or Limited-

Area Model (LAM), in which the solution is sought in a
relatively small region �	� bounded by an artificial bound-
ary 
 E. The GM captures the large-scale atmospheric
phenomena and is based on a coarse grid (about 100km
resolution), whereas the LAM captures the mesoscale
phenomena and is based on a finer grid (typically 10-
20km resolution). The common practice, which is re-
ferred to as “one-way nesting”, is first to solve the global
problem (via the GM) by a certain numerical method, and
then to solve the regional problem (via the LAM), usually
using an entirely different numerical method while taking
into account the relevant GM results. The question that
arises in this context is how to incorporate the GM data
into the LAM model. In constructing such a method two
conflicting requirements have to be addressed – waves
originating from within the LAM domain, ��� , should be
allowed to depart it with minimal reflections (this require-
ment implies the use of an ABC of some sort) but also
waves originating from outside the LAM domain would
be allowed to enter it with minimal distortion (which calls
for the use of the global data for the incoming waves).

�Ω

Ω

��

��
��

Figure 1: A typical setup for the GM-LAM nesting
problem
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2 Carpenter’s boundary scheme for the scalar wave
equation

Consider the following wave equation in � :

��������	� ��
�� ���� in ������� � � (1)

where � � � is the constant wave speed in the domain.
In 1982, Carpenter [1] proposed a simple open boundary
condition to be used on the boundary 
 of a LAM, which
extends the Sommerfeld-like ABC (see [4])

� ��� � � ����� ��� ���� on 
! (2)

Whereas Sommerfled’s ABC handles only outgoing
waves, the Carpenter condition is supposed to absorb
waves outgoing from the LAM while at the same time
admitting incoming waves generated by the GM.

Following is a derivation of the Carpenter scheme. The
solution of the GM is assumed to be known, and is de-
noted � � . The solution of the LAM is sought, and is
denoted � � . Carpenter writes both solutions as sums of
incoming and outgoing waves on 
 , at all times:

� � �� in� �"� out� on 
 (3)� � �� in� �"� out� on 
# (4)

The following assumptions are made. First, it is assumed
that the incoming components of the GM and LAM solu-
tions agree on 
 :

� in� �� in� on 
 (5)

Second, it is assumed that the outgoing components of
both the GM and LAM solutions satisfy the Sommerfeld-
like condition (2) on 
 :

� � � out� ��� ��� � out� �� on 
 (6)� � � out� ��� � � � out� �� on 
! (7)

It should be noted that the Sommerfeld-like condition� �$%� perfectly absorbs outgoing waves only in one
dimension. In higher dimensions this ABC is approxi-
mate, and is in fact quite crude. From (3)–(7) one finally
obtains after simple algebra& � � �'� �(�*) � �  & � � �'� �(�+) � � on 
 (8)

This is the Carpenter lateral boundary condition. Using
the notation

�
for the Sommerfeld operator defined in (2),

(8) can written as

� � �  � � � on 
! (9)

The performance of Carpenter’s lateral boundary scheme
will be analyzed and studied for incoming and outgoing
waves using a one-dimensional model problem (for which
an analytical solution can be found). Particular attention
will be paid to the influence of errors (both in the pre-
scribed GM data and in the LAM itself) on the resulting
computation of the LAM solution (see [8] for further de-
tails).

3 The H-W/Carpenter lateral boundary scheme
Whereas Carpenter’s lateral boundary scheme is based

on Sommerfeld’s ABC, it is possible, building on (9),
to construct other boundary schemes using high-order
ABCs. This course is pursued since Sommerfeld’s ABC,
while being exact for the one-dimensional non-dispersive
wave equation, performs poorly in multi-dimensional sit-
uations. For this purpose, the Hagstrom-Warburton (H-
W) family of high-order ABCs [2] will be used. Follow-
ing the description of the H-W boundary conditions and
their basic properties, the corresponding H-W/Carpenter
lateral boundary scheme is derived and analyzed.

3.1 The Hagstrom-Warburton (H-W) family of high-
order ABCs

,-.Γ /
Γ

0Γ
Ω

1324

5768
9;:=<>

?5 8 @A B
Figure 2: A two-dimensional wave-guide set-up

Consider the following wave problem defined in a two-
dimensional waveguide domain, � WG DC � �FEHGJI C � �LKLG ,
as shown in Fig. 2. Along the domain’s boundary a non-
homogeneous Dirichlet boundary condition is imposed on

 W and an homogeneous Neumann boundary condition is
imposed on 
 S and 
 N.�M��N���O� �P
Q� �RS� in � WG ���T� � (10)��VU On 
 W (11)� � ���� On 
 S ��
 N (12)� &=W � � ) ��MX &=W ) in � WG (13)� � � &=W � � ) �YZX &=W ) in � WG (14)

where � is the wave speed, U the Dirichlet data on 
 W

and �[X � Y�X the initial displacement and velocity. In or-
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der to solve the problem numerically, an artificial bound-
ary, 
 E, is introduced, dividing � WG into a finite do-
main, �  C � ���(G I C � �LKLG (it is assumed that the both� X and Y X vanish outside � ) and an external domain,
� Ext  C ���FE ) I C � �LKLG . Using a set of auxiliary functions,��� ��� �	� �
  P P �� , defined on � Ext, a set of recurrence re-
lations for the auxiliary functions, (15)-(17), is imposed
on 
 E. & � X � � �'� �(�*) �R � � � ���� (15)& � � � � �'� �(�+) � � ���  & � � � � �	� �(�*) � � ������ � �
   �� (16)� �������� ��  (17)

Where ��� � ��� 
 , �  �  P P �� , are some given con-
stants. From (15)-(17) it follows (see [2]) that the auxil-
iary functions, � � ��� , satisfy the following wave problem
in the external domain, � Ext:� �� � ����� �O� � 
 � � ����� �� in � Ext (18)� � � � ��� �� On 
 S ��
 N (19)� ����� &�� � �[� � )  � � � � ��� &�� � �[� � ) S�  (20)

Using the process detailed in [2] it is possible to derive
a set of � second-order equations for the auxiliary func-
tions, involving only derivatives w.r.t. � and � , which is
equivalent to the recursive first-order set, (15)–(17). This
set can be written in matrix form as:! �M��#" �%$ �M�& " (' � (21)

where
!

and $ are two � I)� real matrices (whose en-
tries are known), " +* � ���� �P P P �� � �,����- T, and ' is a vec-
tor whose only nonzero entry is the first one, which de-
pends on � and its derivatives. The Hagstrom-Warbutron
(H-W) ABC comprises, then, the system (21) and (15).

3.2 The H-W/Carpenter lateral boundary scheme
If we examine the last

& � �.
 ) equations of (21), which
define an under-determined system of

& � �(
 ) equations
in � unknowns, it is possible to express � ���� , or, better
yet, � � � �/�0�� , in terms of the remaining � �1
 auxiliary
functions:

� � � � �0�� & �[�;� ) �243 � � � � �P P P � � �,���65 & �[�;� )  (22)

Since, according to (21), all the auxiliary functions de-
pend only on � , (22) could be written, in fact, as:

� � � � ���� & �M�;� ) �87 � C � G (23)

where 7 � is some operator, which will not be calculated
explicitly. Using this expression for

� � � ���� , it is possible
to write the H-W ABC in operator form:�

H-W
C � G � C � X � � �'� �(� �47 � G ��S� (24)

Note that if � X 9
 , then the first two terms in (24) are,
in fact, Sommerfeld’s operator, (2). Using this form of
the H-W boundary operator enables it to be used, in (9)
instead of Sommerfeld’s operator, thus producing the H-
W/Carpenter lateral boundary scheme which will be ana-
lyzed for several problems.
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Abstract
We compare several local absorbing boundary condi-

tions for solving the Helmholtz equation exterior to an el-
lipse. We also introduce a new boundary condition based
on a modal expansion.

Introduction
When computing wave scattering about a body either

in the time domain or the frequency domain one needs
to truncate the unbounded domain and introduce an ar-
tificial surface with a boundary condition to prevent re-
flections of outgoing waves into the domain. We consider
local absorbing boundary conditions (ABC) that link only
nearby neighbors of a boundary point. We shall consider
the Helmholtz equation in frequency space. Bayliss and
Turkel [2] and later Gunzburger (BGT) [3] constructed a
sequence of absorbing boundary conditions, for the wave
equation, based on matching terms in the series based
on the inverse radius1R . Since the condition is writ-
ten in polar coordinates it is most convenient when the
outer surface is a circle or sphere. The most popular
is BGT-2 which contains a first order normal derivative
and a second order tangential derivative and can be eas-
ily implemented in both finite differences and linear finite
elements. Preferably the outer artificial surface should
have a shape reasonably close to the scatterer. Many at-
tempts have been made to generalize BGT to more gen-
eral shapes. The series developed where either in some
generalized radius, or the inverse wave number or else a
modal expansion and also an approximation to the DtN
method. Remarkably, all these approaches reduced to the
BGT condition for a circle or sphere, at least through sec-
ond order. However, they differ in the boundary condition
constructed for other outer shapes. We consider scatter-
ing about an ellipse for which the exact solution is known.
We compare several approaches both for an On Surface
Radiation Condition (OSRC) and as the outer boundary
condition for a finite difference approximation in ellipti-
cal coordinates. The boundary conditions we compare are
those of Reiner et.al [8], Kriegsmann et.al [6], Jones et.al
[4], Kallivokas et.al [5] and Antoine et.al [1].

The BGT condition was developed from a series in
1
R . For scattering about a circle an alternative is to use
a modal expansion in Hankel functions [7]. Forka large

this gives results similar to the BGT approach. However,
for small wavenumbers it is significantly better [9]. For
scattering about an ellipse we consider a modal expansion
in Mathieu functions. The resultant ABC has the same
structure as before but the coefficients involve Mathieu
functions. We compare this new ABC for an outer ellipse
with the other boundary conditions.

New Absorbing Boundary Condition
Assume an expansion in arbitrary functions [7]

w = α0ψ0(kξ) + α1ψ1(kξ) (1a)

∂w

∂ξ
= kα0ψ

′
0(kξ) + kα1ψ

′
1(kξ) (1b)

∂2w

∂ξ2
= k2α0ψ

′′
0(kξ) + k2α1ψ

′′
1(kξ) (1c)

Solving forα0 andα1 from the first two equations we get

α0 =
kψ′1w − ψ1

∂w
∂ξ

k (ψ0ψ′1 − ψ′0ψ1)

α1 = −
kψ′0w − ψ0

∂w
∂ξ

k (ψ0ψ′1 − ψ′0ψ1)

substituting in (1c)

∂2w

∂ξ2
+k

(ψ1ψ
′′
0 − ψ0ψ

′′
1)

ψ0ψ′1 − ψ′0ψ1

∂w

∂ξ
+k2 (−ψ′1ψ′′0 + ψ′0ψ

′′
1)

ψ0ψ′1 − ψ′0ψ1
w = 0

Introduce elliptical coordinates

x = f cosh(u) cos(v) y = f sinh(u) sin(v)
ξ = cosh(u) η = cos(v)

The Helmholtz equation is given by

∂2w

∂u2
+
∂2w

∂v2
+
k2f2

2
(cosh(2u)− cos(2v))w = 0 (2)

Assumew = F (u)G(v). Then

d2F

du2
+
(
k2f2

2
cosh(2u)− a

)
F = 0

q =
f2k2

4
=
k2

4
(
A2 −B2

)
(3)
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”a” is separation constant determined soG(v) is periodic
which leads to either even or odd solutions with eigenval-
uesar(q) for r even. Chooseψj j=1, 2 as the first two
even Mathieu-Hankel functions,M0,M1 with the corre-
sponding characteristic valuesa0, a1. Define

−D
M0M1

=
M0

M ′0
− M1

M ′1

Then we get

∂2w

∂u2
− (a1 − a0)M0M1

D

∂w

∂u
(4)

−
(
a0 − 2q cosh(2u)− (a1 − a0)M ′0M1

D

)
w = 0

We use the Helmholtz equation to eliminate∂
2w
∂ξ2 in terms

of ∂
2w
∂η2 . Subtracting (2) from (4) we get

(a1 − a0)
∂w

∂u
=
−D
M0M1

∂2w

∂v2
(5)

+
(
−D
M0M1

(a0 − 2q cos(2v)) +
(a1 − a0)M ′0

M0

)
w

Results
We first consider several boundary conditions imposed

directly on the scattering ellipse (OSRC). The physical
boundary condition is a Dirichlet condition for the scat-
tered wave. The ABC then gives the normal derivative on
the scatterer which we compare to the exact one. In all
cases the angle of the incident plane wave is 0, the ma-
jor axis is 1 and we vary the minor axis. In figure 1 we
compare several methods with the exact solution fork=1
and an aspect ratio of 2. The error between the approxi-
mate OSRC solutions and the exact normal derivative is
given in the legend. In figure 2 we considerk = 1 but
aspect ratio 5. In figure 3 we consider the aspect ratio of
2 but with k = 5. In all cases the solution at180◦ (i.e.
behind the ellipse in the shadow region) is quite poor. For
k=1 the ABC of Reiner et.al works best among the stan-
dard ABCs. For higherk the various methods get closer
though now Kriegsmann et.al followed by Reiner et.al are
the best. However, it is clear that the new method based
on Mathieu functions is far superior especially for low
and intermediate frequencies.

We next consider the same problem but exterior to the
ellipse and solved with a finite difference method. The
scatterer and outer artificial surface are concentric el-
lipses with semi-major axis 1 for the scatterer and ap-
proximately 1.5 for the outer surface. We consider the
same three cases as with the OSRC. The new ABC based

on a modal expansion in Mathieu functions, (5) is again
the best. For an ABC based on expansions the ABC of
Jones et.al is next best. For higher wavenumbers most
of the boundary conditions yield similar accuracy and the
easiest to implement is that of Kriegsmann et.al.

The new modal based boundary condition (5) is supe-
rior to the those based on expansions both as an OSRC
and as an ABC. It remains accurate for low frequencies
and high angles of attack (not shown).
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Abstract
Perfectly matched layers (PMLs) are used for the nu-

merical solution of wave propagation problems on un-
bounded regions. They surround the finite computational
domain (obtained by truncation) and are designed to at-
tenuate and completely absorb all the outgoing waves
while producing no reflections from the interface between
the domain and the layer. PMLs have demonstrated ex-
cellent performance for many applications. However,
they have also been found prone to long-time instabili-
ties. Hereafter, we propose a modification that stabilizes
any PML applied to a hyperbolic partial differential equa-
tion/system that satisfies the Huygens’ principle. The
modification makes use of the presence of lacunae and
allows us to rigorously prove a temporally uniform error
bound for arbitrarily long time intervals.

Introduction
Numerical solution of infinite-domain problems re-

quires truncation of the unbounded domain for the pur-
pose of constructing a finite-dimensional discretization.
Then, one needs to set some artificial boundary condi-
tions (ABCs) at the outer boundary of the computational
domain. They should provide a closure for the truncated
formulation and guarantee that its solution will not dif-
fer much from the corresponding fragment of the original
infinite-domain solution (ideally, will coincide with it).

For the problems of propagation of electromagnetic
waves, a very efficient closure mechanism was introduced
by Bérenger [1], [2]. He proposed to surround the compu-
tational domain by a layer of artificial material capable of
rapidly damping all the outgoing waves while generating
no reflections from the interface between the domain and
the layer. It was called a perfectly matched layer (PML).
The PML capabilities were attained in work [1], [2] by
splitting the field components, i.e., introducing additional
unknowns and equations in the layer, and then using the
resulting extra degrees of freedom for the development of
an efficient waves’ attenuation strategy.

It has also been noticed [3], however, that the
Bérenger’s split transforms the strongly hyperbolic (sym-
metric) Maxwell’s equations into a weakly hyperbolic

Work supported by the US AFOSR, Grant No. FA9550-04-1-0118.

system, which, in turn, implies transition from strong
well-posedness to weak well-posedness of the Cauchy
problem. A weakly well-posed system can become ill-
posed under a low order perturbation, and an example
of such a perturbation for the Bérenger’s equations was
given in [3]. Even though it has later been shown [4] that
the actual form of the Bérenger’s system does not lead to
ill-posedness, the system still remains only weakly well-
posed, and a linear growth of the split field components
inside the PML is possible. This behavior may lead to
an instability of the discretization, and it has indeed been
demonstrated in [3] for the very popular Yee scheme.

In spite of the excellent performance of PML [1], [2]
in many applications, concerns about its stability have
prompted development of other types of PMLs [5], [6],
[7]. These alternative strategies do not require splitting of
the field components, although they still introduce addi-
tional unknowns inside the layer. Later, however, the un-
split PMLs have also been found susceptible to gradually
developing instabilities [8]. A remedy has been proposed
in [8] for unsplit PMLs based on changing the governing
equations in the layer. It has been experimentally shown
to work well, but theoretically it is unclear whether the
modified layer remains perfectly matched and absorbing.

Lacunae-based methods for the numerical integration
of hyperbolic equations and systems have been devel-
oped quite independently. They apply to the equations
that satisfy the Huygens’ principle [9] and guarantee a
temporally uniform grid convergence for any consistent
and stable scheme applied to the problem of radiation of
waves by a known source [10]. The basic idea of lacunae-
based methods is that once the domain of interest falls
completely into the lacuna of the solution [11], the inte-
gration does not need to be continued any further. The
presence of the lacunae can also be efficiently exploited
for the construction of exact ABCs for various wave prop-
agation problems [12], [13], [14]. These ABCs have only
a fixed and limited extent of temporal nonlocality.

In this paper, we use the idea of lacunae-based integra-
tion for stabilizing the PMLs. Our key result, Theorem 1,
says that for a finite computational domain lacunae-based
integration guarantees that the PML-induced errors will
remain uniformly bounded for all times.
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Main Theorem
Consider a Cauchy problem:

∂w

∂t
+ Lw = f (x , t), x ∈ R3, t > 0,

w(x , 0) = ϕϕϕ(x ), x ∈ R3,
(1)

where the operator L is linear, suppf ⊆ Ω× [0,+∞) &
suppϕϕϕ ⊆ Ω, and Ω ⊂ R3 is bounded. We require that
the operator ∂/∂t + L of (1) satisfies the Huygens’ prin-
ciple. Mathematically, this means that the waves due to
a compactly supported source (in space-time) have sharp
aft fronts. In other words, at any fixed location of the
observer these waves come and pass, and the solution be-
comes identically zero after a finite time. This time is no
greater than the maximum distance between the observer
and the source divided by the wave propagation speed c.

Let diamΩ = d, denote by T = d/c the characteristic
time, which is required for the waves to cross the domain
Ω, and let T1 > 0. We partition the RHS f (x , t) of (1):

f (x , t) =
∞∑

m=0

fm(x , t),

fm(x , t) =

{
f (x , t), tm ≤ t < tm+1,

0 , otherwise,

(2)

where tm = mT1, and consider the Cauchy problems:

∂wm

∂t
+ Lwm = fm(x , t), x ∈ R3, t > tm,

wm(x , tm) =

{
ϕϕϕ, m = 0,

0 , m > 0,
x ∈ R3.

(3)

Each problem (3) is Huygens’, and hence its solution
wm(x , t) becomes zero on Ω after the time T1 + T
elapses, i.e., for t ≥ tm + T1 + T . Therefore,

w(x , t) =
M∑

m=M0

wm(x , t), x ∈ Ω, t ≥ 0, (4)

where M0
def= [(t− T )/T1], M

def= dt/T1e − 1, [α] is the
integer part, and dαe is the smallest integer≥ α. As such,
formula (4) represents the solution w(x , t) of problem
(1) as the sum of a finite non-increasing number of com-
ponents wm(x , t) that each has a finite non-increasing
“lifespan” T1 + T on Ω (until Ω falls into the lacuna).

In reality we are not solving problem (1) directly. In-
stead, we are solving a combined formulation that in-
volves the PML outside Ω:

∂w (Ω)

∂t
+ Lw (Ω) = f (x , t), x ∈ Ω, t > 0,

w (Ω)(x , 0) = ϕϕϕ, x ∈ Ω,

(5a)

∂w (PML)

∂t
+ L(PML)w (PML) = 0 , x ∈ PML, t > 0,

w (PML)(x , 0) = 0 , x ∈ PML, (5b)

A PML is designed to guarantee that

w (Ω)(x , t) ≡ w(x , t), x ∈ Ω, t ≥ 0. (6)

In reality, however, a PML can amplify small perturba-
tions ξξξ of the initial data:

‖w̃ (Ω)( · , t)−w (Ω)( · , t)‖ ≤ µ(t)‖ξξξ‖′, (7a)

‖w̃ (PML)( · , t)−w (PML)( · , t)‖ ≤ µ(t)‖ξξξ‖′. (7b)

In formulae (7), w̃ (Ω) is the solution of the perturbed
problem (5a), and w̃ (PML) is the solution of the perturbed
problem (5b). The rate of growth µ(t) is either linear or
quadratic for standard PMLs, see [3], [8], [4]. In actual
computations, the perturbations ξξξ originate from the trun-
cation error, and estimates (7) indicate that for long sim-
ulation times the accuracy of the solution can be ruined.

If, however, instead of (5) we consider individual prob-
lems (3) supplemented by the PML, then estimates (7)
will immediately transform into:

‖w̃ (Ω)
m ( · , t)−w (Ω)

m ( · , t)‖ ≤ C‖ξξξ‖′, (8a)

‖w̃ (PML)
m ( · , t)−w (PML)

m ( · , t)‖ ≤ C‖ξξξ‖′, (8b)

where C = µ(T1 + T ) is a constant. Combining estimate
(8a) with formula (4), we obtain:

‖w̃ (Ω)( · , t)−w (Ω)( · , t)‖ ≤ C0‖ξξξ‖′, (9a)

where C0 = C·(M−M0+1). In contradistinction to (7a),
estimate (9a) implies that even if the PML errors contam-
inate Ω, the resulting error on Ω will remain uniformly
bounded for all times. Thus, with relation (6) taken into
account, we have proved:

Theorem 1 Let Ω ⊂ R3 be a bounded domain, and let
problem (1) be solved using a PML around Ω combined
with the lacunae-based algorithm, see (2), (3), (4) and
(5). Then, the error on Ω due to the perturbations ξξξ in the
PML will remain uniformly bounded for all times:

‖w̃ (Ω)( · , t)−w( · , t)‖Ω ≤ C0‖ξξξ‖′. (9b)

The error growth inside the PML is also uniformly
bounded, but the estimate should be written differently:∥∥∥ M∑

m=M0

w̃ (PML)
m ( · , t)−

M∑
m=M0

w (PML)
m ( · , t)

∥∥∥ ≤ C0‖ξξξ‖′.

(9c)
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The first and second terms on the left-hand side of (9c)
are solutions in the PML with and without perturbations,
respectively. They are left in the form of the sums because
the lossy equations of the PML shall not be expected to be
Huygens’, and equality (4) typically won’t hold. In other
words, since the solution is represented as a finite sum
of terms with finite lifespan, the uniform bound (9c) is
guaranteed. However, unlike on Ω, the solutions obtained
in the PML with and without lacunae are not the same.

Discussion
Unlike in the approach proposed in [8], the PML equa-

tions never get modified by lacunae-based integration,
and for each individual problem after the partition (2) the
layer remains perfectly matched and absorbing.

Our analysis imposes no constraints on the rate of
growth µ(t), see (7), and C0 in inequality (9b) is a con-
stant in any event. The actual value of this constant
C0 = µ(T1+T )·(M−M0+1), however, may or may not
be acceptable in a particular context. If µ(t) is a slowly
increasing function, then C0 will not be large.

In practice, the lacunae-based algorithm is imple-
mented in a continuous framework [10], [12]. Namely,
formula (4) implies that at every moment of time t we
need to know solutions of M −M0 +1 ≡ dt/T1e− [(t−
T )/T1] individual problems that form the “active set.” As
the overall solution evolves, new problems are added to
this set while the “expired” problems (for which Ω is al-
ready in the lacuna) are dropped. The total number of
problems in the set never exceeds a certain maximum (2
for T1 ≥ T ). Of course, the computational cost increases
compared to the standard time marching. If, say, T1 = T ,
then every moment of time t needs to be passed twice dur-
ing the integration. As, however, the individual problems
are independent, they can be solved concurrently on a par-
allel computer. In addition, the overhead can sometimes
be reduced. If T1 > T , the average number of integration
passes through a given t is 1 < (T1 + T )/T1 < 2, which
is close to 1 for T1 � T . The constant C0 ∼ µ(T1+T ) in
this case will increase, but this, again, is not necessarily
a limitation because according to [8] µ is large only for
very long times. In the limit T1 →∞, we are back to the
conventional time marching with no use of lacunae.

The original problem may involve a more sophisticated
mechanism of waves’ generation than the source terms of
(1). There may be radiation, scattering, variable coeffi-
cients in the governing equations, etc. As long as all these
phenomena are confined to Ω, and the operator ∂/∂t + L
remains Huygens’ on R3 \ Ω, the lacunae-based method-
ology will still apply. In this case, the problem needs to be

split into the interior and auxiliary sub-problems as when
setting the ABCs [12], [13], [14]. In doing so, the auxil-
iary sub-problem will be precisely of type (1).
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[2] Jean-Pierre Bérenger. Three-dimensional perfectly
matched layer for the absorption of electromagnetic
waves. J. Comput. Phys., 127(2):363–379, 1996.

[3] S. Abarbanel and D. Gottlieb. A mathematical analysis
of the PML method. J. Comput. Phys., 134(2):357–363,
1997.
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Abstract
A new approach to derive transparent boundary con-

ditions (TBCs) for wave, Schrödinger and drift-diffusion
equations is presented. It relies on the pole condition ap-
proach and distinguishes physical reasonable and unrea-
sonable solutions by the location of the singularities of the
spatial Laplace transform U of the exterior solution. By
the condition that U is analytic in some region TBCs are
established. To realize the pole condition numerically, a
Möbius transform is used to map the region of analyticity
to the unit disc. There the Laplace transform is expanded
in a power series. The equations coupling the coefficients
of the power series with the interior provide the TBC. Nu-
merical result for the damped wave equation show that the
error introduced by truncating the power series decays ex-
ponentially in the number of coefficients.

Introduction
Transparent boundary conditions are a key ingredient

for the simulation of wave propagation on unbounded do-
mains. In this talk work in progress is presented.

Prototypes of the governing equations under consider-
ation are the wave, drift-diffusion and Schrödinger equa-
tions on the real line for t > 0 given by

∂ttu = ∂xxu − k2u, (1)

∂tu = ∂xxu + 2d∂xu, (2)

i∂tu = ∂xxu − k2u. (3)

All of these have to complemented by appropriate initial
values. To treat (1) - (3) simultaneously the symbol p(∂t)
is introduced. Hence the generic equation is

p(∂t)u = ∂xxu + 2d∂xu − k2u. (4)

For the procedure to derive exact non-local transparent
boundary conditions we refer to the recent review arti-
cles [1]. The pole condition approach is an alternative
and as we hope to show a more flexible way of deriv-
ing transparent boundary conditions. Almost immedi-
ately the pole condition approach yields an algorithm to
implement approximate local transparent boundary con-
ditions. The pole condition for time-harmonic problems
is studied in [2], where it is shown that it coincides with
the Sommerfeld radiation condition.

Alternative derivation of TBCs
Suppose we are only interested in the solution u re-

stricted to the interval [−a, a]. Furthermore suppose that
the initial value(s) are compactly supported in [−a, a]. To
truncate the computational domain TBCs are needed. The
exact TBCs are in general convolution in time, i.e. they
are non-local.

Variational formulation
Multiplying (4) by a test function and integrating over

the real line yields
∫

p(∂t)uv dx =

∫
−∂xu∂xv + 2d∂xuv − k2uv dx. (5)

As test functions we chose v(x) = e−s(x−a) for x > a

and v(x) = es(x+a) for x < −a with a complex parame-
ter s with <s > 0. The integral over the real line is split
into three parts: an integral from −∞ to −a, from −a to
a and from a to ∞. Defining

U (r)(t, s) :=

∫ ∞

0

u(t, x + a)e−sx,

which is the Laplace transform of the solution u in the
right exterior, and similar U (l) one obtains after some
simple manipulations
∫ a

−a

p(∂t)uv dx + p(∂t)U
(r) + p(∂t)U

(l) =

∫ a

−a

−∂xu∂xv + 2d∂xuv − k2uv dx

+s(sU (l) − u−a) − 2d(s(U (l) − u−a)) − k2U (l)

+s(sU (r) − ua) + 2d(s(U (r) − ua)) − k2U (r),

where u±a are the boundary values of u at the left and
right boundary.

Pole Condition
Consider the equation for the right exterior only, sup-

pose for the moment that u is given on [−a, a] and set

u′ :=

∫ a

−a

p(∂t)uv dx + ∂xu∂xv − 2d∂xuv + k2uv dx.

Then the equation for U (r) is given by

s(sU (r)−ua)+2d(sU (r)−ua)−k2U (r)−p(∂t)U
(r) = u′ .
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Taking a Laplace transform in time with dual variable ω,
p(∂t) corresponds to a multiplication with p(ω) = ω,
p(ω) = iω or p(ω) = ω2 depending on the type of equa-
tion. Solving for U (r)(s) one obtains

U (r)(s) = (s2 + 2ds − k2 − p(ω))−1(u′ + sua + 2dua).

Clearly U (r)(s) is analytic in s except for two poles (or
more generally for several singularities). If s− and s+ are
the roots of (s2 + 2ds − k2 − p(ω)) one can write by
Cauchy’s integral formula

U (r)(s) =
1

2π

∮

γ−

(σ2 + 2dσ − k2 − p(ω))−1

σ − s
dσ

+
1

2π

∮

γ+

(σ2 + 2dσ − k2 − p(ω))−1

σ − s
dσ

where γ± are paths enclosing s±. In this simple setting
this is equivalent to a partial-fraction decomposition.

U (r)(s) =
r+(s, u′, ua)

s+ − s
+

r−(s, u′, ua)

s− − s
,

with r± = 1/2(ua ± (u′ + 2dua)/
√

p(ω) + k2 + d2).
Transforming back to space domain we have the corre-
spondence

1

s− − s
↔ es−x and

1

s+ − s
↔ es+x.

Suppose that we can identify es+x as an incoming wave
or a exponentially increasing solution. Thus depend-
ing on the location of the poles s± we can now distin-
guish incoming/exponentially increasing waves from out-
going/exponentially decreasing waves. So we are in the
position to formulate TBCs as a condition on U (r)(s).
The pole condition states: A wave is outgoing if U (r)(s)
is an analytic function in the half plane E of possible
locations of s+. This is equivalent to the condition that
r+ = 0, which yields the classical transparent boundary
condition.

Pole Condition in Hardy space
How to handle the pole condition numerically? An-

alytic functions can be expanded into power serieses,
which convergence in some ball, yet the pole condition
is a condition set on a complex half plane. The Möbius
transform is a conformal transformation that transforms
a half plane to the unit ball. The Möbius transform is
thus the key ingredient to make our algorithm fly. Let
s 7→ s̃ = M(s) be the Möbius transform that maps the
half plane E to the unit ball. We can now reformulate the

pole condition: A wave is outgoing if U (r)(s̃) is analytic
in the unit ball. Expanding

U (r)(s̃) =
∞∑

`=0

a`s̃
` (6)

one has to deduce equations for the a`. Then simply trun-
cating the series expansion by setting a` = 0 for ` > L

an algorithm is obtained, that realizes TBCs.
The details are as follows. The Möbius transform

s 7→ s̃ = M(s) :=
s + s0

s − s0

maps the half plane {z : <(−z/s0) < 0} onto the unit
disk. (e.g. for positive real s0 the left half plane is mapped
onto the unit ball; the imaginary axis is mapped to the unit
circle; −s0 is mapped to 0; and 0 is mapped to −1.) The
inverse is again a Möbius transform

s̃ 7→ s = M−1(s̃) := s0

s̃ + 1

s̃ − 1
.

Space discretization
For the sake of clearness we consider the case d = 0

only. Space discretization is done using third order finite
elements resulting in the standard local mass and stiffness
matrices, that are assemble to a global system. At the
right boundary (and similar for the left boundary) we use
the special exp-element as test function

vs(x) =

{
e−s(x−a) x ≥ a
x−(a−h)

h
a − h ≤ x ≤ a

and obtain

p(ω)U (r) + p(ω)u(0)

a = u(2)

a − k2u(0)

a +

s0

s̃ + 1

s̃ − 1

(
s0

s̃ + 1

s̃ − 1
U (r) − ua

)
− k2U (r),

(7)

where u
(0)

a and u
(2)

a are the boundary contributions

u(0)

a =
∑

j

∫ a

a−h

ujφjvs dx ; u(2)

a =
∑

j

∫ a

a−h

ujφ
′
jvs dx

Setting u′
a = (p(ω) + k2)u

(0)

a − u(2), multiplying (7) by
(s̃ − 1)2 and rearranging terms yields

(
s2

0(s̃ + 1)2 − (s̃ − 1)2(p(ω) + k2)
)
U (r)

= (s̃ − 1)2u′
a + s0(s̃

2 − 1)ua.
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Inserting the power series (6), sorting for powers of s̃ and
comparing coefficients yields equations for the aj:

(
s2

0 − p − k2
)
a0 = u′

a − s0ua, (8)

2
(
s2

0 + p + k2
)
a0 +

(
s2

0 − p − k2
)
a1 = −2u′

a, (9)
(
s2

0 − p − k2
)
a0 + 2

(
s2

0 + p + k2
)
a1

+
(
s2

0 − p − k2
)
a2 = u′

a + s0ua,
(10)

(
s2

0 − p − k2
)
a`−1 + 2

(
s2

0 + p + k2
)
a`

+
(
s2

0 − p − k2
)
a`+1 = 0, ` = 1, . . . , L

(11)

with aL+1 = 0. Similar equations hold for the left bound-
ary. Transforming back to time-domain equations (8)
to (11) yield a system of ordinary differential equations
for the coefficients aj for j = 1, . . . , L.

Take a closer look at (8). If one would choose s0 =√
p(ω) + k2 then (8) is the well-known exact non-local

TBC; equations (8) to (11) decouple and all a` vanish for
` ≥ 2. Choosing s0 to be constant gives local approxi-
mate TBCs.

In case of the wave equation (i.e. p(ω) = ω2) choosing
s0 = ω gives local TBCs. In case k = 0 this choice gives
the exact TBCs.

Numerical results
The numerical results for the wave equation (1) inte-

grated from t = 0, . . . , 20 with an extremely small step-
size of ∆t = 10−4 using the trapezoidal rule are shown
below. The computational domain is [−5, 5], k = 5, the
initial value is a Gaußian u(x, 0) = exp(−x2) and the
initial velocity is set to zero. Space discretization is done
by third order finite elements on an equidistant grid with
∆x = 0.002. The reference solution is calculated on a
domain [−15, 15]; this way the dominating error compo-
nent should be the truncation error in the power series
representation. Figure 1 shows the evolution of the error
in energy norm for different L. Figure 2 shows the error
in energy-norm vs. the number of coefficients L in the
power series, idicating a supergeometric convergence in
L.

Extensions and future work
The concepct is easily extended to systems

Mp(∂t)u = A∂xxu + 2D∂xu − Ku.

with matrices M , A, D and K . These type of systems
arise for example for two dimensional problems on a strip
{(x, y), |y| < b,∞ < x < ∞} after a discretisation of
the y component. The extension to general two or three
dimensional problems is currently under investigation.
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Abstract

We propose transparent boundary conditions for the
dynamic equations of elasticity in the vertical trans-
verse isotropy medium. The conditions are generated
numerically for the side surface of a cylinder, the open
boundary of a computational domain. The correspondent
operator is non-local in both space and time: the finite
Fourier series is used at the surface to treat a necessary
number of space harmonics of the solution while for
the convolutions with respect to time the kernels are
represented by sums-of-exponentials. Preliminary test
calculations show high accuracy, efficiency, and stability
of the proposed non-reflecting conditions.
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Introduction

The model of Vertical Transverse Isotropy medium, a
special case of anisotropy, has wide application in seis-
moelasticity. The problem of the construction of non-
reflecting boundary conditions on the open boundaries
of computational domains for such media is crucial both
for practical simulations of the propagation of waves and
for the methods of computational mathematics, since the
known analytical approaches no longer work. Also the
popular PML approach can fail in anisotropic media, see
[1], [2].

In order to provide non-reflecting and stable condi-
tions for long-time simulations, we develop the concept
of transparent boundary conditions(TBCs) that are based
on the Green’s function of governing equations in the
external unbounded domain. Recently advantages of
the method have been demonstrated for the case of az-
imuthal anisotropy: see in [3] description of the approach
as well as numerical results for different variants of the
anisotropy including those considered in [1].

Here we develop the approach for generatingquasi-
analyticTBCs on the side surface of a cylinderC : {r ≤
R0} for the equations of the transverse-isotropic medium:





ρ∂2u
∂t2

= A11
∂
∂r

(
1
r

(
∂(ru)

∂r

))
+ ∂

∂z

(
A44

(
∂u
∂z + ∂w

∂r

))

+A13
∂2w
∂r∂z

ρ∂2w
∂t2

= 1
r

∂
∂r

(
r
(
A44

(
∂w
∂r + ∂u

∂z

)
+ ∂

∂z (A13u)
))

+ ∂
∂z (A33

∂w
∂z ),

u, w are radial and axial displacements in
(r, z)−geometry; A11(z), ..., A44(z) are the elastic
parameters of VTI medium that may depend onz.

We consider hereafter the conditions of the mirror sym-
metry at the top and bottom of the cylinderZmin ≤ z ≤
Zmax for simplicity. A typical aspect ratio(Zmax −
Zmin)/R0 in our numerical tests is several dozens.

Derivation of the TBCs operator
The procedure of generating TBCs operator on the

boundaryΓ : {r = R0} is described by several main
stages. Let us use the above original VTI system written
in the operator form:

∂2f

∂t2
− Lf = 0, f = (u,w). (1)

Stage 1.Denote by{ϕm(z)}∞m=0 the orthonormal ba-
sis functions for expansionf(t, r, z) with respect toz.
They are constructed from{sinmz, cosmz} by a natu-
ral way satisfying the mirror symmetry condition forf at
z = Zmin, z = Zmax. Consider the set with respect to
m = 0, 1, ... of auxiliary external initial boundary-valued
problems atr ≥ R0:




Em

tt − LEm = 0 in R2/C
Em|t=0 = 0
Em|Γ = δ(t)ϕm(z)

whereδ(t) is Dirac’s delta function. (FunctionEm is
usually calledGreen’s function of the Dirichlet problem.)

Making Laplace transform we pass to elliptic
boundary-valued problems parameterized bys:





s2Êm − LÊm = 0 in R2/C

Êm|t=0 = 0
Êm|Γ = ϕm(z).

(2)
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Stage 2.We take a finite interval[0, Smax] and form
set of points{sj}J

j=1 ∈ [0, Smax], J is an integer, us-
ing distribution law of Chebyshev’s grid nodes. Then we
solve numericallyJ × (M + 1) problems (2) – for each
s = sj with a desired amountM + 1 of basis functions
(m = 0, 1, ..., M), and evaluateψm ≡ ∂

∂n Êm onΓ. Thus
the Neumann dataψ of basis functions are obtained as
function of two indices(j,m):

{ϕm(z), sj} 7→ {ψm(z, sj)}.
Taking now arbitrary Dirichlet data onΓ, f̂(s, z) =∑

m
ĉm(s)ϕm(z), we write the representation of corre-

spondent Neumann dataN [f̂ ] by using the expansion in
terms of the basis{ϕm(z)}:

N [f̂(s, z)] =
∑
m

ĉm(s)ψm(z, s)

=
∑
m

ĉm(s)
∑

n

Pm
n (s)ϕn(z).

Thus we obtain the Poincaré-Steklov operator on the
Fourier coefficients space:

d̂n(s) =
∑

n

P̂m
n (s)ĉm(s)

or, in matrix form:

d̂(s) = P̂(s)ĉ(s) (3)

with

ĉ ≡ {
ĉ0, ĉ1, ...

}T
, d̂ ≡

{
d̂0, d̂1, ...

}T
,

∂

∂n
f̂(s, z) ≡

∑
m

d̂m(s)ϕm(z, s).

Stage 3. We make inverse Laplace transform for the
Poincaŕe-Steklov operator (3) as follows. First, the matrix
P̂(s) is represented by sum of three matrices to take into
account asymptotics ass →∞:

P̂(s) = P1s + P0 + K̂(s); P1,P0 are consts,

K̂(s) = o(1).

These constant matricesP1, P0 are estimated from ratio-
nal approximations

Rm
n (sj) ≈ P̂m

n (sj)

that are evaluated by using Chebyshev-Padé algorithm on
the interval[0, Smax].

Then we calculate rational approximations of each en-
try in K̂(s) so that all poles have negative real parts, i.e.

K̂m
n (s) ≈ ˆ̃Km

n (s) ≡
Lm

n∑

l=1

αm
n l

s− βm
n l

, Re(βm
n l) < 0

whereLm
n is a number of poles (it exerts significant in-

fluence on accuracy of the approximation). Again the
Chebyshev-Pad́e algorithm on the interval[0, Smax] is the
main tool for the approximations.

Finally, the inverse Laplace transform of (3) gives:

d(t) ≈ P1
∂c(t)
∂t

+ P0c(t) + K̃(t) ∗ c(t). (4)

Important property of (4) is that kernels̃Km
n (t) having

the explicit form

K̃m
n (t) =

Lm
n∑

l=1

αm
n l exp(βm

n lt), Re(βm
n l) < 0

permit to treat convolutions bystable recurrentformulas.

Stage 4.Denote byQ, Q−1 operators of Fourier ex-
pansion with respect to basis{ϕm(z)}M

m=0, i.e.

Q : f(t, z)|r=R0 → {cm(t)} , Q−1 : {cm(t)} → f.

Ignoring an approximate character of the relationship
(4) we are in position to write out the desired operator of
TBC in the physical space:

Q−1P1Q
∂f

∂t
− ∂f

∂r
+ Q−1P0Qf

+ Q−1
{
K̃(t)∗

}
Qf = 0. (5)

Actually, the scheme of generating (5) looks very simi-
lar to [4], [5] where analytical derivation of TBC operator
for the wave equation is proposed; the discrimination is
that all analytical stages are now replaced bynumerical
counterparts (Stages 2,3).

It is worth to emphasize that numerical algorithm solv-
ing the elliptic problems (2) finds the functions with a
maximally possible accuracy in order to provide the nu-
merically stable inverse Laplace transformation (4). In
particular, for the VTI case we develop a highly-accurate
elliptic solver using the Galerkin method with basis func-
tions{ϕm(z)}M

m=0.

305



Test calculation
Accuracy and stability of the proposed transparent

boundary conditions are demonstrated on several numer-
ical tests. We describe one of them.

Geometry of the computational domain[Rmin, R0] ×
[Zmin, Zmax] is given byRmin = 0.1, R0 = 0.3, Zmin =
0, Zmax = π.

Initial displacements are generated at the boundaryr =
Rmin. This is a finite pulse in both space,0.5 < z < 2.5
and time,0 < t < 0.1. TBCs boundary isr = R0.

Parameters of the VTI medium are described via the
Thomsen’s parameters:

A11 = V 2
P0(1 + 2ε), A33 = V 2

P0, A44 = V 2
S0,

A13 =
√

(A33 −A44)
2 + 2δA33 (A33 −A44)−A44

whereVP0 = 3.3, VS0 = 1.8, δ = −0.22, ε = 0.2.
We consider three uniform grids with treble numbers

of intervals in the computational domain: Grid1Nr =
16, Nz = 64, Grid2 Nr = 47, Nz = 190, and Grid3
Nr = 140, Nz = 568 (each coarser grid is a subgrid of
the fine grid).

Governing equations (see Introduction) are ap-
proximated by explicit central-difference second-order
scheme. A reference solution is calculated in the ex-
tended domain[Rmin, Rmax], Rmax ≈ 3 on the finest
grid. Number of basis functions of the TBCs operator is
defined byM = 24.

Figure 1 shows history of difference with reference so-
lution (relativeC−norm over the computational domain).
One can observe that 1) test solutions have the second or-
der of accuracy; 2) approximation error of the difference
scheme and error of TBCs reflections are approximatively
the same for Grid3 – about0.2% (i.e. TBCs are too accu-
rate for coarser grids).

Figure 2 shows long-time stability of calculations with
TBCs.
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Introduction
In physics and chemistry, the scattering of multiple

charged particles is research topic that is getting a lot of
attention recently. Modern experimental detectors such as
the “reaction microscopes” can detect, in coincidence, the
directions and momenta of all the particles that emerge
from a breakup reaction. This has resulted in a wealth of
experimental information that still needs to be explained
theoretically [1].

In this talk we present some of the computational and
mathematical challenges that make these kind of prob-
lems hard to solve.

One particle Schrödinger equation
The Schrödinger equation is a wave equation that de-

scribes the dynamics of particles such as electrons and
nuclei at the level of a molecule. For example, the equa-
tion for one particle with a mass m and an energy E in
the potential field V (r) is

−
h̄2

2m
∆ψ(r) + V (r)ψ(r) −Eψ(r) = 0, (1)

where h̄ is the constant of Planck. As usually we will use
atomic units such that m = 1 and h̄ = 1. For E > 0,
this equation can be interpreted as a Helmholtz equation
∆u+k2(r)u = 0 with a position dependent wave number

k(r) =
√

2(E − V (r)).

The simplest system is the hydrogen atom that consists
out of a electron and proton. The dynamics of the nega-
tively charged electron in the field of a positively charged
proton is governed by the Coulomb interaction caused by
their mutual attraction. The field is −1/|r| where r is the
vector that starts at the position of the proton and ends at
the position of the electron.

As the electron and the proton come close together this
results in a very large effective wave number. As the pro-
ton and electron are very far apart, in the asymptotic re-
gion, one would expect that the wave number becomes

Figure 1: For the reaction h̄ω+
H2 → e− + e− + p+ p, where a single photon breaks
the molecule op in two electrons and two protons, we
calculate distribution of direction in which the second
electron espace. The molecule (purple) is aligned 20◦

with the polarisation of the photon field (green). The first
electron escapes in a fixed direction (red arrow) and
takes away 90% of the available energy. The impact

photon has an energy of 55eV.

√
2E and the solution u becomes a linear combination of

plane waves. But, this is not the case. It has been known
for almost a century that the long-range Coulomb interac-
tion still has a influence asymptotically and the solutions
become a linear combination of

∑

lm

sin(kr − η ln 2kr − l
π

2
+ σl)Ylm(r̂) (2)

and
∑

lm

cos(kr − η ln 2kr − l
π

2
+ σl)Ylm(r̂), (3)

where η = −1/k and σl is the Coulomb phase that is
expressed with the complex gamma function

σl = arg[Γ(l + 1 + iη)]. (4)
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Because of the logarithmic phase the asymptotic wave
never really becomes a pure sine or cosine. This is stan-
dard text book quantum mechanics.

Many particle Schrödinger equation
The scattering problem becomes notoriously more

complicated when more than one particle is involved. Let
us take a look at the hydrogen molecule H2, the sim-
plest molecular system, that consists out of two protons
and two electrons. In the assumption that the electrons
move much faster than the protons, we can look at the
Schrödinger equation for the two electrons with the two
protons remain fixed. Such a assumption is valid in the
case of double photo-ionization, a fundamental proces
where a single photon ionizes simultaneously the two
electrons as a result the two proton are also free to es-
cape. We can write this as the reaction h̄ω+ H2 →
e− + e− + p + p. This proces is incredibly fast and it
is valid to assume that the protons remain fixed during
the ionization of the electron proces. Once the electrons
are remove the to bare protons are left behind that start to
repel each other. See [1] for description of the reaction.

The Schrödinger equation is then

(E0 + ω −H)ψ(r1, r2) = ε · (∇r1
+ ∇r2

)φ(r1, r2)

where φ(r1, r2) is the groundstate eigenfunction with
eigenvalue E0 of Hamiltonian H , defined below. The
frequency ω is the energy of the photon and ψ(r1, r2) is
the six dimensional wavefunction describing the scattered
motion of the two electrons. The vector ε denotes the po-
larization of the photon and ∇r1

+∇r2
the dipole operator

that works on the electronic groundstate. The Hamiltoni-
aan H for this problem is

H = −
1

2
∆r1 −

1

2
∆r2 −

1

|r1 −R1|
−

1

|r2 −R1|

−
1

|r1 −R2|
−

1

|r2 −R2|
+

1

|r1 − r2|
(5)

where we recognise the differential operators that corre-
spond to the kinetic energy and several Coulomb potential
interactions. We have the attraction of the first electron
at r1 with the two protons respectively positioned at R1

and R2. Similarly, we have the attraction of the second
electron r2 with the two protons. Finally. there is the
Coulomb repulsion between the two positively charged
electrons.

Again we can write it as an effective Helmholtz equa-
tion for the wavefunction u(x,x) = ψ(r1, r2). It is a
six-dimensional equation

∆u(x,y) + k2(x,y;R1,R2)u(x,y) = f(x,y), (6)

where the wave number now depends parametrically on
the position fo the two protons.

In contrast to the one-particle problems, the asymptotic
scattered wave for multiple charged particles is notori-
ously complicated and cannot be written in the form of
(2) and (3) or any other simple analytical form. This finds
its origin in the effective Coulomb interaction that in the
asymptotic region depends sensitively to the relative po-
sitions of the charged particles.

Methods
To avoid that we have to know asymptotic wave at

the boundary, we use an absorbing boundary condition
known in the physics and chemistry community as Exte-
rior Complex Scaling (ECS). It was introduced by B. Si-
mon [2] and rotates the coordinates, from a certain hyper-
radius on, into the complex plane. The transformation is

r →

{
r for r ≤ R0

R0 + (r −R0)e
iη for r > R0

, (7)

where η is the complex rotation angle. The result is that
all outgoing waves start to decay from this radius on and
zero boundary conditions can be applied. This circum-
vents the application of the complicated boundary condi-
tions based on the asymptotic Coulomb wave. A review
can be found in [4].

The exterior complex scaling absorbing boundary con-
ditions are very similar to the perfectly matched layers
boundary condition [3].

The resulting equation is discretized and results in a
large linear system Ax = b. It is solved with a precondi-
tioned iterative Krylov subspace method [6].

Once the solution is found, the wavefunction is ana-
lyzed and information about the directions in which the
particles escape after the reaction can be extracted. The
results are then compared with experimental observations
with the reaction microscopes.

Results and Conclusions
We have solved these equations for the double photo-

ionization reaction in the hydrogen molecule and we have
solved the problem at various distances between the two
protons and have shown that the pattern of escaping elec-
trons depends sensitively on this internuclear distance [5],
[6], [7].

In figure 1, we reproduce the results of [7], where we
have calculated the probability distribution of escaping
electrons for a particular angle between the molecule and
polarization direction of the photon. These probabilities
are extracted from a six-dimensional wave function.
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To conclude, since recently it has become possible to
predict quantum mechanical breakup problems and solve
the Schrödinger equations exactly for multiple charged
particles. Until now only the simplest systems have been
considered and many computational and mathematical
challenges need to be solved before we can develop scal-
able methods that can solve these problems in more com-
plex system of interest.
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Abstract
The reduction of noise in aeronautics motivates an in-

tensive research in aeroacoustics. In particular, there is
a need for efficient numerical tools to simulate acoustic
propagation in a mean flow. We are interested here by
solving the problem in the frequency domain, by a finite
element method able to take into account general geome-
tries and flows. Up to our knowledge, only the potential
case (when the flow and the source are irrotational) has
been completely handled. Recently, a more general ap-
proach has been developed and validated in the case of a
parallel shear flow [1]: this method relies on a finite ele-
ments discretization combined with PMLs of a so-called
regularized formulation of Galbrun’s equation. We will
show here how to extend this approach to the case of a
non parallel flow. For simplicity, we restrict ourselves to
the two-dimensional case.

1 Derivation of the modified Galbrun equation
1.1 Galbrun’s equation

Consider a stationary subsonic flow of a perfect com-
pressible fluid satisfying Euler’s equations, characterized
by the non uniform fields of velocity v0, density ρ0,
pressure p0 and sound velocity c0, and a time harmonic
harmonic perturbation (with an e−iωt time dependence).
Galbrun’s equation, whose unknown is the perturbation
of displacement u, is obtained by a linearization process
(see for example [2] or [3]). It reads as follows :

ρ0

D2
u

Dt2
−∇(ρ0c

2

0div u)+div u∇p0−
t∇u·∇p0 = 0 (1)

where Du

Dt
= −iωu + ∇u · v0.

Notice that in the particular case of a parallel shear
flow, ρ0, p0 and c0 are uniform and Galbrun’s equation
reduces to:

D2
u

Dt2
− c20∇(div u) = 0. (2)

It has been observed that a direct finite element resolution
of (2) (using Lagrange elements) leads to a polluted re-
sult, due to a lack of H1 coerciveness. A way to restore
coerciveness is to consider the following “regularized” (or

“augmented”) formulation of (2) [4]:

D2
u

Dt2
− c20∇(div u) + c20curl(curlu− ψ) = 0

where the new unknown ψ = curlu (the “vorticity”) is
introduced. We will extend this regularization technique
to the general equation (1). Then a “hydrodynamic” re-
lation between ψ and u will be derived and solved in the
low Mach approximation.

1.2 Regularization

Let s0 be a positive real function. The regularized
equation associated to (1) is given by:

ρ0

D2
u

Dt2
−∇(ρ0c

2

0div u) + curl(ρ0s0(curlu− ψ))

+div u∇p0 −
t ∇u · ∇p0 = 0

(3)
The hydrodynamic equation is then derived by taking the
curl of (1), which gives:

curl
(
ρ0

D2
u

Dt2
+ div u∇p0 −

t ∇u · ∇p0

)
= 0

and after some calculations:
D2ψ

Dt2
= −2

D

Dt
(Bu) − Cu (4)

with Bu =
2∑

j=1

∇v0,j ∧
∂u

∂xj
and

Cu =
2∑

j,k=1

(
∂v0,k

∂xj
∇v0,j ∧

∂u

∂xk
− v0,j∇

∂v0,k

∂xj
∧
∂u

∂xk

)

+
1

ρ0

2∑

j=1

(
1

ρ0c
2
0

∂p0

∂xj
∇p0 −∇

(
∂p0

∂xj

))
∧∇uj.

Notice that for a shear flow, Cu = 0.

1.3 Low Mach approximation

In the case of a shear flow, it was possible to derive an
exact expression of ψ versus u as a convolution integral
along the stream lines. It is not straightforward to extend
this approach in the general case. However, under suit-
able hypotheses, simple approximations of ψ can be ob-
tained. For instance, if we suppose that the flow is slow
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and has slow variations (compared to the wavelength), we
can neglect the contribution Cu in (4). Then if the mean
flow does not present recirculations (closed streamlines),
(4) is equivalent to Dψ

Dt
= −2Bu whose solution has the

following low Mach approximation:

ψ ≈
2

iω
Bu. (5)

Finally, using (3) and (5), we get the modified Galbrun
equation which will be solved in practice:

GLMu
def
= ρ0

D2
u

Dt2
−∇(ρ0c

2

0div u) + div u∇p0

−t∇u · ∇p0 + curl
(
ρ0s0

(
curlu−

2

iω
Bu

))
= 0

2 Setting of the diffraction problem
Let us now consider a particular diffraction problem

which will be solved by using the previous model.

2.1 Geometry and incident wave

Let O be a bounded domain of R
2 occupied by a rigid

obstacle. The mean flow (v0, ρ0, p0, c0) is defined in
R

2\O and is supposed to be almost uniform far from the
obstacle :

∃R > 0/ for |x| > R,

v0(x) = v∞e1, (ρ0(x), p0(x), c0(x)) = (ρ∞, p∞, c∞).

The regularization function s0 is then chosen such that
s0(x) = c2∞ for |x| > R. Then we can consider an inci-
dent wave which is for instance a downstream plane wave
of this uniform medium uinc(x) = eik∞x1e1 with k∞ =

ω
c
∞

+v
∞

and the diffraction problem is the following: Find
u ∈ H1

loc(R
2\O) such that:

GLMu = 0 in R
2\O

u.n = 0 on ∂O

curlu−
2

iω
Bu = 0 on ∂O

udif = u− uinc is outgoing .

(6)

This radiation condition is precised in the next paragraph.

2.2 Radiation condition and PMLs

The hypothesis of uniformity of the flow far from the
obstacle implies that:

∀u ∈ H1

loc(R
2\O), Bu(x) = 0 for |x| > R.

As a consequence, for every solution u of (6), ϕ =
div udif and ϕ = curludif satisfy the convected
Helmholtz equation far from the obstacle:

D2
∞ϕ

Dt2
− c2∞∆ϕ = 0 for |x| > R,

where D∞

Dt
= −iω + v∞

∂

∂x1

. It is well known that this
equation is equivalent to a classical Helmholtz equation
for ϕ̃ defined by:

ϕ̃(x1/τ∞, x2) = ϕ(x1, x2)e
ikν

∞
x1

with τ∞ = 1 −
v2
∞

c2∞
and ν∞ =

v∞

τ∞c∞
. Then we say that

ϕ is outgoing if ϕ̃ is outgoing (in the classical sense) and
we say that udif is outgoing if div udif and curludif are
outgoing.

In practice, we use PMLs to select this outgoing solu-
tion (other methods like a coupling with an integral repre-
sentation could also be used). The computational domain
is defined by ΩL = BL\O where

BL = {(x1, x2)/|x1| < R+ L and |x2| < R+ L}

where L denotes the width of the absorbing layers. The
model in the PMLs involves a complex parameter α such
that <e(α) > 0 and =m(α) < 0. Finally, the problem
that we solve is the following: find udif ∈ H1

loc(ΩL) such
that:

GLMα udif = finc in ΩL

udif .n = 0 on ∂O

curlαudif −
2

iω
Bαudif = 0 on ∂O

udif = 0 on ∂BL

(7)

where finc is a source term coming from the incident wave
and where the index α means that the corresponding op-
erator has been modified according to the following sub-
stitution:

∂

∂xi
→ αi(x)

∂

∂xi

with αi defined by:

αi(x) =

{
1 if |xi| < R

α if |xi| > R.

2.3 Well-posedness

To prove well-posedness of problem (7), we derive its
variational form (udif is denoted u for simplicity):

Find u ∈ V such that ∀v ∈ V

a(u,v) + b(u,v) + c(u,v) = `(v)
(8)

where

V = {u ∈ H1(ΩL)2;u.n|∂O = 0 and u|∂BL
= 0},
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a(u,v) =
(
ρ0c

2

0div αu, div αv
)

+
(
ρ0s0curlαu, curlαv

)

−
(
(v0 · ∇α)u, (v0 · ∇α)v

)
,

b(u,v) = −
2

iω

(
ρ0s0Bαu, curlαv

)

and c(u,v) contains the compact perturbation. To prove
coerciveness, we first use Costabel’s inequality [5] and
establish the following Garding inequality:
if |v0|

2 < s0 ≤ c2
0

a.e. there exists β1 > 0 and β2 > 0
such that:

|a(u,u)| ≥ β1‖u‖
2

H1(ΩL)
− β2‖u‖

2

L2(ΩL)
∀u ∈ V.

Then, we prove that the hydrodynamic term b(u,u) is
controlled if ∇v0 is not too large (compared to ω), so that
finally, the problem is of Fredholm type.

3 Numerical results
We consider the diffraction case by a circle of center

(0, 0) and with radius r. If one assumes that the fluid is
incompressible and the flow is potential (ie v0 = ∇ϕ0),
the characteristics of the mean flow can be analytically

derived . In particular, ϕ0 = v∞x1

(
1 + r2/(x2

1 + x2

2)

)
.

Since the scatterer is illuminated by an incident plane
wave, the perturbed flow is still potential and this prob-
lem can be solved. We have considered a finite element
discretization of the problem: Find ϕa ∈ H1

loc(R
2\O)

(ϕa is the perturbed potential) such that:

div (ρ0(I −
tM0M0)∇ϕa) + ρ0k

2

0ϕa+

ik0ρ0M0 · ∇ϕa + div (ik0ρ0ϕaM0) = 0 in R
2\O

∂ϕa

∂n
= 0 on ∂O

ϕa − ϕa,inc is outgoing

where M0 = v0/c0 and k0 = ω/c0. Consequently,
numerical results of this potential model can be com-
pared with those obtained from the low Mach model (8).
The perturbation of the Euler speed va [3] is computed
with the relation va = ∇ϕa =

Du

Dt
− ∇v0 · u and

can be compared. Numerical results are done with the
finite element library MÉLINA [6] and are given for
ω = 5 , r = 1.25 and v∞ = 0.1. Fig. 1 shows the
speed components of the mean flow. A mean variation of
the speed near the circle can be seen. In particular, the
maximum of v0x is 2v∞. This simple test case contains
the main difficulties which we want to treat. Fig. 2 shows
the component vax of the perturbation of the Euler speed.
The two methods clearly simulate the same phenomena.

Figure 1: v0x (left) and v0y (right)
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Figure 2: vax( potential case (left) and low Mach
model (right))
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Abstract
We study the system of 2D isentropic Euler equations

with a gravity term in the neighborhood of a null velocity
profile and a given density profile. We perform the clas-
sical (see [3]) high frequency analysis as well as the sta-
bility analysis. The linear system admits high frequency
approximate solutions associated with the acoustic wave
equation. However, we prove the existence of unstable
normal modes similar to the Rayleigh unstable modes for
the incompressible model ([1], [2]).

Introduction and physical model
We consider a Newtonian nonviscous fluid subjected

to a gravity force (g, 0), which follows the first principle
of thermodynamics (which means that the entropy S is
solution of the conservation law ∂tS+∇·(S~u) = 0). The
equations of motion are the compressible Euler equations:

∂tρ +∇ · (ρ~u) = 0,
∂t(ρ~u) +∇ · (ρ~u⊗ ~u + p Id) = ρ~g,
∂tE +∇ ·

(
(E + p)~u

)
= ρ~u · ~g,

∂tS +∇ · (S~u) = 0,

where E = 1
2ρ|~u|2 + ρe, p being the pressure of the fluid,

e being the internal energy of the fluid, solutions of ∂te+
~u · ∇e + p

ρ∇ · ~u = 0, ∂tp + ~u · ∇p + ρc2∇ · ~u = 0, c
denoting the sound speed. The previous system rewrites:

∂tρ +∇ · (ρ~u) = 0,
∂tp + ~u · ∇p + ρc2∇ · ~u = 0,
∂t(ρ~u) +∇ · (ρ~u⊗ ~u + p Id) = ρ~g,
∂ts + ~u · ∇s = 0,

(1)

where s = S/ρ is the specific entropy.
The first step is to linearize the Euler equations around

a given steady state of the form (ρ0, p0, 0, 0, s0). Note that
this steady state depends only on x thanks to ~g = (g, 0).
One obtains:

∂tρ +∇ · (ρ0~u) = 0,
∂tp + ~u · ∇p0 + ρ0c

2
0∇ · ~u = 0,

∂t(ρ0~u) +∇p = ρ~g,
∂ts + ~u · ∇s0 = 0.

(2)

In a first section, we study the high frequency asymp-
totic analysis of this system. Writing each quantity

as h1e
ikφ(x,y,t), one deduces that the waves decompose

into travelling waves of phase φ solution of the classical
eikonal equation for the waves (∂tφ)2 = c2

0|∇φ|2, and
steady waves of phase φ independent of t.
In a second section, we prove that there is a limit-
ing (exponential) growth rate in time Λ for any solu-
tion of the linear system. The value of Λ is linked
with ∇p0.∇ρ0 (characterizing in the physical literature
a Rayleigh-Taylor instability) and g2

c20
.

In a third section, in order to identify unstable modes, we
perform a normal mode analysis, that is we write all the
quantities h in this system as h(x, y, t) = h̃(x)eiky+γt.
Since the steady state depends only on x, we denote by
c′0, ρ′0, and p′0 the derivatives of c0, ρ0 and p0 (hence, for
example, ∇p0 = (p′0, 0)). We obtain an equation on ũ,
and prove that γ satisfies

0 ∈ Sp
(
− 1

k2

d2

dx2
+ q̃0(x, γ, k)

)
, (3)

the function q̃0 being given below by (8).
We then prove that, for k large enough, there is at least
one value of γ > 0 satisfying (3), as in [2].
In conclusion, in system (2), we have asymptotic high fre-
quency propagating waves, and unstable solutions gener-
ated by the steady asymptotic waves.

High frequency analysis

We consider an asymptotic solution

(ρ, p, u, v, s)t = (ρ1, p1, u1, v1, s1)teikφ(x,y,t),

where all quantities f1 admit an asymptotic expansion in
k of the form f1(x, y, t, k) =

∑∞
j=0 f1,j(x, y, t)(ik)−j .
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System (2) rewrites:

ik


∂tφ 0 ρ0∂xφ ρ0∂yφ 0
0 ∂tφ ρ0c

2
0∂xφ ρ0c

2
0∂yφ 0

0 ∂xφ ρ0∂tφ 0 0
0 ∂yφ 0 ρ0∂tφ 0
0 0 0 0 ∂tφ




ρ1

p1

u1

v1

s1


=

−


∂tρ1 +∇.(ρ0~u1)

∂tp1 + p′0u1 + ρ0c
2
0∇.~u1

ρ0∂tu1 + ∂xp1 − ρ1g
ρ0∂tv1 + ∂yp1

s′0u1

 .

(4)
We derive the eikonal equation and prove that we can ap-
ply the projection method (see [4]).
The eikonal equation is obtained by considering a
nonzero solution U = (ρ1,0, p1,0, u1,0, v1,0, s1,0)t of (4).
Hence, its matrix M(x, y, ∂tφ,∇φ) has a null determi-
nant, and:

(∂tφ)3
(
(∂tφ)2 − c2

0(∇φ)2
)

= 0. (5)

Notice that if ∂tφ = 0, the dimension of the kernel K0 of
M(x, y, ∂tφ,∇φ) is 3, and it is characterized by the two
equations p1,0 = 0, ∂xφu10 + ∂yφv1,0 = 0.
If we consider a solution of the eikonal equation which
does not satisfy ∂tφ = 0, one deduces that φ is solution
of (∂tφ)2 = c2

0(∇φ)2 — it is the eikonal equation for the
acoustic wave equation ∂2

t2p = c2
0∆p.

Introducing π± the projection on the kernel of M along
the range of M when φ satisfies ∂tφ ± c0|∇φ| =
0, the compatibility condition writes π±U = U , the
transport equation writes π±M(x, y, ∂t, ∂x, ∂y)π±U +
µ±(x, y, t)π±U = 0, where µpm is the group velocity
associated with the equation ∂tφ±c0|∇φ| = 0. Hence we
obtain the classical asymptotic solutions associated with
the acoustic forward and backward waves. It is not our
purpose here to describe these solutions ; it is enough to
notice that the hyperbolic behavior can be analyzed even
if we cannot extract a natural scalar wave equation of or-
der two from the Euler system with a Rayleigh-Taylor
term. For more details and related studies, see [3], [4].
We may finally notice that the eigenvector associated with
the eikonal equation ∂tφ = c0|∇φ| is

(
ρ0, ρ0c

2
0,−ρ0

∂xφ

|∇φ|
, ρ0

∂yφ

|∇φ|
, 0

)
,

which gives the polarization of the forward high fre-
quency acoustic wave.

In the next sections, we derive unstable in time solutions
associated with this system. These solutions correspond
to a Rayleigh-Taylor instability.

Universal growth rate
We notice that system (2) implies

ρ0∂
2
t ~u + L~u = 0,

where L is a symmetric operator (e.g.
∫
L~u · ~v dxdy =∫

L~v · ~u dxdy). This implies that d
dt

1
2

∫
L~u · ~u dxdy =∫

L~u · ∂t~u dxdy.
From this equality, we deduce the identity

∀t ≥ 0,
1
2

∫
ρ0|∂t~u|2 dxdy +

1
2

∫
L~u · ~u dxdy = A0.

Under the assumption ~g ∧∇ρ0 = 0, and using identity∫
L~u · ~u dxdy =

∫
ρ0

(
c0∇ · ~u +

1
c0

~g · ~u
)2

dxdy

+
∫

ρ0(~g.~u)2
(~g · ∇ρ0

g2
− 1

c2
0

)
dxdy,

one deduces∫
ρ0|∂t~u|2dxdy ≤ 2A0 + Λ2

∫
ρ0|~u|2dxdy,

where Λ = (max(0, max(g2

c20
− g

ρ′
0

ρ0
))

1
2 . Note that Λ is

strictly positive when we have a Rayleigh-Taylor insta-
bility, that is gρ′0 = ρ−1

0 ∇p0 · ∇ρ0 < 0. It may also be
positive even in the case ∇p0 · ∇ρ0 > 0, hence leading
to an instability generated with the sound velocity. This
implies the following inequality:(∫

ρ0|~u|2
) 1

2

≤
√

2A0

Λ
sinh

(
θ(0) +

Λ√
2A0

t
)
, (6)

θ(0) being given by Λ(
∫

ρ0|~u|2)
1
2 =

√
2A0 sinh

(
θ(0)

)
.

Normal modes solutions
In this section, we prove that the instability growth rate

Λ appearing in the previous section may correspond to
unstable modes. For a normal mode solution, (2) rewrites:

γρ + ρ′0u + ρ0
du

dx
+ ikρ0v = 0,

γp + p′0u + ρ0c
2
0

(du

dx
+ ikv

)
= 0,

γρ0u +
dp

dx
= ρg,

γρ0v + ikp = 0,
γs + s′0u = 0.
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We deduce from the second and the fourth equalities of
this system that v is given by

v =
ik

γ2 + k2c2
0

(
gu + c2

0

du

dx

)
.

Hence, γp and γρ are given, thanks to the first and the
second equation of the system, in terms of u. We thus
deduce, from identity γ2ρ0u + d

dx(γp) = γρ0g, the fol-
lowing equation:

ρ0γ
2u− d

dx

(
ρ0c

2
0

du

dx

)
− k2ρ0g

γ2 + k2c2
0

(
gu + c2

0

du

dx

)
+

d
dx

( k2c2
0ρ0

γ2 + k2c2
0

(gu + c2
0

du

dx
)
)

= 0. (7)

Notice that, multiplying this equation by ū and integrat-
ing, one deduces that γ2 is real, which implies that the
growth rate γ is either real, or purely imaginary. Using
the new unknown ω = c0γ

√
ρ0

γ2+c20k2 u = a
1/2
0 u, equa-

tion (7) yields: [
1− 1

γ2

(
−g

ρ′0
ρ0

+
g2

c2
0

)
+

1
k2

(
γ2 + 2g

c′0
c0

k2c2
0

γ2 + k2c2
0

+
(
√

a0)′′√
a0

)]
ω =

1
k2

d2ω

dx2
.

Introducing

q̃0(x, γ, k) =
1
k2

(
γ2 + 2g

c′0
c0

k2c2
0

γ2 + k2c2
0

+
(
√

a0)′′√
a0

)
+ 1− 1

γ2

(
−g

ρ′0
ρ0

+
g2

c2
0

)
,

(8)
the Rayleigh equation (7) is equivalent to the Schrödinger
equation

Qω = − 1
k2

d2ω

dx2
+ q̃0(x, γ, k)ω = 0.

Hence, it has a solution if and only if 0 is in the spectrum
of the operator Q.
Consider the additional hypothesis that the maximum
Λ2 of −g

ρ′
0

ρ0
+ g2

c20
is non degenerate. Using the meth-

ods of [2], one deduces that the spectrum of Q contains
points of the form 1 − Λ2

γ2 + o(k−1). Hence, equality

1− Λ2

γ2 + o(k−1) = 0, that is γ = Λ + o(k−1), leads to a
null eigenvalue for Q.
Note finally that the eigenvector, in the normal mode hy-
pothesis, for γ > 0, is given by:(

ρ0
γ

(
gk2

γ2+k2c2
0
− ρ′

0
ρ0

)
û− ρ0γ

γ2+k2c2
0

dû
dx ,− ρ0γ

γ2+k2c2
0

(
gû + c2

0
dû
dx

)
,

û, ik
γ2+k2c2

0
(gû + c2

0
dû
dx ),− s′

0
γ û

)
,

where û is solution of the Rayleigh equation (7). It does
not belong to K0.
Remark. The existence of an unstable mode can also be
deduced from the existence of a variational equality in the
system, as in [2], [6].
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Abstract
We present various mathematical results (Cauchy prob-

lem, solitary waves) for the Zozulya–Anderson model
which describes the propagation of an optical wave
through a photorefractive medium. This is a joint work
with Jean-Claude Saut.

1 Introduction
Photorefractive media are optical material, highly

anisotropic, with memory effects. They are commonly
used to realize optically induced gratings or for holo-
graphic applications.

The propagation of an optical wave in insulating or
semi-insulating electrooptical crystals induces a charge
transfer. The new distribution of chargesρ induces in turn
an electric fieldE, with∇ · (ε̂E) = ρ. This field derives
from a potentialϕ and produces a variationδn of the re-
fraction index in the main direction of the photovoltaic ef-
fect (which we choose here to bex): δn ∝ ∂xϕ. The main
characteristics of this effect are the following: 1- Sensi-
bility to energy (and not to the electric field). This recalls
the Kerr effect and the cubic nonlinear Schrödinger equa-
tion. 2- Nonlocal effect (charge distributions and the elec-
tric field are not located at the same position). 3- Inertia
(charges need a certain time to move). We will not take
this into account here. 4- Memory and reversibility (in the
dark the space charge, and therefore the index variation,
is persistent but an uniform light redistributes uniformly
all charges — this yields applications to holography). We
will also neglect this effect here, reducing our study to
material where only electrons are moving.

2 Mathematical setting
A complete mesoscopic model for the modeling of

photo-refractive media is the Kukhtarev model [6]. In
the case when the charges that contribute to the photore-
fractive effect are only electrons (insulating media), an
asymptotic study allows to derive a macroscopic model,
the Zozulya–Anderson model. The complete assumptions
and approximations made are precisely described in [2].

The description of the propagation of a laser through
the photorefractive material is given by a Schrödinger

equation using paraxial and envelope approximations.
The propagation axis is chosen to bez and all constants
are taken to be 1, which can be justified rigorously using
dimensionless variables (see [2]). One obtains[

∂z −
i

2
∇2
⊥

]
A = −iA∂xϕ.

If we specify a material (e.g. LiNbO3) and therefore sym-
metries of the tensor̂ε, we can write an equation forϕ
which reads

∇2
⊥ϕ +∇⊥ ln(1 + |A|2) · ∇⊥ϕ = ∂x ln(1 + |A|2).

These are the Zozulya–Anderson equations [10].
If we look at a wider class of materials we may have

different signs for the nonlinearity (in reference to the cu-
bic nonlinear Schr̈odinger equation, the casea = 1 is
classically called the focusing case, anda = −1 the de-
focusing case). Besides mathematicians are more accus-
tomed to uset as the evolution variable. Finally loga-
rithms are difficult to handle in the mathematical analysis
(although natural if we look at 1D solitary waves, see be-
low), we therefore rewrite also the equation forϕ. We
finally impose an initial dataA0 in some convenient (see
below) functional space and obtain the system

(ZA)


i∂tA + ∆A = −aA∂xϕ,

div
(
(1 + |A|2)∇ϕ

)
= ∂x(|A|2),

A(·, 0) = A0.

The main effects take place in thet (propagation) and
thex directions. It is therefore natural to study the equa-
tions with no dependence in they variable. In the one
dimensional case, since we assume furthermore that no
external field is applied, we can immediately infer that
∂xϕ = |A|2/(1 + |A|2). We therefore consider the satu-
rated non linear Schrödinger equation

(SNLS)

 i∂tA + ∆A = −a
|A|2A

1 + |A|2
,

A(x, 0) = A0(x),

wherea = ±1, A = A(x, t) andx ∈ Rd. We have
derived this equation ford = 1, but give here results for a
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generald, which also arises in other contexts, such as the
propagation of a laser beam in gas vapors [9].

In the two-dimensional case (ZA) can be viewed
as a saturated version of a Davey–Stewartson system.
Namely, replacing1 + |A|2 by 1 in the left hand-side
of (ZA) we obtain a Davey–Stewartson system of the
elliptic–elliptic type (see Ghidaglia and Saut [4]).

3 The Cauchy problem
3.1 The generalized saturated NLS equation
Theorem 1 (i) Let A0 ∈ L2(Rd). Then there exists a
unique solutionA ∈ C(R;L2(Rd)) of (SNLS) which sat-
isfies furthermoreE(t) = E(0) for all t ∈ R, where

E(t) ≡
∫

Rd

|A(t)|2dx.

(ii) Let A0 ∈ H1(Rd). Then the solution above satisfies
A ∈ C(R;H1(Rd)) andH(t) = H(0) for all t ∈ R,
where

H(t) ≡
∫

Rd

[
|∇A(t)|2dx + a ln(1 + |A(t)|2)

]
dx.

The proof follows the usual steps for nonlinear
Schr̈odinger equations. Contrarily to the context of the
usual nonlinear cubic Schrödinger equation, the solution
is global in time, whatever the sign ofa. Saturation pre-
vents from blowing up.

We would like to mimic this proof to treat (ZA). To this
aim we would like to expressA in terms ofϕ for sayA ∈
L2(R2). With such a dataA, we indeed have a unique
ϕ in some convenient space but no Lipschitz regularity
for the mappingA 7→ ϕ, which is required to perform
some fixed point procedure. To ensure this we will have
to assumeA ∈ H2(R2).

Theorem 2 LetA0 ∈ H2(R2). Then there existsT0 > 0
and a unique solution(A,∇ϕ) of (ZA) such thatA ∈
C([0, T0];H2(R2)) and∇ϕ ∈ C([0, T0];H2(R2)). More-
over for all0 ≤ t ≤ T0

‖A(t)‖L2(R2) = ‖A0‖L2(R2)

and∫
R2

(1 +
1
2
(t)|A|2)|∇ϕ(t)|2dx ≤ 1

2

∫
R2

|A0|2dx.

The proof of this result necessitates many steps.
Uniqueness results follows from simple energy estimates.
Then we derive aH2 a priori estimate of the solu-
tion of (ZA). We introduced an approximate system for

which the well-posedness stems from classical fixed point
arguments and the convergence towards (ZA) is first
obtained inL∞(0, T ;H2(R2)) using the Aubin–Lions
compactness lemma [7]. The final existence result in
C([0, T ];H2(R2)) follows from the Bona–Smith approx-
imation [3]. We do not have any hint on whether this local
solution is global or not.

4 Solitary waves
4.1 First integrals for 1D solitary waves

1D bright solitary waves are sought for in the form
A(x, t) = eiωtu(x) (see [8]), whereA is a solution to
(SNLS). The functionu is supposed to have a maximum
at x = 0 (u(0) = um > 0 andu′(0) = 0). We further-
more want that forx → ∞, u(x) → 0 andu′(x) → 0.
This yields a unique possible frequency for the solitary
wave, namely

ω = a

(
1− ln(1 + u2

m)
u2

m

)
and imposesa = 1 (focusing case). The bright solitary
wave is solution to the first order equation

u′(x) = −sign(x)

√
ln(1 + u2)− u2

u2
m

ln(1 + u2
m).

4.2 Non existence of solitary waves for (SNLS) and (ZA)
Consider now the (bright) solitary wave solutions of

(SNLS) of the typeA(x, t) = eiωtU(x), whereU ∈
H1(Rd). It is solution to the elliptic equation

−∆U + ωU = a
|U |2U

1 + |U |2
, U ∈ H1(Rd).

Proposition 3 No non-trivial (U 6≡ 0) solitary wave of
(SNLS) exists when
(i) a = −1 (defocusing case), forω ≥ 0. (ii) a = 1 (fo-
cusing case) andω ≥ 1. (iii) a = ±1 if ω < 0 provided
|U |2/(1 + |U |2) = O(1/|x|1+ε), ε > 0 as|x| → +∞.

We now look for solitary wave solutions of (ZA), that
is solutions of the form(eiωtU(x), φ(x)) with x ∈ Rd,
ω ∈ R, U ∈ H1(Rd) andφ ∈ H. Thus(U, φ) should
satisfy the system

(RSW)

{
−∆U + ωU = aU∂xφ,

div((1 + |U |2)∇φ) = ∂x(|U |2).

The existence of non-trivial solutions of (SW) is an open
problem. Note that (SW) does not seem to be the Euler–
Lagrange equation associated to a variational problem.
We have however:
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Proposition 4 (i) Let a = −1 (defocusing case). Then
no non-trivial solution of (SW) exists forω ≥ 0.
(ii) Let a = 1 (focusing case). No non-trivial solution of
(SW) exists forω ≥ 1.
(iii) Let a = ±1. No non-trivial solution of (SW) exists
if ω < 0 provided∂xφ = O(1/|x|1+ε), ε > 0 as |x| →
+∞.

In both propositions, (i) and (ii) follow from simple en-
ergy estimates and (iii) from the classical result of Kato
[5] on the absence of embedded eigenvalues.

4.3 Existence of solitary waves for (SNLS)
We now turn to the existence of non-trivialH2 solu-

tions of

−∆U + ωU =
|U |2U

1 + |U |2
when0 < ω < 1. We will look for real radial solutions
U(x) = u(|x|) ≡ u(r) and thus consider the ODE prob-
lem

(RSW)

 −u′′ − d− 1
r

u′ + ωu =
u3

1 + u2
,

u ∈ H2(]0,∞[), u′(0) = 0.

Theorem 5 If a = 1 and0 < ω < 1, there exists a non-
trivial positive solution of (RSW).

This a consequence of a classical result of Berestycki,
Lions and Peletier [1].

5 Conclusion
We have derived from the Kukhtarev equations an

asymptotic model for the propagation of light in a pho-
torefractive medium.

The 1D asymptotic model is a saturated nonlinear
Schr̈odinger equation the Cauchy problem of which is
studied (in any space dimension) inL2 andH1. We also
prove the existence of solitary waves in 1 and higher di-
mensions. An interesting and open issue would be to
study the transverse stability of the 1D solitary waves in
the framework of the asymptotic model.

For the 2D asymptotic model (the Zozulya–Anderson
model) we also have studied the Cauchy problem and the
non-existence of solitary waves. The question of impos-
ing other boundary conditions, not vanishing in one space
direction, should also be addressed to treat a wider range
of experimental applications. We are already able to find
first integrals of (dark) solitary waves in this context.

Memory effects also certainly lead to interesting equa-
tions from the mathematical point of view. This neces-
sitates however a new full derivation, which is a difficult
and tedious task.
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Finite-difference (FD) method for 3D simulation of
sonic waves propagation in a borehole and surround-
ing 3D heterogeneous viscoelastic medium is presented.
It is based on explicit second-order staggered grid FD
scheme that solves the first-order viscoelastic wave equa-
tions (velocity-stress formulation) in cylindrical coordi-
nates. Attenuation is implemented via Generalize Stan-
dard Linear Solid model. In order to provide desired
Quality Factors � -method is applied (Blanch et al., 1995).
In order to bound area of computations special modifica-
tion of Perfectly Matched Layer for cylindrical coordi-
nate system is developed and implemented (Kostin et al.,
2006). Essential 3D nature of the waves processes for
realistic models claims necessity to use parallel computa-
tions. Parallelization is performed on the base of domain
decomposition and implemented under Message Passing
Interface. Results of numerical experiments are presented
and discussed.

1 Introduction
Sonic logs are very important borehole measurements

providing knowledge about physical properties of sur-
rounding rocks. In order to be able to recover physical
properties of surrounding rocks by sonic data one should
fully appreciate key peculiarities of elastic waves prop-
agating through and around borehole imbedded within
3D heterogeneous elastic formations. We believe that the
most effective way to do that is to use 3D numerical simu-
lation. This follows necessity to develop numerical meth-
ods and corresponding software providing a possibility
to perform a range of numerical experiments for a vari-
ety of models and a range of different source positions.
Most of the previous 3D FD studies are done for Carte-
sian coordinates. But, the use of these coordinates leads
to saw-like representation of the sharpest interface of the
problem - interface between fluid-filled borehole and en-
closing rocks. In its own turn this provokes generation of
rather strong artifacts known as ”numerical scattering”.
We believe one should take special care to avoid this arti-

fact because for the first of all correct simulation of sonic
log should provide one with correct simulation of head P-
and S-waves. These waves are of first arrivals and possess
very important information about desired elastic property
of borehole vicinity. In particular we would like to pay at-
tention that the use of eccentric sources inevitably leads to
spiral-like propagation path of head waves along cylindri-
cal interface well/surrounding medium followed by their
intensive numerical scattering on mentioned above saw-
like structures. The same spiral-like propagation of head
waves should be expected for media with azimuth hetero-
geneities. So, we believe that the use of cylindrical coor-
dinates is mandatory in order to get the proper results of
numerical simulation of sonic log for 3D heterogeneous
media.

2 Statement of the Problem
Waves propagation in heterogeneous viscoelastic me-

dia is governed by initial-boundary value problem for t-
hyperbolic first-order system of partial differential equa-
tions in cylindrical coordinates for velocity vector, stress
components and memory variables (Groby and Tsogka,
2004). In order to provide the desired value of Quality
Factor we use � -method described in (Blanch, 1995). Its
main advantage is in essential memory savings follow-
ing significant reduction of computer resources needed
for modeling. In the finite-difference implementation the
system of partial differential equations is approximated
by Virieux-like difference scheme on staggered grids.

The main trouble the person faces on when dealing
with FD scheme in cylindrical coordinate system is lin-
ear inflation of azimuth face of grid cells with radius in-
crease. In order to compensate this inflation we perform
periodical refinement of azimuth sampling. On the Fig.2
one can see mutual disposition of coarse and fine grids.
It is easy to recognize that in order to couple both these
grids one should interpolate components of velocity and
stress vectors with respect to azimuth at some specific
points. Our choice was to use advantage providing by
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��-periodicity of velocity and stress vectors with respect
to azimuth and to use interpolation on the base of Fourier
Transform. This interpolation possesses exponential ac-
curacy and its Fast Fourier Transform (FFT) version is
extremely fast. In order to incorporate in the model ob-

Figure 1: Coupling of coarse (A) and fine (B) grids.
Red diamonds placed at positions where one should

perform interpolation from red circles.

jects of rather small scale (for example, it could be ne-
cessity to take into account completion of the well) the
person needs in local refinement of radial step as well.
Our approach consists in the use of some scaling factor
providing smooth increase/decrease of this step. In order
to choose this factor the series of numerical experiments
was implemented.

3 Perfectly Matched Layers (PML) for Cylindrical
Coordinates

For numerical simulation of elastic wave propagation
one has to truncate infinite physical domain to finite com-
putational one. The most widespread approach to do that
is surrounding of a computational domain by a special
layer with intrinsic attenuation introduced in a special
way that provides extremely low reflections on both in-
terior and exterior interfaces. We used here our own de-
velopment described in (Kostin et al., 2002).

4 Parallel Implementation
For implementation of parallel computations we use

approach based on domain decomposition of the target
area. The total 3D model is sliced into a number of disc-
like subdomains ��. Each of these subdomains is as-
signed to a separate Processor Units (PU). Finite differ-
ence scheme assumes communication between neighbor-
ing processors (Fig.2) requiring them to exchange func-
tion values on the interfaces between slices. This com-
munication is arranged with a help of Message Passing
Interface library. The very important peculiarity of the

problem under consideration, besides its essential 3D na-
ture, is comparatively small amount of data for processors
to exchange.

K

K+1

K-1

To and from PU k+1

To and from PU k-1

Figure 2: Domain decomposition and data flow
between neighbor PU.

5 Numerical Experiments
The series of numerical experiments have been imple-

mented for a range of source frequencies, positions and
models of well completion and surrounding elastic me-
dia. For illustration let us consider the model with well
completion and vertical crack presented on the Fig.3. The
main purpose of this numerical experiment is to analyze
if one can reveal the fracture by sonic waves within well
with completion.

Detailed structure of the model is as following (num-
bers coincide with presented on the Fig.3a):

1. Vertical borehole with radius 0.1 m is filled with
mud with ��=1500 m/s, � � ���� kg/m� and Qual-
ity factor � � ��;

2. There is a steel tube encircling borehole; its width is
equal to 0.01 m, wave propagation velocities �� �

���� m/s, �� � ���� m/s, �=7830 kg/m� and Qual-
ity factor Q=100;

3. There is a casing around steel tube; its width is
equal to 0.04 m, its elastic parameters are the fol-
lowing: ��=4200 m/s, ��=2425 m/s, �=2400 kg/m�

and Quality factor Q=80;

4. Background - homogeneous viscoelastic layer (yel-
low) with wave propagation velocities ��=4989 m/s,
��=2605 m/s, �=2400 kg/m� and Quality factor
Q=100;

5. Background - homogeneous viscoelastic layer
(blue) with wave propagation velocities ��=3208
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m/s, ��=1604 m/s, �=2400 kg/m� and Quality fac-
tor Q=60;

6. Background - homogeneous viscoelastic layer
(green) with wave propagation velocities ��=2650
m/s, ��=1219 m/s, � =2400 kg/m� and Quality fac-
tor Q=15;

7. Vertical crack through all background ( from r=0.18
m to r=0.55 m and 0.02 m in width (see images b)
and c)) filled with mud with parameters ��=1500
m/s, �=1000 kg/m� and Quality factor Q=65.

Results one can see on the Fig.4.

Figure 3: a) Vertical cross-section of the model;
b)Horizontal cross-section of the model; c)Zoomed

version of horizontal cross-section.
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Abstract
We study mixed three-dimensional transmission prob-

lems for composites consisting of a piezoelectric matrix
with metallic inclusions (electrodes). We derive a linear
model with regard to thermal stress effects for the interac-
tion of the thermoelastic and electrical fields and perform
a rigorous mathematical analysis by the potential method.
We reduce the initial transmission problem to the equiva-
lent strongly elliptic system of pseudodifferential equa-
tions on manifold with boundary. The solvability and
regularity of solutions to the resulting boundary integral
equations and the original transmission problem are ana-
lyzed in Sobolev-SlobodetskiHs

p and BesovBs
p,t spaces.

We investigate the stress singularities which appear near
zones, where the boundary conditions change and where
the interfaces meet the exterior boundary. We analyse also
the stress singularities of solutions at the interior and in-
terface crack edges. We show that the stress singularity
exponents cam be efficiently calculated by means of the
eigenvalues of the symbol matrices of the corresponding
pseudodifferential operators and study their dependence
on the material parameters.

Description of the problem and main results
The paper deals with mixed type boundary transmis-

sion problems arising in the theory of multi-structural
composites consisting of piezoelectric matrix with metal-
lic inclusions (electrodes) when thermal effects are taken
into consideration. Modern industrial and technologi-
cal processes apply widely such type composite materi-
als. Therefore investigation of the mathematical models
for such composite materials and analysis of the corre-
sponding mechanical, thermal and electric fields became
very actual and important for both fundamental research
and practical applications. We remark here that during
last years more then 1000 scientific works have been
published annually (see, e.g., [1], [2] and the references
therein).

Let Ωm and Ω be bounded, non-intersecting three-
dimensional domains withC∞-smooth boundaries∂Ω
and∂Ωm, respectively. Moreover, let∂Ω and∂Ωm have
a nonempty intersectionΓm = ∂Ω ∩ ∂Ωm with positive
measure.

We setSm := ∂Ωm \ Γm andS∗2 := ∂Ω \ Γm. Fur-
ther, we denote byΓ some open, nonempty, proper sub-
manifold ofS∗2 and letS := S∗2 \ Γ. Thus, we have the
following decomposition of the boundary surfaces

∂Ω = Γm ∪ S ∪ Γ, ∂Ωm = Γm ∪ Sm.

We assume that∂Ωm, ∂Ω, ∂Sm, ∂Γm, ∂Γ, ∂S ∈ C∞,
and∂Ωm ∩ Γ = ∅.

Let Ωm be occupied by an anisotropic homogeneous
elastic medium (metallic inclusion) andΩ be filled by an
anisotropic homogeneous piezoelectric medium (ceramic
matrix). These two bodies interact to each other along the
interface surfaceΓm.

We apply the Voigt’s linear model in the piezoelec-
tric part and the usual classical model of thermoelas-
ticity in the metallic part to write the corresponding
coupled systems of governing partial differential equa-
tions. As a result, in the metallic part the unknown
field is described by a 4-component vectorU (m) :=
(u (m)

1 , u
(m)
2 , u

(m)
3 , ϑ (m))> (three components of the dis-

placement vectoru (m)
j , j = 1, 2, 3, and the tempera-

ture distributionϑ (m)), while in the piezoceramic part
the unknown field is represented by a 5-component vector
U = (u1, u2, u3, ϑ, ϕ) (three components of the displace-
ment vectoruj , j = 1, 2, 3, the temperature distribution
ϑ and the electric potential functionϕ). The situation be-
comes complicated since we have to find boundary and
transmission conditions for the physical fields possessing
different dimensions in adjacent domains. The main dif-
ficulty in modelling is to find appropriate boundary and
transmission conditions for the composed body and to
formulate them in an efficient way.

The physical problem under consideration is described
by strongly elliptic systems of linear partial differential
equations in the corresponding elastic and piezoelastic
domains with appropriate mixed boundary and transmis-
sion conditions onS, Sm, Γ, andΓm: on S andSm the
mechanical stress vector and temperature flux are pre-
scribed, onΓ the Dirichlet condition is given forU , and
onΓm we have appropriate transmission conditions along
with the Dirichlet boundary condition for the electric po-
tential functionϕ (for details see [2]).
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Solutions to this kind of mixed boundary value prob-
lems and related mechanical and electrical characteristics
usually have singularities in a neighbourhood of curves
where the boundary conditions change (e.g.,∂Γ) or where
the interface intersects the exterior boundary of the com-
posite body (e.g.,∂Γm ). If the composite body under
consideration contains interior or interface cracks, then
stress singularities appear at the crack edges as well.

Our goal is to study the solvability of the mixed bound-
ary transmission problem in appropriate function spaces
and analyse regularity properties of solutions. In particu-
lar, we describe dependence of the stress singularity ex-
ponents on the material parameters.

In the metallic part of the composite we have the sys-
tem of differential equations

A (m)(∂, τ) U (m)(x) + X̃ (m)(x) = 0 (1)

with A (m)(∂, τ) = [A (m)
jk (∂, τ) ]4×4, and

A
(m)
jk (∂, τ) = c

(m)
ijlk ∂i ∂l − % (m) τ2 δjk,

A
(m)
4k (∂, τ) = −τ T

(m)
0 γ

(m)
kl ∂l,

A
(m)
j4 (∂, τ) = −γ

(m)
ij ∂i, k, j = 1, 2, 3,

A
(m)
44 (∂, τ) = κ

(m)
il ∂i ∂l − α (m) τ,

where U (m) := (u (m), ϑ (m))> is the sought vec-

tor, X̃ (m) = (X (m)
1 , X

(m)
2 , X

(m)
3 , X

(m)
4 )>, X (m) =

(X (m)
1 , X

(m)
2 , X

(m)
3 )> is a given mass force density,

X
(m)
4 is a given heat source density,δjk is the Kronecker

delta, A (m)(∂, τ) is the nonselfadjoint matrix differen-
tial operator generated by the thermoelastic field equa-
tions, ∂j := ∂/∂j , the superscript> denotes transposi-
tion. Here and in what follows we employ the Einstein
summation convention.

Analogously, in the piezo-ceramic part we have the fol-
lowing system of partial differential equations

A(∂, τ)U(x) + X̃(x) = 0 in Ω (2)

with A(∂, τ) = [Ajk(∂, τ)]5×5 and

Ajk(∂, τ) = cijlk ∂i ∂l − % τ2 δjk,

Aj4(∂, τ) = −γij ∂i, Aj5(∂, τ) = elij∂l∂i,

A4k(∂, τ) = −τ T0 γkl ∂l, j, k = 1, 2, 3,

A44(∂, τ) = κil ∂i ∂l − α τ,

A45(∂, τ) = τ T0 gi ∂i, A5k(∂, τ) = −eikl ∂i∂l,

A54(∂, τ) = −gi∂i, A55(∂, τ) = εil ∂i∂l,

where U := (u, ϑ, ϕ)> is the sought vector,X̃ =
(X1, X2, X3, X4, X5)>, X = (X1, X2, X3)> is a given
mass force density,X4 is a given heat source density,
X5 is a given charge density,A(∂, τ) is the nonselfad-
joint matrix differential operator generated by the piezo-
thermoelastic field equations.

The material constants involved in the above equations
are: %, % (m) – mass densities;cijkl, c

(m)
ijkl – elastic con-

stants;ekij – piezoelectric constants;εkj – dielectric (per-

mittivity) constants;γkj , γ
(m)
kj – thermal strain constants;

κkj , κ
(m)
kj , – thermal conductivity constants;̃c, c̃ (m)–

specific heat per unit mass;T0, T
(m)

0 – initial reference
temperature, that is the temperature in the natural state
in the absence of deformation and electromagnetic fields;
α := % c̃, α (m) := % (m) c̃ (m) – thermal material con-
stants;gi (i = 1, 2, 3) – constants characterizing the rela-
tion between thermodynamic processes and piezoelectric
effect (pyroelectric constants).

These equations are obtained from the corresponding
dynamic field equations by the Laplace transform with
respect to the time variable. Ifτ = σ + iω is a complex
parameter, we have thepseudo-oscillation equations. If
τ = iω is a pure imaginary number, with a real frequency
parameterω, we obtain thesteady state oscillation equa-
tions. Finally, if τ = 0 we get theequations of statics.

In this paper we apply potential method and look for
solutions as layer potentials in the ceramic and metallic
parts with unknown densities. The densities are to deter-
mine in such a way, that the transmission and boundary
conditions are satisfied. This reduces the original trans-
mission problem to the system of pseudodifferential equa-
tions involving boundary operators acting on the interface
Γ (m) and the Dirichlet partΓ of the exterior boundary:

Aτ : [B̃r−1
p,t (Γ)]5 → [Br

p,t(Γ)]5, (3)

[Aτ + B (m)
τ ] : [B̃s−1

p,t (Γ (m))]5 → [Bs
p,t(Γ

(m))]5, (4)

whereAτ andAτ + B (m)
τ are strongly elliptic pseudod-

ifferential operators of order−1 (Steklov-Poincaŕe type
operators). HerẽBr

p,t andBr
p,t are Besov function spaces.

Let σ̃1(x, ξ1, ξ2) be the principal symbol matrix of the

operatorAτ andλ
(1)
j (x) (j = 1, 5) be the eigenvalues of

the matrix[σ̃1(x, 0, +1)]−1 σ̃1(x, 0,−1) for x ∈ ∂Γ.
Similarly, let σ̃2(x, ξ1, ξ2) be the principal symbol

matrix of the operatorAτ + B (m)
τ and λ

(2)
j (x) (j =

1, 5) be the eigenvalues of the corresponding matrix
[σ̃2(x, 0, +1)]−1 σ̃2(x, 0,−1) for x ∈ ∂Γ (m).
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Further, let

γ1
′ := inf

x∈∂Γ, 1≤j≤5

1
2π

arg λ
(1)
j (x),

γ1
′′ := sup

x∈∂Γ, 1≤j≤5

1
2π

arg λ
(1)
j (x),

γ2
′ := inf

x∈∂Γ (m), 1≤j≤5

1
2π

arg λ
(2)
j (x),

γ2
′′ := sup

x∈∂Γ (m), 1≤j≤5

1
2π

arg λ
(2)
j (x).

Note thatγj
′ and γj

′′ (j = 1, 2) depend on the ma-
terial parameters, in general, and belong to the interval
(−1

2 , 1
2). We put

γ ′ := min {γ1
′, γ

′
2}, γ ′′ := max {γ1

′′, γ
′′
2 }.

We prove that if the parameterss, r, 1 < p < ∞, and
1 ≤ t ≤ ∞, satisfy the conditions

1
p
− 1

2
+ γ1

′′ < r <
1
p

+
1
2

+ γ1
′,

1
p
− 1

2
+ γ2

′′ < s <
1
p

+
1
2

+ γ2
′,

then the operators (3) and (4) are Fredholm operators
with index zero. These results along with the uniqueness
theorem for the initial mixed transmission problem lead
then to the existence of the solution pair(U (m), U) ∈
[W 1

p (Ωm)]4 × [W 1
p (Ω)]5 with 4

3−2γ ′′ < p < 4
1−2γ ′ .

Moreover,U (m) andU are represented by potential type
surface integrals.

Further, we show the globalCα-regularity results with
someα ∈ ( 0, 1

2 ). For sufficiently smooth data we have,
(U (m), U) ∈ [Cα(Ωm)]4 × [Cα(Ω)]5 with α < 1

2 + γ ′.
In general, the above eigenvaluesλ

(l)
j (x) (j = 1, 5,

l = 1, 2) andγ ′ ≤ 0 depend on the material parameters
and actually they define the singularity exponents for the
first order derivatives of solutions (stress singularity ex-
ponents). For particular composites, with the piezoelec-
tric materials BaTiO3 (the crystal symmetry of the class
4mm ), PZT-4 and PZT-5A (the crystal symmetry of the
class6mm) and metallic inclusionsilver-palladium al-
loy, we compute these complex-valued stress singularity
exponents and demonstrate their dependence on the ma-
terial parameters.

Detailed analysis based on the asymptotic expansions
of solutions shows that for sufficiently smooth bound-
ary data (e.g.,C∞-smooth data say) the principal singu-
lar terms of the solution vectorsU (m) and U near the

curves∂Γ (m) and ∂Γ can be represented as a product
of a ”good” vector-function and a singular factor of the
form [ ln %(x) ]mj−1[ %(x) ]αj+i βj . Here%(x) is the dis-
tance from a reference pointx to the curves∂Γ (m) or ∂Γ.
Therefore, near these curves the dominant singular terms
of the corresponding generalized stress vectors are repre-
sented as a product of a ”good” vector-function and the
factor [ ln %(x) ]mj−1[ %(x) ]−1+αj+i βj . The numbersβj

are different from zero, in general, and describe theoscil-
lating characterof the stress singularities.

The exponentsαj + i βj are related to the above eigen-
values by the equalities

αj =
1
2

+
arg λj

2π
, βj = − ln |λj |

2π
.

Here λj ∈ {λ (1)
1 (x), · · · , λ

(1)
5 (x)} for x ∈ ∂Γ, and

λj ∈ {λ (2)
1 (x), · · · , λ

(2)
5 (x)} for x ∈ ∂Γ (m). In the

above expressions the parametermj denotes the multi-
plicity of the eigenvalueλj .

We establish that near the curves∂Γ (m) and ∂Γ the
components of the generalized stress vector behave like
O (

[ ln %(x) ]m0−1[%(x)]−
1
2
+γ′ ), wherem0 denotes the

maximal multiplicity of the eigenvalues. This is a global
singularity effect for the first order derivatives of the vec-
torsU (m) andU . In contrast to the classical pure elastic-
ity case(whereγ ′ = γ ′′ = 0), hereγ ′ andγ ′′ depend
on the material parameters and are different from zero, in
general. This is related to the fact that our transmission
problem and, consequently, the corresponding strongly
elliptic matrix pseudodifferential operator are not selfad-
joint. This implies that the eigenvaluesλ

(k)
j are complex

numbers, in general.
Similar analysis is done for the stress singularity expo-

nents near the interior and interface crack edges.
The results of the calculations for particular composites

are presented in the form of graphs and tables.
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Abstract
Parallel computational algorithm is worked out for the

analysis of two-dimensional dynamic problems within
the framework of mathematical model of Cosserat conti-
nuum, in which independent rotations of particles are
considered as well as translational degrees of freedom of
the particles motion, and two asymmetric tensors (the ten-
sor of stresses and the tensor of moments) are used for the
description of stressed state. This algorithm is realized
as a parallel program system for multiprocessor super-
computers of MVS series. Some computations are carried
out to demonstrate an oscillatory character of the angular
velocity changing on fronts of transversal waves in mo-
ment elastic materials.

Introduction
Mathematical model of Cosserat theory of elasticity

[1], taking into account the microstructure of materials,
is applicable to the description of stress-strained state of
composites, powder and granular materials, and also to
the special models constructing for thin-walled elements,
e.g. rods, plates and shells. In addition to translational
motion, which is characterized by the velocity vector
v, the independent rotations of particles, describable by
means of the angular velocity vectorω, are considered in
this model, and besides the asymmetric stress tensorσ the
asymmetric tensor of couple stressesm is introduced, too.

A total system of equations of the model consists of
motion equations, kinematic relationships and generali-
zed elastic law [2]:

ρ v̇ = ∇σ + f, j ω̇ = ∇m− 2σa + q,

Λ̇ = ∇v + ω, Ṁ = ∇ω,

σ = (k − 2µ/3) (δ : Λs) δ + 2 µ Λs + 2 α Λa,

m = β (δ : M s) δ + 2 γ M s + 2 εMa.

Hereρ is the material density,f andq are given vectors of
volumetric forces and moments,Λ andM are the strain
tensor and the curvature tensor, which are equal to zero in
normal (stress-free) state,j is a special dynamic charac-
teristic of material, equals to the product of the moment
of inertia with respect to axis, passing through the focal
point of any particle, by the particle number in a volume

unit, δ is the Kronecker delta,k, µ, α, β, γ, ε are the phe-
nomenological coefficients of elasticity in isotropic case.
Superscriptss anda denote symmetric and antisymmet-
ric parts of tensors. The antisymmetric part is identified
with corresponding vector, if it’s necessary. In particular,
the vector of the tensorσa = (σ − σ∗)/2 is included in
motion equations.

If material particles of microstructure are regular sphe-
res of the radiusr0 and the massm0 then coefficientj
can be calculated asj = 2 r0 m2

0 N/5 (N is a particle
number per unit volume). The density of material, taking
into account the porosity, isρ = m0 N , hence

j = 2 ρ r2
0/5, r0 =

√
5j/(2 ρ).

The principal distinction of Cosserat model from the clas-
sical elasticity theory is that a small parameter implicitly
presents in it, which has the measure of length. Therefore
the stress fields are able to change appreciably at a range
of orderr0. So, it is necessary to solve dynamic problems
for Cosserat continuum numerically only on sufficiently
small grids, which mesh size is appreciably less thanr0,
otherwise the accuracy of numerical solution may be in-
sufficient to analyze some delicate small-scale effects.

Equations of 2D model
In the case of plane strained state the model describes a

behavior of material consisting of particles of cylindrical
form with axis, directed along the axisx3. The angular
velocity vector has only one nonzero projectionω3. A to-
tal system of equations in plane case takes the next form:

ρ v̇1 = σ11,1 + σ21,2, ρ v̇2 = σ12,1 + σ22,2,

σ̇11 = (k + 4 µ/3) v1,1 + (k − 2µ/3) v2,2,

σ̇22 = (k − 2µ/3) v1,1 + (k + 4 µ/3) v2,2,

σ̇33 = (k − 2µ/3) (v1,1 + v2,2),

σ̇12 = (µ− α) v1,2 + (µ + α) v2,1 − 2α ω3,

σ̇21 = (µ + α) v1,2 + (µ− α) v2,1 + 2 α ω3,

j ω̇3 = m13,1 + m23,2 + σ12 − σ21,

ṁ23 = (γ + ε) ω3,2, ṁ32 = (γ − ε)ω3,2,

ṁ31 = (γ − ε) ω3,1, ṁ13 = (γ + ε)ω3,1.
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This system is reduced to symmetric form

AUt = B1Ux1 + B2Ux2 + QU + G,

recorded with respect to the vector–functionU =
(
v1, v2, σ11, σ22, σ33, σ12, σ21, ω3,m23,m32, m31,m13

)
.

The matrix–coefficientsA, B1 andB2 of this system are
symmetric, andQ is antisymmetric. Furthermore, the
matrix A is positively defined ifk, µ, α, γ + ε > 0, so
the system is hyperbolic by Friderix. In two-dimensional
case it determines three types of elastic waves in bound-
less continuum – longitudinal and transverse waves, pro-
pagating with the velocitiescp =

√
(k + 4 µ)/ρ and

cs =
√

(µ + α)/ρ, as well as the waves of rotational mo-
tion with the velocitycω =

√
(γ + ε)/j.

Numerical algorithm
Parallel computational algorithm is worked out for the

analysis of two-dimensional dynamic problems within the
framework of considering mathematical model. Numeri-
cal realization of this model is carried out by means of the
bicyclical space-variable decomposition method on each
step by time. For the solution of one-dimensional systems
in space directions the monotone essentially nonoscilla-
tory finite-difference scheme with limit reconstruction of
the second degree of accuracy is used. A parallel prog-
ram system for multiprocessor computers is created on
the basis of SPMD (Single Program – Multiple Data)
technology in Fortran-95 with the use of MPI (Massage
Passing Interface) library. The parallelization is accom-
plished due to 1D or 2D division of computational do-
main. Program system allows to simulate the propaga-
tion of elastic waves produced by mechanical impacts in
a body, aggregated of heterogeneous blocks with curvi-
linear boundaries. It may be applied for the solution of
direct seismic problems taking into account complicated
mechanical properties of geomaterials.

The system consists of the front-end processor prog-
ram, the main program of velocities and stresses compu-
tation, the subprograms for realization of boundary condi-
tions and pasting together conditions in interior bounda-
ries, and the back-end processor program. The front-end
processor is intended to prepare initial data in the packed
form and to distribute them uniformly between parallel
computational nodes. It also constructs the curvilinear
grids in blocks by the Hermite cubic splines. The back-
end processor performs special resampling down of data
bulks to lower time of traffic along the global network
and time of the results graphic processing with the help of

personal computer software. The blocks of high dimen-
sionality covered with small grid are distributed (cut on
vertical zones) among some computational nodes. If the
grid dimensionality of one or more blocks is less than an
average dimensionality per node then they are processed
by one node. On each node of cluster the main program
makes a similar computations consisting of mutually co-
ordinated step-by-step realization of the space-variable
decomposition method. The solution of one-dimensional
systems in vertical direction is occurred independently.
In horizontal direction the interchange of data between
processes is carried out at the stage of the limit recon-
struction of solution. The standard technology of contour
meshes is used. To minimize calculating time the number
of interchanges is varied by combined solution of some
one-dimensional systems.

Results of computations
To demonstrate an effect of scale parameter in the mo-

del of Cosserat continuum let us consider an exact solu-
tion of the problem about simple shearing strain inx1, x2

plane with constant shear rateχ̇ > 0. In this problem the
projectionv2 = χ̇ x1 of the velocity vector is nonzero,
and the angular velocity of particles depends only on time
variable. Due to the vanishing of normal stressesσii and
all moments the total system of equations, being under
consideration, gives

j ω̇3 = σ12 − σ21, σ̇12 = (µ + α) χ̇− 2 α ω3,

σ̇21 = (µ− α) χ̇ + 2 α ω3.

The rest of equations of the system become identities.
From this as a result of time differentiation it follows that

j ω̈3 = 2α χ̇− 4 α ω3.

The solution of such equation, satisfying the initial con-
dition ω3(0) = 0, is

ω3(t) = χ̇ sin2

√
α

j
t.

It shows that the self-excited oscillations of angular ve-
locity in the shift domain may be observed. The period of
self-oscillationsT = π

√
j/α depends onα and tends to

infinity underα → 0. If j decreases when the microstruc-
ture parameterr0 tends to zero, then the frequency of os-
cillations becomes higher.

The stress-strained state, close to simple shear, appears
behind the front of transverse wave, if tangential stress,
generating it, changes monotonously with time. Graph
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Figure 1: Dependence ofω3 onx1 coordinate

Figure 2: Dependence ofσ12 onx1 coordinate

of the dependence of angular velocityω3 on longitudinal
coordinatex1 in the case ofΛ–like impulse of tangential
stress on the boundaryx1 = 0 is represented in Fig. 1.
The boundary stress increases by linear law during the
time intervalt0 and then decreases during the same time.
Graph of the dependence of tangential stressσ12 on x1

is shown in Fig. 2. These results are obtained by means
of numerical solution within the framework of the model
of one-dimensional motion with plane waves. In Fig. 3
and Fig. 4 one can see the level curves of angular veloci-
ty and tangential stress in two-dimensional problem, ob-
tained on the grid from1000×1000 meshes. Three waves
of loading and three waves of unloading propagate in the
material under action of three impulses on the boundary
(Fig. 4). Phenomenological coefficients of the material
are taken from [3] for polyurethane, the step of spacial
grid is set in accordance with typical scale of the micro-
structure. The results show the same effect – the oscilla-
tions of rotational motion (see Fig. 3) are observed on the
fronts of transverse waves.
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† CASC, Lawrence Livermore National Laboratory, Livermore, Ca 94551, USA
∗Email: {appelo2,nilsson2,andersp,sjogreen2}@llnl.gov

x

y

q

r

PSfrag replacements
Γ1

Γ2

Γ3

Γ4

Figure 1: The Geometry. The surface is mapped onto to
q = 0 and y = 0 is mapped onto r = 0.

Introduction
We consider elastic wave propagation on complex do-

mains simulated by centered finite difference discretiza-
tion of the elastic wave equation on second order form.
Such discretizations are highly efficient but their use has
been limited due to two major difficulties: Stable dis-
cretization of the free surface boundary condition and the
handling of complex geometries needed for topography.
A remedy to the first problem was recently presented in
[1] were a stable discretization of the free surface bound-
ary conditions on a Cartesian grid were derived. Here we
generalize the results in [1] to curvilinear grids, providing
a solution to the second difficulty.

In curvilinear coordinates the elastic wave equation is
(on conservative form)

Jρü =
[
Jqx

[
(2µ + λ)Dxu + λDyv

]
+ Jqy

[
µ(Dxv + Dyu)

]]
q

(1)

+
[
Jrx

[
(2µ + λ)Dxu + λDyv

]
+ Jry

[
µ(Dxv + Dyu)

]]
r
,

Jρv̈ =
[
Jqx

[
µ(Dxv + Dyu)

]
+ Jqy

[
(2µ + λ)Dyv + λDxu

]]
q

(2)

+
[
Jry

[
(2µ + λ)Dyv + λDxu

]
+ Jrx

[
µ(Dxv + Dyu)

]]
r
.

Here Dzw = (qzwq + rzwr), z ∈ {x, y}. We are inter-
ested in a domain (see Figure 1) with free surface bound-
ary condition on Γ1

qx [(2µ + λ)Dxu + λDyv] + qyµ(Dxv + Dyu) = 0, (3)
qy [(2µ + λ)Dxv + λDyu] + qxµ(Dxv + Dyu) = 0, (4)

periodic on Γ2 and Γ4 and homogeneous Dirichlet on Γ3.

This work was performed under the auspices of the U.S. Department of Energy by University of

California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Spatial Discretization
Let the mapping from the unit square to the physical

domain be given by

x(q, r), y(q, r), (q, r) ∈ [0, 1]2,

and let the grid in (q, r) space be defined by

qi = (i − 1)hq, i = 0, . . . , Nq, hq = 1/(Nq − 1),

rj = (j − 1)hr, j = 0, . . . , Nr, hr = 1/(Nr − 1).

Denote the grid functions [ui,j , vi,j]. The standard second
order accurate difference operators are

hrD
r
+ui,j = ui,j+1 − ui,j , Dr

−ui,j = Dr
+ui,j−1,

hqD
q
+ui,j = ui+1,j − ui,j , D

q
−ui,j = D

q
+ui−1,j,

2Dr
0ui,j = Dr

+ui,j + Dr
−ui,j, 2Dq

0
ui,j = D

q
+ui,j + D

q
−ui,j.

We will also use the one sided operator and averaging
operators

D̃
q
0
ui,j =

{
D

q
+ui,j, i = 1,

D
q
0
ui,j, i ≥ 2,

2Eq

1/2
(σi,j) = σi+1,j + σi,j, 2Er

1/2
(σi,j) = σi,j+1 + σi,j,

to discretize (1) and (2). The spatial approximation is

Jρü = D
q
−

E
q

1/2
(Jqxqx(2µ + λ))D

q
+u +

gDq
0(Jqxrx(2µ + λ))D

r
0u

+ D
q
−

E
q

1/2
(Jqxqyλ)D

q
+v +

gDq
0(Jqxryλ)D

r
0v + D

q
−

E
q

1/2
(Jqyqxµ)D

q
+v

+
gDq

0(Jqyrxµ)D
r
0v + D

q
−

E
q

1/2
(Jqyqyµ)D

q
+

u +
gDq

0(Jqyryµ)D
r
0u

+ D
r
0(Jrxqx(2µ + λ))

gDq
0u + D

r
−

E
r
1/2(Jrxrx(2µ + λ))D

r
+u

+ D
r
0(Jrxqyλ)

gDq
0v + D

r
−

E
r
1/2(Jrxryλ)D

r
+v + D

r
0(Jryqxµ)

gDq
0v

+ D
r
−

E
r
1/2(Jryrxµ)D

r
+v + D

r
0(Jryqyµ)

gDq
0u + D

r
−

E
r
1/2(Jryryµ)D

r
+u

≡ L
(u)

(u, v). (5)

Jρv̈ = D
q
−

E
q

1/2
(Jqxqxµ)D

q
+v+

gDq
0(Jqxrxµ)D

r
0v+D

q
−

E
q

1/2
(Jqxqyµ)D

q
+u

+
gDq

0(Jqxryµ)D
r
0u + D

q
−

E
q

1/2
(Jqyqxλ)D

q
+u +

gDq
0(Jqyrxλ)D

r
0u

+D
q
−

E
q

1/2
(Jqyqy(2µ +λ))D

q
+v +

gDq
0(Jqyry(2µ+λ))D

r
0v +D

r
0(Jrxqxµ)

gDq
0v

+ D
r
−

E
r
1/2(Jrxrxµ)D

r
+v + D

r
0(Jrxqyµ)

gDq
0u + D

r
−

E
r
1/2(Jrxryµ)D

r
+u

+ D
r
0(Jryqxλ)

gDq
0u + D

r
−

E
r
1/2(Jryrxλ)D

r
+u

+ D
r
0(Jryqy(2µ + λ))

gDq
0v + D

r
−

E
r
1/2(Jryry(2µ + λ))D

r
+v

≡ L
(v)

(u, v). (6)
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The discrete boundary conditions on Γ3 and Γ2,Γ4 are

uNq ,j = vNq ,j = 0, (7)
ui,1 = ui,Nr , ui,0 = ui,Nr−1 (8)
vi,1 = vi,Nr , vi,0 = vi,Nr−1. (9)

Finally, in order to obtain a stable method we approximate
the boundary conditions (3), (4) by
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Introducing the discrete scalar products

(w, u)h =

Nr−1∑

j=1

hqhr

2
w1,ju1,j +

Nq−1∑

i=2

hqhrwi,jui,j,

(w, u)hr =
Nr−1∑

j=1

Nq−1∑

i=2

hqhrwi,jui,j,

where u and v are real valued functions, with correspond-
ing norms ‖w‖2

h = (w,w)h, ‖w‖2

hr = (w,w)hr , we can
prove the following

Lemma 1 (self adjoint spatial discretization). For all
real-valued grid functions (u0, v0), (u1, v1) satisfying the
discrete boundary conditions (7), (8), (9), (10), (11), the
spatial operator (L(u), L(v)) is self-adjoint, i.e.

(u0, L(u)(u1, v1))h + (v0, L(v)(u1, v1))h =

(u1, L(u)(u0, v0))h + (v1, L(v)(u0, v0))h. (12)

From lemma 1 it follows that.

Corollary 1 (conservation of energy). All real-valued
solutions (u, v) to the equations (5), (6) with boundary
conditions (7), (8), (9), (10) and (11), satisfy

‖
√

Jρut‖
2

h + ‖
√

Jρ vt‖
2

h

−(u,L(u)(u, v))h − (v, L(v)(u, v))h = C. (13)

Here C is a constant depending only on the initial data.

We can also use the following lemma to establish that
the conserved quantity (13) is a norm.

Lemma 2 (ellipticity). For all real-valued grid functions
(u, v) satisfying the discrete boundary conditions (7), (8),
(9), (10), (11), the spatial operator the spatial operators
L(u)(u, v), L(v)(u, v) satisfy the following equality

−(u,L(u)(u, v))h − (v, L(v)(u, v))h =

P1 + P2 + P3 + P4, (14)
P1 ≥ 0, P2 ≥ 0, P3 ≥ 0, P4 ≥ 0.
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Temporal Discretization
In time we discretize using standard Leap-Frog, i.e. the

fully discrete equations are

un+1 − 2un + un−1 = (ρJ)−1k2L(u)(un, vn),

vn+1 − 2vn + vn−1 = (ρJ)−1k2L(v)(un, vn).

For this time discretization it can be proved that the dis-
crete quantity

Ce(tn+1) = ‖Dt
+un‖2

ρ + ‖Dt
+vn‖2

ρ−

(un+1, (ρJ)−1L(u)(un, vn))ρJ

−(vn+1, (ρJ)−1L(v)(un, vn))ρJ ,

is conserved. That is, Ce(tn+1) = Ce(tn). Here
(f, g/(ρJ))ρJ = (f, g)h is a weighted scalar product.

Computations
To verify the order of accuracy we determined forcing

functions in the equations and boundary conditions such
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N maxerr u maxerr v ei/ei+1, u ei/ei+1, v

80 0.16533 0.15609
160 0.04245 0.03912 3.89 3.99
320 0.01071 0.00971 3.96 4.03
640 0.00269 0.00240 3.98 4.04

Table 1: Order of accuracy with method of manufactured
solution.

that the solution is given by

u = sin(6.2(x − 1.3t)) sin(6.2y),

v = sin(6.2(x − 1.2t)) sin(6.2y).

We computed the solution on the grid defined by

x = x′ + 0.05 sin(y′), y = y′ + 0.05 sin(x′),

(x′, y′) ∈ [−π, π]2.

We choose λ = µ = 1 and advanced the solution up
to time π/5 with a time step k = 0.1h, h = π/N,N =
80, 160, 320, 640 and computed the maximum error in the
final solution. The results, showing the second order con-
vergence, are displayed in Table 1.

Computations on a single grid
In Figure 2 we present a computation with initial data

consisting of a pure pressure pulse centered in (x, y) =
(0.1, 1) which we advance up to time 0.2. The computa-
tion is performed for a material with ρ = 1, µ = 1, λ = 7.
As the pulse hits the free surface the P-wave transforms
into reflected P and S-waves and surface waves traveling
along the surface, see Figure 2. For this computation we
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Figure 2: Divergence and Curl at two times. The initial
data consisted of a pure pressure wave, thus there is no
S-wave corresponding to the lowermost P-wave. The

free surface boundary condition converts the P-wave into
S-waves and surface waves.

monitored the quantity Ce(tn+1) − Ce(tn) and as can be
seen in Figure 3 it is conserved to machine precision.
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Figure 3: Left: Difference in the discrete energy,
Ce(tn+1) − Ce(tn), for subsequent time steps. Right:

An overset grid.

Computations on an overset grid
Finally we present a computation on an overset grid

of the type displayed in Figure 3. On the Cartesian grid
we use the discretization from [1] and on the curvilinear
grid we use the proposed discretization. To suppress weak
instabilities triggered by the interpolation we add a small
dissipative term, αh3(D+D−)2, to both equations in both
directions on both grids. Here we chose λ = 0.005, µ =
0.001 and force the solution in (x, y) = (−0.7, 0) with
a Gaussian pressure pulse with support up to time 1.6.
Again, the reflection of the free surface generates a S-
wave and a P-wave while the primary P-wave traveling to
the right in the interior remains solitary, see Figure 4.

Figure 4: P and S-wave at three different times.
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D. Gabriel†,∗, J. Plěsek†, R. Kolman†, and F. Valěs†
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Abstract
The numerical dispersion of two-dimensional finite el-

ements was studied. The outcome of this dispersion study
was verified by the numerical and analytical solutions to
the longitudinal impact of two long cylindrical bars. In
accordance with the results of the dispersion analysis it
was proved that the quadratic elements showed better ac-
curacy than the linear ones.

Introduction
Spatial discretization of a continuum by means of the

finite element method (FEM) introduces dispersion error
to a numerical solution of wave propagation. Despite of
many papers published on the subject, little attention has
been paid so far to higher-order elements. Belytschko and
Mullen [1] were the first to extend the dispersion anal-
ysis to quadratic one-dimensional finite elements. The
dispersion study of the three-dimensional second-order
Helmholtz equation was carried out by Abboud and Pin-
sky [2] for 20-node elements. However, the dispersion
analysis of a standard solid mechanics problem has not
yet been performed.

In this work, recent results accomplished by authors
are summarized, specifically the extension of dispersion
analysis to the eight-node serendipity finite elements [3],
[4]. The outcome of this dispersion study is verified by
the numerical and analytical solutions to the longitudinal
impact of two long cylindrical bars [5].

Numerical dispersion analysis
In dispersion analysis two dimensional bilinear and

serendipity finite element meshes were used. Since the
meshes were regular and uniform only the characteristic
patches containing2 × 2 elements were considered—see
Fig. 1. Furthemore, in bilinear mesh, all the nodes pos-
sess the same sub-matrices in the final assembly and, thus,
only one characteristic set of equations corresponding to,
say, node{m,n} have to be assembled. Likewise, one
corner node{m,n} and two mid-side nodes{m + 1, n}
and{m,n + 1} must be taken into account when dealing
with the serendipity mesh.

Suppose that the origin of the coordinate system is lo-
cated at the node{m,n}. Thus, for the bilinear mesh

holds

xm+k = kHx, yn+l = lHy, for k, l = ±0, 1 (1)

and for the serendipity mesh

xm+k = kHx/2, yn+l = lHy/2, for k, l = ±0, 1, 2
(2)

whereHx andHy denote the size of rectangular element
(Fig. 1).

Figure 1: Two dimensional a) bilinear b) serendipity
regular finite element mesh.

The system of differential equation derived for the
nodes of the considered patch can be written as

Mcüc + Kcuc = 0 (3)

where the local consistent mass matrixMc and the local
stiffness matrixKc are of a rectangular form2 × 18 and
6 × 42 for the bilinear and serendipity elements, respec-
tively.

Next, the classic Fourier analysis follows when the pre-
scribed nodal harmonic solution in the form

uij = Uij exp(i
2π

λ
(pxxi + pyyj − ct)) (4)

vij = Vij exp(i
2π

λ
(pxxi + pyyj − ct))
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is substituted to the differential equilibrium equations (3).
In Eqn. (4)i =

√
−1 is the imaginary unit,λ is the wave-

length ,c is the phase velocity,t is time andUij , Vij are
unknown amplitudes defining the shape of the deforma-
tion mode. The components of the unit normal to the
wave frontp may be expressed as

px = cos θ, py = sin θ (5)

whereθ is the direction of the plane wave propagation
throw the finite element grid. The described approach
leads to the solution of a generalized eigenvalue prob-
lem and the desired dispersion relationships in the form
c = f(λ, θ) are obtained.
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Figure 2: Wave speed versus wave length for bilinear
(upper) and serendipity (lower) elements.

Comparison of dispersion properties for bilinear and
serendipity elements is shown in Fig. 2, where the nor-
malized wave speedc/c1 versus the normalized wave
lengthH/λ is drawn for the worst case in terms of dis-
persionθ = 0. Fig. 2 clearly shows the advantage of
quadratic elements over linear ones. There is virtually
no dispersion up to the resolution limitH/λ = 0.5 for
quadratic elements. Furthermore, there are four addi-
tional spurious solutions, called the optical modes, which
are connected with the discrete structures only. In con-
trast to the acoustic modes (longitudinal and transversal

waves) they do not really exist in a perfect continuum.
Note that the optical modes are not eigenvectors so that
they do not affect the numerical stability.

Impact of two long elastic cylinders
The longitudinal impact of two long elastic cylinders

was studied, for which the analytical solution was avail-
able [5]. The cylinders dimensions wereø5 × 6.25 mm.
Young’s modulus, Poisson’s ratio and density wereE =
2.1 × 105 MPa, ν = 0.3, ρ = 7800 kg/m3, respec-
tively. The cylinders made contact with initial velocity
v0 = 1 m/s prescribed at timet = 0 s. Using this prob-
lem, symmetric properties of the contact algorithm based
on the pre-discretization penalty method [6] were tested
simultaneously.

The analytical solution [5] utilizing the Laplace trans-
form is rather complex. The distributions of displace-
ments and stresses are cast in the form of infinite series of
improper integrals which are evaluated numerically. For
illustration, theoretical positions of wave fronts for time
c1t/a = 2 are plotted in Fig. 3, wherer, z denote cylin-
drical coordinates,a the radius of the cylinder andt time,
respectively.

Figure 3: Theoretical position of wave fronts for
c1t/a = 2 after [5].

The primary wave front propagates with the speed of
longitudinal wavesc1. Furthermore, the wave fronts of
longitudinal and transversal waves generated by the re-
flection from boundaries can be observed. The unloading
(rarefaction) wave fronts of shear waves propagate with
the speedc2. The hatched part corresponds to the state of
stress encountered in the impact of two half-spaces.

The problem was treated as axisymmetric one, each
cylinder discretized by100 × 250 four-node linear ele-
ments and50×125 eight-node serendipity elements. The
linear mesh was obtained by regular refinement bisecting
the quadratic elements at the mid-side nodes. Thus, the
total number of degrees of freedomNDOF is greater for
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the linear mesh (NDOF = 50702) than for the quadratic
one (NDOF = 38202). The Newmark integration scheme
with the consistent mass matrix was employed. In or-
der to diminish the influence of numerical integration the
time step was chosen very small. It was set to∆t =
1.038174 · 10−9 s, which corresponds to the dimension-
less Courant numberCo = 0.25 for linear elements and
0.125 for quadratic elements.

Comparison of accuracy for both discretization pat-
terns follows from Fig. 4, where the normalized axial
stress distributionσ∗

z = σzc1/λv0 along the cylinders
axis z/a is drawn. The results are plotted for time
c1t/a = 2 at a short distance from the axisr/a = 0.05
(see Fig. 3). In addition, the analytical solution is plotted
in Fig. 4.
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Figure 4: Axial stress distribution along axial
coordinate forc1t/a = 2 andr/a = 0.05.

It is interesting to note the way the response is influ-
enced by wave fronts of unloading waves (see points A
and B). In the region between points A and C the value
of axial stress should be identical to the constant value
σ∗

z = −2.333 corresponding to the half-space impact
problem. At point C the stress should undergo a step
change fromσ∗

z = −2.333 to zero. It should be pointed
out that the accuracy of analytical solution is strongly in-
fluenced by the number of terms included in the series
of improper integrals [5]. The analytical solution plotted
in this paper was derived from the summation of the first
150 terms of this series. However, the value of axial stress
significantly oscillates in the region of the “should have

been” constant stress. This effect will reduce provided a
greater number of terms have been used.

It is obvious that the quadratic elements exhibit bet-
ter accuracy than the linear ones using even less number
of degrees of freedom. In addition, the linear solution
shows more “ragged” distribution. This is especially ap-
parent behind the primary wave front corresponding to
the state of zero stress. In this pre-front zone, the decay
of undesired oscillation is slower than for the quadratic
mesh. This example nicely demonstrates capabilities of
the two element types and evokes similar conclusions as
those drawn from the dispersion distributions compared
in Fig. 2.
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Abstract

This paper presents an efficient way of domain trunca-
tion for isotropic and anisotropic elastic problems based
on the Optimal Grids (OG) technique. In case of
isotropic elasticity the optimal discretization of the Per-
fectly Matched Layer (PML) allows one to use as few
as three points to achieve desired reduction of artifi-
cial reflections. It is well known that PML for elastic
anisotropic media could be unstable. The domain disten-
sion with use of OG is proposed for these problems. OG
provides extremely high level of accuracy so one can use
a few grid points per wavelength in this extension and to
reduce the computational cost of this approach to accept-
able level in comparison with regular PML.

Introduction

The commonly used approaches to truncate the target
area are Absorbing Boundary Conditions (ABC) [5] and
PML [4]. The main idea of ABC is to cut off incoming so-
lutions. In a spectral domain it is equivalent to boundary
condition ux = −

√
Λu for scalar problems. In physical

domain this condition leads to nonlocal operator which is
hard to discretize efficiently. In order to have local spa-
tial operator one should use rational approximation of the
square root [5]. This approach is efficient and low cost
but complicated for implementation especially for elastic
wave equations. PML is surrounding the target area with
some artificial medium with attenuation. PML is simpler
in implementation but it increases the size of the problem
essentially. In order to reduce its claims we introduce the
Optimal PML discretization proposed for the wave equa-
tion in [1]. Within this PML one performs pure imaginary
change of variables iωx = x̃ transforming the propaga-
tive modes to evanescent ones. The solution on the inter-
face x = 0 is under investigation and it can be represented
as action of the Neumann to Dirichlet (NtD) map on Neu-
mann data u = −1√

Λ
ux. On the other hand finite-difference

(f-d) NtD map is rational function of the spectral parame-
ter depending on grid steps [1]. So the problem of optimal
discretization of the PML is equivalent to the rational ap-
proximation of the square root and consequently to con-
struction of ABC. The main difference between Optimal

PML and ABC is a representation of rational function in
physical domain which is simpler in terms of grid steps
as it was done for PML. We are presenting the expansion
of this approach on elasticity problems.

For anisotropy elastic media one can not construct
PML being stable for any values of parameters (see for
example [3]). We prove that the domain distension allows
one to avoid this problem. The main idea of this method
is a surrounding of the computational area by the rather
thick elastic layer with the same properties as target area.
This approach is computationally expensive if equidistant
grids are used. On the other hand implementation of the
Optimal Grids allows one to reach more then exponential
convergence of the f-d solution at the interface [6] and
essentially reduce the size of f-d problem.

Optimal PML for Isotropic Elasticity
Let us consider the system of equations:





ρ
∂u

∂t
= ∇ · σ

∂σ

∂t
= C

1

2

(
∇u + ∇uT

) (1)

where ρ is a density, u is a velocity vector, σ is a stress
tensor and C is a fourth order tensor of media parameters.

Assume the PML in x direction needs to be con-
structed. Following [1] let us implement pure imaginary
coordinate transform in spectral domain and obtain the
system:
(

0 A

AT 0

)
d

dx

(
w1

w2

)
−

(
B1 0
0 B2

) (
w1

w2

)
= 0,

(2)
where matrix A is constant, matrices B1 and B2 are sym-
metric depending on media parameters, time and spa-
tial frequencies. Unknowns are w1 = (ux, σxz) and
w2 = (σxx, uz, σzz).

Let us introduce boundary conditions:

w1 → 0|x→∞, Aw2 = w0|x=0.

The solution of the problem on the interface can be
uniquely represented as an action of the Neumann to
Dirichlet (NtD) map on the input data. So

w1(0) =
[
Rp

√
Λp

−1

+ Rs
√

Λs

−1
]
w0,
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where matrices Rp and Rs are the functions of frequen-
cies and they are bounded, parameters are

Λp,s = v−2

p,s cos2(α) ∈ [0, v−2

p,s ] ⊆ [0, v−2

s ],

where α is an incident angle.
Finite-difference problem approximating (2) on some

staggered grid with boundary conditions has unique so-
lution. This solution can be computed explicitly at the
interface:

(wk
1)1 =

[
Rpfk(Λp) + Rsfk(Λs)

]
w0,

where matrices Rp and Rs coincide with ones appeared
in solution of the differential problem. Function f k(Λ)
with k being the total number of points within PML is ra-
tional and depends on grid steps. Moreover if the rational
approximation of a square root was done then according
to [1] the grid steps for Optimal PML can be recovered
uniquely.

Anisotropic Problems
Let us consider the system (1). In case of arbitrary

anisotropic problems the tensor of media parameters is no
longer block-diagonal so the Virieux scheme [7] can not
be used. As it was shown in [2] Lebedev scheme(LS) on
both optimal and equidistant is applicable for these elas-
tic media. This fact will be used to construct a domain
distension for anisotropy.

Let us implement the domain distension in x direction
for x > 0. The artificial layer should be added for 0 <

x < L where L is defined by the model parameters. Use
of LS leads to transformation of system (1) in spectral
domain to the following one

(
0 A

AT 0

)
d

dx

(
w1

w2

)
−

(
B 0
0 B

) (
w1

w2

)
= 0,

(3)
where matrix A is constant, matrix B is symmetric de-
pending on frequencies. The vectors w1 and w2 are no
longer physical variables so we skip their explicit repre-
sentation. Let us add boundary conditions:

w1 = 0|x=L, Aw2 = w0|x=0.

The solution of this problem at the interface x = 0 can be
found analytically and it is result of an action of the NtD
map on Neumann data:

w1(0) =
∑

j

Rjf(Λj)w
0,

where summation is performed over all modes, −∞ <

Λ0v−2

j ≤ Λj ≤ 0 is spectral parameter, left boundary
of the spectral interval Λ0 is defined by the source func-
tion, normalizing parameter vj is a phase velocity of cor-
responding mode. Meromorphic function f(Λ) coincides
with one for wave equation with unitary velocity.

The solution of the corresponding f-d problem on
Lebedev scheme can also be represented as action of the
f-d NtD map on Neumann data:

(wk
1)1 =

∑

j

Rjf
k(Λj)w

0,

where matrices Rj coincide with ones appeared in true
NtD map and they are bounded as functions of frequen-
cies. Rational function fk(Λ) depends on grid steps and
has the same form as one for PML so grid steps can be
recovered if rational function was constructed. The rate
of convergence of f-d solution is defined the convergence
of the rational approximation. As it was shown in [6] use
of Pade-Tchebichev approximation for this problem al-
lows one to archive more then exponential convergence.
So Optimal Grids for allows to compute high order f-d
solution at the interface using as few as three points per
minimal wavelength.

Numerical Experiments

Optimal PML

The goal of the numerical experiments for Optimal
PML was to investigate dependence of the reflection co-
efficients on number of grid points inside the PML. The
discretization of the PML was done for true velocities i.e.
for ones corresponding to the differential problem. Due
to numerical dispersion appearing in f-d solution the ve-
locities on the scheme differ from the true ones so the
reflection coefficients do not converge to zero anymore.
These coefficients the same as velocities on f-d scheme
depend on number of points per wavelength (ppw) inside
the target area, Courant ratio and propagation angle. Fig-
ure 1 represents the reflection coefficients as functions of
number of grid points inside the PML zone for different
incident angles. The ppw was 40 and Courant ratio 0.6
for S-wave. Figure 2 represents the same experiment for
ppw equals to 20. Solid lines correspond to incident angle
α = 0, dash-dotted ones are π/6, dotted ones are π/3 and
dash ones are 5π/12. One can see that the reflection co-
efficients converge exponentially to their asymptotes de-
fined by the discretization of target area.
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Figure 1: Reflection coefficients in percents over
number of points in PML for 40 ppw in target area.
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Figure 2: Reflection coefficients in percents over
number of points in PML for 20 ppw in target area.

Anisotropy

A checkered-board model was used to perform a nu-
merical experiment for anisotropy. The geometry of the
domain and media parameters were chosen not to satisfy
necessary stability conditions for PML [3]. To avoid re-
flections from the outer boundaries the target area was
surrounded by the layer twice as thick as size of the area.
The OG were used inside this layer with about 5 ppw in
average and equidistant ones with 40 ppw inside the tar-
get area. So the size of the domain was 1200×800 points,
the thickness of additional layer 200 points. Figure 3 rep-
resents the wavefield on free surface. One can see neither
reflections no unstability appeared.
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Abstract
The initial-value problem for the differential equations

describing motion of a thin, infinitely long cylindrical
shell is studied. Thickness, Young’s modulus and den-
sity of the shell are considered as functions of curvelin-
ear co-ordinates on the shell surface. The shell is sup-
posed to experience external static or slowly varying dy-
namic forces which may be non-uniform in the circum-
ferential and axial directions. Using the complex WKB
method the asymptotic solution of the governing equa-
tions is constructed in the form of localized families of
bending waves (wave packets) with the centers in points
moving over the shell surface. The dependence of fre-
quencies, group velocities, amplitudes upon variable geo-
metrical and physical parameters of the shell is analyzed.

Introduction
Thin cylindrical shells are used as elements of hight-

speed vehicles, underwater objects and other thin-walled
engineering structures experiencing dynamic loading.
Non-stationary vibrations or waves running in thin shells
caused by the transient dynamic forces and/or the initial
conditions (displacements and velocities) on the shell sur-
face are especially complicated for analysis. Numerous
numerical methods applied for examining these problems
do not reveal any mechanical effects which are inherent to
the transitional wave processes in thin shells. However,
in cases when a shell is subjected to local perturbations
which may be treated as the initial conditions localized
near some lines or points on its surface, the asymptotic
methods are found the most affective [1], [2]. So, tran-
sient bending vibrations of a thin non-circular medium-
length cylinder with the oblique edges have been studied
in Ref. [1], where by using the complex WKB method,
solutions of the governing equations have been found in
the form of packets of short bending waves with the cen-
ters at generators running in the circumferential direction.
In Ref. [2], this method has been applied to studying the
packets of bending, longitudinal and torsional waves with
the centers at some parallel running in the axial direction
in an infinitely long cylindrical shell including the effect
of initial tensions due to non-uniform static internal pres-
sure.

In this paper, the asymptotic solution of the govern-

ing equations is found in the form of two-dimensional
wave packets with the centers in points moving over the
surface of the non-uniform cylindrical shell subjected to
non-uniform, static or dynamic, external forces.

Setting the problem
Consider an elastic thin infinitely long cylindrical shell.

Let h∗(s, ϕ) be the shell thickness,ρ∗(s, ϕ) be the den-
sity, E∗(s, ϕ) be Young’s modulus, andν∗(s, ϕ) be Pois-
son ratio of the material, whereRs andRϕ are the axial
and circumferential coordinates, respectively, andR is the
radius of the neutral surface of the cylinder. Let the shell
be under the non-uniform, dynamic forceF. It is assumed
that F is slowly varying vector function with respect to
both co-ordinates and the time so that the dynamic stress
state of the shell due to the load may be specified only by
the axial, hoop and shear stresses

T ∗i = −µ2E0h0Ti(s, ϕ, t), i = 1, 2, 3, (1)

which are easily found from the equations of the mem-
brane shell theory. In Eq. (1),µ4 = h2

0(12R2)−1 is
a small parameter, andh0, E0, ρ0 are the characteristic
magnitudes ofh∗, E∗, ρ∗ respectively,t = t∗/tc is di-
mensionless time, andt2c = µ−2R2ρ0E

−1
0 is the charac-

teristic time.
For analysis of the short waves running in the shell the

following system of equations [3], including the effect of
the initial stresses, and written in a dimensionless form,
may be used:

µ2∆(d∆w) + ∂2Φ
∂s2 + ∆T w + γ ∂2w

∂t2
= 0,

µ2∆(g∆Φ)− ∂2w
∂s2 = 0,

(2)

where

∆ = ∂2

∂s2 + ∂2

∂ϕ2 , ∆T w = ∂
∂ϕ(T2

∂w
∂ϕ )+

∂
∂s(T3

∂w
∂ϕ ) + ∂

∂ϕ(T3
∂w
∂s ) + ∂

∂s(T1
∂w
∂s ),

d = Eh3

1−ν2 , g = 1
Eh , γ = ρh,

E(s, ϕ) = E∗

E0
, h(s, ϕ) = h∗

h0
, ρ(s, ϕ) = ρ∗

ρ0
.

(3)

In Eq. (2),w = µ2w∗/R, Φ = Φ∗/(E0h0R
2) are the

dimensionless normal deflection and stress function re-
spectively.
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Let us consider the initial conditions

w|t=0 = w◦(ζ1, ζ2) exp{iµ−1S◦(s, ϕ)},

ẇ|t=0 = iµ−1ϑ◦(ζ1, ζ2) exp{iµ−1S◦(s, ϕ)},

S◦ = p◦ΛT + 1
2ΛB◦ΛT ,

(4)

whereζ1 = µ−1/2s, ζ2 = µ−1/2ϕ, k = 1, 2, Λ =
(s, ϕ), p◦ = (p◦1, p◦2) are the 2-vectors,w◦, ϑ◦ are poly-
nomials inζ1, ζ2 with complex coefficients, andB◦ is the
2×2 symmetric complex matrix with the positive defined
imaginary part.

The real and imaginary parts of functions (4) define
the two initial wave packets localized near the points =
0, ϕ = 0. The general goal of the present paper is to study
the wave forms of motion caused by the initial localized
perturbations (4).

The approach
Let s = q1(t), ϕ = q2(t) be the packet center of the

bending waves, whereqk(t) are twice differentiable func-
tions. In view of the local character of the solution, it is
convenient to introduce a local co-ordinate system con-
nected with the centerqk(t): s = q1(t) + µ1/2ξ1, ϕ =
q2(t) + µ1/2ξ2. All the functions contained in Eqs. (2)
are expanded into series in a neighborhood of the center
qk(t).

Upon taking into account Eqs. (4), the solution of sys-
tem (2) is assumed to be of the form

w =
∞∑

j=0

µj/2wj(ξ1, ξ2, t) exp{iµ−1S[ξ1, ξ2, t, µ]},

S =
∫ t

0
ω(τ)dτ + µ1/2p(t)Ξ +

1
2
µΞTB(t)Ξ. (5)

The function Φ is constructed in the same form (5).
In Eqs.(5), p(t) = (p1(t), p2(t)), Ξ = (ξ1, ξ2)T ,
wj are polynomials inξj , pj(t) are the wave numbers,
B(t) is the2 × 2 complex matrix such that ImB(t) >
0 for any t ≥ 0. The last inequality guarantees atten-
uation of wave amplitudes within the packet.

The substitution of Eqs. (5) into Eqs. (2) produces the
sequence of equations

m∑
j=0

LjXm−j = 0, m = 0, 1, 2, . . . (6)

whereXj = (wj ,Φj)T are the 2-vector, andLj are the
2× 2 matrix.

In the zeroth order approximation(m = 0), one has the
homogeneous system of algebraic equationsL0X0 = 0.

For a non-trivial solution of this system, the determinant
of their coefficients is set equal to zero yielding the rela-
tion

ω = q̇1p1 + q̇2p2 ∓H(p1, p2, q1, q2, t), (7)

whereH is Hamiltonian functions. The signs∓ in Eq. (7)
indicate the availability of two branches of the solutions.

In the first order approximation(m = 1), the con-
dition for solution of the non-homogeneous system (6)
gives Hamiltonian system

q̇ = Hp, ṗ = −Hq (8)

with respect topk(t), qk(t), k = 1, 2.
For m = 2, the compatibility condition for the non-

homogeneous system (7) yields the Riccati equation

Ḃ + BHppB + HqpB + BHT
qp + Hqq = 0 (9)

with respect to the matrixB and the amplitude equa-
tion for finding the polynomialsw0,Φ0. To determine the
polynomialswm,Φm for m ≥ 2, one must consider re-
sponding system (7) in the(m + 2)nd approximation.

The properties of the obtained solution depend strongly
on the geometrical and physical parameters of the shell,
the character of loading, and the initial conditions as well.
As an example, the cylindrical shell with the thickness
h(s) depending on the axial co-ordinate has been consid-
ered. Analysis of the solution has showed that the ini-
tial wave packet (4) splits into two packets running in the
opposite directions, with the tracks of the packet centers
being helixes. Furthermore, the packet running in the di-
rection of thickness increasing can be reflected from some
parallel, this reflection being accompanied by strong fo-
cusing and growing amplitudes.
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Abstract
The typical way of solving the time-harmonic linear

elastic wave problem is to discretize the equations with
finite elements or finite differences. This approach leads
to large-scale complex-valued linear systems. For this
kind of systems, it is difficult to construct efficient iter-
ative solution methods. That is why we use an alternative
approach and solve the time-harmonic problem by con-
trolling the solution of the corresponding time-dependent
wave equation.

Introduction
In an elastic, homogeneous, and isotropic domain Ω,

the propagation of time-harmonic waves is governed by
the Navier equation (see e.g. [1], [5], [7]). Since the typ-
ical procedure of solving the Navier equation leads to a
large scale indefinite linear systems, for which it is diffi-
cult to construct efficient iterative solution techniques, we
return to the time-dependent problem

ρ
∂2u
∂t2

−∇ · σ(u) = 0, in Ω× [0, T ], (1)

u = 0, on Γ0 × [0, T ], (2)

B
∂u
∂t

+ σ(u)ns = g, on Γe × [0, T ], (3)

where ρ is the density, length of the time interval is
marked as T , u = (u1(x), u2(x))T is the displacement
field, and g is the source function. The stress tensor is
expressed as σ(u), and ns = (n1, n2)T is the outward
pointing normal vector on Γe. The boundary Γ0 is as-
sumed to be rigid, whereas on the artificial boundary Γe

we impose the conventional first order absorbing bound-
ary condition [4], [11], where B is a symmetric positive
definite 2× 2-matrix

B =
(

n1 n2

n2 −n1

)(
cp 0
0 cs

)(
n1 n2

n2 −n1

)
,

with elements cp and cs representing the speed of the
pressure waves and the speed of the shear waves, respec-
tively. In addition to the system (1)-(3), we take into ac-
count the initial conditions

u(x, 0) = e0,
∂u(x, 0)

∂t
= e1, in Ω. (4)

Exact controllability formulation
We formulate the exact controllability problem (see

e.g. [2], [8]) as follows: Find initial conditions e =
(e0, e1)T such that equations (1)-(4) hold with the ter-
minal conditions

u(x, T ) = e0,
∂u(x, T )

∂t
= e1. (5)

The time period corresponding to the angular fre-
quency ω is given by T = 2π

ω , and the T -periodic solution
can be achieved by controlling the initial conditions such
that the terminal conditions (5) are equal to the initial con-
ditions (4) at the end of the computation.

Discretization
The wave equation is discretized in space domain with

the spectral element method [3], [9]. The basis functions
are higher-order Lagrange interpolation polynomials, and
the nodes of these functions are placed at Gauss-Lobatto
collocation points. The integrals in the weak form of
the equation are evaluated with the corresponding Gauss-
Lobatto quadrature formulas.

After spectral element discretization, the semi-
discretized equation can be rewritten in the matrix form

M∂2U
∂t2

+ S ∂U
∂t

+KU = F ,

where U is the global block vector containing the values
of the displacement u(x, t) at the Gauss-Lobatto points of
the quadrilateral mesh,M is the mass matrix, S is the ma-
trix arising from the absorbing boundary condition, K is
the stiffness matrix, and F is the vector due to the source
function g. In the next section, we use a short notation L
for the block-diagonal matrix containing the matrices K
and M such that

L =
(
K 0
0 M

)
.
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For time discretization we use the fourth order Runge-
Kutta method (see e.g. [8]). Because of the diagonality of
the mass and the boundary matrices, only matrix-vector
multiplications are needed in time stepping. This makes
the time simulation efficient.

Conjugate gradient algorithm
Essentially the solution procedure of the exact control-

lability problem is similar to that presented for the scalar
wave equation in [8]. After discretization, the exact con-
trollability problem is reformulated as a least-squares op-
timization problem,

min

((
U(T )− e0
∂U(T )

∂t − e1

)T

L
(

U(T )− e0
∂U(T )

∂t − e1

))
, (6)

which is solved with a preconditioned conjugate gra-
dient algorithm. Each conjugate gradient iteration re-
quires computation of the gradient of the discretized least-
squares functional, solution of a linear system with the
block-diagonal preconditioner L, and some matrix-vector
operations. Computation of the gradient is an essential
point of the method, and we have done it with the adjoint
state technique.

The algebraic multigrid (AMG) method [10] (see also
[8]) is chosen for preconditioning the conjugate gradient
algorithm. As a smoother for the AMG we use the Gauss-
Seidel (GS) method. One iteration of the GS is used as
pre- and post-smoothing. Additionally, in the beginning
of every multigrid iteration, four iterations of the GS are
used to smooth the solution initially. So called W-cycle
[6] is utilized as a multigrid iteration until the residual
norm of the solution is smaller than 10−6.

Numerical example
We consider the scattering problem in an isotropic ho-

mogeneous elastic medium with ρ = 2.70, cp = 1.96
and cs = 0.99. The boundary Γe coincides with a rect-
angle with the lower left corner at the point (0.0, 0.0)
and the upper right corner at the point (4.0, 4.0). In the
center of this rectangle, we have a rigid square obstacle,
with side length 2, surrounded by the boundary Γ0. The
propagation direction is chosen to be ~ω = (ω1, ω2) =(
− 1√

2
, 1√

2

)
, and angular frequency is ω = 2π. In these

experiments g = B∂uinc
∂t + σ(uinc)n, where the incident

plane wave uinc is

uinc=

(
ω1 cos(ωt− ω

cp
x · ~ω) + ω2 cos(ωt− ω

cs
x · ~ω)

ω2 cos(ωt− ω
cp

x · ~ω)− ω1 cos(ωt− ω
cs

x · ~ω)

)
.

Order of elements r 1 2 3 4 5
Number of timesteps 50 60 80 90 210
Mesh stepsize 20 10 7 5 4

Table 1: Number of timesteps and mesh stepsize for dif-
ferent spectral orders r.

r DOF CG AMG AMG CG AMG
iter cf iter time time

1 10080 30 0.10 8 56.33 4.41
2 10080 42 0.14 10 144.18 14.73
3 11088 38 0.45 22 256.20 33.57
4 10080 42 0.36 17 400.37 36.89
5 10080 33 0.37 17 765.62 30.10

Table 2: Order of elements r, number of degrees of free-
dom (DOF), number of conjugate gradient iterations (CG
iter), convergence factor (cf), number of AMG cycles
(AMG iter), CPU time in seconds for the algorithm (CG
time), and CPU time in seconds for AMG cycles during
the algorithm (AMG time).

Figure 1: Solution of the elastic displacement e0 at the
Gauss-Lobatto points of the quadrilateral mesh with
stepsize h = 1/7 and order of the elements r = 3.

Computations have been carried out on an HP ProLiant
DL585 with an AMD Opteron 885 CPU at 2.6 GHz, and
the mesh stepsize is chosen such that the resolution of the
spatial discretization is approximately constant (see Ta-
ble 1). The number of conjugate gradient iterations and
CPU time needed to solve the control problem, i.e. to
reduce the relative euclidean norm of the gradient of the
functional to be minimized in (6) below 10−4, are given
in Table 2. Table 2 shows also the number of degrees
of freedom (DOF) in the spectral element mesh, conver-
gence factor and the number of AMG cycles in the first
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(a) Re(u1(x)) (b) Re(u2(x))

Figure 2: Solution contours of the components of the
elastic displacement e0 which is equal to the real part of

the time harmonic wave u = (u1(x), u2(x))T . Mesh
stepsize is h = 1/5 and order of elements is r = 4.

CG iteration, and CPU time for AMG cycles during the
algorithm. The number of iterations is not dependent on
the order of elements. This simulation result shows also
that only a small proportion of CPU time is consumed for
AMG cycles, which makes AMG solver a feasible pre-
conditioner. Real parts of the time-harmonic solution are
illustrated in Figures 1 and 2.

Conclusions
Simulation results show that the number of iterations

required to attain the stopping criterion is independent of
the element order and the AMG solver is working as an
efficient preconditioner for higher-order elements.
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[8] E. Heikkola, S. Mönkölä, A Pennanen, and T. Rossi.
Controllability method for the Helmholtz equation
with higher order discretizations. Journal of Com-
putational Physics, 2007.

[9] D. Komatitsch, C. Barnes, and J. Tromp. Wave
propagation near a fluid-solid interface: A spectral-
element approach. Geophysics, 65(2):623–631,
2000.

[10] J. Martikainen, A. Pennanen, and T. Rossi. Appli-
cation of an algebraic multigrid method to incom-
pressible flow problems. Reports of the Depart-
ment of Mathematical Information Technology, Se-
ries B. Scientific Computing, B 2/2006, Department
of Mathematical Information Technology, Univer-
sity of Jyväskylä, 2006.
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Abstract
We perform a modal analysis of spectral element meth-

ods for the 2D isotropic elastic wave equation in the
discrete Fourier transform domain sampled in the mesh
nodes. We employ a Rayleigh quotient approximation of
the eigenvalue problem that characterizes the dispersion
relation, taking full advantage of the tensor product rep-
resentation of the spectral element matrices. We compute
dispersion graphs that show the dependence of dispersion
errors on the grid resolution and the polynomial degree
with both Gauss-Lobatto-Chebyshev and Gauss-Lobatto-
Legendre collocation points.

Introduction
The spectral element method for elastic wave propa-

gation is well established for quadrilateral meshes and
Chebyshev [4] or Legendre [1] orthogonal polynomials.
We study the numerical dispersion of spectral elements
for the isotropic elastic wave equation, which is given by

ρ
∂2u

∂t2
− (λ + µ)∇(∇ · u)− µ∇ · ∇u = 0, (1)

where λ, µ > 0 are the Lamé coefficients and ρ > 0 is
the density. The elastic modulus is E := λ + 2µ and the
Poisson’s ratio is ν := λ/2(λ + µ). For solutions in the
form of harmonic plane waves R exp[−i (ωt−κ ·x)], we
find the dispersion relations ωP = κcP and ωS = κcS ,
where κ := |κ|, cP :=

√
(λ + 2µ)/ρ, and CS :=

√
µ/ρ.

In general, the numerical dispersion relation is ex-
pressed by an eigenvalue problem whose solution pro-
vides the approximate angular frequencies. Mulder [3]
proposes a modal analysis in the discrete Fourier trans-
form (DFT) space of the nodal values, which is well
suited for high-order operators. The main difficulty of
Mulder’s strategy is the identification problem: the eigen-
values of the spatial operator must be properly ordered to
assure eigenpair matching. It is not trivial to find such an
ordering for 2D or 3D problems.

We circumvent the identification problem by introduc-
ing a new approach that matches each wave number with
the Rayleigh quotient of the corresponding plane wave
with respect to the spatial operator [5]. The Rayleigh quo-
tient provides an estimate of the wave velocity generated

by a numerical method, indicating how many grid points
per wavelength are needed for practical computations.

Spectral element approximation
Let us partition the interval [0, 1] into N II elements of

size h := 1/N II subdivided into N I interior subintervals.
The total number of nodes is N := N IN II .

This one-dimensional grid is described by the local in-
dex pI ∈ 〈N I〉 := {0, . . . , N I − 1} and the element index
pII ∈ 〈N II〉. These two indices provide a global ordering
of all grid nodes, p := pI + pIIN I ∈ 〈N〉. The mesh
node position x[p] is (pII + ζpI )h, where ζi is the i − th
collocation point in the interval [0, 1].

Two standard sets of collocation points are the Gauss-
Lobatto-Legendre (GLL) and Gauss-Lobatto-Chebyshev
(GLC) points. The GLL points can be found by numeri-
cally solving the equation (1− ξ2)P ′

N (ξ) = 0, where PN

denotes the Legendre polynomial of degree N [1]. The
GLC points are ζi := (1− cos(πi/N I))/2.

The grid over the domain Ω := [0, 1]× [0, 1] is defined
by N II

1 ×N II
2 rectangular elements with N I

1 ×N I
2 interior

nodes. The coordinates of the nodes are (x1[p1], x2[p2]),

xα[pα] := (pII
α + ζpI

α
)hα =

pII
α + ζpI

α

N II
α

, α ∈ {1, 2}.

Let p := p1 + p2N1. the spectral element approximation
of (1) in the mesh defined above can be written as{

ρM
∂2u∗

1
∂t2

(t) + K1u
∗
1(t) + K2u

∗
2(t) = 0

ρM
∂2u∗

2
∂t2

(t) + KT
2 u∗

1(t) + K3u
∗
2(t) = 0.

(2)

The unknowns of the system (2) are the vectors u∗
1(t) and

u∗
2(t) such that (u∗

α)p(t) ≈ uα(x[p], t), while M and Ki

(i = 1, 2, 3) are assembled from the local matrices

M e := (h1h2/4)A2 ⊗A1,
Ke

1 := E(h2/h1)A2 ⊗C1 + µ(h1/h2)C2 ⊗A1,

Ke
2 := λ(B2)

T ⊗B1 + µB2 ⊗ (B1)
T ,

Ke
3 := µ(h2/h1)A2 ⊗C1 + E(h1/h2)C2 ⊗A1.

The Kronecker product C := A ⊗ B is defined as
Cp1+p2M1,q1+q2M2 := Ap2,q2Bp1,q1 , where M1,M2 are
the dimensions of B. We have from [2] that

(A⊗C)(B ⊗D) = AB ⊗CD. (3)

The matrices Aα, Bα, and Cα are defined as
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(Aα)pI ,qI :=
∫ 1
−1 ϕqI (z)ϕpI (z) dz,

(Bα)pI ,qI :=
∫ 1
−1 ϕqI (z)

∂ϕ
pI

∂z (z) dz,

(Cα)pI ,qI :=
∫ 1
−1

∂ϕ
qI

∂z (z)
∂ϕ

pI

∂z (z) dz,

where pI , qI ∈ 〈N I
α + 1〉. The functions ϕi(z) form the

Lagrangian interpolant basis of degree N I . If AG
α , BG

α ,
and CG

α are the global matrices found from the assembly
of the matrices Aα, Bα, and Cα, then

M = (h1h2/4)AG
2 ⊗AG

1 ,

K1 = E(h2/h1)AG
2 ⊗CG

1 + µ(h1/h2)CG
2 ⊗AG

1 ,

K2 = λ(BG
2 )T ⊗BG

1 + µBG
2 ⊗ (BG

1 )T
,

K3 = µ(h2/h1)AG
2 ⊗CG

1 + E(h1/h2)CG
2 ⊗AG

1 .

DFT modal analysis
The discrete Fourier transform (DFT) of a vector v is

v̂ = F [N ]v, F [N ]n,p :=
1
N

exp
(

i
−2π

N
np

)
.

The two-dimensional DFT of W can be written as
Ŵ = F [N1]WF [N2]

T . Let w := Vec W defined by
W [p1, p2] = w[p1 + p2N1]. We have ŵ = F [N ]Vec Ŵ ,
where F [N ] := F [N2]⊗ F [N1]. In particular,

F [N ](v ⊗ u) = v̂ ⊗ û. (4)

Let us write u∗(t) as a harmonic plane wave:

(u∗α)p(t) = R∗
αei (2πk·x[p]−ω∗[k]t)

u∗
α(t) = R∗

αe−i ω∗[k]tv[k2]⊗ v[k1],
(5)

where vp[kα] := exp (i 2πkαxα[pα]). Let χ := (ω∗[k])2.
Substituting (5) into the first equation of (2), we find:

−R∗
1χρM(v[k2]⊗ v[k1]) + R∗

1K1(v[k2]⊗ v[k1])
+R∗

2K2(v[k2]⊗ v[k1]) = 0.

We substitute the Kronecker-product representations of
M , K1 and K2, write v[kα] = F [Nα]v̂[kα], and pre-
multiply the equation above by F [N ], using the proper-
ties (3) and (4):

−R∗
1χρ(h1h2/4)(Â2v̂[k2])⊗ (Â1v̂[k1]) +
R∗

1E(h2/h1)(Â2v̂[k2])⊗ (Ĉ1v̂[k1]) +
R∗

1µ(h1/h2)(Ĉ2v̂[k2])⊗ (Â1v̂[k1]) +

R∗
2λ( ̂(B2

T )v̂[k2])⊗ (B̂1v̂[k1]) +

R∗
2µ(B̂2v̂[k2])⊗ ( ̂(B1

T )v̂[k1]) = 0,

where Âα := F [Nα]AG
α F−1[Nα] (similarly for B̂α and

Ĉα). Introducing v̂[k] := v̂[k2]⊗ v̂[k1], we find

−χR∗
1ρ(h1h2/4)(Â2 ⊗ Â1)v̂[k]+

R∗
1

(
E(h2/h1)Â2 ⊗ Ĉ1 + µ(h1/h2)Ĉ2 ⊗ Â1

)
v̂[k]

−R∗
2(λ + µ)(B̂2 ⊗ B̂1)v̂[k] = 0.

The same argument holds to the second row of (2):

−χR∗
2ρ(h1h2/4)(Â2 ⊗ Â1)v̂[k]+

R∗
2

(
µ(h2/h1)Â2 ⊗ Ĉ1 + E(h1/h2)Ĉ2 ⊗ Â1

)
v̂[k]

−R∗
1(λ + µ)(B̂2 ⊗ B̂1)v̂[k] = 0.

The transformed variables above are found as in [3],
[5] and are block-diagonal. For instance,

v̂n′ [k′α] =

{
0 if nII 6= kII

α ,
1

NI
α

∑
pI∈〈NI

α+1〉 cos σ if nII = kII
α ,

σ := 2π

(
kII

α

N II
α

(
ζpI −

pI

N I
α

)
+

(
kI

αζpI − nI pI

N I
α

))
,

where n ∈ 〈Nα〉 and the prime accent denotes a re-
ordering of the local and element indices; that is, n′ :=
nII + nIN II

α , nI ∈ 〈N I
α〉, nII ∈ 〈N II

α 〉.
We write the transformed linear system as a block

eigenvalue problem Xy = χZy,

X :=
[

D1 D2

D2 D3

]
, y :=

[
R∗

1v̂[k]
R∗

2v̂[k]

]
,

Z :=
[

Â2 ⊗ Â1 0
0 Â2 ⊗ Â1

]
,

(6)

D1 := E
ρ

4
h2
1
Â2 ⊗ Ĉ1 + µ

ρ
4
h2
2
Ĉ2 ⊗ Â1,

D2 := −λ+µ
ρ

4
h1h2

B̂2 ⊗ B̂1,

D3 := µ
ρ

4
h2
2
Â2 ⊗ Ĉ1 + E

ρ
4
h2
1
Ĉ2 ⊗ Â1.

The solution χ exists only if y is an eigenvector of
Xy = χZy, which is not true in general. We compute
the best approximation of χ in the sense that the residual
(X − χZ)y is orthogonal to y, i.e., the Rayleigh quo-
tient χOPT = (yT Xy)/(yT Zy). χOPT can be found
by solving X̃R∗ = χOPT R∗,

X̃ =
[

d1 d2

d2 d3

]
, di :=

v̂[k]T Div̂[k]

v̂[k]TÂ2 ⊗ Â1v̂[k]
. (7)

We set ω∗
P [k] = (χ+

OPT )1/2 and ω∗
S [k] = (χ−

OPT )1/2,

χ±
OPT =

d1 + d3

2
±

√(
d1 − d3

2

)2

+ d2
2. (8)

The coefficients d1, d2, d3 reduce to Rayleigh quotients
of 1D matrices. For instance,

d1 =
E

ρ

4
h2

1

v̂[k1]
T Ĉ1v̂[k1]

v̂[k1]
TÂ1v̂[k1]

+
µ

ρ

4
h2

2

v̂[k2]
T Ĉ2v̂[k2]

v̂[k2]
TÂ2v̂[k2]

.
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Results and discussion
We use the same element length and polynomial degree

in both x and y directions, set N1 = N2 = 120, ρ =
λ = 1 and compute µ from the Poisson ratio ν. Given
k = k(cos(θ), sin(θ)), we measure the grid resolution by
the number of grid points per wavelength G := N/k or
the normalized spatial frequency H := k/N .

From the numerical angular frequency ω∗
P [k] we com-

pute the numerical phase velocity c∗P = ω∗
P [k]/k. We

interpolate ω∗
P [k] when the argument k is non-integer.

Analogously, c∗S is evaluated from ω∗
S [k]. We compute

the following dispersion errors:

εP :=
cP

∗ − cP

cP
, εS :=

cS
∗ − cS

cS
.

Fig. 1 illustrates the dependence of the dispersion er-
ror with the polynomial degree for waves propagating in
the horizontal direction. The approximate phase veloci-
ties of the spectral element methods with GLL and GLC
points are similar, although GLL produces lagging phase
error, which is related to the use of reduced integration to
compute the mass matrix [1].

Fig. 2 presents polar plots of 1+20εS for several values
of ν. The values of εP do not significantly change with
ν. The method with GLL collocation points has a smaller
error in the horizontal direction, but is more sensitive to
the Poisson’s ratio, specially in the directions that make
an angle of about 30o with the axes.

References
[1] D. Komatitsch and J. Tromp, “Introduction to the

spectral-element method for 3-D seismic wave prop-
agation”, Geophys. J. Int., vol. 139, pp. 806-822,
1999.

[2] H. Lütkepohl, Handbook of Matrices, John Wiley &
Sons, Chichester, 1996.

[3] W. Mulder, “Spurious modes in finite-element dis-
cretizations of the wave equation may not be all that
bad”, Appl. Numer. Math., vol. 30, pp. 425-445,
1999.

[4] E. Priolo, J. Carcione, and G. Seriani, “Numerical
simulation of interface waves by high-order spectral
modeling techniques”, J. Acoust. Soc. Am., vol. 95,
pp. 681-693, 1994.

[5] G. Seriani and S. Oliveira, “Dispersion analysis of
spectral element methods for acoustic wave propa-
gation”, submitted to J. Comput. Acoust.

Figure 1: Phase velocity errors of spectral element
methods with GLC and GLL collocation points
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Abstract
A numerical-analytical solution for seismic and

acoustic-gravitational waves propagation problem is ap-
plied to a heterogeneous Earth-Atmosphere model. Seis-
mic wave propagation in an elastic half-space is described
by a system of first order dynamic equations of the elas-
ticity theory. The propagation of acoustic-gravitational
waves in the atmosphere is described by the linearized
Navier-Stokes equations. The proposed algorithm is
based on the integral Laguerre transform with respect to
time, the finite integral Bessel transform along the ra-
dial coordinate with a finite difference solution of the re-
duced problem along the vertical coordinate. The algo-
rithm is numerically tested for the heterogeneous Earth-
Atmosphere model for different source locations.

Introduction
The problem of the propagation of acoustic-

gravitational waves in a heterogeneous atmosphere
has long been known. The first publications concerning
the impact of the gravitational field on the wave processes
in the atmosphere and the ocean appeared at the end
of the last century [9]. Martyn [10] and Hines [7]
indicated to an important role of acoustic-gravitational
waves for understanding and interpretation of numerous
physical processes in the atmosphere. Starting in the
50-s, an increasing interest to studying the generation
and propagation of the acoustic-gravitational waves in
the real atmosphere is associated with the development
of the infrasonic method of monitoring the nuclear
explosions in the atmosphere. A review on studying the
basic characteristics of the acoustic-gravitational waves
in the atmosphere can be found in [4-6]. Recently, the
methods of observations of the state of the atmosphere
have been improved, the models of media in theoretical
calculations becoming more complicated. The methods
and algorithms for the simulation of the acoustic-
gravitational waves propagation in the atmosphere are
being upgraded. The fact is, in many theoretical studies,
the Earth-Atmosphere interface is considered to be
absolutely reflecting, the effects, related to the excitation
of seismic waves in the Earth’s crust and their interaction

with the acoustic-gravitational waves in the atmosphere
being neglected. Theoretical and experimental studies
in the course of the recent decades have shown a close
relation between lithospheric and atmospheric wave
motions. Alekseev et al.[1] discovered the effect of
acoustic-seismic induction, in which an acoustic wave
from a powerful vibrator induced intense surface seismic
waves at a distance of tens of kilometers due to the
atmospheric refraction.

Our approach is an analogue to the frequency-domain
forward modeling, where instead of the temporal fre-
quency we have number p - the degree of the Laguerre
polynomials. We apply this numerical-analytical method
to study the wave propagation in a heterogeneous Earth-
Atmosphere model. The algorithm combines the Bessel
integral transform along the radial coordinate and the in-
tegral Laguerre transform with respect to time with the
FD solution along the vertical coordinate. Such an ap-
proach to the problem of seismic wave propagation in the
heterogeneous elastic half-space was developed in [8,11].

Method

0.1 Statement of the problem

A specific feature of the numerical modeling of wave
fields for a heterogeneous Earth-Atmosphere model is
a considerable difference in velocities of seismic and
acoustic waves. In this case, the use of explicit finite dif-
ference schemes brings about serious restrictions on the
time step of a finite difference scheme and results in large
computer costs. Another way of overcoming such dif-
ficulties is application of the Fourier transform with re-
spect to the time coordinate (the frequency domain mod-
eling). In this case, after employing finite difference (FD)
methods with respect to spatial coordinates, we deal with
an extremely large matrix to be implicitly solved for a
great number of temporal frequencies. This difficulty can
be avoided if the Fourier transform with respect to time
is replaced by the Laguerre transform when simulating
the acoustic-gravitational waves propagation in heteroge-
neous media.
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0.2 Solution algorithm
The algorithm combines the Bessel integral transform

along the radial coordinate and the integral Laguerre
transform with respect to time with the FD solution along
the vertical coordinate.

At the first step, we reduce the dimension of our prob-
lem with the help of Fourier-Bessel transform , then we
apply the integral Laguerre transform with respect to time
to the reduced system [11].

As a result, we obtain a system of algebraic equations,
whose matrix is independent of the parameter p - the de-
gree of the Laguerre polynomials. Only the right-hand
side of the system has a recurrent dependence on the
parameter p. The system of algebraic equations can be
solved for a great number of the right-hand sides using
fast solutions, such as the Cholesky decomposition.

0.3 Perfectly Matched Layers (PML)
To avoid reflections from artificial boundaries, we use

the PML technique that was originally introduced for the
Maxwell equations in [2] and later generalized to elas-
ticity [3]. Our version of PML is a combination of the
Laguerre transform with respect to time and the original
version of PML. This modification of PML does not claim
doubling/tripling of unknown functions within the PML
areas and provides the possibility of creating a very effec-
tive software for the numerical simulation [12].

0.4 Parallel implementation
The algorithm of solution to the problem was par-

allelized for carrying out calculations on a cluster sys-
tem. The parallelization was in solving an independent
system of linear algebraic equations for each k-th har-
monic of the Fourier-Bessel transform on a separate pro-
cessor. With such an approach, there is no need in data
communication among processors, which essentially de-
creases computer costs. In fact, all processors do inde-
pendent calculations, and the desired solution is obtained
by weighted summation of calculated data received from
each processor.

Illustrations and References
Consider a numerical example illustrating the case of

a high-frequency seismic exploration bandwidth and a
model of an explosive source in the atmosphere10m
above the Earth-Atmosphere interface with the dominant
frequency off0 - 20Hz. Let us introduce an elastic half-
space that borders on the atmosphere, where the sound
velocity is constant and density decreases exponentially
with height. The wave propagation velocities in the elas-

tic half-space arevp = 3000m/s , vs = 1760m/s and
the density isρ0 = 2.3g/sm3. The velocity of acoustic
waves in the atmosphere isc0 = 340m/s and the den-
sity is ρ0 = 0.001225g/sm3 (at z = 0). To the elastic
half-space we add an elastic20 m thick layer that bor-
ders on the atmosphere with wave propagation veloci-
ties being lower than in the atmosphere:vP = 250m/s,
cs = 150m/s, andρ0 = 1.7g/sm3. This case is common
for seismic exploration in the presence of a low-velocity
zone.

A snapshot at the timet = 2.5 s for the stress com-
ponent and the atmospheric pressure P (Fig.1) images the
non-geometrical waves PP* and PS* and the conical P
and S waves in the elastic half-space. They form a wave
pattern if the elastic half-space with its P and S velocities
is higher than in the atmosphere and in the low-velocity
zone. The snapshot in Fig.2 is for the vertical displace-
ment velocity components at t = 1.6 s. Fig.3 shows syn-
thetic seismograms of the displacement velocity at the
Earth-Atmosphere interface.

Figure 1: A snapshot at the timet = 2.5 s for the stress
component in the elastic half-space and the atmospheric

pressure P.

Conclusion

We offer a numerical-analytical algorithm applied
to simulate propagation of seismic and acoustic-
gravitational waves within the limits of a heterogeneous
Earth-Atmosphere model and test it in numerical exper-
iments for simple models. The study was supported
by grants 06-05-64149, 07-05-00538 from the Russian
Foundation for Basic Research.
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Figure 2: A snapshot at the timet = 1.6 s for the
vertical displacement velocity component in an elastic
half-space, a low-velocity zone and in the Atmosphere.

Figure 3: Synthetic seismograms of the vertical
displacement velocity component at the

Earth-Atmosphere interface, for different distances at
every20 m from 10 m.
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Abstract
Relations of nonlinear processes of seismic wave radia-

tion by a ground-based vibrational source and their accu-
mulation during the propagation of waves in the medium
are considered. Results of numerical modeling of the de-
pendence of the parameters of seismic wave field nonlin-
earity on the characteristics of mediums inhomogeneity
are presented. Fluid-saturated fractured media with dif-
ferent parameters of physical elasticity are considered as
examples.

Methods
A homogeneous and isotropic body is taken as a model

of the medium. The body has elasticity modules K1 and
µ1 and density ρ1, and voids of spheroidal shape are scat-
tered uniformly and oriented chaotically in it. The shape
of the voids is determined by the parameter α, which is
equal to the ratio between the length of the rotation axis
of the spheroid and the length of its second axis. The
relative volume distribution of the voids along the shape
parameter between its minimal αmin and maximal αmax

values is described by the function ϕ(α).
For the case of propagation, in the medium being mod-

eled, of plane monochromatic elastic waves along the
axis OX when there are only longitudinal motions in the
medium (ux 6= 0, uy = uz = 0), the equation of propa-
gation has the following form:

ρ0
∂2ux

∂t2
−M0

∂2ux

∂x2
= B

∂ux

∂x
· ∂2ux

∂x2
(1)

At the boundary condition ux(0, t) = Ux sinωt the so-
lution to the equation in a second approximation has the
form [2]

ux = Ux sinω
(
t∓ x

cp

)
− (

Ux
2

)2 B
M0

k2
px cos 2 (ω t∓ kpx) ,

(2)
where

kp = ω/cp, M0 = k0 +
4
3
µ0

B = −3ϕ
k0

p0

(
a
k2

0

k1
+

4
3
b
µ2

0

µ1

)
f (α0) .

The following relations for effective elasticity modules
of the medium with spheroidal voids have been obtained:

K(1) ≈ K0

[
1− ϕrela

K2
0

p0K1
f (α0) ull

]
,

µ(1) ≈ µ0

[
1− ϕrelb

K0µ0

p0µ1
f (α0) ull

]
,

(3)

where

K0 ≈ K1 (1 + ϕrelaF )−1 , µ0 ≈ µ1 (1 + ϕrelbF )−1 ,

a =
4

(
1− ν2

1

)

3π (1− 2ν1)
, b =

8 (1− ν1) · (5− ν1)
15π (2− ν1)

,

f (α0) =
ϕ (α)
ϕrel

, ϕrel =
∫ αmax

0
ϕ (α) dα,

F =
∫ αmax

α0

f (α)/α dα;

p0 is the static pressure, ν1 is the Poisson coefficient, K0

is the effective modulus of all-round compression of an
unperturbed microfractured medium, ull is the sum of
diagonal components of the dynamic deformation ten-
sor, and ϕrel is the initial value of the fractured porous
medium.

It follows from (2) that in the fractured medium there
appear harmonics of doubled frequency. Their level is
determined by the coefficient B, which depends on the
character of the fractured medium and the length of the
wave travel path x. In the latter case, the level of the sec-
ond harmonic increases as the distance x from the source
increases. This phenomenon was observed earlier as ac-
cumulating nonlinearity in a nonlinearly elastic medium.
Taking into account (2), the nonlinearity coefficient of the
monochromatic wave shape determined by the ratio be-
tween the amplitude of the second harmonic and the first
harmonic is

u2

u1
=

1
8

UxBk2
px

M0
(4)

Equation (4) relates the parameters of wave field non-
linearity in the source zone to the character of the
medium’s fracturing. The fracturing is determined by the
parameter B, which depends on the size of fractures, their
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density distribution, and the densities and elasticity mod-
ules of the medium. Taking into account this dependence,
it seems that the dynamic parameters of wave field non-
linearity can be successfully used as a prognostic quanti-
tative parameter characterizing the process of source de-
velopment [1].

In accordance with equation (4), we performed an
analysis of the dependence between the wave field nonlin-
earity and the characteristics of medium’s fracturing, the
amplitude of oscillation velocity of medium’s particles
Ux, and the distance x. Water-saturated fractured granite
was taken as the medium. Its elasticity parameters were
as follows: Young modulus E = 2.216 · 109 Pa, Poisson
coefficient ν = 0.44296, static pressure p0 = 103 Pa, fre-
quency f = 10 Hz, and propagation speed of longitudinal
wave in granite Cp = 2500 m/s. The following three vari-
ation domains of the geometrical parameters of fractures
(in meters) were taken: 0.001÷ 0.01, 0.012÷ 0.05, and
0.052÷0.015. The distribution density of fractures in the
volume is described by the uniform distribution function.

Figure 1 shows the nonlinearity coefficient of mono-
chromatic wave shape versus the ratio between the el-
lipsoid axes describing an elementary fracture for the se-
lected parameters.

Plots for the nonlinearity coefficient of monochromatic
wave shape versus the wave travel path x (in meters) in
fluid-saturated granite with cp = 2500 m/s, cs = 800
m/s and uniform distribution of fractures in the medium
are given in Fig. 2. The plots correspond to different
geometrical sizes of fractures given at the bottom of the
figure.

It follows from an analysis of Figs. 1 and 2 that the
nonlinearity coefficient increases

• as the sizes of fractures and the amplitude of oscilla-
tion speed Ux increase. At Ux = 2.7 · 10−8, u2/u1

varies from 0.05 to 0.17 and at Ux = 70 · 10−8 from
0.2 to 0.45 in the 10-km travel path of oscillations
(Fig.1).

• as the wave travel path increases. It follows from the
plots in Fig.2 that in a fractured medium depending
on the geometrical parameters of fractures the non-
linearity coefficient can increase from 0 to 0.7 at the
travel length =100 km.

Another relation for the ”accumulation” of the nonlin-
ear effect in media with dissipation and absorption is de-
termined by the dependence of the amplitude of the sec-

Figure 1: Wave travel path x = 10 km, oscillation speed.
1) Ux = 2.7 · 10−8 m/s; 2) Ux = 70 · 10−8 m/s

Figure 2: Wave travel path x = 10 km, oscillation speed.
1) αmin = 0.0067, αmax = 0.067; 2)

αmin = 0.06, αmax = 0.5 3) αmin = 0.48, αmax = 0.8

ond harmonic on the distance, which is described by [3]

a2 =
Kcrω

2a2
1

8c2
p,s

(5)

Here r is the wave travel path, Kc is the nonlinearity co-
efficient of the medium. It is determined by the expres-
sion Kc ≈ ρν(∆ν/∆p) ≈ (∆ν/ν)∆θ, where ρ is the
density, ∆θ is the volume deformation variation, ∆p is
the pressure variation, a1 is the amplitude of the first har-
monic, and cp,s is the velocity of longitudinal and trans-
verse waves. The value Kc ≈ 103. As an illustration,
Figs.3a and 3b show a family of plots, which demonstrate
the ”accumulation” of the nonlinear effect versus the dis-
tance in the ”source-receiver” distance range of 0.3÷355
km. Cases of a longitudinal and transverse wave in the
medium are considered.

The parameters of wave field nonlinearity in the far
zone are subject to the influence of the nonlinearity ef-
fect of radiation by the vibrator itself [5]. In this case,
the initial ratios between the second and first harmonics
a01/a02 observed in the source zone versus the distance
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Figure 3: Coefficient of nonlinear distortions versus the
distance at different seismic velocities

decrease in accordance with the following law:

af2(r)
af1(r)

=
a02

a01
exp [−(α2 − α1)(r − r0)] , (6)

where a01 and a02 are the amplitudes of both oscillations
near the source at the boundary of a sphere of radius r0;
af1 and af2 are the amplitudes of the second and first har-
monics at the distance r from the boundary of a sphere of
radius r0; and α1,2 ≈ 2.5 · 10−4f1,2(1/km) are the ab-
sorption coefficients for the frequency oscillations f1 and
f2. The dashed lines in Figs. 3a and 3b show exponential
plots for the ratios between the second and first harmon-
ics versus the distance, in accordance with equation (6).
The plots are monotonically decreasing within 0.3÷ 0.18
versus the distance (0.3 ÷ 355 km). The sphere radius
r0 = 0.3 km; the basic sounding frequency of the mono-
chromatic signal f1 = 6.3 Hz, and its second harmonic

f2 = 12.6 Hz.
The ”accumulation” of the nonlinear effect in me-

dia with inhomogeneities has been detected in some ex-
periments on Earth’s vibrational sounding at ”source-
receiver” distances of hundreds of km [1].
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Abstract
A preconditioner defined by an algebraic multigrid cy-

cle for a damped Helmholtz operator is proposed for
the Helmholtz equation. This approach is well-suited
for acoustic scattering problems in complicated computa-
tional domains and with varying material properties. The
spectral properties of the preconditioned systems and the
convergence of the GMRES method are studied with lin-
ear, quadratic, and cubic finite element discretizations.
The most important results are reviewed here briefly, for
complete analysis, see [1]. Numerical results are pre-
sented for two-dimensional acoustic scattering problems
in a cross section of a car cabin. Asymptotically the num-
ber of iterations grows linearly with respect to the fre-
quency while for lower frequencies the growth is milder.
The proposed preconditioner is particularly effective for
low-frequency and mid-frequency problems.

Introduction
Acoustic scattering problems can be typically mod-

eled using wave equation and often it is sufficient to con-
sider time-harmonic solutions which are described by the
Helmholtz equation

−∇ ·
1

ρ
∇u −

k2

ρ
u = 0, (1)

whereu (x) is time-harmonic pressure field,ρ (x) is the
density of the materialk (x) = ω/c (x) is the wave num-
ber. The equations can be discretized using the finite ele-
ment method, for example. Solving the resulting systems
of linear equations can be a computationally challenging
problem.

The resulting systems of linear equations from the dis-
cretization of the Helmholtz equation are non-Hermitian
and indefinite. Furthermore, for mid-frequency and high-
frequency problems, the systems can be extremely large.
Hence, it is a necessity to use iterative methods such as
the GMRES method. However, these methods require a

good preconditioner for the discretized Helmholtz equa-
tions in order to have reasonably fast convergence.

In this paper, we consider shifted-Laplacian precondi-
tioners which are obtained from the Helmholtz operator
by adding damping. This is based on the work described
in [2], [3]. The preconditioner used here [1] applies an
algebraic multigrid (AMG) method. Multigrid has also
been used efficiently for the Helmholtz problem in [4].

Iterative solution and preconditioning
For medium- and large-scale scattering problems, the

system of equationsAu = f is badly conditioned, which
leads to a very slow convergence of Krylov subspace
methods when applied directly to the system. To improve
the speed of convergence, we use a right preconditioner
denoted byB. This leads to a preconditioned system
AB−1ũ = f . Onceũ is solved from this system, the
solutionu is obtained asu = B−1ũ.

In 2004, it was suggested in [2] to construct a precon-
ditionerBSL by discretizing a shifted-Laplace operator

BSL = −∇ ·
1

ρ
∇ − (β1 + β2i)

k2

ρ
. (2)

By choosingβ1 = 1 andβ2 to be positive,BSL is the orig-
inal Helmholtz operator with additional damping. Such
damping leads to good conditioning ofAB−1

SL and it is
easier to solve systems withBSL than withA.

Later in 2006 in [3], the inverse of the shifted-
Laplacian preconditionerBSL was approximated by us-
ing one cycle of a geometric multigrid method, which
we denote byBMG; see [5], for example. This leads to
a good conditioning ofAB−1

MG for low-frequency prob-
lems. In this paper, we replace the geometric multigrid
method with a more generic algebraic multigrid method.

For the GMRES method, convergence estimates can be
derived based on the spectrum of a matrix and its non-
normality. Similarly to [2], [3], we study numerically the
spectrum of the preconditioned matrices. For small prob-
lems, it is possible to compute the spectrum, while for
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larger problems we can only approximate it. The GM-
RES method forms the basis for a Krylov subspace using
the Arnoldi iteration. Afterm iterations it has generated
anm × m upper Hessenberg matrix which is usually de-
noted byHm. The eigenvalues ofHm approximate the
eigenvalues of the system matrix.

Algebraic multigrid method

For preconditioning we use an AMG method intro-
duced by Kickinger in [6] with modifications proposed
in [7]. This method uses a graph based on the system ma-
trix to construct coarse spaces. Furthermore, it eliminates
the degrees of freedom associated to the Dirichlet bound-
aries after forming the matrices for the coarse spaces. Un-
der these choices, the AMG method can be constructed in
such a way that the coarse problems coincide with the
ones obtained using a geometric multigrid method on a
hierarchical linear finite element mesh.

Numerical results
We perform numerical experiments with the AMG pre-

conditioner on a cross section of a car cabin. Figure 1
shows a typical solution of the Helmholtz equation on this
geometry. The height of the car cabin is 1.5 m and its
width is 3 m. The noise source is modeled as the Dirich-
let boundary conditionu = 1 on the wall behind pedals
and other partially absorbing walls are modelled using the
impedance boundary condition∂u

∂n
= iγku with γ = 0.2.

Figure 1: A solution for the car cabin problem with
wave numberk = 18.3 which corresponds to the

frequencyf ≈ 1 kHz.

Eigenvalue study

We study the eigenvalues of the preconditioned linear
system by computing both the full spectrum and Arnoldi
approximations discussed in the end of the previous sec-
tion. We always haveβ1 = 1 while for β2 we use the
values0.5 and1.0. The preconditioner performs one W-
cycle with one presmoothing and postsmoothing iteration
using the underrelaxed Jacobi with the relaxation param-
eter given in Table 1. The plots of eigenvalues for the car

Table 1: The choice of the Jacobi relaxation parameter
ω minimizing the overall solution time for different finite
elements and different values ofβ2.

β2 ω

linear quadratic cubic
0.5 0.4 0.4 0.4
1.0 0.8 0.7 0.7

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.2  0  0.2  0.4  0.6  0.8  1
Im

ag
in

ar
y

Real

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.2  0  0.2  0.4  0.6  0.8  1

Im
ag

in
ar

y

Real

Figure 2: For the car cabin problem discretized with
linear elements the eigenvalues ofAB−1

MG marked with
◦ and their Arnoldi approximations marked with×. The
left and right plots are based onβ2 = 1.0 andβ2 = 0.5,

respectively.

cabin problem withk = 15 in Figure 2 give an indication
of the quality of the preconditionerB−1

MG.

Performance analysis

The car cabin problem is used here to study the perfor-
mance of the iterative solver. The preconditionerB−1

MG is
defined by one algebraic multigrid cycle as we have de-
scribed. Our aim is to choose the parameters defining the
preconditioner in such a way that the overall solution time
is optimal. Here we show the results only for the choice
β2 = 0.5 as it leads to much better results thanβ2 = 1.0,
especially on higher wave numbers.

The convergence results for the car cabin problem are
presented in Table 2. The wave number doubles from a
row to the next and the mesh step sizeh is halved from
a column to the next. This leads to a constant number
of nodes per wavelength on each diagonal. Along them,
we can observe that for higher frequencies, the number of
iterations roughly doubles when the wave number is dou-
bled. The lower triangles of the tables correspond to dis-
cretizations which do not have sufficiently high number
of nodes per wavelength to capture the oscillatory behav-
ior of solutions. This shows up as unusually high number
of iterations.
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Table 2: For the car cabin problem discretized with linear,
quadratic and cubic elements, the number of GMRES it-
erations required to reduce the norm of the residual by the
factor10−6 as a function of the number of refinementsnr

and the wave numberk.

Linear elements
k/nr 0 1 2 3 4 5 6

2 8 12 13 13 13 12 12
4 13 14 15 15 15 14 14
8 20 25 22 21 21 21 20
16 32 58 52 43 35 34 35
32 7 144 172 124 91 75 73
64 4 13 433 408 279 194 148

Quadratic elements
2 11 11 12 12 11 11 11
4 13 13 14 14 13 12 12
8 26 21 20 20 20 19 18
16 59 52 40 34 35 34 32
32 158 175 122 85 72 69 67
64 15 452 425 271 181 164 167

Cubic elements
2 16 15 15 15 15 15 15
4 20 17 17 16 16 16 16
8 33 25 23 22 22 21 21
16 77 56 46 37 36 38 34
32 193 195 123 87 70 70 69
64 250 >500 459 234 161 149 137

Conclusions

We have studied a preconditioner defined by an alge-
braic multigrid (AMG) approximation of the inverse of
a shifted-Laplacian for the Helmholtz equation. With fi-
nite element discretizations and the AMG preconditioner
we can solve problems in complicated domains and with
varying wave numbers. The numerical results in here and
in [1] demonstrated the efficiency of this approach. Fur-
thermore, the preconditioner was shown to be effective
with linear, quadratic, and cubic finite elements.

A big advantage of the AMG method is that the solver
does not need hierarchical meshes nor operators dis-
cretized on different meshes. The proposed approach
is especially well-suited for low-frequency and mid-
frequency problems while for high-frequency problems
the number of iterations roughly doubles when the fre-
quency is doubled. The same behavior was also observed
in [3].
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Abstract
The purpose of this study is the construction of a vec-

torial polynomial base for Ńed́elec mixed finite elements
[3]. We also aim to build automatically a code written
in fortran90 for elementary mass and stiffness matrices.
To that end, it is essential to use a symbolic calculus tool
(in this case, Maple), so that the input data for the de-
velopment of such a finite elements of orderk, are the
numberk itself and thek-order mesh made of triangles
or tetrahedra. In particular, the main motive is to generate
finite elements automatically, without the expression of
the polynomial basis functions, attached to the symbolic
calculus: the representation of basis functions has no
practical interest.

Introduction
This article is addresses with the need to increase

the order of finite element methods in electromagnetism
[1],[2],[5]. The aim here is to determine polynomial basis
functions of triangular and tetrahedral elements for any
orderk. For that purpose, we need first to express the
polynomial space of startRk for any orderk, then to give
the mathematical expression of the degrees of freedom,
and finally to solve the unisolvance system. For all those
steps, a symbolic mathematical program is used.

1 Higher-order finite elements of order ofH(curl)
Finite elements of orderk in R3 on tetrahedra

1q
q2

q3

q4

q7

q8
τ 1

τ 2

τ 3

τ 4

5ττ 6

q5
q6 y

z

x

Figure 1: Reference tetrahedron

We recall notations of some polynomial spaces used to

define Ńed́elec finite elements:
Pk linear space of polynomials of degree≤ k,
P̃k linear space of homogeneous polynomials of degreek,
Sk = {u ∈ (P̃k)3, u1x + u2y + u3z = 0},
Rk = (Pk−1)3 ⊕ Sk linear space of polynomials for finite
elements of orderk and classH(curl).

2 Space of polynomials and degrees of freedom of k-
order H(curl) finite elements

Our interest is the k-order finite element built on a tetra-
hedron (see figure1). In the sequel we use classical no-
tations of finite elements:̂K is the reference tetrahedron
with nodes(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), K is any
tetrahedron of the mesh,̂f a face ofK̂, f a face ofK, etc.

2.1 Characterizing and determining Sk

To built Rk, we first need to determine explicitlySk.
We prove thatSk is entirely described by the following:

1 ≤ m ≤ k
0 ≤ n ≤ k − 1

 x̂m−1ŷnẑk−m−n+1

0
−x̂mŷnẑk−m−n

 (1)

0 ≤ m ≤ k − 1
1 ≤ n ≤ k

 0
x̂mŷn−1ẑk−m−n+1

−x̂mŷnẑk−m−n

 (2)

m + n = k + 1
m 6= 0, n 6= 0

 x̂m−1ŷn

−x̂mŷn−1

0

 (3)

2.2 Definition of the degrees of freedom
Let:

−→
p̂ =

 p̂1(x̂, ŷ, ẑ)
p̂2(x̂, ŷ, ẑ)
p̂3(x̂, ŷ, ẑ)

 .

Degrees of freedom of edge type
∫
Γ
−→p · −→τ dγ

If k is the order of the element, the number of edge
degrees of freedom isne = 6k and they are:
for m = 1, k ∫ 1

0
−p̂1(1− x̂, 0, 0)x̂m−1dx̂ (4)
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∫ 1

0
p̂2(0, ŷ, 0)ŷm−1dŷ (5)∫ 1

0
(p̂1(x̂, 1− x̂, 0)− p̂2(x̂, 1− x̂, 0))x̂m−1dx̂ (6)∫ 1

0
(−p̂1(1− x̂, 0, x̂) + p̂3(1− x̂, 0, x̂))x̂m−1dx̂ (7)∫ 1

0
(p̂2(0, ŷ, 1− ŷ)− p̂3(0, ŷ, 1− ŷ))ŷm−1dŷ (8)∫ 1

0
p̂3(0, 0, ẑ)ẑm−1dẑ (9)

Volume type degrees of freedom
Fork the element order, the number of volume degrees

of freedom isnv = k(k − 1)(k − 2)/2 and they are:
for m + n + l ≤ k − 3,∫ 1

0

∫ 1−x̂

0

∫ 1−x̂−ŷ

0
p̂1(x̂, ŷ, ẑ)x̂mŷnẑldx̂dŷdẑ (10)

∫ 1

0

∫ 1−x̂

0

∫ 1−x̂−ŷ

0
p̂2(x̂, ŷ, ẑ)x̂mŷnẑldx̂dŷdẑ (11)∫ 1

0

∫ 1−x̂

0

∫ 1−x̂−ŷ

0
p̂3(x̂, ŷ, ẑ)x̂mŷnẑldx̂dŷdẑ (12)

Face type degrees of freedom
To define them, the following eight vectors are used:

q̂1 = q̂6 =

 0
1
0

 , q̂2 = q̂3 =

 1
0
0



q̂4 = q̂5 =

 0
0
1

 , q̂7 =

 −1
1
0

 , q̂8 =

 −1
−1

2

 .

If k is the order of the element, the number of faces de-
grees of freedom isnf = 4k(k − 1) and they are:
for m + n ≤ k − 2,∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂1)(x̂, ŷ, 0)x̂mŷndx̂dŷ (13)

∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂2)(x̂, ŷ, 0)x̂mŷndx̂dŷ (14)∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂3)(x̂, 0, ẑ)x̂mẑndx̂dẑ (15)∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂4)(x̂, 0, ẑ)x̂mẑndx̂dẑ (16)

∫ 1

0

∫ 1−ŷ

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂5)(0, ŷ, ẑ)ŷmẑndŷdẑ (17)∫ 1

0

∫ 1−ŷ

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂6)(0, ŷ, ẑ)ŷmẑndŷdẑ (18)∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ )·

−→
q̂7)(x̂, ŷ, 1−x̂−ŷ)x̂mŷndx̂dŷ (19)∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ )·

−→
q̂8)(x̂, ŷ, 1−x̂−ŷ)x̂mŷndx̂dŷ (20)

3 Change of bases for the degrees of freedom to pre-
serveH(curl) continuity

As theH(curl) finite elements are invariant by affine
transformation if we use - for a given(3× 3) matriceB:

−→p = B∗−1−→p̂

we can define affine equivalent finite elements [2],[3].

3.1 Change of bases for edge degree of freedom

For all numberi of an edgêΓ, we impose to find
−→
p̂ j ,

such that̂σi(
−→
p̂ j) = δij , whereδij is the kronecker sym-

bol and where for these degrees of freedom, fori = 1, k:

σ̂i(
−→
p̂ j) =

∫
Γ̂

−→
p̂j ·

−→
τ̂ ŝi−1dγ̂

We define: −→̃
pj = B∗−1−→p̂j

We suppose that the degrees of freedom for each edge
Γ of a tetrahedronK are, fori = 1, k:

σ̃i(
−→̃
p j) =

∫
Γ

−→̃
pj · −→τ si−1dγ

Thenσ̃i verifies: σ̃i(
−→̃
p j) = σ̂i(

−→
p̂ j) = δij .

We define:σi(−→p ) = σ̃i(−→p ) when the edgeΓ is covered
in the same way aŝΓ. If this edge is covered in the oppo-
site way, we define, refering to a parametrization ofΓ on
the interval[0, 1]:

σi(−→p ) = −
∫

Γ

−→p · −→τ (1− s)i−1dγ

Then we formally define the matrix:Ae = (ae
il), where

ae
il = (−1)l+1

(
i− 1

l

)
, if (i − 1) ≥ l andae

il = 0 if

not. We have: 
σ1

...
σi

...
σk

 = Ae


σ̃1

...
σ̃i

...
σ̃k

 (21)
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Then we must choose asH(curl) compatible basis
Span{−→̃p i} related to edges:

−→p 1

...
−→p i

...
−→p k

 =t Ae


−→̃
p 1

...
−→̃
p i

...
−→̃
p k

 . (22)

3.2 Change of bases for faces degree of freedom
As for the edges, theH(curl) continuity at the faces

interfaces has to be formulated. This study is restricted
to the 2nd-order case; the k-order general case will be
presented in a paper to be published.
For all numberi of a facef̂ , we impose to find

−→
p̂ j , such

thatσ̂i(
−→
p̂ j) = δij where for these degrees of freedom:

σ̂i(
−→
p̂ j) =

1

| f̂ |

∫
f̂
(
−→
p̂ j ∧

−→
n̂ ) ·

−→
q̂i dγ̂

This gives:

σ̂i(
−→
p̂ j) = σ̃i(

−→̃
p j) =

1
| f |

∫
f
(
−→̃
pj ∧ −→n ) · −→uidγ

where:
−→̃
pj = B∗−1−→p̂ j and−→ui = B(

−→
n̂ ∧

−→
q̂i ) ∧ −→n . We

define the degree of freedom for a facef in the mesh by:

σi(−→p ) =
1
| f |

∫
f
(−→p ∧ −→n ) · −→qi dγ

where−→q i = B
−→
q̂i

|B
−→
q̂i |

and−−→qi+1 = −→qi
⊥,−−→qi+1 ⊂ f , for i ∈

{1, 3, 5, 7}. Then we look for basis functions−→p j related
to faces verifying:

σi(−→pj ) = σ̃i(B∗−1−→p̂ j) = δij

To that end, we decompose - following the figure - the
−→u i on each orthonormal vector base face(−→q i,

−→q i+1), so
that:

−→u i = αi
−→q i + βi

−→q i+1

−→u i+1 = αi+1
−→q i + βi+1

−→q i+1

For the degrees of freedom, we have:

σ̃i = αiσi + βiσi+1

σ̃i+1 = αi+1σi + βi+1σi+1

or with the(2× 2) matrixAf =
(

αi βi

αi+1 βi+1

)
.

(
σi

σi+1

)
= A−1

f

(
σ̃i

σ̃i+1

)
(23)

finally the effective vectorial basis on facef is taken to
be: ( −→p j−→p j+1

)
=t Af

( −→̃
p j−→̃
p j+1

)
. (24)

4 Obtention of mass and stiffness matrices
Then we determine the mass and stiffness matrices:

M = (mij)

K = (kij)

where

mij =
∫

K

−→p i · −→p j dxdydz (25)

kij =
∫

K
curl−→p i · curl−→p j dxdydz (26)

For that purpose, we use a symbolic program to make an
exact integration of these integrals with a simplification
by the 6 factors of the symmetric matrix(B∗B)−1.

Conclusion
The systemŝσi(

−→
p̂ j) = δij with relations (1) to (20)

and equations (25)-(26), are solved with symbolic cal-
culus. Although polynomial vector bases are effectively
produced by these equations, their contents never appear.
The main effort will then be devoted to theH(curl) com-
patibility equations (21) to (24) which are to be processed
with a small but not easy to handle program.

This method can be extended to theH(div) conform-
ing finite elements [4], and more generally to any mixed
finite elements using such degrees of freedom.
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Abstract
Costabel and Dauge proposed a variational setting to

solve numerically the time-harmonic Maxwell equations
in 3D polyhedral geometries, with a continuous approx-
imation of the electromagnetic field. In order to remove
spurious eigenmodes, three computational strategies are
then possible. The original method, which requires a pa-
rameterization of the variational formulation. The second
method, which is based on ana posteriorifiltering of the
computed eigenmodes. And the third method, which uses
a mixed variational setting so that all spurious modes are
removeda priori. In this talk, the three approaches are
compared.

Introduction
In a recent paper [6], Costabel and Dauge proposed a

method, which allowed to discretize the electromagnetic
field with a continuous approximation, in3D, convex
or non-convex, polyhedra. In a way, they generalized
the method earlier developed by Heintzéet al [1],
which relied also on a continuous approximation of the
field, but worked only in3D, convex polyhedra. As
it is well-known, when solving the Maxwell equations
in a non-convex polyhedron with a continuous and
conforming discretization, the discretized spaces are
always included in a closed, strict subspace – sometimes
called the subspace ofregular fields– of the space of
all possible fields. In other words, one cannot hope to
approximate the part of the field which belongs to the
orthogonal of the subspace of regular fields. Over the past
decade, several methods have been devised to address
this problem. We refer to [5] and References therein for
an extended discussion on this topic. In [6] the authors
propose to recover density of the discretized spaces by
measuring the electromagnetic fields inweighted Sobolev
spaces.

In order to solve the time-harmonic Maxwell equa-
tions, Costabel and Dauge proceeded by adding aregular-
ization term, with a parameters: this resulted in thepa-
rameterized weighted regularization method. Using this
technique, one has to discriminate between two sequences
of eigenpairs: one is correct and the other isspurious. The
spurious eigenvalues vary with the parameters, whereas

the correct ones don’t. To remove the spurious modes,
one has to repeat the computations for various values of
the parameters. This makes the method computationally
costly, and its study is omitted here.
To get around this difficulty, we propose two possible so-
lutions. Thefilter method(alluded to in [7]), discrimi-
nates between the eigenpairs by examininga posteriori
the divergence of fields. Themixed method[5], [4] im-
posesa priori the divergence free constraint, and spu-
rious modes are automatically excluded. Both methods
lead in the end to the correct pairs, however with the sec-
ond method, it is expected that the constraint on the di-
vergence of the fields is better taken into account.

Computational methods
We consider the case of a resonator cavityΩ, bounded

by a perfect conductor. The domainΩ ⊂ R
3 is a bounded,

simply connected, open polyhedron with a Lipschitz, con-
nected, boundary∂Ω. Letn be the unit outward normal to
∂Ω. The electric eigenvalue problem, referred to as (PE),
resulting from the time-harmonic Maxwell equations is:
Find E andω such that

c2curl curl E = ω2E in Ω,

div E = 0 in Ω,

E × n = 0 on∂Ω,

with c the light velocity,E the electric field, andω the
time-frequency.

First we introduce the functional spaces needed to
deal with variational formulations associated to (PE). Let
L2(Ω), with norm‖ · ‖0, be the usual Lebesgue space of
measurable and square integrable functions overΩ. Then,
H1(Ω) denotes the space ofL2(Ω) functions with gradi-
ents inL2(Ω)3, andH0(curl ,Ω) the space below

{F ∈ L2(Ω)3 | curlF ∈ L2(Ω)3,F × n|∂Ω = 0}.

Letd denote the distance to the set of reentrant edgesE of
Ω: d(x) = dist(x,∪e∈E ē). We introduce the following
weighted spaces:

L2

γ(Ω) := {v ∈ L2

loc
(Ω) | dγ v ∈ L2(Ω)},

with norm ||v||0,γ := ||dγ v||0, and

Xγ := {F ∈ H0(curl ,Ω) |divF ∈ L2

γ(Ω)},
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with the semi-norm||F||Xγ :=
(

||curlF||2
0
+||divF||2

0,γ

)
1

2 .
Costabel and Dauge in [6] proved that for allγ ∈

]1/2, 1[, the graph norm and the semi-norm are equiva-
lent norms onXγ , and moreoverXγ ∩H1(Ω)3 is dense in
Xγ . Let (·, ·)Xγ be the scalar product associated to||·||Xγ .

Setλ = ω2/c2. Since the electric field belongs natu-
rally to

Kγ := {F ∈ Xγ |divF = 0},

an equivalent variational formulation of (PE) is
Find (E , λ) ∈ Kγ × R

+ such that

(curl E , curlF)0 = λ(E ,F)0, ∀F ∈ Kγ .

Building a conforming discretization inKγ is very diffi-
cult due to the divergence free condition imposed to the
discrete fields. In practice, the electric field is measured
in H0(curl ,Ω), or inXγ here.

In this work, we are interested in conforming dis-
cretizations with nodal finite elements. Such discretiza-
tions cannot be applied to the standard variational formu-
lation above, and we deal with augmented variational for-
mulations instead.

For the filter method, we consider the following
weighted augmented variational formulation:
Find (E , λ) ∈ Xγ × R

+ such that

(E ,F)Xγ = λ(E ,F)0, ∀F ∈ Xγ .

As for theparameterized weighted regularisation method,
the spectrum of the eigenproblem spans two families of
eigenpairs. The problem is then discretized withPk La-
grange finite elements. According to the standard theory
for Galerkin approximations [2], we have convergence of
the discrete eigenpairs towards the Maxwell and the spu-
rious pairs. Hence, when the discrete eigenproblem is
solved, eigenpairs in both families are computed. The
filter method retains only Maxwell pairs by monitoringa
posteriori the value of thefilter ratio:

‖div Eh‖0,γ

‖curl Eh‖0

.

This value is small for Maxwell eigenpairs since the di-
vergence part of the eigenvector is small and large for
spurious ones since thecurl part is small [7]. However,
when a multiple eigenvalue is encountered an additional
step must be carried out. Indeed, for a multiple eigenvalue
the corresponding eigenvectors are possibly linear combi-
nations of vectors in both families. Hence, the eigenspace
should be projected onto the subspace of vectors with a

null divergence in order to obtain correct values of the
filter ratio before filtering.

The idea of themixed methodis to avoida priori all
spurious eigenpairs in the spectrum of the considered
eigenproblem. For this purpose, we impose the constraint
on the divergence of fields by taking a weightedmixed
augmentedformulation of the problem, based on a La-
grange multiplier as follows:
Find (E , p, λ) ∈ Xγ × L2

γ(Ω) × R
+ such that

{

(E ,F)Xγ + (p,divF)0,γ = λ(E ,F)0 ∀F ∈ Xγ

(q,div E)0,γ = 0, ∀q ∈ L2
γ(Ω).

This mixed formulation is equivalent to (PE), as one finds
p = 0. In [4] the convergence theory for this mixed vari-
ational setting is analyzed, within the abstract framework
of [3].

The mixed formulation is discretized with Taylor-Hood
Pk+1−Pk finite elements (k ≥ 1). As a result, the wanted
Maxwell pairs can be computed by solving a generalized
symmetric eigenproblem.

Numerical experiments
In this section, we illustrate the two methods with some

numerical results. We consider (PE) in the “Fichera cor-
ner” domain, which is the cube[−1, 1]× [−1, 1]× [−1, 1]
minus the cube[−1, 0]× [−1, 0]× [−1, 0]. The first eight
Maxwell eigenmodes given in [8] are listed in Table 1.

Table 1: Conjectured eigenvalues

λ1 3.2 λ5 10.694
λ2 5.88 λ6 10.7
λ3 5.88 λ7 12.32
λ4 10.694 λ8 12.32

Computations were performed on a mesh made of2688
tetrahedra and665 vertices, refined towards the reentrant
edges and corner. The relative errors on the computed
eigenmodes,rk = |λh,k−λh|/|λk|, are reported in Tables
2 and 3. Filter ratios for the associated eigenvectors are
depicted in figures 1, 2 and 3.

We can see that the filter method gives slightly better
relative errors. Nevertheless, the mixed method consis-
tently provides better results on the divergence of eigen-
vectors (see Fig. 1 and 3). Furthermore, the approx-
imation is improved when higher order finite elements
are considered, which is not always the case of the filter
method (cf. Fig. 2), since the constraint is not explicitly
enforced.
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Table 2: Filter method

F E P2 P3

r1 1.9 × 10−1 2.3 × 10−3

r2 8.1 × 10−3 3.8 × 10−3

r3 8.1 × 10−3 3.8 × 10−3

r4 6.3 × 10−3 1.3 × 10−3

r5 6.3 × 10−3 1.3 × 10−3

r6 2.8 × 10−2 8.8 × 10−3

r7 2.8 × 10−3 9.2 × 10−3

r8 2.8 × 10−3 9.2 × 10−3

Table 3: Mixed method

F E P2 − P1 P3 − P2

r1 1.4 × 10−1 9.8 × 10−2

r2 9.2 × 10−3 4.2 × 10−3

r3 9.2 × 10−3 4.2 × 10−3

r4 7.7 × 10−3 2.5 × 10−3

r5 7.7 × 10−3 2.5 × 10−3

r6 1.5 × 10−3 2.8 × 10−3

r7 5.3 × 10−3 6.0 × 10−3

r8 5.3 × 10−3 6.0 × 10−3
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Figure 1: Filter ratios for both methods,P3 FE.
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Abstract
The edge elements are well suited for the approxima-

tion of time-harmonic Maxwell’s equations. For Ned-
elec’s second family on quadrilaterals, we can use a mass
lumping technique, which induces a fast matrix-vector
product. Such a technique is very suitable for an iter-
ative resolution in frequency domain. Unfortunately, we
observe some “spurious” modes on distorted meshes [Co-
hen et Durufle, 2007]. The Nedelec’s first family doesn’t
have these problems. For this family, we describe a new
algorithm, which leads to a fast matrix-vector product,
then compare these elements with classical Nedelec’s first
family on tetrahedral elements. Two types of precondi-
tioning techniques are proposed, they are based on the
damped Maxwell’s equations. Some 3-D numerical ex-
periments show the efficiency of the method.

1 The 3-D Model Problem
Let Ω ⊂ R

3 be a domain with an exterior boundaryΣ
and an interior boundaryΓ, in which we solve the hetere-
ogeneous Maxwell’s equations.Γ represents a perfectly
metallic scatterer and a Silver-Müller condition is set on
Σ. Ω is a homogeneous or heterogeneous medium whose
permittivity and permeability areε and µ respectively.
Moreover, we suppose that the medium is homogeneous
at infinity and its indices areε0 andµ0. The scattered field
is then solution of

−k2εr ~E + curl(
1
µr

curl(E)) = k2 (εr − ε0)Ei

+curl[(
1
µr

−
1
µ0

)curl(Ei)]

ν×~E(x) = −ν×~Ei(x) x∈ Γ,

(∇×~E)×ν = ik (ν×~E)×ν x∈ Σ,
(1)

where~E is the electric field,k = ω(c0)
−1 and c2

0 =
(ε0µ0)

−1. ~Ei is the incident electric field

~Ei = E0exp(ikx)

εr andµr are the relative permittivity and permeability.

2 First Class of Edge Elements
We use the first class of edge elements described in

[Nédélec, 1980]. IfFi is the transformation from unit cube
K̂ onto any hexahedralKi andDFi the jacobian matrix, the
approximate space is equal to

Vh = {~uh ∈ H0(curl,Ω) such that

DFt
i ~uh◦~Fi ∈ Qr−1,r,r ×Qr,r−1,r ×Qr,r,r−1}

Then, the basis functions satisfy the following property

~ϕi ◦~Fi = DF−t
i

~̂ϕi (2)

The basis functions on̂K are defined as in [Cohen et
Monk, 1998]:

~̂ϕ1
i, j,k = ϕ̂G

i (x) ϕ̂GL
j (y) ϕ̂GL

k (z)~ex 1≤ i ≤ r 1≤ j,k≤ r +1,

~̂ϕ2
i, j,k = ϕ̂GL

i (x) ϕ̂G
j (y) ϕ̂GL

k (z)~ey 1≤ i,k≤ r +1 1≤ j ≤ r.

~̂ϕ3
i, j,k = ϕ̂GL

i (x) ϕ̂GL
j (y) ϕ̂G

k (z)~ez 1≤ i, j ≤ r +1 1≤ k≤ r.

ϕ̂G
i is the Lagrange function associated to theith Gauss

quadrature point,̂ϕGL
i , the Lagrange function associated

to the ith Gauss-Lobatto quadrature point,~ex = (1,0)T

and~ey = (0,1)T .

3 A Fast matrix vector product
The main drawback of the first class of edge ele-

ment versus the second class is that we cannot get mass-
lumping on non orthogonal meshes [Cohen et Monk,
1998].

3.1 Main statement
This drawback leads a priori, to a slow algorithm for

iterative methods. However, the use of the basis functions
previously defined provides a fast algorithm for comput-
ing the matrix-vector product. We use the Gauss-Lobatto
quadrature formulas to evaluate the integrals. we get the
following linear system:

−ω2MhEh + KhEh = Fh. (3)

After a change of variables, the elementary matrices are
computed over the unit cubêK as follows

(Mh) j,k =

Z

K̂
Ji DF−1

i εr DF−t
i ϕ̂ j · ϕ̂k,
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(Kh) j,k =

Z

K̂

1
Ji

DF∗
i µ−1

r DFi ∇̂× ϕ̂ j · ∇̂× ϕ̂k.

We have supposed here that the jacobianJi is always pos-
itive.

These two matrices are computed by using Gauss-
Lobatto quadrature rules. We need then to compute the
following 3×3 symmetric matrices(Ah)k,k and(Bh)k,k at
each quadrature pointξGL

k :

(Ah)k,k = ωGL
k Ji DF−1

i εr DF−t
i (ξ̂GL

k )

(Bh)k,k =
ωGL

k

Ji
DF∗

i µ−1
r DFi(ξ̂GL

k )

Matrices Ah and Bh are block-diagonal matrices, with
3× 3 symmetric blocks. An “interpolation” operator̂C
is defined by

Ĉj,k = ϕ̂ j(ξ̂GL
k )

In the same way, a discrete “curl”̂R operator is defined
by

R̂j,k = ∇̂× ϕ̂GL
j (ξ̂GL

k ),

where functionsϕ̂GL
j are basis functions associated to

Gauss-Lobatto points. The reader can notice that matrix
R̂ is the same as the stiffness matrix introduced for the
mixed formulation.

Theorem 1 With the previous notations, we get the
following factorizations:

Mh = ĈAhĈ∗,

Kh = ĈR̂Bh R̂∗Ĉ∗.

3.2 Complexity of the matrix vector product
The complexity of this fast matrix-vector product

(−ω2 Mh + Kh)Xh is in O(r4). Moreover, the number
of operations is equal to :((r + 1)3 [24(r + 1) + 12r +
30])Ne, whereNe represents the number of hexahedra of
the mesh. The required storage is equal to 12(r + 1)3 Ne

coefficients, which is equivalent to four vectors ifr is
large enough. In order to compare the different orders
of approximation, we compute the quantity :

Computational cost
Number of d.o.f.s

This quantity is displayed in Fig. 1 As we can see in
this figure, the fast matrix-vector product is more efficient
than standard matrix-vector product for order greater or
equal to 3, and also leads to a lower storage than the stan-
dard method for order greater or equal to 2.
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Factorisation discrete

Figure 1: Computational time according to the order of
approximation. A standard matrix-vector product (by
storing the full matrix) and the fast matrix-vector are

compared

Remark: The factorization is also true if an almost-
”exact” integration is used (k + 1 Gauss points instead
of k+ 1 Gauss-Lobatto points). In this case,R̂ has the
same sparsity pattern, but̂C is a full matrix. Fortu-
natelaty, thanks to tensorization of basis functions on
the hexahedron, the triple sum induced by the matrix-
vector productĈX can be decomposed into three single
sums. By doing that, we use an implicit factorization:
Ĉ = Ĉ1Ĉ2Ĉ3, where the intermediaries matricesĈ1,Ĉ2

andĈ3 are sparse. A fast matrix-vector is obtained, but
it is slower than the fast matrix-vector product obtained
with approximate integration. More precisely, it is 67 %
slower, if we use exact integration with no improvement
in accuracy. This difference was confirmed numerically.

3.3 Cost of the Matrix-Vector Product. Comparison
with Tetrahedra

In this section, we numerically compare hexahedral
and tetrahedral elements for the first family. The results
are summarized in Fig. 2. Themeshand the matrix are
main components of the storage requirement. ForQ1 and
R1, the mesh represents the main part. The hexahedral
elements provide a matrix-vector product which becomes
faster than for tetrahedral elements for an order of approx-
imation greater or equal to 3. In practice, the use of high
order for tetrahedra of the first family is quite difficult be-
cause of a need of high storage.

4 Preconditioning Technique
The iterative solver used is an iterative solver which

only works for complex symmetric matrices. It is
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Figure 2: Time for 1 000 iterations of COCG on a
test-case of 200 000 d.o.f.s.

called BICGCR (BIConjugate Gradient Conjugate Resid-
ual method) and is described in [Clemens et Weiland,
2002].

The main idea of the preconditioning technique used in
this article, is to consider damped Maxwell equations by
takingε′ complex of the form:

ε′ = ε(θ + iη).

Damping is obtained under the assumptionη > 0. The
preconditioner is constructed on the damped Maxwell
equations, while non-damped Maxwell equations are
solved.

4.1 Incomplete Factorization
The effect of damping is to “localize” the inverse of the

matrix so that the incomplete factorization works fine. In
Table 1, we put the number of iterations of BICGCR pre-
conditioned by ILUT, according toη and different values
of the threshold. The incomplete factorization is a classi-

Threshold 1e−3 0.01 0.05
θ = 1 η = 0 ∞/350Mo ∞/340Mo ∞/326Mo

θ = 1 η = 0.5 55/242Mo 55/149Mo 82/74Mo

θ = 1 η = 1 97/197Mo 99/108Mo 110/53Mo

Table 1: Number of iterations of BICGCR for a perfectly
conducting sphere, and memory used for factorization.
The preconditioning used is incomplete factorization on
the finite element matrixQ1

cal ILUT, but we only store theU factor, considering that
the L factor can be recovered by symmetry. We can see
that, if you don’t use damping, the incomplete factoriza-
tion crashes very fast, and there is no gain in storage. The
gain in storage increases with damping, but also the num-
ber of iterations. The parameters choosen will be equal to
(1,1) for all other numerical experiments of the paper.

In order to have a low storage, we use a subdivided
a Q1 mesh to compute aQ1 matrix. There is an ex-
act matching between degrees of freedom (d.o.f.s) of the
high-order mesh and d.o.f.s of low-order provided a diag-
onal scaling. This diagonal scaling is due to the transform
DF∗−1

i incorporated in the definition of the basis func-
tions.

4.2 Multigrid
Several papers propose a multigrid approach as a pre-

conditioning technique [Hiptmair, 1998], [Gopalakrish-
nan et al., 2004], on low-order edge finite elements.
We use a multigrid iteration for the subdived Q1 mesh,
with damping. The smoother used is the same than the
smoother used in [Hiptmair, 1998].
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Abstract
Edge elements on hexahedral grids are often used to ap-

proximate Maxwell’s equations. On all but the most triv-
ial domains the elements are obtained by mapping from
a reference element to each hexahedron in the grid. This
mapping modifies the basis functions and can affect the
order of convergence of the resulting method. We exam-
ine this problem for the lowest order edge elements of
Nédélec and show that in L2(Ω) these elements are first
order convergent, but that in H(curl; Ω) they do not, in
general, provide good approximation. We propose a mod-
ified basis that restores convergence.

1 Introduction
Suppose we wish to approximate the electric field E

that satisfies Maxwell’s equations

∇×∇×E − k2E = f

in a bounded polyhedral domain Ω where the wave-
number k > 0 and f ∈ L2(Ω) are given data (here
L2(Ω) = (L2(Ω))3, and in a general bold face quanti-
ties are associated with vectors in this paper). The field
E must also be subject to a suitable boundary condition,
for example n × E = 0 on ∂Ω where n is the unit out-
ward normal to Ω. A popular finite element method for
this problem is to use the edge elements of Nédélec [6] to
build a conforming subspace of

H(curl; Ω) =
{
u ∈ L2(Ω) | ∇ × u ∈ L2(Ω)

}
.

In particular we shall consider the use of edge elements on
a hexahedral mesh. We assume that Ω is covered by a reg-
ular mesh of hexahedra. Each element K in the mesh has
maximum diameter h and is assumed to be obtained by
applying a trilinear map FK(x̂) ∈ Q3

1,1,1, x̂ = (x̂, ŷ, ẑ)T ,
to the reference element K̂ = [0, 1]3. Here

Q`,m,n = {polynomials of degree at most ` in

x̂,m in ŷ and n in ẑ} .

On the reference element K̂, Nédélec uses the basis

P̂ = Q0,1,1 ×Q1,0,1 ×Q1,1,0

with degrees of freedom on the edges ê of K̂ having unit
tangent vector τ ê given by

Σ̂ =
{∫

ê
û · τ ê dŝ, ê an edge of K̂

}
.

To preserve the degrees of freedom and curl conformance,
it is necessary to obtain the finite element functions u on
an element K in the mapped mesh by using the transfor-
mation

u (F K(x̂)) = (DFK(x̂))−T û(x̂) (1)

where DFK is the Jacobian matrix for FK . This mapping
results in basis functions on K that are rational functions
and hence the approximation properties of the mapped
functions are not immediately obvious.

In 2D, where hexahedra are replaced by quadrilaterals
obtained by mapping from a reference square, the ques-
tion of approximation under mapping has been examined
in [2], [1], [3]. In particular, in [3], it is shown that the
lowest order Raviart-Thomas divergence conforming ele-
ments can achieve first order convergence in L2(Ω) using
mapped grids. However the elements may not converge
in H(div; Ω) in general.

In this paper we shall carry out a similar program of
study for the lowest order H(curl; Ω) conforming ele-
ments of Nédélec in three dimensions. This element is
linked with compatible elements for H1(Ω), H(div; Ω)
and L2(Ω) by the discrete de Rhan diagram [5]. We have
also examined the use of mapped hexchedral elements for
these spaces in [4]. We provide a new family of elements
for H(div; Ω) that verifies the discrete de Rham diagram
when used with the elements discussed in this paper.

2 The Curl Conforming Element
The analysis of convergence of finite elements using

basis functions obtained by mapping is considered in [2],
[1], [3]. Here it is shown that for general families of regu-
lar grids, first order convergence is only assured if the ap-
propriate piecewise constant functions or vectors are con-
tained in the basis on the mapped element K. Rewriting
the transformation we obtain (1)

û(x̂) = (DFK (x̂))T u(x).

1
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If we require that u can be any constant vector so that
u = e1 = (1, 0, 0)T , u = e2 = (0, 1, 0)T or u =
e3 = (0, 0, 1)T we see that in order to obtain first or-
der convergence in L2(K), the basis in P̂ must con-
tain the columns of (DFK)T . By writing F K(x̂) =
(F1(x̂), F2(x̂), F3(x̂)) where

F1 = a1 + b1x̂ + c1ŷ + d1ẑ + e1x̂ŷ + f1ŷẑ

+g1ẑx̂ + h1x̂ŷẑ,

F2 = a2 + b2x̂ + c2ŷ + d2ẑ + e2x̂ŷ + f2ŷẑ

+g2ẑx̂ + h2x̂ŷẑ,

F3 = a3 + b3x̂ + c3ŷ + d3ẑ + e3x̂ŷ + f3ŷẑ

+g3ẑx̂ + h3x̂ŷẑ.

and computing the Jacobian matrix

DFK =

dFT
1

dFT
2

dFT
3

 .

where

dF1 =

 b1 + e1ŷ + g1ẑ + h1ŷẑ
c1 + e1x̂ + f1ẑ + h1x̂ẑ
d1 + f1ŷ + g1x̂ + h1x̂ŷ

 ,

dF2 =

 b2 + e2ŷ + g2ẑ + h2ŷẑ
c2 + e2x̂ + f2ẑ + h2x̂ẑ
d2 + f2ŷ + g2x̂ + h2x̂ŷ


and

dF3 =

 b3 + e3ŷ + g3ẑ + h3ŷẑ
c3 + e3x̂ + f3ẑ + h3x̂ẑ
d3 + f3ŷ + g3x̂ + h3x̂ŷ

 .

we see that each column of (DFK)T is indeed contained
in P̂ . Hence first order convergence in L2(Ω) is indeed
possible.

Turning to convergence in the H(curl; Ω) norm we note
that if (1) is used then curls are related by

∇̂ × û(x̂) = JK(x̂) (DFK(x̂))−1 (∇× u) (FK(x̂)) ,

where JK(x̂) denotes the determinant of DFK . Choosing
successively∇×u = e1, e2, e3 we can see that first order
convergence of the curl is possible only if the columns of
JK(x̂) (DFK(x̂))−1 are contained in ∇× P̂ . For lowest
order edge elements and a general trilinear map this is not
the case and so there are mesh families on which edge
elements will not converge in the H(curl; Ω) norm.

We propose to extend the standard Nédélec basis P̂
(consisting of 12 vectors) by an additional 15 basis vec-
tors  0

(1− ẑ)x̂(1− x̂)
0

 ,

 0
0

(1− ŷ)x̂(1− x̂)

 ,

(1− ẑ)ŷ(1− ŷ)
0
0

 ,

 0
0

(1− x̂)ŷ(1− ŷ)

 ,

 0
(1− x̂)ẑ(1− ẑ)

0

 ,

(1− ŷ)ẑ(1− ẑ)
0
0

 ,

 0
x̂(1− x̂)ẑ

0

 ,

 0
0

x̂(1− x̂)ŷ

 ,

ẑ(1− ẑ)ŷ
0
0

 ,

 0
ẑ(1− ẑ)x̂

0

 ,

 0
0

ŷ(1− ŷ)x̂

 ,

ŷ(1− ŷ)ẑ
0
0

 ,

 0
0

ŷ(1− ŷ)x̂(1− x̂)

 ,

 0
ẑ(1− ẑ)x̂(1− x̂)

0

 ,

ŷ(1− ŷ)ẑ(1− ẑ)
0
0

 .

The resulting 27 basis vectors are determined by specify-
ing the degrees of freedom

•
∫
ê û · τ ê dŝ on each edge ê of K̂,

•
∫
f̂ ∇̂ × û · nf̂ p dÂ for all p ∈ P1\P0 and each face

f̂ of K̂,

•
∫
K̂(∇̂ × û) · r̂ dV̂ for all r̂ ∈ R̂,

where nf̂ is the unit normal to f̂ , Pk is the space of poly-

nomials of degree k in two variables and R̂K is spanned
by 

 1
2 − ŷ
x̂− 1

2
0

 ,

 1
2 − ẑ

0
x̂− 1

2

 ,

 0
1
2 − ẑ
ŷ − 1

2

 .

The resulting element is curl conforming and unisolvent.
For sufficiently smooth vector functions, the interpolent
will converge at first order in the L2(Ω) and H(curl; Ω)
norms.
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3 Conclusion
We have shown how to modify the lowest order edge

elements of Nédélec to make possible first order conver-
gence on regular grids obtained by general trilinear map-
pings of the reference element. This construction can be
extended to obtain a full discrete de Rham complex [4].

We note that many practical mesh families may exhibit
convergence without our construction. For example, if
the elements asymptotically become right hexehedra as
h → 0, or if the mesh is obtained by a global h inde-
pendent mapping standard Nédélec elements will have
first order convergence. However for arbitrary regular
grid families, care must be taken to ensure convergence
of mapped hexahedral edge elements. We hope to obtain
numerical results for these elements in the future.
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Abstract
Recently, a discontinuous Galerkin finite element

method with plane wave basis functions was introduced
for the efficient solution of Helmholtz problems. The
method uses Lagrange multipliers to enforce a weak con-
tinuity of the solution at the element interfaces. Here, a
preconditioned iterative solution procedure based on a do-
main decomposition is proposed for the resulting systems
of linear equations. Numerical experiments study the it-
erative solution of a two-dimensional model problem.

Introduction
The oscillatory behavior of mid and high frequency

scattering problems necessitates a fine discretization of
the governing PDE like the Helmholtz equation consid-
ered in this paper. The discretization leads to a very large
system of linear equations which is not easy to solve ef-
ficiently. During the last decade plane wave based dis-
cretizations have become more popular as they offer a
way to reduce the system size. The partition of unity
method [5], the ultra weak variational formulation [1],
and a discontinuous Galerkin method with Lagrange mul-
tipliers [3] can employ plane waves. These discretizations
lead to ill-conditioned linear systems which have been so
far solved with direct solvers. Here, a domain decom-
position method is proposed for solving iteratively the
systems resulting from the discontinuous Galerkin dis-
cretization with Lagrange multipliers.

Formulation
The solution u ∈ H1() of a Helmholtz problem in 

satisfies the equations

−¢u − k2u = 0 in 

(

α + ¯
∂

∂ν

)

u = −

(

α + ¯
∂

∂ν

)

g on Σ1

∂u

∂ν
= iku on Σ2,

(1)

where k is the wavenumber, Σ1 is the boundary of a scat-
terer, Σ2 is the far-field boundary, and ν denotes the unit
outward normal. The function g gives the incident field.
The parameters α and ¯ define the type of scatterer.

The computational domain  is partitioned into ele-
ments e in such a way that:

̄ =

ne
⋃

e=1

̄e and
ne
⋂

e=1

e = ∅.

Let a space V for the primal variable u and a space W for
Lagrange multiplier ¸ be

V =
{

v ∈ L2(˜) : v|Ωe
∈ H1(e)

}

and

W =
∏

e

∏

e′<e

H−1/2(Γe,e′),

where the following notations have been used

˜ =

ne
⋃

e=1

e and Γe,e′ = ∂e ∩ ∂e′ .

The considered discontinuous Galerkin method is based
on the following hybrid variational formulation:

Find (u, ¸) ∈ V ×W such that

a(u, v) + b(¸, v) = r(v) ∀v ∈ V

b(µ, u) = s(µ) ∀µ ∈ W,
(2)

where the bilinear forms a on V × V and b on W ×V are
defined as

a(u, v) =

∫

eΩ

(∇u ¢ ∇v − k2uv)d −

∫

Σ2

ikuv dΓ

and b(¸, v) =
∑

e

∑

e′<e

∫

¡e,e′

¸ (v|e′ − v|e) dΓ,

and the linear forms r on V and s on W are defined as

r(v) = −¯

∫

Σ1

∂g

∂ν
v dΓ and s(µ) = −α

∫

Σ1

g µ dΓ.

The space V is discretized using its subspace

Vnθ
=







u ∈ V : u(x) =

nθ
∑

p=1

eikθp¢xue,p,

x ∈ e, ue,p ∈ C







,
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where the wave propagation directions θp are defined by

θp =

(

cos(2¼(p − 1)/nµ)
sin(2¼(p − 1)/nµ)

)

, p = 1, . . . , nµ.

The space W is discretized using its subspace

Wnλ
=







¸ ∈ W : ¸(x) =

nλ
∑

p=1

eikηpτe,e′ ¢x¸e,e′,p,

x ∈ Γe,e′ , ¸e,e′,p ∈ C







,

where τ e,e′ is a unit tangent vector. In [3], [4], the set of
values of ´p for nλ = 2, 4 are proposed to be {§0.5} and
{§0.2,§0.75}, respectively. The name Q-nµ-nλ is used
for quadrilateral elements with nµ and nλ plane waves for
the primal variable and Lagrange multiplier, respectively.

Domain decomposition and modified formulation
The elements e are divided into nd subdomains and the

set of elements belonging into the dth subdomain is de-
noted by Ed. The closure of the dth subdomain is

̄d =
⋃

e∈Ed

̄e.

In subdomains away from the absorbing boundary Σ2, the
subdomain problem defined by the variational formula-
tion (2) can be singular. To avoid this the regularization
described in [2] is adopted which adds a boundary term to
the subdomain problems. In the subdomain d, the term
corresponds to a Robin boundary condition

∂u

∂ν
= iγsdku on Γd = ∂d \ (Σ1 ∪ Σ2), (3)

where γ is a regularization parameter and sd is a sign cho-
sen for d. The signs are assigned in such a way that two
subdomains with a common edge have opposite signs.
Typically, sd is assigned in a checkerboard manner if pos-
sible while with more general domain decompositions, it
might be necessary to set sd to be zero on a part of the
boundary [2].

The additional subdomain boundary term can be incor-
porated to the variational form (2) by modifying the bilin-
ear form a as follows:

ã(u, v) = a(u, v) + iγ
∑

d

∑

d′ 6=d

∫

¡d,d′
sdkuv dΓ,

where Γd,d′ = ∂d ∩ ∂d′ .

Linear systems and condensations
The discretization leads to a saddle point problem

(

A BT

B 0

) (

u

λ

)

=

(

f

0

)

The condensation of the primal variable leads to a Schur
complement system

Fλ = BA−1BT
λ = BA−1f = b.

This system has a block form

Fλ =

(

FII FIB

FBI FBB

) (

λI

λB

)

=

(

bI

bB

)

,

where I refers to the Lagrange multipliers in the interior
of the subdomains and B refers to the Lagrange multipli-
ers on the interfaces between the subdomains.

The condensation of the interior Lagrange multipliers
leads to a Schur complement system

FSλB = bS , (4)

where FS = FBB − FBIF
−1

II FIB and bS = bB −
FBIF

−1

II bI . Once the interface Lagrange multipliers λB

have been solved from this system, the interior ones are
given by λI = F−1

II (bI − FIBλB).

Iterative solution
Following the idea of two-level FETI, a coarse space is

formed and the linear system (4) is solved iteratively on
its orthogonal complement. Let the columns of a matrix
Q span the coarse space. A projector to the orthogonal
complement of Q is defined as

P = I − Q(QTFSQ)−1QTFS .

Then it can be shown [2] that the solution of (4)
has the form λB = λ

0

B + Pλ
1

B , where λ
0

B =
Q(QTFSQ)−1QTbB and λ

1

B satisfies the system

PTFSPλ
1

B = PTbS .

A natural idea is to use plane waves in the construction
of the coarse space. Similarly to FETI-H in [2], each sub-
domain corresponds to a block of Q given by the products
of plane waves and Lagrange multiplier basis functions.
Here the number of plane waves in a subdomain is the
same as in the discretization of primal variable. The com-
ponents of Q are given by

Qj,(d−1)nθ+p =

∫

¡d

µje
ikθp¢x dΓ,
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Figure 1: The 16 × 4 domain decomposition and the
real part of the exact solution with k = 12¼.

where µj is the jth basis function of Wnλ
living on the

interfaces between the subdomains.
Plane wave bases can have very poor orthogonality

which leads to ill-conditioned systems. A preconditioner
based on the Lagrange multiplier mass matrix

M =

(

MII 0

0 MBB

)

is employed to improve the conditioning. The mass ma-
trix is obtained by discretizing the bilinear form

m(¸, µ) =
∑

e

∑

e′<e

∫

¡e,e′

¸µ dΓ

on W ×W . Now, the preconditioned system reads

PM−1

BBPTFSPλ
1

B = PM−1

BBPTbS . (5)

Numerical results
The scatterer is circular and sound-hard, that is, α = 0

and ¯ = 1 in (1). The computational domain is  = {x ∈
R

2 : 1 < ‖x‖ < 2} and the incident field is g = eikx1

in (1). The finest domain decomposition and the exact
solution of (1) are shown in Figure 1. The regularization
parameter is γ = 0.1 in (3). The linear systems (4) and
(5) are solved using the GMRES method. The iteration
counts required to reduce the norm of the residual by the
factor 10−7 and relative discretization errors at the nodal
points in l2-norm are reported in Table 1.

Conclusions
The presented results and preliminary results with

three-dimensional problems show the iterative domain
decomposition method to be effective for systems result-
ing from the discontinuous Galerkin finite element dis-
cretizations of the Helmholtz equation. The convergence
rate can improved by increasing the number of plane
waves in the construction of the coarse space and by in-
troducing a local subdomain preconditioner.

Table 1: The number of iterations without a precondi-
tioner it1, with the preconditioner it2, and the relative
discretization error with respect to the wavenumber k, el-
ement type, mesh, and the number of subdomains nd.

k element mesh nd it1 it2 error
6π Q-8-2 96 × 8 4 × 1 53 35 5.4e−3
6π Q-8-2 96 × 8 8 × 2 214 57 5.4e−3
6π Q-8-2 96 × 8 16 × 4 537 52 5.4e−3
6π Q-16-4 48 × 4 4 × 1 53 25 6.9e−4
6π Q-16-4 48 × 4 8 × 2 252 29 6.8e−4
6π Q-16-4 48 × 4 16 × 4 660 4 6.9e−4

12π Q-8-2 192 × 16 4 × 1 85 56 5.8e−3
12π Q-8-2 192 × 16 8 × 2 370 137 5.8e−3
12π Q-8-2 192 × 16 16 × 4 909 195 5.8e−3
12π Q-16-4 96 × 8 4 × 1 103 52 5.0e−4
12π Q-16-4 96 × 8 8 × 2 473 115 5.0e−4
12π Q-16-4 96 × 8 16 × 4 > 1000 113 5.0e−4
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Abstract
The paper deals with an aircraft wing model in an invis-

cid subsonic airflow. It has been developed in the Flight
Systems Research Center of the University of Califor-
nia at Los Angeles in collaboration with NASA Dryden
Flight Research Center. The model has been successfully
tested in a series of flight experiments at Edwards Air-
force Base, CA, and has been extensively studied numer-
ically. The model is governed by a system of two coupled
integro–differential equations and a two parameter fam-
ily of boundary conditions modeling the action of self–
straining actuators. The system of equations is equiva-
lent to a single operator evolution–convolution equation
in the energy space. The Laplace transform of the so-
lution of this equation can be represented in terms of the
so-called generalized resolvent operator, which is a finite–
meromorphic operator–valued function of the spectral pa-
rameter. Its poles are precisely the aeroelastic modes.

Introduction and Statement of Problem.
An ultimate goal of an aircraft wing modeling is to de-

sign flutter control mechanism. Flutter is a structural dy-
namical instability, which consists of violent vibrations of
a solid structure with rapidly increasing amplitude when
the structure interacts with gas or fluid flow. It usually
results either in a serious damage of the structure or in
its complete destruction. Flutter occurs when the param-
eters characterizing fluid–structure interaction reach cer-
tain critical values.

Flutter is an extremely complex physical phenomenon,
whose complete theoretical explanation is an open prob-
lem. At the present moment, there exist only a few mod-
els of fluid–structure interaction involving flutter devel-
opment for which precise mathematical formulations are
available. We believe that analytical treatment of flutter
problem is an important component of research. Such
treatment can provide insights not available from purely
computational or experimental results.

To describe mathematical model, let us introduce the
dynamical variables [1,5-8]

X(x, t) =




h(x, t)

α(x, t)


 , −L ≤ x ≤ 0, t ≥ 0, (1)

where h(x, t) is bending and α(x, t) is torsion angle. The
model, is described by the following linear system:

(Ms−Ma)Xtt− uDaXt + (Ks− u2Ka)X = [f1, f2]T .
(2)

We use the subscripts “s” and “a” to distinguish the struc-
tural and aerodynamical parameters respectively. All 2×2
matrices in Eq.(2) are given by the following formulas:

Ms =
[
m S
S I

]
, Ma = (−πρ)

[
1 −a
−a (a2 + 1/8)

]
,

(3)
where m is density of the structure, S is mass moment, I
is moment of inertia, ρ is density of air, u is the stream
speed, a is a relative distance between the elastic axis of
a wing and its line of center of gravity, −1 ≤ a ≤ 1;
Da = (−πρ) codiag{1,−1}, and

Ks =

[
E ∂4

∂x4 0
0 −G ∂2

∂x2

]
, Ka = (−πρ)

[
0 0
0 −1

]
,

(4)
where E is bending stiffness, G is torsion stiffness. The
right–hand side of system (2) can be represented as the
following system of two convolution–type integral opera-
tions:

f1(x, t) =
∫ t

0
C̃1(t− σ)g(x, σ)dσ, (5)

f2(x, t) =
∫ t

0
C̃2(t− σ)g(x, σ)dσ, (6)

g(x, t) = uα̇(x, t) + ḧ(x, t) + (1/2− a)α̈(x, t). (7)

Here C̃1(t) and C̃2(t) are known functions, whose precise
formulas can be found in [1,5,7]. It is known that the self–
straining control actuator action can be modeled by the
following boundary conditions [1,7,9]:

Eh′′(0, t) + βh′t(0, t) = 0, h′′′(0, t) = 0, (8)

Gα′(0, t) + δαt(0, t) = 0, β, δ > 0. (9)

The boundary conditions at x = −L are

h(−L, t) = h′(−L, t) = α(−L, t) = 0. (10)

The initial state is standard: h(x, 0) = h0(x),
ht(x, 0) = h1(x), α(x, 0) = α0(x), αt(x, 0) = α1(x).

1
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Additionally we assume that the parameters satisfy the
following two conditions: (a) mI > S2 and (b) 0 < u ≤√

2G/(L2πρ).
Condition (b) means that the flow speed must be below

the “divergence” or static aeroelastic instability speed for
the system [3]. Now we describe the energy space. LetH
be the set of 4-component vector–valued functions Ψ =
(h, ht, α, αt)T ≡ (ψ0, ψ1, ψ2, ψ3)T obtained as a closure
of smooth functions satisfying the boundary conditions
ψ0(−L) = ψ′0(−L) = ψ2(−L) = 0 in the following
energy norm:

‖Ψ‖2
H =

1
2

∫ 0

−L

[
E|ψ′′0 |2 +G|ψ′2|2 + m̃|ψ1|2 + Ĩ|ψ3|2

+S̃(ψ3ψ̄1 + ψ̄3ψ1) −πρu2|ψ2|2
]
dx, (11)

where m̃ = m + πρ, S̃ = S − aπρ, Ĩ = I +
πρ(a2 + 1/8), ∆ = m̃Ĩ − S̃2. The problem defined
by (2) and (8)-(10) can be represented in the form (Ψ =
(ψ0, ψ1, ψ2, ψ3)T ):

Ψt = iLβδΨ + F̃Ψt, Ψ|t=0 = Ψ0. (12)

Lβδ is the following matrix differential operator in H:

−iLβδ =



0 1 0 0

−EĨ
∆

d4

dx4 −πρuS̃
∆

− S̃
∆

(
G d2

dx2 + πρu2
)

−πρuĨ
∆

0 0 0 1
ES̃
∆

d4

dx4
πρum̃

∆
m̃
∆

(
G d2

dx2 + πρu2
)

πρuS̃
∆




(13)
defined on the domain

D(Lβδ) = {Ψ ∈ H : LβδΨ ∈ H;
ψ1(−L) = ψ′1(−L) = ψ3(−L) = 0; ψ′′′0 (0) = 0;
Eψ′′0(0) + βψ′1(0) = 0, Gψ′2(0) + δψ3(0) = 0}. (14)

F̃ is a linear integral operator in H given by the formula

F̃ =
1
∆




1 0 0 0
0 T1 uT1 (1/2− a)T1

0 0 1 0
0 T2 uT2 (1/2− a)T2


 ,

where T1 = [Ĩ(C̃1∗) − S̃(C̃2∗)], T2 = [−S̃(C̃1∗) +
m̃(C̃2∗)], and the star “*” stands for the convolution.

Important Remark. We emphasize that (12) is not an
evolution equation. It does not have a dynamics gener-
ator and does not define any semigroup in the standard

sense. However, the notion of the spectral analysis is
well–understood. Our aircraft wing model can be de-
scribed by the evolution–convolution equation

Ψt(t) = i AΨ(t) +
∫ t

0
F (t− τ)Ψτ (τ)dτ. (15)

Ψ is a 4-component vector–valued function,A(A = Lβδ)
is a matrix differential operator, and F (t) is a matrix–
valued function. The formal solution in the Laplace rep-
resentation can be given by the formula

Ψ̂(λ) =
(
λI − iA− λF̂ (λ)

)−1 (
I − F̂ (λ)

)
Ψ0, (16)

where Ψ0 is the initial state, i.e., Ψ(0) = Ψ0, and the
symbol ”ˆ” is used to denote the Laplace transform. It is
an extremely nontrivial problem ”to calculate” the inverse
Laplace transform of (16) in order to have the represen-
tation of the solution in the space–time domain. To do
this, it is necessary to investigate the ”generalized resol-
vent operator”

R(λ) =
(
λI − iA− λF̂ (λ)

)−1
, (17)

which is an operator–valued meromorphic function on the
complex plane with a branch–cut along the negative real
semi–axis. The poles of R(λ) are called the aeroelas-
tic modes. The branch–cut corresponds to the continuous
spectrum. The Laplace transform representation for the
solution of problem (12), corresponding to (17), has the
following form:

Ψ̂(λ) =
(
λI − iLβδ − λF̂(λ)

)−1 (
I − F̂(λ)

)
Ψ0.

(18)
Our ultimate goal is to find the solution of the problem

in the space–time domain. To this end, we have ”to calcu-
late” the inverse Laplace transform of Ψ̂. It will be done
by accomplishing the contour integration in the complex
λ-plane. In this connection, the properties of the ”gener-
alized resolvent operator”

R(λ) =
(
λI − iLβδ − λF̂(λ)

)−1
(19)

are of special importance for us. In our works (see [6]
and references therein) it has been shown (1) that the
aeroelastic modes are asymptotically close to the discrete
spectrum of the operator iLβδ; (2) that there may be only
a finite number of the aeroelastic modes having positive
real parts, which means that for a given stream speed u,
there exists at most a finite number of unstable aeroelas-
tic mode shapes; (3) that the set of mode shapes forms a
nonorthogonal basis in the energy space.
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Statement of main results
Asymptotic properties of aeroelastic modes.

Theorem 1. a) Problem (16) has a countable set of the
complex aeroelastic modes. If

δ 6=
√
GĨ, (20)

then this set asymptotically splits into two different sub-
sets. We call them the β–branch and the δ–branch and
denote these branches by {λβ

n}n∈Z and {λδ
n}n∈Z respec-

tively. If < β ≥ 0 and < δ > 0, then each branch
is asymptotically close to its own horizontal line in the
closed upper half–plane. If < β > 0 and < δ = 0,
then both horizontal lines coincide with the real axis. If
< β = < δ = 0, then the set of the aeroelastic modes
is asymptotically real. The entire set may have only two
points of accumulation: +∞ and −∞ in the sense that
< λβ(δ)

n −→ ±∞ and |= λ
β(δ)
n | ≤ const as n −→ ±∞.

b) The following asymptotical representation is valid
for the β–branch as |n| −→ ∞:

λβ
n = (sgn n)(π2/L2)

√
EĨ/∆ (|n| − 1/4)2 + ξn(ω),

(21)
where ω = |δ|−1 + |β|−1. A complex–valued se-
quence {ξn} is bounded above in the following sense:
supn∈Z{|ξn(ω)|} = C(ω), C(ω) −→ 0 as ω −→ 0.

c) The following asymptotical representation is valid
for the δ–branch of the spectrum as |n| −→ ∞:

λδ
n =

πn

L
√
Ĩ/G

+
i

2L
√
Ĩ/G

ln
δ +

√
GĨ

δ −
√
GĨ

+O(|n|−1/2).

(22)
In (22), ”ln” means the principal value of the logarithm.

d) There may be only a finite number of multiple aeroe-
lastic modes of a finite multiplicity each. Therefore, only
a finite number of the associate mode shapes may exist.

We recall that a basis in a Hilbert space is a Riesz basis
if it is a linear isomorphic image of an orthonormal basis,
i.e., if it is obtained from an orthonormal basis by means
of a bounded and boundedly invertible operator [4].

Finally, we formulate the main result, which will be
crucial for the ”calculation” of the inverse Laplace trans-
form of the solution. The solution of problem (15) can be
represented in the form of a sum of an infinite series and
an improper integral. The absolute convergence of the
integral can be easily seen. The aforementioned infinite
series represents a series with respect to the mode shapes.
Its unconditional convergence is guaranteed by the result
formulated below.

Theorem 2. The set of the mode shapes forms a Riesz
basis in the energy space H.
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Abstract 

 A rotor system consists of a rotor and of a 
stationary part and fluid film bearings are often 
used as coupling elements. As the clearance 
between the discs and the casing is usually very 
small, excessive lateral vibration of the rotor can 
cause impacts between the discs and the housing. 
In mathematical models both the bearings and the 
impacts are implemented by nonlinear force 
couplings. The induced mechanical waves 
propagate via the shaft and the bearings into the 
rotor stationary part. To determine components of 
the impact forces a Hertz theory is applied. 
Components of the hydraulic forces are calculated 
by integration of the pressure distribution in the oil 
film around the circumference and along the length 
of the bearing. In the non-cavitated part of the 
lubricant layer the pressure distribution is governed 
by a Reynolds equation and in the cavitated region 
the pressure remains constant. For the solution of 
the equation of motion a modified Newmark 
method is adopted. 
 
 
Introduction 

 A rotor system consists of a rotor and of a 
stationary part and fluid film bearings are often 
used as coupling elements. To ensure efficient 
performance of rotating machinery the clearance 
between the discs and the casing is usually very 
narrow. Therefore excessive lateral vibration of the 
rotor can cause impacts between the discs and the 
housing. The induced mechanical waves  propagate 
via the shaft into the rotor casing and the 
hydrodynamic bearings contribute to their 
damping. Up to now the fluid film bearings and the 
impacts have been investigated separately. 
Therefore it is desirable to develope a procedure 

that would make possible to analyze their mutual 
interaction and influence on the rotor behaviour. 
 An important tool for such investigations is a 
computer modelling method. Usually both the fluid 
film bearings and the impacts are implemented into 
the mathematical models by means of nonlinear 
force couplings. 
 The simplest approach to a mathematical 
description of impacts is based on application of 
the theories of Newton and Hertz [1]. 
 The length to diameter ratio of many fluid film 
bearings used in real rotating machinery is often 
between 0.5 and 1.0 and it allows to consider them 
as long. To determine components of the bearing 
forces it is necessary to know a pressure 
distribution in the oil layer. As the bearing 
clearance is very narrow the pressure distribution 
in the full oil film is governed by a Reynolds 
equation. At locations where the pressure drops to 
a critical level a vapour cavitation takes place. The 
observations carried out by Zeidan and Vance  
showed that pressure of the medium in such areas 
remained approximately constant [2]. 
 
 
Pressure distribution in long cavitated bearings 

 A pressure distribution in the full oil film is 
described by a Reynolds equation modified for the 
case of long bearings. Application of a finite 
difference method for its solution requires to divide 
the bearing circumference by nodes into the 
periods of the same angular length. Then the 
Reynolds equation is solved using the Dirichlet 
boundary conditions ( magnitude of pressure under 
which the oil is supplied into the bearing ) for all 
portions of the bearing circumference between two 
adjacent oil inlets. If pressure minimum at some 
location drops to a critical level, a vapour 
cavitation occurs. 
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 To determine the inflow edge of the cavitated 
area the nodes are succesively chosen from the 
node of the pressure minimum in the direction 
opposite to the journal rotation. Then the Reynolds 
equation is solved over the portion of the bearing 
circumference between the node corresponding to 
the oil inlet before the cavitated region and the 
selected node. A zero pressure gradient is assigned 
to the latter. This process is repeated until the 
pressure in the selected node is equal or greater 
than the pressure in the cavitated area. This node is 
then considered to be the inlet edge of the cavitated 
region. 
 To determine the outlet border of the cavitated 
area the nodes are succesively selected from the 
node of the pressure minimum in the direction of 
the journal rotation. The Reynolds equation is then 
solved between the selected node and the node 
correesponding to the oil inlet behind the cavitated 
area and the Dirichlet boundary conditions are 
applied. This manipulation is repeated until the 
difference between the flow rate in the selected 
node and in the node corresponding to the inlet 
edge of the cavitated region is minimum. This node 
is then considered to be the outlet edge of the 
cavitated area. 
 These manipulations are repeated for all portions 
of the bearing circumference situated between two 
adjacent oil inlets. Components of the hydraulic 
forces are then calculated by integration of the 
pressure around the bearing circumference. 
 
 
Pressure distribution in long cavitated bearings 

 To calculate components of the impact forces it 
is assumed that the stationary part and the discs are 
absolutely rigid except a small neighbourhood of 
the contact point, friction in the contact area is of a 
Coulomb type, direction and orientation of the 
friction force depends only on the sense of the rotor 
turning, and the impacts does not influence the 
angular speed of the rotor rotation. 
 The contact force consists of two components, of 
the normal and tangential ones. The normal  
component is produced by the contact stiffness and 
damping in material in the neighbourhood of the 
contact point. Therefore it depends on the 
displacement and velocity of the disc centre 
relative to the stationary part in the radial direction. 

The contact stiffness is determined by means of a 
Hertz theory and the coefficient of contact damping 
is considered to be proportional to the contact 
stiffness. The normal component of the impact 
force can be only compressive and it can act only if 
the displacement of the disc centre in the radial 
direction is greater than is the width of the 
clearance between the rotor and the stationary part. 
 The tangential component is a friction force. Its 
magnitude is given by the Coulomb's law. 
 
 
Equation of motion 

 Lateral vibration of rotors supported by fluid film 
bearings is governed by a nonlinear equation of 
motion and by the relationship for the boundary 
conditions. Its solution by a Newmark method [3] 
arrives at each integration step at solving a set of 
algebraic equations that are nonlinear due to the 
bearing forces. To avoid this operation the 
hydraulic forces at time t+Δt are determined by 
means of their expansion into a Taylor series in the 
neighbourhood of time t. Taking into account only 
the linear portion of this expansion arrives at the 
modified equation of motion that has the form 
required by the basic Newmark algorithm. 
 It is assumed that the time increment Δt is very 
short. Therefore magnitudes of the components of 
the impact forces related to time t+Δt can be 
determined utilizing kinematic parameters of the 
rotor system calculated at time t. 
 
 
Example 

 Rotor of the investigated rotor system ( Fig.1 ) 
has a disc that is placed in a cylindrical hole in the 
casing. The rotor rotates at constant angular speed 
and is loaded by its weight. In addition the system 
is excited by centrifugal forces caused by 
imbalance of both discs. The task was to analyze a 
propagation of mechanical waves produced by the 
impacts between the disc and the housing and their 
transmission to the stationary part by the bearings. 
 The steady state trajectory of the disc D2 centre 
is evident from Fig.2. The orbit is periodic or close 
to periodic. Time histories of the impact and 
bearing forces are drawn in Fig.3 and 4. The 
individual impacts last between 400 and 500 μs. 
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 Figure 1 : Scheme of the investigated rotor 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2 : Steady state orbit ( disc D2 centre ) 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3 : Impact force ( normal component ) 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4 : Hydraulic force in bearing B2 

Conclusions 

 The described approach represents a numerical 
method for investigation of a transient response of 
rotors supported by long hydrodynamic bearings 
and carrying discs that are placed in holes in the 
stationary part. 
 The procedure is intended for investigation of the 
impact forces, propagation of mechanical waves 
through the shaft, and their transmission by the 
bearings into the stationary part. 
 The results of computer simulations show that 
action of the hydrodynamic bearings and the 
impacts on the rotor can be analyzed together and 
that the procedure proposed for solving the 
equation of motion is numerically stable. The 
length of the integration step is governed more by 
the requirements put on calculation of the impact 
forces than of the forces acting in the bearings. 
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‡CMAP, Ecole Polytechnique, 91128 Palaiseau, France

∗Email: mduran@ing.puc.cl ∗∗Email: egodoy@ing.puc.cl ∗∗∗Email: nedelec@cmapx.polytechnique.fr

Abstract
An effective numerical analytical method for calcu-

lating the Green’s function associated with the time-
harmonic elasticity system in a half-plane is presented,
where an impedance boundary condition is imposed. The
need to calculate arises when studying resonant states in
underground mining and seismological engineering. The
proposed method is based on the work done by Durán,
Muga and Nédélec [5] for the Helmholtz’s equation. The
desired Green’s function is expressed as a sum of two
terms, namely, the first one associated with the whole
plane and the second one taking into account the half-
plane’s boundary. The poles of this last term are related to
surface waves and they are numerically determined. We
have found that in addition to the well-known Rayleigh
wave, under certain conditions another surface wave ap-
pears. Indeed, there exists a case where the associated
pole is real and it can be analytically computed.

Basic mathematical model
Let us consider R2

+ = {x = (x, y) ∈ R2/ y > 0}
the upper half-plane, whose boundary is denoted by Γ.
Let x = (x0, y0), y = (x, y) ∈ R2

+ be the source
and variable points, respectively. The Green’s function
of the time-harmonic elasticity system in R2

+, denoted by
G = G(x,y), is a 2×2 matrix function with complex val-
ues, whose column vectors are denoted by gj = gj(x,y),
where j = 1, 2. For a fixed x , these vectors are obtained
as solution of the next differential system in y:

ρ ω2gj + div σ(gj) = −δxej in R2
+,

σ(gj)n · n = 0 on Γ,(
σ(gj)n− Zgj

)
· t = 0 on Γ,

+Outgoing radiation conditions at infinity,

where ρ is the elastic solid density, ω > 0 is the pulsation,
δx is the Dirac mass centered at x, ej is the jth canonic
vector of R2, n and t are the external normal and tangen-
tial unit vectors on Γ, Z is the impedance and σ is the
stress tensor, which evaluated at a displacement field u is

given by the classic Hooke’s law:

σ(u) = λ(div u)I + µ
(
∇u + (∇u)T

)
,

where λ and µ are the Lamé constants and I is the 2 × 2
identity matrix. The transversal and longitudinal slow-
ness of the elastic medium are defined as follows, respec-
tively:

sT =
√

ρ

µ
, sL =

√
ρ

λ + 2µ
.

Note that the impedance boundary condition corresponds
to a proportionality relation between sheer stresses and
tangential displacements on Γ. As the normal stresses are
null, when Z = 0, the well-known free boundary con-
dition is retrieved. On the other hand, radiation condi-
tions at infinity have to be imposed to obtain outgoing
solutions. For a broader framework about Green’s func-
tions and their use in integral equations for time-harmonic
problems, see Nédélec [7], Bonnet [3] and Linkov [6].

Spectral Green’s function
The differential system for gj(x, ·) is solved by apply-

ing the following partial Fourier transform in x:

ĝj(x, s, y) =
1√
2π

∫ ∞

−∞
gj(x,y) e−i ωs(x−x0) dx,

where for reasons of convenience, a Fourier variable s
normalized by ω has been considered instead of the stan-
dard one. An ODE matrix system in y with constant co-
efficients is obtained, with s regarded as a parameter. The
Fourier transform of G, denoted by Ĝ = Ĝ(x, s, y), is
the so-called spectral Green’s function, which is calcu-
lated by solving this system. The expression achieved for
Ĝ can be separated as a sum of two terms:

Ĝ = Ĝ∞ + ĜΓ,

where Ĝ∞ = Ĝ∞(x, s, y) is a symmetric matrix asso-
ciated with the whole plane R2 and ĜΓ = ĜΓ(x, s, y)
is a non-symmetric matrix which takes into account the
boundary conditions imposed on Γ.
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Effective computation of Green’s function
In order to make an effective computation of the

Green’s function G(x,y), an accurate calculation of the
inverse Fourier transform of Ĝ is necessary. The expres-
sion as a sum of two terms suggests dealing separately
with terms Ĝ∞ and ĜΓ. Their respective inverse Fourier
transforms are denoted by G∞(x,y) and GΓ(x,y).

In the first case, the inverse Fourier transform of Ĝ∞

is analytically calculated by means of integral formulas
taken from Bateman [1]. As obtained by Durán, Muga
and Nédélec in [5] for the Helmholtz’s equation, we ob-
tain that G∞(x,y) corresponds to the Green’s function
of the time -harmonic elasticity system in R2 (cf. [4]).

In the second case, the inverse Fourier transform of
ĜΓ is computed by combining analytical and numerical
techniques. For the sake of accuracy, it is necessary to
carefully take into account each singularity present in this
term when computing its inverse transform. Hence we
separate ĜΓ as the following sum:

ĜΓ = ĜΓ, r + ĜΓ, sp + ĜΓ, p,

where ĜΓ, r corresponds to a regular part, ĜΓ, sp is a part
containing pseudo-poles and ĜΓ, p is a part containing
poles. These three terms arise in the analysis of ĜΓ.

The pseudo-poles appear in the diagonal components
of ĜΓ. Specifically, there are factors (s2 − s2

T )−1/2 and
(s2 − s2

L)−1/2 in these components. In order to remove
these singularities, an appropriate diagonal matrix ĜΓ, sp

is subtracted from ĜΓ. The matrix obtained
(
ĜΓ−ĜΓ, sp

)
has poles only, and the inverse Fourier transform of term
ĜΓ, sp, denoted by GΓ, sp(x,y), is analytically computed
with formulas obtained from [1].

The poles of
(
ĜΓ − ĜΓ, sp

)
come from a common de-

nominator that appears in all its components, given by:

fz(s) =
(
s2
T − 2s2

)2 − 4s2
√

s2 − s2
T

√
s2 − s2

L

+ η z
√

s2 − s2
T ,

where η = ρ/µ2 and z = Z/ω is the impedance nor-
malized by the pulsation. The definition of the complex
square roots is taken assuming special branches in C (see
[5] for details). The poles are determined as solutions of
equation fz(s) = 0, which is non-trivial to solve (this
matter is discussed in the next section). However, as in
fz(s) only appear terms in s2, it is possible to assure a pri-
ori that the solutions are pairs symmetrically located with
respect to the origin, namely, s = ±s0, where s0 > 0.
The term

(
ĜΓ − ĜΓ, sp

)
is assumed to have two simple

poles at these locations, which are removed by subtract-
ing a matrix ĜΓ, p given by:

ĜΓ, p(x, s, y) =
(

1
s− s0

)
A+ +

(
1

s + s0

)
A−,

where A+, A− are constants matrices containing the
residues associated with the poles at s = ±s0. The in-
verse Fourier transform of ĜΓ, p, denoted by GΓ, p(x,y),
is analytically computed by an integration along an ap-
propriate contour in the complex plane and application of
the Cauchy’s residues theorem (cf. [5]).

Once the terms associated with pseudo-poles and poles
of ĜΓ have been subtracted, the obtained term, denoted
by ĜΓ, r, is regular, because its singularities have been re-
moved. Moreover, it is possible to verify that ĜΓ, r de-
creases fast at infinity. Its inverse Fourier transform, de-
noted by GΓ, r(x,y), is numerically approximated within
a bounded area by an FFT algorithm.

Numerical computation of poles
As above mentioned, the poles are determined by solv-

ing the equation fz(s) = 0. In general, this equation
has to be solved by numerical procedures. Nevertheless,
when z = 0 an analytical solution is possible, because the
equation can be led to a third degree polynomial equation
in s2 and the well-known explicit formulas for their roots
are used. In the general case z ∈ R, the equation can
only be led to a sixth degree polynomial equation in s2

and in order to compute their roots, the use of numerical
techniques is necessary. In both cases, not all the roots of
the polynomial equations are associated with solutions of
the original equation. In order to find true solutions, we
evaluate fz(s) in each root and we keep those for which
we obtain the smallest relative errors.

Realistic numerical values for the physical parameters
are assumed in the calculations. The considered elastic
medium is limestone, a sedimentary rock whose physical
constants are approximately: ρ = 2.400 [Kg/m3], λ =
40, 3846 [GPa], and µ = 26, 9231 [GPa]. The longitudi-
nal and transversal slownesses are sT = 2.9857 × 10−4

[s/m] and sL = 1.5959× 10−4 [s/m].
We have found that for all z ∈ R the polynomial

equation has a positive root yielding two real poles at
s = ±sR, where sR > 0 is the so-called Rayleigh slow-
ness. The numerical procedure shows that sR is an in-
creasing function of z. In particular, in the free boundary
case we have obtained sR = 3, 2194× 10−4 [s/m].

Moreover, the numerical evidence shows that there ex-
ists another root of the polynomial equation (in general
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Im(s)

Re(s)

sL sT

Figure 1: Additional pole behavior in the complex plane as
a function of z.

complex), which for certain values of z yields two addi-
tional poles at s = ±(sA + iδA), where sA, δA ≥ 0. The
whole curve described by the positive pole as a function
of z in the complex plane is shown in Fig. 1, where the
zones corresponding to true poles of the spectral Green’s
function have been emphasized. Notice that these poles
are only located in the area sL < Re(s) < sT . This is due
to the assumed definition of complex square roots. From
this graph we observe that there exists a unique value
z = z∗ > 0 for which the imaginary part δA becomes
null. Consequently, the corresponding real part sA is an
additional slowness associated with another surface wave.
The values of sA and z∗ can be directly calculated from
the equation fz(s) = 0 and imposing sL < sA < sT :

sA =
√

ρ

2µ
, z∗ =

√
2 ρ λ µ

λ + 2µ
.

Note that both parameters depend only on physical con-
stants of elastic medium. Replacing the numerical values
of ρ, λ, and µ, we obtain sA = 2, 1112× 10−4 [s/m] and
z∗ = 7, 4421 [MPa/m].

A numerical result
Next, a numerical result of the Green’s function is

shown. The physical constants of limestone are assumed,
and a pulsation ω = 2π · 5 [Hz] = 31.4159 [Rad/s]
is considered. The source point is taken at (x0, y0) =

(0, 500 [m]). A normalized impedance z = z∗ is as-
sumed. Fig. 2 shows a contour plot in (x, y) of the com-
ponent G12(x, ·) (real part). Note that surface waves can
be observed at y = 0.

x

y

Figure 2: Real part of G12.
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Abstract
The Green’s function of the half-plane Helmholtz

equation with impedance boundary conditions is com-
puted numerically. A compactly perturbed half-plane
Helmholtz problem is presented to motivate this calcu-
lation, which is treated through integral equation tech-
niques, leading to a boundary element discretization. The
Green’s function is computed using an inverse Fourier
transform, applying an inverse FFT for the regular part,
and removing the singularities analytically.

Introduction
In this work we are interested in the development of

numerical tools which permit to treat complex wave prop-
agation phenomena involving infinite half-planes and im-
pedance boundary conditions.

For this purpose, we study a classical two-dimensional
model of time-harmonic waves, based on the Helmholtz
equation, which describes a wide range of different wave
propagation phenomena acting in the linear range. The
understanding of these phenomena for a relatively simple
model allows to study them later for more complex and
specific cases. In these models, we are interested in study-
ing the appearance of resonant states and surface waves,
by imposing impedance boundary conditions.

Since unbounded exterior domains are involved, we
treat this problem numerically using an integral equation
and the boundary element method. This treatment re-
quires the knowledge of the half-plane Green’s function,
which is calculated explicitly in a numerical manner, as
an inverse Fourier transform of its spectral counterpart.
The singularities of the spectral Green’s function are cal-
culated analytically, while the remaining regular part is
then computed with the help of an inverse fast Fourier
transform (IFFT). The same procedure is performed for
the calculation of the gradient of the Green’s function.

Some related previous works can be found in the
numerous existing literature. Proofs of existence and
uniqueness for the model problem treated here, as well
as the radiation condition, can be found in [1], whereas
further related studies and references can be found in [2],
[3], [4], [5], [6], [7], [8].

Perturbed half-plane Helmholtz problem
We consider the direct scattering problem of time-

harmonic waves on a perturbed half-plane Ωe ⊂ R2, and
a known incident field ui. The goal is to find the scattered
field u as a solution to the Helmholtz equation in Ωe, sat-
isfying an outgoing radiation condition, and such that the
total field ut, decomposed as ut = ui + u, satisfies a ho-
mogeneous impedance boundary condition on the regular
boundary Γ = Γp ∪ Γ∞. The exterior domain Ωe is com-
posed by the half-plane R2

+ = {(x1, x2) ∈ R2 |x2 > 0}
with a compact perturbation near the origin, as shown
in Figure 1. The perturbed boundary is denoted by Γp,
while Γ∞ denotes the remaining unperturbed boundary
of R2

+, which extends to infinity on both sides. The unit
normal n is taken outwardly oriented of Ωe.

Γ∞, Z∞ Γ∞, Z∞

x1

x2

Ωe

n
Γp, Z(x)

Figure 1: Problem domain.

The direct scattering problem of the perturbed half-
plane with impedance boundary conditions, for a given
wave number k ∈ R, is thus given by: Find u : Ωe → C
such that

∆u + k2u = 0 in Ωe,

−∂u

∂n
+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞.

(1)

The impedance is decomposed as Z(x) = Z∞ + Zp(x),
where Zp(·) is a regular function having its support con-
tained in Γp, and Z∞ ≥ 0 is constant throughout Γ. The
function fz : Γ → C is known, has its support contained
in Γp, and is given by fz = ∂ui

∂n − Zui.
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Plane waves
Two different kinds of independent plane wave solu-

tions exist for the unperturbed half-plane Helmholtz prob-
lem (Ωe = R2

+, Z = Z∞, fz = 0, and without the radia-
tion condition). The volume waves solution is

u(x) = ei(k1x1+k2x2) −
(

Z∞ + ik2

Z∞ − ik2

)
ei(k1x1−k2x2),

where i =
√
−1, and k = (k1, k2) ∈ R2 is the wave

propagation vector, being (k · k) = k2. The other kind,
the surface waves solution, is

u(x) = Z∞e±i
√

k2+Z2
∞x1e−Z∞x2 .

Half-plane Green’s function
The Green’s function Gk,Z∞ associated with the half-

plane R2
+ is obtained as the solution of the boundary value

problem: Find Gk,Z∞(x, ·) : R2
+ → C such that

∆yGk,Z∞ + k2 Gk,Z∞ = δx , y ∈ R2
+ ,

∂Gk,Z∞

∂y2
+ Z∞ Gk,Z∞ = 0 , y2 = 0 ,

+ Outgoing radiation condition as |y| → ∞,

where δx is a Dirac mass at the source point x ∈ R2
+.

Taking a one-dimensional Fourier transform on the
horizontal y1-axis, and solving the resulting ordinary dif-
ferential equation for the given boundary values, yields
the following representation of the Green’s function as an
inverse Fourier transform [1]

Gk,Z∞(x,y) =
1
4π

∫ ∞

−∞

(
− e−

√
ξ2−k2 |y2−x2|√
ξ2 − k2

+
Z∞+

√
ξ2 − k2

Z∞−
√

ξ2 − k2

e−
√

ξ2−k2 (y2+x2)√
ξ2 − k2

)
ei(y1−x1)ξdξ .

To compute this expression numerically, the appearing
singularities in the spectral domain are treated analyti-
cally, while the remaining regular part is calculated using
an IFFT.

The spectral Green’s function presents a slow decrease
at infinity when y2 = x2, associated with the first term un-
der the integral sign, which occurs due the essential singu-
larity of logarithmic type that appears in the spatial origin
for the full-plane Green’s function of the Helmholtz equa-
tion. The associated term can be derived, e.g., from [10],
and is given by

G∞(x,y) = − i

4
H

(1)
0 (k |y − x|) ,

where H
(1)
0 denotes the zeroth order Hankel function of

the first kind (cf. [9]).
Two pseudo-poles (i.e., poles of half order) appear at

ξ = k and ξ = −k, linked to the image of the full-plane
Green’s function, located in the lower half-plane and as-
sociated with a negative Dirac mass. Again, from [10],
we can derive the associated term, yielding

Gs(x,y) =
i

4
H

(1)
0 (k |y − x̄|) ,

where x̄ = (x1,−x2) is the image point of x.
The spectral Green’s function has two simple poles at

ξ = ξp and ξ = −ξp, where ξp =
√

Z2
∞ + k2. The cal-

culation of the associated part is performed by means of
the residue theorem in complex analysis, using the frame
of the limit absorption principle, as done in [1]. The part
of the poles is thus given by

Gp(x,y) =
Z∞
iξp

e−Z∞(y2+x2)eiξp|y1−x1|.

The regular part is calculated using an IFFT, therefore

Gr(x,y) = IFFT

[
1√
2π

e−
√

ξ2−k2 (y2+x2)

Z∞ −
√

ξ2 − k2

− Z∞e−Z∞(y2+x2)

√
2π ξp

(
1

ξ + ξp
− 1

ξ − ξp

)]
{y1 − x1}.

The desired numerically calculated half-plane Green’s
function is finally given by

Gk,Z∞ = G∞ + Gs + Gp + Gr .

The gradient of the Green’s function is calculated in the
same manner. The slow decrease at infinity part yields

∇G∞(x,y) =
ik

4
H

(1)
1 (k |y − x|) y − x

|y − x|
,

where H
(1)
1 denotes the first order Hankel function of the

first kind (cf. [9]).
The pseudo-poles part is given by

∇Gs(x,y) = − ik

4
H

(1)
1 (k |y − x̄|) y − x̄

|y − x̄|
.

The derivative for the horizontal variable y1 of the
poles part yields

∂Gp

∂y1
(x,y) = Z∞sign(y1−x1)e−Z∞(y2+x2)eiξp|y1−x1|.
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The derivative for y1 of the regular part is given by

∂Gr

∂y1
(x,y) = IFFT

[
iξ√
2π

e−
√

ξ2−k2 (y2+x2)

Z∞ −
√

ξ2 − k2

− Z∞e−Z∞(y2+x2)

√
2π ξp

(
iξ

ξ + ξp
− iξ

ξ − ξp

)]
{y1 − x1}.

The derivative for the vertical variable y2 considers

∂Gpr

∂y2
(x,y) =

ik

2
H

(1)
1 (k |y − x̄|) (y2 + x2)

|y − x̄|
− Z∞ (Gr(x,y) + Gp(x,y)) .

The desired numerically calculated gradient of the half-
plane Green’s function is finally given by

∇Gk,Z∞ = ∇G∞ +∇Gs +
(

∂Gp

∂y1
+

∂Gr

∂y1
,
∂Gpr

∂y2

)
.

Integral equation
The solution u of the direct scattering problem (1) ad-

mits the following integral representation for x ∈ Ωe:

u(x) =
∫

Γp

fz(y) Gk,Z∞(x,y) dγ(y)

+
∫

Γp

(
∂Gk,Z∞

∂ny
(x,y)−Z(y)Gk,Z∞(x,y)

)
u(y) dγ(y).

An integral equation can be derived for x ∈ Γp, given by∫
Γp

(
−

∂Gk,Z∞

∂ny
(x,y)+Z(y)Gk,Z∞(x,y)

)
u(y) dγ(y)

+
u(x)

2
=
∫

Γp

fz(y) Gk,Z∞(x,y) dγ(y). (2)

Numerical discretization
The solution of the direct scattering problem (1) is

found by applying the boundary element method on the
variational or weak formulation of the integral equa-
tion (2), using on the boundary curve Γp Lagrange finite
elements of type P1 (piecewise linear functions). Thus
Γp is approximated by the discrete curve Γh

p , composed
by I rectilinear segments Tj , sequentially ordered for
1 ≤ j ≤ I , such that the length |Tj | < h for some h > 0.

This discretization leads to the linear matrix system

Mk,Zu = bk,Z ,

where u ∈ CI+1 is the vector of unknowns, Mk,Z is a
full, complex, non-symmetric (I + 1) × (I + 1) matrix,
and bk,Z ∈ CI+1 is a known vector related to the incident
field ui.
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Helmholtz Equation with Impedance in a Half-
Space”. C. R. Acad. Sci. Paris, Ser. I 341, 561–566,
2005.

[6] D. Natroshvili, T. Arens & S. Chandler-Wilde,
“Uniqueness, Existence, and Integral Equation For-
mulations for Interface Scattering Problems”, Mem-
oirs on Differential Equations and Mathematical
Physics 30, Georgian Academy of Sciences, 105–
146, 2003.

[7] J.-C. Nédélec, “Acoustic and Electromagnetic Equa-
tions: Integral Representations for Harmonic Prob-
lems”, Springer, Berlin, 2001.

[8] A. Peplow & S. Chandler-Wilde, “Noise Propaga-
tion from a Cutting of Arbitrary Cross-Section and
Impedance”, J. Sound Vib. 223, 355–378, 1999.

[9] M. Abramowitz & I.A. Stegun, “Handbook of Math-
ematical Functions with Formulas, Graphs, and
Mathematical Tables”, Dover, New York, 1965.

[10] I.S. Gradshteyn & I.M. Ryzhik, “Table of Integrals,
Series and Products”, Academic Press, New York,
1980.

386



RADIATION CONDITION FOR A CLASS OF TIME-HARMONIC ACOUSTIC A ND ELASTIC WAVE
PROBLEMS ARISING IN HALF-SPACES
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Abstract
In this work we establish original radiation conditions

able to describe outgoing wave propagation phenomena
in half-spaces, including surface waves propagating to-
wards infinity. We focus our intention in two time-
harmonic model problems: the direct scattering problem
of acoustic waves in (locally perturbed) half-spaces with
passive boundary, and the direct scattering problem of
elastic waves in (locally perturbed) half-spaces with free
boundary condition.

Introduction
The problem of scattering by unbounded surfaces has

become very important due to vast applications where
more complex models are needed. As examples, in acous-
tics we found the problem of outdoor sound propagation
over ground surfaces, or the harbour resonance problem
in coastal engineering. On the other hand, in elasticity
we can mention non-destructive testing, isolation from
ground borne vibrations, or predictions in underground
drilling and blasting mining processes.

Dealing with half-spaces and surface acoustic waves
propagating near the unbounded boundary, we observe
that the well known Sommerfeld radiation condition does
not describe outgoing surface wave behaviour. In fact,
surface waves propagate with a wave-number different
from volume waves. The same situation holds in the elas-
tic case for Rayleigh waves and the Kupradze radiation
condition [6].

In relation to scattering by unbounded surfaces, we
found in literature some radiation conditions like theup-
ward propagating radiation conditionor theRayleigh ex-
pansion radiation condition. We refer to Chandler-Wilde
[2] or Chandler-Wilde and Bo Zhang [3] for the acoustic
case, while for the elastic case we can mention the work
of Arens [1]. Despite, as far as we know, those radiation
conditions do not cover the case of surface wave propa-
gation guided by the boundary.

In the articles [4] or [5] we have proposed an origi-
nal radiation condition able to prove uniqueness and ex-

istence results for the Helmholtz equation in half-spaces
with passive boundary (the case where induced surface
waves propagate). This radiation condition is fulfilled by
an appropriate half-space Green’s function. Indeed, we
constructed an integral representation of the solution in
terms of this Green’s function and boundary data. These
results can be directly extended to the elastic case for half-
spaces with free boundary condition.

The half-space acoustic problem
We consider the half-space :

IRn
+ := {x = (x1, . . . , xn) ∈ IRn : xn > 0}, n = 2 or 3.

Our first objective will be to set the correct mathematical
formulation that allows only one outgoing solution for the
problem :

{

∆u + k2 u = 0 in IRn
+
,

−
∂u

∂n
+ zu = f on {xn = 0}.

(1)

The given wave numberk will be a positive constant.
The impedance parameterz > 0 needs to be thought as
z = ikβ for a given constant acoustic admittanceβ such
thatℜe(β) = 0 andℑm(β) < 0. Along this work,n will
denote the outward unit normal vector field along the sur-
faces. In this first part,∂u/∂n becomes−∂u/∂xn. For
the scattering problem with passive boundary, the func-
tion f represents a source given by an incident waveui,
i.e.

f =
∂ui

∂n
− zui. (2)

In general, it will be sufficient to consider a piecewise
continuous functionf with compact support inIRn−1.

It is well-known that in order to get the uniqueness of
the solution of the problem (1), we need to specify the
behaviour that we want foru in the far field. Hence, an
outgoing wave condition needs to be imposed. As we can
see in [4] or [5], a solution of (1) can be represented as
a single layer potential by means of the boundary dataf

and a specific Green’s functionG. This fact implies that
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the far field behaviour of this integral representation, has
to be the same as that of its associated Green’s function in
thex-variable. Having this in mind, the radiation condi-
tion for problem (1) will be extracted from an asymptotic
study ofG.

The half-space Green’s function
We denote byδ the usual Dirac’s delta distribution in

IRn. With a fixed source pointy = (y1, . . . , yn) ∈ IRn
+,

our Green’s functionG will be a distribution satisfying
the boundary value PDE :






∆xG(x,y) + k2G(x,y) = δ(x − y) in IRn
+,

∂G

∂xn

+ zG = 0 over{xn = 0}.
(3)

Solving (3), we get the following representation ofG as
an inverse Fourier transform :

G(x,y) =
π

(2π)n

∫

IRn−1

(

−
e−

√
ξ2−k2 |xn−yn|

√

ξ2 − k2

+
z +

√

ξ2 − k2

z −
√

ξ2 − k2

e−
√

ξ2−k2 (xn+yn)

√

ξ2 − k2

)

e−i(x̃−ỹ)·ξdξ,

(4)

whereξ = (ξi)
n−1

i=1
is the Fourier variable,̃x = (xi)

n−1

i=1
,

ỹ = (yi)
n−1

i=1
andξ2 =

∑n−1

i=1
ξ2

i .

The radiation condition
Givenα ∈ (0, 1), we define the domains :

IRn
+(α+) :=

{

x ∈ IRn
+/xn > rα

}

,

IRn
+
(α−) :=

{

x ∈ IRn
+
/0 ≤ xn < rα

}

,

where r > 0 denotes the euclidean norm ofx. The
asymptotic analysis of the Green’s function (4) shows
two types of outgoing wave behaviour, each one with its
own velocity. The wave behaviour associated with vol-
ume waves is dominant in regions likeIRn

+
(α+), while

the surface wave behaviour is dominant in regions like
IRn

+
(α−). Summarising, forn = 2, we observe that the

Green’s function (4) satisfies the following radiation con-
dition :
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− iku

∣

∣

∣

∣

<
c

r1−α
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and

∣
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√

k2 + z2 u

∣

∣

∣

∣

<
c

r1−α
in IR2

+(α−),

whenr → +∞ and for anyα ∈
(

0, 1

2

)

.

(5)

While for n = 3, Green’s function (4) satisfies:
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∣

∣

∂u
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− iku

∣

∣

∣

∣

<
C

r(2α+
1

2
)

in IR3

+(α+)

and

∣

∣

∣

∣

∂u

∂r
− i
√

k2 + z2 u

∣

∣

∣

∣

<
C

r(
3

2
−α)

in IR3

+
(α−),

whenr → +∞ and for anyα ∈
(

1

4
, 1

2

)

.

(6)

In the articles [4] and [5] we prove that the only one so-
lution satisfying the boundary value problem (1) and the
radiation condition (5) or (6) (depending ifn is two or
three) has the representation :

u(x) =

∫

IRn−1

G (x, (ỹ, 0)) f(ỹ) dỹ. (7)

Moreover, the existence and uniqueness results can be ex-
tended to the case of locally perturbed half-spaces.

The half-space elastic problem
Consider an isotropic elastic media filling the whole

half-space :

IR3

+ := {x = (x1, x2, x3) ∈ IR3/x2 > 0}. (8)

We are interested to find in this domain, an outgoing so-
lution of the time-harmonic elastic wave equation when
the source is given by a local normal stress excitation at
the surface :

Γ := {x = (x1, x2, x3) ∈ IR3/x2 = 0}. (9)

The problem can be written in the following way using
vectorial notation: find a mechanical displacement field
u : IR3

+ −→ IC3, such that :







ρω2u + µ∆u + (λ + µ)∇( div u) = 0 in IR3
+

σ(u)nt = f onΓ,

(10)

whereσ is the stress tensor andn = (0,−1, 0) is the
outwardly directed normal vector. The Lamé coefficients
µ andλ are positive constants related to the characteristics
of the elastic material, and so on the densityρ. The source
functionf = (f1, f2, f3) must have compact support inΓ.

We remark that problem (10) is not well posed yet. In
order to have an uniqueness result, we need to specify the
behaviour that we want foru in the far field. An outgoing
radiation condition needs to be imposed. Analogous to
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the acoustic case, the information of the correct radiation
condition will be obtained from an asymptotic study of
the Green’s function associated with problem (10).

Usually in linear elasticity theory, we can represent a
solutionu of the linear elastic equations as the sum :

u = u(P ) + u(S), (11)

whereu(P ) is the vector field associated with pressure
waves andu(S) is the vector field associated with shear-
ing waves. Each one of these two elastic waves propa-
gates with its own velocity, so they have different wave
numbers between them. These wave numbers are respec-
tively :

kP := ω

√

ρ

λ + 2µ
and kS := ω

√

ρ

µ
. (12)

The expressions foru(P ) andu(S) can be easily obtained
using the projection formulae [6] :























u(P ) =
1

k2

S − k2

P

(∆ + k2

S)u

and

u(S) =
1

k2

P − k2

S

(∆ + k2

P )u .

(13)

Moreover,u(P ) andu(S) satisfy the conditions :







(∆ + k2

P )u(P ) = 0, curl u(P ) = 0
and
(∆ + k2

S)u(S) = 0, div u(S) = 0.

(14)

Now, we can restrict ourselves to the Helmholtz analysis
done for the acoustic problem. The idea is, once we have
an expression for the Green’s function matrixG(x,y) as-
sociated with (10), we use the decomposition (11) and we
analyse the asymptotic of each one of the components :






















G(P )(x,y) :=
1

k2

S − k2

P

(∆x + k2

S)G(x,y)

and

G(S)(x,y) :=
1

k2

P − k2

S

(∆x + k2

P )G(x,y) ,

(15)

as we did for the acoustic situation.
As we hoped, for each component in (15) we obtain

two types of outgoing wave behaviour, each one with its
own velocity. ForG(P ) we have observed an outgoing
pressure wave behaviour associated with volume waves
with wave numberkP , and an outgoing surface wave be-
haviour with a different wave number. Analogously, for

G(S) we have observed an outgoing shearing wave be-
haviour associated with volume waves with wave num-
ber kS , and an outgoing surface wave behaviour with a
different wave number. Surprisingly, the wave number
of the surface wave behaviour in both cases is the same,
which means that the Rayleigh wave has both, shearing
and pressure components, propagating at the same veloc-
ity.

As for the Helmholtz case, the wave behaviour asso-
ciated with volume waves is dominant in regions like
IRn

+(α+), while the surface wave behaviour is dominant
in regions likeIRn

+(α−).
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paráıso (Research Project #124.710/2007).

References
[1] T. Arens, “Uniqueness for Elastic Wave Scattering

by Rough Surfaces”, SIAM J. Math. Anal., 33 (2),
pp. 461-476, 2001.

[2] S.N. Chandler-Wilde, “The Impedance Boundary
Value Problem for the Helmholtz Equation in a Half-
Plane”, Math. Meth. Appl. Sci., vol. 20, pp. 813-
840, 1997.

[3] S.N. Chandler-Wilde & Bo Zhang, “A Uniqueness
Result for Scattering by Infinite Rough Surfaces”,
SIAM J. on Appl. Math., Vol. 58, No. 6 (Dec.,
1998), pp. 1774-1790.

[4] M. Durán, I. Muga & J.-C. Nédélec, “The
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THE MULTI-SECTION METHOD:
WHY RECTANGLES ARE SOMETIMES BETTER THAN SQUARES.
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Abstract
We introduce a novel method, the so-calledmulti-

section method, for the approximate solution of inte-
gral equations on unbounded domains and other operator
equations in similar settings. The idea is to truncate the
operator to a finite domain, as is usually done with the so-
calledfinite section method, but in a slightly different way
that was designed to overcome difficulties one sometimes
runs into when applying the finite section method.

Introduction
Let A be a bounded and linear operator on a func-

tion space over a (discrete or continuous) unbounded do-
main. For simplicity, let us restrict ourselves to the one-
dimensional domainsZ andR here, although this is not
required by the method. The function spaces we are talk-
ing about are, for example, spaces of the formE = `p(Z)
or E = Lp(R), respectively, andA acts boundedly onE.
In the discrete case, we can think ofA as a two-sided infi-
nite matrix(aij)i,j∈Z. In theLp case we will take integral
operators

(Au)(x) =
∫

R
k(x, y) u(y) dy, y ∈ R

as our model case, wherek(·, ·) is a suitable function on
R× R.

Finite Section Method.Suppose we know that the op-
eratorA : E → E is invertible. Then the equation

Au = b (1)

has a unique solutionu ∈ E for every given right-hand
side b ∈ E. How do we findu? What’s usually done
is to take a large (whatever that means) positive number
r, truncate the right-hand sideb to the interval[−r, r] and
look for a functionũr that also is only supported in[−r, r]
and solves the following truncated version of (1):

PrAPr ũ = Prb, (2)

wherePr is the operator that takes an element ofE and
zeros all its values outside[−r, r].

We say that the finite section method isapplicableif the
unique solvability of (1) implies that of (2) for all larger,

and if the unique solutioñu of (2) tends to the unique
solutionu of (1) in an appropriate sense asr → ∞. If
this is the case, then we can take a larger > 0 and solve
equation (2) on the computer (possibly after a suitable
discretization, if we are in the caseE = Lp(R)). Here
we will not worry about this discretization step but only
about the truncation step that brings us from (1) to (2).

Essentially, what is happening as we pass from (1)
to (2) is that, for the discrete case, we replace the
infinite matrix (aij)i,j∈Z by the finite quadratic sec-
tion (aij)i,j∈{−r,...,r} – hence the name ’finite section
method’. For the integral operator in theLp case, some-
thing very similar happens: The kernel functionk(·, ·) is
truncated fromR×R to the finite square[−r, r]× [−r, r].

There are sufficient and necessary criteria [5], [6], [1],
[3], [4] for when the finite section method is applicable to
a given operatorA. These criteria involve calculations of
local representatives (so-called limit operators) ofA and
they also needA to be in a suitable class of operators.

Multi-Section Method. It is not surprising that, in
general, the finite section method fails to be applicable,
as already very simple examples like the shift operator
(Au)(x) = u(x − 1) demonstrate. In this example, the
truncated operatorPrAPr is never invertible on its cor-
responding subspace ofE, which is why (2) is never
uniquely solvable, however larger is chosen.

In [2], the authors suggested a modified version of the
finite section method. We make the reasonable assump-
tion that, for every fixedr > 0,

‖(I − PR)APr‖ → 0 as R →∞, (3)

which, by the way, is much weaker than the assump-
tions made onA in the theorems about the finite section
method. This implies thatAPrũ is well-approximated by
PRAPrũ if R ≥ r > 0 are chosen accordingly. We now
replace the left-hand side of (2) byPRAPrũ and the right-
hand side byPRb to get

PRAPr ũ = PRb. (4)

In the sense as discussed above, (4) corresponds to a lin-
ear system with rectangular matrix(aij)i∈{−R,R},j∈{−r,r}
or an integral equation with kernel functionk(·, ·) on
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[−R, R] × [−r, r]. Because of this generally over-
determined nature, it is not sensible to expect that (4) even
has solutions. We therefore, roughly speaking, replace the
‘ =′ sign by a‘ ≈′ sign. Precisely, for a given precision
δ > 0 and sufficiently large cut-off parametersr,R > 0,
we are looking for solutions̃u ∈ E of

‖PRAPr ũ − PRb‖ < δ. (5)

Without loss of generality, we can suppose thatũ is sup-
ported in [−r, r] only. This is what we call the multi-
section method.

Results
Let E be a function space as described, wherePr → I

pointwise asr → ∞, and letA : E → E be bounded,
linear, invertible, and subject to (3).

• For every precisionδ > 0, there is ar0 > 0 such that
(5) is solvable for allR ≥ r > r0.

• For everyε > 0, there are parametersδ, r, R > 0
such that every solutioñu of (5) is a norm approxi-
mation

‖ũ − u‖E < ε

to the unique solutionu of the original problem (1).

In [2], we have successfully used this method to numer-
ically solve the Brakhage-Werner integral equation corre-
sponding to a 3D rough surface acoustic scattering prob-
lem.

Questions
1. Under which additional conditions onA can we

chooser = R (i.e. work with approximate solutions
ũ of thefinite section method (2)) and still have the
above results?

2. We are still experimenting with the optimal cou-
pling of the two cut-off parameters. For example,
depending on the operatorA, is it better to keep the
ratioR/r or the differenceR−r fixed as bothR and
r go to infinity?
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Abstract

We present a new method for the fast evaluation of
boundary layer potential operators arising in 3D rough
surface scattering problems. The main ingredients are
the use of high order approximations for the Dirac delta
distribution to encode the information on the scattering
surface and the use of FFT methods to compute the cor-
responding potential inside a box containing the surface
patch of interest.

Introduction

Rough surface scattering problems arise in applications
for acoustic and electromagnetic waves and there is an
increasing interest in simulations ranging from outdoor
sound propagation, optical scattering in nano-technology
to remote sensing of ocean and soil. The simulation is
a challenging problem in scientific computing. From a
computational point of view the main difficulties are the
need to discretise very large surface patches, very often
of the size of several hundred wavelength. As a rule of
thumb one should use at least 5 discretisation points per
wavelength. Using boundary integral equation methods
and Nyström discretisation techniques a dense unstruc-
tured linear system for several hundred-thousands of un-
knowns has to be solved. Thus the use of direct solvers
is prohibitive on standard desktop machines with up to 4
GB RAM. Instead the method of choice will be to employ
some iterative solver like the GMRES. In this case the
limiting factor is not the computers memory but the com-
putation time needed for one matrix vector multiplication.
It is therefore inevitable to have a fast matrix vector mul-
tiplication that reduces the overall cost from a standard
O(N2) algorithm where N denotes the total number of
unknowns.

The integral equation formulation

In [1] the authors treat the case of a two-dimensional
sound soft rough surface Γ and analysed the scattering of
an incident wave that was due to a point source situated
above the scatterer, see Figure 1. They derived the fol-

lowing integral equation

ϕ(x) +
∫

Γ
K(x, y)ϕ(y) ds(y) = g(x), x ∈ Γ, (1)

in the case where the scatterer is the simplest example of
a rough surface, namely it is given as graph of a bounded
continuous function f : R2 → R, i.e. Γ := {(x, f(x)) ∈
R3 : x := (x1, x2) ∈ R2}. The kernel in (1) is given
by K(x, y) := 2∂G(x,y)

∂ν(y) − iη2G(x, y) where G(x, y) :=
Φ(x, y) − Φ(x, y′) denotes the Dirichlet Greens func-
tion for the half-space and Φ(x, y) := eiκ|x−y|

4π|x−y| , x 6= y
the free space Greens function to the Helmholtz equa-
tion in R3. Throughout this text we denote the reflec-
tion of a point z = (z1, z2, z3) ∈ R3 onto the plane
Γ0 := {x ∈ R3 : x3 = 0} by z′ := (z1, z2 − z3).
We further define the perturbed half-space D := {x =
(x, x3) : x3 > f(x)} above the scatterer Γ and the com-
bined double- and single-layer potential

V (x) :=
1
2

∫
Γ
K(x, y)ϕ(y) ds(y), x ∈ D. (2)

It can be shown that for a given incident field ui =
Φ(·, z), z ∈ D, the scattered field can be represented as

us(x) = V (x)− Φ(x, z′), x ∈ D, (3)

where ϕ solves (1) for right hand side −2G(·, z), see [1]
and [2] for more details.

Γ0

φ(·, z)

DΓ

f+

f−

Figure 1: Geometrical setting of the scattering problem.

Finite-Section methods
To get an approximate solution to (1) we apply a finite

section method, i.e. we replace the unbounded scatter-
ing surface Γ by some finite section ΓR := {(x, f(x)) :
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x ∈ R}, where R := [a1, b1] × [a2, b2]2 ⊂ R2 denotes
the supporting rectangle of the surface patch ΓR. Using
the parametrisation of Γ as introduced above and setting
ψ(x) := ϕ(x, f(x)) and g̃(x) := g(x, f(x)),x ∈ R,
we have to find an approximate solution to the truncated
integral equation

(I +W )ψ = g̃ on R, (4)

where W is the integral operator

(Wψ)(x) :=
∫

R
K(x,y)J(y)ψ(y) dy, x ∈ R,

with kernel K(x,y) := 2(∂G(x, y)/∂ν(y)− iηG(x, y))
for x = (x, f(x)), y = (y, f(y)). The function J(y) =√

1 + ‖∇f(y)‖2 denotes the surface area element.
We note that up to now it is not known whether this

truncated equation is solvable. Despite this gap in the
theory we discretise the equation by applying a Nyström
method to get some approximate solution to the truncated
equation. An actual implementation shows a stable and
numerically well posed system and therefore empirically
justifies this step. At the moment more research is done
to close this gap. A promising new scheme is a generali-
sation of the finite section method in what has been titled
multi-section method see [3]. Within this framework one
can show the existence of a minimum norm least square
solution that approximates the solution to the untruncated
equation arbitrary well.

Nyström discretisation
Due to the weak singularity of the integral kernel we

can not apply the Nyström discretisation immediately.
Hence we split the kernel into a regular smooth part and
a weakly singular part. The idea is to discretise the reg-
ular part by a standard quadrature and to use some local
spectral scheme for the singular part.

We introduce a smooth cut-off function χ : R → [0, 1]
for a fixed positive real parameterRcut such that χ(r) = 1
for |r| ≤ Rcut/2 and χ(r) = 0 for |r| ≥ Rcut. Thus
we can write K(x,y) = K1(x,y) + K2(x,y) with
K1(x,y) := Kreg(x,y) + (1 − χ(|x − y|))Ksing(x,y)
and K2(x,y) := χ(|x − y|)Ksing(x,y). To obtain a
discrete representation of the operator W we replace the
integral by the trapezoidal rule, i.e.

(Wψ)(x) ≈ h2
∑
j∈I

K1(x,xj)J(xj)ψ(xj)

+
∑
j∈I

βj(x)ψ(xj), x ∈ R,

where {xj = (hxj1 , hxj2) ∈ R : j ∈ I ⊂ Z2} de-
notes an equidistantly spaced grid of integration points
in R with stepsize h and βj(x) denotes the weights for
the high order local spectral scheme that have to be deter-
mined by numerical integration. So we approximate the
solution of equation (4) by the solution of the equation

ψ(x) +
∑
j∈I

[h2K(x,xj)J(xj) + βj(x)]ψ(xj) = g̃(x),

x ∈ R, which reduces to solve the finite-dimensional sys-
tem

ψ(xi)+
∑
j∈I

[h2K(xi,xj)J(xj)+βj(xi)]ψ(xj) = g̃(xi),

i ∈ I . Please note that the function β(x) has support
in B(x, Rcut) := {y ∈ R : |x − y| ≤ Rcut}, thus
the singular part is represented by a sparse matrix with
O(N) nonzero entries with band structure. For this type
of matrix the matrix vector multiplication can be done
with O(N) operations.

Fast matrix vector product
The prototype of the operators we are interested in can

be written as

(Aψ)(x)=
∫

R
k((x, f(x))− (y, f(y)))ψ(y)J(y)dy

(5)
for x in R, with a smooth kernel of difference type.

For such an operator we introduce the associated box
potential. For this purpose let a3 and b3 be real constants
such that a3 < f(x) < b3 for all x ∈ R. Then we denote
by Q the cube R× T := R× [a3, b3] ⊂ R3 that contains
the surface patch ΓR with supporting rectangle R. The
associated box potential to the integral operator is given
through

(Aψ)(x)=
∫

R
k(x− (y, f(y)))ψ(y)J(y)dy

for x in Q and defines a smooth function in Q. Thus we
have the relation

(Aψ)(x, f(x)) = (Aψ)(x), x ∈ R. (6)

The main idea of our method is the following:
Step 1: We write the box potential as a convolution of

the smooth difference kernel with a weighted approxima-
tion of a Dirac delta distribution. The delta distribution
encodes the information on the scattering surface. Now
we approximate the box potential on a regular spaced grid
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in Q. This can be done by the use of the FFT. So we have
a fast method to compute the left hand side of (6) on a
regular grid in Q.

Step 2: The approximation to the delta distribution are
chosen in a way, to yield high order interpolation oper-
ators when discretised. Thus we can transfer the infor-
mation from the regular grid in Q to the correct surface
points on the discretised boundary Γ. This yields an ap-
proximation to the discretised right hand side of (6).

Step 1
We define a weighted Dirac delta sequence ψh3 : Q→

C, (y, y3) 7→ ψ(y)J(y)δh3(f(y) − y3). Thus we get an
approximation to the box potential that we can write

(Aψh3)(x) ≈
∫

R

∫
T
k(x− (y, y3))ψh3(y, y3) dy3 dy

=
∫

Q
k(x− y)ψh3(y) dy. (7)

In order to regard (7) as a convolution the kernel and the
density must have the same domain of definition. Without
loss of generality we can restrict ourselves to the case that
Q = ×3

j=1[0, bj − aj ]. The kernel is defined on the cube
×3

j=1[−(bj − aj), bj − aj ] and has a uniquely determined
periodic extension onto R3 that we denote by kp. Thus we
extend ψh3 by zero ontoQ∗ := ×3

j=1[0, 2(bj−aj)] ⊂ R3,
i.e. we define

Ψh3 : Q∗ → C : x 7→

{
ψh3(x), x ∈ Q,
0, x ∈ Q∗ \Q.

The periodic extension of Ψh3 to a periodic function onto
R3 is denoted by Ψh3,p. Now we see that we can rewrite
(7) as

(Aψh3)(x) ≈ (kp ∗Ψh3,p)(x)

= |Q∗| F−1
3 (F3(kp) · F3(Ψh3,p))(x)

for x ∈ Q. Let {xj,l := (xj , xl) : xl = h3l, j ∈ I, l =
1, . . . ,M} denote a regular spaced grid in Q with M lev-
els. Then we can calculate (Aψh3)(xj,l) efficiently with 3
three-dimensional FFT’s in O(3 · 8NM log(8NM)) op-
erations.

Step 2
Once we know the box potential on the regular grid we

get an approximation to our desired matrix vector multi-

plication through

(Aψ)(xj) ≈ (Aψh3)(xj)
= (Aψh3)(x, f(xj))

≈
M∑
l=1

h3(Aψh)(xj , xl)δh(f(xj)− xl).

This can be done in O(NM) operations.

On the choice of δh
The regularised versions of the Dirac delta distribution

are based on the following Lemma, see [4].

Lemma 1. Assume that f ∈ Cp([α−Lh, α+Lh]). If δh
satisfies δh(x) = 0 for |x| > Lh and the discrete moment
condition

h
∑

l

(xl − α)mδh(xl − α) = δm,0 (8)

for m = 0, . . . , p− 1, then

f(α)− h
∑

l

f(xl)δh(xl − α) = O(hp), h→ 0.

First numerical computations show the expected rate of
convergence. About 20 levels with an eight order approx-
imation yield a relative L2 error of about 10−4.
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Abstract
The Calderón Operator and the Neumann-to-Dirichlet

Mapping on an infinite plane expose singular behavior
in a setup of a two-layered space with both an non-
dissipative and a dissipative medium. The mapping prop-
erties of both operators are characterized by weighted
Sobolev Spaces based on an extended class of general-
ized functions.

Introduction
To solve the time harmonic Maxwell System in 3D for

a bounded scatterer in homogeneous space via finite el-
ement methods, [2] proposed to transform the problem
to a bounded domain with non-local boundary conditions
using the exterior Calderón operator. In the setup of a
two layered medium, as thoroughly discussed in [1], we
explore the feasibility of using the interface between the
half-spaces as a natural, albeit unbounded, choice of the
boundary for the Calderón operator, when the lower half-
space is dissipative.

Setup
The considered geometry is a two-layered space, where

the upper half-space is an homogeneous non-dissipative
medium, the lower half-space an homogeneous dissipa-
tive medium around an impenetrable obstacle. As in [1],
we consider a Silver-Müller radiation condition in the up-
per half-space. This setup can be seen as a model for
air and an metallic object within the soil. The proposed
Ansatz reduces the problem to a scattering problem in
the lower half-space, which is feasible in traditional frac-
tional Sobolev spaces for TE and TM modes, but the ex-
tension to full Maxwell’s equations is unclear and needs
careful analysis.

Procedure
In the situation of a domain Ω ⊂ R3 with sufficiently

smooth boundary ∂Ω, we have the following well known
function spaces, cf. [3]:

Definition 1

Hs(Div; ∂Ω) :=
{
u ∈

(
Hs(∂Ω)

)3 : u · x̂ a.e.= 0

and Div∂Ωu ∈ Hs(∂Ω)
}

Where Div∂Ω denotes the surface divergence at ∂Ω, x̂ the
normal vector at ∂Ω and Hs Sobolev-spaces for s ∈ R.

Then, the E to H Calderón operator Ge for a bounded
domain Ω has the following known properties:

Lemma 2 The Calderón operator is linear and bounded

Ge : H−1/2(Div; ∂Ω) → H−1/2(Div; ∂Ω)
λ 7→ x̂×H|∂Ω ,

where λ = x̂× E|∂Ω and H is the H-Field of the unique
(E,H) solution of the outer time harmonic Maxwell sys-
tem in R3\Ω with tangential boundary data x̂×E at ∂Ω
and a radiation condition.

In the regarded geometry Ω = R2 × (−∞, 0) with the
infinite boundary plane ∂Ω = R2 × {0}, we consider the
following explicit representation for the Calderón opera-
tor for radiating solutions of upper half space problems:

Lemma 3 Assume a radiating solution (E,H) of the
time harmonic Maxwell system in the half space R2 ×
(0,∞). Then Geλ = x̂×H|∂Ω for λ = x̂× E|∂Ω and

Ge :=
1
ωµ

F−1
∂Ω Mk F∂Ω

with Fourier multiplier

Mk :=
1√

k2 − |ξ|2

(
ξ1ξ2 −k2 + ξ22

k2 − ξ21 −ξ1ξ2

)
,

where F∂Ω denotes the two dimensional Fourier trans-
form at ∂Ω with spectral variables ξ1, ξ2 and constant
wave number k > 0 in the upper half space.
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Here, the operatorGe exhibits singular spectral proper-
ties at frequencies around |ξ| = k, thus the precise map-
ping properties are yet unclear. Reduction of the problem
to the TE or the TM mode leads to two dimensional prob-
lems with a Dirichlet-to-Neumann operator on a one di-
mensional boundary. This operator or, more specifically,
its inverse– the Neumann-to-Dirichlet operator, exposes
similar singular spectral properties:

Lemma 4 The Dirichlet-to-Neumann mapping for k > 0

Λ : Hs(R) → Hs−1(R)
λ 7→ iF−1Dk F λ

with Fourier transform F and multiplier

Dk =

{ √
k2 − ξ2 for |k| ≤ |ξ|

i
√
ξ2 − k2 for |k| > |ξ|

is a bounded linear operator, but is not surjective.

The inverse Neumann-to-Dirichlet operator is character-
ized by the reciprocal Fourier multiplier, by which it is
only defined on the image of Λ. For s < 1, the image
set is embedded in the concept of generalized functions
which are solely defined by their test function spaces. It
turns out that then even here, the definition of the image
space of Λ is improper if the test function space remains
unchanged.

In relation to the structure of the Neumann-to-Dirichlet
operator, an adapted space of rapidly decreasing Schwartz
test functions is introduced, leading to an enlarged dual
space of generalized functions:

Definition 5 For k > 0 and %k(ξ) :=
∣∣k2 − |ξ|2

∣∣−1/2, let

Sk(R) :={u ∈ S(R) : %k F u ∈ S(R)} ,
S∗

k(R) :={ϕ : Sk(R) → C : ϕ linear and bounded} ,

where S(R) represents the Schwartz space of rapidly de-
creasing functions.

Theorem 6 For s ∈ R and k > 0, the Bessel k-Potential

J s
k := F−1 ψs,k F ,

ψs,k :=

(
1 + |ξ|2

) s+1
2

|k2 − |ξ|2|1/2

is invertible bounded linear map Sk(R) → Sk(R).

Based on these structures on R and on higher dimen-
sions, wave-number dependent weighted Sobolev spaces
of fractional order on R and Rn are introduced:

Definition 7 For s ∈ R, k > 0 and n ∈ N, let

Hs
k(Rn) := {ϕ ∈ S∗

k(Rn) : J s
k ϕ ∈ L2(Rn)} .

Results
The traditional fractional order Sobolev spaces com-

monly used at bounded interfaces will be shown to be
inadequate. Besides some additional properties, the in-
troduced test function spaces, generalized function spaces
and weighted Sobolev spaces are found to be well-defined
and complete, the weighted Sobolev-spaces are embed-
ded in the usual Sobolev-spaces.

The new Sobolev spaces accurately characterize the
image of the Dirichlet-to-Neumann operator as desired,
and are well suited for the Neumann-to-Dirichlet opera-
tor:

Lemma 8 The Dirichlet-to-Neumann operator is a lin-
ear and bounded mapping Λ : Hs(R) → Hs−1

k (R) with
bounded inverse.

Finally, the mapping properties of the Calderón bound-
ary operator at an infinite plane for the full 3D Maxwell’s
equations based on above functions spaces are stated:

Theorem 9 TheE toH Calderón operatorGe is a linear
bounded mapping

Ge : Hs
k(Div; R2) → Hs

k(Div; R2) ,

where

Hs
k(Div; R2) := {u ∈

(
Hs(R2)

)2 : Div u ∈ Hs(R2) ,
Curlu ∈ Hs−1

k (R2)}

and Curl represents the surface curl on the interface.

A suitable decomposition of the Calderón operator will
illustrate its strong relation to the above Dirichlet-to-
Neumann and Neumann-to-Dirichlet mappings.
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Abstract
The method coupling finite elements and integral rep-

resentation (cf.[4]) allows to solve exterior problems,
thanks to an exact boundary condition on a fictitious
boundary, which delimitate the computational domain.
This boundary condition is non local, the associated al-
gebraic system is then not sparse and ill-conditioned. We
study the convergence of an iterative method based on a
Krylov subspace method to solve the Steklov-Poincaré in-
terface equation. We prove the convergence of the algo-
rithm, and we compare it to the resolution of the initial
algebraic system, where the Schwarz algorithm is used as
a preconditioner.

Coupling finite elements and integral representation
Let Ωi be a bounded obstacle (inR3) with a regu-

lar boundaryΓ andΩe be its unbounded complementary.
The Helmholtz problem is a fair modeling of a scattered
acoustic wave propagating throughΩe; it consists infind-
ing u such that

∆u + κ2u = 0 in Ωe, ∂nu = f onΓ, (1)

(
x

|x|
.∇− iκ)u = eiκ|x|O(

1
|x|2

) ‖x‖ → ∞, (2)

whereκ is the wave number. The last condition represents
the Sommerfeld radiation condition. To make the bound-
ary value problem (1)-(2) accessible to scientific comput-
ing, we may resort to the integral equation method (even-
tually coupled to finite element method for nonconstant
coefficients). The efficicency of these methods has been
investigated by several authors (cf.[6], [3]). An alterna-
tive consists in using a coupled method which combines
finite elements and integral representations (cf.[4]). This
approach avoids the singularities of the Green kernel. The
idea simply amounts to introducing a fictitious boundary
Σ surrounding the obstacle. The Helmholtz problem is
posed in the truncated domainΩc (delimited byΓ andΣ)
with a non-standard outgoing condition using the integral
formula is prescribed onΣ,

∆u + κ2u = 0 in Ωc, ∂nu = f onΓ, (3)

(∂n − iκ)u(x) = DΓ(u)(x)− SΓ(f)(x),∀x ∈ Σ, (4)

whereDΓ andSΓ(f) denote respectively the double and
simple layer, such that

DΓ(u)(x) =
∫

Γ
u(y)∂nK(x− y)dγ,

SΓ(f)(x) =
∫

Γ
f(y)K(x− y)dγ,

andK(x) = ( x
|x| .∇−iκ)Gκ(x). Gκ is the Green function

defined byGκ(x) = − 1
4π

eiκ|x|

|x| . Observe that the integral
representation is used only inΣ which avoids occurrences
of any singularities. We suppose that this problem is dis-
cretized by a Lagrange finite element method. LetNΩ

be the total number of degrees of freedom onΩc andNΣ

(resp. NΓ) be the number of degrees of freedom onΣ
(resp.Γ). The shape function associated with a nodexα

is denotedwα. Let uα be the approximation of the solu-
tion u atxα andU = (uα)α.

The linear system can be formulated as follows:

(A− C)U = FΓ − FΣ (5)

where

Aα,β =
∫

Ωc

(
∇wα(x)∇wβ(x)− κ2wα(x)wβ(x)

)
dx

−iκ

∫
Σ

wα(x)wβ(x)dσ(x)

Cα,β =
∫

Σ
DΓ(wα)(x)wβ(x) dσ(x)

FΓ
α =

∫
Γ

f(x)wα(x)dγ(x)

FΣ
α =

∫
Σ

SΓ(f)(x)wα(x) dσ(x)

The non-local coupling enforced by the integral term gen-
erates some difficulties in its numerical treatment because
it perturbs the sparse structure of the stiffness matrix
(around the degrees of freedom located on the artifical
boundary). Indeed, in system (5), the matrix is com-
plex, non Hermitian and ill-conditioned. Numerical re-
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sults show the convergence of the BICG algorithm ap-
plied to system (5) with a Schwarz preconditioner. In
other words, the linear system is formulated as follow:

(INΩ
−A−1C)U = A−1(FΓ − FΣ) (6)

There is no theorical proofs of the convergence of the
BICG method for a complex matrix. We propose in this
work, to explore different ways to solve this problem and
prove the convergence of the iterative algorithm.

The Steklov-Poincaŕe interface equation
We propose to establish the Steklov-Poincaré interface

equation, in order to reduce the number of degrees of free-
dom of the linear system. Let us introduce :

λ(x) = DΓ(u)(x)− SΓ(f)(x),∀x ∈ Σ. (7)

defined onΣ. In the problem solved byu, the last equa-
tion becomes:

(∂n − iκ)u(x) = λ(x), ∀x ∈ Σ. (8)

Let Λ be the finite element approximation ofλ, PΣ ∈
MNΣ,NΩ

(R) (resp. PΓ ∈ MNΓ,NΩ
(R)) the restriction

matrix onΣ (resp.Γ) andMΣ the mass matrix onΣ. The
finite element discretization leads to the following linear
system :

AU − P t
ΣMΣΛ = FΓ (9)

while by a finite element interpolation, equation (7) be-
comes :

Λ = GnMΓPΓU −H. (10)

where H is the finite element approximation of∫
Γ f(y)K(x − y)dγ(y), andGn ∈ MNΣ,NΓ

(C) is the
matrix defined by:(Gn)α,β = ∂nK(xα − yβ), for each
couple of nodes(xα, yβ) ∈ Σ×Γ. Equations (9-10) leads
to the Steklov-Poincaré interface equation:

(INΣ
−B2B1)Λ = B2A

−1FΓ −H (11)

whereB1 = A−1P t
ΣMΣ andB2 = GnMΓPΓ. When the

distance betweenΣ andΓ is sufficiently large, the spec-
trum of B2B1 is included in the unit disk. In this case,
a Richardson method can be used to solve (11), and it
corresponds to an alternating Schwarz method ([1], [2]).
In the general caseB2B1 have at least a few eigenvalues
out of the unit disk, and the convergence of a Krylov sub-
space method can be achieved as in [7]. We show that it
can be also obtained by a generalisation of the proof of
[8] for the conjugate gradient method. Numerical results

show that the convergence of the GMRES algorithm ap-
plied to equation (11) is comparable to the convergence of
GMRES applied to (6). Indeed, we can easily check that
A−1C = B1B2. Consequently, except eventually for the
eigenvalue0, A−1C andB2B1 have the same eignenval-
ues, with the same multiplicities. The matrices involved
in systems (11) and (6) are the same, and the application
of B1B2 or B2B1 have the same computation cost. All
the difference lies in the storage size of the Arnoldi basis
for GMRES algorithm.
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Abstract

We consider the problem of scattering of a time-
harmonic acoustic incident wave by a hard obstacle.
The numerical solution to this problem is found using
a Galerkin wave boundary integral formulation whereby
the functional space is built as the product of conven-
tional low order piecewise polynomials with a set of plane
waves propagating in various directions. We show a prac-
tical use of the method for dealing with irregular meshes
and corners.

Introduction

It is well known that the use of discrete (frequency
domain) numerical methods for the solution of the
Helmholtz equation is limited to problems in which the
wavelength under consideration is not small in compari-
son with the domain size. The limitation arises because
conventional elements, based on polynomial shape func-
tions require around ten variables per full wavelength.
Following earlier predictions of de La Bourdonnaye [1],
it has been found that drastic progress can be made by
including a plane wave basis in a collocation boundary
element formulation [2], [3]. However all the studies
previously published involved regularly meshed and an-
alytically described smooth scatterers. Furthermore, the
method depends strongly on the number and locations of
the collocation points [2] and this is particularly relevant
for 3D obstacles for which the number of points must
largely exceed the number of variables [3]. We present
in this paper an improvement of the method (i) by consid-
ering a Galerkin formulation that allows to reliably cir-
cumvent the non uniqueness problem and avoids overde-
termined systems and (ii) by using an adaptive scheme to
deal with irregular meshes.

Problem statement and integral formulation

We consider the scattering of an time-harmonic acous-
tic incident waveφi by a bounded obstacleΩ′ in a bidi-
mensional homogeneous propagative mediumΩ of char-
acteristic sound speedc0. Let κ = ω/c0 denote the asso-
ciated wavenumber; we aim at finding the scattered wave

field φs satisfying (e−iωt time-dependence)

∆φs + κ2φs = 0 in Ω , (1)

as well as the usual radiation condition,

lim
|x|→∞

√

|x|

(

∂φs

∂|x|
− iκφs

)

= 0. (2)

In this work, we shall consider Neumann type conditions
on the surface of the scattererΓ = ∂Ω′, i.e., the total field
φ = φi + φs must satisfy

∂φ

∂n
(x) = ν(x), x ∈ Γ. (3)

Using a direct combined integral representation, the un-
known fieldφ(x) on Γ is found to be the unique solution
of the second kind integral equation [4]

Lφ =

(

1

2
+ D + βH

)

φ = g on Γ\{C} (4)

where{C} is the set of corners ofΩ′ andg stems for the
incident field and the radiation termν,

g = φi + β
∂φi

∂n
+

(

S + βD∗ −
β

2

)

ν (5)

andS,D,D∗ andH stand respectively for the usual sin-
gle layer potential operator

Sφ(x) =

∫

Γ

G(x, y)φ(y)dγy , (6)

the double layer potential operator

Dφ(x) =

∫

Γ

∂G(x, y)

∂ny

φ(y)dγy , (7)

its adjoint operator

D∗φ(x) =
∂

∂nx

∫

Γ

G(x, y)φ(y)dγy , (8)

and the hypersingular operator

Hφ(x) =
∂

∂nx

∫

Γ

∂G(x, y)

∂ny

φ(y)dγy. (9)
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The kernelG stands for the free-space Green function
G(x, y) = i/4H1

0
(κ|x − y|) and ny (resp. nx) is the

inward normal unit vector at pointy (resp. x). H1

0
de-

notes the Hankel function of the first kind of zero order.
The coupling coefficientβ must have a non-zero imagi-
nary part to ensure the uniqueness of the solution. As we
are not dealing with very low frequency applications, we
shall takeβ = i/κ.

A Galerkin wave boundary element formulation
The integral equation (4) can be conveniently solved

using standard variational procedure, i.e, findφ such that

〈Lφ,ϕ〉 = 〈g, ϕ〉, ∀ϕ ∈ V, (10)

whereV is an appropriate functional space and we note
〈·, ·〉 the usual hermitian product onΓ. The discretization
of (10) starts with the introduction of a set ofN nodes
located onΓ, {N} = {xn=1,N ∈ Γ}. These points
must coincide with the corners ofΩ′ so that{C} ⊂ {N}.
We assume that the geometry of the scattererΓn between
two consecutive nodesxn and xn+1 is known analyt-
ically, or can be simulated by appropriate approxima-
tion methods (via Lagrange interpolation for instance),
i.e., there exists a regular functionγn defined on the ref-
erence interval[−1, 1] such thatΓn = {γn(η), η ∈

[−1, 1], xn = γn(−1), xn+1 = γn(1)} with the conven-
tion thatxN+1 = x1. We introduce a set ofMn plane
wave directions ‘attached’ to each nodexn. In this work,
these direction are chosen to be regularly distributed as

θn
m =

(

cos(m2π/Mn + δθn)
sin(m2π/Mn + δθn)

)

, (11)

wherem = 1, . . . ,Mn and the parameterδθn is intro-
duced to define a tilt in the wave basis directions. On
each elementΓn, the potentialφ is approximated as the
following plane wave expansion

φ(x)|x∈Γn
= (η + 1)

Mn
∑

m=1

φn
mw(θn

m;x)

+ (η − 1)

Mn+1
∑

m=1

φn+1

m w(θn+1

m ;x) (12)

where the functionw(θ;x) = eiκθ·x denotes a propaga-
tive plane wave traveling in theθ-direction and the un-
known coefficientsφn

m can be interpreted as the ampli-
tudes of the associated plane waves. The double integra-
tion in (10) is performed using Duffy-like transformations
[5] and the hypersingular integral is transformed into a
weakly singular one via a regularization procedure [6].

An adaptative approach for irregular meshes
Through numerical and theoretical results [2], [7] it

is found that the plane wave approximation error essen-
tially behaves with respect to the discretization levelτ

(i.e. the number of variable per wavelength) and the rel-
ative wavenumberκh whereh is a characteristic length
of the boundary domain. For the specific case of a reg-
ularly meshed rigid circular scatterer, numerical experi-
ments show that the overall error on the boundary is kept
constant as long as the number of variables is chosen so
that

τ ≈ C(κh)−1/2 + 2, (13)

whereh is the length of a boundary element andC is a
constant. To deal with non-smooth obstacles and irregu-
lar meshes, we consider the empirical rule of thumb (13)
locally, i.e. we define the local discretization levelτn as-
sociated with the elementΓn as

τn =
Mn + Mn+1

2

λ

hn

, (14)

whereλ = 2π/κ is the wavelength andhn =
∫

Γn
dγy is

the length of the elementΓn. Inverting (14) together with
the condition (13) yields the following system

AM = L ,with A =

















1 1 0 . . . 0
0 1 1 0
...

. ..
. . .

. . .
...

... 0 1 1
1 0 . . . 0 1

















. (15)

The vectorL contains the number of variables required
per element andM = (M1,M2, . . . ,Mn)T . The connec-
tivity matrix A is always singular whenN is even and
detA = 2 otherwise. In this work, the optimal combina-
tion Mopt is found via the minimization procedure:

Find min
2≤M1,M2,...,Mn≤Mmax

‖D−1AM − e‖, (16)

whereD is the diagonal matrix containing the vectorL
ande = (1, 1, . . . , 1)T . This is achieved by using stan-
dard evolutionary algorithms with uniform crossover (see
for instance [8]). The method is applied to the rigid scat-
terer displayed in Fig. 1. In order to give an accurate
measurement of the error, we first consider the artificial
radiating problem by imposingν(x) = ∂G(x, x0)/∂nx

with a source located insideΩ′. Results are conveniently
displayed in Fig. 2 (the overall error is defined as theL2

norm relative error onΓ). The straight line corresponds to
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the standard quadratic interpolation scheme (p = 2) and
the reference GWBE stands for ‘Galerkin Wave Bound-
ary Element’. These results clearly demonstrate the ad-
vantage of considering an adaptative scheme. Even in the
presence of a very small cavity (a/b=40), a global dis-
cretization level ofτ = 3.3 provides a good precision
(∼ 0.1%) and a very high convergence rate is still ob-
served when compared to the standard quadratic interpo-
lation. Figure 3 shows the total potentialφ on the bound-
ary of the hard obstacle (witha/b = 20) due to the scat-
tering of an incident plane wave of incidenceθi = π/4
at κa = 17. Here again, the good agreement between
our formulation and the standard quadratic discretization
scheme shows the potentiality of the GWBE method.
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Figure 1: Square scatterer with a cavity.
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Figure 2: Convergence rates for a radiating problem,
κa = 25. Solide line:b = a/40; dashed line:b = a/20;
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Introduction
Pocklington in [1] proposed a simplified one-

dimensional integral equation relating the current at the
surface of a straight finite wire to the tangential trace of
an incident electromagnetic field. This equation has been
derived assuming that the current is constant across any
section of the wire. At least for the model problem of a
finite, straight and cylindrical wire, this simplified equa-
tion has been proved to be well posed, see [2],[3] or [6].
Moreover, many results have been established for the re-
gularity of the solutions of this equation, see [4] and [5].
However, to our knowledge, there has been no rigorous
study of the error between the solution of the exact inte-
gral equation and the solution of Pocklington’s equation.
We address this problem for the model case of acoustics
in a smooth geometry.

Pocklington’s equation
Denote Γε the boundary of a thin wire with thick-

ness ε small with respect to a wavelength λ = 2π/k.
Denote uε the unique outgoing radiating function satis-
fying ∆uε + k2uε = f in R

3 \ Γε with an homo-
geneous Dirichlet boundary condition on Γε. We sup-
pose f ∈ L2(R3) such that suppf ∩ Γε = ∅ for ε

small enough. We first consider the usual geometry where
Γε = {x ∈ R

3 | max(z2, x2
+y2

ε2 ) = 1} and its limit
J = {x ∈ R

2 |x = y = 0 , |z| ≤ 1}.

Figure 1: Usual wire geometry

According to Pocklington’s model (adapted to
acoustics) the jump of the normal derivative

pε = [∂uε

∂n
]|Γε = ∂uε

∂ne |Γε
+

+ ∂uε

∂ni
|Γε

−

has approxima-
tely no transversal dependancy pε(x) ' pε(z)/2πε and
satisfies the integral equation

∫
+1

−1

Kp(z, z′) p
ε(z′)dz′ = −u0(z) , z ∈ [−1, 1]

where u0(z) refers to the trace on J of the unique out-
going radiating function satisfying ∆u0 + k2u0 = f in
R

3. The integral kernel is given by

Kp(z, z′) =
1

2π

∫
2π

0

eik
√

(z−z′)2+ε24 sin
2
(ϕ/2)

4π
√

(z − z′)2 + ε24 sin2(ϕ/2)
dϕ.

For a smoother geometry, we propose to rigorously
derive a one dimensional integral equation similar
to the preceding one, and estimate the difference
|pε − pε/2πε|−1/2,Γε , the norm | |−1/2,Γε being well
chosen.

Ellipsoidal coordinates
Instead of the classical geometry, we wish to consider a

family of C∞-surfaces (Γε)ε>0 shrinking to the limit seg-
ment Γε → J . For this purpose we introduce ellipsoidal
coordinates (ξ, ν, ϕ) related to cartesian coordinates by





x =
√

ξ2 − 1
√

1 − ν2 cos ϕ , ξ ∈ [1,+∞[

y =
√

ξ2 − 1
√

1 − ν2 sinϕ , ν ∈ [−1, 1]
z = ξν , ϕ ∈ [0, 2π]

Then we consider surfaces described by the equation
(Γε) : ξ2 = 1 + ε2Φ2(ν) (for simplicity sake we sup-
pose it to have the symmetry of revolution) where Φ is
a C∞-function strictly positive on [−1, 1]. Such a surface
looks like a perturbed ellipsoid (see figure 2). If we define
ΩR = B(0, R) and the bilinear form a(u, v) =

∫
ΩR ∇u ·

∇v − k2uv +
∫
∂ΩR vTRu where TR is the usual DtN

map for Helmholtz problems in spherical coordinates, we
are interested in (uε, pε) ∈ H1(ΩR) × H−1/2(Γε) satis-
fying

{
a(uε, v) +

∫
Γε pεv =

∫
ΩR fv , ∀v ∈ H1(ΩR)

∫
Γε quε = 0 , ∀q ∈ H−1/2(Γε).
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The norm we consider on H1(ΩR) is classical
‖u‖2

H1(ΩR)
= ‖u‖2

L2(ΩR)
+ ‖∇u‖2

L2(ΩR)
. On the other

hand, for this problem to have good stability properties
(with respect to ε), we have to be careful about the defi-
nition of the norm | |1/2,Γε on H1/2(Γε). If we consider
the geometrical transformation given in spheroidal coor-

dinates G(ξ, ν, ϕ) = (
√

1 + ξ2−1

ε2 , ν, ϕ), then the surface
Γ = G(Γε) is described by the equation ξ2 = 1 + Φ2(ν)
independantly of ε. We define |u|1/2,Γε = |u ◦ G−1|1/2,Γ

, and |u|−1/2,Γε = supv∈H1/2(Γε)

∫
Γε u v/|v|1/2,Γε .

Figure 2: Ellipsoid of equation ξ = ξ0

Analysis by matched asymptotics
In order to obtain a simplified problem that would

lead to Pocklington’s equation, we study the behavior of
(uε, pε) when ε → 0 using matched asymptotic expan-
sions. This study is close to previous works achieved by
Fedoryuk in [7] (see also [8],[9]). We are led to an ap-
proximate field

ũε(x) = (1 − χε(x))
(
u0(x) + uε

1(x)
)

+ χεU ε
1 (x).

In this expression χε is a smooth cut-off function
equal to 1 for ξ2 − 1 < ε/2 and equal to 0 for
ξ2 − 1 > ε. Note that the set ε/2 < ξ2 − 1 < ε

is an ellipsoidal shell surrounding Γε. The definitions
of the other terms U ε

1
(x) = −aε

(ν)

4π
ln

(
ξ2−1

ε2Φ2(ν)

)
and

uε
1
(x) =

∫
J

aε(x′)eik|x−x′|/4π|x − x
′|dx′ involve a 1D-

function aε ∈ C∞(J) that depends on ε and has to be
chosen in order to satisfy a matching principle. With this
definition, we find that p̃ε = [∂euε

∂n
]|Γε does not depend on

the variable ϕ. This is an interesting property that we will
take into account in a modified formulation of our acous-
tic problem. Moreover we have the estimates (for suitable

constants κi, i = 1, 2, 3)

‖uε − ũε‖H1(ΩR) + |pε − p̃ε|−1/2,Γε 6 κ1ε
1/2 ln 1/ε

κ2

ln 1/ε
6 |p̃ε|−1/2,Γε 6

κ3

ln 1/ε

which means that (ũε, p̃ε) is a relevant approximation of
(uε, pε), and provides in addition the behavior of pε when
ε → 0.

Simplified problem
This result suggests to get interested in a simpli-

fied problem. We introduce the averaging operator µε :
H1/2(Γε) → L2(I) defined by

µε(u)(ν) =
1

2π

∫
2π

0

u(ν, ϕ)dϕ.

We also introduce the one dimensional spaces
Er(I) of elements u =

∑
n unPn such that

‖u‖2

Er(I)
=

∑
n(1 + n2)r−1/2|un|

2 < +∞ , where
(Pn)n∈N is the orthogonal basis of Legendre po-
lynomials (note that L2(I) = E0(I) due to the
L2-norm of Pn). We can prove that E1/2(I) = Im µε,
and that µε is continuous for the norms ‖ ‖E1/2(I)

and | |1/2,Γε . We will consider the transpose ope-
rator (with respect to the usual L2 scalar products)
tµε : E−1/2(I) → H−1/2(Γε) that is explicitly given by
tµε(q)(ν) = (ε2 + 1 − ν2)−1/2 q(ν)/2πε. This operator
enables to consider a problem with a reduced space of La-
grange multipliers : find (uε, pε) ∈ H1(ΩR) × E−1/2(I)
such that
{

a(uε, v) +
∫
Γε

tµε(pε)v =
∫
ΩR fv , ∀v ∈ H1(ΩR)

∫
Γε

tµε(q)uε = 0 , ∀q ∈ E−1/2(I)

We say that this problem is simplified because the space
of Lagrange multipliers has been reduced, it is now a one
dimensional functional space instead of a two dimensio-
nal one. We can prove with usual techniques that this pro-
blem is well posed and also prove the following estimates

‖uε−u
ε‖H1(ΩR)+|pε− tµε(pε)|−1/2,Γε 6 κ1ε

1/2 ln 1/ε.

In fact using stability arguments and the regularity of the
data, it is even possible to prove

|pε − tµε(pε)|−1/2,Γε 6 κ1 ε.

According to the behavior of pε, this means that pε and
tµε(pε) are asymptotically equivalent. Finally we show
that pε is solution to a one dimensional integral equation
of the same nature as Pocklington’s equation. Indeed the
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simplified problem caracterizing (uε, pε) leads to the in-
tegral equation

∫
+1

−1

Kp(ν, ν ′)pε(ν ′)dν ′ =
−1

2π

∫
2π

0

u0|Γε(ν, ϕ)dϕ

where the integral kernel is given by

Kp(ν, ν ′) =
1

2π

∫
2π

0

eik|x(ν,ϕ)−x(ν′,ϕ′)|

4π|x(ν, ϕ) − x(ν ′, ϕ′)|
dϕ′.

In this expression, x(ν, ϕ) refers to the point of Γε

with ellipsoidal coordinates ν and ϕ. It is easy, using
symmetry of revolution, to see that this kernel does
not depend on ϕ. This integral equation appears to
be close to the original Pocklington’s equation since
1

2π

∫
2π

0
u0|Γε(ν, ϕ)dϕ ' u0(z) because of the regularity

of this function (u0(z) being the trace on J of u0) and
the expression of Kp has the same form as the original
Kp, but with ellipsoidal instead of cylindrical coordinates.
Moreover, the preceding error estimates provide a justifi-
cation of this final integral equation.
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Abstract
We analyze two integral formulations for the electro-

magnetic scattering by a dielectric object. The one is a
volume integral equation (VIE) having a strongly singular
kernel and the other is a coupled surface-volume system
of integral equations with a weakly singular kernel.

Introduction
We are concerned with solving an electromagnetic

scattering problem by a dielectric, with integral equa-
tions. The scientific literature is abundant on the
theoretical and numerical analysis of surface integral
equations related to scattering problems. Conversely, the
volume integral equation (VIE) has been till now, the
subject of only few studies, namely [1], [2] and [7] where
the VIE is numerically solved with scheme based on the
method of moments (MoM). In [4], the VIE is combined
with a multilevel fast multipole algorithm, to analyze an-
tenna radiation in the presence of dielectric radomes. The
spectrum of the volume integral operator is numerically
studied in [3] and [11], with an analysis in [3], under hy-
pothesis of Hölder continuity of constitutive parameters
in the whole space. Furthermore, the VIE is introduced
and analyzed in [5], for a scattering problem in a medium
with a refractive index uniformly Hölder continuously
differentiable, with exponent 0 < α < 1 (C1,α), in the
whole space R3. The VIE is also introduced in [1], for
the scattering by a dielectric with discontinuities in the
electric permittivity and the magnetic permeability of the
medium.

We introduce a theoretical analysis of the scattering by
a dielectric, with a piecewise regular electric permittivity
which is discontinuous across the boundary (to be more
realistic). More precisely, in a well-defined functional
framework, we establish two integral formulations.
The one being the VIE and the other, being a coupled
surface-volume system of integral equations. We then
justify equivalence between the scattering problem and
the two integral formulations, and next we prove that the
problem is well posed in the functional framework.

The work was built around references presented at

the end of the paper, using a number of results namely,
Stratton-Chu integral representation theorem [5], started
point of integral formulations to the problem, results of
density of smooth functions space in some non standard
Sobolev spaces [6], allowing us to extend integral repre-
sentations. We also used the unique continuation princi-
ple [8] and [10].

The problem
Let Ω− be a bounded domain of R3 ( Ω− stands for

the dielectric). The boundary Γ of Ω− is supposed to be
regular enough (Ck, k ≥ 2). Let us note Ω+ = R3 \ Ω−.
The electric permittivity ε is a spatially varying function
such that ε > 0, ε|Ω− ∈ C1(Ω−)∩C0(Ω−), ε|Ω+

= ε0

and ε is discontinuous across Γ. Let us note εr = ε
ε0

.
The electric conductivity σ vanishes everywhere in the
space (σ ≡ 0). The magnetic permeability µ is every-
where equal to one of the vacuum (µ ≡ µ0). ω is the
frequency and κ = ω

√
ε0µ0 is the wave number (with

κ > 0). n is the unit outward normal vector to Ω−.
We introduce the function spaces:

H(curl,Ω−) = {u ∈ (L2(Ω−))3;∇×u ∈ (L2(Ω−))3}

H(div,Ω−) and H(div,Ω+) are defined in the same
way, with ∇× u replaced by ∇ · u

H(curl,div,Ω−) = H(curl,Ω−) ∩H(div,Ω−)
Hloc(curl, (Ω+)) = {u ∈ (L2

loc(Ω
+))3;

∇× u ∈ (L2
loc(Ω

+))3}

Hloc(div, (Ω+)) is defined in the same way, with
∇× u replaced by ∇ · u

Hloc(curl,div, (Ω+)) = Hloc(curl, (Ω+))
∩Hloc(div, (Ω+))

Let F ∈ H(div, Ω+) be a field with a compact support
contained in Ω+.

The scattering problem (P) we want to solve can be
written as follows:

Find E, H such that Ei ∈ H(curl,div,Ω−),
Ee ∈ Hloc(curl,div,Ω+), Hi ∈ H(curl,Ω−),
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He ∈ Hloc(curl,Ω+), with Ei = E|Ω− ,Hi = H|Ω− ,
Ee = E|Ω+

and He = H|Ω+
, satisfying the equations:

(P)



∇×Ei − iκHi = 0 in Ω−

∇×Hi + iκεr Ei = 0 in Ω−

∇×Ee − iκHe = 0 in Ω+

∇×He + iκEe = F in Ω+

n×He = n×Hi and n ·He = n ·Hi on Γ
n×Ee = n×Ei and n ·Ee = n · εr Ei on Γ

He × x̂−Ee = O
(

1
r2

)
; r → +∞

Integral equations and well-posedness
As a first step in the derivation of the integral equations,

we extend the Stratton-Chu integral representation [5] to
fields (E,H) in H(curl,div,Ω−) ×H(curl,Ω−), using
arguments of density of C∞(Ω−) in H(curl,div,Ω−)
and in H(curl,Ω−) [6]. From this, we obtain both the
VIE and a coupled surface-volume system of integral
equations, involving the electric field E.

Introducing the following operators:

For x ∈ Ω−,

Lf(x) =
∫

Γ
(1− εr(y))G(κ, |x− y|) f(y) dγ(y)

Qu(x) =
∫

Ω−
G(κ, |x− y|) 1

εr(y)
∇εr(y) · u(y) dy

Nu(x) =
∫

Ω−
(1− εr(y))G(κ, |x− y|)u(y) dy

Mu(x) =
∫

Ω−
(1− εr(y))∇yG(κ, |x− y|) · u(y) dy

f and u are respectively scalar and vector fields defined
on Ω−.

G(κ, |x−y|) = 1
4π

eiκ|x−y|

|x−y| , is the fundamental solution
of Helmholtz equation.

γ±0 g := g±|Γ ; γ±1 g := (∂ng±)|Γ and γ±n v := (n·v±)|Γ

For g and v respectively scalar and vector fields
defined on R3 with g± := g|Ω± and v± := v|Ω± .

Noting then :

F1(x) =
∫

Ω+

G(κ, |x− y|)F(y) dy (x ∈ Ω−)

f1(x) =
∫

Ω+

divF(y)G(κ, |x− y|) dy (x ∈ Ω−)

The coupled surface-volume system of integral equa-
tions is given by the problem (E1) defined as follows:

(E1)



Find (Ei, ei) ∈ (L2(Ω−))3 ×H− 1
2 (Γ) such that:(

1−∇Q+ κ2N −∇L
κ2γ−n ◦ N − γ−1 ◦ Q 1− γ−1 ◦ L

) (
Ei

ei

)

=
(

iκF1 − 1
iκ ∇f1

iκ γ−n (F1)− 1
iκ γ−1 f1

)

And the VIE is given by the problem (E2) defined as
follows:

(E2)


Find Ei ∈ (L2(Ω−))3 such that:(
1−∇M+ κ2N

)
Ei = iκF1 − 1

iκ ∇f1

As a first result, we justify equivalence between these
integral equations and the problem (P). Indeed, using
integral representations, we prove that:

If (E,H) is a solution of the problem (P), then
(Ei,n ·Ei) is a solution of the problem (E1).
Reciprocally, using straightforward calculations and the
unique continuation principle [8] and [10], we prove that:

If (Ei, ei) ∈(L2(Ω−))3 ×H− 1
2 (Γ) is a solution of the

problem (E1), then we have a solution (E,H) of the
problem (P), this solution is defined by :

E|Ω− = Ei and E|Ω+
= Ee

with

Ee(x) =∇
∫

Γ
(1− εr(y))G(κ, |x− y|)n(y) ·Ei(y) ds(y)

−∇
∫

Ω−
G(κ, |x− y|)∇ ·Ei(y) dy

−κ2

∫
Ω−

(1− εr(y))G(κ, |x− y|)Ei(y) dy

+iκ

∫
Ω+

G(κ, |x− y|)F(y) dy

− 1
iκ ∇

∫
Ω+

∇ · F(y)G(κ, |x− y|) dy

H|Ω− =
1
iκ
∇×Ei := Hi

and H|Ω+
=

1
iκ
∇×Ee := He.
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We establish thereafter that:
(i) If (Ei, ei) is a solution of the problem (E1), then

Ei is a solution of the problem (E2).
(ii) If Ei is a solution of the probem (E2), then

defining ei = n · Ei on Γ, (Ei, ei) is a solution of the
probem (E1) .

In addition of the equivalence results, we conclude
that the scattering problem (P) is well-posed by showing
uniqueness for the problem (P) and that:

The matrix operator of the problem (E1)

D =

 1−∇ ◦ Q+ κ2N −∇ ◦ L

κ2γ−n ◦ N − γ−1 ◦ Q 1− γ−1 ◦ L


from (L2(Ω−))3 ×H− 1

2 (Γ) to (L2(Ω−))3 ×H− 1
2 (Γ) is

Fredholm of index zero.
The well-posedness property is obviously satistfied by
problems (E1) and (E2).

Conclusion and perspectives
Under more realistic hypothesis of discontinuity of

the electric permittivity across the boundary of a dielec-
tric, we justified equivalence between the electromag-
netic scattering problem , the VIE and a coupled surface-
volume system of integral equations. The last one has
only been used to analyze the problem and to prove its
well-posedness. As for the VIE, it will be used for the
numerical study of the problem, making us free of the
discretization of the boundary and the unit normal vector,
on the numerical approximation of the solution.

We expect a numerical implementation based on a
Finite Differences-Finite Elements discretization, which
could be combined with a Fast Multipole Method (FMM).
Results obtained by this scheme could then be com-
pared with those obtained by other methods, namely those
based on method of moments which is widely used on nu-
merical solving of the VIE.
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[9] J. C. Nédélec, Acoustic and Electromagnetic Equa-
tions, Integral Representations for Harmonic Prob-
lems, Springer-Verlag, New York, 2000.

[10] M. H. Protter, “Unique continuation for elliptic
equations”, Trans. Amer. Math. Soc., vol.95(1), pp.
81-91, 1960.

[11] J. Rahola, “Spectrum of the volume integral oper-
ator of electromagnetic scattering”, SIAM J. Sci.
Comput., vol. 21(5), pp. 1740-1754, 2000.

408



A surface integral algorithm for T-matrix computations in three dimensional electromagnetic scattering

M. Ganesh†,∗, S. C. Hawkins‡
†Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, USA.

‡School of Mathematics and Statistics, University of New South Wales, Sydney, Australia.
∗Email: mganesh@mines.edu

Abstract
The infinite T-matrix method is a powerful tool for

electromagnetic scattering simulations, particularly when
one is interested in changes in orientation of the scatterer
with respect to the incident wave or changes of configura-
tion of multiple scatterers and random particles, because
it avoids the need to solve the fully reconfigured systems.
The truncated T-matrix is often computed using the null-
field method. The main disadvantage of the null-field
based T-matrix computation is its numerical instability
for particles that deviate from a sphere. For large and/or
highly non-spherical particles the null-field method based
truncated T-matrix computations can become slowly con-
vergent or even divergent. In this work we describe an ef-
ficient surface integral equation based algorithm for com-
puting the T-matrix that avoids the numerical instability.

Introduction
In electromagnetic simulations by a three dimensional

obstacle, the transition matrix (T-matrix) method is based
on the series expansion of the incident field in vector
spherical (or spheroidal or ellipsoidal) wave functions and
similar expansion of the scattered field outside a circum-
scribing sphere (or spheroid or ellipsoid) of the scatterer.
Using the linearity of the Maxwell equations, these co-
efficients are connected by an infinite matrix, known as
the T-matrix. The T-matrix is independent of the incident
wave and it characterizes the scattering properties of the
obstacle.

Hence the infinite T-matrix method is a useful tech-
nique for electromagnetic scattering simulation to study
the effect of changes in orientation of the scatterer with
respect to the incident wave. In multiple scattering, by
building the T-matrix of each obstacle in the configura-
tion, the T-matrix method is a powerful tool to investigate
the effect of changes in the original configuration of the
particles because it avoids the need to solve the fully re-
configured/dynamic systems.

In practice, only truncated versions of the T-matrix can
be computed (by starting with truncated series expansions
of the incident and scattered fields) and it is essential to
have numerical stability and convergence in the truncated
T-matrix computations. Analysis of effective changes in

the scattered field due to incident field or configuration
changes critically depends on the accuracy and numerical
stability of the truncated T-matrix.

The truncated T-matrix is often computed using the
null-field method. The null-field and T-matrix methods
were devised for single obstacle electromagnetic scatter-
ing by Waterman [12] and were extended for arbitrary
number of scatterers by Peterson and Ström [11]. There
is a vast literature on the T-matrix computations as de-
scribed in recent books [3], [8], [9] and references therein.

The null-field method based T-matrix computations
suffer from numerical instability and round-off errors be-
come very significant if the size of the T-matrix is re-
quired to be large. Consequently, such computations
can even become divergent for large and/or highly non-
spherical particles [10, Page 543]. There are several ap-
proaches to tackle this problem (see [10], [3], [8], [9]
and references therein) such as expansions obtained using
spheroidal or ellipsoidal functions for high-aspect ratio
convex obstacles, and computations using slow extended
precision arithmetic to minimize the effect of round-off
errors.

Although it is known [8, Section 7.9.4] that numeri-
cal instability involved in the null field method can be
avoided by using a boundary integral equation (BIE)
method to compute the T-matrix, the connection between
the BIE and T-matrix methods has not been (computa-
tionally) exploited [8, Page 272] and it should be [7,
Page 777], using efficient computational BIE algorithms.
The analytical derivation of the connections between
BIEs and the T-matrix for acoustic scattering in [7]
and [8] is based on the realization of the idea of using
a BIE to obtain the T-matrix by Gurel and Chew [6]. The
approach in [6] is for electromagnetic scattering by thin
strips and similar observations for the need to exploit the
connections were remarked in [6]. Both BIE and T-matrix
methods have a long pedigree and computational bridging
of the two for electromagnetic scattering in three dimen-
sions, which is overdue, is the aim of this work.

The only disadvantage of using a BIE to compute the
T-matrix is that this approach requires solving a large
number of (boundary integral) linear systems with a fixed
scattering matrix (obtained by discretizing the associated
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boundary integral operator) but different right hand sides
(corresponding to each wave function used in expand-
ing the incident and scattered field). Consequently, it
is crucial to use a scattering algorithm that allows LU-
factorization of the scattering matrix. In particular, this is
not practically possible for three dimensional scattering
problems using low order schemes such as the standard
boundary element methods. The industrial standard al-
gorithms for three dimensional electromagnetic scatter-
ing such as FISC [1] are based on BIEs solved using
the method of moments, accelerated using the fast mul-
tipole method (FMM). The FMM is necessary because
medium frequency simulations using FISC require so-
lution of dense complex systems with millions of un-
knowns. Such large systems require iterative solvers to
avoid setting up and storing the scattering matrix.

Spectrally accurate high-order algorithms for three di-
mensional electromagnetic scattering have been devel-
oped recently by the authors in [4] and [5]. By taking
advantage of the spectrally accurate nature of these al-
gorithms, medium frequency scattering simulations can
be performed using the LU-factorization of the scatter-
ing matrix. This capability is demonstrated for a range
of perfect conducting scatterers in [4], [5]. Availability
of such three dimensional spectrally accurate algorithms
opens the way to efficient and stable T-matrix computa-
tions through an electromagnetic scattering BIE. In this
work, we apply a variant of algorithms in [4], [5] for com-
putational realization of the bridging of the T-matrix and
BIE for a class of convex, non-convex, and random parti-
cles.

We conclude this short preview presentation by formu-
lating the T-matrix and BIE problem for electromagnetic
scattering by a single three dimensional obstacle (and
the corresponding multiple obstacle case follows from
derivations in [11]).

Problem Formulation
The time harmonic electromagnetic field scattered by a

perfect three dimensional conductor D, with surface ∂D
having unit outward normal n, comprises an electric field
E and a magnetic field H = (1/ik) curl E, where
k = 2π/λ is the wavenumber and λ is the wavelength.
The divergence free electric field satisfies the Maxwell
equation in the form

curl curl E(x)− k2E(x) = 0, x ∈ R3 \D, (1)

subject to the Silver-Müller radiation condition

lim
|x|→∞

[curl E(x)× x− ik|x|E(x)] = 0. (2)

and the perfect conductor boundary condition

n(x)× [E(x) + Ei(x)] = 0, x ∈ ∂D, (3)

where the scattered field [E, H] is induced by the inci-
dent field [Ei, H i]. A requirement for T-matrix deriva-
tion (see [11], [12]) is that there must exist a point inside
D which is a suitable origin for a spherical coordinate
system, so that the radius r to a point on D is a continu-
ous function r(θ, φ) of the spherical angles θ, φ. Also, D
must be piecewise-smooth. (For multiple scattering, one
origin must be chosen for each obstacle in the configu-
ration [11].) Vector spherical wave functions that satisfy
the exterior vector Helmholtz equation with wave number
k can be expressed in terms of

elj(x) = xh
(1)
l (k|x|)Ylj(x̂),

ẽlj(x) = xjl(k|x|)Ylj(x̂),

for l ≥ 1, |j| ≤ l and x̂ = x/|x| for x ∈ R3 \D, where
jl and h

(1)
l are spherical Bessel and Hankel functions of

degree l respectively,

Yl,j(x̂) = (−1)(j+|j|)/2

√
2l + 1

4π

(l − |j|)!
(l + |j|)!

P
|j|
l (cos θ)eijφ,

(4)
for 0 ≤ l ≤ n, |j| ≤ l, and P

|j|
l is an associated Leg-

endre function. In (4) we have used the spherical polar
coordinates x̂ = (sin θ cos φ, sin θ sinφ, cos θ)T . Hence
the divergence free vector spherical wave functions

M lj = curl elj , N lj =
1
ik

curl curl elj ,

M̃ lj = curl ẽlj , Ñ lj =
1
ik

curl curl ẽlj ,

are solutions of the Maxwell equation (1) [2, Theo-
rem 6.4]. M lj and N lj additionally satisfy the radiation
condition (2).

The incident field is assumed to be a linear combination
of the spherical wave functions:

Ei =
∞∑
l=1

∑
|j|≤l

[
pljM̃ lj + qljÑ lj

]
=

[
M̃

Ñ

]
·
[

p
q

]
.

(5)
where M̃ , Ñ and p, q denote column vectors in the nat-
ural way. The coefficients plj , qlj are given analytically
when Ei is a plane wave. The T-matrix derivation is based
on similar expansion of the scattered field E:

E =
∞∑
l=1

∑
|j|≤l

[aljM lj + bljN lj ] =
[

M
N

]
·
[

a
b

]
.

(6)
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Since the Maxwell equation (connecting the incident
and scattered fields) is linear, the coefficients a, b for the
scattered field E can be represented as[

a
b

]
= T

[
p
q

]
(7)

where T is a matrix, called the T-matrix, that transforms
the expansion coefficients of the incident field into those
of the scattered field.

In practice, we replace the infinite series (5) and (6) by
finite sums

Ei =
nt∑
l=1

∑
|j|≤l

[
pljM̃ lj + qljÑ lj

]
, (8)

E =
nt∑
l=1

∑
|j|≤l

[aljM lj + bljN lj ] , (9)

which leads to a truncated T-matrix in (7).

BIE based T-matrix computations
For a given field u, the radiation of the field at large

distances from D is described by the far field u∞ of u:

u∞(x̂) = lim
|x|→∞

|x|e−ik|x|u(x), x̂ =
x

|x|
. (10)

Denote by S the mapping

S : C(R3 \D) → C(∂B), Sf := u∞,

where u solves (1) and (2) subject to the boundary condi-
tion n× u = −n× f on ∂D, and u∞ is the far field of
u. For a given f ∈ C(R3 \ D), Sf can be expressed as
a surface integral on ∂D [2, Theorem 6.8] and evaluation
of the integrand in the representation requires computa-
tional solutions of an electric or magnetic or combined
field BIE [2, Chapter 6].

It can be shown that the far fields of the spherical wave
functions M lj and N lj are orthogonal on the sphere.
Thus the entries in the T-matrix can be computed from
the far fields SM̃ lj and SÑ lj induced by the fields
M̃ lj and Ñ lj interacting with D. Consequently, the T-
matrix entries can be computed provided an algorithm
is available to compute solutions of the BIE. Since one
such far-field computation is required for each field M̃ lj

and Ñ lj , it is critical that this algorithm be efficient.
The spectrally accurate algorithms [4], [5], (and their
variants, retaining spectral accuracy) are ideal because
they have been demonstrated for efficient simulation of
medium frequency electromagnetic scattering by a range
of three dimensional convex, non-convex, and random
obstacles with just a few thousands of unknowns, using
LU-factorization to solve the linear systems.
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Abstract
In this paper, we present a multigrid algorithm for in-

tegral equations of the first kind arising in acoustic scat-
tering, and present some numerical results. Our method
combines the ideas of [1] and [2] and is suitable to study
scattering from obstacles or screens. The multigrid strat-
egy works well both as a solution strategy, and as a pre-
conditioner.

Introduction
Boundary integral equations, and their numerical ap-

proximations, form a popular framework for studying the
scattering of time-harmonic waves from bounded obsta-
cles. When studying such scattering problems, one is lead
naturally to the Helmholtz equation as a PDE model in
the exterior of the scatterer, with appropriate growth con-
ditions on the scattered field. A reformulation in terms of
integral equations on the surface of the scattering object
may be achieved by a layer ansatz or by a direct method.
Depending on the nature of the obstacle, one is then lead
to an integral equation of the first or second kind. Our fo-
cus in this paper is on integral equations of the first kind.
The integral operators involved may be viewed as pseudo-
differential operators of order minus one.

Fichera, Hsiao and MacCamy and others have ob-
served some of the advantages of using integral equations
of the first kind. For example, these techniques general-
ize readily to higher-order differential equations. Also,
first-kind integral equations seem particularly well-suited
to the situation when the scattering object is very thin, or
indeed reduces to an arc or a screen.

Boundary integral equations typically lead to dense
linear systems upon discretization. Though one needs
to mesh on a surface of co-dimension one, the matrix
fill-in corresponding to the integral operators is signifi-
cant. Without some form of preconditioning or accelera-
tion, these methods then become prohibitively expensive.
There has been considerable work in this direction in re-
cent years, e.g [6], or the work of Bruno and co-workers.
Stephan et. al. developed multilevel algorithms for such
equations based on Haar bases, [7]. We present a multi-
grid strategy for integral equations of the first kind, for
acoustics.

The use of multigrid strategies for positive-definite,
negative-order pseudodifferential operators was first de-
scribed in [1]. Since the spectra of these operators link
highly oscillatory eigenfunctions to the small magnitude
eigenvalues, the use of standard smoothing methods is not
appropriate. Key for multigrid methods in this context is
the use of weaker Sobolev norms in order to modify the
spectral behavior, while avoiding the inversion of the re-
sulting Gram matrix. Discretizations of integral equations
for acoustics suffer from similar lack of definiteness as the
associated PDE discretizations. Accordingly, we modify
the strategy presented in [1] for an indefinite negative-
order operator. The analysis of multigrid methods hence
require pertubation arguments such as in [2] and [4].

Model problem and notation
Let Γ be a polygonal closed curve in the plane, and let

Ω+ denote its exterior domain. We consider the Dirichlet
problem with datag ∈ H

1

2 (Γ) and wave-numberκ ∈ R:

−∆u − κ2u = 0 in Ω+, u = g onΓ (1)

along with the Sommerfeld radiation condition at infinity,
limr→∞ r

1

2 (∂u
∂r

− iκu) = 0. We assume thatκ2 is not an
interior eigenvalue for−∆ in order to guarantee unique
solvability.

Figure 1: Plane-wave acoustic scattering from a
rectangular obstacle. We showℜ(scattered wave),

computed using a multigrid method for (2).

There are various ways to solve (1) with given bound-
ary data and radiation conditions, in terms of boundary
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integral operators. We follow the direct approach which
leads to the acoustic single layer equation for the un-
known Neumann dataσ ∈ H− 1

2 (Γ) :

V σ = (−
1

2
Id + K) g =: F ∈ H

1

2 (Γ). (2)

Here, the single layer operator

V σ(x) =

∫

Γ

i

4
H(1)

0
(κ|x − y|)σ(y)dsy for x ∈ Γ (3)

is to be understood as a weakly singular integral.K

is the acoustic double-layer operator. TheL2 duality
pairing 〈· , ·〉 betweenH

1

2 (Γ) andH− 1

2 (Γ) allows us to
state equation (2) in its weak form as follows:Given
F ∈ H

1

2 (Γ), findσ ∈ H− 1

2 (Γ) such that:

V(σ, µ) = F (µ) for all µ ∈ H− 1

2 (Γ), (4)

whereV : H−1/2(Γ)×H−1/2(Γ) → C is the continuous
sesquilinear form defined byV(σ, µ) := 〈V σ, µ〉. Note
thatV can be decomposed into a sum of operators

V σ = Λσ + D σ,

whereΛ represents the single layer operator correspond-
ing to Laplace’s equation and hence (modulo rescaling) is
positive definite. The difference operatorD = (V −Λ) is
compact, and has no singularity in its kernel. We denote
by Λ(·, ·) the coercive sesquilinear form induced byΛ.

Methods
Suppose we are given a sequence of finite dimensional

approximation spacesM1 ⊂ . . . ⊂ MJ ⊂ H−1/2(Γ).
We now review and adopt the multigrid algorithm devised
in [1] for the indefinite equation (4). The discrete opera-
torsVk : Mk → Mk are defined via the relation

(Vkσ, µ)−1 = V(σ, µ) for all σ, µ ∈ Mk.

Analogously, we letfk ∈ Mk satisfy

(fk, µ)−1 = F (µ) for all µ ∈ Mk.

On every levelk we can then write the equation of interest
in operator form asVk σk = fk. Further, we introduce the
projectionsQk : H−1(Γ) → Mk defined by

(Qkσ, µ)−1 = (σ, µ)−1 for all µ ∈ Mk.

The smoothing operatorsRk : Mk → Mk are defined
in terms of additional discrete inner products[· , ·]k on
Mk. These discrete inner products are defined through

certain differencing operators in such a way that they are
equivalent to the(·, ·)−1 inner product uniformly for all
levels. A simple Richardson smoother is then given by

[Rkσ, θ]k =
1

λ̄k

(σ, θ)−1.

Here, λ̄k is an upper bound for the eigenvalue of the
definite sesquilinear formΛ(· , ·) which corresponds to
the principal part of the operator,̄λk = supθ∈Mk

Λ(θ,θ)

[θ,θ]k
.

Given an initial guessσ0 ∈ MJ , Algorithm 1 computes
a sequence of approximate solutions to (4) using an itera-
tion of the form

σi+1 = MgJ(σi, fJ),

whereMgJ(· , ·) as a mapping ofMJ ×MJ intoMJ is
defined recursively.

Algorithm 1. SetMg1(σ, f) = V1
−1f . If k > 1 we

defineMgk(σ, f) as follows:

σ1 = σ + Rk(f − Vkσ)

Mgk(σ, f) = σ1 + Mgk−1(0,Qk−1(f − Vkσ1))

The implementation of Algorithm 1 is done in a similar
fashion to [3]. Using ideas from [2] and [4], we are able to
prove following convergence result for the error reduction
operatorE = EJ = MgJ(· , 0):

Theorem 1. There exists anH > 0 such that whenever
h1 ≤ H

Λ(Eθ , Eθ) ≤ δ2 Λ(θ , θ) for all θ ∈ MJ

with δ = δ̂ + ch1. Here,0 < δ̂ < 1 is an upper bound
for the error reduction operator of the definite problem,
which is independent of the levelJ .

The proof uses standard strategies, and will be pre-
sented in a forthcoming work.

Some numerical experiments and results
We now present some numerical experiments demon-

strating the effectiveness of the multigrid strategy out-
lined above. We consider the plane-wave scattering prob-
lem from a thin rectangle, whose ratio of side lengths is
1

32
, for wave numbersκ = 2.1 and 10.2, leading to the

discretized linear systemVh σh = fh. We used regular
(uniform) meshes to discretize the curveΓ. Tables 1 and
2 show the iteration counts for the multigrid method when
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used as a linear solver for two different wave numbers. It-
erations were stopped after the relative residual norm had
reached the value10−6, i.e. ||fh − Vhσi

h|| < 10−6 ||fh||.
We also show the iteration counts for the unprecondi-
tioned GMRES needed to achieve the same behaviour in
the residual as well as the preconditioned GMRES itera-
tions needed to achieve a relative residual norm of10−6

of the preconditioned system, i.e.||Bhfh − BhVhσi
h|| <

10−6 ||Bhfh||, whereBh denotes the matrix version of
the multigrid preconditioner. We did not restart the GM-
RES in these experiments.

It is worth drawing attention to the behaviour of the
GMRES iteration counts, where we precondition with the
multigrid implementation described. For both wave num-
bers, the iteration counts remain nearly constant over sev-
eral levels of refinement. More importantly, this number
remains independent of wave-number. The effect of the
wave number is seen in the choice of coarse-grid size, H.

Table 1: Iteration counts withκ = 2.1, scattering from a
rectangle. Coarsest gridH = 1/2. DoF denotes the num-
ber of degrees of freedom, MG the no. of multigrid it-
erations, MG+GMRES the number of GMRES iterations
required with multigrid preconditioning

h DoF MG GMRES MG+GMRES
1/4 72 15 27 7
1/8 144 17 41 9
1/16 288 18 51 9
1/32 576 18 58 10
1/64 1152 19 65 10
1/128 2304 19 70 10

Table 2: Iteration counts withκ = 10.2, scattering from
a rectangle. Coarsest gridH = 1/8.

h DoF MG GMRES MG+GMRES
1/16 288 16 100 7
1/32 576 16 110 9
1/64 1152 17 119 10
1/128 2304 18 127 10

These numerical results establish the effectiveness of
the multigrid as both a solver and a preconditioner for
the first-kind integral equation for acoustics. Future work
includes the extension of this preconditioning strategy to
screen problems, and to coupled FEM-BEM systems. For
a screen problem one would need to use a graded mesh,
or account for the singularities as in [5]. One could still
implement the proposed multigrid algorithm, albeit with

much more care in the differencing operators used to de-
fine the discrete inner products[·, ·]k. A careful investiga-
tion of this situation is currently under progress.
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Abstract
We present promising results for the three-dimensional

modelling of surface acoustic waves (SAW) interdigital
(IDT) filters using the boundary element method. We
have taken into account the singular behavior of the elec-
trical charges at corners and edges of the electrode-bus
system for defining ad hoc Galerkin bases used in the as-
sociated singular integral equation. Large length-to-width
ratio structures are modelled while keeping the number of
variables at a practical level. We show results for the non-
periodic and periodic electrostatic term under flat mass-
less electrodes.

Introduction
Surface Acoustic Waves (SAW) devices can be found

in a plethora of applications: they are ubiquitous in mo-
bile telecommunications, RADAR and SONAR systems,
and pervade many novel applications in emerging areas
such as non-destructive testing and wireless sensing.

A typical SAW device consists of a piezoelectric
anisotropic substrate on top of which sets of interdigi-
tal transducers (IDTs) are placed (see Figure 1). Each
IDT comprises a large number of electrodes with alternat-
ing voltages which, under certain geometric and material
conditions, originate mechanical Rayleigh waves. As the
wave propagates, chiefly along x1, a second set of IDT
electrically picks up the filtered signal. Acoustic beam
focusing is achieved by a large electrode’ length-to-width
ratio (> 100).

Traditional models for SAW IDTs have avoided deal-
ing with such elongated structures by only considering the
sagittal plane (x3 = 0), using a FEM/BEM formulation
[1]. However, stringent requirements on miniaturization
and power consumption demand for smaller electrodes,
and consequently, the neglected transversal effects come
into play. In particular, acoustic diffraction and inhomo-
geneous capacitances at the corners and edges of the met-
allized areas account for energy losses and poor perfor-
mance. In what follows, we present a Galerkin approach
using hybrid bases to fully model the electrode-bus sys-
tem which mimic the singular edge-corner behaviors.

x

x2
x1

3

Γm

ΓBus

IDT Substrate

SAW

Electrodes

Figure 1: SAW IDT diagram and coordinate definition.

1 Problem statement
Let us decompose R3 in the following subdomains:

R3
+ = {x ∈ R3 : x2 > 0}
R3
− = {x ∈ R3 : x2 < 0}
Γ = {x ∈ R3 : x2 = 0}

with Γm ⊂ Γ and Γfree = Γ \ Γ̄m, being the metallized
and metal-free areas, respectively. Let R3− be the vacuum
over the device, with constant permittivity ε0, and R3

+ the
anisotropic substrate described by the tensors: CE

ijkl, elas-
ticity for constant electric field; ekij , piezoelectricity; εS

ik,
permittivity for constant strain; and ρ, density of piezo-
electric material. If we denote u ∈ [H1

loc(R3)]3 the me-
chanical displacement and φ ∈ H1

loc(R3) the electric po-
tential, we can define the stress tensor field and electric
displacement vector as:

Tij(u, φ) =
3∑

k =1

[
3∑

l =1

CE
ijkl

∂ul

∂xk
+ ekij

∂φ

∂xk

]

Di(u, φ) =
3∑

k =1

[
3∑

l =1

eikl
∂ul

∂xk
− εS

ik

∂φ

∂xk

]

respectively. Neglecting the electrodes, the complete
problem can be stated into two separate ones coupled at
Γ: (i) a linear anisotropic piezoelectric problem in R3

+;
and (ii) an isotropic electrostatic problem in R3−, each un-
der adequate radiation conditions. At Γ, normal stresses
are zero and the electric Neumann and Dirichlet traces are
continuous.
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1.1 Green’s dyad and integral equation for G44

If a time harmonic dependence eıωt is assumed, the en-
tire solution is provided by the 4×4 spatial surface Green
dyad G(x,x′;ω) [2], via the integral representation:

(u(x) , φ(x))t =
∫

Γ
G(x,x′;ω)σdΓ (3)

where σi = Ti(u, φ) · n, i = 1, 2, 3, represent the me-
chanical surface tensions and σ4 = [D(u, φ) + ε0∇φ] ·
n the surface electrical charge distribution. We will
further assume: a piecewise constant applied potential
φa ∈ L∞(Γm); massless flat electrodes and buses, i.e.,
σi(Γ) = 0, i = 1, 2, 3; and no free surface charges,
σ4(Γfree) = 0. Thus, we arrive at the following singular
integral equation in σ4,

φa(x) = (G44σ4) (x) =
∫

Γm

G44(x,x′)σ4(x′)dΓ (4)

provided that σ4 has zero average. The mechanical dis-
placements ui can be retrieved by replacing the found σ4

in the integral representation (3). Let us define the space
H
−1/2
av (Γm) =

{
f ∈ H−1/2(Γm) :

∫
Γm

fdΓ = 0
}

.
With this we solve (4) variationally:
Find σ ∈ H

−1/2
av (Γm) such that

Am(σ, σt) =
〈G44σ, σt

〉
Γm

=
〈
φa, σ

t
〉
Γm

(5)

for all σt ∈ H
−1/2
av (Γm). Since the interesting cases ar-

rive for singular part of G44, Gs
44 ∼ 1/r, we will con-

centrate on this term only from now on. If periodic, the
singularity also has a logarithm term.

2 Hybrid Galerkin bases and solution method
2.1 Singularities at corners and edges

Since Γm is a flat non-smooth Lipschitz domain, σ is
singular at ∂Γm. Let ∂ΓC

m and ∂ΓE
m denote the set of cor-

ners and edges, respectively, in ∂Γm. If rj is the small-
est distance between x and the elements in the sets ∂Γj

m,
j = E, C, then the following asymptotics hold [4]:

• As rE vanishes while rC À rE is fixed, the singu-
larity order is as r

−1/2
E .

• If rC goes to zero, the singularity order depends on
the reentrant or salient nature of the corner. In the
former case, the singular order is smaller than 1/2,
whereas for the latter, the singularity is greater than
1/2.
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x

x3 2

1
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c−1
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c∆

1

∆c+1
K

K∆c−1

ΓFΓF

ac+1

ca

c+1ΓT1∆c+1

Figure 2: Domain decomposition ΓT , ΓF and
parameters.

Thus, at corners, the use of cartesian variables as a prac-
tical basis is not possible [5]. However, first-order poly-
nomials can yield plausible solutions if the surrounding
area is finely meshed. Unluckily, for a typical geometry
Γm, a standard P1 basis yields a number of matrix terms
(∼ 108) [3] unbearable for any practical use.

2.2 Numerical method
Considering the above, we split Γm in two subdomains

(see Figure 2):

• ΓT , which takes most of the electrodes’ areas and
only presents edge singularities along x1 for each
electrode c. If Γc

T is the c-electrode’s corner-free
area, we can state

ΓT =
⋃
c

Γc
T and Γc

T =
⋃

k

∆c
k

where ∆c
k are small rectangles in each Γc

T .

• ΓF = Γm \ Γ̄T which accounts for buses and corner
areas coming from the bus-electrode joints.

Let the µc be the weight function

µc(x1) =

[
1−

(
x1 − xc

1

ac

)2
]−1/2

, |x1 − xc
1| < ac

where ac and xc
1 are the c-electrode’s width and center

x1-coordinate. We define the space with weight:

QT
c,NT

=

{
fNT

: µcf̃NT
= µc

NT∑

n =0

dnTn

[
x1 − xc

1

ac

]}

where Tn is the Tchebychev polynomial of first order [6].
We can approximate σ in ΓT for each electrode c by the
tensorial basis product:

σ
∣∣
Γc

T
≈ σT c =

∑

k

σck
T , σck

T ∈ QT
c,NT

⊗ P0 (6)
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Figure 3: Charge distribution at an electrode-bus joint.
Two-electrodes case.

The choice of constant piecewise functions along the
electrodes’ length is justified by the fact that the edge
charges distribute in a regular fashion. Nonetheless, other
basis could be equally implemented.

In ΓF , we approximate σ with classic P1 polynomials
for a triangular mesh Γh

F wisely refined at the corners:

σ
∣∣
ΓF

≈ σF =
NF∑

e =1

3∑

j =1

σe
jN

e
j with N e

j ∈ P1 (7)

where NF is the total number of elements in ΓF . A dis-
crete system is built by replacing the test function in (5)
by the different elements in the bases (6) and (7). Com-
putation time can be reduced by acknowledging that the
resulting matrix is Hermitian and that semi-analytic rou-
tines can be used. No matching conditions are required
at Γ̄F ∩ Γ̄T as they occur naturally. Nonetheless, zero
average condition must be enforced.

3 Results
Figure 3 shows the electrode-bus joint for the non-

periodic Gs
44 for an electrode length and width of 80λ

and 0.35λ, respectively. It reveals the smooth matching at
the frontier between ΓF and ΓT . Since the basis over σT

accurately describes the electrical charges’ singular be-
havior, the number of terms required is very small (∼ 3).
The lack of symmetry observed in the x1 direction recov-
ered in Figure 4, where the periodic case is shown. It also
reveals continuity along x1 at the buses.

4 Conclusions
We provide an accurate and practical method for solv-

ing the integral representation for the G44 behavior of
SAW IDTs. Further development includes full piezoelec-

 0
 10
 20
 30
 40
 50
 60
 70

 165 170 175 180 185

 1
 1.2

 1.4
 1.6

 1.8
 2

 0
 10
 20
 30
 40
 50
 60
 70

(a.u.)

x3 (µm)

x1 (µm)

(a.u.)

Figure 4: Charge distribution at an electrode-bus joint.
Periodic case.

tric representation; optimization of matrix elements com-
putation; and inclusion of mechanical corner and edge
singularities.
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Abstract
This work concerns numerical aspects of a one-way

formulation of the acoustic wave equation. We focus our
study on a system of coupled one-way equations which
generalizes the multi-step one-way modelling proposed
by Kiyashchenko, Plessix and Kashtan. We show how the
performance of the numerical method can be improved by
developping a fast numerical algorithm whose efficiency
is illustrated by some numerical experiments.

Introduction
The Reverse Time Migration (RTM) is an efficient me-

thod for depth imaging. RTM is based upon successive
solutions of the wave equation and it obviously depends
on the accuracy of the numerical solution of the wave
equation but also on the computational burden which
must be the lowest as possible to be applied to 3D pro-
blems in heterogeneous media. The migration process
uses sismograms which involve two quantities: the arri-
val times and the amplitudes of the reflected waves which
respectively represent the kinematics and the dynamics
of the propagation medium. Solving one-way equations
provide a fast solution for the acoustic wave equation
which allows one to reproduce the kinematics but the am-
plitudes of the wave fields are generally erroneous be-
cause the one-way model neglects coupling terms mode-
ling the transmission effects between the different mate-
rials constituting the propagation medium. Zhang et al.
[6] have proposed an approximate formulation including
an additional term to correct the amplitude of the solu-
tion. More recently, Kiyashchenko et al. [4] have propo-
sed a multi-step one-way modelling which is equivalent
to the wave equation. Herein we focus our attention on
a first-order formulation which has been derived by M.V.
De Hoop [2] in the framework of micro-local analysis.

The complete first-order formulation of the acoustic
wave equation

The wave equation can be written as a first-order sys-
tem of coupled equations after the time variable has been
supressed by using a Laplace transform. The principal
part of the system can be diagonalized and the reduced
system involves then pseudo-differential operators. In

practice, the numerical solution is obtained by solving
an approximation of the reduced system in which the
pseudo-differential operators have been replaced by their
principal part. This is the system we consider and des-
cribe below.
Let x, y, z be the cartesian coordinates. Let us consider
a domain Ω in z > 0 whose surface is given by the set
z = 0. Then the first-order wave equation system reads
as:

(Dz + iωΛ)V = RV + PF in Ω (1)

where Λ is diagonal with Λ = diag(Γ,−Γ) and Γ is a
pseudo-differential operator whose symbol γ is given by:

γ =

 1
c2 (~x)

−

∣∣∣~k′∣∣∣2
ω2


1/2

. (2)

Operator R represents the coupling terms describing the
reflexion and transmission phenomena and has the form:

R =

 T Rdu

Rud T

 (3)

The vector F is defined from the source S, for instance
S is a Ricker function acting at z = 0. The unknown
V has two components respectively denoted by Vd and
Vu which respectively propagate in the direction z > 0
and in the opposite sense. Hence Vd is the downward
part of the wave field while Vu is its upward part. The
operator P is supposed to be invertible and allows one to
construct the solution U to the wave equation from the
relation V = PU. Moreover, P can be chosen such that
T = −Rdu = −Rud. The operator T represents the
transmission effects while Rdu and Rud correspond to the
reflections. The transmission operator is defined as the
principal part of −1

2Γ−1 ∂T
∂z which means that the symbol

of T is given by:

σ (T ) =
ω2

2c3γ2

∂c

∂z
(4)

The above formula shows that when the medium is homo-
geneous, T is the null operator since the velocity c does
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not vary. Thus in that case, the two components of V are
uncoupled and satisfy a one-way system, involving the
square-root of the Helmholtz operator in Γ. In the ge-
neral case, the two components are coupled through Rdu

and Rud and since the symbol of T is real-valued, T af-
fects the amplitude of each component of V. Hence if T
is neglected, the dynamics is erroneous.

Numerical scheme
System 1 can be solved by using different approaches.

Here we choose to expand the solution V as a Neumann
series and to compare our method to the one formerly pro-
posed by [4]. Assume that the inverse G of Dz + iωΛ is
known. Then V is given by:

(I −GR) V = GF (5)

Next the formal inverse of I − GR is represented by a
Neumann series and we have:

V =
∑

j≥0 VjV0 = GF and Vj = GRVj−1 (6)

The first iterate V0 is obtained by solving two uncou-
pled one-way equations and models the propagation of
the source F . The iterate V1 corrects V0 by accounting
for the reflection and transmission terms. It is solution to
:

(Dz + iωΛ)V1 = RV0 (7)

and the iterate Vj , j ≥ 2 is obtained by solving the same
problem as above with Vj in place of V1 and Vj−1 in
place of V0.
The numerical approximation of V is defined by compu-
ting a finite number of iterates Vj and according to [5],
the performances of the numerical algorithm can be im-
proved by using an assembling process allowing one to
compute two iterates in the same time. In [5], both G
and R are represented by Fourier integrals and to limit
the computational burden, their respective symbol are ap-
proximated by a class of functions where k′ and (x, y) are
separate. Then the number of required Fourier transforms
decreases considerably.
In practice, the number of iterates is fixed at the beginning
and it is not necessary to compute a lot of terms to obtain
a high degree of accuracy.
Here we assume the upward part of V0 is null which
means the region z < 0 behaves like the free space.
Hence the propagation of the source involves the first one-
way equation only. To compute the next terms, it is ne-
cessary to solve the two one-way equations after the right-
hand side has been computed. Any entry of R is equal to

±T and T involves ∂zΓ. By definition of Γ, we have:

∂zΓ =
ω2∂zc

2c3
Γ−1 (8)

which implies that T acts like the principal part of

ω2∂zc

2c3
Γ−2 (9)

We can then observe that T involves the inverse of the
Helmholtz equation.
We now compare our approach to the one proposed by
Kiyashchenko et al. [4] for solving the scalar wave equa-
tion. To get the same type of numerical scheme, it is ne-
cessary to include the diagonal entries of R into the sys-
tem of one-way equations and thus, the left-hand side of
the system involves the extra terms of R only. We then get
the same type of numerical scheme than in [4] by chan-
ging Γ into the identity and T by its Padé approximation
at high-frequency. To replace Γ by the identity amounts
to consider the simplest high-frequency approximation.
Hence we can say that the numerical scheme in [4] corres-
ponds to a high-frequency approximation of our scheme.
Moreover, the solution computed in [4] corresponds to the
sum of V0 and V1 only while we can consider high-order
terms which do not require a high computational cost by
using the assembling process suggested in [5]. This is
why we claim that we generalize the approach in [4].

Illustrations
In that section, we intend to illustrate the performance

of our numerical scheme by considering a synthetic 2D
velocity model, the so-called GXT model. We represent
the arrival times and we compare our results with the ones
obtained by a finite element method. We use the SPEC-
FEM2D software.

Figure 1: Velocity model GXT
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Figure 2: Sismogram obtained with the multi-step
one-way system

Figure 3: Sismogram obtained with the specfem2D
software

The model is composed of a top layer with relatively
low-velocity (water), a low-velocity layer (bottom of
the ocean), and two salt domes. There is a velocity
gradient, increasing as it goes deeper. The model is
28 x 6 kilometers, the source time function is a Ricker
centered at 30 Hz, located at the middle of the top of
the model, and the receivers, located along the top of
the model, recorded 8 seconds. We focus our attention
on the kinematics because we intend to apply migrations
techniques. We can then observe that the sismograms are
in good agreement and that the main interfaces such as
the bottom of the ocean, and the first salt dome can be
identified.

The next step of investigation concerns the application
of migration techniques based on our solver for the wave
equation. At present time, we are considering different
methods which will be presented and compared to com-
plete this work.
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Abstract
Radar Cross Section (RCS) measurements cannot be

entirely and accurately obtained because of experimen-
tal constraints in the low frequency domain. Since it
is easy to make accurate computations in this frequency
bandwidth, the aim of this paper is to present a filtering
method based on a decomposition of the computed Per-
turbation Operator: the Characteristic Current Decompo-
sition. This approach allows to project the RCS measure-
ments onto a basis particularly suited to the target under
test, allowing thus to optimally filter unwanted contribu-
tions affecting the measurements.

Introduction
Radar Cross Section (RCS) is a description of how an

object reflects an incident electromagnetic wave. Quanti-
tatively, RCS is the effective surface area that intercepts
the incident wave and isotropically scatters the energy.

The RCS σ of an arbitrary object of size L is highly
dependent on several parameters: frequency f (or wave-
length λ = c/f , where c is the speed of light), incident
angles (θi, φi), polarization pi of the incident wave, ob-
servation angles (θs, φs) and polarization ps of the scat-
tered wave: σ(f, θi, φi, θs, φs, ps).

In this paper, we focus on RCS in the low frequency
domain.
On the one hand, when L ≤ λ, the measured RCS σmeas

is often an unsatisfactory approximation of σ:

• The RCS cannot be accurately measured: the illu-
mination is not plane, the anechoic chamber is too
small, the absorbers are not efficient enough;

• The RCS cannot be entirely measured on the whole
unit sphere: only a few data are reachable.

On the other hand, the computed RCS σnum is always
available with a good precision because numerical sys-
tems to be inverted are of limited size.

As illustrated in [1] or [2], the Characteristic Cur-
rent Decomposition (CCD) gives a relevant model of σth

through σth
n modes : σth =

∞∑

n=1

anσth
n .

An interesting issue is to find a way to improve the qual-
ity of RCS measurements σmeas by using the CCD the-

ory. More than that, this theory gives tools allowing to
extrapolate accurately the few measured data.

EM scattering and Perturbation Operator
Let O be an open bounded subset of R3 with regular

boundary Γ, and Ω = R3\O its exterior unbounded do-
main. The obstacle O is assumed to be Perfectly Elec-
trically Conducting (PEC), and the surrounding medium
(i.e. Ω) to be the vacuum. We denote by k the wavenum-
ber of the wave and by Z0 the vacuum impedance.

Let ŝ be some direction of the unit sphere Σ and p some
polarization vector. The incident plane wave of direction
ŝ and polarization p is (Ei(x; ŝ, p),H i(x; ŝ, p)).
We denote by (E,H) the elementary fields solution to
the harmonic Maxwell equations, and (E∞,H∞) the as-
sociated far field patterns. It is known, [3], that e.g. for
E∞:

E∞(x̂; ŝ, p) =
ikZ0

4π
x̂×

∫

Γ
(J × x̂)e−iky·x̂ds (1)

where J(y; ŝ, p) = ν(y) × H(y; ŝ, p) is the electric
current on Γ.

We introduce the space of tangential fields on the
sphere Σ whose squared modulus is integrable:

T 2(Σ) =
{
g : Σ → C3; g ∈ L2(Σ), g(ŝ) · ŝ = 0

}

with g a vector field on Σ. In this space, we have :

E∞(x; ŝ, p) =
∫

Σ
E∞(x; ŝ, g(ŝ))dσ

Let us now introduce the Perturbation Operator (PO):

F : T 2(Σ)−→ T 2(Σ)

g 7−→ Fg(x̂) =
∫

Σ
E∞(x̂; ŝ, g(ŝ))dσ

It is important to notice that since F is intimately related
to the Scattering Operator S by the relation S = I + 2F
[1], it contains the whole information on the RCS σ.
It is shown in the Colton Kress’s monograph, [3], that F
is an injective compact operator with dense range if and
only if k is not a resonant wavenumber for the interior
problem. Besides, the F operator is normal and such that:

F ∗F = FF ∗ = −1
2
(F + F ∗). (2)
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The weak form of the Electromagnetic Field Integral
Equation (EFIE) is: for all test current J t(x), find J(x)
such that

(
Ei, J t

)
Γ

= iz(J, J t) where

z(J, J t) = Z0

∫

Γ

∫

Γ
G

(
kJ · J t − 1

k
∇J∇J t

)
dxdy

Let Z be the linear operator associated to the bilinear
form z defined above; for all real non negative s, Z is
shown to be an isomorphism between the spaces Hs(Div)
and Hs(Rot) when k is not a resonant wavenumber, [4].
The special case s = −1

2 is interesting since V ′, the dual
of V = H− 1

2 (Div), can be identified with H− 1
2 (Rot),

[5]. In that case, z extends to a bilinear continuous form
in V × V and Z is linear continuous onto V ′, [6]:
Z : V −→ V ′ and < ZJ, J ′ >= z(J, J ′) for all J ′ ∈ V .

Let A∞ be the Bistatic Far Field Operator and (A∞)?

its adjoint. The equation relating J to g is:
iZJ = 1

Z0
(A∞)? g, whence the Perturbation Operator

reads : Fg = A∞ J = −iA∞ (Z0Z)−1 (A∞)? g.
Let us introduce the hermitian splitting of the opera-

tor Z: < ZJ, J t >=< ZrJ, J t > +i < ZiJ, J t >.
Let zr and zi be the bilinear form associated respec-

tively to Zr and Zi. We have, [7]:

zi(J, J t) =
1
Z0

∫

Σ
A∞(J)(ŝ) ·A∞(J t)(ŝ)dσ

that is: Z0Zi = (A∞)? A∞, and consequently:

Fg = −iA∞ (Z0Zr + i (A∞)? A∞)−1 (A∞)? g (3)

Spectral decomposition
We can state the theorem:

Theorem 1 Assume that k is not a resonant frequency for
the interior problem, then there exists a complete family
(en)n≥1 of tangential fields orthonormal in T 2(Σ) and a
sequence of complex numbers (λn)n≥1 lying on the circle
of radius 1

2 and center −1
2 (see Figure 1) such that

Fen = λnen and lim
n→∞λn = 0.

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
eigenvalues

Figure 1: Computed eigenvalues λn

The outline of the proof are described below.
Let α be some complex number, we define

F̃ (α) = A∞ (Z0Zr + α (A∞)? A∞)−1 (A∞)?

:= A∞Z−1
α (A∞)?

so that F = −iF̃ (i).
We introduce D, a discrete subset of the complex plane
D = D(α, k), such that Z−1

α exists for all α in C\D. Let
us pick some real α outside D, it is proved that F̃ (α) is a
compact self adjoint operator, and its spectral decompo-
sition can be used to construct the spectral decomposition
of F . Indeed, there is a sequence (en, λn)n≥0 of pairs
of tangential fields in T 2(Σ) and real numbers, such that
(en)n≥0 forms a complete family of orthonormal vector
fields in T 2(Σ) and en is an eigenvector of F̃ (α) with
eigenvalue λn, i.e. F̃ (α)en = λnen. With [1] and [2] we
define the characteristic currents Jα

n = Z−1
α (A∞)? en,

with Jα
n ∈ V , and we check that A∞Jα

n = λnen.
Let β be a complex number outside D, we obtain:

F̃ (β)en =
1

1
λn
− α + β

en.

This proves that en diagonalizes F̃ (β) for all β in C\D.
Since complex number i is not in D,we obtain that:

Fen = λnen.

The discrete Perturbation Operator
In this section, we study the discrete Perturbation Op-

erator Fh to get a tractable eigendecomposition.
We start from a mesh Th of Γ by some triangular ele-

ments (the generic symbol h is related to the size of the
elements). Figure 2 shows the mesh of the Nasa-Almond,
a generic 3-D object. Raviart Thomas’s finite elements
space Vh on Th to approximate the currents flowing on Γ;
space Vh is a finite dimensional approximation subspace
of V .Then we substitute Vh for V in the continuous prob-
lem. Finally, we need some suitable quadrature rules to
evaluate the integrals over Γ.

Figure 2: Mesh of the Nasa-Almond

This leads to a discrete Perturbation Operator Fh, that
can be assimilated to σnum.
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RCS measurements filtering and extrapolation
The main properties of F are still true for its dis-

crete version: Fh is normal so it can be diagonalized in
an orthonormal basis: Fh = ΣnumD(Σnum)∗. Let M
be the size of Fh and let us choose P < M so that
[σnum

1 · · ·σnum
P ] are the first eigenvectors of Fh associ-

ated with the P largest eigenvalues. P can be chosen so

that σ̃num =
P∑

n=1

bnσnum
n is a rank P approximation of

σnum with a given precision. We denote [σnum
1 · · ·σnum

P ]
the Signal subspace Si and [σnum

P+1 · · ·σnum
M ] the Noise

subspace N , according to [8].
By projecting σmeas onto Si it is possible to filter the

electromagnetic components of the measurements that do
not belong to the scattering mechanism of the target, and
to get a better measurement of the RCS target. Figure 3 il-
lustrates this filtering process on the Nasa-Almond, where
the crosses represent the errors on the raw measurements
with respect to the theoretical RCS of the target (±25%,
eg ±1dB), and the dots show the errors obtained after
filtering the measurements (±10%, eg 0.4dB).

Figure 3: Error before and after filtering

Moreover, we know each σnum
n on the whole unit

sphere. So it is possible to extrapolate the measurements
out of the measurement range, which is shown on the Fig-
ure 4. The crosses are the few true measurement points,
the dashed line is the theoretical RCS of the target versus
azimuth and the strong line is the extrapolated version of
our measurements, which is clearely a very good approx-
imation of σth.

This section can be summerized with this schema:

Si = σ
?←− σth =

∞∑

n=1

anσth
n

x
y

Si + N = σmeas ←− σnum =
M∑

n=1

bnσnum
n
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Figure 4: RCS Measurements and Interpolation

with Si =
P∑

n=1

b
′
nσnum

n and N =
M∑

n=P+1

b
′
nσnum

n .
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1 Abstract
We combine a Galerkin approach with a reduced basis
method for the evaluation of outputs of interest implicitly
depending on a given input via the resolution of a PDE
issue from a harmonic wave propagation problem. The
main features of the method are: i) rapid convergence on
the entire set of parameters, ii) a posteriori error estima-
tors for the output and iii) an off-line (parameter indepen-
dent) on-line (very fast) computational strategy. In the
present paper we allow the use of different approximation
spaces for solving the primal and dualtruth approxima-
tion problems reducing the off-line computational effort.

2 Introduction
We are interested on therapid, accurateandreliable res-
olution of the following problem1

∣

∣

∣

∣

∣

∣

∣

∣

∣

For an inputµ ∈ D ∈ R
p evaluate the output

se(µ) := l(ue(µ)) ∈ C,

whereue(µ) ∈ Xe is the solution of the PDE

a(ue(µ), v;µ) = f(v), ∀v ∈ Xe.

(1)

Note that the output can be also obtained by adjoint tech-
niques: ifψe(µ) ∈ Xe is the solution of the dual problem

a(φ,ψe(µ);µ) = l(φ), ∀φ ∈ Xe, (2)

then se(µ) = f(ψe(µ)). This kind of problem often
arises from applications related to optimization, control
and material design. Examples of this implicit relation
between the output and the input through the resolution of
a PDE can be found in many situations: i) theradar cross
sectionfor an incident plane wave with a givenwave vec-
tor in the case of a scattering problem by an object, ii)
the electromagnetic energyon a region for some specific
propertiesor shapeof a component,. . .

The approach we follow is based on thereduced basis

1The script “e” stands forexact. It will disappear on the next section
once we’ve discretized the equations.

method. This method recognizes that the parameter de-
pendent solutionue(µ) is not some arbitrary member of
the spaceX, but it evolveson a much lower-dimensional
manifold induced by theµ-dependence. In this way, we
might expect that, in many instances, there exist coeffi-
cientscNi (µ) such that the finite sum

∑N
i=1

cNi (µ)ue(µi)
is very close toue(µ) for anyµ ∈ D for some well cho-
sen parametersµi ∈ D.

The reduced basis method has been introduced in the 70’s
for nonlinear structural analysis [1]. More recently, [3],
[5], [2] the method has been improved and extended to
many other applications including the treatment of ellip-
tic, parabolic and (in more recent works) non-coercive
PDE’s and nonlinear problems.

In the present work, the reduced basis approach is used
for the evaluation of outputs related to the harmonic
Maxwell’s equations under parameter variations. We give
the possibility of approximating problems (1) and (2) with
different Galerkin spaces well adapted to each problem
reducing the computational effort of the method. The fea-
sibility and efficiency of the method will be shown during
the presentation through several numerical experiments.

3 Presentation of the method
The method we apply combines a Galerkin approxima-
tion of the problems (1) and (2) (providing the accuracy)
and a reduced basis approach to drastically reduce the
dimension of the approximation spaces (giving the effi-
ciency). The reliability is obtained via the construction of
a posteriori error estimators.

3.1 The truth approximation

Let Xp (resp. Xd) be an approximation space well
adapted to the primal problem (1) (resp. to the dual prob-
lem (2)) and letXpd be a third approximation space sat-
isfying Xp ⊂ Xpd, Xd ⊂ Xpd. We assume thatf(·)
andl(·) are continuous linear forms and thata(·, ·;µ) is a
bilinear form, continuous uniformly onµ ∈ D satisfying

1
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∀ µ ∈ D, m ∈ {p, pd}, n ∈ {d, pd},

0 < β
p,m
0

≤ βp,m(µ) := inf
v∈Xm

sup
w∈Xm

a(v,w;µ)

‖v‖ ‖w‖
,

0 < β
d,n
0

≤ βd,n(µ) := inf
φ∈Xn

sup
η∈Xn

a(η, φ;µ)

‖η‖ ‖φ‖
.

(3)

We introduce the approximate primal and dual problems
∣

∣

∣

∣

∣

Findul(µ) ∈ X l such that(l ∈ {p, pd})

a(ul(µ), v;µ) = f(v), ∀ v ∈ X l,
(4)

∣

∣

∣

∣

∣

Findψl(µ) ∈ X l such that(l ∈ {d, pd})

a(φ,ψl(µ);µ) = l(φ), ∀ φ ∈ X l.
(5)

The approximation of the output is thus computed by the
expression

spd(µ) = l(upd(µ)) = f(ψpd(µ)). (6)

We will assume that the approximation spaces have been
chosen in such a way that∀ l ∈ {p, pd}, n ∈ {d, pd}

‖ul − ue‖ ≤ ε, ‖ψn − ψe‖ ≤ ε, ∀ µ ∈ D. (7)

The solutions of the problems (4)–(5) and the output
given by (6) will be called thetruth approximationsand
they will be considered the reference solutions.

3.2 The reduced basis method
We introduce nested sets of samples

∣

∣

∣

∣

∣

S
p
N = {µ

p
i ∈ D, 1 ≤ i ≤ N}, N ≤ Nmax,

Sd
M = {µd

j ∈ D, 1 ≤ j ≤M}, M ≤Mmax,

and associated Lagrangian reduced basis spaces
∣

∣

∣

∣

∣

X
p
N = span{up(µp

i ), 1 ≤ i ≤ N}, N ≤ Nmax,

Xd
M = span{ψd(µd

j ), 1 ≤ j ≤M}, M ≤Mmax.

Solving the primal and dual reduced basis problems
∣

∣

∣

∣

∣

FinduN (µ) ∈ Xp
N such that

a(uN (µ), v;µ) = f(v), ∀ v ∈ X
p
N ,

(8)

∣

∣

∣

∣

∣

FindψM (µ) ∈ Xd
M such that

a(φ,ψM (µ);µ) = l(φ), ∀ φ ∈ Xd
M ,

(9)

we define the reduced basis approximation of the output
by [4]

sN,M = l(uN ) − a(uN , ψM ) + f(ψM ). (10)

where the dependence onµ has been omitted. We observe
numerically that

|spd(µ) − sN,M (µ)| ≈ e−αN−βM , α, β > 0, (11)

which implies, in general, thatN andM can be taken
very small.

4 The affine assumption: An off-line on-line compu-
tational strategy

Our ultimate goal is to build a method whose computa-
tional cost for the evaluation of the output is indepen-
dent on dimXm, m ∈ {p, d, pd} (only depending onN
andM ). Unfortunately, this is not possible in general.
When the bilinear functional satisfies the so-calledaffine
assumption(a variable separation property)

a(u, v;µ) =

Qa
∑

q=1

Θq(µ) aq(u, v), (12)

we can apply an off-line on-line computational strategy:
the off-line part isµ independent and can be thus done
once and for all; the on-line part has a computational cost
independent on dimXm (see [5] for further details). A
technique recovering this efficient off-line on-line strat-
egy in presence of nonaffine parameter dependence has
been introduced in [2].

5 The reliability: A posteriori estimators
On this section we providea posteriori error estimators
that certify the reduced basis approximation with respect
to the truth approximation. This will allow us to deter-
mine whether the reduced basis is chosen appropriately,
i.e., with enough elements in the basis to represent the so-
lution adequately without overresolving at too high com-
putational cost. Under the assumption (12) this estimators
can be computed following a strategy such that the com-
putational cost of theµ-dependent (on-line) part will only
depend onN ,M andQa, being thus very fast.

5.1 Some assumptions and notation
We define the residuals for the primal and dual problems
by
∣

∣

∣

∣

∣

R
p
N (v;µ) = f(v) − a(uN (µ), v;µ), ∀ v ∈ Xpd,

Rd
M (φ;µ) = l(φ) − a(φ,ψM (µ);µ), ∀ φ ∈ Xpd,

and for (n,L) ∈ {(p,N), (d,M)} we introduce their
dual norms on(Xm)′, m ∈ {p, d, pd}

ε
n,m
L (µ) := sup

v∈Xm

|Rn
L(v;µ)|

‖v‖Xm

. (13)

We assume that we can build alower bound for the inf-
sup parameters(3) denoted byβ

p,m
(µ), m ∈ {p, pd}

andβ
d,m

(µ), m ∈ {d, pd} such that
∣

∣

∣

∣

∣

0 < β
p,m

0 ≤ β
p,m

(µ) ≤ βp,m(µ), ∀ µ ∈ D,

0 < β
d,m

0
≤ β

d,m
(µ) ≤ βd,m(µ), ∀ µ ∈ D,

2
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with a (low) on-line computational cost independent on
the dimXm (see [5] for its construction).

5.2 Estimators for the primal and dual solutions
Defining the primal estimator by

∆p
N (µ) :=

ε
p,p
N (µ)

β
p,p

(µ)
, (14)

one can easily show that

1 ≤
∆p

N (µ)

‖uN (µ) − up(µ)‖
≤

γ(µ)

β
p,p

(µ)
; ∀ µ ∈ D,

where γ(µ) is the continuity constant of the operator
a(·, ·;µ). This shows that (14) provides an optimal rig-
orous upper bound for‖uN (µ) − up(µ)‖. Similar results
for the dual solution can be also obtained.

5.3 Estimators for the reduced basis output
The next theorem allow us to build a posteriori error esti-
mators for the error betweensN,M ands:

Theorem 1 The following inequalities are satisfied

|spd − sN,M | ≤
ε
p,pd
N (µ) εd,pd

M (µ)

β
p,pd

(µ)
, (a)

|spd − sN,M | ≤
ε
p,p
N (µ) εd,p

M (µ)

β
p,p

(µ)
+ (b)

ε
d,pd
M (µ) ‖upd(µ) − up(µ)‖.

(15)

The right hand side of (15).(a) can be used as a rigorous
upper bound of the error on the output. Note that the off-
line computational cost might be rather expensive as it
involves the resolution of linear systems (computation of
εm,pd(µ)) and, mainly, the resolution of eigenvalue prob-

lems (construction ofβ
p,pd

(µ)) of size dimXpd (see [5]
for further details).

In the application shown in figure 1 related to the 2D har-
monic Maxwell’s equations under variation of the mate-
rial coefficients on a part of the domain, we have con-
sideredXp 6= Xd due to the singularities on the primal
and the dual truth approximations. In this case dimXpd

is slightly larger than dimXm, m ∈ {p, d}. Bounding
‖upd − up‖ by 2ε (see (7)), the expression on (15).(b)
can be also used as an estimator. In this way, the off-line
computational effort is reduced as the eigenvalue prob-
lems needed for the construction ofβ

p,p
(µ)) are set on

the spaceXp.

Figure 1: Primal (left) and dual (right) truth
approximations for a givenµ related to a harmonic 2D

Maxwell application.

6 Conclusions
During the presentation we shall discuss the fundamen-
tal issues associated to the reduced basis method applied
to harmonic Maxwell’s equations. More precisely, we
will exhibit the problems linked with the parameter vari-
ations through resonances (where the inf-sup parameter
vanishes) as well as the treatment of non-affine function-
als. Some techniques allowing to overcome these diffi-
culties will be presented. Finally we will show some nu-
merical experiments illustrating the performance of the
approach.
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Abstract
This paper presents some methods to localize and to

characterize buried dielectric objects in applications like
tumor detection or through the wall detection of peo-
ple. Two fast localization approaches using time reversal
and the topological gradient methods are given. To esti-
mate dielectric properties of the objects, a Gauss-Newton
method is developed. Some numerical examples are given
to illustrate these different methods.

Introduction
This work deals with an inverse scattering problem. A

set of dielectric objects is buried in a background medium
that is not exactly known. Several receiving antennas are
located outside the domain which is illuminated by sev-
eral sources. In this paper we are interested by problems
where not only the localization but also the characteriza-
tion of the dielectric properties of the objects is necessary.
We study two kinds of problems in particular : a biolog-
ical application for the detection of tumors and a secu-
rity application where we want to detect through the wall
people inside a room. For these applications, by using
the recorded measured scattered field on some receivers,
we first localize the buried objects by using time reversal
or topological gradient methods. Next inside the detected
areas, by using a Gauss-Newton method, we search the
dielectric properties of the objects.

In the first section we give a general mathematical for-
mulation of the inverse problem, in the second section,
we present the basic principles and the application of
time reversal and topological gradient methods to local-
ize the buried objects. Some examples are given to illus-
trate these methods. In the third section, we present the
Gauss-Newton method used to determine the dielectric
properties of the objects. We give then some numerical
examples.

Formulation of the inverse problem
Let’s consider the electromagnetic problem given by

the Maxwell equations :

{

−ε∂E
∂t

+ curl H = σE,

µ∂H
∂t

+ curl E = 0,

where the objects are represented by the dielectric param-
eters (ε, σ). The boundary conditions at infinity are given
by the Sommerfeld condition :

lim
r→∞

(√
µHs × ~r − r

√
εEs

)

= 0.

The problem is to find, from the knowledge of the scat-

Figure 1: Experimental setting, the target is a salted
water filled bottle, a 8 antennas array is used.

tered field on the receivers, the buried objects (ε, σ). Fig-
ure 1 shows an experimental setting where the object to
find is a bottle filled with salted water. Here the receivers
are an array of 8 ETSA antennas. The inverse problem
can be written as an optimization problem in which the
following discretized cost function has to be minimized :

j(c) =
1

2

∑

t∈[0,T ]

∑

s∈S

‖Luc − umeas‖2 ,

where the unknown c = (ε, σ), L is an operator which
maps the field on all the points of the mesh to the mea-
surements points, uc is the computed field and umeas the
measured scattered field on the receivers.

Localization methods
We search for methods whith good localisation accu-

racy and low computation time. The chosen methods sat-
isfying these constraints are the time reversal method and
the topological gradient method. For both methods, the
first step of the process can be considered as the localiza-
tion of the objects.

The time reversal method
The time reversal method has been introduced in acous-

tics [1], [2]. It uses the reciprocity principle : considering
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the field scattered by a set of objects on a surface which
encloses them. If the time is reversed and the receivers
are used as sources, where the recorded field is transmit-
ted in the inverse sense of the time, the wave will focalize
at the objects.

In the electromagnetic problem, the time reversed field
(Ẽ(x, t), H̃(x, t)) = (E(x,−t),H(x,−t)) satisfies the
following equation ;

{

ε∂Ẽ
∂t

+ curl H̃ = σẼ,

−µ∂H̃
∂t

+ curl Ẽ = 0,

In practice, in the measured field on a receiver we have
a contribution of the field scattered by the objects and a
contribution of the field scattered by the others receivers.
The first step consists in separating the field scattered by
the objects from the total signal by evaluating fields with-
out objects in the domain. Next, the resulting signal is
applied on the receivers and the L∞-norm is plotted on
the domain. The point where the value of the norm is
maximum defines the positions of the objects. In the case
where we do not have losses in the domain, the time re-
versed field is equivalent to the solution of the adjoint
Maxwell equations.

The topological gradient method
The topological gradient method [4] has been intro-

duced for optimal design problems written as the mini-
mization of a cost function j(Ω) depending on the domain
to optimize. The method was introduced to allow topol-
ogy changes during the optimization process. The varia-
tion of the cost function with respect to the insertion of an
infinitesimal dielectric ball is computed as an asymptotic
expansion :

j(Ω\B(x, ε)) − j(Ω) = f(ε)g(x) + o(f(ε)),

where g(x) can be approached by the real part of the prod-
uct of the direct state (solution of Maxwell equation) of
and the conjugate of the adjoint state (solution of the ad-
joint Maxwell equation). We plot this function g on all
point of Ω and material has to be removed where the cost
function go down the most (where the topological gradi-
ent is the most negative). The localization problem can
be viewed as an optimal design problem in which the fi-
nal design is domain with the scatterers, it could be for-
mulated as find the best localization of the scatterer to
minimize the cost function.

Parameter identification
The Gauss-Newton method is now used in areas found

by localization methods. The main difficulty in solving

inverse problems is their ill-posedness, a small error on
the measurements leads to a huge error on the solution.
Then it is important to add information about the solution
by using regularization methods[3].

The Gauss-Newton method is commonly used for solv-
ing inverse problems. It is based on the Newton method
for minimizing the cost function

j(c) =
1

2
‖F (c)‖2 + αR(c),

where F is the difference between the computed field and
the measured field on the receivers and R(c) a regulariza-
tion term. An iterate of the Newton method is written, we
are looking for d such that :

D2j(ck)dk = −Dj(ck),

Neglecting the second derivative term, leads to solve the
problem :

(DF (ck)T DF (ck) + αD2R(c))d =

− (DF (ck)T F (ck) + αDR(c)),

and
ck+1 = ck + βkdk,

where βk may be chosen with a line search or trust-region
method. The main difficulty of the method is the evalua-
tion of the derivative DF (ck). Different possibilities ex-
ist, for example the evaluation of the adjoint or the use of
approximative derivative (Broyden formulas). When we
have a very important number of unknowns, because the
size of the Jacobian matrix, the adjoint solution with gra-
dient method to evaluate the least-square problem is more
appropriate. For the moment, in our case, we consider
only homogeneous material and then by using a FDTD
approach to evaluate the field, we prefer use a Broyden
formula to approximate the derivative. This solution is
more interesting in terms of cpu-time.

Numerical experiments
To illustrate the different presented methods, we con-

sider a problem where the receivers are located around
the objects to find. We put a source on a side of the do-
main and by using the field recorded on the receivers, we
try to localize the objects and to identify their dielectric
properties. The studied source is a 1 to 6 ghz, the domain
is a 20cm × 20cm squared domain and the searched de-
fault has a size of 1cm. Figure 2 shows the position of
the objects, figure 3 shows the position of the objects ob-
tained by the time reversal method and by the topological
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Figure 2: Objects position.

Figure 3: Localization by the time reversal method
(left) and by the topological gradient method (right).

gradient. These computations took several minutes on a
desktop computer.
To illustrate the Gauss-Newton method used to find di-
electric properties when we assume known the localiza-
tion of the objects, we have computed the field on the
receivers for the previous configuration. For this com-
putations we took homogeneous dieletric properties of
(ε = 40, σ = 0). Next by using the computed value
and by taking the initial guess (ε = 1, σ = 0), after
40 iterations, we retrieved the solution. For this example
we didn’t take any regularization. Figure 4 and 5 repre-
sents the evolution of the cost function and of the solu-
tion during the optimization process. This example is not
completely demonstrative of the efficiency of the method
because of the fact that we have committed the inverse
crime. Some other development are currently in progress.

Conclusion

For some applications, the localization but also dielec-
tric value of the target are necessary. In this paper we have
presented some localization and characterization meth-
ods. We give interesting results. However, the methods
are studied separately, their combined use, hasn’t been
studied yet. This study will be the subject of a future
work.
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Figure 4: Evolution of the cost function.
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Abstract
We consider the 2-D wave equation defined onΩ ⊂

R
2. Using the HUM method, one may associate to

any fixe subsetω ⊂ Ω, the control vω of minimal
L2(ω × (0, T ))-norm which drives to rest the system at
a timeT > 0 large enough. We address the question of
the optimal position ofω which minimize the functional
J : ω → ||vω||L2(ω×(0,T )). Assumingω ∈ C1(Ω), we ex-
press the shape derivative ofJ as a curvilinear integral on
∂ω × (0, T ) independently of any adjoint solution. This
expression leads to a descent direction and permits to de-
fine a gradient algorithm. The numerical approximation
of the problem is discussed and numerical experiments
are presented in the framework of the level set approach.

Introduction - Statement problem
Let us consider a Lipschitzian bounded domainΩ ⊂

R
2, two functions(y0, y1) ∈ H1

0 (Ω) × L2(Ω) and a
real T > 0. In the context of the exact distributed
controllability, one may determine a subsetω of pos-
itive Lebesgue measure for which the following prop-
erty holds (see [2], [5]) : there exists a control func-
tion vω ∈ L2(ω × (0, T )) such that the unique solution
y ∈ C([0, T ]; H1

0 (Ω)) ∩ C1([0, T ]; L2(Ω)) of











ytt − ∆y = vωXω, Ω × (0, T ),

y = 0, ∂Ω × (0, T ),

(y(·, 0), yt(·, 0)) = (y0, y1), Ω,

(1)

satisfies

y(., T ) = yt(., T ) = 0, on Ω. (2)

We introduce the set

V (y0, y1, T ) = {ω ⊂ Ω such that(2) holds} (3)

which contains in particularΩ. Moreover, from [2] as-
sumingΩ ∈ C∞, any subsetω satisfying the geomet-
ric control condition inΩ (Every ray of geometric optics
that propagates inΩ and is reflected on its boundary en-
tersω in time less thanT ) belongs toV (y0, y1, T ). The
controllability property may be obtained using the Hilbert
Uniqueness Method (HUM) introduced by J.-L. Lions in
[5], which reduces the problem to an optimal control one.

Precisely, for anyω ∈ V (y0, y1, T ), the unique HUM
controlvω of minimalL2-norm may be obtained by mini-
mizing the functionalJ : L2(Ω)×H−1(Ω) → R defined
by

J (φ0,φ1) =
1

2

∫

ω

∫ T

0
φ2dtdx

+ < φt(·, 0), y0 >H−1(Ω),H1
0 (Ω) −

∫

Ω
y1φ(·, 0)dx,

(4)
whereφ denotes the solution of the adjoint homogeneous
system











φtt − ∆φ = 0, Ω × (0, T ),

φ = 0, ∂Ω × (0, T ),

(φ(·, T ), φt(·, T )) = (φ0, φ1), Ω.

(5)

This provides the following characterization of the HUM-
control (see [5], chapter 7).

THEOREM 0.1 Given any(y0, y1) ∈ H1
0 (Ω) × L2(Ω),

T > 0 and ω ∈ V (y0, y1, T ), the functionalJ has a
unique minimizer(φ̂0, φ̂1) ∈ L2(Ω) × H−1(Ω). If φ̂ is
the corresponding solution of (5) with initial data (φ̂0, φ̂1)
thenv = −φ̂Xω is the control of (1) with minimalL2-
norm.

Related to the controllability problem (1)-(2), we consider
for any(y0, y1) ∈ H1

0 (Ω) × L2(Ω) andT > 0 fixed, the
following problem :

(Pω) : inf
ω⊂VL(y0,y1,T )

J(Xω) =
1

2
||vω||

2
L2(ω×(0,T )), (6)

andVL(y0, y1, T ) = {ω ∈ V (y0, y1, T ); |ω| = L|Ω|}
for someL ∈ (0, 1), which consists in finding the opti-
mal location ofω in order to minimize theL2-norm of
the corresponding HUM-controlvω. Note that this opti-
mal shape design problem may be not well-posed in the
sense that there is no solution in the class of characteris-
tic function (we refer to [4] for a description in the static
case).

We numerically solve the problem(Pω) and proceed as
in [8] where the author considers a damped wave equation
and optimizes the position of the damping zone in order
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to minimize the energy of the system. Since the control
associated to the optimal solutionω is a fortiori a HUM
control (that is of minimalL2(0, T ) norm), (Pω) is re-
duced to find the optimal HUM control with respect toω.
In this way, we make use of the explicit characterization
of vω in term of the solutionφ of (5). To the knowledge
of the author, the problem(Pω) has never been studied so
far. In the similar context of the boundary controllability,
it is worth to mention the work of Asch-Lebeau [1]. In or-
der to take into account the size restriction, we introduce
a positive multiplierλ and then consider the functional
Jλ(Xω) = J(Xω) + λ(||Xω||L1(Ω) − L|Ω|).

Shape and topological derivative ofJλ

In order to solve the problem(Pω) with a gradient de-
scent procedure, let us compute an explicit expression of
the derivative of the functionalJλ with respect to smooth
variations ofω (the so-called shape derivative). In this re-
spect, we assume thatω ∈ C1(Ω), Ω being fixed inR

2.
Let a vector fieldθ ∈ (W 1,∞(Ω, R2))2, θ|∂Ω = 0 and not
vanishing on a neighborhood of∂ω. It is worth to men-
tion that the initial condition(y0, y1) is independent ofω
and that the fieldθ is time independent (sinceω is time
independent). We refer the reader to [4] for the method-
ology to compute the shape derivative in theθ-direction.

THEOREM 0.2 Let ω ∈ V (y0, y1, T ), vω the HUM con-
trol for (1) andν be the unit normal vector oriented to-
ward the exterior ofω. If ω is of classC1(Ω) and if
(y0, y1) ∈ (H2(Ω) ∩ H1

0 (Ω)) × H1
0 (Ω), then the deriva-

tive ofJλ with respect toω is given by the following ex-
pression :

∂Jλ(Xω)

∂ω
· θ =

∫

∂ω

(

−
1

2

∫ T

0
v2
ω(x, t)dt + λ

)

θ · ν dσ

(7)

Remark 1 • The shape derivative (7) is expressed
independently of any adjoint solution. This is due
to the minimalL2(0, T )-norm property of the HUM
controlvω.

• It results from the relation (7) that the inclusion
ω1 ⊂ ω2 ⊂ Ω impliesJ0(ω2) ≤ J0(ω1). In par-
ticular, for λ = 0, the optimal domain isω = Ω ∈
V (y0, y1, T ). This justifies the introduction of the
subsetVL(y0, y1, T ) in the formulation of(Pω).

In a very similar way, one may obtain easily the so-
called topological derivative associated toJλ :

THEOREM 0.3 For any x0 ∈ Ω and ρ such that
D(x0, ρ) ≡ {x ∈ R

2, dist(x, x0) ≤ ρ} ⊂ Ω, the func-
tional Jλ associated toΩ\D(x0, ρ) may be expressed as
follows :

Jλ(XΩ\D(x0,ρ)) = Jλ(XΩ)

+ πρ2

(

1

2

∫ T

0
v2
Ω(x0, t)dt − λ

)

+ o(ρ2)

(8)
in term only of the HUM controlvΩ associated to (1) with
ω = Ω.

Descent algorithm
Relation (7) permits to build a decreasing sequence

(ω(k))(k≥0) of domains inVL(y0, y1, T ) for Jλ, effi-
ciently initialized using the relation (8) byω(0) = {x ∈

Ω, 1
2

∫ T

0 v2
Ω(x, t)−λ > 0}whereλ is chosen so that|ω| =

L|Ω|. For k > 0, we defineω(k+1) = (I + ηθ
(k))ω(k)

with

θ
(k)(x) =

(

1

2

∫ T

0
v2
ω(k)(x, t)dt − λ(k)

)

ν
(k), ∀x ∈ Ω

(9)
and

λ(k) =
1

2

∫

ω(k) div

(

∫ T

0 v2
ω(k)(x, t)dt ν

(k)

)

dx

∫

ω(k) div(ν(k))dx
. (10)

Remark 2 If ω(k) ∈ VL(y0, y1, T ) then ω(k+1) ∈
VL(y0, y1, T ) becauseJ(Xω(k+1)) ≤ J(Xω(k)) < +∞.

Uniformly controllable scheme
Since the pioneering work of R. Glowinski in the

nineties, the numerical approximation of the HUM con-
trol is known to be extremely sensitive with respect to
the parameters of approximations (we refer to [10] for a
review). Any standard consistant finite element approx-
imation of the wave equation may lead to exponentially
divergent approximationvh of the HUM controlv. This
non commuting property between exact controllability
and numerical approximation is due to the spurious high
frequency oscillations generated by discrete dynamics. In
order to restore the uniform convergence of the discrete
control, it is necessary to bound by below uniformly in
h the group velocity of the high frequencies component.
Efficient remedies recently introduced in ([3],[7]) consist
in considering the finite element approximation of the so-
called viscous wave equation

(I +
h2

4
∂2

x)(I +
h2

4
∂2

y)ytt − ∆y = vXω, Ω × (0, T ),

(11)
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We refer to [6] for convergence analysis using Fourier se-
ries

Numerical experiments
We present some numerical experiments on the

unit squareΩ = (0, 1)2 with the initial position
y0(x) = exp−100(x1−0.3)2−100(x2−0.3)2 XΩ(x) concen-
trated on(0.3, 0.3) and velocityy1(x) = 0. Figures rep-
resents the optimal position of the support of the control
for T = 0.5, T = 1 andT = 3 respectively. For fulls
details, we refer to [9].
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Figure 1: Optimal position (black zone) of the support
of the control forT = 0.5
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Figure 2: Optimal position forT = 1
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son, RMA 8, Paris (1988).

[6] Münch A., A uniformly controllable and implicit
scheme for the 1-D wave equation, Mathematical
Modelling and Numerical Analysis39(2), 377-418,
(2005).

[7] Münch A., An implicit scheme uniformly control-
lable for the 2-D wave equation, To appear in J. Sci.
Comput.

[8] Münch A., Pedregal P., Periago F.,Optimal design
of the damping set for the stabilization of the wave
equation, J. Diff. Equations231, 331-358, (2006).

[9] Münch A.,Optimal design of the support of the con-
trol for the wave equation, To appear in Int. J. Nu-
mer. Math. Model.

[10] Zuazua E.,Propagation, Observation, Control and
Numerical Approximation of Waves approximated
by finite difference methods, SIAM Review, 47(2),
197-243, (2005).

433



QUASI INVERSION OF MULTISHOT - MULTIOFFSET SEISMIC DATA ON THE BASE OF GAUSSIAN
BEAMS DECOMPOSITION

M. Protasov†,∗, V. Tcheverda†,∗∗
† Tro£muk Institute of Petroleum Geology and Geophysics SB RAS, 3, prosp. Koptyug, 630090, Novosibirsk, Russia

∗Email: pmi702@uiggm.nsc.ru
∗∗Email: chev@uiggm.nsc.ru

Abstract.
The paper is devoted to recovery of local rapid pertur-

bations (scatterers/re¤ectors) of a priori known macrove-
locity background by means of linearized asymptotic in-
version of multi-shot multi-offset seismic data. Inversion
procedure is done via application of some speci£c integral
transform to input data with respect to source/receiver po-
sitions and time frequency. Result of this transform is rep-
resented as an asymptotic series with leading term being
superposition of some speci£c spatial Fourier constituents
of desired local perturbations. Composition of these con-
stituents is totally determined by range of time frequen-
cies and geometry of acquisition system. The approach is
tested on Sigsbee2A synthetic data set. Numerical results
are presented and discussed.

Introduction.
Inversion procedure presented below is destined for

imaging of rapid variations of the earth velocities em-
bedded within background with a priori known macrov-
elocity model. It should be noted that besides neces-
sity to recover proper geometry of these structures it is
very important to provide their ”true amplitude” imag-
ing. As true amplitude imaging we mean images being
free from in¤uence of geometrical spreading produced
by macro-velocity background. Currently the most pop-
ular approaches for this are based on Kirchhoff method
(Kirchhoff migration, Kirchhoff-based inversion). Origin
of these approaches can be traced to the paper Beylkin
(1985). Their principal limitations are introduced by the
use of high-frequency asymptotic entailing assumption
that response at point �r to a point source at �r ′ can be
represented as

G(�r, �r ′;ω) ≈ A(�r, �r ′)exp
[

iωT (�r, �r ′)
]

(1)

with frequency-independent traveltime and amplitude. If
this assumption is valid there is possible to integral trans-
form (summation weights for discrete statement) provid-
ing one with a leading-order, high-frequency asymptotic
inversion operator, that is with true amplitude quasi inver-
sion procedure.

Representation (1) is inadequate for descriptions of
some exploration seismic re¤ection data, but, besides,
there are troubles connected with multivalued nature of
travel time T (�r, �r ′) because of multipathing of the seis-
mic energy. Retaining all the arrivals is dif£cult to achieve
in a practical depth migration implementation, but even if
these dif£culties are overcome, there remains the problem
with behavior of amplitude function within the area where
the traveltimes are multivalued. These troubles could
be overcome by Gaussian beam migration (Hill, 2001),
when Green’s functionG(�r, �r ′;ω) is computed by means
of Gaussian beams superposition. Global regularity of
GB provides a possibility to handle properly all singular-
ities of ray £elds and to get an uniform high frequency
approximation of Green’s function. But at the moment
there are only a few attempts to develop preserving am-
plitude version of Gaussian beam prestack migration.

Method
Statement

Let us suppose that a medium we are dealing with pos-
sesses a priori known macrovelocity constituent c0(x, z)
and we are searching for its rapid perturbation c1(x, z).

Under some reasonable assumptions scattered/re¤ected
wave £eld on the free surface (input multishot/multioffset
data) can be represented as the following (Born’s approx-
imation):

φ(xr, xs;ω) = 2ω2

∫ ∫

X

1

c2
0
(ξ, η)

·

·c1(ξ, η)
c0(ξ, η)

G0(ξ, η;xs, 0;ω)G0(xr, 0; ξ, η;ω)dξη. (2)

Here (xr, 0), (xs, 0) are receiver and source positions re-
spectively and G0(ξ, η;x, z;ω) - is Green’s function for
macro-velocity model.

Input data:

φ(xr, xs, ω) = usc(xr, 0;xs, 0;ω) : 0 < ω1 ≤ ω ≤ ω2;

X0s ≤ xs ≤ X1s; X0r ≤ xr ≤ X1r. (3)
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The problem is to resolve linear integral equation (2) with
respect to function c1

c0
for given macro-velocity model c0

and seismic data (3).

Asymptotic inversion

Let us £x some interior point x = (xi, zi) and shoot a
couple of Gaussian beams - later referred as left and right
(Fig. 1) - towards acquisition system. Twice application
of Green’s and reciprocity theorems leads to the following
integral equation:

2ω2

∫

X

K(x; y;ω)
c1(y)

c0(y)
dy =

=

∫

xs

∫

xr

τ (gb)
s (xs;ω)τ (gb)

r (xr;ω)φ(xr;xs;ω)dxsdxr. (4)

The kernel of integral operator in the left-hand side of
this equation is product of a couple of mentioned above
Gaussian beams:

K(y, x;α, β;ω) = u(gb)
s (y;x;α, β;ω)u(gb)

r (y;x;α, β;ω);

while integral transform of input multishot/multioffset
data is de£ned by the following functions:

τ
(gb)
s(r) (xs(r);ω) =

∂u
(gb)
s(r)(xs(r), z;x;x0s(0r);ω)

∂z

∣

∣

∣

∣

z=0

.

Let us now apply Fourier transform with respect to time
frequency ω to both sides of integral equation (4) and
compute it for time t(x;α, β) = τs(x;α, β)+τr(x;α, β).
Here τs(x;α, β) and τr(x;α, β) are travel-times from x
to free surface computed for a priori known macroveloc-
ity model along left and right rays respectively. For the
next step we apply integration with respect to dip angle α
under £xed opening angle β. These transformations lead
to the linear integral operator Mβ in the left-hand side
which can be represented as the series of pseudodifferen-
tial ones:

Mβ = T β
0

+ T β
1

+ T β
2

+ T β
3

+ ...

It should be noted that operator T β
n acts fromCk toCk+n.

As we are interested in sharp perturbations of macrove-
locity only, we can neglect all terms of this series except
of the very £rst one and consider left-hand side as appli-
cation of the following simple transform to desired per-
turbation:

Mβ <
c1
c0
> (x) ≈ T β

0
<
c1
c0
> (x) =

∫ ∫

Xpar(x)

dp ·

·
∫ ∫

X

exp {i · p · x} exp {−i · p · y} · c1(y)
c0(y)

dy. (5)

The £rst integration in the right hand side of (5) is per-
formed over domain Xpar :

Xpar(xi, zi) =

⎧

⎨

⎩

p : ω1 ≤ |p|c0(x)
2 cos(β)

≤ ω2;

α1 ≤ arctan−px

pz
≤ α2

⎫

⎬

⎭

.

One can easy see that operator T β
0

is superposition of
forward and quasi-inverse two-dimensional Fourier trans-
form of the function c1

c0
. We call it quasiinverse because it

is performed not over the whole spectral space, but over it
subspaceXpar only. That is, we will image properly only
constituents of re¤ectors/scatterers which possess spatial
spectrum within speci£c set of partial reconstruction (6).

X

Z

rx
xs

i
x=(x,y)

i

y=( , )

x0s 0rx

Figure 1: Geometry of true amplitude Gaussian beam
imaging.

Numerical examples
Presented above procedure of true amplitude imaging

was used on synthetic data set Sigsbee2a calculated by
SMAART Joint Venture. The total stratigraphic model is
presented on the Fig.2. True amplitude images are pre-
sented on the Fig.3 for target area out of salt body and on
the Fig.4 for target area under salt intrusion. We would
like to pay attention on the quite well recovery of faults
for both target areas. One can estimate that intensity of
images are proportional to the real distribution of re¤ec-
tivity as well(real model possesses intensity of re¤ectors
proportional to fast velocity perturbation).
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Figure 2: Total stratigraphic model Sigsbee2A model.
Horizontal and vertical axes - distance in feets×104

Figure 3: Recovered (left) and real (right) images of
target area out of salt intrusion.

Figure 4: Recovered (left) and real (right) images of
subsalt target area.

Conclusion
It should be noted that proposed imaging procedure

provides so called ”selective image”. Their main features
are as follows:

• If spatial spectrum of re¤ector/scatterer component
lies within a set of partial reconstruction this pertur-
bation is totally recovered ;

• If spatial spectrum of a local object is out of a set of
partial reconstruction, it happens to be totally ”invis-
ible”;

• If spatial spectrum of a local object possesses
nonempty intersection with a set of partial recon-
struction selective image will be made from linear
projection of desired perturbation onto the image of
a set of partial reconstruction.

This follows very useful property - any singular object
like diffractor/scatterer, crack, fault, pinch and so on pos-
sesses rather wide spatial spectrum and, so, will be pre-
sented for a range of selective images. On the contrast,
any regular interface possesses rather narrow spatial spec-
trum and, so, one can easy choose dip and open angles
providing the set of partial reconstruction being far away
from this spatial spectrum. This opens a possibility to get
reliable image of low contrast singular objects of subseis-
mic scale.
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Abstract
The paper concerns with a problem of reconstruction of

acoustic or electromagnetic field from unexact data given
on an open part of a boundary of a given domain. A
regularization concept is presented for the ill-posed mo-
ment problem equivalent to a Cauchy problem for the
Helmholtz equation. A method of regularization by pro-
jection with application of Meyer wavelet subspaces is in-
troduced and analyzed. The derived formula, describing
the projection level in terms of the error bound of unexact
Cauchy data, allows to prove convergence and stability of
the method.

Introduction
Let Ω be a simply connected domain inRd, d = 2, 3

with a sufficiently regular boundary∂Ω and, moreover, let
Γ ⊂ ∂Ω be an open and connected part of the boundary.
We consider the problem of reconstruction of acoustic or
electromagnetic field from unexact data given onΓ. Letu
denote a certain component of the considered vector field.
Let us assume further that the field is harmonic with the
constant wave numberk. In this case the scalar functionu
satisfies inΩ the Helmholtz equation. With respect to ap-
plications we have some freedom in the choice of domain
Ω: namely, only the partΓ of the boundary∂Ω is given
a priori (indicated by measurement possibilities), and in
particular we may assume the same regularity of∂Ω as
that ofΓ.

Direct problems connected with the Helmholtz equa-
tion are typically defined by Dirichlet or Neumann con-
ditions on∂Ω, or by Dirichlet conditions on a one part
of boundary (i.e.Γ) and Neumann conditions on the sec-
ond one. The inverse problem considered in this paper
consists in solving the Helmholtz equation under both the
Dirichlet and the Neumann conditions posed on the same
partΓ of the boundary∂Ω. That means that we deal with
the following Cauchy problem

Lu := ∆u + k2u = 0, onΩ (1)

u|Γ = f uν |Γ = g

whereuν is the outer normal derivative ofu on ∂Ω. We
assume thatf ∈ H1(Γ) and g ∈ L2(Γ) are such that

there exists the unique solutionu ∈ H3/2(Ω). It is known
that the Cauchy problem for elliptic equations is ill-posed,
which means that the solutions do not depend continu-
ously on Cauchy data, see e.g. [1], [2]. This implies seri-
ous numerical difficulties in solving problems of this type,
especially in the case of perturbed data. However, just this
case is important from the point of view of real applica-
tions to acoustic and electromagnetic fields (cf. [3], [2])
where the exact Cauchy data are approximated by their
measurement values.

For a stable solving ill-posed problems, regulariza-
tion techniques are required. Numerical analysis of the
Cauchy problem for the Laplace equation is a topic of sev-
eral papers where different regularization methods were
proposed. Unfortunately, their application to Helmholtz
equation requires some modifications and additional anal-
ysis because of essential differences between these two
problems.

In this paper developed is the idea of a numerical
method based on a transformation of the Cauchy problem
to a generalized moment problem: findϕ ∈ L2(∂Ω \ Γ)
such that∫

∂Ω\Γ
ϕvdσ = µ(v) ∀v ∈ V (Ω), (2)

whereV (Ω) is a certain subspace ofL2(Ω) andµ a linear
functional onV (Ω) which will be defined later. This idea
was proposed by J. Cheng et al. in [5] for the Cauchy
problem for Laplace’s equation.

Generalized moment problem
General caseΩ ⊂ R3

Let the test spaceV (Ω) = V be defined as follows

V :=
{

v ∈ H3/2(Ω) : Lv = 0 onΩ, vν |∂Ω\Γ = 0
}

.

(3)
Moreover, forv ∈ V (Ω)

µ(v) :=
∫

Γ
[fvν − gv] dσ. (4)

Going into lines of Cheng et al. reasoning [5] we prove
that (1) is equivalent to the moment problem (2) with (3)
and (4) in the following sense:
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THEOREM 1 Let∂Ω ∈ C1+ε, g ∈ L2(Γ), f ∈
H1/2(Γ) and letk2 does not be an eigenvalue of the Neu-
mann problem for−∆. Thenϕ ∈ L2(∂Ω\Γ) is a solution
to the moment problem (2) with (3) and (4) if and only if
there exists a solutionu to the Cauchy problem (1) such
thatuν ∈ L2(∂Ω \ Γ) anduν = ϕ.

Model problem inR2

Now, our consideration is restricted to the caseΩ ⊂
R2. Without lost of generality we may assume that

∂Ω \ Γ = {(x1, x2) : x1 ∈ [0, 1], x2 = 0} (5)

andΓ ⊂ R × R+ is a sufficiently regular curve which
connects the two points(0, 0) and(1, 0). Let

γ = max{x2 : (x1, x2) ∈ Γ}. (6)

THEOREM 2 LetU denote the set of functions
{

β ∈ L2(R) : β̂(ξ)ξ2 cosh(γ
√

ξ2 − k2) ∈ L2(R)
}

(7)
whereβ̂ denotes the Fourier transform ofβ, and∀β ∈ U
let us definewβ(x1, x2) equal to

1√
2π

∫

R
β̂(ξ) cosh(x2

√
ξ2 − k2)eiξx1dξ, (8)

The set of functions{wβ : β ∈ U} is dense inV (Ω).

Moment problem with Meyer wavelets
The Meyer waveletψ is a function fromC∞(R) de-

fined by its Fourier transform as follows

ψ̂(ξ) = ei ξ
2 b(ξ),

where for2π
3 ≤ |ξ| ≤ 4π

3

b(ξ) =
1√
2π

sin
[
π

2
ζ

(
3
2π
|ξ| − 1

)]
,

for 4π
3 ≤ |ξ| ≤ 8π

3

b(ξ) =
1√
2π

cos
[
π

2
ζ

(
3
4π
|ξ| − 1

)]
,

and otherwiseb(ξ) = 0. The functionζ(x) equals 0 if
x ≤ 0, equals 1 ifx ≥ 1, andζ(x) + ζ(1− x) = 1. Then

ψjl(x) := 2
j
2 ψ(2jx− l) j, l ∈ Z

form the orthonormal basis ofL2(R) andψjl ∈ U , since

supp(ψ̂jl) = {ξ; 2
3
π2j ≤ |ξ| ≤ 8

3
π2j}.

REMARK 1 Due to Theorem 2, the moment problem
(2) with (3) and (4) can be now formulated as follows:
find ϕ ∈ L2(0, 1) such that∀j, k ∈ Z

∫ 1

0
ϕ(x)ψj,l(x)dx = ηj,l, (9)

where
ηj,l := µ(wψj,l

).

From this it follows that
∑

j,l∈Z

ηj,lψj,l(x) = ϕ(x) for x ∈ (0, 1)

and this sum is equal to0 for x ∈ R \ (0, 1)

Perturbed data
Let fδ, andgδ be perturbed boundary value functions

onΓ such that

‖fδ − f‖L2(Γ) ≤ δ, ‖gδ − g‖L2(Γ) ≤ δ, (10)

δ ∈ (0, 1).For

ηδ
j,l :=

∫

Γ

[
fδ

∂wψj,l

∂ν
− gδwψj,l

]
dσ, (11)

we prove

THEOREM 3 If j0 := max{0, E[log2
3k
8π ]}, then

∑

l∈Z

|ηj,l − ηδ
j,l|2 ≤ Cδ22j asj ≤ j0,

∑

l∈Z

|ηj,l − ηδ
j,l|2 ≤ C1δ

223je
4
3
π2Jγ asj > j0.

Regularization by wavelet-projection
Let ϕ̃ ∈ L2(R) be equal toϕ for x ∈ (0, 1) and 0

elsewhere. As the regularized (approximate) solution let
us take the orthogonal projection ofϕ̃ onto

VJ = span{ψj,l}j<J,l∈Z
,

i.e.:
ϕJ(x) =

∑

j<J,l∈Z

ηj,lψj,l(x). (12)

Similarly, the regularized solution for the perturbed data
is given by

ϕδ
J(x) =

∑

j<J,l∈Z

ηδ
j,lψj,l(x). (13)
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It is clear that

‖ϕJ − ϕ‖L2(0,1) ≤ ‖ϕJ − ϕ̃‖L2(R) −→ 0 asJ −→∞.

A rate of convergence can be obtained under an additional
assumption on the smoothness. LetBs

p,q, for p, q ≥ 1,
0 < s < 1 denote the Besov space, i.e.

Bs
p,q(R) = {f ∈ Lp(R) : {2sjωp(f, 2−j)}j≥0 ∈ lq},

(14)
whereωp(f, t) is theLp modulus of smoothness off .

LEMMA 1 If ϕ ∈ H1(0, 1) then ϕ̃ ∈ Bs
2,q for s ∈

(0, 1
2) and0 < q ≤ ∞, and

‖ϕJ − ϕ̃‖L2(R) ≤ C2−sJ .

On the other hand, from Theorem 3 we get the follow-
ing stability result:

LEMMA 2 If (10) holds, then there exist a constantC
depending on the wave numberk such that

‖ϕJ − ϕδ
J‖L2(R) ≤ Cδλ(J),

where
λ(J) = 2

1
2
J asJ ≤ j0,

λ(J) = 2
3
2
Je

4
3
π2Jγ asJ > j0.

Thus, from Lemmas 1 and 2 it follows that

‖ϕ− ϕδ
J‖L2(0,1) ≤ C[2−sJ + δλ(J)]. (15)

Looking for a proper value of the parameter of regulariza-
tion J as a function ofδ (such that it implies the conver-
gence whenδ → 0) we get the following result with an a
priori choice ofJ .

THEOREM 4 Let α be a fixed constant such that
0 < α < 1

γ for γ given by (6) and letc0 = 3α
4π . If the

assumptions of Lemmas 1 and 2 are satisfied and

J(δ) := E

[
log2

(
c0 ln

1
δ

)]
, (16)

then forδ ≤ (8π
3k )1/2+s

‖ϕ− ϕδ
J(δ)‖L2(0,1) ≤ C

(
1

− ln δ

)s

.

Let us consider the model problem (1) in the domain
Ω ⊂ R2. Let ϕδ

J (13) be the regularized solution of the
moment problem described in Remark 1. For the given

perturbed boundary value functionsfδ, gδ we define the
regularized solutionuδ

J as a solution of the well posed
Neumann problem (for∂Ω sufficiently smooth)

∆uδ
J + k2uδ

J = 0, onΩ (17)

∂uδ
J

∂ν
= ϕδ

J on∂Ω \ Γ,

∂uδ
J

∂ν
= gδ onΓ,

with additional condition
∫

Γ
(uδ

J − fδ)dσ = 0. (18)

Finally, from Theorem 4 and from the continuous depen-
dence of the solution of the problem (17), (18) on the
boundary conditions, we get an asymptotic convergence
of the regularized solution

‖u− uδ
J(δ)‖H1(Ω) −→ 0 asδ −→ 0.

Conclusion
We proved that the wavelet projection method applied

to the moment problem has a regularization property.
However, the order of convergence is rather small. It
would be desirable to add an additional regularization
procedure for the moment problem onVJ . It will be a
subject of a future work.
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Abstract
We study the time-harmonic scattering problem where

(quasi-)periodic incident fields generated by magnetic
dipoles are scattered by a periodic medium with space
dependent permittivity and conductivity. To solve the
corresponding inverse problem, we adapt the Factoriza-
tion Method by Kirsch to reconstruct the boundary of the
medium from field measurements on a surface.

Introduction
We consider the scattering of time-harmonic, (quasi-

)periodic electromagnetic fields generated by a colloca-
tion of magnetic dipoles at a periodic medium in a homo-
geneous, isotropic background medium in 3D. We denote
the medium by Ω and assume it to be 2π-periodic in the
directions given by the x1- and x2-coordinate axes and
to be bounded in the x3-direction. Let Π := (−π, π) ×
(−π, π) × R be the unit cell, and define the complex
permittivity ε̂ := ε + iσ/ω as well as the relative per-
mittivity εr := ε̂/ε0, where σ = σ(x) is a space de-
pendent conductivity, ω is the frequency of the radiation,
and ε0 ∈ R is the real permittivity of the background
medium. Let the permeability µ be constant ≡ µ0 ∈ R
throughout the whole space R3, µr = µ/µ0 = 1. We
call k :=

√
εrk0 :=

√
εrω

√
ε0µ0 ∈ C the wave number.

Moreover, we define

Γ := ∂Ω, Γ± := {x ∈ R3 | x3 = m±},
Ω± := {x ∈ R3 | x is p.w.c. to y ∈ Γ± in R3\Ω},
R± := {x ∈ R3 | x3 ≷ m±},

where m+ > sup{x3 | x ∈ Ω}, m− < inf{x3 | x ∈ Ω},
and “p.w.c.” means pathwise-connected.

We will make the following assumptions: Ω is open
with ∂Ω ∈ C2 and {x ∈ R3 | x3 = 0} ⊂ Ω. The permit-
tivity ε̂ ∈ L∞(R3,C) is constant ≡ ε0 ∈ R in Ω+ ∪ Ω−.
In addition, Re(εr) ≥ 0 and Im(εr) ≥ 0 in Ω, and there
is a constant c0 > 0 such that Re(εr) + Im(εr) ≥ c0.

Definition 1 A function f : R3 → C3 of the form
f(x + 2π(1, 1, 0)) = eiα·2π(1,1,0)f(x) with α ∈ R3,
α3 = 0, is called α-quasi-periodic.
For any α-quasi-periodic f , let fp(x) := e−iα·xf(x) de-
note its 2π-(bi)periodic counterpart.

For convenient work with (α-quasi-)periodic functions,
we use the modified differential operators

gradα := grad+iα, curlα := gradα×, divα := gradα · .

Integral equation formulation of the direct problem
We start with the formulation of the direct problem.

From the time-harmonic Maxwell equations for some α-
quasi-periodic incident (Ei, H i) and scattered (Es,Hs)
electric and magnetic fields we derive the equation

curl

(
1
εr
curl Hs

)
− k2

0H
s = curl (q curl H i) in R3

where q is the contrast given by q := 1 − 1/εr. For
later application of our factorization method, we replace
q curl H i by a general α-quasi-periodic source f ∈
L2(R3,C3) with support in Ω. From now on, we identify
all 2π-periodic functions with their restrictions to the unit
cell Π and let D := Ω ∩ Π. With the notation introduced
above, we reformulate the above equation for v = Hs

p on
the reduced domain Π and obtain

curlα

(
1
εr
curlαv

)
− k2

0v = curlαfp in Π. (1)

The solution v is searched for in Hloc(curlα,Π) and has
to be understood in the variational sense, i.e. here∫

Π

1
εr
curlαv · curl−αψ − k2

0v · ψdx

=
∫

D
fp · curl−αψdx (2)

for all ψ ∈ H(curlα,Π) with compact support.
To complete the problem description, we have to impose
a radiation condition on v. In our case, this has the form

v(x) =
∑
z∈Z

curlα

(
v±z e

i(z·x±βzx3)
)

in R± (3)

where βz =
√
k2

0 − |α+ z|2, Z := Z2 × {0}, and the
series is required to converge uniformly on compact sub-
sets of R±. The coefficients v±z ∈ C3, z ∈ Z, are called
Rayleigh coefficients.
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We define the (magnetic) 2π-periodic Green’s tensor G =
G(x, y) by

G := G id3×3 + k−2
0 gradα,xdivα,x(G id3×3)

with x 6= y, where G = G(x, y) is the scalar 2π-periodic
Green’s function

G(x, y) :=
i

8π2

∑
z∈Z

1
βz
ei(z·(x−y)+βz |x3−y3|)

and the operators are meant columnwise. As our central
result for the direct problem we establish

Theorem 2 Let the assumptions be fulfilled which are
given in the introduction. Then there hold:

(i) The equation (2) satisfies the Fredholm alterna-
tive, i.e. there exists a unique radiating solution
v ∈ Hloc(curlα,Π) for every fp ∈ L2(D,C3) pro-
vided uniqueness holds. For v, we have the integro-
differential equation

v(x) =
∫

D
curlα,xG(x, y)(fp(y) + q(y)curlαv(y))dy

for x ∈ Π.

(ii) Let Γ ∩ {x ∈ R3 | x3 ≷ 0} be graphs of func-
tions. Further, let Im(εr) > 0 a.e. on D or
εr ∈ C1,γ(D). Then uniqueness holds, i.e. also
existence by part (i).

Setting up of the F.M. for the inverse problem
We now consider the inverse problem of reconstructing

the periodic scattering medium or, equivalently, the sup-
port of the contrast q by means of (here magnetic) field
measurements. For this, we let the incident field H i be
generated by magnetic dipoles located on a smooth and
2π-periodic surface Γi contained in R+. We then take
measurements on another surface Γs in R+, which we
simply assume to be part of the plane Γ+ and to have
nonempty relative interior. Furthermore, we restrict the
assumptions on εr to Im(εr) ≥ c0 in Ω for some con-
stant c0 > 0.

Precisely, we suppose the incident field vi = H i
p to be

vi(x) := k2
0

∫
Γi∩Π

G(y, x)φp(y)ds(y), x ∈ Π\Γi,

where φp(y) is the 2π-periodic moment of the dipole at
y. This gives rise to the scattered field

v(x) = k2
0

∫
Γi∩Π

vG(x, y)φp(y)ds(y), x ∈ Π\D,

where vG(·, y) is the scattered field corresponding to the
incident field G(y, ·) (column by column). Now, define
the integral operator M : L2(Γi ∩ Π,C3) → L2(Γs ∩
Π,C3) by

(Mφp)(x) := k2
0

∫
Γi∩Π

vG(x, y)φp(y)ds(y)

for x ∈ Γs ∩ Π. It is the aim to recover the support of
q from the knowledge of this operator, and so its analysis
is the essential matter of the Factorization Method. We
assume that all three components of vG(·, y) for all polar-
izations of the dipole at y are available to us.
For some surface Γ̃ ⊂ R+, set HΓ̃ : L2(Γ̃ ∩ Π,C3) →
L2(D,C3) as

(HΓ̃φp)(x) := k2
0curlα

∫
Γ̃∩Π

G(y, x)φp(y)ds(y), x ∈ D.

Moreover, let f̂p be such that fp = qf̂p, and define the
operator G : L2(D,C3) → L2(Γs ∩Π,C3) by

Gf̂p := v|Γs∩Π

where v solves (2). Inspecting the definitions, it gets clear
that M = GHΓi .
The transposeHt

Γ̃
ofHΓ̃ with respect to the bilinear forms

〈ϕ, χ〉 =
∫

Γ̃∩Π
ϕ · χds 〈g, h〉 =

∫
D
g · hdx,

respectively, is given by

(Ht
Γ̃
ϑ)(x) = k2

0

∫
D
curlα,xG(x, y)ϑ(y)dy, x ∈ Γ̃ ∩Π.

An easy calculation with equation (2) reveals that
Ht

Γs
(q/k2

0(curlαv|D + f̂p)) = Gf̂p, where v solves (2).
Hence, we arrive at the factorization

M = Ht
Γs
T HΓi

with T : L2(D,C3) → L2(D,C3) specified by

T f̂p :=
q

k2
0

(curlαv|D + f̂p).

The following positivity property of T completes the
ground for the application of the Factorization Method:

Theorem 3 The operator Im(T ) = (T − T ∗)/(2i) is
coercive, i.e. there exists a constant c > 0 such that

Im〈T f̂p, f̂p〉L2(D) ≥ c‖f̂p‖2
L2(D)

for all f̂p ∈ L2(D,C3).

In order to characterize now the unknown medium Ω
(or, equivalently, D) by means of the known, factorized
operator M, as the final step we can employ a method
similar to the one discussed in [1].
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Abstract
The nonstationary problem of active shielding of some

domain from the effect of the sources distributed in an-
other domain is considered.The active shielding is real-
ized via the implementation of additional sources in such
a way that the total contribution of all sources leads to
the desirable effect. Along with undesirable field (noise)
to be shielded the presence of a desirable component is
accepted in the analysis. The solution of the problem re-
quires only the knowledge of the total field on the perime-
ter of the shielded domain. It can be obtained via the
Calderon-Ryaben’kii potentials. A few new very impor-
tant aspects of the problem are addressed in the paper for
the first time. The general nontstationary formulation is
considered in the paper. In bounded domains the reso-
nance regimes are analysed. The diffraction effect of the
secondary sources is also studied in the paper.

Introduction
The active shielding (AS) of some domains from the

effect of the field (noise) generated in other domains is
realized via the implementation of additional sources in
such a way that the total contribution of all sources leads
to the desirable effect. The comprehensive reviews of the
theoretical and experimental methods related to these sub-
jects can be found in [1], [2], [3]. Most theoretical ap-
proaches assume some quite detailed information about
the undesirable sources and the properties of the medium.
The JMC method [4], [3], based on the Huygens’ con-
struction, requires only the information on the undesir-
able field on the perimeter of the shielded domain. Yet
this method is not used in the case if a desirable field
(“friendly sound”), generated in the shielded domain, has
to be taken into account. In addition, the JMC method
was only used to tackle the problems formulated in un-
bounded domains.

A principally new solution can be reached via the ap-
plication of the Difference Potential Method (DPM) [5],
[6]. The solution obtained in a finite–difference formula-
tion requires only the knowledge of the total field (both
desirable and undesirable) at the grid boundary of the
shielded domain. Any other information on the sources
and medium is not required. It is possible to say that the

solution demands, in some sense, minimal information
which isa priori available. A comprehensive study of the
general solution [6] in the application to the Helmholtz
equation including its optimization can be found in [7],
[8], [9]. In [10] the problem of AS in composite domains
is formulated for the first time and its general finite–
difference solution is provided. The DPM–based solution
was extended to arbitrary hyperbolic systems of equations
including acoustic Euler equations with constant and vari-
able coefficients in our paper [11]. In [12] it is shown
that the control sources are capable not to disturb even the
echo of the “friendly” sound component if the AS prob-
lem is considered in bounded domains. For the acoustic
Euler equations in continuous spaces, the AS solution was
first obtained in our paper [13] for time–harmonic waves
under quite general assumptions. It is shown the equiva-
lence between the DPM–based discrete solution and the
obtained solution if the space step vanishes. In the current
paper, the general formulation of essentially nonstation-
ary problems (non time–harmonic waves) is addressed.
The effect on the secondary sources on the input data (dif-
fraction) and the resonance regime are studied for the first
time.

General formulation of the AS problem

The AS problem can be formulated as follows. Let us
assume that some field (sound)U is described by the fol-
lowing correct BVP in a domainD ⊆ Rm:

LU = f, (1)

U ∈ Ξ(D). (2)

Here, the operatorL is a linear differential operator,Ξ(D)
is some functional space specified further. In particular,
the operatorL can correspond to the acoustic Euler equa-
tions.

We assume thatf ∈ F (D), whereF (D) ⊂ Lloc
2 (D)

is a linear space of functionsf for which the solution of
BVP (1), (2) exists and unique.

Consider some bounded domainD+: D+ ⊂ D. It is
assumed that the domainD+ has a smooth boundaryΓ.
The sources on the right–hand side can be distributed both
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onD+ and outsideD+:

f = f+ + f−, (3)

supp f+ ⊂ D+,

supp f− ⊂ D− def
= D�D+.

Here, f+ ∈ F (D) is the source of a ”friendly” field
(sound), whilef− is the source of an ”adverse” field
(noise).

Suppose that we know the trace of the functionU on
the boundaryΓ of the domainD+. It is to be noted that
only this information is assumed to be available. In par-
ticular, the distribution of the sourcesf on the right-hand
side is unknown. The AS problem is reduced to seeking
additional sourcesG in D− such that the solution of the
following BVP

LU ′ = f + G, (4)

suppG ⊂ D−,

U ′ ∈ Ξ(D)

coincides on the domainD+ with the solution of BVP
(1), (2) if f− ≡ 0:

LU+ = f+, (5)

U+ ∈ Ξ(D).

Thus, we seek a source termG such that on the domain
D+ the functionsU andU ′ coincide with each other:

U ′
D+ = U+

D+ . (6)

Nonstationary AS problem
Suppose that fieldU is described by a correct initial–

boundary value problem (IBVP) in the cylinderK∞ =
D × (0,∞):

LU
def
= ∂U

∂t +
∑m

1 Ai ∂U
∂xi = f, (7)

l∂DU = 0, (8)

U(x, 0) = U0(x), (9)

f = f− + f+,

supp f+ ⊂ D+, supp f− ⊂ D−,

where
{
xi

}
(i = 1, ...,m) is a Cartesian coordinate sys-

tem; U andF are vector–functions taking values inRp;
Ai is p × p matrices such thatAi(x) ∈ C∞(D) (i =
1, ...,m).

Consider the solution of BVP (7), (8), (9) in the gener-
alized sense [14]. For this purpose we introduce the space

of basic functionsΦ ∈ C∞
0 (D). Equality (1) is then con-

sidered in the weak sense:

< LU,Φ >=< f, Φ >, (10)

where< LU, Φ > and < f,Φ > mean linear distri-
butions determined on the space of the basic functions
C∞

0 (D):

< f, Φ >=
∫ ∞

0

∫
D

(f,Φ)dxdt. (11)

We define the functional spaceΞ(D) in such a way that
the weak solution of BVP (7), (8), (9) coincides almost
everywhere with the classical solution of this problem.
Thus, we require that the functions fromΞ(D) are piece–
wise smooth and satisfy the initial and boundary condi-
tions (8), (9). Hence, we suppose thatΞ(D) ⊂ Hs(D),
whereHs(D) is the Sobolev space of functions, deter-
mined onD, with s > 1 + m/2. We also assume the
boundary conditions are such that ifW ∈ Ξ(D), then
W (∂D) ∈ Hs−1/2(∂D).

Calderon–Ryaben’kii potentials
The general solution of the active shielding prob-

lem can be represented via the theory of the Calderon–
Ryaben’kii potentials [5].

It is possible to introduce a potential as follows [5]:

PD+VD+(x)
def
= VD+ −

∫
D+

Gr(x, y)LV (y)dy

Here,VD+ is the value of some functionV (D) ∈ Ξ(D)
onD+; Gr is Green’s function of BVP (7), (8), (9).

In [5], it is introduced the notion of a clear trace
TrΓ UD in such a way that:

TrΓ VD+ = TrΓ WD+ ⇒ PD+VD+ = PD+WD+ . (12)

Thus, it is possible to introduce the potential with a den-
sity ξΓ:

PD+ΓξΓ
def
= PD+VD+ (13)

whereξΓ = TrΓ V .
For elliptic equations potential (13) coincides with the

Calderon projector [5].

General solution of AS problem
It is possible to show that the annihilating fieldWD is

given by [13]:

WD+ = −PD+ΓUΓ = [GrAnUΓδ(Γ)]D+ , (14)
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whereUΓ
def
= U(Γ); An

def
=

∑m
1 niA

i, ni are the coor-
dinates of the unit vector of the external normaln to the
boundary∂D+.

Hence, we obtain

G ≡ G0 = AnUΓδ(Γ), (15)

whereδ is the Dirac delta–function.
The AS solution is not unique. Any functionga such

thatsupp ga ∈ D− can be added tog0.
The realization of the source (15) is based on the

knowledge (measurement) ofUΓ. Once the AS source
is implemented, the field both in the shielded domainD
and outside is changed. Moreover, the fieldU becomes a
piece–wise function having a discontinuity on the bound-
ary ∂D+. Thus, the implementation of the AS source in
the nonstationary case leads to some uncertainty.

It is proved that the AS source term is given by

G ≡ G0 = AnPΓU−
Γ δ(Γ). (16)

Here,PΓ
def
= TrΓ PDΓ, U−

Γ = TrΓ U(x) if x ∈ D−.
Thus, the measurements should be done on the external

boundary and the realization requires the solution of some
BVP in the domainD.

Conclusion
The solution of the AS problem is obtained in the gen-

eral nonstationary formulation. The solution only re-
quires the knowledge of the total field (desirable and un-
desirable) on the perimeter of the shielded domain. It
does not use any additional information on either the char-
acteristics of the undesirable sources or the surrounding
medium. The knowledge of the Green’s function of the
problem is not required either. The influence of the sec-
ondary source on the input data is taken into account. It
is shown that some BVP is to be solved in this case. It is
demonstrated that the solution is applicable to resonance
regimes.
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Abstract
The inversion problem to determine the initial sea per-

turbation is considered as the usually ill-posed problem of
the hydrodynamic inversion of tsunami tide-gage records.
The wave propagation is described by the linear shallow-
water equations when the depth is assumed as an arbitrary
function of two variables. The direct problem is approx-
imated by the explicit-implicit finite difference scheme.
The ill-posed inverse restoration problem is regularized
by means of the least square inversion using the truncated
SVD approach.

Introduction
During the past few years, the tsunami events that oc-

curred in the Pacific and the Indian Oceans had caused to
turn to on the inverse tsunami problem. Mathematically,
the initial tsunami waveform problem is formulated as in-
verse problem of mathematical physics for restoration of
the initial water displacement in the source area by the
water level oscillations observed on a number of points
distributed in the ocean. It is well known that the above-
formulated problem is an ill-posed one. The mathemati-
cal description of the direct problem of the wave propa-
gation consists in the linear shallow-water system of dif-
ferential equations in the rectangular coordinates. This
system is approximated by the explicit-implicit finite dif-
ference scheme on a uniform rectangular grid, so the sys-
tem of the linear algebraic equations is obtained. The
ill-posed inverse problem of the reconstruction is regu-
larized by means of the least square inversion, using trun-
cated SVD approach - in this method the inverse operator
is regularized with the help of its restriction on the sub-
space spanned on a finite sample of the first right singular
vectors (see [2]). So-called r-solution (see [1]) is a re-
sult of the numerical process. The quality of the solution
obtained is evaluated as relative errors (inL2-norm) in
restoration of the source function. The results are fairly
satisfactory, if the receivers have a good azimuthal cover-
age with respect to source area.

1 Statement of the problem
We neglect the curvature of the Earth and we assume

that z-axis be directed downwards with depth. Since the
tsunami wave in the ocean is a long gravitational low-

amplitude wave, its propagation can be described by the
shallow water equation:
Wtt = div (h(x, y)gradW) + ftt(t, x, y) (1)
with the initial and the boundary conditions

W|t=0 = 0; Wt|t=0 = 0 (2); ∂W
∂n

∣∣∣∣
L

= 0 (3),

where W (x, y, t) is a water elevation over the undis-
turbed state,h(x, y) is the depth of the ocean,f(x, y, t)
describes the movement of the bottom in the tsunami
area. Here we consider run ups as normal vectors ar-
rivals (on coast lineL). The velocity of the tsunami
wave propagation is also described asc(x, y) =

√
gh.

We solve the problem in the domain with piecewise-
linear inner and outer boundaries. An unique solution
exists only when the function of the source allows fac-
torization, i.e., the functionf(x, y, t) can be factorized as
f(x, y, t) = ε(t) · ϕ(x, y), whereε(t) is the Heavyside
function,ϕ(x, y) is the bottom movement in the tsunami
center (subdomainΩ). The unknown functionϕ(x, y)
will be sought in the form of a series of spatial harmonics
with the unknown coefficients inΩ, when the given data
is the water elevationW0(xi, yi, t) in a certain set of the
receivers, disposed on the lineΓ. The algorithm used in
this way and substantiation of using this approach are de-
scribed in detail in [2]. The system of equations (1)-(3)
is approximated by the explicit-implicit finite difference
scheme on the uniform rectangular grid based on the 4-
point pattern. The scheme is of second order of accuracy
with respect to spatial variables and of the first order with
the respect to time.

2 Numerical experiments and conclusion
Numerical experiments are presented for the model

bottom relief having some basic morphological features
typical for the island arc regions, with inner and outer
boundaries of the target domain. As a model of ini-
tial water displacement we used displacement represent-
ing the bottom deformation due to the typical tsunami-
genic earthquakes with reverse dip-slip or low-angle trust
mechanisms. A series of calculations was carried out by
the method proposed and were aimed at recovering the
unknown functionϕ(x, y). The observed data concern-
ing the form of the arrived wave were simulated as a re-
sult of solution to direct problem (1)-(3), perturbed by
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the background noise, i.e., a high-frequency disturbance
rate of 5% of a maximum amplitude of a signal over all
the receivers. It is necessary to recognize that the results
obtained strongly depend on the presence of disturbance
due to the ill-posedness of the problem. However, since
a tsunami wave is considered to be of essentially lower
frequency as compared to the background noise, it is rea-
sonable enough to apply the frequency filtration of the ob-
served signal. We have shown that to attain a reasonable
quality of the source restoration in this case we need, at
least seven records distributed over the space domain and
their azimuthal coverage plays the key role in obtaining
the satisfactory results of inversion.
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Abstract
Microwave tomography for medical applications leads

to a difficult reconstruction problem for the dielectric
properties due to strongly diffracting waves in combina-
tion with large dielectric contrasts. We apply the mate-
rial distribution technique used in topology optimization
for elastic structures to solve the nonlinear least-squares
problem underlying the reconstruction problem and show
successful results using simulated numerical data.

Introduction
Microwave tomography, as a diffraction based imaging

technique for medical applications, has been subject to in-
tense research during the last decades. The high contrast
dielectric properties of biological tissue in the microwave
regime have high medical significance [1]. Moreover, mi-
crowave radiation is non-ionizing, and the tomography
equipment is inexpensive and portable. Even so, due to
the difficult reconstruction problem, microwave tomogra-
phy is not yet in clinical practice.

For medical applications, the details being recon-
structed are comparable in size to the wavelength of
the illuminating microwaves. Thus the fast ray-theory
based algorithms for x-ray and ultrasound tomography
cannot be expected to give satisfactory results. Kak and
Slaney [2] review classical straight-ray as well as fast
diffraction tomography methods. The latter are applicable
to the present case of long wavelengths, but only for low
contrasts. The high contrasts of biological tissue turns
the mathematical problem into a nonlinear least-squares
problem, which we attack with methods developed for
topology optimization.

Topology optimization has its origin in structural opti-
mization and concerns the optimal placement of material
within a given domain. During the last decade researchers
have started to apply similar ideas to problems in other
disciplines. Recently, Wadbro and Berggren [3] applied
topology optimization techniques for microwave tomog-
raphy. Here, the suggested approach is further studied and
explored using multiple frequencies and simulated data.

Problem Statement
Our aim is to reconstruct the dielectric properties of

unknown objects located inside a hexagonal metallic con-

Ω
?

Figure 1: The problem consists of finding the dielectric
properties of unknown objects. Left: A set of microwave
transmitters and receivers are located at the ends of the
waveguides. Right: the container can be rotated with

respect to the region Ω?, in which the unknown objects
are located.

tainer with side length 16 cm. The objects are located in
the region Ω? (Figure 1) and embedded in a saline solu-
tion with dielectric properties "s. Attached to each side
of the container is a 2.2 cm wide waveguide filled with
a low-loss material with dielectric properties "wg. At the
end of each waveguide there is a device able to radiate mi-
crowaves as well as measure the electric field. The con-
tainer, the waveguides, and the objects infinitely extend in
the direction normal to the plane.

We let � and � denote the conductivity and permittiv-
ity and assume that the permeability �0 is constant. The
electric field E is governed by the Maxwell equations and
is assumed to be polarized normal to the plane. We seek
time harmonic solutions to the governing Maxwell equa-
tions using the ansatz E = <f(0; 0; u)ei!tg and find that
the complex amplitude function u satisfies the Helmholtz
equation ∆u + "k2

0u = 0, where

" = �r � i
r
�0
�0

�

k0

is the complex permittivity, �0 the free space permittivity,
�r = �=�0 the relative permittivity, k0 = !=c the free
space wavenumber, and c the speed of light.

The computational domain Ω is illustrated to the left
in Figure 1. The outer ends of the waveguides are de-
noted Γ(n)

in ; n = 1; 2; : : : ; 6, and their union Γin. The
sides of the container and the waveguides consists of per-
fectly conducting material, hence u = 0 on @Ω � Γin.
The devices at the end of the waveguides are simulated
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with a Sommerfeld approximation by prescribing the am-
plitudes of the incoming wave modes while assuring that
the outgoing waves are perfectly absorbed.

Letting V = fv 2 H1(Ω) j v = 0 on @Ω � Γing, the
variational form of the wave propagation problem with a
source located at waveguide m is:

Find u 2 V such thatZ
Ω
ru � rv � k2

0

Z
Ω
"uv + ibk Z

Γin

uv

= 2ibkCm

Z
Γ(m)

in

sin
�
x � tm�

d

�
v; 8 v 2 V;

(1)

where tm is the tangential vector on Γ(m)
in , and Cm a con-

stant used to set the amplitude of the incoming lowest
wave mode at Γ(m)

in .
To obtain a larger number of observations, the con-

tainer is rotated, as illustrated to the right in Figure 1, at
angles � 2 [0�; 60�) with respect to Ω?. For each fixed
rotation angle �l and frequency !k, the devices at the end
of the waveguides one at a time radiate the objects, and
the resulting electrical field is measured by all the de-
vices. In order to minimize systematic errors in the exper-
iments, we observe the differences in mean complex am-
plitude between an empty (no unknown objects present)
container and the container where the objects are present.

We let uk;ln (") denote the solution to equation (1) for
the case when the unknown objects are present in Ω? to
indicate that the source is located at Γ(n)

in , at rotation angle
�l, and at frequency !k. Similarly wk;l

n denotes the solu-
tion to equation (1) when there is only the saline solution
in the container. Letting �k;ln;m denote the observed mean
complex difference at Γ(m)

in , for source location Γ(n)
in , at

frequency !k, and at rotation angle �l, the problem of re-
constructing the dielectric properties of the unknown ob-
jects may be formulated as

min
"2U

KX
k=1

LX
l=1

6X
m;n=1

���huk;ln (")im � hwk;l
n im � �k;ln;m

���2; (2)

where h�im corresponds to an averaging over Γ(m)
in , and U

is the set of admissible permittivities defined by

U =

8>>>><
>>>>:
" 2 L1(Ω)

" = "wg in the waveguides

0 < � � <f"g � � in Ω?

� � =f"g � � < 0 in Ω?

" = "s otherwise

9>>>>=
>>>>;
;

where �, �, �, and � are real constants.
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Figure 2: The sum of the real and imaginary part
(<f"g + =f"g) for the dielectric properties for the

phantoms used in the numerical experiments. Left: PI ,
right: PII . The scales on the axes are in centimeters.

Discrete Setup
The finite element method solves variational prob-

lem (1) numerically using second order Lagrangian ele-
ments. The inner region Ω? is triangulated using equi-
lateral triangles, and the rest of the container is, for each
rotation, filled with an unstructured triangular mesh. The
complex permittivity " is approximated with a function
being constant on each element.

The numerical experiments use frequencies in the
range 870–930 MHz and aim to reconstruct the dielec-
tric properties at 900 MHz of the two phantoms, PI and
PII , depicted in Figure 2. In the frequency range of study,
there is only a weak frequency dependence of the materi-
als comprising the phantoms. For each of these materials
and at any frequency in the range 870–930 MHz, the rel-
ative permittivity difference compared with the 900 MHz
case is less than one per cent. The dielectric properties
of the phantoms are computed using the parametric for-
mulae given by Gabriel et al. [4]. The triangular ob-
ject in both phantoms has side length 6 cm and dielec-
tric properties corresponding to those of a human mus-
cle (" � 55 � 19i), and the hexagonal object in PII has
side length 2 cm and dielectric properties corresponding
to those of fat (" � 5 � i). The wavelengths at 900 MHz
are about 3.7 cm in the saline solution, 4.4 cm in muscle
tissue, and 14.9 cm in fat. The target differences in mean
complex amplitude �k;ln;m are computed using two different
resolutions, one on a fine and one on a coarse mesh—the
edge length in the structured region is 5 mm in the coarse
mesh and 1.25 mm in the fine mesh. The reconstruction
of the unknown objects is performed on the coarse mesh,
attempting to fit the differences at the end of the waveg-
uides with the precomputed target differences on either
the fine or the coarse mesh.

We use the Method of Moving Asymptotes (MMA) [5]
to numerically solve optimization problem (2). A sen-
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Figure 3: Phantoms reconstructed using exact
numerical data, a frequency of 900 MHz, and 96

irradiation positions. The dashed lines indicates the
contour of the objects. Left: PI , right: PII .

sitivity analysis and a proof of existence of solutions to
problem (2) are given by Wadbro and Berggren [3]. It
is possible to argue, similar to Dobson [6], that the opti-
mal admissible solution attains at least one of the bound
constraints whenever there is no admissible complex per-
mittivity such that the objective function is zero—a likely
scenario when performing real experiments or using mul-
tiple frequencies in the reconstruction. This effect will
manifest itself as noise in the optimal permittivity distri-
bution. To combat such noise, we introduce a filter in the
form of a local averaging. Note that the filter is not needed
as a regularization to ensure existence of solutions to op-
timization problem (2).

Results
The first experiment aims to find the complex permit-

tivity of the phantoms using data computed on the same
mesh as used for the reconstruction. In this case we use
a single frequency of 900 MHz, in order not to pollute
the noiseless data. Figure 3 illustrates the dielectric prop-
erties of the phantoms reconstructed using 96 irradiation
positions, resulting in 576 complex observations. The
size, shape, and location of the triangular object are prop-
erly reconstructed in both phantoms. The reconstructed
hexagonal object in PII is somewhat too small and cen-
tered slightly to the right of its correct center position.

In many cases the convex hull of the unknown object
is known or can easily be obtained, through for example
laser measurements. On the other hand, when perform-
ing real experiments, the obtained data is polluted with
noise, decreasing the quality of the reconstruction. Fig-
ure 4 illustrates the dielectric properties of the phantoms
reconstructed on the coarse mesh using the frequencies
870, 890, 910, and 930 MHz, 24 irradiation positions, and
data computed on the fine mesh. The sizes and locations
of the unknown objects are clearly visible in both phan-
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Figure 4: Phantoms reconstructed using information
about the convex hull, filtering, inexact numerical data,

the frequencies 870, 890, 910, and 930 MHz, and
24 irradiation positions. The dashed lines indicates the

contour of the objects. Left: PI , right: PII .

toms and the reconstructed dielectric properties are close
to the correct.
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Abstract
Using gradient-based optimization combined with nu-

merical solutions of the Helmholtz equation, we design
an acoustic device with high transmission efficiency and
even directivity throughout a two-octave-wide frequency
range. The device consists of a horn, whose flare shape is
subject to optimization, together with an area in front of
the horn where solid material arbitrarily can be distributed
using topology optimization techniques, effectively creat-
ing an acoustic lens.

Introduction
The two main characteristics of an acoustic horn are

its transmission efficiency and directivity properties. For
a horn operating as a part of a loudspeaker it is desired
to control these characteristics for a range of frequencies.
The setup we are interested in modeling and optimizing
is illustrated in Figure 1. The geometry is assumed to be
infinite in the direction normal to the plane. The device
consists of a waveguide with a conical termination (the
horn) and a lens located in front of the horn. The width of
the waveguide (the throat of the horn) is 10 cm, the length
of the horn is 50 cm, and the width of the mouth is 60 cm.
The lens area is located 15 cm in front of the horn and is
25 cm wide and 100 cm high. We impose a right-going
planar wave with amplitudeA in the waveguide. The horn
and the lens will aid in the transmission of the wave into
free space, but parts of the wave will also be reflected
back into the waveguide. The device is said to be efficient
if a large portion of the incoming wave is transmitted into
free space.

Bängtsson et al. [1] attacked the problem of designing
an efficient horn using boundary shape optimization. Ad-
missible horn flare shapes were given by functions �, pre-
scribing the normal deflection from a straight horn (Fig-
ure 1). Wadbro and Berggren [2], [3] instead applied
topology optimization, allowing an arbitrary material dis-
tribution in the interior of the horn, to design an effi-
cient horn with requirements on the directivity. Recently,
Udawalpola and Berggren [4] performed boundary shape
optimization as above to study the tradeoff between high
efficiency and directivity requirements. Their results sug-
gest that manipulating the horn flare shape is sufficient
to design highly efficient devices. However, these horns

ΩH
β

Figure 1: The walls of the horn are displaced and
material is placed in the region ΩH to improve the

radiation properties.

exhibit a marked beaming effect, that is, the directional
pattern narrows as the frequency increases. Breaking the
beaming behavior using only modifications of the flare
shape comes with a substantial penalty on efficiency, at
least when restricting attention to 2D planar or cylindri-
cal symmetry. Here, we use both shape and topology op-
timization to design an efficient horn–lens combination
with even directivity for a wide range of frequencies.

Problem Statement
We assume that the wave propagation is governed by

the linear wave equation for fluctuations P 0 in the acous-
tical pressure. We seek time harmonic solutions for a
single angular frequency ! using the ansatz P 0(x; t) =
<fp(x)ei!tg and find that the complex amplitude func-
tion p satisfies the Helmholtz equation

∆p + k2p = 0; (1)

where k = !=c is the wavenumber. Further, we stipu-
late that p satisfies the Sommerfeld radiation condition,
specifying that all waves are outgoing in the far field.

The wave propagation in the waveguide can be ex-
pressed as a superposition of modal components satisfy-
ing the Helmholtz equation (1) together with the bound-
ary condition

@p

@n
= 0; (2)

along the sound hard walls. If the width of the waveguide
is sufficiently small compared to the wavelength, the non-
planar modes are evanescent.

We solve wave propagation problem (1) numerically
using the finite element method on the computational do-
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Γint
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Figure 2: The computational domain.

main illustrated in Figure 2. A perfectly matched layer
(PML) [5], [6] handles the outgoing wave property, mod-
ifying the governing equation in the region marked gray
in Figure 2. The dashed interior boundary Γint is used
in the computation of the far-field pattern, as detailed by
Wadbro [7]. The left boundary of the truncated waveg-
uide is denoted Γin. The boundary condition

i!p + c
@p

@n
= 2i!A on Γin

imposes a right-going wave with amplitudeA and absorbs
any left-going wave. The boundary condition (2) is used
for the the boundaries corresponding to the sound hard
walls of the waveguide and the horn, as well as for the
symmetry boundary Γsym.

We optimize the horn–lens combination presented in
Figure 1 allowing the horn flare to deflect normal to the
reference funnel shape and allowing an arbitrary distribu-
tion of sound hard material in ΩH. Following Bängtsson
et al. [1], we define the displacement function � as the
solution to �00 = ��, with � = 0 at the throat and mouth
of the horn. The design variable � roughly corresponds
to the curvature of the horn. We denote by Ω� the com-
putational domain illustrated in Figure 2. The placement
of material in ΩH is modeled using a material indicator
function � : R2 ! f0; 1g, defined such that �(x) = 0 if
x is a solid point and 1 otherwise.

The variational form of the wave propagation problem
is given by

Find p 2 H1(Ω�) such that

c2
Z

Ω�

�rq � (Drp)� !2
Z

Ω�

��qp + i!c
Z

Γin

qp

= 2i!cA
Z

Γin

q; 8q 2 H1(Ω�);

(3)

where D and � corresponds to the changes in the equation
due to the PML. In order to obtain a unique solution of

problem (3) we redefine � such that �(x) 2 f"; 1g for all
x 2 ΩH, where " is a small positive number.

The efficiency for a certain frequency ! can be mea-
sured by observing the mean complex amplitude hpiin on
Γin. The mean complex amplitude of the reflected wave
at Γin is given by hpiin �A.

In the far-field, the complex amplitude function is es-
sentially the product of a function of the distance to the
device and a function of the direction. More precisely, letbx(�) be a point on the unit sphere, where � denotes the
polar argument of bx; then

p(bx(�)�) = eik�
p
�

�
p1(�) + O

�
1
�

��
as �!1,

where � represents the distance from the horn. The func-
tion p1(�) is called the far-field pattern.

We are interested in designing an efficient device with
an even directivity pattern and thus state our general opti-
mization problem as

min
�;�

X
!j

 ���hp(!j)iin �A
���2 + �

X
#k

���p(!j)
1 (#k)

���2
+ �

X
�l

�������p(!j)
1 (�l)

���2 � ���p(!j)
1 (�0)

���2����2
!
;

(4)
where !j are the frequencies for which we optimize the
behavior, �l are the angles where we aim for even radia-
tion (�0 corresponds to the horn axis), and the angles #k
are introduced as a way to minimize the back scattering.
The constants � and � are used set the relative weights of
our different objectives.

Numerical Experiments
We solve optimization problem (4) numerically using

the Method of Moving Asymptotes (MMA) [8] allowing
� to attain values in the continuum ["; 1]. The values "
and 1 are promoted through the addition of a penalty term
in cooperation with a filtering procedure. Note that the
addition of a penalty term without use of filtering may
result in mesh dependent designs for the topology op-
timized portion; these issues are discussed in detail by
Wadbro and Berggren [2]. Moreover, to promote a non
oscillatory horn flare shape we apply Tichonov regular-
ization [4]. For sensitivity analyses with respect to the
different parts we refer to our earlier works [2], [4].

We optimize the device for even directivity at the an-
gles 0�;�10�; : : : ;�50� with respect to the horn axis
for frequencies in the range 250–1000 Hz, exponentially
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Figure 3: Left: horn without lens optimized for high
efficiency and even directivity using only modifications

of the horn flare boundary. Right: horn with lens
optimized for high efficiency and even directivity using

boundary movements of the horn and topology
optimization of the lens in front of the horn.

spaced with 12 frequencies per octave. The angles 90�

and 180� were used to minimize the back scattering.
Figure 3 shows two devices: one designed using only

shape optimization of the horn flare, and one designed
simultaneously using shape optimization of the horn flare
and topology optimization for the lens in front of the horn.
The grayness in the lens area is due to the filtering. There
are postprocessing methods that remove the gray while
attending the design objective [2]. Both devices are very
efficient throughout the frequency range subject to the op-
timization, with a maximum loss of 0.6 dB, and 0.9 dB for
the horn without respectively with lens, as shown in Fig-
ure 4. This figure also presents the beamwidth—the angle
between the�6 dB points on the far-field pattern—for the
two devices. The beamwidth for the device without lens
demonstrates a decreasing trend throughout the frequency
range and is less than 80� at 1000 Hz. The beamwidth for
the device with lens is well controlled and stays above
90�, except for a small frequency band around 650 Hz.

The dotted lines in Figure 4 illustrates the transmission
loss and the beamwidth of the horn to the right in Figure 3,
but with the lens removed. The influence of the lens can
be seen by comparing the dotted and the solid lines in
Figure 4. These results suggests that the addition of a lens
only has a minor influence on the transmission efficiency,
while it successfully breaks the beaming behavior of the
horn.
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Abstract
The nonlinear Helmholtz equation (NLH) models the

propagation of electromagnetic waves in Kerr media and
describes a range of important phenomena in optics and in
other areas. In our previous work, we have built a fourth
order method for its numerical solution that enables a
direct simulation of nonlinear self-focusing in the non-
paraxial regime, and provides a capability for the quan-
titative prediction of backscattering. Recently, we have
also introduced a compact finite volume discretization for
the analysis of material discontinuities, and a Newton-
type nonlinear solver. Newton’s linearization for the NLH
is nontrivial since the Kerr nonlinearity contains absolute
values of the field and is Frechét non-differentiable for
complex-valued solutions. Hence, the NLH has to be re-
cast as a system of two real equations, in which case New-
ton’s method converges rapidly and enables computations
for very high levels of nonlinearity, up to and beyond the
limits of material breakdown.

Formulation of the Problem
We are considering the propagation of linearly po-

larized monochromatic laser light in an inhomogeneous
lossless (i.e., optically transparent) medium. We are as-
suming that the parameters of the medium, which are
given, as well as the intensity of the electric fieldE,
which is the unknown quantity, may only vary along one
spatial direction that coincides with the direction of prop-
agationz. Then, the general three-dimensional NLH re-
duces to the following ordinary differential equation:

d2E(z)
dz2

+ k2
0

(
ν(z) + ε(z) |E|2

)
E = 0, (1)

wherek0 is the wavenumber outside the Kerr medium,
ν = ν(z) controls the variation of the linear refraction in-
dex inside the medium, andε = ε(z), which is the scaled
Kerr coefficient, controls the nonlinearity, see, e.g., [1].
All these parameters are assumed real, whereas the solu-
tion to the NLH (1) is normally considered complex so

Work of the third author supported by the US NSF, Grant No. DMS-
0509695 and US AFOSR, Grant No. FA9550-04-1-0118.

that to properly account for the variation of phase in a
time-harmonic setting.

The Kerr medium occupies the interval[0, zmax] of the
variablez. The material coefficientsν(z) and ε(z) are,
generally speaking, discontinuous at both outer bound-
aries,z = 0 andz = zmax. As far as the interior, we
are assuming that the material is either homogeneous, i.e.,
ν(z) ≡ ν int, ε(z) ≡ εint, or layered. In the latter case, the
variation of material properties is piecewise-constant so
that for some given partition:

0 = z̃1 < · · · < z̃l < · · · < z̃L = zmax, (2a)

we have:

ν(z) ≡ ν̃l, ε(z) ≡ ε̃l, for z ∈ (z̃l, z̃l+1) . (2b)

At the interfaces̃zl, the Maxwell’s equations imply conti-
nuity of the fieldE(z) and of its first derivativedE

dz . This
continuity atz = 0 and z = zmax, along with the as-
sumption that the field outside the Kerr medium consists
of the unknown scattered component and the impinging
waveE0

ince
ik0z that comes from the left, yields:(

d

dz
+ ik0

)
E

∣∣∣∣
z=0

= 2ik0E
0
inc, (3a)

(
d

dz
− ik0

)
E

∣∣∣∣
z=zmax

= 0. (3b)

Relation (3a) is a two-way boundary condition for the
NLH (1) at the left endpoint, and relation (3b) is a ra-
diation boundary condition at the right endpoint.

Exact solutions of problem (1)-(3) were obtained by
Chen and Mills for both homogeneous and layered ma-
terials, see [2], [3]. For sufficiently high input powers, it
was shown that those solutions maybe not unique. Nu-
merically, the homogeneous multidimensional NLH was
solved with forth order accuracy in our previous work [4],
[1]. A key element of the method was the nonlocal two-
way artificial boundary conditions (ABCs) that general-
ized (3). The ABCs facilitated the reflectionless propa-
gation of all the outgoing waves and also guaranteed a
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full transmission of the given incoming field at the bound-
aries of the computational domain. However, the method
of [4], [1] did not allow to solve the NLH for high input
powers. In [5], [6], Suryanto, et al. used a finite element
scheme for the one-dimensional NLH (1) with material
discontinuities. The numerical approximation in [5], [6]
was of a mixed order: fourth for the linear terms of (1)
and second for the nonlinear terms.

Numerical Method
The goal of the current paper is to build a genuine high

order numerical approximation of the NLH (1) that would
allow for both the discontinuities in the material coeffi-
cients and the solution for high input powers.

At the points where the material coefficientsν and/or
ε undergo discontinuities, the second derivative of the so-
lution E(z) also becomes discontinuous. The new fourth
order discretization of the NLH (1) that we are present-
ing is based on acompact approximation of finite volume
type. The use of integration over the grid cells allows us
to correctly account for the discontinuities inν(z) and
ε(z) at the outer boundaries, as well as inside the domain.
A fourth order accuracy is attained on the compact three
node stencil by using the differential equation (1) itself to
eliminate the leading terms of the truncation error.

Let a, b ∈ [0, Zmax], a < b, and let us integrate equa-
tion (1) between the pointsa and b with respect toz.
SincedE

dz is continuous everywhere, we obtain:

dE(b)
dz

− dE(a)
dz

+ k2
0

∫ b

a

(
ν(z) + ε(z) |E|2

)
E dz = 0.

(4)
Equation (4) can be interpreted as the integral conserva-
tion law that corresponds to the NLH (1). It is easy to
see that for sufficiently smooth solutions the two formu-
lations are equivalent. Indeed, if we require that the inte-
gral relation (4) holdfor any pair of pointsa andb, then
at every pointz0 where d2E

dz2 exists the NLH (1) can be
reconstructed from the conservation law (4) by a straight-
forward passage to the limit:a → z0 − 0, b → z0 + 0.
However, the integral formulation (4) makes sense even
when the differential equation per se loses its validity be-
cause of insufficient regularity of the solution, in particu-
lar, when the material coefficients undergo jumps and the
second derivatived

2E
dz2 becomes discontinuous.

The discretization of the NLH (1) is built by approx-
imating equation (4) on a uniform grid with sizeh. In
doing so, for every nodezj = jh of the grid, j =
0, 1, . . . ,M , we takea = xj − h/2 andb = xj + h/2.
Besides, we only allow the material discontinuities to oc-

cur at the grid nodes, which presents no loss of generality.
The first derivatives (fluxes) at the cell centersa andb in
(4) are approximated using central differences. Then, the
leading term in the truncation error, which is proportional
to the third derivative, is annihilated by approximating
the latter asE′′′

j+1/2 = (E′′
j+1 − E′′

j )/h + O(h2), where
the appropriate one-sided second derivatives are obtained
through equation (1) itself. This yields the fourth order
for the flux difference. To guarantee the overall fourth
order accuracy, the integral term in (4) needs to be ap-
proximated carefully. Recall, inside every grid cell the
material coefficients are constant and consequently, the
solutionE(z) is infinitely differentiable. Therefore, on
each of the two half-cells,[zj−1/2, zj ] and[zj , zj+1/2], we
can approximate it to fourth order using the appropriate
Hermite-Birkhoff cubic interpolating polynomial [7] built
using the nodal values ofE and those of the one-sided
second derivatives (re-written via the equation). Then, by
integrating the interpolant and assembling all the terms,
we obtain a fourth order accurate scheme for the NLH.

As far as the boundary conditions, relation (3a) facil-
itates the propagation of the outgoing waves through the
interfacez = 0 and at the same time prescribes the given
incoming signal. This means that the solution to equa-
tion (1) for z ≤ 0 is to be composed of a given incoming
wave and the outgoing wave, which is not known ahead
of time. Since forz ≤ 0 the material is a homogeneous
linear dielectric,ν ≡ 1 andε ≡ 0, we have:

E(z) = E0
ince

ik0z + Re−ik0z, z ≤ 0, (5)

and the boundary condition is derived from the continuity
of E andE′ at z = 0. To construct a boundary condi-
tion for the scheme we approximate (5) using the closed
form solutions of the corresponding constant coefficient
difference equation. This provides the value of the solu-
tion at the ghost nodeE−1 in terms of that at the boundary
nodeE0 and the incoming beamE0

inc. Then,E−1 can be
eliminated from the finite-difference equation. A discrete
counterpart of boundary condition (3b) is obtained simi-
larly. Details of the approach can be found in [4], [1].

The discrete approximation that we obtain for problem
(1)-(3) is a system of nonlinear algebraic equations. In
our work [4], [1], we solved similar systems by a straight-
forward iteration scheme based on freezing the nonlinear-
ity in the NLH. In doing so, we have observed that the
convergence of iterations was limited to relatively low in-
coming energies, i.e., weak nonlinearities. A similar iter-
ation scheme was used by Suryanto, et al., see [5], [6].

In this paper, we develop a more capable and more
efficient iteration scheme for solving the NLH (1); it is
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based on Newton’s method. Newton’s method, however,
cannot be applied to equation (1) directly, because|E|
is not differentiable in the Cauchy-Riemann sense and
hence the entire operator is not differentiable in the sense
of Frech́et. Therefore, we recast the NLH as a system of
two equations with real unknowns and then perform New-
ton’s linearization using real variables. Newton’s method
is also known to be sensitive to the choice of the initial
guess. To choose the initial guess for a particular strength
of nonlinearity (value ofε), we employ a continuations
strategy, i.e., increaseε in small increments from 0 to the
desired value and use the solution for the previous value
of ε as the initial guess for the next value ofε. Our compu-
tations show that the use of Newton’s iterations leads to a
very considerable improvement in performance over the
previous iterative method [4], [1]. It enables robust nu-
merical solution of the NLH for strong nonlinearities. In
fact, solutions can be computed for nonlinearities that ex-
ceed the threshold of mathematical non-uniqueness, and
even for the nonlinearities that are beyond the level of ma-
terial breakdown in an actual physical setting. Note that
in the latter case the Kerr model itself no longer applies.

Numerical Results
We have conducted a large number of numerical ex-

periments aimed at testing the new method. We have
also compared the results against those obtained using
the original methodology of [4], [1] (when the latter con-
verged). Our experiments fully corroborate the theoreti-
cal design properties of the new method, i.e., its fourth or-
der grid convergence and its capability to obtain solutions
for high levels of nonlinearity. Below, we only report on
a particular set of results that demonstrate a fourth order
convergence to the exact solutions of [2] for one case with
weak nonlinearity and one case with strong nonlinearity.

Table 1: Examples of grid convergence for weak nonlin-
earity (ε = 0.01) and for strong nonlinearity (ε = 0.845).

Normalized
grid size,hk0

Weak nonlinear-
ity, ‖ · ‖∞ error

Strong nonlinear-
ity, ‖ · ‖∞ error

0.8 0.121 no convergence
8 · 10−1.5 1.29 · 10−3 8.16 · 10−2

8 · 10−2 1.28 · 10−5 9.12 · 10−5

8 · 10−2.5 1.28 · 10−7 9.13 · 10−7

8 · 10−3 1.33 · 10−9 9.16 · 10−9

For the case of a strong nonlinearity shown in Table 1,
the initial guess for Newton’s iterations was chosen by
continuation inε. The lack of iterations’ convergence in

this case on a very coarse grid is not surprising, because
the sharp variations of the solution cannot be adequately
resolved.

Conclusions
A new method for the numerical solution of the NLH

has been developed that correctly accounts for the discon-
tinuities of material properties and enables computations
for high nonlinearities. The performance of the method
was tested by comparing the results of computations with
the exact solutions available for one-dimensional settings.
In the future, we plan to construct a method with compa-
rable capabilities for the multidimensional NLH.
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Nonlinear evolution equations of diffusive type have been
the subject of several investigations in the past, due to
their applicative relevance [1]. In particular the nonlinear
diffusion equation

ut =
(ux

u2

)
x

, u ≡ u(x, t) (1)

was extensively studied in the literature as a mathemat-
ical model to describe heat conduction in high polymer
systems [2] and in Storm type [3] materials.

In [4] we focused our attention on an initial/boundary
value problem on the semiline for equation (1), with a
prescribed constant thermal conductivity at the origin.

We generalize the results obtained in [4], by reporting
the solution of the Cauchy problem in the case when the
thermal conductivity at the boundary is time dependent.

Namely we consider for equation (1) the ini-
tial/boundary value problem on the semiline 0 ≤ x < ∞
characterized by the following initial and boundary data

u(x, 0) = u0(x) , 0 ≤ x < ∞ (2a)

u(∞, t) = γ , ux(∞, t) = 0 , t ≥ 0 (2b)

ux(0, t)
u2(0, t)

= f(t) , t ≥ 0 (2c)

where γ is a positive constant and f(t) is an integrable
function. The boundary condition (2c) represents a given
thermal conductivity at the origin (see [4]).

We introduce the hodograph transform

u(x, t) = [v(z, t)]−1 , (3a)

with

∂z

∂x
= u(x, t) , (3b)

∂z

∂t
= −

(
1

u(x, t)

)

x

, (3c)

whose compatibility ∂2z
∂x∂t = ∂2z

∂t∂x is guaranteed by (1).
By using the above transformation, equation (1) is

mapped into the linear heat equation

vt = vzz (4)

over the domain F (t) ≤ z < ∞, F (t) satisfying the
relation

F (t) =
∫ t

0
f(t′) dt′ . (5)

Via the hodograph transform we associate to equation (4)
the initial datum

v(z, 0) ≡ v0(z0) = [u0(x)]−1 (6a)

where, in virtue of (3b) and (3c), z0 is given by

z0 ≡ z0(x) =
∫ x

0
u0(x′) dx′ , (6b)

and the boundary conditions

v(∞, t) =
1
γ

, vz(∞, t) = 0 (7a)

f(t) v(F (t), t) + vz(F (t), t) = 0 . (7b)

The initial/boundary value problem for the nonlinear
diffusion equation (1) with the initial datum (2a) and the
boundary conditions (2b), (2c) is then mapped into the
linear heat equation (4) over a domain with a moving
boundary, characterized by the initial condition (6a) and
the boundary conditions (7a), (7b).

In order to solve the linear problem we introduce the
fundamental kernel of the heat equation

K(z−ξ, t−t′) =
1

2
√

π

1√
t− t′

exp
[
−1

4
(z − ξ)2

(t− t′)

]
(8)

and integrate Green’s identity for the heat equation

∂

∂ξ

(
K

∂v

∂ξ
− v

∂K

∂ξ

)
− ∂

∂t′
(Kv) = 0 (9)
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over the domain F (t′) < ξ < ∞, ε < t′ < t − ε and
let ε → 0. Using the condition (7b) and the fact that
K(z − ξ, 0) = δ(z − ξ), we obtain

v(z, t) =
∫ t

0
Kξ(z − F (t′), t− t′) v(F (t′), t′) dt′

+
∫ +∞

F (0)
K(z − ξ, t) v0(ξ) dξ. (10)

From (10) it is clear that v(z, t) can be determined once
the boundary value v(F (t), t) is known; it is therefore
convenient to evaluate (10) at z = F (t). We put w(t) =
v(F (t), t) and we obtain

w(t) = G(t) + λ

∫ t

0
R(t, t′) w(t′) dt′ , (11a)

with

G(t) =
∫ +∞

F (0)
K(F (t)− ξ, t) v0(ξ) dξ (11b)

and

R(t, t′) =
1
λ

Kξ(F (t)− F (t′), t− t′) , λ =
1

4
√

π
.

(11c)
Equation (11a) is a linear Volterra integral equation of

II type with a singular kernel R(t, t′). A suitable choice
of the function f(t) allows, via (5), to obtain a mildly
singular kernel. Then the linear Volterra equation (11a)
admits a unique solution under the assumption that G(t)
is an integrable and bounded function of its argument [5].
By using Picard’s process of successive approximations
[5] the solution of (11a) can be written as

w(t) = G(t) + λ

∫ t

0
H(t, t′;λ) G(t′) dt′ , (12)

where H(t, t′;λ) is the resolvent kernel given by the
series

H(t, t′; λ) =
∞∑

n=0

λn Rn+1(t, t′) (13a)

with

Rn+1(t, t′) =
∫ t

0
R(t, t′′) Rn(t′′, t′) dt′′, n = 1, 2, . . .

(13b)

R1(t, t′) = R(t, t′) . (13c)

In the following we study numerically four examples
that correspond to two different choices of the function
f(t), see (2c): a first case when f(t) is a constant, and a
second case when f(t) is a linear function of time

f(t) = α , α ∈ R , (14a)

f(t) = a t + b , a, b ∈ R , (14b)

It is clear that by using (5), F (t) is respectively a lin-
ear and a quadratic function of time. We also note that
the choice (14a) corresponds to the case treated analyti-
cally in [4]. In both the cases we consider an initial datum
u0(x) compatible with the asymptotic condition (2b), cor-
responding first to the function

u0(x) = β − (β − γ) ϑ(x− η) , β, η ∈ R , (15a)

where ϑ(x) is the usual unit step function, and then to the
function

u0(x) =
γ

1 + W
(
c γ e−γ (κ x−c)

) , κ, c ∈ R ,

(15b)
where W (x) is the Lambert-W function, implicitly de-
fined by the relation f(W ) = W eW .

In the first case, (14a), the strategy is to proceed with
a direct computation of the function v(z, t) through the
explicit solution, as displayed in [4]. Then we compute
the function v(z, t) according to (10), and finally obtain
the solution u(x, t) by inverting the hodograph transform
(3a-3c). At fixed time t = t∗, via (3a) and (3b) we get

x(z)|t∗ =
∫ z

0
v(z′, t∗) dz′ . (16)

From (16) we then obtain the inverse function z(x)|t∗
and finally compute the solution of the original problem

u(x, t∗) = [v(z(x)|t∗ , t∗)]−1 (17)

as implied by (3a).
When F (t) is given by (14b), the Volterra integral

equation (11a) is not solvable by quadratures as in the
previous case but has to be solved numerically. The so-
lution v(z, t) of the linear problem is obtained via (10),
but of course the computational charge of the algorithm
is much heavier than in the previous case. The numerical
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integration of the Volterra integral equation (11a) carries
out using a non-uniform fixed mesh method, in order to
avoid the problems due to the presence of a mildly singu-
lar Kernel (see, for example, [6]). As explained before,
once obtained the function v(z, t), by inverting the hodo-
graph transform we get the solution u(x, t) of the nonlin-
ear problem (see (16) and (17)).

In the following we give a detailed description of the
examples analyzed and we interpret the numerical results
providing several graphics. We want to underline that in
all the plots, each line represents the function u(x, t) at a
fixed time. As expected, for large x, the solution of the
nonlinear problem u(x, t) asymptotically approaches the
value γ.

1st Case u0(x) is given by (15a) and f(t) by (14a),
with α = 1, β = 1

3 , η = 3 and γ = 1
2 . We then get

u0(x) =
1
6

[2 + ϑ(x− 3)] , f(t) = 1 . (18)

We observe that the discontinuity of the solution
u(x, t) in the x variable, due to the choice of the
step function ϑ(x) in the initial datum u0(x), moves
backward to the origin along the x axis, as 0 < t <
1.

2nd Case u0(x) is given by (15a) and f(t) by (14b),
with a = 2, b = 0, β = 1

3 , η = 3 and γ = 1
2 . We

obtain

u0(x) =
1
6

[2 + ϑ(x− 3)] , f(t) = 2 t . (19)

Comparing this result with the previous one, we
observe that the choice (14b) (namely, F (t) is
quadratic in time) seems to entail a faster approach
in time of the solution u(x, t) to the constant func-
tion û(x, t) = γ.

3rd Case u0(x) is given by (15b) and f(t) by (14a),
with α = 1, c = 1, κ = 2

3 and γ = 1
2 . We then

obtain

u0(x) =
1
2

[
1 + W

(
1
2

e−
x
3
+ 1

2

)]−1

, f(t) = 1 .

(20)

It is worth noting that in this case, from (20), via (6a)
and (6b), we get

v0(z) =
1
γ

+ c e−κz

= 2 + e−
2
3

z . (21)

4th Case u0(x) is given by (15b) and f(t) by (14b),
with α = 1, c = 1, κ = 2

3 and γ = 1
2 :

u0(x) =
1
2

[
1 + W

(
1
2

e−
x
3
+ 1

2

)]−1

, f(t) = 2 t .

(22)

Comparing this result with the previous one, we
observe that the choice (14b) (namely, F (t) is
quadratic in time) seems to entail a faster approach
in time of the solution u(x, t) to the constant func-
tion û(x, t) = γ.
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Abstract
An analogue of the genuinely nonlinear character of

an one-dimensional simple waves solution is identified
and essentially used in the construction of some multi-
dimensional extensions (simple waves solutions, regular
interactions of simple waves solutions). A class of ex-
act multidimensional gasdynamic solutions is constructed
whose interactive elements are regular. Some specific
aspects of Burnat’s multidimensional “algebraic” descrip-
tion [which uses a dual connection between the hodo-
graph and physical characteristic details] are identified
and classified with an admissibility criterion − select-
ing a “genuinely nonlinear” type where other (“hybrid”)
types are formally possible. A parallel is constructed
between Burnat’s “algebraic” approach and Martin’s “dif-
ferential” approach [centered on a Monge−Ampère type
representation] regarding their contribution to describing
some nondegenerate one-dimensional gasdynamic regu-
lar interaction solutions. The present approach par-
allels, from a local prospect, some details of the two-
dimensional global approach of [7].

Introduction
For the multidimensional first order hyperbolic system

of a gasdynamic type [whose coefficients only depend
on u]

n∑

j=1

m∑

k=0

aijk(u)
∂uj

∂xk

= 0, 1 ≤ i ≤ n (1)

the “algebraic” approach (Burnat [1]) starts with identify-
ing dual pairs of directions ~β,~κ [we write ~κ ↽⇀ ~β] con-
necting [via their duality relation] the hodograph [= in the
hodograph space H of the entities u] and physical [= in
the physical space E of the independent variables] char-
acteristic details. The duality relation at u∗ ∈ H has the
form:

n∑

j=1

m∑

k=0

aijk(u
∗)βkκj = 0, 1 ≤ i ≤ n. (2)

Here ~β is an exceptional direction [= orthogonal in the
physical space E to a characteristic character]. A direc-
tion ~κ dual to an exceptional direction ~β is said to be a
hodograph characteristic direction.

EXAMPLE 1. For the one-dimensional strictly hyper-
bolic version of system (1) a finite number n of dual pairs
~κi↽⇀~βi consisting in ~κi = ~Ri and ~βi=Θi(u)[−λi(u), 1],
where ~Ri is a right eigenvector of the n× n matrix a and
λi is an eigenvalue of a, are available (i = 1, ..., n). Each
dual pair associates in this case, at each u∗∈R [for a suit-
able R⊂H], to a vector ~κ a single dual vector ~β.

EXAMPLE 2 (Peradzyński [5]). For the two-dimen-
sional version (3) of (1), corresponding to an isentropic
description (in usual notations: c is the sound velocity,
vx, vy are fluid velocities)




∂c

∂t
+vx

∂c

∂x
+vy

∂c

∂y
+
γ−1

2
c

(
∂vx

∂x
+
∂vy

∂y

)
=0

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+

2

γ − 1
c
∂c

∂x
= 0

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+

2

γ − 1
c
∂c

∂y
= 0 ,

(3)

an infinite number of dual pairs are available at each
u∗∈H . Each dual pair associates, at the mentioned u∗, to
a vector ~κ a single dual vector ~β.

EXAMPLE 3 (Peradzyński [6]). For the three-dimen-
sional version of (3) an infinite number of dual pairs are
available at each u∗∈H . Each dual pair associates, at the
mentioned u∗, to a vector ~κ a finite [constant, 6=1] number
of k independent exceptional dual vectors ~βj , 1≤ j≤ k;
and therefore has the structure ~κ ↽⇀(~β1,..., ~βk).

DEFINITION 4 (Burnat [1]). A curve C ⊂ H is said
to be characteristic if it is tangent at each point of it to a
characteristic direction ~κ. A hypersurface S ⊂H is said
to be characteristic if it possesses at least a characteristic
system of coordinates.

Genuine nonlinearity. Simple waves solution.
Regular interaction of simple waves solutions

REMARK 5. As it is well-known, in case of an one-
dimensional strictly hyperbolic version of (1) any
hodograph characteristic curve C ⊂ R ⊂H , of index i,
is said to be genuinely nonlinear (gnl) if the dual con-
structive pair ~κi ↽⇀ ~βi is restricted by ~κi(u)� ~βi(u) ≡
~Ri(u)·graduλi(u) 6=0 in R; see Example 1. This condi-

tion transcribes the requirement d~β
dα

6= 0 along C.
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DEFINITION 6. We naturally extend the gnl charac-
ter of a hodograph curve to the cases corresponding to
Examples 2 and 3, by requiring along C∣∣∣∣∣

d~β

dα

∣∣∣∣∣6=0 (4)

and, respectively,
k∑

µ=1

∣∣∣∣∣
d~βµ

dα

∣∣∣∣∣6=0. (5)

DEFINITION 7. A solution of (1) whose hodograph is
laid along a gnl characteristic curve is said to be a simple
waves solution (sws). A solution of (1) whose hodograph
is laid on a characteristic hypersurface is said to be a reg-
ular interaction of sws if its hodograph possesses a gnl
system of coordinates.

A class of solutions of the system (1).
Wave-wave “algebraic” regular interactions
• LetR1, . . . , Rp be characteristic coordinates on a given
p-dimensional characteristic region R of a hodograph hy-
persurface S . Solutions of the system

∂ul

∂xs

=

p∑

k=1

ηkκkl(u)βks(u), u ∈ R; 1≤ l≤n, 0≤s≤m

(6)
appear to concurrently satisfy the system (1). This in-
dicates an “algebraic” importance of the concept of dual
pair [see (2)]. We formally call these solutions wave-wave
regular interactions.
• If a set of Riemann−Burnat invariants R(x) exists,
structuring the dependence on x of the solution u in the
class above by a regular interaction representation

ul =ul[R1(x0, ..., xm),...,Rp(x0,...,xm)], 1≤ l≤n, (7)

it is easy to see that Ri(x) must fulfil an (overdetermined
and Pfaff) system

∂Rk

∂xs

= ηkβks[u(R)], 1 ≤ k ≤ p, 0 ≤ s ≤ m. (8)

• Sufficient restrictions for solving (8) are proposed in
[4]−[6]. Also see [2].

A class of exact solutions of the system (3).
Nondegeneracy. Linear degeneracy

A class of (local) exact solutions of (3) of the form

c = c(ξ, η), vx = vx(ξ, η), vy = vy(ξ, η), (9)

where
ξ =

x− x0

t− t0
, η =

y − y0

t− t0
(10)

is exhaustively presented in the contributed talk associ-
ated with this extended abstract (also see [2]). The interac-
tive elements of this class appear to correspond to some re-
gular interactions. Two highly nontrivial and very sugges-
tive regular interaction elements in the mentioned class
are considered in our contributing talk in every detail.

The hodograph associated to the first of these ele-
ments is shown to possess three gnl characteristic sys-
tems of coordinates; such an element puts together three
distinct representations of regular interactions of multidi-
mensional sws. Our talk also presents the physical details
of each of these three representations.

The hodograph associated to the second of these men-
tioned elements also possesses three characteristic sys-
tems of coordinates; still, in this case two of these three
systems of coordinates are proven to be [partially] lin-
early degenerate (ldg). Again, three distinct and multi-
dimensionally coherent [regular interaction] representa-
tions are concurrently present; only one of them would
correspond to a sws interaction yet.

REMARK 8. A regular interaction of sws reflects the
nondegenerate nature of the gnl hodographs of the inter-
acting sws. The “algebraic” characterization of a regu-
lar interaction of sws will be regarded to correspond to a
case of [“algebraic”] nondegeneracy. The second exam-
ple above also includes a case of “algebraic” degeneracy
([2]). We therefore notice that representation (7) is not
made of sws generally. We need a criterion to select the
nondegenerate regular interaction solutions (see [2]).

An example of one-dimensional “differential” [and
“nonalgebraic”] nondegenerate regular interaction

Next, we consider the gasdynamic system



∂ρ

∂t
+
∂(ρvx)

∂x
= 0

∂(ρvx)

∂t
+

∂

∂x

(
ρv2

x + p
)

= 0

∂(ρS)

∂t
+
∂(ρvxS)

∂x
= 0 , S = S(p, ρ) ,

(11)

in usual notations, and use, to begin with, the first two
equations (11)1,2 to introduce (following Martin; see [3]),
the functions ψ, ξ̃ and ξ cf.

ρ=
∂ψ

∂x
, ρvx=−

∂ψ

∂t
; ρvx =

∂ξ̃

∂x
, ρv2

x+p=−
∂ξ̃

∂t
; ξ= ξ̃+pt.

(12)
We get

dx =
1

ρ
dψ+vxdt, dξ̃ = vxdψ−ρdt, dξ = vxdψ+tdp.

(13)
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Then, we concretize (12), (13) to the case of a con-
tinuous [smooth] strictly adiabatic [anisentropic] flow for
which in (11)3 entropy S(p, ρ) is a function of ψ alone,
F (ψ). Such a flow results behind a shock discontinuity
of non-constant continuous [smooth] velocity which pen-
etrates into a region of uniform flow. Prescription of F
[as determined by the shock conditions] provides an al-
gebraic relation between p, ρ, ψ throughout the adiabatic
flow region. We select [Martin] p and ψ as new indepen-
dent variables in place of x and t and compute from (13)

∂x

∂ψ
=vx

∂t

∂ψ
+

1

ρ
,
∂x

∂p
=vx

∂t

∂p
, vx =

∂ξ

∂ψ
, t=

∂ξ

∂p
. (14)

On eliminating x from (14)1,2 and taking (14)3,4 into ac-
count it results that ξ must fulfil the hyperbolic Monge–
Ampère equation

∂2ξ

∂p2

∂2ξ

∂ψ2
−

(
∂2ξ

∂p∂ψ

)2

=−ζ2(p, ψ)≡−
∂

∂p

(
1

ρ

)
. (15)

Finally, we compute from (14)

x =

∫ (
∂ξ

∂ψ

∂2ξ

∂p∂ψ
+

1

ρ

)
dψ +

(
∂ξ

∂ψ

∂2ξ

∂p2

)
dp. (16)

REMARK 9. For any smooth solution ξ(p, ψ) of (15)
we get from (14), (16)

vx = vx(p, ψ), x = x(p, ψ), t = t(p, ψ). (17)

On reversing (17)2,3 into p = p(x, t), ψ = ψ(x, t) and
carrying this into (17)1 we get a form p(x, t), vx(x, t),
ψ(x, t) of the corresponding anisentropic solution of (11).
• On prescribing F we will not find the streamlines as
characteristics of (11). The two families of characteristics
C± of (15) in the plane p, ψ appear to correspond to the
two families of sound characteristics in the plane x, t.
• Next, we restrict the general Remark 9 to a particular
construction − useful for identifying solutions of (15). To

ζ =
ψν−1

pν+1
(ν 6= 0) (18)

in (15) we associate [Martin] two intermediate integrals

F± ≡ p
∂ξ

∂p
+ ψ

∂ξ

∂ψ
− ξ ±

1

ν

(
ψ

p

)ν

for which F±=constant±=R± along a characteristic C±.
• We have to distiguish then between the cases (a) when
R± depend on the charateristic C±, and (b) when R+ or
R− are overall constants.
• In the case (a) we may use (Martin; see [3]) R± as
new independent variables. It can be shown in this case
(Martin; see [3]) that the entities p−1, vx, ψ−1, t, x fulfil
various Euler−Poisson−Darboux linear equations
∂2w

R+∂R−
−

ν

R+−R−

(
∂w

∂R+

−
∂w

∂R−

)
=0, constant ν

to which well-known representations are associated; we

omit the details and present these representations by
p=p(R+,R−), ψ=ψ(R+,R−), vx =vx(R+,R−),

t = t(R+, R−), x = x(R+, R−).
(19)

Reversing (19)2 into R±=R±(x, t) will induce a form of
solution (19), parallel to (7) [as R± have a characteristic
nature]. We call R±(x, t) Riemann−Martin invariants.
• In the case (b) we notice that a solution ξ(p, ψ) of the
linear equation F+≡R+ or F−≡R− will automatically
fulfil (15). We have to follow, in this case, Remark 9 to
describe a solution of (11); we call such a solution pseudo
simple waves solution. We notice ([3]) that [in contrast
with a sws] a pseudo sws has a two-dimensional hodo-
graph and for it none of the characteristic fields in the
physical plane x, t is made of straightlines generally.
• The cases (a) and (b) appear to correspond to a Martin
linearization strictly associated to (18).
• For the anisentropic “differential” construction above

we notice that solution (19) might be regarded as
pseudo nondegenerate [a formal regular interaction
of pseudo sws] and,

we show, via a comparison with Burnat’s approach,
that representation (19) is strictly “nonalgebraic”.
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Abstract
We consider a class of reaction, advection and mix-

ing systems. These arise within situations where
a large scale dispersive effect is achieved though a
combination of a localised microscopic mixing (or ex-
change) of mass between “phases” and a concurrent
phase-dependent advection process, rather than via
either a microscopic diffusion process or the mod-
elling assumption of a macroscopic dispersion term.
Such processes generalise velocity jump models and
multi-phase models. Coupled with a bistable nonlin-
ear reaction term, the result is a nonlinear transport
equation acting over a suitable space, describing the
localised distribution of mass with respect to discrete,
or a continuum of, phases. Like the reaction-diffusion
counterpart we anticipate that such systems will ex-
hibit stable travelling waves.

Introduction
We consider a class of semilinear reaction, advec-

tion and mixing systems that give rise to an asymp-
totic type of dispersion equivalent to a Fickian pro-
cess. We augment such processes discussed in [1] with
a nonlinear reaction term so as to model the disper-
sal of species in ecology, or reactive species within
ecology, chemistry, physiology or geochemistry sub-
ject to such advection and mixing within the host
environment.

Let X denote a Hilbert space, equipped with inner
product denoted by < ., . >. Let A : D(A) ⊂ X → X
denote an operator densely defined on X, We will
assume further that the spectrum of A satisfies the
following: A has a simple isolated eigenvalue at µ0 =
0; there exists some value of θ ∈ (0, π/2) such that
any remaining spectrum of A lies within the sector

{z|π/2 + θ < Arg(z − µ0) < 3π/2− θ}

(A is a sectorial operator), and is strictly bounded
away from µ0.

Let B : X → X denote a bounded linear self ad-
joint operator defined on X. Let f : X → X denote
a nonlinear mapping, that is Lipschitz continuous.

For Ω ⊆ R, we let C1(Ω × R+, X) denote the
space of continuously differentiable functions defined
on Ω×R+ taking values in X. For u ∈ C1(Ω×R+, X)
u(x, t) denotes the X-value of u at any (x, t) in
Ω× R+.

We will interpret functions u ∈ C1(Ω × R+, X)
as time dependent density functions for the distri-
bution of some substance, or particles, or popula-
tion of individual units, of interest. To do so we
assume there is an element w∗

0 ∈ X, such that
ũ(x, t) =< w∗

0, u(x, t) > is the evolving real valued
mass density function induced by u for real x in Ω.
Then for any subset Ω′ ⊆ Ω,

∫
Ω′ ũ(x, t)dx denotes

the total mass held within Ω′ at time t. In physical
applications we would of course additionally require
ũ(x, t) to be nonegative.

If A is a mixing operator, then conservation of
mass implies that the adjoint operator, A∗ say, must
satisfy A∗w∗

0 = 0, hence w∗
0 must be the eigenfunc-

tion of the adjoint A∗ corresponding to the eigenvalue
µ0 = 0.

Consider the following problem, where B maps
u onto the corresponding local advective flux, also
in X, and A described some (translation invariant),
mass conserving, mixing process, and f denotes any
state dependent source or sink processes:

u ∈ C1(Ω×R+, X),
∂u

∂t
+

∂(Bu)
∂x

= Au+f(u). (1)

Of special interest are travelling wave solutions,
where some fixed profile for u moves at some speed
through the x domain. The interest in such waves is
analogous to that for reaction diffusion problems [2].

In [1] the author considers (1) with the nonlin-
earity, f , absent. Let w0 denote the eigenfunction
for A corresponding to the eigenvalue at the origin,
and assume henceforth that < w∗

0, w0 >= 1. Let
ω =< w∗

0, Bw0 >, and D∗ = − < w∗
0, (B−ωI)A†(B−

ωI)w0 >, where A† denotes the pseudo inverse for A
obtained by restricting A to the orthogonal comple-
ment of the subspace spanned by w0. Let u(x, t)
be the solution to the Cauchy problem for (1) (with
f ≡ 0), defined for all x ∈ R and t > 0, say. Then in
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[1] it is shown that if D∗ exists and is strictly positive
then there exists a real valued solution û(x, t), of the
one dimensional equation,

∂û

∂t
= D∗∂2û

∂x2
− ω∗∂û

∂x
,

such that ||u(x, t) − û(x, t)w0||X ≤ O(1/t). Further-
more, if A is self adjoint then D∗ is real and positive.
Hence there is a direct link between the microscopic
advection and mixing processes and a macroscopic
Fickian dispersion process.

Example: equations with n distinct phases
Here X is n dimensional Euclidean space. Assum-

ing u(x, t) = U(z) where z = x − ct for some wave
speed c, we obtain a system of n ordinary differential
equations:

(B − cI)U ′ = AU + f(U).

This last may have one or more travelling wave so-
lutions (each determined exactly up to a translation
in z) for some discrete values of c. Hence we have a
nonlinear eigenproblem for the pair (c, U).

Example: velocity jump models
In [3] and [4] the authors introduce velocity jump

models for a population or distribution of particles
(or ions, or individuals). A similar notion was em-
ployed in [5].

Consider a time, t, dependent population u(x, v, t)
of particles evolving a space, parameterised by loca-
tion x and velocity v ∈ [vmin, vmax]. It is assumed
that a particle moving with velocity ṽ , jumps accord-
ing to a Poisson process of intensity λ(ṽ). For parti-
cles having prior velocity ṽ, we introduce the kernel
T (v, ṽ) to represents the distribution for its possible
velocities, v, post-jump. Conservation of mass de-
mands

1 =
∫ vmax

vmin

T (v, ṽ))dv for all ṽ.

Then the population is subject to :

∂u

∂t
+ v

∂u

∂x
= −λ(v)u+

∫ vmax

vmin

T (v, ṽ)λ(ṽ)u(x, ṽ, t)dṽ.

(2)
Here X = L2[(vmin, vmax)]. Firstly vmin and vmax

should be finite so that B, the act of multiplication
by v, is bounded. Secondly A has the form

Aw = G.H.w

where H and G are linear mappings: H.w(v) =
λ(v)w(v), G.y(v) = −y(v) +

∫ vmax

vmin
T (v, ṽ)y(ṽ)dṽ.

Zero is an eigenvalue for G, but if λ(v) vanishes
in [vmin, vmax] then the inverse of H is unbounded.
Hence in general zero may not be an eigenvalue for A
in that case. On the other hand if λ(v)−1 is bounded
it will be so.

Now we may wish to determine wave like solutions
that occur when we add a nonlinear reaction term to
the above transport equation.

Tavelling wave fronts
Our long term aim is to investigate travelling front

solutions for systems over general spaces, X, with
suitable mappings f : X → X. In this paper we will
focus on an exemplar problem, when X is simple.

Here X = R2 and u(x, t) repesents a distribution
over two distinct phases. We consider the system

u
∂u

∂t
+

∂(Bu)
∂x

= Au + f(u),

A =
(
−a1 a2

a1 −a2

)
, B =

(
b1 0
0 b2

)
where, a1 and a2 represent the nonnegative switch-
ing rates; and b1 6= b2 are constants representing the
phase dependent advection rates. Note w∗

0 = (1, 1)T

satisfies AT .w∗
0 = 0. A has eigenvalues at 0 and -

(a1 + a2), which is negative.
Without loss of generality (we can rescale, and

possibly reflect, the x variable so that) we have
b1 = 2 + b2, and then introducing the travelling co-
ordinate z = x− (c + b1− 1)t, and writing u = U(z),
we obtain(

1− c 0
0 −1− c

)
U ′ = AU + f(U),

Let us write U = (U1, U2)T , and assume that
f(U) = (F (U1), 0)T so that only the first phase is
subject to a raection process: the other phase is com-
pletely passive.

Then we have

(1− c)U ′
1 = a2U2 − a1U1 + F (U1), (3)

(−1− c)U ′
2 = a1U1 − a2U2. (4)

Adding (3) and (4) (equivalent premultiplying the
system by w∗

0
T ) we have

(1− c)U ′
1 − (1 + c)U ′

2 = F (U1). (5)
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Differentiating (3) we may substitute for U ′
2 in (5)

and obtain
0 =

1
a2

(1− c2)U ′′
1 + (6)

U ′
1

(
c(a1 + a2) + a1 − a2

a2
− 1

a2
(1 + c)FU (U1)

)
+F (U1).

Here FU denotes dF/dU .
Equation (6) is similar to the travelling front prob-

lem obtained for the scalar reaction diffusion prob-
lems

wt = wxx + F (w),

where writing w = W (ζ) with ζ = x − ηt, for some
wave speed η, we have

0 = W ′′ + ηW ′ + F (W ). (7)

This must be solved for the profile , W , and the wave
speed, η: a nonlinear eigenproblem.

Let us be more specific about F . We assume this is
bistable, with two roots, one at zero and one at unity,
such that both equilibria are locally stable solutions
of the ordinary differential equation wt = F (w).

Let us assume that α ∈ (0, 1) is a constant and
F (w) = w(w−α)(1−w). Then (7) has a monotically
increasing travelling front solution [2] satisfying W →
0 as ζ → −∞, W → 1 as ζ → +∞, and unique wave
speed η =

√
2(1/2− α).

Now for such a choice of F we ask whether the same
proposition is true of (6). We consider travelling front
solutions (U1(z), c) such that U1 → 0 as z → −∞,
U1 → 1 as z → +∞. In the special; case that a1 = a2

(symmetrical mixing) we obtain

0 = 2(1− c2)U ′′
1 + U ′

1(2c− 2(1 + c)FU (U1)) + F (U1).
(8)

Now let us assume that the unknown wave speed c
lies between the extremes (±1), representing the ad-
vection rates for each phase, then we may introduce
a rescaled travelling varaible y = z/

√
2(1− c2), and

abusing our notation to write U1 = U1(y), we have

0 = U ′′
1 + U ′

1

(2c− 2(1 + c)FU (U1))√
2(1− c2)

+ F (U1). (9)

Then the following is true.
Proposition. If F (w) = w(w − α)(1 − w) equa-
tion (9) has a monotonic travelling front U1(y), for a
unique value of the wave speed, −1 < c < 1; satisfy-
ing U1 → 0 as y → −∞, U1 → 1 as y → +∞..

This in turn provides a solution to the original
problem, changing variable from y back to z, and
using (4) to obtainn U = (U1, U2).

Summary
The class of equations presented here are parabolic

only asymptotically, over large space and large time.
Yet when coupling dispersion, via mixing and advec-
tion processes, with a reaction term, we anticipate
that they can support wave fronts similar to those
of reaction diffusion systems. In this paper we have
ilustrated this phenomenon for a simple example.

Diffusion like terms are often the modeller’s first
resort (Occams’ razor!) when incorporating trans-
port and spatial dependence over nonlinear reaction
systems. However their provenance is far from trivial.
Advective systems, with waves driven by the advec-
tive supply of populations or species to reaction zones
or reaction fronts, abound within biochemistry, phys-
iology and geochemoistry. Therefore we suggest that
this class of models and the novel mathematical chal-
lenges inherent in analysing them are highly relevent
to many multidisciplinary research programmes over
the next few years.
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Abstract
The perturbation of the nonlinear Scrödinger equation

that transforms it to the form of quintic Ginzburg–Landau
equation with the classical soliton as an initial condition is
investigated. To average the last equation, the generalized
moment method is applied. The derived ordinary differ-
ential equations are analyzed on the base of qualitative
theory of differential equations. This technique permits
to find the new chirp-free soliton branch bifurcating from
the initial one. The results of qualitative analysis are com-
pared with those obtained by direct numerical solution of
the Ginzburg–Landau equation.

Introduction
The classical nonlinear Scrödinger equation (NLSE)

belongs to the class of conservative, fully integrable sys-
tems, which extremely seldom realize in nature. The real
situation must be described, at least, with processes of
gain and losses taken into account. So, the natural ques-
tions arise: what will happen with the wellknown NLSE
soliton in a real medium? How long is its time of life? At
what conditions it can save its magic nondispersivity and
stability properties?

To answer these questions let us perturb the NLSE with
the functionR[ψ]:

iψt + σψxx + η|ψ|2ψ = R[ψ], (1)

whereR = iδψ + iε|ψ|2ψ + iβψxx + iµ|ψ|4ψ− ν|ψ|4ψ
with σ, η, δ, β, ε, µ ν being real constants. In the special
case of optical fiber, these quantities are interpreted as
follows: ψ is the complex envelope of an electromagnetic
field; the parametersδ, ε, µ characterize pumping or en-
ergy dissipation (depending on their signs);β is a filtering
coefficient;ν is the coefficient of a quadratic correction to
a nonlinear refractive index. The parameterσ character-
izes second-order dispersion (σ = +1/2 andσ = −1/2
correspond to anomalous and normal dispersion, respec-
tively), and η = 1. If R[ψ] is zero, then we have the
conventional NLSE with cubic nonlinearity. Thereafter,
the perturbed equation takes the form of the Ginzburg–
Landau equation, one of the most significant equations in
physics.

As a trial function for the theory of perturbation we
take the soliton solution of the NSE

ψ(x, t) =
A

ch[B−1(x− xc)]
exp i[ϕ(t) + C(x− xc)],

(2)
whereA is the soliton amplitude,B is the soliton width,
xc is the center-of mass coordinate, andC is the wave-
number. WhenR ≡ 0, the parameterA in (2) has an
arbitrary value, and the other two are related to it as fol-
lows:

A = B−1, ϕ(t) = A2t/2.

For the stationary NLSE soliton with center of mass lying
on the axis passing through the origin, it holds thatC = 0
andxc = 0.

Dynamical system
To average the CGLE for further studies of soliton evo-

lution under the perturbations we applied the generalized
moment method [1], which can be used to perform a sep-
arate analysis of the dynamics both amplitude and width
of a soliton solution to the unperturbed problem. The re-
sulting dynamical system for five parameters of the initial
condition is as follows [2]:

A′ = −Aβ

(
1

3B2
+

4
π2B2

+ C2

)
+ Aδ+

+ 2εA3

(
1
3

+
1
π2

)
+ 2µA5

(
4
15

+
1
π2

)
,

(3)

B′ =
4
π2

B

(
2β

1
B2

− εA2 − µA4

)
, (4)

C ′ = −4
3

1
B2

βC, (5)

x′c = 2σC, (6)

ϕ′ = σC2−σ
1

3B2
+

2
3
ηA2+

8
15

νA4−β
C

B
. (7)

The equations (3)–(6) do not containϕ, and the system
can be analyzed without taking (7) into account. In our
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work, the ordinary differential equations were studied on
the base of qualitative theory of differential equations [3],
thereat the conditions for equilibria existence are of the
first importance. As it follows directly from (5), (6), the
equilibria exist only ifC = 0 andxc = const. Thus, it is
sufficient to analyze only the equations for the soliton am-
plitude and width. Introducing the new variablesu = A2

andv = B2, we obtain the second-order dynamical sys-
tem

u′ = −2βa0
u

v
+ 2u(δ + 2εa1u + µa2u

2), (8)

v′ = 4βb− 2buv(ε + µu), (9)

where

a0 =
1
3

+
4
π2

, a1 =
1
3

+
1
π2

, (10)

a2 = 2
(

4
15

+
1
π2

)
, b =

4
π2

. (11)

As it was shown in [2], the localized states of the field in
(8)–(9) can exist as in the unfiltered problem, so and fil-
tered one, but only whenµ 6= 0: atµ < 0 they are stable,
while atµ > 0 unstable in both cases.

Unfiltered problem (β = 0)

The equilibria of the system are found by setting to zero
the functions

P1(u) = µa2u
2 + 2εa1u + δ, (12)

and

Q1(u) = ε + µu. (13)

simultaneously. In [2] it was revealed that the stable
localized states of the field relate to the singular line
u = −ε/µ. Direct numerical solution of (1) confirmed
this conclusion (fig.1). Moreover, the soliton exists in a
more wide rang of parameters (ε, µ) then it is predicted
by the qualitative theory for the dynamical system (8)–
(9). In the figure the chronogram of the phase function is
shown. It is featured with a flat part in the middle, where
the amplitude is far from zero, and nonplanar parts along
the edges, where the amplitude is very small. So, whether
this soliton can be consider as a chirp-free one is a ques-
tion. Probably, it can be refer to the class of composite
solitons due to a very specific form of its phase function.

Figure 1: Amplitude and phase of a soliton at several
instants forβ = 0, δ = −0.1, ε = 0.38722, µ = −0.2,

ν = 0.

Filtered problem (β 6= 0)
In this case the singular points are the roots of the ex-

pressions

P2 = −2βa0
u

v
+ 2u(δ + 2εa1u + µa2u

2), (14)

Q2 = 4βb− 2buv(ε + µu), (15)

namely,

u± =
−15ε±∆1/2

2

22µ
, v± =

2β

u±(ε + µu±)
, (16)

where∆2 = (15ε)2−1320µδ. Therefore, singular points
exist if

v± > 0, u± > 0, u± 6= ε/µ, ∆2 > 0.

By the condition ∆2 > 0 the elliptic cone
15ε2 − 88δµ = 0 divides the three-dimensional pa-
rameter space(δ, ε, µ) into an exterior set, which contain
singular points, and an interior one, which does not. For
any particularδ <= 0, the distribution of singular points
in the (ε, µ) plane, intersecting the cone, for the most
important caseδ < 0, β > 0 is presented in the fig. 2.
Here, curveI (parabolaµ = 15ε2/88δ) is the intersection
of the conic surface and the planeδ =const, and curve
II (parabolaµ = 2ε2/15δ) is the locus of points where
eitherv+ or v− changes sign. In the upper half-plane the
system has one saddle-type singular pointT+(u+, v+).
If δµ < 0 then in the gap between parabolas the system
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Figure 2: Bifurcation diagram forβ 6= 0.

has two singular pointsT+(u+, v+) and T−(u−, v−)
(dark-gray), namely, saddle and stable node.

The corresponding phase portrait is presented in the
fig.3). Dashed curveS in the figure is curve of initial con-
ditions (the amplitude–width curve of the NLSE soliton);
asterisks represent the limit values of initial conditions
that lead to the formation of a soliton. It is the node that
corresponds to the localize soliton of the CGLE (fig.4).

Figure 3: Phase portrait of the system with a saddle
pointT+ and a nodeT− atβ = 0.05, δ = −0.1,

ε = 0.36, µ = −02.

Figure 4: Amplitude (1) and phase (2) of a stable
soliton in the filtered problem (below curveII) at

δ = −0.1, ε = 0.36, µ = −0.2, β = 0.08

Conclusion
Thus, the qualitative analysis of the dynamical system,

which is a result of averaging of the complex nonlinear
partial differential equation, gives the answer on the ques-
tion, formulated in the title of the paper. But not only.
It gives the possibility for classification of main types of
dynamics of the NLSE soliton in the real physical media
([2]) and permits to purposively look for solutions fea-
tured with prescribed properties by analysis of the singu-
lar points of the short-cut dynamical system.
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CAPTURING NONLINEAR SURFACE WAVES USING THE MOVING CONTROL VOLUME METHOD
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Abstract

The ability to predict complex, highly nonlinear free-
surface physics with accuracy is demonstrated. A
moving-mesh approach is used to predict free-surface
wave motions. The method uses an unstructured
staggered-mesh approach to solve the incompressible
Navier-Stokes equations. The method is fully conserva-
tive (including kinetic energy and vorticity/circulation). It
does not have spurious pressure modes and it retains high
mesh resolution of the free-surface at all times.

Introduction
The critical physics in many surface wave problems

is essentially controlled by the moving free-surface. In
numerical solutions, these critical free-surfaces are often
represented by level sets, reconstruction methods like vol-
ume of fluids, immersed boundary methods, or combina-
tions of these techniques. However, all these approaches
smear the density interface in order to allow it to move
through the mesh. They place large approximations and
errors in the most critical part of the solution. The alterna-
tive approach is to have meshes that move with the free-
surface always maintaining the sharp interface between
liquid and gas phases. These methods tend to capture the
physics well but they also tend to be highly theoretical.
For example, boundary element techniques must assume
Stokes or potential flow (no vorticity) so that the problem
is fully elliptic. Other techniques use mathematical trans-
formations (mappings) that work only for small deforma-
tions in a 2D setting. In this work, a general moving-mesh
technique (based loosely on [1][2]) is described for com-
puting large surface deformations and highly nonlinear
surface waves.

The numerical method is a generalization of the
staggered-mesh approach to fully unstructered meshes. It
uses the Discrete Calculus approach [3] to exactly dis-
cretize the equations. The discrete operators result in a
number of local conservation statements and also allow an
exact projection scheme [4] to be implemented. Surface
tension forces are based on the discrete surface represen-
tation itself, not a smooth approximation to the surface.
The result is local conservation and exact surface force
calculations on spheres and cylinders of finite resolution.

Figure 1: Collision of two liquid droplets.
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Figure 2: Surface tension instability.

Results

An example calculation is shown in Figure 1, which
shows the head-on collision of two liquid droplets and
their subsequent deformation. While the surface points
move in a Lagrangian manner tracking the surface move-
ment and maintaining very high accuracy near the sur-
face, the interior mesh points do not. They move so that
high mesh quality is always maintained. This means that
internal vortical fluid motions do not tangle the mesh. The
solution method is not an Arbitrary Lagrangian-Eularian
(ALE) approach that has a highly diffusive remap stage
where solution is mapped from one mesh to another. In-
stead, the numerical method is based directly on the mov-
ing/deforming control volume equations of fluid dynam-
ics.

The placement of interior mesh vertices it determined
by solving a generalized spring analogy. This is an el-
liptic equation for the vertex positions that optimizes a
global measure of the mesh quality. In two dimensions
this is equivalent to treating the edges between vertices as
springs with large spring constants that have timescales

much shorter than the fluid motion. In 3D, classical
springs do not eliminate sliver cells (with very small vol-
ume), but our generalized spring approach can be proven
to continue to generate an optimal mesh. For large de-
formations, such as that shown in figure 1 or 2, the inter-
nal mesh connectivity must be dynamically changed. We
maintain optimal Delaunay connectivity via a 3D mesh
flipping technique [5]. This approach is highly parallel,
low cost (10-20 flips per time step), and can be imple-
mented using only two flipping operators if the algorithms
is correctly structured [6].

The ability of this approach to accurately compute
large deformation waves is shown in Figure 2 where the
evolution of a capillary wave (surface tension wave) on a
cylinder is shown. The amplitude growth as a function of
time is shown in figure 3 and compared to the linearized
theory of Rayleigh [7] (good at small times) and quasi-
linear theories of Weber [8] and Bogy [9].

Figure 3: Comparison with theory.

References
[1] J. B. Perot, “Conservation Properties of Unstruc-

tured Staggered Mesh Schemes”, J. Comput. Phys.,
vol. 159, pp. 58-89, 2000.

[2] J. B. Perot and R. Nallapati, ”A Moving Unstruc-
tured Staggered Mesh Method for the Simulation
of Incompressible Free-Surface Flows”, J. Comput.
Phys., vol. 184, pp. 192-214, 2003.

[3] J. B. Perot and V. Subramanian, ”Discrete Calculus
Methods for Diffusion”, J. Comput. Phys, vol. 224
(1), pp. 59-81, 2007.

471



[4] W. Chang, F. Giraldo and J. B. Perot, ”Analysis
of an Exact Fractional Step Method”, J. Comput.
Phys., vol. 179, 1-17, 2002.

[5] J. B. Perot and R. Nallapati, ”A Moving Unstruc-
tured Staggered Mesh Method for the Simulation
of Incompressible Free-Surface Flows”, J. Comput.
Phys., vol. 184, pp. 192-214, 2003.

[6] R. Nallapati and J. B. Perot, “Numerical simulation
of free surface flows using a moving mesh”, Pro-
ceeedings of the 2000 ASME Fluids Engineering
Summer Conference, 2000.

[7] L. Rayleigh, “On the instability of cylindrical fluid
surfaces”, Scientific Papers, vol. 3, pp. 585-593,
Cambridge University Press, 1982.

[8] C. Weber, “On the breakdown of a fluid jet”,
ZAMM, vol. 1, pp. 136, 1931.

[9] D. B. Bogy, “Drop formation in a circular liquid jet”,
A. Rev. Fluid Mech., vol. 11, pp. 207-228, 1979.

472



Inverse scattering for the nonlinear Schrödinger equation with the Yukawa potential
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Abstract
We study the inverse scattering problem for the three

dimensional nonlinear Schrödinger equation with the
Yukawa potential. The nonlinearity of the equation is
nonlocal. We reconstruct the potential and the nonlinear-
ity by the knowledge of the scattering states.

Introduction
We consider the inverse scattering problem for the

three dimensional nonlinear Schrödinger equation

i∂tu+∆u+Q0

e−µr

r
u−

(
Q1

e−µr

r
∗|u|2

)
u = 0 (NLS)

in R×R
3. Here, u is a complex-valued unknown function

of (t, x) ∈ R × R
3, ∂t = ∂/∂t, ∆ is the Laplacian in R

3,
r = |x|, Q0, Q1 ∈ R

3, µ > 0 and ∗ is the convolution in
the space variables.

The equation (NLS) is approximately derived from the
generalization of the electronic Hamiltonian for an N -
electron atom in a plasma

−
1

2

N∑

j=1

∆j −

N∑

j=1

Ze−µ|xj |

|xj |
+

N∑

j>k

e−µ|xj−xk|

|xj − xk|

where xj ∈ R
3 is the space variables for the j-th particle,

∆j is the Laplacian with respect to xj , Z is the nuclear
charge and µ is a parameter depending on the density
and the temperature of the plasma (see, e.g., Mukherjee–
Karwowski–Diercksen [1]).

Scattering
In order to mention the inverse scattering problem, we

introduce the definition of the scattering operator for the
nonlinear evolution equation

i∂tv(t) + J(v(t)) = f(v(t)), t ∈ R, (1)

where v is a complex-valued function on the Hilbert space
X , J is a self-adjoint operator on X and f is a mapping
on some subspace of X . Let B(δ;X) be the set of all
φ ∈ X with ‖φ‖X ≤ δ. The scattering operator S is
defined by the mapping

S : B(δ;X) 3 φ− 7→ φ+ ∈ X

if the following condition holds for some δ > 0 and some
Z ⊂ C(R;X):

For any φ− ∈ B(δ;X), there uniquely exists v ∈ Z

such that v is a time-global solution to (1) and satisfies

lim
t→−∞

‖v(t) − eitJφ−‖X = 0.

Furthermore, there uniquely exists φ+ ∈ X such that

lim
t→∞

‖v(t) − eitJφ+‖X = 0.

We remark that eitJφ is a solution to the Cauchy problem
for

{
i∂tv(t) + J(v(t)) = 0, t ∈ R,

v(0) = φ.

Inverse Scattering
The inverse scattering problem for the equation (1) is

to recover the perturbed term f by applying the knowl-
edge of the scattering operator S. Before we treat (NLS),
we first review the inverse scattering problem for the
Schrödinger equation with power nonlinearity briefly.
Strauss [6] considered the nonlinear Schrödinger equa-
tion

i∂tu + ∆u = V (x)|u|p−1u, (t, x) ∈ R × R
n.

Suppose that p is an integer satisfying




p > 4 if n = 1,

p > 3 if n = 2,

p ≥ 3 if n ≥ 3,

and V (x) is real-valued continuous and bounded, whose
derivatives up to order l > 3n/4 are bounded. Then the
scattering operator S is well-defined. It was shown that
V (x) is recovered from the scattering operator by the fol-
lowing way: For s ∈ R

n, let Hs(Rn) be the Sobolev
space (1 − ∆)−s/2L2(Rn). For any φ ∈ H1(Rn) ∩
L1+1/p(Rn), we have

V (x0) =
lim
α→0

α−(n+2)I[φα,x0
]

∫

R

∫

Rn

|eit∆φ(x)|p+1dxdt

, (2)
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where φα,x0
(x) = φ(α−1(x − x0)), x, x0 ∈ R

n and

I[φ] = lim
ε→0

i

εp

〈
(S − id)(εφ), φ

〉
L2(Rn)

.

The above limit is called the small amplitude limit.
Unfortunately, the above method to obtain the recon-

struction formula (2) is not applicable to the case (NLS)
with Q0 = 0. The essential point to prove the formula (2)
is the change of variables in the following integral:

I[φ] =

∫

R

∫

Rn

V (x)|eit∆φ(x)|p+1dxdt.

By changing variable x by α−1(x − x0), we have

I[φα,x0
] = αn+2

∫

R

∫

Rn

V (x0 + αx)|eit∆φ(x)|p+1dxdt.

Therefore, as α → 0, we can take the value V (x0) from
the inside integral. Applying the same method to (NLS)
with Q0 = 0, we obtain

I[φα,x0
]

=

∫

R

∫

Rn

(
V ∗ |eit∆φα,x0

(x)|2
)
|eit∆φα,x0

(x)|2dxdt

=α2n+2

∫

R

∫

Rn

(
V (α·) ∗ |eit∆φ(x)|2

)
|eit∆φ(x)|2dxdt,

where V (x) = Q1

e−µr

r
. Since the integral

∫

R

∫

Rn

(
V (0) ∗ |eit∆φ(x)|2

)
|eit∆φ(x)|2dxdt

does not converge, we can not make α tend to infinity.
We next review the inverse scattering problem for the

nonlinear Schrödinger equation with a cubic convolution

i∂tu + ∆u + Ṽ (x)u = F σ(u), (t, x) ∈ R × R
n. (3)

Here, Ṽ : R
3 → C is measurable and satisfies some suit-

able condition,

F σ(u) = λ(x)(| · |−σ ∗ |u|2)u

and λ ∈ C1(Rn)∩W 1
∞(Rn). It was proved by Watanabe

[7] that if σ is a given number, then we can reconstruct V

and λ by the knowledge of the scattering operator. Watan-
abe [8] determined σ of the term F σ if Ṽ ≡ 0 and λ(x) is
a non-zero constant function. Under the condition Ṽ ≡ 0,
Sasaki [5] proved that σ of F σ can be determined even if
λj is not a constant. In fact, σ is given by

σ = 2n + 2 − lim
α→0

ln
|T [φeα]|

|T [φα]| + α2n+2
, (4)

T [φ] = lim
ε→0

i

ε3

〈
(S − id)(εφ), φ

〉
L2(Rn)

,

where e is the base of the natural logarithm, φ ∈
H1(Rn)\{0}, φα = φα,0 and S is the scattering operator.

As we mention before, we study the inverse scatter-
ing problem for (NLS). Remark that we can not di-
rectly apply the known results to recovering the terms

Vj := −Qj

e−µr

r
u, j = 1, 2.

Main Results
Our goal is to give a formula for determining the pa-

rameter Q0, Q1 and µ by using the knowledge of the scat-
tering operator for (NLS) given by Theorem 0.1 below.

We now define some notation which will be used later.
We put L2(R3) = H. We denote the norm and the inner
product of H by ‖ · ‖ and 〈·, ·〉, respectively. For 1 ≤
p, q ≤ ∞, ‖ · ‖q and ‖ · ‖(p,q) denote ‖ · ‖Lq(R3) and ‖ ·
‖Lp(R;Lq(R3)), respectively. We set F (u) = −(V1∗|u|

2)u.
Let H be an unbounded operator on H defined by

D(H) = H2(R3), H = −∆ + V0.

The Kato-Rellich theorem implies that H is self-adjoint
on D(H) (for the detail, see Theorem X.15 in [2]). There-
fore, we see that e−itH : H → H is a unitary operator.
That is, we have

‖e−itHφ‖ = ‖φ‖ (5)

for any φ ∈ H. For a measurable function V : R
3 → C,

we set

‖V ‖R =

√∫

R3+3

|V (x)V (y)|

|x − y|2
d(x, y),

‖V ‖K = sup
x∈R3

∫

R3

|V (y)|

|x − y|
dy.

The norm ‖ · ‖R is said to be the Rollnik norm. Our first
result is concerned with the direct scattering problem for
(NLS).

Theorem 0.1. Assume that

|Q0|

µ
< 4π min

{∥∥∥∥
e−r

r

∥∥∥∥
−1

R

,

∥∥∥∥
e−r

r

∥∥∥∥
−1

K

}
. (6)

Let Y1 = L3(R;L18/7(R3)) and Z1 = C(R;H) ∩ Y1.
Then there exists some δ > 0 such that if φ− ∈ B(δ;H),
then there uniquely exists u ∈ Z1 such that u is a time-
global solution to (1) and satisfies

u(t) = e−itHφ− +
1

i

∫ t

−∞
e−i(t−τ)HF (u(τ))dτ, (7)

lim
t→−∞

‖u(t) − e−it∆φ−‖ = 0. (8)
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Furthermore, there exists a unique φ+ ∈ H such that

lim
t→∞

‖u(t) − e−it∆φ+‖ = 0. (9)

Therefore, the scattering operator for (NLS)

S1 : B(δ;H) 3 φ− 7→ φ+ ∈ H

is well-defined.

It is well-known that the wave operators

Ω± = s − lim
t→±∞

eitHeit∆ : H → H

and the inverse wave operators

Ω∗
± = s − lim

t→±∞
e−it∆e−itHPac : H → H

are well-defined (see Theorem XI.30 in [3]). Here, Pac

means the projection onto the absolutely continuous sub-
space of H . If we have ‖V0‖R < 4π, then Pac becomes
identity (see the proof of Theorem XIII.21,(a) in [4]). We
define a mapping SV0

by

SV0
= Ω∗

+Ω− : H → H.

The operator SV0
is the scattering operator for (1) with

J = −∆ and f(u) = −V0u.
Using the method of [7], we see that SV0

can be deter-
mined from the knowledge of S1.

Theorem 0.2. ([7]) Assume that (6) holds. For any φ ∈
H \ {0}, we have

lim
ε→0

1

ε
S1(εφ) = SV0

(φ) in H. (10)

Once we have determined SV0
, we can reconstruct V0,

e±itH , Ω±, Ω∗
± by Enss and Weder [9]. Therefore, we

can see the exact value of Q0, and of µ if Q0 6= 0. If
Q0 = 0, then we see that H = H0, but µ is still unknown.
The remained unknown numbers are determined by the
following result:

Theorem 0.3. Assume that (6) holds.

(i) If Q0 6= 0, then we have for any φ ∈ H \ {0},

Q1 =
lim
ε→0

i

ε3

〈
(Ω+S1Ω

∗
− − id)(εφ), φ

〉

∥∥∥∥
(

e−µr

r
∗ |e−itHφ|2

)
|e−itHφ|2

∥∥∥∥
(1,1)

.

(11)

(ii) If Q0 = 0, then we have for any φ ∈ H1/4(R3)\{0},

Q1

µ2
=

lim
λ→∞

iλ4

〈
(S1 − id)(λ−3φλ), φλ

〉

∥∥∥∥
e−r

r

∥∥∥∥
1

‖eit∆φ‖4

(4,4)

, (12)

Q1

µ
=

∫ ∞

0

λ−7 lim
ε→0

i

ε3

〈
(S1 − id)(εφλ), φλ

〉
dλ

∥∥∥
(
r−2 ∗ |eit∆φ|2

)
|eit∆φ|2

∥∥∥
(1,1)

.

(13)
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Abstract
A new method is described to compute thin pulse so-

lutions to the multidimensional wave equation that can
propagate over long distances. Unlike conventional nu-
merical solutions, these waves remain narrow, several
grid cells (h) in width, and never spread due to discretiza-
tion error. These “pulses” represent a travelling wave
front as a codimension 1 surface in the limit h ⇒0. The
wave has two conserved quantities as it transverses a grid
point : total amplitude and centroid speed.

Introduction
A nonlinear method is described to economically rep-

resent the solution to a linear wave equation. This is dif-
ferent from most work on solitary waves which involves
linear methods to solve nonlinear wave equations. The
reason that this offers an attractive means of simulating
waves is that conventional Eulerian computational meth-
ods typically rapidly degrade the solution over distances
even if complex higher order numerical methods are used
[1]. Also, unlike Lagrangian ”Ray Tracing”[2], which at-
tempts to solve similar problems, the solitary waves are
Eulerian and represent intrinsically codimension 1 sur-
faces rather than collections of marker coordinates.

Methodology
A simple example of this concept in one dimension

involves the convection or wave equation for a passive
scalar that is concentrated in a small region. The goal
then, is to ensure that it remains compact and non-
oscillatory - essentially spread over a small number of
cells, and that it preserves the important properties of the
linear convection/wave equation. Only a few important
properties are considered since the pulse width is only a
few grid cells. The method is related to another - “Vortic-
ity Confinement” for solving fluid flows with thin vortical
regions [3].

We start with a simple convective difference method,
centered in space and explicit, first order Euler in time.

φn+1
j = φn

j −
1
2
(
νj+1φ

n
j+1 − νj−1φ

n
j−1

)
+ En

j (1)

where j is the spatial grid index, the time is n∆t, cj is the

convection speed, and νj = cj∆t
j . We introduce a “Con-

finement” term, En
j . En

j = 0 would result in an unsta-
ble centered scheme, and any diffusion added for stability
would make it dissipative and spread over time. How-
ever, a nonlinear term can be added to maintain stability
and in addition, keep the pulse close to its desired, com-
pact shape. The term acts like a “forward backward” heat
equation in the frame propagating with the pulse.
For the convection equation, a simple form, En

j = δ2
j F

n
j

conserves the total amplitude and centroid speed, since∑
j

Ej = 0 and
∑
j

jEj = 0. Here, δ2
j is a discrete sec-

ond difference operator and Fn
j is a function of φ and its

differences which vanish in the far field. A preliminary
version of the method was presented in [4].

For accurate simulations, Fn
j must be homogeneous of

degree 1 in φ, as the other terms in the linear pde, so that
there is no dependence on the amplitude, or scale of φ.
Also, δ2

j F
n
j must represent a negative diffusion for long

wavelengths, contracting the pulse. To prevent instabil-
ities from negative diffusion, it is then required to use a
nonlinear form for Fn

j . For short wavelengths, δ2
j F

n
j must

be positive, spreading the pulse and relaxing it to a desired
shape.

A simple formulation that satisfies the above require-
ment is Fn

j = µφn
j − εΦn

j where µ and ε are constants,
and Φn

j is a nonlinear mean (there are many other forms)
given by

Φn
j = 3

j+1∑
j−1

(φn
l )−1

−1

(2)

The exact “sampled” pulse height at any given time step
depends on the centroid position, as if an approximately
fixed pulse shape were “moved” through the grid at a
weighted average velocity. In the small ∆t “semidiscrete”
limit, for constant c, φ satisfies δ2

j (µφn
j − εΦn

j ) = 0 for
which the solution is given by

φn
j = Asech (γ (x− x0 − ct)) (3)

where A is the initial amplitude, x0 is the initial centroid
position and cosh(γ) =

(
3ε
µ − 1

)
/2. A depends period-

ically (slightly) on position in each cell.
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For the discrete wave equation, the “Confinement”
term involves a time derivative:

φn+1
j = 2φn

j − φn−1
j + δ2

j ν
2
j φn

j + δ−n En
j (4)

where δ−n En
j = En

j − En−1
j

In 2-D, we have the same behaviour for a straight line
pulse: φn

ij = Asech (γ (z − z0 − ct)) and ε
µ = [1 +

2cosh(γ cos θ) + 2cosh(γ sin θ)]/5. Here, the width of
the pulse, γ−1 will depend on the orientation of the line -
θ. However, the centroid propagation speed in the nor-
mal direction is independent of θ, so that in the small
cell limit, it accurately represents the wavefront of an
isotropic wave equation. A dependence on angle was also
seen in [5]. An important point is that there is no effect on
the amplitude and centroid after the solitary waves pass
through each other.

Continuum case
As an example, we consider a scalar (φ) advecting at a

speed c that, in the continuum case, would satisfy the pde

∂tφ = −∂xcφ (5)

Our basic point is that there will be errors when we dis-
cretize equation 5, and when we confine the pulse solution
to ∼2-3 grid cells, these “errors” will be large. However,
corresponding to the small number of grid points within
in the pulse, there will be only a small number of quanti-
ties that we can conserve (for a continuum pulse solution
of equation 5, there are an infinite number of conserved
quantities): By integrating equation 5 or premultiplying
by x and then integrating, it is easy to see that adding
a term E = ∂2

xF ({φ}), that vanishes at the boundaries,
along with derivatives, will not affect the conservation of
the total amplitude

A =
∫

φdx (6)

or the speed of the centroid, V, where the centroid is

< x >=
∫

xφdx/A (7)

and

V =
d < x >

dt
=
∫

φc(x)dx/A (8)

To satisfy these conditions, and to keep the essential
physics of equation 5 for a short convecting pulse, we
want E to satisfy a set of conditions described above. In

the convecting frame of the pulse, the pde becomes the
heat equation ∂tφ = E. If we take

E = ∂2
x(µφ− εΦ) (9)

where Φ is a nonlinear function of φ, then at convergence,
µφ0(s) = εΦ(φ0(s)). For the discrete case, φ(s) will stay
close to φ0(s). The discrete form given in equation 1,
which involves a harmonic mean, when Taylor expanded
on a grid with cell size h, using equation 9 for E, gives

∂tφ + c∂xφ = −βh2∂2
xφ− εh2

3
∂2

x

(
∂2

xφ− 2
(∂xφ)

φ

2
)

(10)
where ε = µ+βh2 and (ε > µ ). The pulse then relaxes to
the form given by equation 3. It is interesting that the role
of the second order term in equation 10 is different from
most popular nonlinear pde’s, such as KdV, that harbor
solitary waves: In these, the linear (diffusion or disper-
sion) term is the “expansion” term, and the “contraction”,
or “steepener” term is the nonlinear Burgers-like convec-
tion: (∂xφ2/2). Here, the linear diffusion term acts to
contract and prevents φ from changing sign, and it is the
nonlinear term that expands. Also, the 1

φ term there in-
creases the expansion as the pulse contracts, until a bal-
ance is reached.

Results
The solution of the discretized wave equation in 1-D

is presented in Fig.1, for a conventional discretization,
and with the Confinement term which results in a soli-
tary wave. Periodic boundary conditions were used. The
conventional solution and the solitary wave had passed
through the grid 15 times. In Fig.2, contours are pre-
sented for the 2-D solitary wave solution with periodic
boundary conditions. In Fig.3, a solitary wave solution
is shown as in Fig.2, but in 3-D. The solutions of Figs.1-
4 involve constant index of refraction. The 2-D solution
of Fig.4 involves a non-constant index of refraction. As
validation, Lagrangian markers which follow the correct
paths, as in Ray Tracing methods [2], were superimposed
on the computed solitary wave amplitude contours. In
Fig.5, an elliptical pulse is shown that converges to a fo-
cus and then diverges. Despite lack of grid resolution at
the focus, the final result is correct, since the method en-
forces correct motion for second order moments. As in
Fig.4, Lagrangian markers are superimposed for valida-
tion.

Acknowledgement
This work was sponsored by AFOSR.

477



Figure 1: 1D Wave Equation

Figure 2: 2D Wavefront Propagation
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Figure 3: 3D Wavefront Propagation

Figure 4: Variable Index of Refraction

Figure 5: Focussing Elliptical Wavefront
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Introduction
We consider the steady (long time) periodic solutions

of a class of damped extended Korteweg-de Vries equa-
tions with Burger’s damping (eKdVB) and with periodic
forcing. In particular we consider equations of the form

ut−γuxxx+∆ux+αuux+βu2ux−µuxx = f(x), (1)

on the domainx ∈ [0, 2L] wheref(x) corresponds to an
arbitrary forcing with period2L. The parameterγ pro-
vides a measure of the linear dispersive effects,µ the dif-
fusive effects, andα, β the nonlinear effects. Finally∆
may be seen as a measure of detuning from resonance.

While model equations of this type arise in a number
of physical scenarios, analysis depends crucially on the
relative magnitude of the various parameters. In some
cases either one or both of the nonlinear terms may be
considered weak, or forcing effects may be considered
weak, and in others they cannot. In the case where
both nonlinear and forcing effects are strong it is known
that a rich array of steady solutions emerge. While an-
alytic studies in this regime have been performed, for
instance [1], [2], they remain limited in terms of their
scope. Recently Amundsen, Cox and Mortell [3] devel-
oped a general framework based on singular perturbation
and asymptotic matching in the context of the forced KdV
equation (β = 0). We now extend this to the more general
eKdV case, and in doing so will not only characterize and
illustrate the much wider class of solutions, but also fur-
ther develop the methodology and illuminate its features
and limitations.

Analytic Approximation of Steady Solutions
We return to (1) and where in order to ensure bounded-

ness of the long-time solutions it is assumed that the peri-
odic forcing,f(x) has zero mean. This often corresponds
physically to a global constraint such as mass conserva-
tion. Consequently enforcing periodicity inx for u we
may assume without loss of generality thatu satisfies the
global condition

∫ 2L

0
u(x, t)dx = 0. (2)

While the question of non-steady solutions is also inter-
esting and indeed while there are some cases where ape-

riodic and even chaotic behaviour is observed, [4], we
restrict our focus to cases where the dissipative effects
render the solution steady in the limitt → ∞. Thus (1)
reduces to the ODE

−γuxx + ∆u +
α

2
u2 +

β

3
u3 − µux = F (x) + C, (3)

whereF (x) is taken as the anti-derivative off(x) also
having zero mean. Consequently we see immediately
through (2) that the integration constant

C =
1

2L

∫ 2L

0
α

u2

2
+ β

u3

3
dx.

In the present context, as noted above, we consider the
case where the dissipative effects are smallγ ¿ 1, the
diffusive parameterµ = O(γ) = νγ and all other pa-
rameters, and the forcing are assumed order unity. We
now seek to obtain approximate solutions, asymptotically
valid in the limit thatγ → 0. First if we apply a sim-
ple perturbation expansionu = u0 +

√
γu1 + . . . then to

leading order we see that

∆u0 + α
u2

0

2
+ β

u3
0

3
= F (x) + C.

Using standard formulas for roots of cubic polynomials,
the solutionsu0 may be determined. For example in the
case whereα = 0 (mKdV)

u0k
=

ρ1/3

2β
e2πik − 2∆

ρ1/3
e−2πik, k = 0, 1, 2

ρ =
(
12[F (x) + C] + 4

√
M

)
β2, M =

4∆3 + 9β[F (x) + C]2

β
.

However not all such solutions may satisfy (2) for all
values ofC and indeed it is not assured that at all points
these solutions are either real or differentiable. In this
case we note that there exist two critical values∆ = 0,
and∆ = ∆M whereM = 0 corresponding to when roots
transition from being complex to real and vice versa. It
can be seen that for intermediate values of∆ the non-
dispersive solutions may be real for certain values ofx,
but not over the entire interval, whereas outside this “res-
onant band” one non-dispersive solution is entirely real
and also satisfies (2) for some value ofC. Therefore,
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for parameter values within this resonant range, we must
modify our approach and allow for dispersive effects to
play a role. Therefore we introduce a layer atx = δ
where dispersive effects cannot be neglected at leading
order. Within this layer we introduce a new coordinate

X =
ω1(x)√

γ
+ ω2(x) +

√
γω3(x) + . . . , (4)

so that the solutionsu = u(x,X) are now assumed to
vary on both the slow and fast coordinate scale. Thus
applying a perturbative approachu(x,X) = u0(x,X) +√

γu1(x, X)+γu2(x,X)+. . . it can be seen that to lead-
ing order,

−(ω′1)
2u0XX +

α

2
u2

0 +
β

3
u3

0 +∆u0 = (F (x)+C), (5)

which upon integrating once becomes

ω′21 u2
0X =

α

3
u3

0+
β

6
u4

0+∆u2
0−2(F (x)+C)u0+E, (6)

whereE = E(x) is a further constant of integration. Now
by integrating once more, we can obtain the solutions by
way of an inverse elliptic integral. However, if it is as-
sumed that the roots of the quartic polynomial are real
and distinct then we can write the solution in an explicit
form

u0(x,X) =
−(b− d)c + sn2(B(X − δ),m)(b− c)d
−(b− d) + sn2(B(X − δ),m)(b− c)

,

(7)

B =

√
(a− c)(b− d)

2ω′1
, m =

(b− c)(a− d)
(a− c)(b− d)

,

anda ≤ b ≤ c ≤ d are the roots of the quartic polyno-
mial in (6), which in turn depend on the slow varyingx
coordinate through the variation of the forcing.

In order to account for and determine the nature of the
slow variation of the parameters we investigate the sec-
ularities arising at subsequent orders. First, as noted by
Luke [5], we must ensure that the periodicity of the solu-
tions in a problem such as this is constant with respect to
the slow variation. Consequently

T =
2K(m)

B
=

2K(m)√
(a− c)(b− d)

ω′1,

whereT is an arbitrary constant associated with the pe-
riod in X. ChoosingT = 2 we now obtain an expression
for the leading order variation of the dispersive layer co-
ordinate

ω′1(x) =

√
(a− c)(b− d)

K(m)
. (8)

Now we consider the equation which arises atO(
√

γ)

−ω2
1u1XX + ∆u1 + αu0u1 + βu2

0u1 = 2ω′1ω
′
2u0XX

+2ω′1u0xX + ω′′1u0X + νω′1u0X . (9)

The solution of the homogeneous self-adjoint problem is
u0X , so that by taking the standard functional inner prod-
uct and applying periodicity it can be shown that the sol-
ubility condition reduces to

d

dx
ω′1

∫ T

0
u2

0X dX − νω′1

∫ T

0
u2

0X dX = 0. (10)

Then this equation is easily integrated and using the ex-
pression foru0 an explicit algebraic equation emerges re-
lating the variation of the solution parameters to that of
the forcing. While for the pure KdV case it is possible to
obtain an explicit expression, [3], this criterion may also
be evaluated and solved numerically. Then by applying
matching criteria that on either side of the layer the solu-
tions within the dispersive layer match solutions outside
the layer we obtain a framework for generation of a broad
class of solutions.

Discussion and Comparisons
The matching procedure is perhaps best understood in

terms of the associated phase plane configuration. Equa-
tion (5) has an associated phase plane in(u0, u0X), as
shown in Figure 1, where the non-dispersive solutions of
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Figure 1: Phase plane configuration eKdVB

(3) correspond to fixed points which move slowly in re-
sponse to the variation of the forcing. Consequently the
solutions within the dispersive layer correspond to trajec-
tories in this non-autonomous phase-space beginning and
ending at a fixed point. Thus the matching is such that,
for example with the solutions (7), that the modulus of
the elliptic functionsm(x) → 1 in the matching region,
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ensuring that the solutions transition smoothly from the
dispersive to non-dispersive regions. This matching crite-
ria then also supplies the possible layer locationsδ once
m(x) is determined through (10). For example in the un-
damped KdV case it was found that layers must be located
around the local extrema ofF (x). Similar results follow
for the more general nonlinearities, however for example
with the undamped mKdV the layer locations are seen to
lie at the inflection points ofF (x).

In the end a range of possible leading order matched
asymptotic solutions emerge, corresponding to solutions
starting at one of the saddle points, orbiting the centre,
and then matching to one of the two saddles. How-
ever once the global condition on the mean (2) is applied
only a limited set of these solutions remain. For exam-
ple, Figure 2 shows a solution which arises for the case
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Figure 2: Numerical (solid) and approximate (dashed)
solutions, with non-dispersive solutions (dotted)

γ = .005, ∆ = −5, α = 0, β = 3, µ = .0015, L = 1
f(x) = −π sinπx. The trajectory transitions between the
saddle points and during the transition it orbits the nodal
solution one and a half times. In this way the full range
of solutions across the resonant band may be captured.

It is also interesting not only to consider variation of∆,
but also in the relative magnitude of the nonlinear terms.
In this way a connection can then be drawn between res-
onant solutions for the KdV (β = 0) and mKdV(α = 0)
equations, manifested geometrically by the presence and
influence of the additional saddle point. In particular Fig-
ure 3 depicts the full range of resonant solutions which
emerge for the case whereγ = .005, µ = .0015,
α = 2, L = 1, f(x) = π sinπx andβ = 0, .1, .1037.
We see that as the effect of the cubic nonlinearity in-
creases, a bifurcation occurs and additional resonant so-
lutions emerge, corresponding analytically to solutions
which transition from one steady solution to the other (as
in Figure 2).
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Figure 3: Resonant response over full resonant band

This methodology provides a framework for under-
standing and constructing steady resonant solutions of (1)
across the resonant band. Moreover we gain insight into
the many connections, yet distinctions between resonant
solutions of the KdV, mKdV and the general eKdV in the
presence of forcing. The approach, however, remains lo-
cal in nature as each dispersive layer is assumed to be in-
dependent. Therefore care must be taken in cases where
layers separate or merge. In addition it was seen that due
to the second saddle point associated with the higher non-
linearity, there also appear certain cases where even in the
limit that γ → 0 transitions occur but no clear distinction
may be drawn between the dispersive and non-dispersive
regimes. In such cases a more global approach may be
required.
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Abstract
We use a recently derived KdV-type of equation for

waves on deep water to study Stokes waves as relative
equilibria. Special attention is given to investigate the
cornered Stokes-120 degree wave as a singular solution
in the class of smooth steady wave profiles.

Introduction
Surface waves on a layer of incompressible, inviscid

fluid in irrotational motion, are described by Luke’s vari-
ational principle. The formulation of the dynamics as a
Hamiltonian system was found by Zakharov ’68, Broer
’74 and Miles ’77. This Hamiltonian formulation is help-
ful to study basic properties of surface waves. The conser-
vation of energy (which is the Hamiltonian H) is accom-
panied by conservation of horizontal momentumM when
the case of a flat bottom or the case of infinitely deep wa-
ter is considered. These two integrals are independent and
Poisson commute. As is the case for any Hamiltonian sys-
tem with additional integrals, relative equilibria (RE) can
be considered; in this case these are the extremizers of
the Hamiltonian on level sets of the momentum. An ex-
tremizer provides a surface profile η and corresponding
velocity potential φ that satisfy the Lagrange multiplier
rule: δH = μδM for some multiplier μ. The action of
the M flow is a shift in time at a constant velocity which
is precisely the multiplier μ, provides a steadily propagat-
ing wave as dynamic solution of the Hamiltonian system.

Looking for the existence and shape of steady waves
was an important motivation for research in the nineteenth
century (wave of elevation ) and continued in the twenti-
eth century. The main motivation in the 1895 paper of
Korteweg and de Vries was to investigate this existence
matter. The existence and explicit formulation of steady
finite energy solutions (later called solitons) and periodic
(cnoidal) waves was their contribution to this issue, pro-
viding a positive answer about existence. All this in the
approximation of the one-way directional KdV equation
that they derived. Existence of periodic waves (for the
full wave equation) has been investigated in the twenti-
eth century by many scientists, among which Levi-Civita,
Toland, while approximations of the periodic wave shapes

using expansion methods (in amplitude, Fourier modes,
etc,) have been derived to a high degree of accuracy, for
instance by Rienecker & Fenton [1]. It is to be noted that
as far as we are aware of, none of the approximations uses
directly the Hamiltonian RE-description.

Among the steady periodic solutions, one is excep-
tional. It occurs on infinitely deep water, and, while the
other profiles are smooth, this special one, referred to as
S120 in the following, is a Stokes wave with a profile that
has a corner of 120 degrees in the crest. It was shown
recently by Rainey & Longuet-Higgens [2] that in a good
approximation, S120 has actually the profile of a cate-
nary, i.e. can be written as a hyperbolic cosine curve
in between two successive crests. The appearance of a
cornered profile indicates a certain singularity in the gov-
erning description, since any non-smoothness in an initial
profile will be resolved by dispersion in regular dispersive
nonlinear equations with differential operators.

In this paper we contribute to the steady wave issue on
infinitely deep water from the point of view of consid-
ering these steady profiles as Hamiltonian RE. However,
instead of the exact surface wave formulation, we use a
KdV-type of equation, called the AB-equation, that was
recently derived. This equation is exact up to and includ-
ing quadratic nonlinear terms, and can be taken to have
exact linear dispersive properties; the dispersion enters
the nonlinear terms in a nontrivial way, correcting sub-
stantially inaccuracies in the nonlinear propagation prop-
erties. Moreover, this equation, unlike other KdV-type of
equations, can also describe waves on infinitely deep wa-
ter. The equation, and in particular the Hamiltonian and
Momentum integrals, is given in section 2.

We formulate the RE-problem of this equation in sec-
tion 3, and show in section 4 how close the RE are to the
set of Rienecker & Fenton solutions, and, especially, how
the cornered S120-wave can be approximated. All these
results confirm that, at least for these steady solutions, the
approximate Hamiltonian and Momentum must be rather
accurate, providing relatively simple approximations of
these integrals of the full surface wave problem. The ex-
plicit expresssion may make these integrals also useful for
further advanced functional analytic investigations.
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1 AB equation
The AB equation as derived in [3], specialised for the

case of infinitely deep water, uses skew-symmetric and
symmetric pseudo-differential operators A and B with
symbols Â := i.sign (k)

√

|k| and B̂ =
√

|k|. The
Hamiltonian is given by

HAB (η) = g

∫
[

η2 +
1

2
η

{

(Bη)2 − (Aη)2
}

]

dx (1)

and the horizontal Momentum integral by M (η) =√
g

∫

ηBη. The AB-equation is then given by the Hamil-
tonian system

∂tη = − A

2
√
g
δHAB (η) , (2)

which may also be written in the way of Benjamin [4]
as ∂tδM (η) = −∂xδH (η); hence solutions have a con-
stant center-of mass velocity. Note that the non-rational
pseudo-differential operators A,B cannot be easily ap-
proximated with ordinary differential operators.

2 Periodic waves
In the following we consider periodic waves of funda-

mental period 2π and zero average
∫

ηdx = 0. Taking the
crest at x = 0mod(2π), we look for solutions of the RE
equation in the form of a truncated Fourier series. With a
an amplitude parameter, we look for solutions as

ηN = a cos x+ a2
[

ΣN
k=2

βk cos (kx)
]

.

Restricting the hamiltonian and momentum to this set, we
arrive at functions HN and MN of p = (a, β2, ..., βN )
and the RE equation becomes

∇pHN = μN∇pMN ,

which corresponds to the Galerkin projected equation
δH = μδM .

Splitting the Hamiltonian in a quadratic and cubic part,
H = H(2) + H(3) it is remarkable to observe that
H(3) (α cos (kx)) = 0, which implies that the energy
for Fourier expansions as above does not contain terms
of third order H

(

a cos x+ a2v
)

/g = 1

2
a2 + O

(

a4
)

.
Also, since δH(3) (α cos (kx)) = 1

2
gα2 cos (2kx) , the

second order Stokes contribution appears immediately:
δH (a cos x) /g = 2a cos x+ 1

2
a2 cos (2x).

3 Illustrations
In Figs. 1,2 we show in the Momentum-Hamiltonian

plane the curves parameterized by the first-order ampli-
tude parameter a for various approximations of Stokes

waves. The tangent at a point to a curve correspond to the
propagation speed of the wave at that point, see Fig.3,4.
The small deviation from a straight line (obtained for the
first order mode only), indicates that increase in velocity
with amplitude is rather small, in agreement with the van-
ishing of third order contribution in the Hamiltonian. The
one-term approximation of the highest Stokes wave is in-
dicated by a dot; for this solution ak = 0.36. Shown are
the results for the Rienecker& Fenton (RF) solutions with
64 Fourier modes (solid line), and the AB relative equi-
libria with 2, 4 and 16 modes. The dot corresponds to the
Rainey & Longuet-Higgins one-term approximation.
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Figure 1: Values of Momentum and Hamiltonian for
approximations of Stokes waves.
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Figure 2: As Fig.1 zoomed in near the highest Stokes
wave.

In Fig.5 the profiles are shown of the waves with the
same momentum as the highest Stokes wave. Besides the
cornered one-term approximation by Rainey & Longuet-
Higgens, the Rienecker & Fenton 64-mode approxima-
tion and the 2 and 16-mode AB relative equilibria are
plotted. Fig.6 shows a zoom-in near the crest.
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4 Numerical simulations
Calculations have been performed with a high-order

(256 or 1024) pseudo-spectral implementation, for cal-
culations over more than 100 wavelengths. As expected,
all AB-RE travel virtually undisturbed at constant speed
for RE’s approximated with at least 6 modes. Also the
highest Stokes wave travels with only a small breathing
undisturbed in shape. The speeds of these solutions are
equal: the tops remain in a small neighbourhood of ea-
chother, with small periodic oscillations.
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Abstract
The electromagnetic wave scattering by a metallic loop

with a lumped nonlinear load and a spherical core has
been studied in the approximation of weak nonlinearity.
There has been given the problem solution procedure and
numerical calculation results of a nonlinear scattered sig-
nal for different parameters of the antenna and the core.

Introduction
Nonlinear load antennas have long attracted the atten-

tion of researchers. The area of practical application of
nonlinear electromagnetic wave scattering effects is wide
enough. For example, nonlinear radars which heart is a
nonlinear load antenna permit remote location of mines,
radio-controlled field charges, revelation of hidden de-
fects in buildings (flaw detection) [1], concealed marking
of materials and equipment. They are used to search peo-
ple in building ruins [2, 3]. Small diode-loaded buit-in
probes are used in non-invasive electric stimulation [4].
Nonlinear electromagnetic wave scattering by systems of
loop and vibrator scatterers placed in the uniform space or
in the presence of planar interfaces has been studied in [5,
6]. Of particular interest is the scattering by nonlinearly
loaded antennas with a dielectric core [7]. We present
here the problem solution on the electromagnetic wave
scattering by a thin circular metallic loop with a spherical
dielectric core made in the approximation of weak nonlin-
earity permitting adequate interpretation of experimental
data in many cases (see, for example, [7]). The antenna
may be placed into a medium with arbitrary values of di-
electric conductivity and permittivity.

The nonlinearly scattered signal is studied for steady-
state conditions that allows one to account a finite number
of sounding signal (SS) harmonics in the spectral approx-
imation. We consider here the case of a local nonlinear
load [7]. The voltage-current characteristic of the nonlin-
ear element is assumed to be described by a second- or
third-degree polynomial.

Methods
The following algorithm is suggested to determine the

field scattered on SS harmonics:
1. First we consider the problem of electromagnetic

wave diffraction over a magnetodielectric sphere with
permittivity and permeabilityε1 = ε′1 − iε′′1 andµ1 =
µ′1 − iµ′′1 located in the uniform space.

2. Then we solve the antenna problem and determine
the loop current distribution at the SS frequency in the
presence of a magnetodielectric core.

3. The currents at high SS harmonics are excited due a
presence of a lumped EMF caused by the local nonlinear
load [5, 6].

4. Finally, for the given current distribution, we de-
termine the electromagnetic field components radiated by
the antenna with the magnetodielectric core at the fre-
quency of a corresponding harmonic of SS.

Current distribution in antenna with dielectric core
Let a plane electromagnetic wave be incident on the

dielectric sphere of radiusb. We shall solve the problem
in the spherical coordinate system (r, θ, ϕ). The electrical
constitutive complex parameters areε1, µ1 for the sphere
andε2, µ2 for the surrounding medium. The circular loop
is placed at a distanceb cosβ from the center of a sphere.
The thin loop is constructed from perfectly conducting
wire of radiusa (a ¿ c = b sinβ, a ¿ λ; wherec is
the loop radius,λ is the wave length in the medium). The
current has one azimuth component in the case of thin
loop. The current at the fundamental frequencyω induced
by incident plane electromagnetic wave (defining by the
anglesθ0, ϕ0) is expressed as a Fourier series

Iω(ϕ) =
2E0

ζ1

+∞∑
m=−∞

βm

[am + bm]
e−im(ϕ−ϕ0), (1)

hereζ1 =
√

µ0µ1

ε0ε1
is wave impedance,E0 is the ampli-

tude of incident wave;βm can be presented as

βm =
∞∑

n=|m|
γ(m, n) in∆×

×
[

m2

k2b

ε2

ε1

d1ψ

∆ε

Pm
n (cos θ0)
sin θ0

Pm
n (cos θ)
sin θ

+

+ i
ψn(k1b)

∆µ

∂Pm
n (cos θ0)

∂θ0

∂Pm
n (cos θ)

∂θ

]
,
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∆ = ξ(2)
n (k2b)d2ψ − ψn(k2b)d2ξ,

∆ε =
ε2

ε1
ξ(2)
n (k2b)d1ψ − ψn(k1b)d2ξ,

∆µ =
µ2

µ1
ξ(2)
n (k2b)d1ψ − ψn(k1b)d2ξ,

d1,2ψ = ψn(k1,2b) + k1,2bψ̇n(k1,2b),

d1,2ξ = ξ(2)
n (k1,2b) + k1,2bξ̇

(2)
n (k1,2b),

γ(m,n) =
2n + 1

n(n + 1)
(n−m)!
(n + m)!

;k1,2 = ω
√

ε0µ0ε1,2µ1,2;

ψn(x) and ξ
(2)
n (x) are the first and third order spheri-

cal Bessel functions (̇ψn(x) andξ̇
(2)
n are their derivation);

Pm
n (cos θ) is the associated Legendre function. The ex-

pressions for coefficientsam andbm one can find in [8].
We restrict ourselves to the approximation of a weak

nonlinearity. The current voltage characteristic of the
local nonlinear load is described by a second- or third-
degree polynomial. The current at higher harmonics of SS
is excited due to the lumped electromotive force caused
by the presence of nonlinear element (see more details
in [6]). The current distribution (INω(ϕ)) at the higher
harmonicsNω (N = 2; 3) of SS in the indicated above
approximation is given as

INω(ϕ) =
+∞∑

m=1

h(m)I(Nω)
m cos[m(ϕ− ϕn)];

I(Nω)
m =

−iαN |Iω|NRN
0

2N−1πζ1[aN,m + bN,m]
, (2)

whereh(0) = 1 andh(m) = 2 if m 6= 0; αN is the
coefficient of nonlinearity; the angular coordinateϕn is
determined the location of the nonlinear element;Iω is
the current at fundamental frequency at the point of non-
linear load location;aNm andbNm are determined by the
similar expressions as the coefficientsam andbm but at
the frequencyNω; R0 is the initial resistance of the an-
tenna load.

Radiation of antenna at the harmonics of sounding
signal

Below we give the expression only for the angular com-
ponents of the electric field excited by the current (2) at
the harmonicsNω in the surrounding medium (r > b).
Obviously that the radial component of the electric field
is negligibly small for the considering polarization of an
incident wave. Theθ- andϕ-components of the field at

the frequenciesNω may be expressed as follows

E
(Nω)
θ (r, θ, ϕ)=− iζ1

r sin θ

+∞∑

m=1

I(Nω)
m Gθm sinm[ϕ−ϕn],

E(Nω)
ϕ (r, θ, ϕ)=− iζ1

2r sin θ
×

×
[

+∞∑

m=1

h(m)I(Nω)
m Gϕm cosm[ϕ− ϕn]

]
. (3)

The functionsGθm andGϕm are determined at the fre-
quencyNω by the expressions

Gθm =
+∞∑
n=m

mγ(m,n)×

×
{

d1ψdrξ

k1b∆
εµ
ξψ

sin θ Pm
n (cosβ)

∂Pm
n (cos θ)

∂θ
−

−
√

ε1

ε2

k2rξ
(2)
n (k2r)ψn(k1b)

∆ξψ
×

× sinβ
∂Pm

n (cos β)
∂β

Pm
n (cos θ)

}
,

Gϕm =
+∞∑
n=m

mγ(m,n)×

×
{

m2

∆εµ
ξψ

d1ψdrξ

k1b
Pm

n (cosβ) Pm
n (cos θ)−

−
√

ε1

ε2

k2rξ
(2)
n (k2r) ψn(k1b)

∆ξψ

∂Pm
n (cosβ)

∂β
×

× ∂Pm
n (cos θ)

∂θ
sinβ sin θ

}
;

drξ = ξ(2)
n (k2r) + k2rξ̇

(2)
n (k2r),

∆εµ
ξψ =

ε2

ε1

µ2

µ1
ξ(2)
n (k2b)d1ψ − ψn(k1b)d2ψ,

∆ξψ = ξ(2)
n (k2b)d1ψ − ψn(k1b)d2ψ,

herek0 = Nω
√

µ0ε0, k1,2 = k0
√

ε1,2µ1,2.

Conclusion
We have thus obtained the expressions for the electric

field (3) allowing to estimate the influence of the dielec-
tric core on the backscattering field produced by the an-
tenna with a nonlinear local load at the second or third
harmonic of the sounding signal. The numerical calcu-
lations have been performed in the decimeter — wave-
length range at the second harmonic of the sounding sig-
nal. In particular, the calculations have shown that the
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presence of a dielectric core may lead to a significant in-
crease in the signal scattered at higher harmonics for a
certain range of the core electric size due to resonance
reflection of the waves inside the core.

This work was supported by the grant of Leading Sci-
entific School (NSh-1087.2006.2).
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WAVES RUNNING ALONG A PERIODIC SET OF INHOMOGENEITIES
IN FLUID LOADED THIN ELASTIC PLATE
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Abstract

Waves running along a periodic set of pointwise
inhomogeneities in �uid loaded thin elastic plate are
studied� Two types of inhomogeneities are con�
sidered� attached masses and small circular holes�
Boundary conditions in the points of attached masses
are classical� Conditions that simulate holes of
asymptotically small radius are formulated using the
approach of zero�range potentials� Dispersion equa�
tions for concentrated waves are written in explicit
form involving exponentially converging integrals�
These equations are solved numerically�

Introduction

Waves concentrated along a periodic set of inho�
mogeneities in an elastic plate are considered� The
plate is supposed to be thin and only its �exure vi�
brations are taken into account and are studied by
using Kircho� approximation� The analysis of phys�
ical e�ects is the most simple one if the problem al�
lows analytic solution to be constructed� Such solu�
tions are in particular possible if the inhomogeneities
are pointwise� In two�dimensional problems the set
of pointwise inhomogeneities that can be formulated
by classical boundary conditions is su�ciently large�
However in three�dimensional case there is only the
model of attached point�wise mass� Some examples
see e�g� in 	
�� 	���

Periodic set of attached masses

First� a periodic set of pointwise masses attached
to �uid�loaded thin elastic plate is considered� The
problem for acoustic pressure U and �exure displace�
ments of the plate w can be written as 	��

�� k�
�
U�x� y� z� � �� z � �� �
�

�
�� � k��

�
w�x� y� � U�x� y� �� ���

�
��M

D
w��� ��

��X
j���

��x� y � jd��

w�x� y� �



����
�U�x� y� ��

�z
� ��

Here � is frequency� time factor e�i�t is dropped�
k is the wave number in acoustic media fz � �g�
k� � �����D���� is the wave number of �exure waves
in isolated plate �� is surface density� D is bending
sti�ness�� M is attached pointwise mass� �� is the
density of �uid�
Analysis of that problem allows to conclude that

speci�c wave may run along the set of masses� The
dispersion equation for the parameter 	 of these
waves can be written in explicit form


� ��M

D

X
j

ei�jgp��� �� �� jd� � �� ���

where

gp�x� y� x�� y�� � � N

�
�
�

�
Z Z

ei��x�x���i��y�y���
p

������k�z�
��� � ���� � k��

�p
�� � �� � k� �N

d�d�

is the Green function ��exure displacements excited
by a point force applied to the plate�� N � �����D�
The sum in ��� can be reduced to exponentially con�
verging integral� For that one calculates the integral
by �� then changes the order of summation and in�
tegration by � and calculates the sum� Finally the
path of integration is deformed into loops around the
cuts of the square roots in the upper half plane

X
j

� � � �
i




�X
s

Qs

kZ
�s

���d� 	�
d�p

�s � ��

�
i

�


k�i�Z
k

���d� 	�

�
�X

s��

Qsp
�s � ��

�
d�� ���

where s are zeros of the dispersion equation for
waves in thin �uid loaded elastic plate� Qs � ��s �
k������s � ��sk

� � k��� and

���d� 	� �



e�i��i�d � 

�




ei��i�d � 

�
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The dispersion equation ��� is analyzed numeri�
cally� For example� parameters 	 for waves in 
 cm
steel plate in water are presented on Fig� 
� Waves

�




�



�� 
�� 
�� Hz��

Figure 
� Parameter 	 for waves running along
the set of point masses of 
�� kg� �� kg� �� kg and


� kg placed with the period of �� cm�

concentrated near the masses are possible if the fre�
quency is lower than some cut�o� frequency� its de�
pendence on mass is presented on Fig� �� Thin curve
corresponds to the case of isolated plate�

�

Hz


��

���

��

���

�� �� �� �� kg�

Figure �� Cut�o� frequency dependence on mass�

Model of a small hole

Pointwise model of a hole can not be formulated
as the usual condition in the point� However one
can extend the class of point�wise models by using
the theory of zero�range potentials 	��� That results
in the following� One considers local asymptotics of
arbitrary square�integrable solution of the equations
�
�� ��� and �� that are satis�ed everywhere except
the origin� This asymptotics have the form

U � c�



�
r
� b� � o�
�� r � �� ���

w � c�
�
�� ln �� c�x ln �� c	y ln �

� c�

�
ln �� cos��

�
�
c

�
sin����

� c�

�
ln �� sin��

�
� b� � b�x� b	y

� b�
x�

�
� b
xy � b�

y�

�
� o����� �� �� ���

�Here we use spherical radius r� and polar coordi�
nates ��� �� on the plate�� Analysis of energy �uxes
allow to conclude that if coe�cients c� of singular
terms are proportional to the coe�cients b� of regu�
lar terms with some Hermitian matrix A� i�e�

�c�� c�� � � � � c��
T � A�b�� b�� � � � � b��

T � ���

then the �eld U can be interpreted as the �eld of pas�
sive sources� The matrix A characterizes that passive
source� We choose it in such a way that the far �eld
amplitude of the solution U coincides with the prin�
cipal order term in the asymptotic decomposition of
the far �eld amplitude in the problem of scattering
by a small circular hole 	��� The asymptotics ��� and
��� with the coe�cients satisfying relations ��� with
the chosen matrix A can be written in the form

U � c�

�



�
r
� 


�a

�
� o�
�� ���

w � � ��a�


� �

�
b� � b�

�
�ln���a� � 
� � b� � b�x�

� b	y � b�x
� � b
xy � b�y

� � o���� �
��

where c� and bn are arbitrary�
The asymptotics ���� �
�� play the role of �bound�

ary� conditions in the point that simulate scattering
by a circular hole of small radius a�
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Concentrated waves

The problem of waves propagation in the �uid
loaded thin elastic plate with a periodic set of small
holes is formulated as follows� The pressure U and
the displacements w satisfy the equations �
�� ���� ��
everywhere except the points x � �� y � jd� j � Z�
In a vicinity of every of these points the �eld has the
asymptotics ��� and �
�� with arbitrary coe�cients�

The dispersion equation for waves that run along
y direction in that system can be written in explicit
form involving exponentially converging integrals of
the type ���� Its numerical analysis shows that the
properties of waves running along the set of holes
appear signi�cantly di�erent from that in the case of
isolated plate when there is an equivalence

��M

k��D
�� �


�


� �
�k�a�

�

of holes and masses�

In particular� besides the upper cut�o� frequency
�as in the case of masses� there is also a lower cut�o�
frequency� With the increase of �uid density these
cut�o� frequencies approach to each other and there�
fore nonattenuated waves are possible only if the den�
sity of acoustic media is not to large� The upper and
the lower cut�o� frequencies as functions of �uid den�
sity are presented on Fig� � The upper cut�o� fre�

�

Hz


�

��

�� �� �� �� 
�� kg�m	�

Figure � Lower and upper cut�o� frequencies
dependence on �uid density for 
 cm steel plate
with holes of radius 
� cm placed with the period
d � 
 m �sound speed assumed equal to 
��� m�c��

quency corresponds to the condition d � 
� where
 is the wave number of surface wave in �uid loaded
plate� Thus it depends signi�cantly on the period
d� On the contrary� the lower cut�o� frequency is
almost independent of d� Its explanation is yet not
su�ciently understood�
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Abstract
The mathematical basis of theories for studying multi-

ple scattering is well understood. However, the real do-
main of validity of these methods is still not clearly es-
tablished. This paper presents the frame for a numerical
validation of a classical method, the Independent Scat-
tering Approximation, detailing specific implementation
and signal processing used to obtain the parameters of an
equivalent homogeneous medium. The setup is illustrated
with a problem already well studied in an experimental
way, but presenting strong difficulties for the numerical
simulation.

Introduction
Let us consider the propagation of ultrasounds in an

heterogeneous medium, where the wavelength and the
size of heterogeneities are similar. In this case, the wave
field is considered as the superposition of a coherent field
and of an incoherent field. The coherent field resists to
the averaging on disorder, and it can be interpreted as
waves propagating in an equivalent homogeneous effec-
tive medium. Moreover, the coherent field is progres-
sively dispersed and attenuated, even if the propagation
media have no intrinsic dispersion and attenuation.

The aim of the treatment of multiple scattering is to
define an equivalent homogeneous effective medium to
the real heterogeneous medium. If the heterogeneities
are statistically homogeneous and do not depend on the
incident wave vector, the effective wavenumber satisfies
k2

eff (ω) = k2

0
− Σ(ω), wherek0 denotes the wavenum-

ber of the host medium,ω is the angular frequency, and
Σ(ω) contains all information about multiple scattering
and must be determined.

The Independent Scattering Approximation(ISA) is
a classical method to determine the parameters of the
equivalent homogeneous medium. It takes into account
the single scattering [1]: for each scatterer, the surround-
ing field is considered as not perturbed by the other scat-
terers, and there is no correlation between the scatterers.
Then,Σ follows from physical and geometrical features
of the scatterers, and also from the densityn of scatterers

in the host medium. To respect the hypotheses of ISA,
the scatterers have to be far one from the others (n has
to be low), and the impedance contrast between scatterers
and the host medium must be weak. When one of these
hypotheses is relaxed, the ISA may still provide accurate
results. For instance, it has been experimentally shown
to describe well cases of steel rods embedded in water
[2]: the surface concentration of scatterers did not exceed
15%, but the impedance contrast between steel and water
was high.

The goal of our work is to examine the precision of the
ISA, especially outside its theoretical domain of validity.
To our knowledge, no systematic study has been dedi-
cated to this subject. Our methodology is purely numeri-
cal, based on direct numerical simulations and on signal-
processing tools. This methodology avoids the limitations
of the ISA. It is much faster and less expensive than real
experiments, allowing also much finer measures.

Direct numerical simulations
Numerical methods

The aforementionned configuration, studied experi-
mentally in a two-dimensional (2D) setup [2], is cho-
sen to illustrate our approach. The 2D computations are
performed on uniform Cartesian grids with spatial mesh
size∆ x = ∆ y. A velocity-stress formulation of acous-
tics (in fluid) and elastodynamics (in solid) is followed.
The linear first-order hyperbolic systems so-obtained are
integrated by the classical second-order Lax-Wendroff
scheme. The main source of numerical dispersion and
numerical diffusion follows from the numerical propaga-
tion in the fluid. A plane-wave analysis bounds these arte-
facts by their theoretical values in the homogeneous fluid
medium in 1D (see section Results).

To couple the computations done on the fluid ma-
trix and on the solid inclusions, one uses an interface
method [5]. This numerical method describes accurately
the geometry of interfaces, avoiding the spurious diffrac-
tions induced by a naive stair-step description of inter-
faces. Moreover, the fluid-solid boundary conditions are
strongly enforced. Lastly, it maintains the global pre-
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Figure 1: Snapshots of the acoustic pressure at the
initial instant (a) and after 10000 steps (b), for a

concentration of scatterers of 0.12 rods/mm2. The
regular grid denotes the location of receivers.

cision of the scheme of integration, despite the non-
smoothness of solutions across interfaces.

Numerical setup
The heterogeneous medium under study is made of cir-

cular rods of steel randomly embedded in water. The
intrinsic attenuation of the media are not taken into ac-
count. The size of the computational domain is respec-
tively 3 cm alongx and 6 cm alongy. The mesh size is
∆ x = 7.5µm. The 0.4 mm radius rods are randomly
distributed on a 2 cm-wide subdomain (i.e around 3 mean
free path). An exclusion length of4∆ x between each
inclusion is ensured. This correlation between scatterers,
contradicting one hypothesis of the ISA, is not too penal-
izing [2]. For each simulation, the right-going incident
plane wave is a Ricker centred at 2 MHz (wavelength in
water: λ0 = 0.75 mm). The CFL number is 0.6 in the
steel; for stability reasons, the CFL is not optimal in wa-
ter.

A regular array of receivers with 45 lines and 42
columns is put on the domain every∆ xR = ∆ yR = 0.45
mm > λ0/2. The receivers are sufficiently far from the
boundaries of the computational domain to avoid spurious
reflections (Figure 1). At each receiver and at each time
step, the component of the velocity alongx is recorded.
Each line corresponds to a particular realization of a ran-
dom process. Three simulations with different distri-
butions of inclusions provide 135 independent realiza-

tions of disorder, ensuring the convergence of the post-
processing methods.

At the initial instant, the plane wave lies atx = 0 (Fig-
ure 1-a). The simulations are stopped after 20000 time
steps, when the incident wave has crossed the inclusions.
On a Pentium PC at 3 GHz, a time step takes roughly
12 s. Consequently, each simulation takes roughly 66
hours, and it requires 2 Go of RAM.

Post-processing
Coherent field

The discrete coherent fields is obtained by spatially
averaging the recorded data through the numerous equiv-
alent realizations of disorder; since ISA considers hetero-
geneities as discrete scatterers, only receivers located in
water are taken into account. The host medium is wa-
ter, hence the coherent field is acoustic. The coherent
field, expressed in the Fourier domains(ω, di), corre-
sponds to the propagation of a wave in an equivalent ho-
mogeneous medium atN = 42 regular offsets denoted
by di = i∆ xR, with i = 0, ...,N −1. Phase velocity and
attenuation are now extracted froms.

Phase velocity

The phase velocityc(ω) is computed using thep−ω

transform. This one differs from the spatial Fourier trans-
form by using the slownessp0(ω) = 1/c(ω) as a param-
eter, which reduces signal-processing errors for the eval-
uation of phase velocity [3]. The coherent fields(ω, di)
is

s(ω, di) = A(ω, di)e
−iωp0(ω)di , (1)

whereA(ω, di) is the amplitude spectrum atdi. The dis-
cretep−ω stackŝ(ω, p) is

ŝ(ω, p)=
N

∑

i=1

A(ω, di)e
iω(p−p0(ω))di . (2)

The computation of̂s(ω, p) is performed for several val-
ues ofp. Givenω, the maximum of|ŝ(ω, p)| is reached
for p = p0(ω), leading toc(ω).

Damping factor

In the frequency domain, the amplitude spectrum in
(1)-(2) can be written asA(ω, di) = A0(ω)e−α(ω)di ,
whereA0(ω) is the amplitude ofs at the first receiver.
The damping parameterα(ω) is determined by the slope
of a least-square linear fit ofln(A(ω, di)). For an incident
plane wave, no geometric damping has to be considered.
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Results
The comparison between the numerical results and ISA

are presented for a density of scatterers of 0.12 rods/mm2

(surface concentration6%), as shown in Figure 1.
Figure 2 presents the ratioc(ω)/c0, wherec0 is the

celerity of waves in water. The theoretical numerical dis-
persion in water, computed for a 1D mesh, is also plotted.
For frequencies lower than 3 MHz, the theoretical phase
velocity within ISA and the numerical results are in good
agreement. The differences in the higher frequencies may
be due to the numerical dispersion. On the whole fre-
quency range,c(ω) is very close toc0 [2]. The results
for the damping are plotted in figure 3. They are in good
agreement, and the differences do not seem to increase
with the frequency. The theoretical numerical damping is
negligible.
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Figure 3: Results for the damping factor

Conclusion and perspectives
The preliminary results proposed here have shown that

a numerical methodology allows to recover quite pre-
cisely the theoretical behavior predicted by the ISA. Up to
now, we cannot clearly state about the small differences
observed between both approaches. Are they induced by
the approximations underlying the ISA, are they due to an
error of protocol, or lastly do they follow from the numer-
ical discretization ? To eliminate with certainty the last
hypothesis, we foresee to use more sophisticated schemes
(such as fourth-order ADER), and also to compute the so-
lution on a finer grid. For reasons of computational mem-
ory, such a convergence study requires the parallelization
of the algorithms, which is currently in progress.

An application of the methodology proposed here con-
cerns the concrete. It is a very heterogeneous medium,
and it can be considered as aggregates embedded in a ce-
ment paste matrix (mortar). Multiple scattering is impor-
tant, and it is possible to extract a coherent and an inco-
herent part from measurements [5]. Before using ISA
for non-destructive evaluation of concrete, one has to de-
termine whether the hypotheses underlying ISA are sat-
isfied: since aggregates represent 50 % in volume, the
medium cannot be considered as dilute. However, the
impedance contrast between the aggregates and the mor-
tar is very low. The numerical tools provides a mean to
decide whether ISA is still valid or not in that case.
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Abstract
Locally perturbed periodic media play a major role in
applications, in particular in optics for micro and nano
technology, because they exhibit interesting properties,
such as allowed modes in the spectral band gaps of
the non perturbed periodic media. Of course there is
a need for efficient numerical methods for computing
the propagation of waves inside such structures. For a
complete, mathematically oriented presentation, we refer
the reader to [2,3].

We are interested in propagation media which are a
local perturbation of an infinite periodic medium and
investigate the question of finding artificial boundary
conditions to reduce the actual numerical computations
to a neighborhood of this perturbation. We consider the
situation of a 2D periodic media and propose a method
for construction DtN operators on the artificial boundary
by solving a family of waveguide problems.
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Figure 1: The domain of propagation

1 Description of the problem
The propagation model we consider is a simple 2D(x =
(x,y)) scalar model:

n(x)2 ∂2U
∂t2 −∆U = F.

We assume that the source term is time harmonic with fre-
quencyω > 0, (F(x, t) = f (x) eiωt) and look for the time
harmonic solutionU(x, t) = u(x) eiωt whereu satisfies the
Helmholtz equation:

−∆u−n(x)2 ω2 u = f . (1)

In order to solve this problem using the limiting absorp-
tion principle, we will concentrate, here, on the case with
small absorption (ε > 0) and so solve the following prob-
lem:

−∆u−n(x)2 (ω2 + iε) u = f . (P )

Before defining the domain and the parameters of the
problem, we want to remark that, for simplicity, we will
restrict ourselves to the case where the periodicity cell
is a square which has double symmetry [defined below],
which is often the case in the applications.

Definition 1 Sα is the symmetry with respect to the line
y = αx.
A subsetC of R

2 has a double symmetry if it is invariant
with respect to S1 and S−1.
A function n: C 7→ C has double symmetry if:

n(S1x) = n(S−1x) = n(x).

Proposition 1 Let C be a domain with double symmetry
and V(C ) a space of functions fromC into C.
One has the decomposition :

V(C ) = ∑
(i, j)∈{0,1}

Vi, j(C )

where

Vi, j (C )= {v∈V(C ),v(x)= (−1)iv(S1x)= (−1) jv(S−1x)}

1
1 1

1

-1
1 -1

1

-1
-1 1

1

-1
1 1

-1

V0,0 V1,0 V0,1 V1,1

Figure 2: Examples of functions ofVi, j(C ) with
C = [−1,1]2

See figure 2, for an example.
The domain of propagationΩ is infinite in the two direc-
tions, its geometry is periodic outside a bounded region
Ωi , in Ωe = Ω\Ωi , and the periodicity cellC00 has a dou-
ble symmetry (in particular that implies that it is a square)
(see figures 1 and 3). The functionn is periodic as well,
in Ωe, with the same periodicity than the geometry and in
C00 is with double symmetry.
Let us suppose for simplicity that the period is 1.
Ωi is a square, which contains the defect (support off ,
compact perturbation ofn and geometrical defects) and
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whose side is a multiple of the size of the periodicity
cell, let’ say N cells. For simplicity, we will suppose that
N = 1.
Our objective is to characterize the restriction ofu to Ωi
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Figure 3: Some Notations

as the solution of (P ) in Ωi and satisfying a condition of
the form:

∂u
∂n

+ Λu = 0, on ΣS (2)

whereΣS is the boundary of the squareΩi. The DtN oper-
ator is defined onΣS (which is an original situation, even
in the constant coefficient case).

Definition 2 Definition of the DtN operator

Λ : H1/2(ΣS) → H−1/2(ΣS)

ϕ 7→
∂

∂n
ue(ϕ)

where ue(ϕ) is the unique H1 solution of the problem:

{

−∆ue(ϕ)−n(x)2 (ω2 + iε) ue(ϕ) = 0, in Ωe

ue(ϕ) = ϕ, onΣS

(P e
ϕ)

Proposition 2 One has the block diagonal decomposi-
tion:

Λ =
M

i, j

Λi, j , Λi, j ∈ L
(

H1/2
i, j (ΣS).H

−1/2
i, j (ΣS)

)

in the sense that, refering to proposition 1:

ϕ = ∑
i, j

ϕi, j ⇒ Λϕ = ∑
i, j

Λi, j ϕi, j

Remark 1 Each H±1/2
i, j (ΣS) is isomorphic to H±1/2

i, j (Σ0)
whereΣ0 is one of the side of the squareΣS.

2 Factorization of the DtN mapΛi, j

Theorem 1
Λi, j = χΣ0

◦ΛH ◦Di, j

x

y

ΣS

Σ

Σ0

Γ−

Γ+
Ω+

Ω+

Ω+

Ωi
B+

Figure 4: More notations

where :
• Di, j is a Dirichlet-to-Dirichlet operator defined by:

Di, j : H1/2
i, j (ΣS) → H1/2(Σ)

ϕ 7→ ue(ϕ)|Σ

where ue(φ) is the solution of the problem (P e
ϕ).

• ΛH is the halfspace DtN operator defined by:

ΛH : H1/2(Σ) → H−1/2(Σ)

ψ 7→
∂

∂n
v+(ψ)|Σ

where v+(ψ) is the solution of the problem (P +
ψ ):

{

−∆v+(ψ)−n(x)2 (ω2 + iε) v+(ψ) = 0, in Ω+

v+(ψ) = ψ, onΣ
(P +

ψ )
andΩ+ is the halfspace at the right ofΣ.
• χΣ0

is the restriction operator defined from H−1/2(Σ) to

H−1/2(Σ0).

see figure 4 for some notations.

2.1 Characterization ofΛH

Definition 3 The Floquet-Bloch (FB) Transform of pe-
riod 1 is defined by (see [4]):

F : L2(R) → L2(R0 = [−
1
2

;
1
2
]× [−π,π])

ψ(y) 7→ F ψ(y,k) =
1

√
2π ∑

n∈Z

ψ(y+n)e−ınk

Moreover we have the inversion formula:

∀y∈ [0,1], ψ(y+n) =
1
2π

Z π

−π
F ψ(y,k)eınkdk

We noteFy the FB Tranform applied in the y-direction to
a function ofR2.
Let v+(ψ) be the solution of the problem (P +

ψ ), then us-
ing the periodicity of the problem, for everyk in [−π,π],

496



Fyv+(ψ) (·,k) is the solution of the waveguide problem:






















[

−∆Fyv+(ψ)−n2 (ω2 + iε) Fyv+(ψ)
]

(·,k) = 0, in B+

Fyv
+(ψ) (·,k)|Σ0 = Fyψ (y,k),

Fyv
+(ψ) (·,k)|Γ+ = eık

Fyv
+(ψ) (·,k)|Γ−

∂yFyv
+(ψ) (·,k)|Γ+ = eık∂yFyv

+(ψ) (·,k)|Γ−

whereB+ is the region bounded byΓ−, Γ+ andΣ0, (see
figure 4).

Using the method developed in [1], we can characterize
and compute, for everyk ∈ [−π,π], the corresponding
waveguide DtN operatorΛH(k), defined by:

ΛH(k) : H1/2(Σ0) → H−1/2(Σ0)

Fyψ 7→
∂

∂n
Fyv

+(ψ)(·,k)|Σ0

Proposition 3 ΛH is described in terms of a family of
waveguide DtN operatorsΛH(k)

ΛH =

Z ⊕

ΛH(k) dk. (3)

Remark 2 The method in [1] contains also the deter-
mination of Fyv+(ψ)(·,k), for every k. We can then
construct semi-analytically, using the inversion formula,
v+(ψ) for any Dirichlet conditionψ.

2.2 Characterization of Di, j
For simplicity, we will develop just the construction of

D0,0 defined onH1/2
0,0 (ΣS), we can generalize easily to the

other operatorsDi, j .

Proposition 4 D0,0 is in the affine space:

LΣ0 =
{

L∈ L
(

H1/2
0,0 (Σs),H

1/2(Σ)
)

, ∀ϕ, Lϕ|Σ0 = ϕ|Σ0

}

To characterizeD0,0, we have to define some aditionnals
objects. LetΣ = Σ− ∪Σ0∪Σ+ whereΣ− andΣ+ are re-
spectively the lower and the upper part ofΣ. We will call
Γ the setΓ−∪Σ0∪Γ+. We can see easily thatΓ (resp.Γ−

andΓ+) is isomorphic toΣ (resp.Σ− andΣ+). See figure
4.
Let D be the Dirichlet-to-Dirichlet operator defined by:

D : H1/2(Σ) → H1/2(Σ)

ψ 7→

Dψ|Σ+ = v+(ψ)|Γ+

Dψ|Σ0 = v+(ψ)|Σ0

Dψ|Σ− = v+(ψ)|Γ−

Becausev+(ψ) can be computed semi-analitycally,D can
be computed too.

Theorem 2 D0,0 is the unique solution inLΣ0 of the affine
equation:

D0,0 = D◦D0,0 (E0,0)

The proof relies on symmetry arguments together with
uniqueness results for quarter-plane problems.

Remark 3 The resolution of this equation is not as sim-
ple as it seems. Actually, the equation has to be solved
successively for every function inϕ ∈ H1/2(Σ0) to find a
function,D0,0ϕ ∈ H1/2(Σ) ∼ H1/2(R). Actually the for-
mulation in terms of FB-variables in this problem is more
natural and for anyϕ we have to solve an integral equa-
tion with a constraint (contained in ”LΣ0”), and we will
find a function (FyD0,0ϕ ∈ H1/2(R0) .

Algorithm of computation
• Computation ofΛH

– For eachk∈ [−π,π], computation ofΛH(k)

– Computation ofΛH by recomposition

• Computation ofΛi, j for each(i, j) ∈ {0,1}

– Computation ofDi, j by resolution ofE i, j ,

– Λi, j = χΣ0
◦ΛH ◦Di, j

Generalization and some conclusions
Numerical results will be shown during the presenta-

tion.
The method is valid for fewer symmetries, but the four
operatorsDi, j are coupled.
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TRANSMISSION THROUGH A RANDOMLY PERTURBED PERIODIC MEDIUM
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Abstract
We study the variance of the transfer matrix of a pe-

riodic 1D Schr̈odinger operator perturbed by the white
noise. It is shown that if the frequency of propagation lies
inside the band, then the total variance is proportional to
Nσ2, whereσ is the intensity of the white noise andN
is the number of periods. However, if the wave frequency
is close to the band edge, the resulting variance is pro-
portional toNσ2/3. Thus, propagation becomes highly
sensitive to random perturbations.

Numerical simulations reveal that even small noise
in periodic potential can suppress transmission near the
band edges and make it strongly irregular inside the band.
Further increase of the noise amplitude leads to intermit-
tent behaviour of the transmission coefficient, and makes
transmission possible only for few random frequencies in
the band.

Introduction
Let H be a Schr̈odinger operator onL2 (R) with a po-

tentialq = q(x) supported on an interval(0, `)

Hψ = −d2ψ

dx2
+ q (x) ψ (x) , (1)

and letψ be the scattering solution forH, i.e. (1) holds
and

ψ(x) =
{

eiωx + r (ω) e−iωx, x < 0;
t (ω) eiωx, x > `.

(2)

Suppose that the transfer matrixMω through each period
[(n− 1)L, nL] , n = 1, 2, . . . , N , contains some noise
(defects, absorption, etc.), i.e. the corresponding prop-
agatorMω,n through the period is a small random per-
turbation of the transfer matrix. Then the transmission
coefficient has the following form

|tN (ω)|2 =
4∥∥∥∏N

n=1 Mω,n

∥∥∥
2

2
+ 2

. (3)

HereΠN =
N∏

n=1

Mω,n is the transfer matrix on the sup-

port interval[0, NL] of the potentialq(x). This matrix
will be the main object of our studies.

With the advance of applications of periodic structures
to different electromagnetic devices (optical waveguides,
photonic crystals), more emphasis is placed on the analy-
sis of effects due to disorder in periodic materials [1]-[3].
The effects of randomness of the refractive index and ge-
ometry of photonic crystals on their transmission proper-
ties have been studied mostly numerically (see [4]-[5] and
references therein). One of the essential consequences of
the disorder is the appearance of the localized states in the
gaps similar to the impurity states outside the spectrum
of the periodic Schr̈odinger operator. The unperturbed
transfer matrixMω is unimodulardetMω = 1. How-
ever, after a random perturbation of its entries this prop-
erty may not hold anymore. In terms of the operator (1)
it corresponds to the case when potentialq(x) becomes
complex-valued or terms with first derivative appear in
(1) as a result of the perturbation.

Additive and Multiplicative Perturbations
We will consider two models where the perturbation of

Mω is either additive or multiplicative. In the first case,
the propagatorMω,n has the form

Mω,n = Mω + σWn, (4)

whereσ is a small parameter, andWn =
[

ξn ηn

ζn µn

]
.

Hereξn, ηn, ζn, µn are independent (for alln) N (0, 1)
random variables depending only onω. In the multiplica-
tive case we assume that

Mω,n = Mω (I + σVn) , (5)

whereσ is a small parameter,Vn =
[

ξn ηn

ζn −ξn

]
, and

ξn, ηn, ζn are random variables which are not necessary
independent, but have a joint Gaussian distribution with
the covariance

B = [bi,j ] = E




ξ2
n ξnηn ξnζn

ξnηn η2
n ηnζn

ξnζn ηnζn ζ2
n


 . (6)

Clearly matrix (4) can be written in the form (5) and vice
versa. The difference between the additive and multi-
plicative perturbations is in the assumptions of the ran-
dom variables. In the first case we assume that the entries
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of the perturbation matrix are independent identically dis-
tributed random variables (isotropic case). As a result,

detMω,n = 1 + O(σ), σ → 0.

In the multiplicative case, three entries of the matrixVn

are independent and the fourth is chosen in such a way
that the trace ofVn would be zero. This leads to the fact
that

detMω,n = 1 + O(σ2), σ → 0.

The problem under investigation depends on two pa-
rameters:σ → 0 andN . We assume thatN is bounded
or grows not very fast:σhN < C < ∞, whereh > 0
will be defined in Theorem 1. Our goal is to find the error
in the transfer matrix overN periods,

ΠN =
N∏

n=1

Mω,n, (7)

due to a random perturbation of the matrix over each pe-
riod.

Variance of the Transfer Matrix
The expectation of matrixΠN is clearly equals

(Mω)N . The scalar variance ofΠN due to additive per-
turbation is estimated by

Theorem 1. The varianceDN has the following asymp-
totic behavior whenω is fixed,σ → 0, andN is bounded
or growing not very fast.

If ω is an interior point of a band andσ2N < C < ∞,
then

DN = c(ω)σ2N(1 + o(1)). (8)

If ω is inside a band and close to the band edgeω0 such
thatω − ω0 = o(σ2/3) andσ2/3N < C < ∞, then

DN = c(ω0)σ2/3N(1 + o(1)). (9)

Similar theorem is true in the case of multiplicative per-
turbations.

Theorem 2. If ω is an interior point of a spectral band,
then the first statement (8) of Theorem 1 holds. Ifω is
close to a spectral band edgeω0 such thatω − ω0 =
o(σ2/3), then the second statement (9) of Theorem 1 is
valid provided that the correlation matrixB(ω) is nonde-
generate at that frequency.

Numerical example
As an example we consider perturbation of a periodic

delta-function potential

V (x) = A
∑

n

δ(x− nL), (10)

whereA > 0 is a constant.
The sensitivity of the scalar varianceD of the transfer

matrix over one period on the propagating frequencyω
is shown in figure 1 forL = 1 andA = 6. If ω = 2.6
is close to the middle of the band, then the variance of
the transfer matrix is increasing linearly withσ2 having
the same order (lower curve). If, however,ω = 1.977 is
close to the band edge then the variance undergoes drastic
changes withσ2 (cf. (8)-(9)).

0.6

0.2

0.040.0

0.4

0.0

D

σ2

0.02

Figure 1: Dependence of the scalar varianceD of the
transfer matrix over one period on the perturbation
varianceσ2 for L = 1 andA = 6. The lower curve

corresponds to the frequencyω = 2.6 in the middle of
the first band, while the upper one matchesω = 1.977

near the left edge of the first band.

3.02.0

D

0.0
2.5

ω

1.0

0.5

Figure 2: Dependence of the scalar varianceD of the
transfer matrix over one period on the frequencyω for

the perturbation varianceσ2 = 0.04, L = 1, andA = 6.
The band is confined between vertical lines.

Figure 2 illustrates dependence of the variance of the
transfer matrixD over one period on the frequencyω for
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perturbation varianceσ2 = 0.04 andL = 1, A = 6. The
area in the center of the band is the least sensitive to the
noise. As the frequency approaches the band edges, the
variance of the transfer matrix increases dramatically.

2 2.2 2.4 2.6 2.8 3 3.2
0

0.2

0.4

0.6

0.8

1

| t |

ω
Figure 3: Transmission|t| of unperturbed periodic

waveguide(σ = 0) with A = 6 andL = 1.

2 2.2 2.4 2.6 2.8 3 3.2
0

0.2

0.4

0.6

0.8

1

| t |

ω
Figure 4: Same as in figure 3 with white noise of

intensityσ = 0.8.

Dependence of the transmission coefficient|t| on fre-
quency over40 periods of delta-function potential (10)
with A = 6 andL = 1 is shown in figures 3-5. Figure
3 corresponds to the noiseless transmission and indicates
regular periodic behavior within the band. Addition of a
small noise withσ = 0.4 drops transmission to zero near
the band edges and destroys completely the periodic char-

2 2.2 2.4 2.6 2.8 3 3.2
0

0.2

0.4

0.6

0.8

1

| t |

ω
Figure 5: Same as in figure 3 with white noise of

intensityσ = 1.2.

acter of transmission (not shown). Further growth of the
noise amplitude toσ = 0.8 in figure 4 decreases the band
width and leads to the appearance of the intervals inside
the band where transmission is suppressed. Finally, in
figure 5, forσ = 1.2 transmission becomes highly inter-
mittent and is possible only for few frequencies.
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Abstract
A difficulty that arises in the context of infinite,

d−periodic rough-surface scattering relates to the effec-
tive numerical evaluation of the corresponding “quasi-
periodic Green function” Gd. Due to its relevance in a
variety of applications, this problem has generated signif-
icant interest over the last thirty years, and a variety of
numerical methods have been devised for this purpose.
None of these methods to evaluate Gd however, were de-
signed for high-frequency calculations. As a result, in
this regime, these methods become prohibitively expen-
sive and/or unstable. Here we present a novel scheme that
can be shown to outperform every alternative numerical
evaluation procedure, and is especially effective for high-
frequency calculations. Our new algorithm is based on
the use of some exact integrals that arise on judicious ma-
nipulation of the integral representation of Gd and which
reduce the overall problem to that of evaluation of a se-
quence of simpler integrals that can be effectively handled
by standard quadrature formulas. We include a variety of
numerical results that confirm that, indeed, our algorithm
compares favorably with alternative methods.

Introduction
Even though there are many efficient methods for the

evaluation of the Green’s function (Gd) [1] for the numer-
ical solution of electromagnetic and acoustic scattering by
infinite periodic rough surfaces at small to moderate fre-
quencies the design of methods for high frequency prob-
lems remains a substantial challenge. Indeed, a variety
of techniques have been devised over the past thirty years
to accelerate the numerical evaluation of Gd including,
most notably, those based on spectral or integral repre-
sentations, Kummer transforms, lattice sums and Ewald’s
method (see e.g. [1] for a recent review of these and
their relative merits). None of the existing methods how-
ever, were designed for high-frequency calculations and,
as a result, these methods become prohibitively expensive
and/or unstable in this regime

In what follows we present an alternative scheme that
allows for the efficient evaluation of Gd at high frequen-
cies. Briefly, the method begins with the integral repre-
sentation of the fundamental solution wherein Gd is rep-
resented as an integral of an exponentially decaying func-

tion f over [0,∞). At high frequencies the integrand f
displays large and rapid oscillations which cancel out to
produce a significantly smaller integrated value. For this
reason classical quadratures tend to be unstable and un-
able to accurately determine the values of Gd. To over-
come these difficulties our scheme is based on polynomial
expansion of quotients of f and suitably chosen functions
that allow for explicit evaluations. Moreover, the pro-
cedure further relies on judicious integration by parts to
minimize cost and ill-conditioning. We present numerical
results that confirm that this approach delivers a method
that significantly outperforms every alternative procedure
and that it enables accurate simulations at very high fre-
quencies.

The integral representation of Gd

For a fixed incidence angle θ, the integral representa-
tion of Gd is given by [1]:

Gd(x, y) = − i

4
H0(kr)− 1

π
I (1)

where k is the wave number of the incident plane wave,
β = k sin(θ), r =

√
x2 + y2 and

I =
∫ ∞

0

[
ekx(u2−i)

e−iβd+kd(u2−i) − 1
cos(ikyu

√
u2 − 2i)√

u2 − 2i
+

e−kx(u2−i)

eiβd+kd(u2−i) − 1
cos(ikyu

√
u2 − 2i)√

u2 − 2i

]
du,

(2)

The integral in (2) can be rewritten as I = I+ + I− where

I+ =
∫ ∞

0

(
eikyu

√
u2−2i+kx(u2−i)

2(e−iβdekd(u2−i) − 1)(
√

u2 − 2i)
+

eikyu
√

u2−2i−kx(u2−i)

2(eiβdekd(u2−i) − 1)(
√

u2 − 2i)

)
du,

(3)

I− =
∫ ∞

0

(
e−ikyu

√
u2−2i+kx(u2−i)

2(e−iβdekd(u2−i) − 1)(
√

u2 − 2i)
+

e−ikyu
√

u2−2i−kx(u2−i)

2(eiβdekd(u2−i) − 1)(
√

u2 − 2i)

)
du.

(4)

501



The Algorithm
To simplify the presentation of our procedure, we shall

assume that θ = 0 (normal incidence) and x = 0; the
arguments for the most general case follow largely along
the same lines. To clearly reveal the exponential decay of
the integrands, using the relation

√
u2 − 2i ∼ 1 − i for

u ∼ 0, it follows that

f+ = eikyu
√

u2−2i

(ekd(u2−i)−1)(
√

u2−2i)
∼ g+ = ekyu(1+i)

ekd(u2−i)
,

f− = e−ikyu
√

u2−2i

(ekd(u2−i)−1)(
√

u2−2i)
∼ g− = e−kyu(1+i)

ekd(u2−i)
.

As we mentioned, a main difficulty that arises in the
evaluation of the integrals in (3) and (4) relates to the fact

that, for large values for large values of y (y >
√

1
kd),

and at high frequencies integrand f+ in (3) displays large
and fast oscillations (|f+| À 1 and |f ′+| À 1) which can-
cel out to produce a significantly smaller integral. More
precisely, we have

max |f+| ∼ e
ky2

2d À 1 and | ∫∞0 f+du| ∼ 1√
k
¿ 1.

Our algorithm relies on further manipulation of the in-
tegrals in (3) and (4) in a manner so as to reduce the inte-
gration problem to one where the application of classical
quadrature formulas becomes simultaneously stable and
efficient. To begin we note that

∫ ∞

0
f+du =

∫ ∞

0

f+

g+
g+du

=
∫ ∞

0

(
eikyu

√
u2−2i−kyu(1+i)

(1− e−kd(u2−i))
√

u2 − 2i

)
g+du

=
∫ ∞

0

( ∞∑

n=0

anun

)
1

(1− e−kd(u2−i))
g+du

=
∫ ∞

0

( ∞∑

n=0

anun

)( m∑

j=0

1
ejkd(u2−i)

)
g+du

+
∫ ∞

0

( ∞∑

n=0

anun

)
1

emkd(u2−i) − e(m−1)kd(u2−i)
g+du

=
∞∑

n=0

an

( m∑

j=1

Inj

)

+
∫ ∞

0

eikyu
√

u2−2i

(e(m+1)kd(u2−i) − emkd(u2−i))
√

u2 − 2i
du

(5)

where

Inj =
∫ ∞

0

ung+

ek(j−1)du2 du =
∫ ∞

0
un ekyu(1+i)

ekjdu2 du, (6)

and

h(u) =
eikyu

√
u2−2i−kyu(1+i)

√
u2 − 2i

=
∞∑

n=0

anun. (7)

The evaluation of the integrals Inj in (6) is clearly
preferable to that in (3), on account of the diminishing
values and faster decay of the former as n and j increase.
For small values of these parameters, however, a further
manipulation is necessary to attain similar characteristics.
In more detail, we first note that [2, Equations 4.146.1 and
4.146.2] can be used to derive the following

I0j =
∫ ∞

0

ekyu(1+i)

ekjdu2 = −
∫ ∞

0

e−kyu(1+i)

ekjdu2 du + Aj (8)

where Aj =
√

π
kjde

i ky2

2jd .

After integration by parts n times, the following recur-
sive formula can be derived.

Inj = −
∫ ∞

0
(−u)n e−kyu(1+i)

ekjdu2 + vnj (9)

with, wj = 2dj
y(1+i) , v0j = Aj , v1j = Aj

wj
, s = ky(1 + i),

vnj =
vn−1,j

wj
+

(n− 1)vn−2,j

wjs
.

Even though the integrals on the right hand side of (9)
can be calculated in a fast and efficient way using classical
quadratures, a further simplification can be obtained using
the symmetry of h(u). Indeed we have

∞∑

n=0

an(−u)n =
e−ikyu

√
u2−2i+kyu(1+i)

√
u2 − 2i

, (10)

and using this in (5) we obtain,

∞∑
n

an

m∑

j=1

Inj =

= −
∫ ∞

0

( ∞∑

n=0

an(−u)n

)
e−kyu(1+i)

emkd(u2−i)
du +

∞∑
n

an

m∑

j

vnj

= −
∫ ∞

0

e−ikyu
√

u2−2i

ekd(u2−i)
√

u2 − 2i
du +

∞∑
n

an

m∑

j

vnj

+
∫ ∞

0

e−ikyu
√

u2−2i

(e(m+1)kd(u2−i) − emkd(u2−i))
√

u2 − 2i
du.

(11)
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Note that I− appears already in the (11). Finally the
Green function can be rewritten as:

Gd(x, y) = − i

4
H0(kr)− 2

π
S − 1

π
Inew, (12)

where

S =
∞∑

n=0

an(
m∑

j=1

vnj), (13)

Inew =
∫ ∞

0

eikyu
√

u2−2i + e−ikyu
√

u2−2i

(e(m+1)kd(u2−i) − (emkd(u2−i))(
√

u2 − 2i)
du.

(14)
At this point we note that with the choice m = O(ky2

d ),
the integral can be truncated to [0, Cnew] where Cnew =
y+
q

y2− 4md log(ε)
k

2md ∼ 1
k . Since the integrand does not oscil-

late, rapidly within this range, a canonical quadrature can
be applied to evaluate it accurately.

The overall problem then reduces to calculating the se-
ries S, in a fast and stable way. Even though, for small
y, the direct calculation of S via (13) works efficiently,
as y increases (ky4

d3 > C) the algorithm becomes unstable
due to cancellations, arising from the alternating values of

an ∼ (− (1−i)ky
4

)n

n! . To avoid this unstability the following
“diagonal decomposition” is applied to improve stability
and reduce computational cost.

S =
∞∑
n

an(
m∑

j=1

vnj) =
m∑

j=1

(
∞∑
n

f2n
w (1)
n!

(
wj

2ky(1 + i)
)n),

(15)

where fw(u) = e

ikyu
wj

s
u2

w2
j

−2i− kyu(1+i)
wj

r
u2

w2
j

−2i
.

Numerical Examples
Here we provide three numerical experiments compar-

ing the values of Gd obtained from an implementation
of new algorithm and the classical spectral representa-
tion method. Specifically we consider examples with
d = 2π, θ = 0 and x = 0 for y = 0.001, y = 0.01
and y = 0.1. For the calculation of S, we use (13) for
y = 0.001, y = 0.01 and (15) for y = 0.1. For compari-
son purposes, and to ensure the accuracy of both represen-
tations, all calculations were performed in quadruple pre-
cision arithmetic. The tables display the values of Gd at

those points exact to 16 digits. As the tables show, signif-
icant improvements are attained by the scheme presented
here for values of the wave number and spatial variables
spanning several orders of magnitude.

Table 1: k = 10j + 0.2, y = 0.001, x = 0

j Re(Gd) Im(Gd) tSM tNA

3 2.628688433907873e-2 -1.931709214516594e-1 6s 0.8s

4 1.522921154252366e-2 6.0888120714261587e-2 6s 0.8s

5 -1.888899645476105e-2 -5.186820874700445e-3 11s 0.8s

6 1.320719689032495e-3 -6.246830904346455e-3 87s 0.8s

7 9.675804564485829e-4 1.7939201404409735e-3 871s 0.8s

8 4.707091871365607e-4 4.1506677934769309e-4 8711s 0.8s

9 -1.852452152048772e-4 -8.295346774005824e-5 87100s 0.8s

Table 2: k = 10j + 0.2, y = 0.01, x = 0

j Re(Gd) Im(Gd) tSM tNA

3 1.800341805729301e-2 5.964066204467009e-2 1s 0.8s

4 -1.789585869078290e-2 -5.538978697501209e-3 1s 0.8s

5 1.751207333507672e-3 -5.997317465685739e-3 8s 0.8s

6 9.994378477643144e-4 1.6276014923110622e-3 88s 0.8s

7 4.231349592437124e-4 4.291612136180172e-4 875s 0.8s

8 -1.837569041951388e-4 -7.921502500918968e-5 8755s 0.8s

9 5.476706509738081e-5 2.462038876030244e-5 87500s 0.8s

Table 3: k = 10j + 0.2, y = 0.1, x = 0

j Re(Gd) Im(Gd) tSM tNA

3 -1.360795993008191e-2 -3.41097397114758e-4 0.2s 0.8s

4 2.213299101443911e-3 -7.65486217303957e-3 1.6s 0.8s

5 4.996867808830845e-4 1.778896007853010e-3 8s 0.8s

6 4.307177862473456e-4 4.862936472948697e-4 87s 0.8s

7 -1.977769511467323e-4 -5.03991366521495e-5 874s 1.5s

8 4.020872995782040e-5 5.290100535833349e-5 8734s 7s

9 3.202404057788981e-5 -1.40490522531367e-5 87400s 66s
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Abstract
The propagation of a wave through point scatterers is

under consideration. When the scatterer positions is ran-
dom, in a sense that has to be made precise, an effective
medium can be defined as the medium averaged over all
realizations of random distributions. We restrict the study
to small scattering strength, so that the effective medium
can be characterized by deriving the effective wavenum-
ber solving the Dyson equation. We refer to 2 typical con-
figurations, where (1) the scatterers have a random distri-
bution and are uncorrelated and (2) the scatterers have a
periodic distribution, the whole lattice being allowed to
translate. This latter case corresponds to strong correla-
tion between scatterers and it is shown to have the same
effective wavenumber as a single realization of periodic
distribution. As a perturbation to the periodic case, the
scatterers are allowed to randomly move around their pe-
riodic position with amplitude η (introducing another type
of correlation). The different cases are exemplified with
numerical results.

1 Introduction
The problem of wave propagation in randomly dis-

tributed scatterers has been widely studied and a large part
of the literature is devoted to the derivation of the index
of the so-called effective medium. This medium corre-
sponds to the homogeneous dissipative medium felt by
the “mean” acoustic wave when it propagates, the “mean”
wave being the wave averaged over all realizations of the
scatterer configurations, such as their positions and their
characteristics. These studies have encountered a great
success because of their practical applications from at
least two domains: the geophysics literature seeks to un-
derstand the effect of inhomogeneities within the Earth
crust on seismic waves [1] and the non-destructive eval-
uation literature seeks to gauge the effect that flaws in
elastic materials have on elastic waves [2].

The characterization of the effective medium has been
studied via mainly three theoretical approaches: 1) The
first comes from the pioneering works of Foldy [3]. The
goal is to derive an integral equation for the mean acous-
tical wave, which is achieved with the use of a heuristic
approximation that gives a closure equation. The simplest

closure equation is given by Foldy and referred to as the
effective medium approximation (EFA). The quasicrys-
talline approximation (QCA) is an improvement at second
order due to Lax [4]. 2) The second approach is based on
the resolution of the so called Dyson equation. It con-
sists in deriving an equation for the Green function of the
effective medium, which can be done easily by expand-
ing the Green function in the -assumed small- scattering
strength. At leading order, this corresponds to the first
Born approximation and at second order, to the first-order
smoothing approximation (FOSA) or Keller approxima-
tion [5]. 3) Finally, in the low frequency limit, methods
inspired from homogenization, as the Coherent Potential
Approximation (CPA), are used. In these cases, the prob-
lem is reduced to the resolution in a single cell containing
one scatterer [6].

We consider the propagation of a wave in one dimen-
sion through point scatterers, the effect of one scatterer
being encapsulated in a potential V (x) = v0kδ(x) in the
wave equation (∆ + k2)u(x) = −V (x)u(x). We adopt
the Dyson approach, where the scattering strength v0 is
assumed to be small. Two reference distributions of scat-
terers is taken: (1) the full randomly distributed scatter-
ers, that is the scatterers are uncorrelated and have all the
whole space as accessible space, and (2) the periodic dis-
tribution, where the first scatterer has the whole space as
accessible space afterwards all other scatterers are placed
at distance ja of the first scatterer (with −∞ < j < ∞
and a the lattice spacing). In between these two config-
urations, and following the idea of Parnell & Abrahams
[7], an intermediate distribution (3) is considered, where
each scatterer is allowed to move with amplitude η < a
around its mean (periodic) position. Numerical calcula-
tions of the mean configurations exemplify the theoretical
results (the numerical method is detailed in [8]). The pe-
riodic case (2) is found to be a limit of the configuration
(3) for η → 0 but the fully random configuration (1) can
not be recovered because of the correlation that has been
introduced in (2-3).

2 The effective medium solving the Dyson equation
One way to find the effective wavenumber K is to

solve the so called Dyson equation. The Dyson equa-
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tion links the modified Green function 〈G〉 for the ef-
fective medium to the Green function G0 of the space
free of scatterer through the mass operator Σ: 〈G〉 =

[G0−1 − Σ]−1. For weak scattering, Σ can be expanded
in powers of the potential V and, at second order, Σ =
〈V 〉 − 〈V G0V 〉 + 〈V 〉G0〈V 〉. The resulting explicit ex-
pression for 〈G〉(k) can be easily solved in the spectral
space when the medium is invariant by translation and
K2 � k2 + Σ(k) (K is expected to be close to k). When
the potential is the sum of the potentials of 2N + 1 in-
dividual scatterers in a space of length L (afterwards, we
take the limit L,N → 0): V (x) =

∑

j Vj(x), the mass
operator can be simplified and we get Σ = Σ1 + Σ2

Σ1(k) = n
∫

dxdx1p(x1)e
ikxV1(x)e

−ikx,
Σ2(k) = −n

∫

dxdx′dx1p(x1)e
ikxV1(x)G

0(x− x′)×
V1(x

′)e−ikx′
+
N(N − 1)

L2

∫

dxdx′dx1dx2p(x1)×
[p(x2) − p(x2|x1)] e

ikxV1(x)G
0(x− x′)V2(x

′)e−ikx′
,

(1)
where n = (2N +1)/L is the density of scatterers, p(x1)
is the probability function of a single scatterer (say the
first scatterer to be fixed up) and p(x2|x1) is the pair cor-
relation function, that is the probability function of the
second scatterer to be fixed up, the first one be placed
at x1 position. In the considered cases (1-3), we have
p(x1) = 1/L, which means that the first scatterer has the
whole space as accessible space. We also define a = 1/n
the mean distance between two scatterers.

3 Uncorrelated scatterers randomly placed
This case is the simplest one: with p(x2|x1) = p(x2),

the modified wavenumber is

K2 = k2 + v0k/a+ iv2

0
k/(2a) +O(v3

0
). (2)

It corresponds to the well-known result for uncorrelated
scatterers K2 = k2 + nf(0), with f the scattering func-
tion. It is written here with f expanded at second order in
v0.

It is easy to see that this result for uncorrelated scat-
terers randomly placed does not involve multiple scat-
tering process (for instance, all terms in n2, n3 van-
ishes in the expansion). Let us consider a unique point
scatterer at x1 position randomly moving in the inter-
val [0, L]. For an incident wave eikx, the transmission
and reflexion coefficients are T = (1 − iv0/2)

−1 and
R = iv0/(2(1 − iv0/2))e

2ikx1 . The Fig. 1 illustrates the
random process and the resulting attenuation: at a given
x-position, the field u(x) = (1 + T )eikx for a realiza-
tion x1 ≤ x and it is Re−ikx otherwise. Over all possible
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Figure 1: A unique scatterer moves in the interval [0, L].
Here v0 = 2, k = 2π, L = 10. (a) example of the field u(x)

(here x1 = 9.7 in pink circle). The red circle indicated the
position where the phase on (c) is recorded, (b) mean field

〈u〉(x) obtained for Nr = 200 realizations (200 x1-positions)
and (c) phase recorded at x = 6 position at each realization,
the dotted line shows the phase of (1 + T )eikx (independent
of x1) and the red points give the phase of R(x1)e

−ikx. The
phase indeed recorded at the x-position fluctuates between the
two values depending on whether x < x1 or x > x1. Only the

realizations x > x1 gives a coherent (constant) phase (the
realizations x < x1 gives random phase values).

realizations of the x1-positions, those that correspond to
x1 ≤ x yield to the same phase for u(x) while the latter
cases yield to phase values that randomly fluctuate. It re-
sults that the realisations u(x < x1) are “incoherent”, in
the sense that their mean value vanishes while the realisa-
tion u(x > x1) are “coherent” in the sense that they are
insensitive to a change in the disorder: the resulting mean
field 〈u〉(x) experiences a decrease in amplitude because
of the loss of all incoherent realisations x < x1.

4 The periodic case
The periodic case (1) is defined by p(x2|x1) =

∑

j �=0
δ(x2 − x1 − ja)/(2N). This means that each real-

ization consists of a periodic lattice with constant spacing
a but two realizations differ by a translation since the first
scatterer is allowed to move (−L/2 ≤ x1 ≤ L/2). The
effective wavenumber is obtained

(Ka)2 = (ka)2+v0ka+v
2

0
[1 − kacotan(ka)] /4+O(v3

0
).

(3)
It can be noticed that no attenuation occurs in that case. In
fact, the above wavenumber corresponds to the wavenum-
ber of the Floquet mode (for one realization of the pe-
riodic medium) expanded at second order in v0 [from
the dispersion relation cosKa = cos ka − v0/2 sin ka].
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This is illustrated on Fig. 2: the field u(x) for one posi-
tion of the periodic lattice has roughly the same aspect
as the mean field 〈u〉(x) except some fluctuations that
are smoothed in the average process. Notably, the phase
recorded at a given position appears to be constant, which
explains why no attenuation occurs.
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Figure 2: Illustration of the periodic case. Here, v0 = 0.5,
k = 2π, a = 0.8, the lattice of 25 scatterers is placed in
[0, 20]. (a) u(x) for a given position of the lattice. The

scatterers are indicated with pink points, the red points give
the phase recorded on (c). (b) Mean field 〈u〉(x) averaged

over 200 realizations of the lattice position in [0, 20] and (c)
phase recorded at x � 4.7 at each realization.

5 Perturbation of the periodic case
Following the idea of Ref. [7], we consider the

case where the scatterers are allowed to move around
their periodic position with amplitude η. It follows that
p(x2|x1) =

∑

j Πη(x2 − x1)/(2Nη), with Πη(x) = 0
for |x| > η/2 and = 1 for |x| ≤ η/2. We obtain

(Ka)2 = (ka)2 + v0ka+ v2

0
[1 − P (η)kacotanka] /4+

i[1 − P (η)]v2

0
ka/4 +O(v3

0
),

(4)
with P (η) ≡ sin(kη)/(kη). The random perturbation
introduced here has two effects, at second order in v0:
a modification in the effective wavelength and an imag-
inary part in K that holds a manifestation that attenua-
tion has appeared. As expected, as η → 0, the periodic
case (2) is recovered. To the opposite, as η = a, which
means that the set of scatterers covers the whole space
over all realizations of disorder, the full random case (1)
is not recovered. This is because all configurations of the
disorder in the case (1) are not recovered in the present
case: the configurations where two or more scatterers are
in the same cell of length a. Note that this suggests that
the approaches of CPA-type always consider correlation

between scatterers and that they cannot tackle the full ran-
dom case (1).

The law for K can be numerically checked with rea-
sonable agreement, as illustrated on Fig. 3.
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Figure 3: Effective wavenumber as a function of v0 in the
case (3) [k = 2π, a = 1/2π and 61 scatterers]. η = a/10

(blue), η = a/2 (red) and η = a (green). (a) First order
correction R(K) − k numerically obtained compared with the
theoretical value K1 − k, K1 = k[1 + v0/(2ka)] (the curves

are indistinguishable), (b) second order correction
−R(K) +K1 numerically obtained. In dotted line, the

theoretical value −P (η)cotanka/8a. (c) Imaginary part I(K)

numerically obtained, in dotted line the corresponding
theoretical value.
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Abstract
An FMM (Fast Multipole Method) [1], [2] for wave

problems with periodic boundary conditions [3] is devel-
oped. We apply the proposed method to Helmholtz’ and
Maxwell’s equations. In the case of Helmholtz’ equa-
tion, we deal with scattering problems with periodic array
of cracks and plot the energy transmittance versus wave
numbers. The stopband and related phenomena are ob-
served clearly.

Introduction
Solution of periodic boundary value problems for

Helmholtz’ and Maxwell’s equations are interesting sub-
ject because of various applications in engineering. Typi-
cal applications of this type include photonic crystals and
meta materials, which attract increased attention these
days. Since one often has to solve high frequency prob-
lems in complicated domains in such applications, one
is naturally lead to solutions of large scale problems. The
Fast Multipole Methods (FMM) seem to provide good ap-
proaches for solving such problems.

As a matter of fact, the use of FMM in periodic bound-
ary value problems in statics has been investigated since
the beginning of the development of this method[1]. In
dynamics, however, not much has been done except in
a few works including the recent investigation by the
present authors[3]. In view of important applications
of periodic boundary value problems in dynamics, we
present FMM formulations for Helmholtz’ equation in 2D
and Maxwell’s equations in 3D, together with numerical
examples, in the present paper.

Helmholtz’ Equation in 2D
Statement of the problem

In this section, we consider periodic problems in 2 di-
mensional Helmholtz’ equation.

Let D be a two-dimensional domain defined byD =
R × (−1

2
, 1

2
). Also, letSc be a union of smooth non-self-

intersecting line segments, which represents cracks phys-
ically (See Figure 1). Our problem is to find a solutionu

of Helmholtz’ equation

∆u + k2u = 0

subject to the periodic boundary condition

u(x1, 1/2) = eiβu(x1,−1/2)

∂u

∂n
(x1, 1/2) = −eiβ ∂u

∂n
(x1,−1/2)

for ∀x1, boundary condition on the cracksSc given by

∂u

∂n
= 0 on Sc

and the radiation condition for the scattered wave given
by u − uI , wherek is the wave number which satisfies

k 6= 2nπ ± β, n ∈ Z,

uI is the plane incident wave given by

uI(x) = Cinte
ikv·x

with v = (cos v̄, sin v̄), andv̄ is the incident angle. The
quantityβ is related tōv via

β = k sin v̄.

The solution to the problem defined above is written as

u(x) = uI(x) +

∫

Sc

∂Gp

∂ny

(x − y)φ(y)dSy,

whereGp is the periodic Green function, andφ is the
crack opening displacement which is the solution to the
following integral equation:

0 =
∂uI

∂n
(x) + =

∫

Sc

∂2Gp

∂nx∂ny

(x − y)φ(y)dSy,

where the integral of the RHS is taken in the sense of the
finite part.

Fast Multipole Method
In this section we briefly discuss the formulation of

the FMM for ordinary boundary value problems, leaving
aside the periodicity for a while.

As indicated in Figure 2, we take the cells with the cen-

tresO andO′ in a way that|
−−→
O′x| < |

−−→
OO′| and |

−→
Oy| <

|
−−→
OO′| hold. The fundamental solution for Helmholtz’
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Figure 1: Problem under consideration

equation in 2D can be written in the form of the multi-
pole expansion as

G(x − y) =

i

4

∑

n

∑

ν

(−1)nIn(
−−→
O′x)O−n−ν(

−−→
OO′)In(

−→
Oy)

whereOn andIn are functions defined as follows:

On(
−→
Ox) = inH(1)

n (kr)einθ

In(
−→
Ox) = (−i)nJn(kr)einθ.

Let S0 be the part of the boundary included in the cell
whose centre isO. We obtain the multipole momentMn

and the coefficient of the local expansionLn as follows:

x

O’

O S
y

L  (O’)

M  (O)n

n

Figure 2: Cells

Mn(O) =

∫

S0

In(
−→
Oy)φ(y)dSy

Ln(O′) =
∑

ν

On−ν(
−−→
OO′)Mν(O).

With Ln, the single-layer potential computed overS0

is expanded into the following local expansion:

∫

S0

G(x − y)φ(y)dSy =
i

4

∑

n

(−1)nIn(
−−→
O′x)Ln(O′).

One can also obtain a similar expansion for the double-
layer potential and its normal derivative.

One can use these expansions to formulate a multilevel
FMM. The reader is referred to [1], [2] for details.

Periodic FMM
We now present the outline of the periodic FMM. The

details are found in Otani and Nishimura [3]. The peri-
odic Green functionGp can be written as the following

O

1

2

ω

G
N

G
F

G
F

unit cell
(level 0 cell)

Gp(x − y) = GN (x − y) + GF (x − y)

GN (x − y) =

1
∑

l=−1

G(x − y − le2)e
iβl

GF (x − y) =
∑

|l|≥2

G(x − y − le2)e
iβl

Figure 3: Replica cells

lattice sum of the fundamental solution:

Gp =
∑

l

G(x − y − le2)e
ilβ (1)

=
i

4

∑

ω

H
(1)

0
(x − y − le2)e

ilβ ,

which is very slowly convergent becauseH(1)(r) ∼ 1√
r

with oscillation. We take the the unit cell whose vertices
are given by(±1

2
,±1

2
). The unit cell is taken as the level

0 cell for the FMM. As is seen from Eq. (1), the peri-
odic boundary condition can be satisfied as we carry out
FMM assuming that the replicas of the original unit cell
are placed infinitely in thex2 direction aligned with the
original one (See Figure 3).

We split Gp into the sum of the contribution from
nearby replicas denoted byGN and those from far repli-
cas denoted byGF . The evaluation of the contribution
of GN can be done with tools for ordinary FMM. For the
evaluation of the contribution ofGF , we use the “periodic
M2L formula” given as in the following formula:

Ln(O) =
∑

ν





∑

|l|≥2

On−ν(−le2)e
ilβ



 Mν(O),

whereMn(O) andLn(O) are the multipole moment and
the coefficient of the local expansion for the level 0
cell (the unit cell). We evaluate

∑

l≥2

On(−le2)e
ilβ with

Fourier analysis as follows:

∑

|l|≥2

On(−le2)eilβ =
1

πikn

[
∫ ∞

−∞

e−2iβ−2p(ξ − p)n

p(1 − e−iβ−p)
dξ

+

∫ ∞

−∞

e2iβ−2p(ξ + p)n

p(1 − eiβ−p)
dξ

]

.
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Figure 6: Distribution of|u| for k = 18.8 and for
k = 18.88

Numerical results

Consider the unit structure indicated in Figure 4. For
this structure, the energy transmittance is plotted versus
wave numbers in Figure 5. In this figure, we clearly see
not only a stopband, but also a narrow passband neark =
18.88. To understand the mechanism of this behaviour,
we plot the magnitude of|u| for k = 18.8 and18.88 in
Figure 6. These results indicate that there exists a mode
localised near the ‘hole’ (the part where there exist no
cracks). This phenomenon is considered to be similar to
the so-called localised modes in photonic crystals.

Maxwell’s Equations in 3D
The idea presented so far can be applied to Maxwell’s

equations as well. In this section, we focus on doubly
periodic problems in 3D. We show only the numerical re-
sults because of the limitations of the space.

We here consider the 2 dimensional periodic arrays of
spherical dielectrics shown in Figure 7, which is a model
of the slab photonic crystal. For the present model, the
period is1, the radius of the spheres is0.35 and the rela-
tive permittivity is1.62. We consider the case of the nor-
mal incidence and plot the energy reflectances (x-marks)
for frequencies in Figure 8. The same problem has been
investigated numerically by Stefanou and Modinos [4],

incident wave

Figure 7: 2 dimensional arrays of spherical dielectrics

Figure 8: Energy reflectance versus frequency

whose results are also plotted in Figure 8. As this figure
indicates, these results agree quite well.
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Abstract
The paper deals with transmission conditions imposed

on the interface plane separating two halfspaces occupied
by the acoustic medium. The conditions are obtained as
the two-scale homogenization limit of the standard acous-
tic problem imposed in the layer with the perforated pe-
riodic structure embedded inside. Both the characteristic
scale of the perforations and the layer thickness are pa-
rameterized byε → 0. The limit model involving some
homogenized coefficients governs the interface discon-
tinuity of the acoustic pressure associated with the two
halfspaces and the magnitude of the fictitious transver-
sal acoustic velocity. This novel approach presents a
new alternative to the usual description of the acoustic
impedance, which relies on a rough averaging the quasi-
experimental data.

Introduction
The purpose of the paper is to present the homogeniza-

tion approach employed to derive a proper model of the
acoustic transmission through perforated planar structure.
We consider the acoustic medium occupying domainΩ
which is subdivided by perforated planeΓ0 in two dis-
joint subdomainsΩ+ andΩ−, so thatΩ = Ω+∪Ω−∪Γ0.
Denoting byp+ andp− the acoustic pressures inΩ+ and
Ω−, respectively, in a case of no convection flow the usual
transmission conditions are given by

∂p+

∂n+
= −iωρ

Z
(p+ − p−),

∂p−

∂n−
= −iωρ

Z
(p− − p+) ,

(1)
wheren+ andn− are the outward unit normals toΩ+ and
Ω−, respectively,ω is the frequency,ρ is the density and
Z is thetransmission impedance; this complex number is
characterized by features of the actual perforation consid-
ered and is determined using experiments in the acoustic
laboratories, see e.g. [1].

We suggest a more refined mathematical treatment of
such transmission problem, which results in constraints
involving severalhomogenized coefficientscomputed di-
rectly for a specified shape of perforation. As an advan-
tage, with such modelling approach one can think ofin-
verse problemsaimed at optimal design of the perforated
structure to obtain a desired acoustic response.

Problem formulation
Here we briefly introduce the acoustic problem in the

layer containing the periodically perforated structure. By
indicesε we denote dependence of variables on scale pa-
rameterε > 0; similar convention is adhered in the ex-
plicit reference to the layer thicknessδ > 0. By the Greek
indices we refer to the coordinate index1 or 2, so that
(xα, x3) ∈ R3.

Geometry

Let Ωδ ⊂ R3 be an open domain shaped as a layer
bounded by∂Ωδ which is split as follows

∂Ωδ = Γ
+
δ ∪ Γ

−
δ ∪ ∂Ω

∞
δ , (2)

whereδ > 0 is the layer thickness, see Fig. 1. The acous-
tic medium occupies domainΩε

δ \ Sε
δ , whereSε

δ is the
solid obstacle which in a simple layout has a form of the
periodically perforated sheet; thus,Sε

δ is obtained by the
usualperiodic latticeextension of the solid unit structure.

For homogenization technique, it is important to have
a fixed domain, therefore thedilatation is considered,
cf. [2]; let Γ0 be the plane spanned by coordinates1, 2
and containing the origin. Further letΓ+δ and Γ−δ be
equidistant toΓ0 with the distanceδ/2 = dist(Γ0,Γ

+
δ ) =

dist(Γ0,Γ
−
δ ). Therefore,x3 ∈] − δ/2, δ/2[ and we in-

troduce the rescalingx3 = zδ so that one hasz ≡ y3 ∈
]− 1/2,+1/2[.

Figure 1: The layerΩδ of the acoustic medium with
periodic “solid perforations”Sε

δ situated within the layer
x3 ∈]− hδ/2,+hδ/2[, whereh < 1 . The reference
periodic cell spans the whole thickness of the layer.

Boundary value problem

The problem of acoustics is defined inΩε
δ. We assume a

monochrome stationary incident wave with the frequency
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ω and no convection velocity of the medium, so that

c2∇2pεδ + ω2pεδ = 0 in Ωε
δ ,

c2
∂pεδ

∂nδ
= −iωgεδ± onΓ±δ

∂pεδ

∂nδ
= 0 on∂Ω∞δ ,

(3)

wherec = ω/k is the speed of sound propagation,gεδ±k2

is the interface normal acoustic velocity; bynδ we denote
the normal vector outward toΩδ, so that due to the special
choice of the coordinate system:

∂

∂nδ
=

∂

∂x3
=
1
δ

∂

∂z
.

After the thickness dilatationx3 = δz, the problem is
transformed in domainΩε with the unit (constant) thick-
ness. The weak formulation of (3) then reads as follows:
find pε ∈ H1(Ωε) such that

c2
∫
Ωε

(
∂αp

ε∂αq
∗ +
1
δ2
∂zp

ε∂zq
∗
)
− ω2

∫
Ωε

pεq∗ =

−iω1
δ

(∫
Γ+
gεδ+q∗ dS +

∫
Γ−
gεδ−q∗ dS

)
(4)

for all q ∈ H1(Ωε).

Homogenization
For passing to the limitε → 0 we consider a propor-

tional scaling between the period length and the thick-
ness, so thatδ = κε, for a fixedκ > 0. Further, we need
a convenient prepositions on the problem data involved in
(3). Note thatgεδ± is defined onΓ0, which is equidistant
to Γ±; we assume

gεδ+ ⇀ g0+, gεδ− ⇀ g0−,
1
δ

(
gεδ+ + gεδ−

)
⇀ 0 ,

weakly inL2(Γ0), which yields

g0± ≡ g0+ = −g0− . (5)

The homogenized coefficients are introduced using so
called corrector functions computed for the reference pe-
riodic cellY =]0, 1[2×]− 1/2,+1/2[⊂ R3 which is per-
forated by the solid (rigid) obstacleT , so that the acoustic
medium occupies domainY ∗ = Y \T . For clarity we use
notationIy =]0, 1[2 andIz =]− 1/2,+1/2[. Further we
refer to the upper and lower boundaries ofY by I+y =
{y ∈ ∂Y : z = 1/2} andI−y = {y ∈ ∂Y : z = −1/2}.

The limit (homogenized) problem is obtained by the
periodic unfoldingmethod, see e.g. [3], applied to (4).
We employ a specific form of the unfolding operator
Tε(·) adapted to the present geometrical situation. Since
|Iz| = 1, for Tε(f) = F the integration formula reads as∫
Ω
Tε(f

ε(xα, z))dVx =
1
|Y |

∫
Γ0×Y

F (xα, yα, z)dSxdSydz,

where dVx = dSxdz and dSydz are the volume ele-
ments associated with domainsΩ and Y , respectively,
whereasdSx and dSy are the surface elements associ-
ated with planes(xα, 0) and (yα, 0), respectively. By
H1#(1,2)(Y ) we denote the space ofH1(Y ) functions
which are “1-periodic” inyα, α = 1, 2. There are the
limit fields p0 ∈ H1(Γ0), p1 ∈ L2(Γ0;H1#(1,2)(Y

∗)),
such that

Tε(p
ε)⇀ p0 weakly inL2(Γ0 × Y )

Tε(∂αp
ε)⇀ ∂x

αp
0 + ∂y

αp
1 weakly inL2(Γ0 × Y )

(κε)−1Tε(∂zp
ε)⇀ κ−1∂zp

1 weakly inL2(Γ0 × Y ) .

Limit model – Microscopic subproblems
The microscopic and macroscopic problems are intro-

duced by virtue of the following decomposition

p1(xα, y) = π
β(y)∂βp

0(xα) + iωξ
±(y)g0±(xα), (6)

whereπβ , ξ± ∈ H1#(1,2)(Y )/R, β = 1, 2 are solutions of
the local microscopic problems:∫

Y ∗

[
∂y

αξ
± ∂y

αq +
1

κ2
∂zξ

±∂zq

]
+
|Y |
c2κ

(∫
I+y

q −
∫

I−y

q

)
= 0

(7)

for all q ∈ H1#(1,2)(Y )/R, and∫
Y ∗
∂y

α(y
β + πβ) ∂y

αq +
1

κ2

∫
Y ∗
∂zπ

β∂zq = 0 (8)

for all q ∈ H1#(1,2)(Y )/R, β = 1, 2.

Limit macroscopic problem in transmission layer
Homogenized transmission behaviour is expressed in

terms ofinterface mean acoustic pressurep0 ∈ H1(Γ0),
andfictitious acoustic velocityg0±L2(Γ0) which satisfy
the interface probe (to hold for allq ∈ H1(Γ0) andψ ∈
L2(Γ0))∫
Γ0
Aαβ∂

x
βp
0∂x

αq −
|Y ∗|
|Y |

ω2
∫
Γ0
p0q = −iω

∫
Γ0
Bα∂

x
αq g

0±∫
Γ0
(p+ − p−)ψ −

∫
Γ0
Dβ∂

x
βp
0ψ = iω

∫
Γ0
F±g0±ψ ,

(9)
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where the homogenized equations are expressed in terms
of the local corrector functionsπβ andξ±:

Aαβ =
c2

|Y |

∫
Y ∗
∂y

γ(y
β + πβ) ∂y

γ(y
α + πα)

+
c2

|Y |κ2

∫
Y ∗
∂zπ

β∂zπ
α , (10)

Bα =
c2

|Y |

∫
Y ∗
∂y

αξ
± , (11)

Dα =
1
|Iy|

(∫
I+y

πα −
∫

I−y

πα

)
, (12)

F± =
1
|Iy|

(∫
I+y

ξ± −
∫

I−y

ξ±

)
. (13)

We remark that while (9)1 results as the homogenization
limit of (4), eq. (9)2 is derived specially as the constraint
of the interface discontinuity betweenp+ andp−.

Figure 2: Distribution ofξ± in Y ∗ for two shapes of
perforations.

For illustration, in Fig. 2 the corrector functions are dis-
played for 2D examples of two different shapes of the
perforations.

Interface conditions of acoustic wave transmission
We consider the acoustic waves propagating inΩ =

Ω+ ∪ Ω− ∪ Γ0, as declared in the introduction. In the
differential form the problem for unknown acoustic pres-
suresp+, p− reads as follows:

c2∇2p+ + ω2p+ = 0 in Ω+ ,

c2∇2p− + ω2p− = 0 in Ω− ,

+ boundary conditions on∂Ω ,

(14)

supplemented by the transmission conditions on interface
Γ0; these are defined in terms ofp0 andg0±:

c2
∂p+

∂n+
= iωg0± onΓ0 ,

c2
∂p−

∂n−
= −iωg0± onΓ0 ,

Interface problem(9) for p0 andg0± is satisfied,

(15)

wheren+ andn− are defined as in (1).

Conclusion
We derived the transmission conditions involving ho-

mogenized parameters (10)-(13) which reflect specific
features of the periodic perforation. The separating struc-
tures can be quite general, thus not only flat plates with
holes may be considered. Moreover, even the “no-
obstacle” situation is treated by the present model, when
Y = Y ∗ andκ → +∞. Thenπβ = ξ± ≡ 0, therefore
both F± andDβ vanish, so that (9)2 yields continuity
p+ = p− onΓ0.

We emphasize that this modelling tool allows for for-
mulation and treatment of the “optimal perforation de-
sign”, which can be an extension of structural optimiza-
tion in acoustics, see e.g. [4], [5]. In numerical studies
(not included here, presented at the conference) we shall
demonstrate the sensitivity of the acoustic transmission
coefficients on the shape of perforations.
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Abstract
An explicit two-dimensional finite difference method

to obtain numerical approximations of acoustic scattering
problems is developed. The method employs novel el-
liptic grids with adaptive control functions. In contrast
with other elliptic grid generators, the control functions
are held as dependent variables. They obey Poisson’s type
equations forced by the rate of changes of the jacobian in
the curvilinear coordinate directions. As a consequence,
the cell areas of the resulting grids converge to an aver-
age cell area over the entire domain. Numerical experi-
ments show that the smoothness and the cell area unifor-
mity of the new grids enhance the stability condition and
the convergence rate of the acoustic scattering numerical
method.

Grid Generator with Adaptive Control Functions
The governing equations for the novel grid generation

method are an extension of the familiar quasilinear el-
liptic system of partial differential equations [5], [3] for
the generalized curvilinear coordinates(x(ξ, η), y(ξ, η))
given by

αxξξ − 2βxξη + γxηη = −αψ xξ − γφxη, (1)

αyξξ − 2βyξη + γyηη = −αψ yξ − γφ yη, (2)

The independent variablesξ and η vary in a rect-
angular domainD′ called the computational domain.
The grid generation method can be thought as a trans-
formation T from the computational domainD′ with
coordinates (ξ, η) to the physical domainD with
coordinates(x(ξ, η), y(ξ, η)). The symbolsα, β and γ
represent the scale metric factors of the transformationT .
They are defined asα = x2

η +y2
η , β = xξxη +yξyη, γ =

x2

ξ + y2

ξ .

The functionsψ andφ are known as control functions
of the grid generation method. Their appropriate defini-
tion has been a subject of intensive research [2], [5]. In
reference [5], [6], their definitions is based solely on the
initial distribution of nodes along the boundaries of the
physical domain and a branch cut of the transformationT .
Once they are defined their values are maintained through

all the grid generation process. These functionsφ andψ
allow to have some control on the spacing between grid
lines and produce stretching or clustering of grid points at
specific regions of the physical domain.

The focus of this work is to create smooth grids with al-
most uniform cell areas and use them to improve acoustic
scattering numerical simulations. To begin, a uniformly
spaced rectangular grid with step sizes∆ξ = 1 and
∆η = 1 is defined on the computational domainD′. The
discrete values forξ andη are represented byξi = (i −
1)∆ξ andηj = (j − 1)∆η, for i = 1, . . . N2 andj =
1, . . . N1, respectively. Also,xi,j andyi,j correspond to
the discrete values ofx(ξi, ηj) = x(i, j) andy(ξi, ηj) =
y(i, j), respectively. Discrete approximations for the
other dependent variables are denoted accordingly. Re-
garding the cell areas, they can be approximated, at each
grid point, by|xξyη − xηyξ|∆ξ∆η = |J | whereJ is the
jacobian of the jacobian matrix,J , of T [1].

Formulation of the Grid Generation Model with Adaptive
Control Functions

In [4], a study of the effects that changes of the con-
trol function values have over the distribution of the grid
lines was conducted. It was found that an increment of
the φ value at a given grid point produces a local dis-
placement of the correspondingη-curves (η = constant)
in the positive direction (outward). Similarly, a decre-
ment ofφ values brings the grid lines inwards (negative
direction). Moreover, the displacement of theη-curves
is proportional to the magnitude of the change experi-
enced byφ. The relationship between changes ofψ val-
ues and displacement ofξ-curves (ξ = constant) is anal-
ogous. This relationship between grid line displacements
and the values of the control functions is illustrated in
Fig. 1. The left grid cells correspond to a set of control
functionsφold andψold. The intermediate cells are ob-
tained by increasing the value ofφ at the point(ξi, ηj)
(φnew(ξi, ηj) > φold(ξi, ηj)). The final grid cells are
obtained from the intermediate one after increasing the
control functionψ, i.e, ψnew(ξi, ηj) > ψold(ξi, ηj). The
above observations motivated us to formulate a new ellip-
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Figure 1: (a)φold, ψold (b) φnew > φold (c)ψnew > ψold.

tic grid generation mathematical model that includes the
control functions as unknown functions. The new model
seeks to create grids with rather uniform cell areas. Since
the jacobian’s value is an approximation of the cell area
at each grid point, uniform cell area meshes can be ob-
tained by equalizing the jacobian’s values at all nodes.
We achieve this goal by adding two new Poisson’s type
equations to the original quasilinear elliptic system(1)-
(2).

As a starting point in the derivation of the new equa-
tions, we consider the following discrete equations,

φnew(i, j) = φold(i, j) + k1Jη(i, j), (3)

ψnew(i, j) = ψold(i, j) + k2Jξ(i, j), (4)

wherek1 > 0 andk2 > 0 are real constants. If equations
(3)-(4) were added to the grid generation model governed
by (1)-(2), then the area of all the cells would gradually
tend to a constant value. This is becauseJη andJξ act as
regulatory terms of the grid line displacements. In fact,
the direction of the grid line displacements depends on
the signs ofJη andJξ. Eventually, all the grid cell areas
will approximate a constant value as the gradient of the
jacobianJ converges to zero everywhere.

A key idea in the derivation is to notice that the equa-
tions (3)-(4) lead to continuous differential equations if
the termsφold(i, j) andψold(i, j) are replaced by the av-
erage values ofφ andψ about the four neighboring points
of (ξi, ηj), respectively. More precisely, the equation(3)
is replaced by

φk
i,j =

φk−1

i+1,j + φk−1

i−1,j + φk−1

i,j+1
+ φk−1

i,j−1

4
+k1Jηi,j , (5)

where φk
i,j corresponds toφnew(i, j) and φk−1

i,j corre-
sponds toφold(i, j). Now, by noticing that the term at the
left and the first term at the right of (5) correspond to a
central difference approximation of∇2

ξ,ηφ = 0 written in
iterative form, equation (5) can be written in continuous
form as∇2

ξ,ηφ = −k1Jη. A continuous version of (4) can
be analogously obtained . By adding these two equations

to the original quasilinear system, we obtain our new set
of equations modelling the grid generation method,

αxξξ − 2βxξη + γxηη = −αψ xξ − γφxη, (6)

αyξξ − 2βyξη + γyηη = −αψ yξ − γφ yη, (7)

φξξ + φηη = −k1Jη, (8)

ψξξ + ψηη = −k2Jξ, (9)

For multiply connected domains such as the one in Fig.
2, a boundary value problem (BVP), including the four
equations above, is obtained by defining Dirichlet bound-
ary conditions on the physical boundaries and a conve-
niently chosen branch cut in the interior. This BVP is nu-
merically solved by approximating the partial derivative
terms present in the equations using centered differences.
This is followed by an application of point SOR itera-
tion to the discrete system of equations that results. The
grid generation process requires the definition of an ini-
tial grid and the implementation of a smoothing technique
such as the one introduced in [5]. The constantsk1 and
k2 should be conveniently chosen to ensure convergence
of the method.

Comparison Against Other Structured Grids
The advantages of the new grids, obtained with adap-

tive control functions, can be observed by comparing
them against grids obtained from the standard Winslow
elliptic grid generation approach without control func-
tions [1]. Table 1 contains a comparison of the minimum,
maximum, and average jacobian between both grids. The
domain chosen has a central hole bounded by an as-
troid curve which presents severe singularities on the four
cusps. The Winslow grid has the tendency to cluster its

Table 1: Grid quality comparison

Size 121 × 121 241 × 241

Winslow Adaptive Winslow Adaptive

Jmin 8.02e-6 3.50e-3 5.03e-7 3.22e-4
Jmax 8.01e-2 2.57e-2 2.07e-2 6.43e-3
Jave 2.21e-2 2.21e-2 5.41e-3 5.41e-3

nodes inward. It results in very small cells in the vicin-
ity of the astroid’s cusps. Moreover, the cells close to the
outer boundary are relatively large. This anomalous be-
havior can be fixed by the application of our method with
adaptive control functions. As shown in Fig. 2 (right), the
η-curves of the new grid conform to the astroid’s bound-
ary with relatively large cells around it. The numerical
experiments reported in Table 1 show that, in the case of
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a Winslow grid,Jmax is over10−4 times larger thanJmin.
Instead, with the adaptive control function grid,Jmax and
Jmin differ by only one order of magnitude.
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Figure 2: 41× 41 Winslow Grid (left), Adaptive Grid (right)

Acoustic Scattering from Complexly Shaped Obsta-
cles

Both of the previous grids were employed to obtain nu-
merical solutions for an acoustic scattering problem over
the complex domain illustrated in Fig. 2. The initial
boundary value problem in the new curvilinear coordi-
nates is given by

(psc)tt =
c2

J2

(

α(psc)ξξ − 2β(psc)ξη + γ(psc)ηη

+αψ (psc)ξ + γφ (psc)η

)

, (ξ, η) ∈ D′, t > 0, (10)

psc(ξ, 1, t) = −eik
(

x(ξ,1) cos δ+y(ξ,1) sin δ
)

e−iwt, (11)

psc(ξ, η, 0) = 0, (psc)t(ξ, η, 0) = 0, (ξ, η) ∈ D′ (12)

(psc)t +
c

rJ

(

(xyη − yxη)(psc)ξ + (yxξ − xyξ)(psc)η

)

+
c psc

2r
→ 0, whenr → r∞. (13)

An explicit leap-frog finite difference method, based
on Winslow and adaptive control function grids, was em-
ployed until a harmonic steady state was reached. For a
time step∆t = 10−3 and a121 × 121 grid size the re-
sults for both grids are similar with a better rate of conver-
gence for the adaptive control functions method. In con-
trast for a241 × 241 grid size the simulation based on a
Winslow grid is divergent because the stability condition
of the leap-frog method is violated by the cells close to
the obstacle. Instead, the simulation based on the novel
grids, introduced in this work, is stable and converges
(see Table 2). In Fig. 3, a numerical approximation for
the amplitude of the pressure field computed over a adap-
tive control function grid241 × 241 is shown. A more
complete analysis and study will be presented in a forth-
coming extended paper.

Figure 3: Amplitude of total pressure field

Table 2: Simulation for 20,000 time steps with∆t =
10−3.

Grid size 121 × 121 241 × 241

Winslow Adaptive Winslow Adaptive

Max Avg. Error 9.93e-4 2.03e-4 div 2.98e-4
Min Avg. Error 5.77e-4 4.26e-5 div 1.08e-4
Final Avg. Error 6.87e-4 4.26e-5 div 1.09e-4
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Abstract
In this work we show how the full set of govern-

ing equations for the dynamics of charged-particle flu-
ids in an electromagnetic field may be solved numerically
for nonlinear wave structures propagating in two dimen-
sions. The algorithm employed is a source-term adap-
tation and two-fluid extension of a recent second-order
high-resolution central scheme developed by Balbas et al.
[”Non-Oscillatory Central Schemes for One- and Two-
Dimensional Equations I.”, J. Comput. Phys. vol. 201,
pp. 261-285, 2004]. In addition, in order to obtain sta-
ble wave structures over prolonged modelling times, we
show how suitable boundary conditions may be chosen.
Illustrative results are presented depicting the evolution of
shock-like structures related to the magnetosonic mode.

Introduction
Recently, Balbas et al.[1] presented a two-dimensional

high-resolution Riemann-solver-free central-difference
scheme for staggered grids which they employed in the
simulation of magnetosonic shock-like structures. In their
model, they considered an ideal single-fluid plasma inter-
acting with a magnetic field B, say. Following this and
Shumlak and Loverich [2], a two-fluid plasma model al-
lowing for three dimensional variation in the fluid dynam-
ical and electric (E) and magnetic (B) field variables but
allowing for wave variations in one space direction (x)
only was employed to simulate magnetosonic shock and
soliton structures [3].

In this work we generalize these approaches to the ex-
tent that we employ an ideal-gas two-fluid plasma, al-
low for source terms in the governing equations, and
admit three-dimensional variation in the dynamical and
field variables but consider two-dimensional variation in
the wave structures. Results depicting a two-dimensional
magnetosonic shock wave propagating in a two-fluid
three-dimensional-field plasma are given.

Numerical method
In order to make a numerical study of such phenomena,

we first write the system of equations in the conservative

form,
∂U

∂t
+

∂F (U)
∂x

+
∂G(U)

∂y
= S(U). (1)

Here U(x, y, z, t) is the unknown (m-dimensional) vec-
tor, F (U) is the x-flux vector, G(U) is the y-flux vector
and S(U) is a source vector function, with x and y the
only two spatial coordinates considered (for no variation
in the z direction) and t is the time coordinate.

For this system, we follow through the derivation given
in [1] but now include a source term. Then the following
modified scheme in terms of cell averages is obtained:

Ūn+1
j+ 1

2
,k+ 1

2

=
1
4

[
Ūn

jk + Ūn
j+1,k + Ūn

j,k+1 + Ūn
j+1,k+1

]

+
1
16

[
Un

x,j,k − Un
x,j+1,k + Un

x,j,k+1 − Un
x,j+1,k+1

]

+
1
16

[
Un

y,j,k − Un
y,j,k+1 + Un

y,j+1,k − Un
y,j+1,k+1

]

− ∆t

2∆x

[
F

n+ 1
2

j+1,k − F
n+ 1

2
j,k + F

n+ 1
2

j+1,k+1 − F
n+ 1

2
j,k+1

]

− ∆t

2∆y

[
G

n+ 1
2

j,k+1 −G
n+ 1

2
j,k + G

n+ 1
2

j+1,k+1 −G
n+ 1

2
j+1,k

]

+
∆t

4

[
S

n+ 1
2

j+1,k+1 + S
n+ 1

2
j+1,k + S

n+ 1
2

j,k+1 + S
n+ 1

2
j,k

]
.

(2)

This scheme advances the cell average vectors Ūn
j,k (see

[1]) where j, k are the spatial discretization indices with
grid spacings ∆x and ∆y in the respective directions and
n is the time level index, with time spacing ∆t, and it is
used in conjunction with non-oscillatory approximations
([1],[4]) for the derivative arrays (Ux and Uy) .

The boundary conditions employed in all variables
were outflow conditions: we simply use quadratic extrap-
olations of the nearest inner point-values to compute the
value at a boundary point.

Charged particle fluids in an electromagnetic field
The model equations employed are those for the elec-

tromagnetic fields (E,B), the current density (J), and the
ideal-gas collisionless-plasma equations for the electrons
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(e) and ions (i). In the latter (with species s = e, i) the
ns, Vs, ps, γs,ms are the respective component number
densities, flow velocities, partial pressures, adiabatic
indices and particle masses with particle charges taken as
−e (electrons) and +e (ions). The complete governing
equations then are ([2],[3],[5]):-

Maxwell’s equations in vacuo:

∂B

∂t
= −∇×E (3)

∂E

∂t
=

1
ε0µ0

∇×B − 1
ε0

J (4)

∇ · E =
1
ε0

e(ni − ne) (5)

∇ ·B = 0 (6)

The plasma fluid equations:

∂ne

∂t
+∇ · [neVe] = 0 (7)

∂ni

∂t
+∇ · [niVi] = 0 (8)

mene

[
∂Ve

∂t
+ (Ve · ∇)Ve

]
= −∇pe−nee [E + Ve ×B]

(9)

mini

[
∂Vi

∂t
+ (Vi · ∇)Vi

]
= −∇pi + nie [E + Vi ×B]

(10)
The energy equations:

∂εe

∂t
+∇ · [(εe + pe)Ve] = −eneVe · E (11)

∂εi

∂t
+∇ · [(εi + pi)Vi] = eniVi · E (12)

where,

εe ≡ nekBTe

γ − 1
+

1
2
mene|Ve|2 =

pe

γ − 1
+

1
2
mene|Ve|2

(13)

εi ≡ nikBTi

γ − 1
+

1
2
mini|Vi|2 =

pi

γ − 1
+

1
2
mini|Vi|2

(14)
Here, we take γe = γi = γ = Cp/Cv as the com-

mon ratio of specific heat capacities, pe = nekBTe and
pi = nikBTi are the respective electron and ion partial
pressures for ideal gases, with their temperatures given as
Te = meV

2
Te/kB and Ti = miV

2
Ti/kB where VTe and

VTi denote the root-mean-square thermal speeds for each
species.

For wave structures varying in two dimensions we em-
ploy the operation ∂/∂z ≡ 0 and then normalize (see the
Appendix) the set of equations to time and spatial scales
appropriate for the study of magnetosonic waves as be-
fore [3] and finally render them into component forms.
Now with,

we = ne|Ve|2 + 3neV
2
Te, wi = ni|Vi|2 + 3niV

2
Ti (15)

and the notation

U = [u1, u2, u3, u4, u5, u6, u7, u8, u9,

u10, u11, u12, u13, u14, u15, u16]T

≡ [ne, ni, nevex, nevey, nevez, nivix, niviy, niviz,

we, wi, Ex, Ey, Ez, Bx, By, Bz]T , (16)

in normalized variables and with consequential forms for
F (U), G(U) and S(U) the equations above reduce to the
form (1). For the numerical integration we employ a sys-
tem of size 10× 10 in Debye lengths (see the Appendix)
with correspondingly 201× 201 grid points giving giving
∆x = 0.05 and ∆y = 0.05, and we take ∆t = 0.0025,
an artificial ion-to-electron mass ratio of 10:1, and an ion-
to-electron temperature ratio of 1:10.

Application
Magnetosonic shocks

The magnetosonic mode arises when wave propagation
observed in a direction, say x, is driven by a transverse
magnetic field in a direction, say, y coupled with a trans-
verse electric field component in the other direction, z.
This causes the plasma to undergo rarefactions and com-
pressions in the x direction owing to the ”E × B drift”
[5].

Here we employ the initial conditions




ne = 4, ni = 4, Ve = 0, Vi = 0, we = 3neV
2
Te0,

wi = 3niV
2
Ti0, Ex = 0, Ey = 0, Ez = 0,

Bx = 0, By = 1, Bz = 0; x ≤ xc.
ne = 1, ni = 1, Ve = 0, Vi = 0, we = 3neV

2
Te0

,

wi = 3niV
2
Ti0, Ex = 0, Ey = 0, Ez = 0,

Bx = 0, By = 1, Bz = 0; x > xc.

corresponding to a Riemann (shock-tube or two-state
plasma) problem with a discontinuity at the system centre
xc in the x direction, with no variation in the y direction.
Also we use the normalized value c = 10, corresponding
to a ’hot’ -to-’very-hot’ plasma (see [3]).
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NT= 0

NT= 700

NT= 1800

Figure 1: Computed magnetosonic shock structure in
the electron density at time steps NT = 0, 700 and 1800.

A typical computed result is shown in the figure. Such
results extend the previous two-fluid one-dimensional
treatments of [2] and [3] and of the source-free one-fluid
two-dimensional treatment of [1].

Conclusion
We have shown how the high-resolution staggered dif-

ference scheme of Balbas, Tadmor and Wu [1] may be
adapted to handle a two-fluid plasma with source terms
modelled by the ideal-gas fluid-dynamical equations and
Maxwell equations for the electromagnetic field. The
model is fully three-dimensional except that wave varia-
tion is restricted to two-dimensions. As an illustration we
have shown how a magnetosonic shock wave may subse-
quently evolve through the system. The numerical pro-
cedure employed should be useful for studying nonlinear
wave propagation of varying types in different charged
particle fluid systems and may be extended to fully three-
dimensional situations.

Appendix: Normalizations
Here, the electron and ion densities are given

in terms of n0 their common equilibrium density,
lengths (x) are in units of the electron Debye length

λde =
√

ε0kBTe0/n0e2 =
√

ε0meV 2
Te0/n0e2 where ε0

is the electric permittivity in free space and Te0 is the
equilibrium electron temperature, temperatures are given
in terms of Te0, particle charges in terms of e > 0 the
electronic charge, time (t) is in units of the inverse of the
inverse of the ion plasma frequency ωpi =

√
n0e2/ε0mi,

velocities are in terms of the ion sound speed at equilib-

rium,
√

meV 2
Te0/mi, and we take γ = 5/3 for adiabatic

fluids. Components of the electric field are in units of

E0 =
√

men0V 2
Te0/ε0, those of the magnetic field are in

units of B0 = E0/c where c is the unnormalized speed of
light, and we take me/ms as the mass electron/ion mass
ratio and σs as the normalized charge (= -1 for electrons,
+1 for ions). The normalized energy-per-mass terms then
are ws = ns|Vs|2 + 3nsV

2
Ts.
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Abstract
This paper presents a parametric finite-difference

scheme concerning the numerical solution of the one-
dimensional Boussinesq-type set of equations, as they
were introduced by Beji and Nadaoka [2] in the case
of waves relatively long with small amplitudes in wa-
ter of varying depth. The proposed method, which
can be considered as a generalization of the Crank-
Nickolson method, aims to investigate alternative ap-
proaches in order to improve the accuracy of anal-
ogous methods known from the bibliography. The
resulting linear finite-difference scheme has been ap-
plied successfully to the bathymetry used by Beji and
Battjes [1] as well as in an analogous one known in
the bibliography as the Ohyama’s experiment [5] giv-
ing numerical results which are in agreement with the
corresponding results given by MIKE 21 BW [4] de-
veloped by DHI Software.

Introduction
Beji and Nadaoka [2] following Peregrine’s [6] as-

sumption have proposed the following set of improved
Boussinesq-type equations to describe the relatively
long, small amplitude waves propagating in water of
varying depth in 2 + 1 dimensions

∂η

∂t
+ ∇ · [(h + η)u] = 0, (1)

u t + (u · ∇)u + g∇η

= (1 + β)
h

2
∇ [∇ · (hut)] − β

g h

2
∇ [∇ · (h∇ η)]

− (1 + β)
h2

6
∇ (∇ · ut)+

g h2

6
∇

(
∇2 η

)
; t > 0, (2)

where η = η (x, y, t) is the free surface displace-
ment as it is measured from still water level and
u = u (x, y, t) = [u1, u2]

T is the depth-averaged hor-
izontal velocity vector, ∇ = [∂/∂x, ∂/∂y]T the two-
dimensional gradient operator, h = h (x, y) is the still
water depth, g the gravitational acceleration, β an
appropriate constant and ∇2 is the two-dimensional

Laplace’s operator.
For the one-dimensional propagation when hxx =

0, h = h (x), u1 ≡ u and β̃ = 1+β the system (1)-(2)
gives

ηt + [(h + η)u]x = 0, (3)

ut + uux + gηx = β̃ h hx uxt + β̃
h2

3
uxxt

+βg hhxηxx + β
gh2

3
ηxxx; x ∈ Ω , t > 0. (4)

The initial conditions are assumed to be of the form
u (x, 0) = η (x, 0) = 0.

The numerical scheme
To obtain a numerical solution the region R =

Ω×[t > 0] with its boundary ∂R is covered with a rec-
tangular mesh, G, of points with coordinates (x, t) =
(xm, tn) = (L0 + m∆x, n∆t) with m = 0, 1, ..., N + 1
and n = 0, 1, ..., in which ∆x represents the space
step, while ∆t the time one.

Let the solution vectors be

ηn = η (tn) =
[
ηn
1 , ηn

2 , ..., ηn
N , ηn

N+1

]T
, (5)

un = u (tn) =
[
un

1 , un
2 , ..., un

N , un
N+1

]T
. (6)

The proposed method arises by considering that
in Eq. (4) only the space partial derivatives are sat-
isfied at the point (m∆x, (n + ϑ) ∆t ); ϑ ∈ [0, 1] of
the grid G (see Bratsos et al [3]). This assumption
for ux gives

(ηx)n+ϑ
m = ϑ (ηx)n+1

m + (1 − ϑ) (ηx)n
m (7)

and analogous approximations for ηxx and ηxxx.
At the left-boundary point x = L0 (input) the

surface elevation is evaluated as η (L0, t) = f(t);
t > 0, where f(t) is an appropriate function produc-
ing harmonic waves of period T and height H, while
at the same point the depth-averaged velocity us-
ing the continuity equation for a progressive wave as
u (L0, t) = c̃0 η(L0,t)

h0+η(L0,t) ; t > 0, where c̃0 and h0 are the
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Figure 1: Bathymetry I
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Figure 2: Bathymetry II

phase celerity and the water depth at x = L0 respec-
tively. At the outgoing boundary (output) x = L1

the values η (L1, t) and u (L1, t) are evaluated from
the radiation condition for both the surface displace-
ment using the continuity equation and for the ve-
locity from the momentum one.

Eq. (3) leads to a two-time level explicit finite-
difference scheme for the unknown vector ηn+1, while
Eq. (4) to a linear system of the form Aun+1 =
F

(
un, ηn+1, ηn

)
in which A is a tridiagonal matrix

of order N + 1 with appropriate entries. Then us-
ing a predictor-corrector scheme the values ηn+1 are
corrected using the values of un+1 (see [3]).

Numerical experiments
The method developed in the previous Section

was tested on the bathymetry I [1] (Fig. 1) and
bathymetry II [5] (Fig. 2) using ∆x = 1/20m, ∆t =
1/150 sec, while at each time step one prediction-
correction was performed.

To investigate the effect of the parameter ϑ at
the numerical solution of the system (3)-(4) the in-

terval [0, 1] was discretized into 20 subintervals each
of width ϑ̃ = 0.05 and the method was applied for
t ∈ [0, 30] for each value ϑ̃ using both the bathyme-
tries [1], [5]. In order to evaluate the results, the
solution for various values of ϑ was compared to the
solution obtained by MIKE 21 BW [4]. Let ϑ∗ to
denote the value of ϑ which gives the solution, which
fits best to [4]. From the experiments the following
were deduced

A. Bathymetry I Data: L0 = 0 m, L1 = 24m,
T = 2 sec, h0 = 0.4m (D1)

i. H = 0.02m

- Peregrine’s model (see [3] p. 131) when ϑ ∈
[0.4, 0.6] with ϑ∗ = 0.525,

- improved [2] using system (3)-(4) when ϑ ∈
[0.4, 0.65] with ϑ∗ = 0.575 due to the mini-
mum error appeared in station 7 (Fig. 3).

ii. H = 0.025m

- Peregrine’s model when ϑ ∈ [0.4, 0.575] with
ϑ∗ = 0.55 (Fig. 4),

- improved [2] using system (3)-(4) when ϑ ∈
[0.5, 0.7] with ϑ∗ = 0.6 (Fig. 5).

B. Bathymetry II Data: L0 = 0m, L1 = 30m,
T = 2 sec, H = 0.025m, h0 = 0.5m (D2)

- Peregrine’s model when ϑ ∈ [0.4, 0.55] with
ϑ∗ = 0.55 (Fig. 6),

- improved [2] using system (3)-(4) when ϑ ∈
[0.45, 0.7] with ϑ∗ = 0.6 (Fig. 7).

This conclusion verifies that the introduced set of
equations describes better the physical phenomenon
and, also, prove that the introduced parameter ϑ in-
fluences the errors of the numerical method and the
choice of ϑ = 0.5 is not the ideal one (see analogous
observation in [3]).
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Figure 5: Bathymetry I with data (D1ii) using
model [2] and ϑ∗ = 0.6.

2 3 4 5
0.01

0.015

0.02

0.025

0.03

0.035

0.04
Ohyama bathymetry old model  H=0.025 T=2

stations

m
ax

 a
bs

 e
rr

or
 in

 s
ta

tio
ns

th=0.4
th=0.45
th=0.5
th=0.5125
th=0.525
th=0.55

(a)

Figure 6: Bathymetry II with data (D2) using
model [6] and ϑ∗ = 0.55.
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Figure 7: Bathymetry II with data (D2) using
model [2] and ϑ∗ = 0.6.
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Abstract

Numerical modeling of transient poroelastic waves is

studied in a one-dimensional geometry. The framework is

the Biot’s model in the low-frequency range. For realistic

values of the physical parameters, waves with different

properties coexist, leading to computational difficulties.

A method is proposed to ensure efficient simulations.

Introduction

Porous media are made up of a solid matrix saturated

by one or more fluids. Such media occur frequently in

applications, for instance in geophysics [3]. The propa-

gation of poroelastic waves has been analysed in [5], for

linear models in the low-frequency range. Various time-

domain numerical models have been proposed [4], [5],

with null or low values of the viscosity of the interstitial

fluid, simplifying greatly the modelisation. For realistic

values, propagative and diffusive regimes coexist involv-

ing different scales of evolution and leading to important

numerical difficulties. Moreover, the waves may propa-

gate throught successive porous media, requiring an ac-

curate treatment of the interfaces.

The aim of this study is to propose efficient numeri-

cal tools for such unfavourable situations. The 1D evolu-

tion equations are written as a first-order hyperbolic sys-

tem with a source term. The proposed method is based

on three different steps: a splitting to treat efficiently the

source term, a mesh refinement to represent accurately the

diffusive solution, and an interface method to account for

discontinuies of parameters. Relevant numerical experi-

ments are given.

Problem statement

We consider an elastic and isotropic solid saturated by

a continuous and compressible liquid submitted to small

perturbations whose wavelengths are much greater than

the size of the pores. The relative motion of the fluid in

the pores is assumed to be of the Poiseuille type. The

framework is the theory of linear poroelasticity in the

low-frequency range [2]. In 1D, the unknowns are the

elastic velocity vs, the filtration velocity w = Φ(vf − vs)
(vf is the acoustic velocity), the elastic stress σ and the

acoustic pressure p. The solution U = T (vs, w, σ, p)

satisfies the first-order system

∂

∂ t
U +

∂

∂ x
AU = −S U , (1)

with

A =




0 0 −ρw/χ −ρf/χ
0 0 ρf/χ ρ/χ

−(λm + 2µ) −β m 0 0
β m m 0 0


 ,

and S =
η

κ

ρ

χ




0 −ρf/ρ 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 .

The parameters are the density ρf and the dynamical vis-

cosity η of the fluid, the density ρs and the shear modulus

µ of the solid, the porosity 0 < Φ < 1, the tortuosity

a > 1, the absolute permeability κ and the compressibil-

ity coefficients β, m, λm of the saturated material [3]. We

set: ρw =
a

Φ
ρf , ρ = Φ ρf + (1 − Φ) ρs, χ = ρ ρw −

ρ2
f > 0. The eigenvalues of A are real: ±c1, ±c2, with

c1 > c2 > 0. The spectral radius of S is R(S) = η
κ

ρ
χ .

For η = 0, the solution of (1) consists in two advection-

like waves. For η 6= 0, the mechanical energy of the solu-

tion decreases [5]. The fast wave propagating at speed c1

is slightly affected by the viscosity whereas the slow wave

propagating at speed c2 is highly damped, characterising

a diffusive regime [3].

For non-homogeneous media, the physical parameters

are piecewise constants. At an interface on x = α, the

simple model of open-pore jump conditions [6] is used

[U ]α = U(α+, t) − U(α−, t) = 0. (2)

Numerical methods

Numerical scheme

We first consider an uniform grid with a mesh size ∆ x
and a time step ∆ t, in homogeneous medium. A classical

approach is to discretize (1) directly [4], [5]. For standard

schemes a Von-Neumann analysis of stability gives

∆ t ≤ min

(
∆ x

c1
,

2

R(S)

)
. (3)
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With realistic values of the physical parameters η and κ,

(3) may be very restrictive: in a sandstone saturated by bi-

tumen, the CFL number is typically c1 ∆ t/∆ x ≈ 10−12.

We prefer a strategy of splitting, solving successively




∂

∂ t
U +

∂

∂ x
AU = 0,

∂

∂ t
U = −S U .

(4)

The first equation may be solved by any flux-conservative

scheme for hyperbolic systems, and we use the Lax-

Wendroff method in the numerical experiments. For

this step, one recovers the usual stability condition

c1 ∆ t/∆ x ≤ 1. Since exp(−S t) is easy to compute,

the second equation of (4) is solved exactly and no con-

straint about ∆ t is required. Then, a global solution is

obtained by a classical second order Strang-splitting.

Mesh refinement

The phase velocity of the slow wave may be 1 or 2 or-

ders of magnitude smaller than that of the fast wave. Con-

sequently, a very fine grid is required to capture its evo-

lution. Using uniform grid on the whole computational

domain is out of reach in view of 2-D simulations. An

alternative strategy is to use space-time mesh refinement

techniques [7] near the points where these slow waves are

generated, i.e. at sources and interfaces. Here, we adapt

to (4) a flux-conservative method developped by [1]. Us-

ing adequate extrapolation formulas between different re-

finement levels ensures no spurious diffractions at grid

interfaces. No complete theory exists but the numerical

experiments indicate the stability of the method.

Interface method

For non-homogeneous media, it is necessary to mod-

ify the numerical scheme to account for the jump condi-

tions at interfaces. We adapt to (1) the immersed interface

method previously developped in the case of acoustics

[8]. For the grid points where the stencil of the numer-

ical scheme crosses the interface x = α, modified values

of the solution on the other side of α are used. These val-

ues are deduced from the numerical values of U on both

sides of α but also from the jump conditions (2) satisfied

by U and its successive spatial derivatives. The latter fol-

low from time derivatives of (2) and from (1). Since A is

piecewise constant, one gets for all k ≥ 0
[(

A
∂

∂ x
+ S

)k

U

]

α

= 0. (5)

In the limit-case of identical parameters on both sides

of α, one recovers exactly the scheme for homogeneous

medium. The subcell position of α is correctly described.

The major part of the work is done during a preprocess-

ing step, implying a negligible computational extra-cost

during time-marching. Additional details may be found

in [8].

Numerical experiments
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Figure 1: No mesh refinement (top); zoom around the

source, with and without mesh refinement (bottom). F:

fast wave, S: slow wave.

As a first test, we simulate the waves emitted by a

ponctual source of stress in homogeneous sandstone sat-

urated by water (η 6= 0) [4]. The source function is a

time-bounded sinusoid with a central frequency 40 Hz

[8]. The CFL number is 0.9, to be compared to 0.03 for

a direct discretization (3). An exact solution is obtained

by Fourier methods (idem for test 2). A snapshot of p is

shown on the top of figure 1, after the extinction of the

source. Fast waves are advected rightwards and leftwards

while the slow waves remain localized around the source,

varying strongly on small spatial scales. Their numerical

estimations are highly smeared. In figure 1-(bottom), the

crude solution is compared with a solution computed on a

mesh refined 64 times around the source, between the two
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Figure 2: t1 (top), t2 > t1 (middle), zoom around the

interface at t2 (bottom). I: incident, R: reflected, T:

transmitted, F: fast wave, S: slow wave.

vertical dotted lines. A very good agreement between ex-

act and numerical values is obtained.

As a second test, we consider the interface between

sandstone saturated by a fluid with water properties (ex-

cept η = 0) and sandstone saturated by a gas (η 6= 0) [4].

Two successive mesh refinements with factors 64 and 512

are used around the interface. The computation is inital-

ized on the left of the interface by a right-going fast wave

(F on the right of figure 1, top). Figure 2 shows snapshots

of vf at t1 and t2 > t1. During the interaction of the in-

cident wave with the interface (t1, top), the slow waves

have the larger magnitude. A poor estimation of these

waves would invalidate the other ones. At t2 (middle),

the transmitted slow wave is greatly attenuated, and re-

mains localized at α+. Last figure (bottom) represents a

zoom of the solution where the maximal refinement factor

is used.

Conclusion

The slow waves generated across interfaces may vary

sharply even if they are highly attenuated. They remain

localized near interfaces, hence their role is crucial in the

balance of mass and momentum. Consequently, they need

to be computed very accurately. The proposed approach

(splitting, mesh refinement and interface method) gives

very promising results. An extension to 2D is in progress.
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Abstract
Mechanical systems with fractional damping have been

studied in the literature since [1]. Resolution methods
are either based on time discretization of the fractional
dynamics (see e.g. [3], [2]), or on diffusive represen-
tation (cf. [5], [10], [4]). For large scale systems, the
first method proves memory consuming whereas the sec-
ond has no hereditary behavior and seems more appropri-
ate. In this paper, a coupled Newmark-diffusive scheme
is proposed and analyzed through a single degree-of-
freedom example. Various strategies for choosing the dif-
fusive parameters are presented and the numerical results
are compared to those obtained with an original closed-
form solution developed by the authors.

1 Model under study
The aim is to study fractionnaly damped oscillators us-

ing diffusive representations combined with Newmark in-
tegration scheme for mechanical systems of the form:

Mü(t) + Cu̇(t) + Cα (dα
u)(t) + Ku(t) = f(t)

wheredα
u = I1−α

u̇ is the Caputo derivative of order
α ∈ (0, 1), andI1−α is the Riemann-Liouville fractional
integral of order1−α. ClassicallyM,C,Cα,K are sym-
metric and positive matrices,M being positivedefinite.

2 A closed-form solution in fractional power series
Let us introduce an original closed-form solution for

the following fractionally damped SDOF equation:

m ü(t) + c u̇(t) + cα (dαu)(t) + κu(t) = f(t)

with u(0) = u0, u̇(0) = v0, α =
p

q
∈ (−1, 1), p∧ q = 1.

Here, three cases are investigated: the free vibrations
(no external forcef ≡ 0) due to(a) an initial displace-
ment (u0 6= 0, v0 = 0) or (b) an initial velocity (v0 6= 0,
u0 = 0), and(c) the dynamic response under a constant
load (f(t) = f0H(t), u0 = v0 = 0). We recall that (b)
and (c) correspond to impulse and indicial responses.

The key point is to write this exact solution in terms
of fractional power series asu(t) =

∑∞
j=0 Uj tj/q, where

the correspondingUj coefficients are defined by:

• for j ≤ 2q, theUj are zero except the following,

case(a): U0 = u0, U2q = −κ/(2m)u0;
case(b): Uq = v0, U2q = −c/(2m) v0;
case(c): U2q = 1/(2m) f0;

• for j > 2q, theUj are evaluated recursively by:

Uj = − 1

m

q2

j(j − q)

[

c (
j − q

q
)Sj−q

+ cα

Γ
(

j+p−q
q

)

Γ
(

j−q
q

) Sj+p−2q + κSj−2q

]

,

These coefficients have been obtained after some analyti-
cal calculations. Sinceu can be linearly decomposed into
2q Mittag-Leffler functions, see e.g. [8], and since the lat-
ter are entire functions, we know that the radius of conver-
gence of the above series solution is infinite. In the sequel,
it will be used to evaluate the accuracy of the Newmark-
diffusive scheme for fractionally damped systems.

3 A coupled Newmark-diffusive numerical scheme
3.1 Diffusive schemes for fractional models

Following e.g. [5], [8]-[10],dα
u = I1−α

v can be rep-
resented by the superposition of first-order systems :

∂tϕ(ξ, t) = −ξ ϕ(ξ, t) + v(t), ξ > 0, ϕ(0) = 0,
(I1−α

v)(t) =
∫ ∞

0 ϕ(ξ, t)µ1−α(ξ) dξ .

whereµ1−α(ξ) = sinαπ
π ξ−(1−α) for ξ > 0. Thus, stable

numerical schemes can be derived, e.g. by standardinter-
polation

∫ ∞

0 ϕ(ξ)µ1−α(ξ) dξ ≈ ∑K
k=1 ϕ(ξk)µk, where

ξk andµk must be chosen appropriately (see§ 4.1).

3.2 Time-integration coupled scheme
Now, a predictor-corrector algorithm based on the

Newmark integration scheme (see [7, chap 9.]) for the
dynamic response of a fractionally damped system is pro-
posed:

1. Initialization
S = M + γ ∆tC + β ∆t2 K

u(0) = u
0, v(0) = v

0, ϕk(0) = 0 for 1 ≤ k ≤ K
a0 = M−1(f0 − Ku0 − Cv0)
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2. Enter time step loop
a) Prediction

u
n+1
pr = u

n + ∆tvn + (0.5 − β)∆t2 a
n

v
n+1
pr = v

n + (1 − γ)∆tan

b) Evaluation ofϕn+1
k for 1 ≤ k ≤ K anda

n+1

ϕ
n+1
k = exp(−ξk ∆t)ϕ

n
k +

1 − exp(−ξk ∆t)

ξk
v

n+1
pr

a
n+1 = S

−1

(

f
n+1 − Cv

n+1
pr

−Cα

K
∑

k=1

µk ϕ
n+1
k − Ku

n+1
pr

)

c) Correction
u

n+1 = u
n+1
pr + β ∆t2 a

n+1

v
n+1 = v

n+1
pr + γ ∆tan+1

3. Update time step and return to 2

Note that the prediction vectorsupr, vpr, and the diffusive
componentsϕk for 1 ≤ k ≤ K need not be stored.
Moreover, we useβ = 1/4 andγ = 1/2 known asaver-
age acceleration method(i.e. the trapezoidal rule applied
to the vector(u,v)).

4 Numerical results
4.1 Various strategies for choosing diffusive parameters

Based on Bode diagrams, a heuristic choice of the
{ξk}1≤k≤K is given by a geometric sequence on a fre-
quency range of interest. Then, different choices are
available for the{µk}1≤k≤K , see e.g. [5].

We first focus on theanalyticalevaluation ofµk, using
the hat functionsΛk(ξ) of P1 interpolation, namelyµk =
∫ ∞

0 µ1−α(ξ)Λk(ξ)dξ, which gives, withλ = sin απ
(1+α)απ :

µk = λ

[

ξk+1

(

ξα
k+1 − ξα

k

ξk+1 − ξk

)

− ξk−1

(

ξα
k − ξα

k−1

ξk − ξk−1

) ]

.

A second choice consists inoptimizing the µk with
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Figure 1: Evolution ofµk versusξk (1 ≤ k ≤ K)

respect to a weighted (Wl) least-squares criterion, see [6]:

C(µ) =

L
∑

l=1

Wl

∣

∣

∣

∣

∣

K
∑

k=1

µk

i ωl + ξk
− 1

(iωl)(1−α)

∣

∣

∣

∣

∣

2

,

where{ωl}1≤l≤L are angular frequencies, andL � K.
Fig. 1 shows the analytical and optimal (L = 10K) val-
ues ofµk, for geometrically spacedξk in [10−4, 104] and
for K = 10, 15 and20. We observe oscillations of the
optimalµk around the analytical values, especially at the
endpoints of the interval; even negative values can be
found, which could be a problem for a further stability
analysis.

The corresponding approximated Bode plots are shown
in Fig. 2 below.
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Figure 2: Exact and approximated Bode plots:
analytical and optimal withK = 15 andξk ∈ [10−4 104].

4.2 Analysis of the SDOF case
Fig. 3 presents the time displacement and the phase di-

agram forα ∈ (0 , 1): one can see the continuity of the
behaviour from the undamped to the viscous case.
The closed-form solution is used to evaluate the displace-
ment error for the sdof in Fig. 4:

• for a given frequency range, the slope of the error
clearly changes forK = K∗; oscillations occur in
the second regime (due to the optimal choice ofµk).

• as a consequence, for a given numberK, the best
choice of frequency range is first the smallest range
for K ≤ K∗

− ≈ 10, and finally the biggest range for
K ≥ K∗

+ ≈ 20.

• a smaller time step gives a smaller asymptotic dis-
placement error, asK increases, whatever the fre-
quency range (not shown).
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Case(b): v0 = 1, m = 1, c = 0, cα = 0.5, κ = 1.

Conclusion and Perspectives
With this approach, complex mechanical systems with

fractional damping can be efficiently simulated (in com-
parison to [3]), thanks to an appropriate finite element
space discretization. Evaluation of theµk, which is a key-
point of the method, must be further investigated follow-
ing the optimal approach.

Only 0 < α < 1 has been considered so far, but
1 < α < 2 can also be tackled throughextendeddiffusive
representations, the closed-form solution being still valid.
Finally, a stability analysis of our coupled scheme has to
be carried out, using energy balances, as in [4, chap. 3].
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Abstract
The dissipative model which describes acoustic waves

traveling in a duct with viscothermal losses at the lat-
eral walls is a wave equation with spatially-varying co-
efficients, which involves fractional-order integrals and
derivatives. We first rewrite this model in a coupled form.
Then the fractional integral is written in its diffusive rep-
resentation; essentially, the fractional-order time kernel in
the integral is represented by its Laplace transform. This
allows for efficient time domain simulation because the
value of integral at each time step can be updated from
the value at the previous time step by operations which
are local in time, contrary to a naive discretization of the
fractional integral. An accurate and efficient quadrature
for the inverse Laplace transform with ana priori error es-
timate is used and it is crucial in keeping the work at each
time step reasonable; essentially, the number of quadra-
ture points in the Laplace domain isO(− log(∆t)). Thus,
if M is the number of time steps, the numerical scheme
we propose requiresO(M log(M)) work andO(log(M))
memory, compared toO(M2) work andO(M) memory
of a naive discretization. The gain in efficiency makes
long time simulations feasible.

1 Model under study
To simplify the presentation, we focus here on the one-

dimensional Webster-Lokshin model of the form

∂2

tw+a(z)∂2−β
t w+b(z)∂tw−

1

r2(z)
∂z(r

2(z)∂zw) = 0,

for t > 0 and z ∈ [0, 1], whereβ ∈ (0, 1), r, a, b ∈

L∞([0, 1]; R+); the radius of the duct satisfiesr ≥ r0 >

0. The Riemann-Liouville fractional integral operator
∂
−β
t is defined by

(∂−β
t f)(t) :=

1

Γ(β)

∫ t

0

f(τ)

(t− τ)1−β
dτ. (1)

Working with (p, v) := (∂tw, −r
2(z) ∂zw) leads to

the first order system:

∂tp = −r−2 ∂zv − b p− a ∂
−β
t (∂tp) , (2)

∂tv = −r2 ∂zp , (3)

which we supplement with the boundary conditions:

p0(t) := p(z = 0, t) = u(t) , (4)

v1(t) := v(z = 1, t) = 0. (5)

We assume that we have zero initial values.

2 Diffusive representation
We recalldiffusive realizations for fractional integrals;

we refer to [6,§ 5] for the treatment ofcompletely mono-
tone kernels, and [4] for links between diffusive represen-
tations and fractional integral and differential operators.

The dynamical system with inputf ∈ L2([0, T ]) and
outputθ[β](f) ∈ L2([0, T ]):

∂tϕ(ξ, t) = −ξϕ(ξ, t) + f(t), ∀ξ ∈ R
+, (6)

θ[β](f)(t) =
1

Γ(β)Γ(1 − β)

∫ ∞

0

ϕ(ξ, t) ξ−β dξ, (7)

givenϕ(ξ, 0) = 0, provides a diffusive realization of the
fractional integral∂−β

t : in the other words, it realizes the
input-output relationθ[β](f) = ∂

−β
t f . This can be seen

from the relation:

1

(t− τ)1−β
=

∫ ∞

0

e−ξ (t−τ)
ξ−β

Γ(1 − β)
dξ, (8)

which in essence states that the convolution kernel in (1)
is the inverse Laplace transform of ξ−β

Γ(β)Γ(1−β)
.

Using (6-7), the global system (2-5) can be put in the
abstract form∂tX + AX = B u, with X =

(

p, v, ϕ
)T

.
We know from [2], [3] that operatorA is maximal mono-
tone on an appropriate functional space; thus, due to the
Hille-Yosida theorem, the original problem is well-posed.

The efficient and accurate computation of (7) depends
on finding a good quadrature for the integral in (8).

3 Optimized weights for diffusive representations
We follow, with slight modifications, the approach of

[1] where the special caseβ = 1

2
was considered. Due

to the fact that asτ approachest, the support ofe−ξ (t−τ)

becomes infinite, we writeθ[β](f)(t) as the sum of a local
(in time) part

θ[β, loc](f)(t) =
1

Γ(β)

∫ t

t−∆t

1

(t− τ)1−β
f(τ) dτ,
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and a historical part

θ[β,hist](f)(t) = G

∫ ∞

0

∫ t−∆t

0

e−ξ(t−τ)ξ−β f(τ) dτ dξ,

whereG = 1

Γ(β)Γ(1−β)
. We use forθ[β, loc](f)(t) the ap-

proximation :

θ[β, loc](f)(t) ≈
1

Γ(β)
f

(

t−
∆t

2

)

∆tβ

β
,

and build a quadrature inξ for

∫ ∞

0

e−ξ (t−τ)ξ−β dξ ≈

M
∑

j=1

e−ξj (t−τ)ξ
−β
j wj ,

which will be accurate for allτ ∈ [0, t− ∆t]. Removing
the integrable singularityξ−β at the origin will make the
computation of the quadrature points simpler, so we make

the change of variables,γ = 1

1−β
, η = ξ

1

γ , to obtain

∫ ∞

0

e−ξ (t−τ)ξ−β dξ =

∫ ∞

0

γ e−(ηγ
(t−τ))dη.

In essence, we will construct a quadrature with an error
tolerance ofǫ:
∣

∣

∣

∣

∣

∣

∫ ∞

0

e−(ηγ τ)dη −

L∆t,ǫ
∑

j=1

e−[(η
∆t,ǫ
j

)
γ τ ] ω

∆t,ǫ
j ,

∣

∣

∣

∣

∣

∣

≤ ǫ,

valid for all τ ∈ [∆t, tf ], where we have used the super-
scripts∆t andǫ to indicate that the position, weight, and
the number of quadrature nodes are dependent on those
quantities.

First, we reduce the domain of integration to a finite
interval. ¿From the relation

∫ ∞

ηf

e−ηγ τdη ≤
e−(ηf

γ
∆t)Γ( 1

γ
)

γ ∆t
(
1

γ
)

,

we find that choosingηf =

(

− log
γ ǫ/3 ∆tl

Γ(l)

∆t

)l

, l = 1

γ
,

ensures that
∣

∣

∣

∣

∫ ∞

0

e−ηγ τdη −

∫ ηf

0

e−ηγ τdη

∣

∣

∣

∣

≤
ǫ

3
.

The parameterτ varies from∆t to tf and we need to
construct a single quadrature which accurately approxi-
mates the integral for this one-parameter family of in-
tegrands. Over any fixed subinterval in[a, b], the inte-
grande−ηγ τ varies from identically1 to identically0. A

quadrature must approximate accurately this range of be-
havior. It is not difficult to see that the region of the most
rapid range in the integrande−ηγ τ occurs at the inflection

point,ηi =
(

γ−1

γ τ

)
1

γ
.

To capture the clustering of support of the integrands
towardη = 0 asτ becomes larger, we follow the devel-
opment in [1] and use Gauss-Legendre quadrature points
on dyadic intervals.

On a dyadic interval[a, b], we choose the smallest order
Gauss-Legendre quadrature which accurately computes
to a tolerance ǫ

3(b−a)
:

∣

∣

∣

∣

∣

∣

∫ b

a

e−ηγ τdη −

La
∑

j=1

e−(ηa
j )

γ τ ωa
j ,

∣

∣

∣

∣

∣

∣

≤
ǫ

3(b− a)
, (9)

for τ ∈ [τmin, τmax], whereτmin andτmax are chosen by
solving the following equations

e−aγ τmax = q,

e−bγ τmin = 1 − q.

The numberq is a small factor to indicate that the sup-
port of τ > τmax is mostly outside of[a, b] and that for
τ < τmin the integrand is almost identically 1. Hence, the
only relevantτ for which the tolerance in (9) needs to be
tested is betweenτmin andτmax. The number of quadra-
ture points needed on[a, b] are determined numerically
by testing (9) for a range of values ofτ in [τmin, τmax].

If a tf is chosen, then we solve for the largestamin of
the formamin = 2jmin satisfying

e−a
γ
min tf ≤ q,

i.e.,e−ηγ tf is negligible outside of[0, amin] and we treat
the interval[0, amin] like explained for the interval[a, b],
by numerically sastifying (9). But the numberτmax is
now simplytf . Clearly, if amin ≤ ǫ

3
this interval can be

neglected. Thus, iftf = ∞ is chosen, the smallest dyadic
interval to be treated is[2jmin , 2jmin+1] wherejmin is the
largest integer satisfying2jmin < ǫ

3
.

ǫ = 10−1 ǫ = 10−2 ǫ = 10−3

∆t = 10−1 9 (13) 12 (22) 22 (54)
∆t = 10−2 16 (18) 28 (48) 28 (60)

Table 1: Number of quadrature nodesL∆t,ǫ for β = 1

2
,

tf = 10 (tf = ∞).

The number of required quadrature nodesL∆t,ǫ for a
given∆t andǫ isO(− log ∆t,− log ǫ). In Table 1 above,
L∆t,ǫ for β = 1

2
, tf = 10 andtf = ∞ are given.
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4 Numerical scheme and validation
Let ∆t andh = 1/N be, respectively, the time and

spatial step sizes,N is the number of discretization points
of [0, 1]. We setzi = ih, zi+ 1

2

= (i+ 1

2
)h and denote

pn
i ≈ p(ih, n∆t); v

n+
1

2

i+ 1

2

≈ v((i + 1

2
)h, (n + 1

2
)∆t).

Then a second order centered explicit scheme associated
with (2-3) can be written as

pn+1

i − pn
i

∆t
= −

1

r2(zi)

v
n+

1

2

i+ 1

2

− v
n+

1

2

i− 1

2

h

− b(zi)
pn+1

i + pn
i

2
− a(zi) θ̃

n+1/2

i ,

(10)

for n > 0 and0 < i ≤ N and

v
n+

1

2

i+ 1

2

− v
n− 1

2

i+ 1

2

∆t
= −r2(zi+ 1

2

)
pn

i+1
− pn

i

h
, (11)

where θ̃
n+1/2

i in (10) denotes an approximation of
θ[β](∂tp)((n + 1

2
)∆t)). Based on the splitting ofθ[β](f)

in local and historical parts, we computeθ̃n+1/2

i as

θ̃
n+1/2

i =
∆tβ

Γ(β)β 2∆t
(pn+1

i − pn−1

i )+
L∆t,ǫ
∑

j=1

ωj(ϕ
n
i,j+ϕ

n−1

i,j )/2

where (ξj , ωj)j=1,··· ,L∆t,ǫ is the quadrature associated
with β and a given toleranceǫ as derived in the previous
section, and

ϕn
i,j = e−ξj∆tϕn−1

i,j + e−ξj∆t/2(pn
i − pn−1

i ), (12)

is the centered approximation associated with

∂t(e
ξtϕ) = eξt∂tp.

Unfortunately, the stability analysis derived in [3, chap.3]
does not apply any more to this scheme due to the shift
introduced in the evaluation of̃θn+1/2

i . Numerical exper-
iments suggest, however, that the CFL is the same as for
the scheme without dissipative terms. The proof of this
result using Fourier analysis is under investigation.

We conclude this short presentation with a numerical
validation in the case of theLokshin model, i.e., when
r(z) = r0 andb = (a/2)2. In this case, a closed-form
solution is available in both time and frequency domains,
see [5]: the outputp(z = 1, t) = h⋆u can be decomposed
into wavetrains, due to the fact that

h(t) =

∞
∑

k=0

(−1)k ψ(2k+1)a(t− (2k + 1)) ,

whereψa(t) = a
2
√

π t3/2
exp(−a2

4t
) for t > 0. The follow-

ing numerical example corresponds toa = 0.4, β = 1/2
andr = 1. The incident field is a Gaussian pulse.
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Abstract
We present a new finite volume scheme for solving the

two dimensional Maxwell equations. It is a generaliza-
tion of the so-called covolume method ([4],[6]) to non-
orthogonal, non-conforming meshes. It is also an exten-
tion of recent ideas developed in [1], [2], [3].
For an arbitrary mesh, the scheme preserves Gauss’ law
and a discrete energy and is stable under a CFL-like
condition. In the case of regular cartesian grids, it de-
generates into two Yee schemes [5]. Numerical tests
show a second order convergence even on non conform-
ing meshes and that the non conformity does not add par-
asitic reflections.

Discretization of Maxwell’s system
For an arbitrary mesh that we callprimal mesh, we

associate with each primal cellPp a primal pointξp (the
centroid is a qualified candidate). By joining these points
we obtain a second mesh calleddual mesh. With each
vertexxd of a primal cell is associated a dual cellΠd . A
third mesh calleddiamond meshis constructed by join-
ing the points associated to two neighbor primal cells to
the vertices of the side that they share.
For a sideFf of a primal cellPp, we notenfp the unit
outward normal vector andtfp the unit counterclockwise
tangent vector. For a sideΦf of a dual cellΠd, we note
νfd the unit outward normal vector andτfd the unit coun-
terclockwise tangent vector.

ξ

Ff

φf

Pp

τ

ν

tfp

nfp

fd

fd

x

π

p

d

d

Primal mesh Dual mesh

ξ p1

ξ p2

Df

f

fν 

Ff

φf

x
d1

x
d2

t
n f

θ f

Figure 1: A diamond cell

Maxwell’s equations are discretized such that magnetic
field unknowns are located on the primal and dual cells;
electric field unknowns are located on the diamond cells.
And with a Leap-frog scheme for the time discretization,
we get the following discrete Maxwell system:

Bn+1

p = Bn
p −

∆t

|Pp|

∑

Ff∈Pp

|Ff |E
n+1/2

f · tfp

Bn+1

d = Bn
d −

∆t

|Πd|

∑

Φf∈Πd

|Φf |E
n+1/2

f · τ fd

E
n+1/2

f = E
n−1/2

f −
∆t

ǫ0

Jn
f

+
c2∆t

2|Df |

(

[Bn(xd2
) − Bn(xd1

)] |Φf |τ f

+[Bn(ξp2
) − Bn(ξp1

)] |Ff |tf

)

In the case of regular cartesian grids, this system degen-
erates into two independent subsystems corresponding to
two Yee schemes, one on the primal mesh, the other on
the dual.

Properties of the scheme
Divergence preservation

The Discrete Gauss law, given below, is preserved for
an adequate discretization ofρ andJ and if it is satisfied
by initial conditions .

1

|Pp|

∑

Ff∈Pp
|Ff | Ef · nfp =

ρ
n+1/2

p

ǫ0

1

|Πd|

(

∑

Φf∈Πd
|Φf | Ef · νfd+

1

2

∑

Ff∈Πd∩∂Ω
|Ff | Ef · nf

)

=
ρ

n+1/2

d

ǫ0
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Remark: Πd ∩ ∂Ω is not empty only for boundary dual
cells.

Discrete electromagnetic energy conservation

The following discrete energy is conserved :

En(tn) =
ǫc2

4

(

∑

p

|Pp|B
n
p Bn+1

p +
∑

d

|Πd|B
n
d Bn+1

d

)

+
ǫ

2

∑

f

|Df |
∣

∣

∣
E

n+1/2

f

∣

∣

∣

2

.

Stability

The scheme is stable under this CFL-like condition:

c∆t < min































minp max









minFf∈Pp\∂Ω

√

2|Φf ||Pp| sin θf

Np|Ff |(1+| cos θf |)

minFf∈Pp\∂Ω

√

2|Φf ||Pp| sin θf

(1+| cos θf |)|∂Pp|

mind max











minΦf∈Πd

√

2|Ff ||Πd| sin θf

N ′

d
|Φf |(1+| cos θf |)

minΦf∈Πd

√

2|Ff ||Πd| sin θf

(1+| cos θf |)|∂Πd|

whereθf is the angle between a primal and a dual side,
Np(N ′

d) the number of inner sides of a primal (dual) cell
and |∂Pp|(|∂Πd|) represents the sum of lengths of inner
sides of the primal (dual) cell.

In the case of regular cartesian grids, we get the same
CFL condition as that of Yee’s method (c∆t

h
≤ 1√

2
).

Numerical results
Radiation from a dipole

We solve Maxwell’s system on the domainΩ =
[−1, 1]2 with metallic boundary conditions,ρ = 0,

J =

(

ω + 4 c2
2r6

0
+ 2 r6 + 4r2

0
r4 − 7 r4

0
r2)

ω(r2

0
− r2)4

)

2 c ǫ0 r2

0
cos(ωt)

(r2

0
− r2 )2

Ξ(r) exp

(

−r2

r2

0
− r2

)(

y

−x

)

such that,
r =

√

x2 + y2, r0 = 1

4
,

Ξ(r) = 1 if r < r0 and Ξ(r) = 0 if r ≥ r0;

and the following initial conditions( with m=1 ):

B(0) = cos(πmx) cos(πmy)

+
4 c r2

0
( r4

0
− r2 r2

0
− r4 )

ω (r2

0
− r2 )4

Ξ(r) exp[
−r2

r2

0
− r2

]

E(0) = 0 .

These functions have strong peaks in the neighborhood of
the origin. The tests were performed on non conforming
meshes having a refinement ratio of 4. An example of
such meshes is given by figure 2. The choice of the ratio
is due to a previous numerical study which showed that it
is the best for this example.

Figure 2: A locally refined mesh (refinement ratio=4)

Figure 3 displays the relativeL2 norm of the electric
field error given by

e(E) =

√

√

√

√

∫

10T

9T
|E − ΠE|2L2

∫

10T

9T
|ΠE|2L2

,

whereΠE is a suitable projection of the exact electric
field on the diamond mesh. The figure shows a second
order convergence. We get also similar results for the
magnetic field error.

Incoming wave
Let Ω = [ − 1, 1 ]2, ρ = 0, J = 0. We consider

a vanishing initial conditions and the following boundary
conditions:

E · τ − cB = 2 sin(ωt +
ω

c
) , on the left side

E · τ − cB = 0 , on the right side

E · τ = 0 , on the other sides

We let the wave enter during only one period and we ob-
serve the magnetic field intensity on a vertex of a carte-
sian mesh with respect to time. Then we refine locally
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Figure 3: RelativeL2 norm of the electric field error

the mesh like in figure 2 and repeat the test with the same
point. Figure 4 shows that, practically, local refinement

B(t)  on one vertex of 
the conforming mesh

1 2 3 4 5 6

0
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 3e−9
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non−conforming mesh
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−1e−9
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 2e−9

 1e−9

Time periods

Figure 4: comparison of parasitic reflexions

does not amplify parasitic reflexions.
We repeated the test on different points and meshes, and
we get similar results.

Remark
In this paper we considered Maxwell’s equations in the

vacuum. For benchmarks dealing with inhomogeneous
media see [3].
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Abstract

In this paper, we consider the time-dependent
Maxwell’s equations in a bounded domain when disper-
sive media are involved. Crank-Nicolson scheme is de-
veloped to approximate the electric field equation by Ned-
elec edge elements and is proved to be optimal convergent
in energy norm. The analysis is carried out for Debye
medium, but the same results hold true for other disper-
sive media such as plasma and Lorentz medium. Further-
more, our analysis extends straightforward to cases when
a dispersive medium and the standard simple medium are
coupled.

Introduction

Dispersive electromagnetic media are ubiquitous, ex-
amples are human tissue, water, soil, snow, ice, plasma,
optical fibers and radar-absorbing materials. Hence the
study of electromagnetic wave interacting with dispersive
media is a very important topic. Starting early 1990’s,
there is a growing interest in modeling of Maxwell’s
equations when dispersive media are involved (see [1,
Ch.8] and [2, Ch.9] and references therein). However,
most publications are exclusively restricted to the finite-
difference time-domain (FDTD) methods due to its much
simpler implementation compared to the finite element
methods (FEM). In 2001, Jiao and Jin [3] initiated the
application of time-domain finite element methods (TD-
FEM) for dispersive media. To our knowledge, there ex-
ists little theoretical analysis of TDFEM for Maxwell’s
equations in dispersive media except our initial effort
in this direction [4], [5], where only first-order in time
scheme was discussed. In this paper, we shall continue
our initial effort and extend our analysis to the 2nd-order
in time scheme (i.e., the Crank-Nicolson scheme). Opti-
mal error estimates are proved for pure dispersive media
and cases when dispersive media and the standard simple
medium are coupled.

The governing equations
From [5], we can write out the governing equations for

the single pole Debye model as follows:

ǫ0ǫ∞Ett + ∇× (µ−1

0
∇× E) +

(ǫs − ǫ∞)ǫ0

t0
Et

−
(ǫs − ǫ∞)ǫ0

t2
0

E − J(E) = 0, (1)

where we denoteǫ∞ the permittivity at infinite frequency,
ǫs the permittivity at DC,t0 the relaxation time,E the
electrical field, and the polarization current

J(E) =
(ǫs − ǫ∞)ǫ0

t3
0

∫ t

0

e
− t−s

t0 E(x, s)ds. (2)

We assume the modeling domain isΩ × (0, T ), where
Ω is a bounded Lipschitz polyhedral domain inR3 with
connected boundary∂Ω. For simplicity, we assume that
our model (1) satisfies a perfect conducting boundary
condition

n× E = 0 on ∂Ω × (0, T ), (3)

and the initial conditions

E(x, 0) = E0(x), Et(x, 0) = E1(x) x ∈ Ω, (4)

whereE0 andE1 are given functions.

A fully discrete finite element scheme
To design our finite element methods (FEM), we parti-

tion Ω by a family of regular tetrahedra meshesT h with
maximum mesh sizeh. We like to remark that the re-
sults can extend to cubic elements without any difficult.
Considering the usual low regularity of Maxwell’s equa-
tions [6], we only employ the lowest order Nédélec edge
element [7]: for anyK ∈ T h,

Vh = {vh ∈ H(curl; Ω) | vh|K = aK + bK × x},

V 0

h = {vh ∈ H(curl; Ω),n × vh = 0 on ∂Ω}. (5)

whereaK , bK are constant vectors inR3.

For anyu ∈ Hα(curl; Ω), 1

2
< α ≤ 1, it is well known

[8] that its interpolantΠhu ∈ Vh can be defined on each
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tetrahedronK ∈ T h by the degrees of freedom
∫

e
u · τ̂

on each edgee of K, whereτ̂ is the unit vector along the
edgee. Furthermore, for any1

2
< α ≤ 1, we have [8,

(5.42)]:

||u−Πhu||0+||∇×(u−Πhu)||0 ≤ Chα||u||
α,curl. (6)

Denoting by Phu ∈ V h the standard(L2(Ω))3-
projection, we have

||u − Phu||0 ≤ Chα||u||α ∀u ∈ Hα(Ω). (7)

To define our fully discrete scheme, we divide the time
interval(0, T ) into M uniform subintervals by points0 =
t0 < t1 < · · · < tM = T, wheretk = kτ, and denote
thek-th subinterval byIk = (tk−1, tk+1]. Moreover, we
defineuk = u(·, kτ) for 0 ≤ k ≤ M, and denote finite
difference operators:

∂τuk =
uk − uk−1

τ
, ∂2

τ uk =
∂τu

k − ∂τu
k−1

τ
,

δ2τuk =
uk+1 − uk−1

2τ
, uk =

1

2
(uk+1 + uk−1).

Now we can formulate our fully discrete finite element
scheme for the electric field equation (1) as follows:

E0

h = PhE0, E1

h = E0

h + τPhEt(0) +
τ2

2
PhEtt(0),

(8)
and fork = 1, 2, · · · ,M − 1, find Ek

h ∈ V 0

h such that

ǫ0ǫ∞(∂2

τ Ek
h,v) + µ−1

0
(∇× Ek

h,∇× v)

+
(ǫs − ǫ∞)ǫ0

t0
(δ2τEk

h,v) −
(ǫs − ǫ∞)ǫ0

t2
0

(Ek
h,v)

−(J
k

h,v) = 0 ∀v ∈ V 0

h, (9)

where for any1 ≤ k ≤ M,

J
0

h = 0, J
k

h =
1

2
(1 + e−τ/t0)Jk−1

h

+
(ǫs − ǫ∞)ǫ0

t3
0

·
τ

2
·
1

2
(e−τ/t0Ek−1

h + Ek
h), (10)

and

J0

h = 0, Jk
h = e−τ/t0Jk−1

h

+
(ǫs − ǫ∞)ǫ0

t3
0

·
τ

2
(e−τ/t0Ek−1

h + Ek
h). (11)

Here we denoteEk
h the finite element solution ofE at

time t = tk.

The main results
It is easy to see that (9) has a unique solution for any

τ ≤ t0 by Lax-Milgram lemma.
To prove our main results, we need the following lem-

mas, whose proofs will be provided in our full paper.

Lemma 0.1

(i) ‖∂τuk‖2

0 ≤
1

τ

∫ tk

tk−1

‖ut(t)‖
2

0dt,

(ii) ‖uk −
1

2τ

∫ tk+1

tk−1

u(t)dt‖2

0 ≤ 2τ3

∫ tk+1

tk−1

‖utt(t)‖
2

0dt,

(iii) ‖δ2τ uk
t − ∂2

τ uk‖2

0
≤ 2τ3

∫ tk+1

tk−1

‖ut4(t)‖
2

0
dt.

Lemma 0.2 LetJk ≡ J(E(·, tk)) andJ
k

h be defined by
(2) and (10), respectively. Then for any1 ≤ k ≤ M, we
have

|J
k

h − Jk|2 ≤ C[τ
k

∑

l=0

|El
h − El|2 +

τ4

∫ tk

0

(|E(t)|2 + |
∂E

∂t
(t)|2 + |

∂2E

∂t2
(t)|2)dt].

Our main result is the following optimal error estimate
in the energy norm:

Theorem 0.1 LetE andEn
h be the solutions of the elec-

tric field equation (1) and the finite element scheme (9) at
timet andtn respectively. Furthermore, we assume that

E,Et ∈ L∞(0, T ;Hα(curl; Ω)),Et2 ∈ L∞(0, T ;L2(Ω))

Et4 ,∇×∇× Ett ∈ L2(0, T ;L2(Ω)),

Then for anyτ < t0/4, there exists a constantC =
C(T, ǫ0, ǫ∞, µ0, t0,E), independent of both the time step
τ and mesh sizeh, such that

max1≤n≤M(‖∂τ En
h−En

t ‖0+‖En
h−En‖

0,curl) ≤ C(τ2+hα),

Conclusions
In this paper, we develop the Crank-Nicolson scheme

for solving the vector wave equation for a single pole De-
bye model. Optimal error estimates are proved. Simi-
lar results hold true for other dispersive media such as
plasma and Lorentz model, and cases with coupled dis-
persive medium and a standard simple medium (such as
air). Details will be provided in our forthcoming paper in
this conference proceeding.

536



References
[1] K. Kunz and R.J. Luebbers, The Finite-Difference

Time-Domain Method for Electromagnetics, CRC
Press, Boca Raton, FL, 1993.

[2] A. Taflove and C. Hagness, Computational Elec-
trodynamics: the Finite-Difference Time-Domain
Method, 2nd ed., Artech House, Norwood, MA,
2000.

[3] D. Jiao and J.-M. Jin, Time-domain finite-element
modeling of dispersive media, IEEE Microwave and
Wireless Components Letters, vol. 11, pp. 220-223,
2001.

[4] J. Li and Y. Chen, Analysis of a time-domain finite
element method for 3-D Maxwell’s equations in dis-
persive media, Comput. Methods Appl. Mech. En-
grg., vol. 195, pp. 4220-4229, 2006.

[5] J. Li, Error analysis of fully discrete mixed finite el-
ement schemes for 3-D Maxwell’s equations in dis-
persive media, Comput. Methods Appl. Mech. En-
grg. (in press).

[6] C. Amrouche, C. Bernardi, M. Dauge and V. Girault,
Vector potentials in three-dimensional non-smooth
domains, Math. Methods Appl. Sci. 21 (1998), 823-
864.
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Abstract

In this paper, we develop a fully-discrete mixed finite
element methods for modeling wave propagation in three-
dimensional negative-index materials (NIMs). The NIMs
model is formed as a time-dependent system involving
four dependent vector variables: the electric and mag-
netic fields, and the induced electric and magnetic cur-
rents. Optimal error estimates for all four variables are
proved for Nédélec tetrahedral elements.

Introduction

In 1968, Veselago postulated the existence of electro-
magnetic material in which both permittivity and perme-
ability were negative real values, which result the negative
refractive index. Until 2000, such materials were realized
in practice by arranging periodic arrays of small metallic
wires and split-ring resonators [1], [2]. These artificially
structured periodic media have some exotic electromag-
netic properties, which open potential applications in di-
verse areas such as interconnects for wireless telecommu-
nications, radar and defense, nanolithography and medi-
cal imaging at subwavelength resolution et al. For more
details, readers can consult the special issues [3], [4], [5]
and references therein.

In the past several years, some numerical simulations
have been performed for negative-index materials (NIMs,
which have both negative permittivity and negative per-
meability) by finite element methods [6], [7]. Such
simulation requires the ’ab-initio’ numerical solution of
Maxwell’s equations in the time domain. In this paper we
will continue our initial investigation on NIMs [8], where
we developed time-domain finite element (TDFE) meth-
ods for solving Maxwell’s equations involving NIMs.
Here we will develop a fully-discrete scheme for solv-
ing all four physical variables: the electric and magnetic
fields, and the induced electric and magnetic currents.
Optimal error estimates are proved for Nédélec tetrahe-
dral elements.

The governing equations

NIMs can be simulated using lossy Drude polarization
and magnetization models [9]. The governing equations

for modeling wave propagation in NIMs are [8]:

ǫ0

∂E

∂t
= ∇×H − J , (1)

µ0

∂H

∂t
= −∇×E −K, (2)

1

ǫ0ω2
pe

∂J

∂t
+

Γe

ǫ0ω2
pe

J = E, (3)

1

µ0ω2
pm

∂K

∂t
+

Γm

µ0ω2
pm

K = H , (4)

where ǫ0 is the vacuum permittivity,µ0 is the vacuum
permeability, ωpe and ωpm are the electric and mag-
netic plasma frequencies respectively,Γe andΓm are the
electric and magnetic damping frequencies respectively,
E(x, t) andH(x, t) are the electric and magnetic fields
respectively, andJ(x, t) andK(x, t) are the induced
electric and magnetic currents respectively. The complex
materials make solving the NIMs model more challeng-
ing, since the governing equations can not be reduced to
a simple vector wave equation as in vacuum.

For simplicity, we assume that the modeling domain
beΩ×(0, T ), whereΩ is a bounded Lipschitz polyhedral
domain inR3 with connected boundary∂Ω. Furthermore,
we assume that the boundary ofΩ is perfect conducting
so that

n×E = 0 on ∂Ω, (5)

wheren is the unit outward normal to∂Ω. Also we as-
sume that the initial conditions are

E(x, 0) = E0(x), H(x, 0) = H0(x),

J(x, 0) = J0(x), K(x, 0) = K0(x).

A time-domain finite element scheme
To design our mixed finite element method, we parti-

tion Ω by a family of regular tetrahedral meshesT h with
maxmium mesh sizeh. Considering the usual low regu-
larity of Maxwell’s equations [10], [11], we only employ
the lowest order Raviart-Thomas-Nédélec’s mixed spaces
[12]: for anyK ∈ T h,

Uh = {uh ∈ H(div; Ω) | uh|K = cK + dKx},

V h = {vh ∈ H(curl; Ω) | vh|K = aK + bK × x},
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whereaK , bK , cK are constant vectors inR3, anddK is
a real constant.

For anyu ∈ Hα(curl; Ω), 1

2
< α ≤ 1, it is well known

[12] that its interpolantΠhu ∈ Vh can be defined on each
tetrahedronK ∈ T h by the degrees of freedom

∫

e
u · τ

on each edgee of K, whereτ is the unit vector along the
edgee. Furthermore, we have (see [11] and [13, (5.42)]):
for anyu ∈ Hα(curl; Ω), 1

2
< α ≤ 1,

||u−Πhu||0+||∇×(u−Πhu)||0 ≤ Chα||u||
α,curl. (6)

Denoting by Phu ∈ Uh the standard(L2(Ω))3-
projection, we have

||u− Phu||0 ≤ Chα||u||α ∀u ∈ Hα(Ω). (7)

To define our fully discrete scheme, we divide the time
interval(0, T ) into M uniform subintervals by points0 =
t0 < t1 < · · · < tM = T, wheretk = kτ, and denote
thek-th subinterval byIk = (tk−1, tk+1]. Moreover, we
defineuk = u(·, kτ) for 0 ≤ k ≤ M, and denote finite
difference operators:

δ2τu
k =

uk+1 − uk−1

2τ
, uk =

1

2
(uk+1 + uk−1).

Now we can formulate our fully discrete finite ele-
ment scheme: fork = 1, 2, · · · ,M, find Ek

h,Jk
h ∈

Uh,Hk
h,Kk

h ∈ Vh such that

ǫ0(δ2τE
k
h,φh) − (∇×Hk

h,φh) + (Jk
h,φh) = 0,

µ0(δ2τH
k
h,ψh) + (Ek

h,∇×ψh) + (Kk
h,ψh) = 0,

1

ǫ0ω2
pe

(δ2τJ
k
h, φ̃h) +

Γe

ǫ0ω2
pe

(Jk
h, φ̃h) = (Ek

h, φ̃h),

1

µ0ω2
pm

(δ2τK
k
h, ψ̃h) +

Γm

µ0ω2
pm

(Kk
h, ψ̃h) = (Hk

h, ψ̃h),

for any φh ∈ Uh, ψh ∈ Vh, φ̃h ∈ Uh, ψ̃h ∈ Vh,

subject to the initial conditions

Eh(0) = PhE0, Hh(0) = ΠhH0,

Jh(0) = PhJ0, Kh(0) = ΠhK0.

Letting φ̃h = φh and ψ̃h = ψh in the 3rd and 4th
equations respectively, then solving forJk+1

h andKk+1

h

and substituting the resultants into the 1st and 2nd equa-
tions, we obtain

(
ǫ0

τ
+

ǫ0ω
2
pe

τ−1 + Γe

)(Ek+1

h ,φh) − (∇×Hk+1

h ,φh)

= (f(Ek−1

h ,Hk−1

h ,Jk−1

h ),φh)

(
µ0

τ
+

µ0ω
2
pm

τ−1 + Γm

)(Hk+1

h ,ψh) + (Ek+1

h ,∇×ψh)

= (g(Ek−1

h ,Hk−1

h ,Kk−1

h ),ψh).

Hence the coefficient matrix for the above system with
the vector solution(Ek+1

h ,Hk+1

h )′ can be written as

Q ≡

(

A −B

B′ C

)

,

which is non-singular by noticing that the stiffness ma-

trices A = ( ǫ0
τ

+
ǫ0ω2

pe

τ−1+Γe
)(Uh,Uh) and C = (µ0

τ
+

µ0ω2
pm

τ−1+Γm
)(Vh,Vh) are symmetric positive definite, the

matrix B = (∇ × Vh,Uh), and the determinant ofQ is
det(Q) = det(A)det(C + B′A−1B), which is non-zero.

The main results
Our main result is the following optimal error estimate:

Theorem 0.1 Let (En,Hn) and (En
h,Hn

h) be the ana-
lytic and finite element solutions at timet = tn, respec-
tively. Under the regularity assumption

E,J ∈ L∞(0, T ; (Hα(Ω))3),

H,K,H t,Kt ∈ L∞(0, T ;Hα(curl; Ω)),

Ett,H tt,J tt,Ktt ∈ L2(0, T ; (L2(Ω))3),

∇×Ett,∇×H tt ∈ L2(0, T ; (L2(Ω))3),

where 1

2
< α ≤ 1, there exists a constant

C = C(T, ǫ0, µ0, ωpe, ωpm,Γe,Γm,E,H), independent
of both the time stepτ and the mesh sizeh, such that

max
1≤n≤M

(||En −En
h||0 + ||Hn −Hn

h||0

+||Jn − Jn
h||0 + ||Kn −Kn

h||0) ≤ C(τ2 + hα).

Conclusions
In this paper, we develop a fully-discrete TDFE scheme

for solving Maxwell’s equations when negative-index
materials are involved. Optimal error estimates are
proved. Details will be provided in our forthcoming paper
in this conference proceeding.
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Abstract

The paper investigates the reflection-transmission pro-
cess, generated at the interface between two homoge-
neous half spaces, within the time domain. The governing
equations are those for viscous fluids in the acoustic ap-
proximation. The incident and reflected waves are homo-
geneous and propagate in an inviscid fluid, the transmit-
ted waves are inhomogeneous with frequency-dependent
amplitudes. By means of Fourier analysis, reflected and
transmitted waves are determined, in the time domain, in
two cases: normal incidence on a viscous half-space and
oblique incidence, beyond the critical angle, on an invis-
cid half-space.

Introduction

The aim of this paper is to determine the waves pro-
duced, at the interface between two homogeneous half
spaces, by an oblique incident wave, within the time do-
main. The governing equations are those for viscous flu-
ids in the acoustic approximation.

The subject is of interest in many respects. First, quite
often reflection-transmission (RT) problems are investi-
gated within the frequency domain. For linear problems,
the inverse Fourier transform allows us to obtain the re-
sults in the time domain. While conceptually such is the
case, in practice the inverse Fourier transformation may
be quite involved and this gives reason for the relatively
few results. Secondly, RT problems associated with a vis-
cous half space cannot be solved directly within the time
domain. The analysis within the frequency domain shows
that the reflection and transmission coefficients are in fact
functions of the frequency. While in general the inverse
Fourier transform does not provide a closed-form solu-
tion in the time domain, it is of interest to find closed-
form solutions in particular conditions or approximations.
Thirdly, there is a renewed attention to direct and inverse
problems for wave propagation in dissipative media [1].

Upon a general form of the RT problem, we determine
the reflected and the transmitted waves, in the time do-
main, for normal incidence on a viscous half-space and
oblique incidence, beyond the critical angle, on an invis-
cid half-space.

Model and method
Let Ω ⊆ IR3 be the region occupied by the fluid. Let

x ∈ Ω denote the position vector,u the displacement,v
the velocity,∇ the gradient operator,µ, λ the viscosity
coefficients,D = sym∇v the symmetric part of the ve-
locity gradient. Letρ be the mass density at equilibrium
and% the perturbation mass density,℘ the perturbation
pressure,1 the unit tensor. In the acoustic approximation,
the governing equations are

∂t% + ρ∇ · v = 0,

ρ∂tv = −∇℘ + µ∇ ·D + λ∇(∇ · v).

Let c2 be the derivative of the pressure with respect to the
mass density. The equation of motion becomes

ρ∂2
t u = ρc2∇(∇ · u) + ∂t[(µ + λ)∇(∇ · u) + µ∆u].

Upon Fourier transformation,

ũ(x, ω) =
∫ ∞

−∞
u(x, t) exp(−iωt)dt,

we have

−ρω2ũ = [ρc2 + iω(µ + λ)]∇(∇ · ũ) + iωµ∆ũ.

Wave solutions
Two wave solutions are found, say the transverse and

the longitudinal waves (see [2], [3]). The transverse wave
is characterized by

ũ = τ exp(−iω(ξx + στz)),

τ · ∇ũ = 0, σ2
τ = −i

ρ

ωµ
− ξ2.

The longitudinal wave is characterized by

ũ = l exp(−iω(ξx + σlz)),

l××∇ũ = 0, σ2
l =

1
c2

1
1 + iω(2µ + λ)/ρc2

− ξ2.

Both τ and l are constant vectors parameterized byω.
The complex wave numbersστ , σl are fixed by

<στ ,<σl > 0, sgn=στ , sgn=σl = −sgnω

for forward-propagating waves (and by the opposite sign
for backward propagating waves) in thez-direction.
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Reflection-transmission problem
The interfacez = 0 separates an inviscid fluid (z < 0)

from a viscous fluid (z > 0). An incident, homoge-
neous wave is coming fromz < 0 and produces a re-
flected wave, atz < 0, and a transverse and a longitudinal
wave, atz > 0. Denote by the subscripts, or superscripts,
I, R, T quantities pertaining to the incident, reflected, and
transmitted waves. The solutioñu(x, ω) takes the form

lI exp(−iω(ξIx + σIz)) + lR exp(−iω(ξRx − σRz)),

if z < 0, and

τ exp(−iω(ξτx + στz)) + lT exp(−iω(ξlx + σlz)),

if z > 0. The continuity of traction and velocity at the
interfacez = 0 implies that the valuesξI , ξR, ξτ , ξl coin-
cide; letξ be the common value. HenceσR = σI and

τxξ + τzστ = 0, lT
xσl − lT

z ξ = 0,

which follow from the vanishing ofτ · ∇ũ, l××∇ũ. Also

lI
xσI − lI

zξ = 0, lR
xσI + lR

z ξ = 0.

In addition we have

lI
z + lR

z = τz + lT
z ,

τzστ + lT
xσl + ξ(τz + lT

z ) = 0,

ρ−c2
−(lI

xξ + lI
zσI + lR

xξ − lR
z σI)

= (ρ+c2
+ + iλω)(lT

xξ + lT
z σl) + i2µω(σττz + σll

T
z ),

the subscripts± denoting the limit values asz → 0±.
The RT problem amounts to the determination of the five
unknownsτx, τz, l

T
x , lT

z , lR
z , parameterized bylI

z , ξ, ω. We
find that

lT
z =

2ρ−σlωµ(σ2
τ − ξ2)

−iρ+ρ−σl + iω2µ2σI[(σ2
τ − ξ2)2 + 4σlστξ2]

lI
z,

lR
z =

iρ+ρ−σl + iω2µ2σI[(σ2
τ − ξ2)2 + 4σlστξ2]

iρ+ρ−σl − iω2µ2σI[(σ2
τ − ξ2)2 + 4σlστξ2]

lI
z

τz =
4ρ−σlωµξ2

−iρ+ρ−σl + iω2µ2σI [(σ2
τ − ξ2)2 + 4σlστξ2]

lI
z ,

andlT
x = ξlT

z /σl, τx = −σττz/ξ.
Since ũR(x, ω) = lR(ω) exp[−iω(ξx − σIz)] then

lR(ω) = ũR(0, ω). Hence, by the inverse Fourier trans-
form we have

uR
z (x, t) =

∫ ∞

−∞
f(t, x, z; ω)R(ω)ũI

z(0, ω)dω,

wheref(t, x, z; ω) = exp[iω(t−ξx+σIz)]. ReplacingR
with T andσI with −σT givesuT

z . Two simple cases are
now examined which allow us to obtain definite results in
the time domain.

Normal incidence on a viscous half-space
The relations for normal incidence follow by letting

ξ = 0. First we find thatτ = 0 and hence only longi-
tudinal waves occur. Moreover,lT

x = 0. The relations for
lT
z , lR

z reduce to

lT
z =

2ρ−σlωµσ2
τ

−iρ+ρ−σl + iω2µ2σIσ4
τ

lI
z ,

lR
z =

iρ+ρ−σl + iω2µ2σIσ
4
τ

iρ+ρ−σl − iω2µ2σIσ4
τ

lI
z .

We now investigate the form of the reflection and trans-
mission coefficients

R(ω) =
lR
z

lI
z

(ω), T (ω) =
lT
z

lI
z

(ω).

By replacinglR
z we have

R(ω) =
1 + ω2µ2σIσ

4
τ/ρ−ρ+σl

1 − ω2µ2σIσ4
τ/ρ−ρ+σl

.

Substitution forσ4
τ/σl and some rearrangements yield

R(ω) =
1 − ν2|w|2

1 + 2νwr + ν2|w|2 − 2iν
|wi|sgnω

1 + 2νwr + ν2|w|2 ,

where

w =
1√
2
(
√√

1 + α2 + 1 + i

√√
1 + α2 − 1 sgn ω),

α = κω, κ =
2µ + λ

ρ+c2
+

, ν =
ρ+c+

ρ−c−
,

andwr = <w, wi = =w. The dependence ofR on sgnω
is commented upon in [4], p. 153.

Likewise, by

T (ω) =
2ρ−c−

ρ−c− + ρ+c+w

we obtain

T (ω) =
2(1 + νwr)

(1 + νwr)2 + ν2w2
i

+ 2iν
|wi|sgnω

(1 + νwr)2 + ν2w2
i

.

The dependence ofR and T on ω does not allow
a closed-form solution for the reflected and transmitted
wave in the time domain. Yet, an interesting result fol-
lows if the incident wave allows us to work with band-
limited data. In such a case

R(ω) =
1− ν

1 + ν
+ i

νκ

(1 + ν)2
ω,
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T (ω) =
2

1 + ν
+ i

2νκ

(1 + ν)2
ω.

For normal incidence (ξ = 0), at x = 0, z = 0− we
have

uR
z (0, t) =

1
2π

∫ ∞

−∞
exp(iωt)R(ω)ũI

z(0, ω)dω.

SinceiωũI
z(ω) is the Fourier transform oḟuI

z we obtain

uR
z (0, t) =

1 − ν

1 + ν
uI

z(0, t) +
νκ

(1 + ν)2
u̇I

z(0, t).

Likewise we find that, atz = 0+,

uT
z (0, t) =

2
1 + ν

uI
z(0, t) +

2νκ

(1 + ν)2
u̇I

z(0, t).

The reflected waveuR
z and the transmitted waveuT

z are
linear combinations of the incident waveuI

z and of the
time derivativeu̇I

z .

Oblique incidence on an inviscid half space
In inviscid fluids only longitudinal waves occur and

henceτ = 0. The vectorlT is subject tolT
xσT − ξlT

z = 0,
σT = σl. Upon substitution forlI

x, l
R
x , lT

z and letting
µ, λ = 0, τ = 0 we find that

lI
z + lR

z = lT
z , lI

z − lR
z =

ρ+σI

ρ−σT

lT
z .

Hence we find that the reflection and the transmission co-
efficients,R andT , are given by

R =
ρ−σT − ρ+σI

ρ−σT + ρ+σI

, T =
2ρ−σT

ρ−σT + ρ+σI

.

If σT is real, and positive, thenR andT are constants,
independent ofω, and the passage to the time domain by
the inverse Fourier transform is obvious.

Restrict now attention to the incidence beyond the crit-
ical angle. Lettingc+ > c− we assume thatξ2c2

+ > 1,
which means that the incidence angle is greater than the
critical value. The transmitted wave is evanescent and

σT = −i
√

ξ2 − 1/c2
+ sgnω.

As a consequence,R andT depend onω through the sign.
Letting

ε =
ρ+σI

ρ−|σT |
=

ρ+c+

ρ−c−

√
1− ξ2c2

−
ξ2c2

+ − 1

we find that

R(ω) =
1 − iε sgnω

1 + iε sgnω
, T (ω) =

2
1 + ε2

(1−iε sgnω).

Both R andT are parameterized byξ throughε. By ap-
plying the inverse Fourier transform tõuR

z andũT
z we ob-

tain the reflected wave and the transmitted wave in the
time domain. Substitution ofR, the convolution theorem
and some rearrangements yield

uR
z (x, t) =

1 − ε2

1 + ε2
uI

z(0, t − ξx + σIz)

− 1
π

2ε

1 + ε2

∫ ∞

−∞

1
ζ − (t − ξx + σIz)

uI
z(0, ζ)dζ.

Hence the reflected wave is plane and homogeneous. The
first term is merely proportional touI

z , evaluated at the
retarded timet−ξx+σIz. The second term is the Hilbert
transform ofuI

z at time(t − ξx + σIz).
The transmitted wave is more involved. We find that

uT
z (x, t) = u′

z(x, t) + u′′
z(x, t)

where

u′
z(x, t) =

1
π

2
ε2 + 1

∫ ∞

−∞
G(x, t, ζ)uI

z(0, ζ)dζ,

u′′
z(x, t) =

1
π

2ε

ε2 + 1

∫ ∞

−∞

1
t − ζ

u′
z(x, ζ)dζ

where

G(x, t, ζ) =
|σT |z

|σT |2z2 + (t − ζ − ξx)2
.

The dependence ofG on z shows the spatial decay of the
transmitted wave.

References
[1] F.D. Zaman, K. Masood, Z. Muhiameed, “Inverse

scattering in multilayer inverse problem in the pres-
ence of damping”, Appl. Math. Comp., vol. 176, pp.
455-461, 2006.

[2] N.H. Scott, “Inhomogeneous plane waves in com-
pressible viscous fluids”, Wave Motion, vol. 22, pp.
335-347, 1995.

[3] Ph. Boulanger, “Energy flux for damped inhomoge-
neous plane waves in viscoelastic fluids”, Wave Mo-
tion, vol. 28, pp. 215-225, 1998.

[4] K. Aki, P.G. Richards, Quantitative Seismology,
Freeman, San Francisco, 1980.

543



A UNIFORMLY EXPONENTIALLY STABLE SEMI-DISCRETIZATION
FOR AN ABSTRACT WAVE-TYPE SYSTEM

K. Ramdani†,‡,∗, T. Takahashi†,‡,∗, M. Tucsnak†,‡,∗
†Institut Elie Cartan, University of Nancy 1, Vandoeuvre-les-Nancy, France

‡INRIA Lorraine (Research Project CORIDA), Vandoeuvre-les-Nancy, France.
∗Email: ramdani@loria.fr

Abstract
We propose in this contribution an approximation of

a class of exponentially stable infinite dimensional lin-
ear systems modelling the damped oscillations of vibrat-
ing systems. The systems considered are essentially one-
dimensional, since a spectral gap condition is assumed.
Our abstract main result shows that, by adding a suitable
artificial numerical viscosity term in the scheme, the ap-
proximations obtained are uniformly (with respect to the
mesh size) exponentially stable. This result is applied to
obtain uniformly stable approximations of a non homo-
geneous string equation.

Introduction
Given two Hilbert spacesH andU , we consider the

closed-loop system described by
ẅ(t) +A0w(t) +B0B

∗
0ẇ(t) = 0

w(0) = w0

ẇ(0) = w1

(1)

whereA0 : D(A0) → H is a self-adjoint definite-positive
operator with compact inverse and where the control op-
eratorB0 ∈ L(U,H). The inner product inH is denoted
by 〈·, ·〉 and‖ · ‖ stands for the corresponding norm. As-
sume that the damped system described by (1) is expo-
nentially stable, i.e., there existM, α > 0 such that

E(t) :=
{
||ẇ(t)||2 + ||A

1
2
0w(t)||2

}
≤Me−αt ∀t ≥ 0.

In order to simulate numerically the infinite dimensional
system(A0, B0) described by (1), we need to derive finite
dimensional approximations(A0h, B0h) of it (obtained
for instance by finite element approximations). A natu-
ral question that arises in this context is the following:
are the obtained semi-discretized (in space) systems uni-
formly exponentially stable, or, in other words, does their
energy decrease exponentially whent → ∞, uniformly
with respect to the discretization parameterh? Due to
the appearance during the discretization process of high
frequency spurious modes that are only weakly damped
by the feedback law, the answer to the above question can
be negative (see [1] for more details).

Several remedies have been proposed in the literature
to overcome this difficulty in the context of the control
and stabilization of PDE’s: Tychonoff regularization [2],
mixed finite elements [3], filtering of high frequencies [4]
and numerical viscosity method [5], [6].

In this contribution, we propose a uniformly exponen-
tially stable semi-discretized Galerkin approximation of
(1) in the particular case where the operatorA

1/2
0 has

simple eigenvalues satisfying a gap condition (see equa-
tion (2) in Theorem 1 below). The high frequency spuri-
ous modes are damped using an artificial numerical vis-
cosity term. Let us emphasize that the construction of
uniformly exponentially stable approximations of infinite
dimensional systems is particularly crucial when dealing
with LQR analysis of vibrating systems (cf. [6]). Indeed,
it is one of the main assumptions to ensure the conver-
gence of the discrete Riccatti operators towards the con-
tinuous one.

Remark 1 Because of the gap condition the result of
Theorem 1 essentially concerns one-dimensional prob-
lems. For higher dimensions, only results concerning
specific vibrating systems exist. In particular, we pro-
posed in [7] a uniformly exponentially stable finite dif-
ference semi-discretization for the internal stabilization
of the Bernoulli-Euler plate equation in a square.

Statement of the main result
Assume that(Vh)h>0 is a sequence of finite dimen-

sional subspaces ofD
(
A

1/2
0

)
, with dim(Vh) = N(h).

The inner product inVh is the restriction of the inner
product〈·, ·〉 onH. We define the linear selfadjoint and
positive-definite operatorA0h ∈ L(Vh) by

〈A0hϕh, ψh〉 = 〈A1/2
0 ϕh, A

1/2
0 ψh〉 ∀ϕh, ψh ∈ Vh.

We also consider a sequence of subspaces(Uh) of U and
we define the approximate operatorsB0h ∈ L(Uh, Vh) by

B0huh = π̃hB0uh ∀uh ∈ Uh,

whereπ̃h is the orthogonal projection ofH ontoVh.
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We also suppose that the family of spaces(Vh) (re-

spectively(Uh)) approximates the spaceD
(
A

1/2
0

)
(re-

spectivelyU ). More precisely, ifπh denotes the orthog-

onal projection ofD
(
A

1/2
0

)
onto Vh, we suppose that

there existθ > 0, h∗ > 0 andC0 > 0 such that, for all
h ∈ (0, h∗), we have:

‖A1/2
0 (πhϕ− ϕ) ‖ ≤ C0 h

θ‖A0ϕ‖, ∀ϕ ∈ D(A0),

‖πhϕ− ϕ‖ ≤ C0 h
2θ‖A0ϕ‖, ∀ϕ ∈ D(A0),

Moroever, ifρh denotes the orthogonal projection ofU
ontoUh, we assume that

lim
h→0

ρhu = u in U ∀u ∈ U,

‖ρhB
∗
0ϕ−B∗

0ϕ‖U ≤ C0 h
2θ‖A0ϕ‖ ∀ϕ ∈ D(A0).

The above assumptions are in particular satisfied when
using classical finite elements for the approximation of
PDE’s.

Theorem 1 Suppose that the above assumptions are sat-
isfied. Moreover, assume that

1. A1/2
0 has simple eigenvalues

0 < λ1 < . . . < λm < . . .

and there exists a constantγ0 > 0 such that

λm+1 − λm ≥ γ0 ∀m ∈ N∗. (2)

2. There exists a constantβ0 > 0 such that

‖B∗
0ϕ‖U ≥ β0 (3)

for all normalized (inH) eigenvectorϕ ofA1/2
0 .

Then the family of systems
ẅh +A0hwh +B0hB

∗
0hẇh + hθA0hẇh = 0

wh(0) = w0h ∈ Vh

ẇh(0) = w1h ∈ Vh

is uniformly exponentially stable, in the sense that there
exist constantsM∗, α∗, h∗ > 0 (independent ofh, w0h

andw1h) such that for allh ∈ (0, h∗) and all t ≥ 0:

Eh(t) := ‖ẇh(t)‖2 +
∥∥∥A1/2

0h wh(t)
∥∥∥2
≤M∗e−α∗tEh(0).

Sketch of proof
The first step is to rewrite the semi-discretized system

(1) as a first order system on the spaceXh = Vh × Vh:
żh(t) = Ahzh(t)

zh(0) =
[
w0h

w1h

]
.

(4)

Next, we use the following characterization of uniform
stability result given in [8, p. 162].

Theorem 2 Let (Th) be a family of contraction semi-
groups on a Hilbert spaceXh and let (Ah) be the cor-
responding infinitesimal generators. The family(Th) is
uniformly exponentially stable if and only if the two fol-
lowing conditions are satisfied:
i) For all h ∈ (0, h∗), we haveiR ⊂ ρ(Ah), whereρ(Ah)
denotes the resolvent set ofAh.
ii) sup

h∈(0,h∗),ω∈R
‖(iω −Ah)−1‖L(Xh) < +∞.

Conditioni) in the above Theorem can be easily checked
for system (4). To prove conditionii), we use a contra-
diction argument. Let then(hn), (ωn), and(zn) be three
sequences satisfying

‖zn‖ = 1 ∀n ∈ N, (5)

and
‖iωnzn −Ahnzn‖ → 0. (6)

The main idea is then to decomposezn into a low fre-
quency wavepacket and a high frequency one. Given two
fixed constantsε > 0 andh∗ > 0, the sets of low and
high frequencies respectively denotedFL(h) andFH(h)
are defined for all0 < h < h∗as follows:

FL(h) = {1 ≤ m ≤ N(h) | hθλ2
m ≤ ε},

FH(h) = {1 ≤ m ≤ N(h) | hθλ2
m > ε}.

With this definition, we show that the low frequency
eigenelements of the discretized system are “close” to
those of the continuous one. In particular, we prove
that the gap condition (2) and the observability condi-
tion (3) which are the main assumptions in Theorem 1
still hold for the approximate problemuniformly for all
0 < h < h∗ (providedε is chosen small enough). There-
fore, the low frequency part of(zn) is damped to zero by
the feedback control law. On the other hand, we prove us-
ing (6) that the artificial numerical viscosity term added in
the scheme damps the high frequency part of(zn). Thus,
(zn) converges to zero, and this contradicts (5).
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Application : stabilization of a non homogeneous
string

The vibrations of an elastic string of length 1 under
a feedback damping supported in a subinterval[a, b] of
[0, 1] is described by the following system:

∂2w

∂t2
− ∂

∂x

[
p(x)

∂w

∂x

]
+ χ[a,b]

∂w

∂t
= 0

w(0, t) = w(1, t) = 0 ∀t ≥ 0
w(x, 0) = w0(x) ∀x ∈ (0, 1)
∂w

∂t
(x, 0) = w1(x) ∀x ∈ (0, 1),

whereχ[a,b] is the characteristic function of[a, b] and
where the function describing the heterogeneity of the
string p ∈ C1([0, 1]) is supposed to satisfyp(x) > 0
for all x ∈ [0, 1]. One can check that the above system
can be written in the abstract form (1), and that the cor-
responding operatorsA0 andB0 satisfy the assumptions
(2) and (3) of our main result. Consequently, Theorem 1
implies (when using aP1 finite element approximation)
that the solutionswh of

〈ẅh, ϕh〉+
〈
p(x)

∂wh

∂x
,
dϕh

dx

〉
+

∫ b

a
ẇhϕhdx

+h
〈
p(x)

∂ẇh

∂x
,
dϕh

dx

〉
= 0, ∀ϕh ∈ Vh,

wh(x, 0) = w0h(x) ∀x ∈ (0, 1)
∂wh

∂t
(x, 0) = w1h(x) ∀x ∈ (0, 1)

are uniformly exponentially stable.
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Abstract
Two methods are investigated for the time-domain si-

mulation of functions and dynamical systems of Bessel
type, involved in wave propagation (seee.g. [1], [8], [2]).
Both are based on complex analysis and lead to finite-
dimensional approximations. The first method relies on
optimized parametric contours and provides asymptotic
convergence rates. The second is based on cuts and in-
tegral representations, whose approximations prove effi-
cient, even at low orders, using ad hoc frequency criteria.

1 Model under study
For ℜe(s) > −ε, let ̂Jε(s) = [(s + ε)2 + 1]−1/2 be

the Laplace transform ofJε(t) = e−εt J0(t) for t ≥ 0
(cf. [3]). The general formula can be derived:

Jε(t) =
1

2ι̇π

∫

R

eγ(u) t
̂Jε

ε
(γ(u)) γ′(u) du, (1)

where theC1 parametrizationu 7→ γ(u) defines a curveC
which encloses all the singularities of̂Jε: poles, branch-
ing points and cuts. In the caseγ(u) = σ + 2ι̇πu for
σ>0, we recover the standard Bromwich formula.

2 Optimized parametrized Bromwich contours
In this section, we approximateJε(t) on an interval

[t0, t1] following Talbot’s approach, [11]. More precisely,
we use two parametrized Bromwich contours proposed
in [12], either the parabolaγ(u) = µ(ι̇u + 1)2 + β, or
the hyperbolaγ(u) = µ(1 + sin(ι̇u − α)) + β where
u ∈] − ∞,∞[, µ > 0 regulates the width of the con-
tours,β determines their foci, andα defines the hyper-
bola’s asymptotic angle. The motivation for these choices
is their simplicity and suitability for a trapezoidal ap-
proximation of (1) by:

Jε
h,N (t) =

h

2ι̇π

N
∑

n=−N

eγ(nh)t
̂Jε(γ(nh)) γ′(nh). (2)

Indeed, one can assess the discretization errors by classi-
cal techniques (see [7], [10,§ 3.2]) to obtain, for allt ≥ 0,

|Jε(t)−Jε
h,∞(t)|≤E−

d (t)+E+

d (t) with E±
d =

M±(t)

e2πc±/h− 1
,

Re s

Im
 s

(b) Hyperbola

 

 

δ

α

−ε+i

−ε−i

contour
nodes in Re(z)≤0
nodes in Re(z)>0
branch cut
singularity

Re s

Im
 s

(a) Parabola

i

−i

Figure 1: Parametrized Bromwich contours. (a) left:
parabolas; (b) right: hyperbola.

owing to the holomorphic extension of the integrand in
(1) to U ={u∈C : −c−<ℑ(u)<c+} (see [12, Th. 2.1]).
For a given (t0, t1, N), the parametersµ, h and a
range ]α−, α+[ for α are derived in [12,§ 3, 4] by
asymptotically balancing the discretization errorsE±

d ,
and the truncation errorEt which is assumed to be-
have like the magnitude of the last term in (2), that
is, O(|heγ(Nh)t

̂Jε(γ(Nh))γ′(Nh)|). Parameterβ is as-
sumed to have a small real part.

2.1 An optimized parabolic contour
One way to simulate the Bessel functionJε is to con-

sider it as theconvolution of the two functionsjε
±(t) =

L−1[1/
√

s + ε ∓ ι̇] = (πt)−1/2e(±ι̇−ε)t. The function
jε
+ can be represented using a parabolic contour adapted

to the cutι̇ − ε + R
− (jε

− is straightforwardly inferred
by hermitian symmetry, see Fig. 1a). However, two prob-
lems arise: first, the theoreticalL∞-error (see [12,§4])

EN , sup
t∈[t0,t1]

|jε
±(t)−jε

±,h,N | = O(e−2πN/
√

8Λ+1), (3)

whereΛ = t1/t0, is not matched numerically. Neverthe-
less, this relation is recovered by takingt′

0
= 4 t0, as ob-

served in Fig. 2 (a possible reason could be the singularity
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of jε
± at t = 0+). Second, numerical convolution fails for
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Figure 2: Approximation ofj0
± for (t0, t1) = (1, 50).

Theoretical (-) and numerical (.,*) errors.

lack of information on the interval[0, t0[ and badly ap-
proximated values on[t0, t′0]. Using hyperbolic contours
for Jε will help cope with both these problems, due to the
decomposition intosingular functionsjε

±.

2.2 An optimized hyperbolic contour
Here, we adopt the hyperbolic contour Fig. 1b, which

is appropriate for our model problem, since the singula-
rities lie in a sectorial region. In this case, the optimal
convergence rate is:

EN = O(e−B(α,Λ)N ), α ∈]π/4 − δ/2, π/2 − δ[, (4)

where δ defines the sector the singularities lie in (see
Fig. 1b) andB behaves like(1/ ln Λ) for largeΛ (see [12,
§ 4]). Further numerical simulations show that optimizing
B w.r.t. α divides the rate by10 at most, compared to the
choice:α = π/4 − δ/2 + 0.
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Figure 3: Approximation ofJ0(t) for t ∈ [1, 5], and of
J1(t) for t ∈ [0.1, 50]. Theoretical and numerical errors.

Figure 3 shows that the greaterε, the better the ap-
proximation: asε gets smaller, the asymptotic sector

widens; therefore, to yield comparable convergence rates
in (4), one needs to takeΛε=1 = 100 Λε=0. Forε = 1, β

is zero, while forε = 0, β has to be tuned heuristically,
with a small real part (here,β = 0.25).

Improvements brought by hyperbolic over parabolic
contours are yet unsufficient: a lingering problem is due
to the nodes with apositive real part, which prevent simu-
lation for t ≥ t1 (exponential divergence). This is tackled
by the exact and approximated integral representations.

3 Optimal integral representations
The transfer function̂Jε(s) is analytic in the Laplace

domainℜe(s)>−ε. In this section, we consider analytic
continuationŝJε

θ of ̂Jε overC \ (Cθ ∪ Cθ), with the cuts

Cθ =
(

ι̇ − ε + eι̇θ
R

+
)

andCθ, and̂Jε
θ defined by:

̂Jε
θ (s) =

1
(θ)
√

s + ε − ι̇ (2π−θ)
√

s + ε + ι̇
, (5)

(θ)

√

ρ eι̇φ =
√

ρ eι̇φ/2, if ρ ≥ 0, φ ∈]θ − 2π, θ[.

3.1 Principle
Foru ≥ 0, letγu = ι̇−ε+eι̇θu be a parametrization of

Cθ. Function̂Jε
θ (s) has hermitian symmetric decomposi-

tion
(

̂

Jε+

θ (s) + ̂

Jε+

θ (s)
)

/2, with integral representation:

̂

Jε+

θ (s) =

∫

Cθ

µθ(γ)

s − γ
dγ =

∫

R+

µθ(γ(u))

s − γ(u)
γ′(u) du,

µθ

(

γu

)

= lim
η→0+

Hθ

(

γu + ι̇γ′
uη

)

− Hθ

(

γu − ι̇γ′
uη

)

2ι̇π

=
[

π
√

u
(θ)
√

2ι̇ + eι̇θu
]−1

eι̇ π−θ
2 (6)

which fulfills the well-posedness criterion (see e.g. [6]):

∫

Cθ

∣

∣

∣

∣

µ(γ) dγ

1 − γ

∣

∣

∣

∣

,

∫

R+

∣

∣

∣

∣

µ(γu)

1 − γu

γ′
u

∣

∣

∣

∣

du < ∞.

These systems are approximated by the finite-
dimensional models:

˜Hµ(s) =
1

2

K
∑

k=0

[

µk

s − γk

+
µk

s − γk

]

, (7)

whereγk are a finite set of poles located on the cutCθ. For
a given location (so far, only aheuristic approach based
on Bode diagrams is being used), the weightsµk are op-
timized for the weighted least-squares criterion:

C(µ) ,

∫

R+

∣

∣

∣

˜Hµ(2ι̇πf) −̂Jε(2ι̇πf)
∣

∣

∣

2

w(f) df, (8)
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with the weightw(f) = 1[f−,f+](f)/(f |̂Jε(2ι̇πf)|2).
The latter takes into account a bounded frequency range, a
logarithmic frequency scale, and a relative error measure-
ment (see [6] for details). Note that the Laplace trans-
form of (2) is of the form (7) withγk = γ(kh) and
µk = 2h γ′(kh) ̂Jε

(

γ(kh)
)

for 0 ≤ k ≤ K =N .

3.2 Numerical results
We consider four cases:(C1) J0 with θ = π, (C2) J1

with θ = π, (C3)J0 with θ = π
2
, (C4)J1 with θ = α+ π

2
.

Results are presented on Fig. 4 for poles (1 ≤ K ≤ 8) on
Cθ with log-spacedu from umin = 5.10−4 to umax =
5.103.

1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

10
0

N

Ab
so

lu
te

 e
rro

r

 

 

J0 θ=π
J1 θ=π
J0 θ=π/2

J1 θ=α+π/2

Figure 4: Approximations ofJ0 andJ1 for various cuts
(θ ≈ π

2
andθ = π). Numerical errors.

Comparisons are also displayed in Fig. 3 for(C3) and
(C4). Note that horizontal cuts (i.e.θ = π) improve the
approximations significantly.

Conclusion and Perspectives
The first method seems appealing because of the a pri-

ori convergence rate, but this is only asymptotic. Other
drawbacks are: sensitivity of the parameters of the con-
tours, and existence of unstable nodes preventing long-
range time simulation. On the contrary, the second
method gives stable approximate systems, and the crite-
rion used to build them is very flexible, user-designed;
still, no theoretical convergence rate seems to be avai-
lable, but low-order results can be very good.

Both these methods need to be tested on a wider family
of transfer functions (see [3, chap. 4]). The role of the
parameters in the first method has to be investigated more
thoroughly and systematically. Another direction of re-
search to be pursued in the near future is to compare our
results with other techniques, based on Gauss-Legendre
quadature points in the evaluation of the integral repre-
sentation, which also have some very useful a priori error

estimates, see e.g. [4].
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Wave scattering by a circular ice floe of variable thickness and non-zero draught
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Abstract
The problem of water wave scattering by a circular ice

floe is considered under the assumptions of linear and
time harmonic motions. Combining a Rayleigh-Ritz ap-
proximation of the vertical motion with a variational prin-
ciple generates an approximation that may be made arbi-
trarily close to the full linear solution. This method al-
lows for the introduction of axisymmetric variations in
the thickness of the ice and bed shape, as well as the ad-
dition of submergence. A Fourier cosine expansion of the
azimuthal coordinate simplifies the governing equations
of the approximation to a finite set of ODEs. Numerical
results are given to show the effect of the axisymmetric
variations and submergence.

Introduction
Wave scattering by a circular ice floe has been con-

sidered previously (see, for example, [1]) but with the re-
strictions that the floe rests fictitiously on the fluid surface
and has a constant thickness. Following [2], the problem
in which axisymmetric variations and a physically correct
draught are admitted is reformulated as a variational prin-
ciple, and a Rayleigh-Ritz style approximation is gener-
ated through restriction of the vertical motion to a finite
dimensional space. This creates a process of vertical av-
eraging, which eliminates the vertical coordinate from the
governing equations of the approximation. By selecting a
suitably large dimension to represent the vertical motion,
approximations may be obtained to an arbitrary degree of
accuracy. Furthermore, a Fourier cosine expansion of the
azimuthal coordinate leaves only a finite set of ODEs in
the radial coordinate to be solved.

Formulation and solution method
All horizontal dependence is defined in terms of the

polar coordinates (r, θ) that originate from the centre of
the floe and we denote the radius of the ice floe to be R.
To define the vertical structure of the geometry we use the
cartesian coordinate z, which is directed upwards with its
origin set to coincide with the equilibrium position of the
unloaded fluid surface. For r < R, the undisturbed lower
surface of the ice is given by the function z = −d(r) and
the thickness of the ice by D = D(r). For r > R the
fluid is unloaded (d = D = 0) and extends to infinity in

all horizontal directions. The fluid is bounded below by
a fixed, impermeable bed z = −h(r), which is permitted
to undulate only beneath the ice cover.

Under the usual assumptions of linear wave theory and
the imposition of harmonic time dependence e−iωt, the
reduced velocity potential φ = φ(r, θ, z) must satisfy
Laplace’s equation in the fluid domain, the bed condition
on z = −h and the free-surface condition on z = 0 for
r > R. The fluid motion induces the periodic transverse
oscillations η(r, θ)e−iωt in the ice floe from its equilib-
rium position. Assuming these oscillations to be suffi-
ciently small that linear theory applies and modelling the
ice as a thin, elastic plate, we obtain the conditions

∇2(β∇2η)+Fη−φ = 0, ∇d.∇φ+φz = κη (z = −d),
(1)

where ∇ denotes the horizontal Laplacian and Fη ≡
{1−κα− 1

r2 (1−ν)(rβr∂rr +rβrr∂r +βrr∂θθ)}η. These
equations respectively represent the equation of motion
of the plate and the kinematic condition at the water-ice
interface. The various quantities appearing in these equa-
tions are defined as κ = ω2/g, α(r) = κρiD(r)/ρw and
β(r) = ED3(r)/12ρwg(1−ν

2), where ν is Poisson’s ra-
tio for ice, ρwgβ is its flexural rigidity and E is Young’s
modulus; ρi and ρw are respectively the densities of the
ice and the fluid.

Forcing is induced by a plane wave, φI , and the scat-
tered wave, φS , is subject to the Sommerfeld radiation
condition. The full solution in the free surface region
is therefore φ = φI + φS , and it can be shown that
φI = φI,0w

(0)

0
(z), where

φI,0(r, θ) = J0(k
(0)

0
r) + 2

∞
∑

m=1

imJm(k
(0)

0
r) cos(mθ),

and φS(r, θ, z) =
∑∞

n=0
φS,n(r, θ)w

(0)

n (z), where

φS,n(r, θ) = Bn,0H0(k
(0)

n r)

+ 2
∞
∑

m=1

imBn,mHm(k(0)

n r) cos(mθ).

Here w(0)

n = cosh{k
(0)

n (z + h)}, and Jm and Hm are re-
spectively Bessel functions and Hankel functions of the
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first kind. The quantities k(0)

n are the roots of the free
surface dispersion relation k(0) tanh k(0)h = κ, arranged
such that k(0)

0
is real and positive, which provides propa-

gating waves. The roots k(0)

n (n = 1, . . . ) lie on the imag-
inary axis and are ordered in increasing magnitude, repre-
senting increasingly rapidly decaying evanescent waves.
The amplitudes Bn,m (m,n = 0, . . . ) are constants to be
found as part of the solution process.

To ease the numerical calculations, we assume that
there is a positive value ε < R for which, within the
disc r < ε, the ice is of constant thickness and the bed
is flat. The solution within this region may be expressed
as φ(r, θ, z) =

∑∞
n=0

φn(r, θ)wn(z), where

φn = An,0Jn,0(r) + 2

∞
∑

m=1

imAn,mJn,m(r) cos(mθ)

and wn = cosh{kn(z + h)}. Here, the function

Jn,m(r) ≡ Jm(knr) + %n,1Jm(µ1r) + %n,2Jm(µ2r),

and the quantities kn (n = 0, . . . ) are the roots of the
dispersion relation

(1 − α+ βk4)k tanh k(h− d) = κ, (2)

ordered in the same manner as the free-surface case. The
quantities µj (j = 1, 2) are also roots of the dispersion
relation but are (typically) complex and %n,j (j = 1, 2)
are known weights. These values define waves that (typi-
cally) oscillate as well as attenuate. The amplitudes An,m

(m,n = 0, . . . ), like Bn,m, are unspecified constants.
The corresponding displacement function η may be easily
obtained from the interfacial conditions (1).

The governing equations are the natural conditions of
Hamiltonian formulation of the problem as the variational
principle, using functionals given in [2]. The continuity
of fluid pressure and velocity beneath the ice edge is en-
sured by an interfacial functional. Additionally, through
the variational principle we derive ice edge conditions
that dictate no flow through the submerged portion of the
ice edge and vanishing of the bending moment and shear-
ing stress. At the internal interface (r = ε) the stationary
value must satisfy a set of essential and natural conditions
related to the continuity of the variables ψ and χ at that
point, where the natural conditions are provided by the
variational principle.

An approximation to the stationary point (φ, η) may
be obtained by confining the dependence of the vertical
coordinate, z, in the variational principle to a finite di-
mensional space and seeking the stationary point over this

restricted space. An approximation to the displacement
function, χ ≈ η, is then produced indirectly. Motivated
by the forms of the full linear solutions in r > R and
r < ε, we employ the approximation φ ≈ ψN , where

ψN (r, θ, z) ≡
N

∑

n=0

ϕn(r, θ)wn(r, z) (r < R),

and similarly ψN (r, θ, z) ≡
∑N

n=0
ϕ

(0)

n (r, θ)w
(0)

n (z) for
r > R. The vertical modes wn(r, z) = cosh{kn(r)(z +
h(r))} generalise those that appeared previously in r < ε

to variable geometry so that, in the annulus of varying ge-
ometry (ε < r < R), the functions kn(r) (n = 0, . . . )
satisfy the dispersion relation (2) generated by the par-
ticular vertical structure at each radial value. It is there-
fore expected that ϕ0 will represent modulated propagat-
ing waves and ϕn (n = 1, . . . ) the evanescent waves that
are activated at the sources of scattering.

By restricting the vertical motion in the variational
principle we generate a (2N +6)-dimensional set of gov-
erning equations, independent of z, to be satisfied by the
unknown functions ϕn and χ and a (2N+2)-dimensional

set of equations to be satisfied by ϕ(0)

n , with correspond-
ing matching conditions. The dimension of the approxi-
mation, N , may be increased to achieve an arbitrary de-
gree of accuracy.

In the ice-free region it can be shown that the form of
ϕ

(0)

n is identical to φI,0 + φS,n. Similarly, in the disc of
uniform ice-cover (r < ε) we find that the form of ϕn is
identical to φn but with the dimension-dependent quan-
tities µ̃j and %̃n,j replacing %n,j and µj respectively. A
corresponding expression for χ in the disc r < ε may be
deduced straightforwardly.

We therefore have analytic forms for the approxima-
tions in regions of uniform geometry, defined up to a set
of unknown amplitudes. Consistent with these forms, we
expand the azimuthal dependence of the unknown func-
tions in the annulus of varying geometry in a Fourier co-
sine series, with

ϕn(r, θ) = ϕn,0(r) + 2
∞
∑

m=1

imϕn,m(r) cos(mθ),

and χ(r, θ) = χ0(r) + 2
∑∞

m=1
imχm(r) cos(mθ). Our

objective is now to find functions ϕn,m (n = 1, . . . , N)
and χm (m = 0, . . . ), as well as the unknown amplitudes.

Due to the axisymmetry of the geometry the govern-
ing equations of the approximation decouple to leave a
(2N + 6)-dimensional system of ODEs in the radial co-
ordinate for each Fourier cosine mode. We then truncate
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the expansions in the azimuthal coordinate to the finite
dimension M that gives a desired accuracy. Each of the
remaining (M +1) ODE systems must be solved numeri-
cally over the interval ε < r < R, with the interfacial con-
ditions generated by the variational principle combined
with the analytic expressions in r < ε and r > R provid-
ing the boundary conditions at the points r = ε, R.

Numerical results
In fig. 1 the effect of a quadratic increase in the

thickness of the ice from 10cm at its edge (r = R) to
1m at r = ε = R/2 is considered. The uniform bed
is h = 20m and the incident wavelength is chosen as
λ ≡ 2π/k

(0)

0
= R/4. Two problems of this form are

shown. In one the thickness variation occurs on the lower
surface of the ice (· · · ) and in the other is on the upper sur-
face of the ice (×). This is compared to a uniform floe of
thickness 85cm (−), which is chosen to give it an identi-
cal mass to the non-uniform floes. Results for a quadratic
protrusion in the bed from 20m at r = 50m to 10m at
r = 25m, beneath the uniform floe, are also shown (◦).
We note that the two floes of varying thickness provide
almost identical profiles. Despite a significant increase in
the bed profile the displacements of the uniform floes are
extremely similar. The relative differences between the
sets of results indicates that variations to the thickness of
the ice dominate over bed variations.
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| η |

Figure 1: Introduction of geometrical variations

Fig. 2 displays the effect of introducing a physically
correct Archimedean draught to floes of 50m radius and
uniform thicknesses D0 = 1m, 2m and 4m over a flat
bed, h = 20m. The maximum value of the displacement

of the floes, Mη ≡ max |η|, are given as functions of
incident wavelength, λ ∈ (5, 50)m, for floes of a zero
draught, d = 0, (solid line) and an Archimedean draught,
d = ρiD/ρw, (dot-dash). As the floes become thicker,
the displacement they experience decreases which is in-
terpreted as a greater resistance to the incident wave. We
note that the curves are monotonically increasing func-
tions of wavelength for the longer incident waves. For
shorter incident waves, this monotonicity is broken by
the occurrence of local maxima. These maxima are more
prevalent for the floes that incorporate a non-zero draught
and thinner floes. At shorter wavelengths, there is a ten-
dency for the floes of a non-zero draught to be displaced
with a smaller magnitude than the corresponding floes of
a zero draught, a tendency that is disrupted only by the
occurrence of the maxima at short incident wavelengths.
The point at which the floes of a non-zero draught begin to
experience a smaller displacement is relative to the thick-
ness of the floe, so that, the thicker the floe, the longer the
incident wavelength that produces this behaviour.

Further results will be presented at the conference.

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8PSfrag replacements

λ

Mη

D0 = 1m

D0 = 2m

D0 = 4m

Figure 2: Introduction of Archimedean draught
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Abstract
Oscillations in a homogeneous uniformly rotating fluid

with a free surface, contained in a semi-enclosed channel
with mildly-sloping topography, are considered.

Introduction
In [1], it is demonstrated that in a 2D semi-enclosed

basin the external (surface) seiche is sensitive to the wa-
ter stratification. Here, we present a first step towards
an analogous study of oscillations in a 3D model of the
northern Adriatic, by considering a homogeneous uni-
formly rotating fluid with a free surface, contained in a
semi-enclosed channel with mildly-sloping topography.

Governing equations
We adopt Cartesian coordinates(x, y, z), with z mea-

sured upwards from the undisturbed free-surface. The
semi-infinite channel (see schematic in figure 1) is aligned
so that its side-walls coincide withy = ±L for x > −a,
and its end-wall is atx = −a for |y| ≤ L.

x = −a
y = −L

y = L

x

y
Region 1 Region 2

x = 0

Figure 1: Schematic of channel geometry. In region 1, the
fluid depth is allowed to increase linearly withx.

The flow is assumed to satisfy linearised shallow water
theory. The momentum equations for regions 1 and 2 are

ut − fv = −gηx, (1)

vt + fu = −gηy, (2)

whereu andv are the depth-averaged fluid velocities in
thex andy directions respectively, andη = h − H is the
surface elevation, withh the total fluid depth andH the
mean fluid depth. Lastly,f is the constant Coriolis pa-
rameter andg is the gravitational acceleration. In region
2, the channel is of constant depthH

(2)

0
, but in region 1

the bed shoals gently as the end-wall is approached. The
mean fluid depth is

H = H
(1)

0
+ αx, (3)

(see [2]), whereαa/H
(1)

0
≪ 1. Thus, due to the similar-

ity between the governing equations for the two regions,
we consider the system

ut − fv = −gηx (4)

vt + fu = −gηy (5)

ηt + H0(ux + vy) + αu = 0 (6)

from which the solutions for both regions can be deduced
through appropriate choice ofα andH0 = H

(1)

0
.

Harmonic time dependence of the forme−iωt is as-
sumed and henceforth suppressed, whereω is a pre-
scribed angular frequency. We are interested here in wave
frequencies that are subinertial, that isω < f , and accord-
ingly introduce the parameter

σ = ω/f < 1. (7)

The velocitiesu andv can be expressed as

u =
g(iσηx − ηy)

f(1 − σ2)
, v =

g(ηx + iσηy)

f(1 − σ2)
, (8)

and can be eliminated from (6) to show that the free-
surface elevationη satisfies

ηxx + ηyy +
α

H0

ηx +
iα

σH0

ηy −
1 − σ2

R2
η = 0, (9)

where the radius of deformation is

R =

√
gH0

f
. (10)

It is consistent with the shallow bottom-slope assump-
tion for the frequency of oscillations to be very sub-
inertial, i.e. ω << f (see [2]), and if this is the case
then the third term in (9) isO(α2), and can be discarded
compared with the remainingO(α) terms. However, we
here wish to stretch to the limit both the shallow slope as-
sumption and the associated condition on the frequency,
so we retain this term.
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Infinite channel
In an infinite channel|y| < L, solutions of (9) are

η = eiγx(A+eξ+y + A−eξ−y), (11)

for constantsA±, whereξ± are the two roots of

ξ2 +
iα

σH0

ξ − λ2 = 0, (12)

and
λ2 = γ2 + (1 − σ2)/R2 − iαγ/H0. (13)

A non-trivial solution which also obeys the no-normal
flow conditions

ηx + iσηy = 0 (y = ±L) (14)

requires that the dispersion relation

[

(γ + σξ+)(γ + σξ−)
]

sinh[(ξ+ − ξ−)L] = 0 (15)

be satisfied. Two distinct types of mode arise from this
equation: modified Kelvin and Poincaré modes.

Modified Kelvin modes
If the first factor in (15) is zero, then we can writeγ± =

−σξ±, whereξ± is given from (12) and (13) as

ξ± =
−iα

2σH0

∓

√

1

R2
−

(

α

2σH0

)2

≡ ξ±
0

, (16)

and so

γ± = −σξ± =
iα

2H0

±

√

( σ

R

)2

−

(

α

2H0

)2

≡ γ±
0

.

(17)
The square root is chosen here so that

√
c = i

√
−c

for c < 0, which ensures thatγ+

0
(γ−

0
) corresponds to

modes propagating or decaying in the positive (negative)
x-direction. Finally, returning to (11) and (15) we see that
A∓ = 0 for γ = γ±

0
so that allowable solutions are

η±
0

(x, y) ∝ eiγ±

0
xeξ±

0
y. (18)

For flat bottom topography (α = 0), we haveγ±
0

=
±σ/R and ξ±

0
= ∓1/R, and we recover the classical

right-trapped (in the Northern hemisphere) Kelvin modes

η±
0

(x, y) ∝ e±iσx/Re∓y/R.

For α > 0, modes decay in the positivex-direction (i.e.
down-slope).

Modified Poincaŕe modes
If the second factor in (15) is zero, thenL(ξ+ − ξ−) =

inπ for integern, from whichγ ≡ −iγ±
n where

γ±
n =

α

2H0

±

√

1 − σ2

R2
+

(nπ

2L

)2

− (1 − σ2)

(

α

2σH0

)2

.

(19)
Here the square root is chosen so that

√
c = −i

√
−c for

negativec, which ensures thatγ+
n (γ−

n ) corresponds to
modes which propagate or decay in the positive (negative)
x-direction. The corresponding cross-channel wavenum-
bers are then found from (12) to be

ξ± = −
iα

2σH0

±
inπ

2L
≡ ξ±n . (20)

Returning to (11) and (15), we haveA−/A+ ≡ α±
n where

α±
n = (−1)n+1

(−iγ±
n + σξ+

n )

(−iγ±
n + σξ−n )

, (21)

giving the modified Poincaré modes

η±n (x, y) ∝ eγ±
n x

(

eξ+
n y + α±

n eξ−n y
)

n = 1, 2, . . .

(22)
If α = 0 thenγ±

n ∈ R in the subinertial regime and give
Poincaŕe modes which decay along the channel; ifα > 0
then some modified Poincaré modes may propagate.

To summarise, the solutionη to equation (9) in con-
junction with boundary conditions (14) is of the form

η(x, y) =
∞

∑

n=0

C+

n η+

n (x, y) + C−
n η−n (x, y), (23)

whereη±
0

are modified Kelvin modes (18),η±n (n ≥ 1) are
modified Poincaŕe modes (22), and theC±

n are constants.

Semi-infinite channel
In region 1, all modes from the expansion (23) are

present, so we write the solution as

η1 =
∞

∑

n=0

C+

n,1φ
+

n,1ψ
+

n,1 + C−
n,1φ

−
n,1ψ

−
n,1,

whereφ±
0,1(x) = eiγ±

0
x, ψ±

0,1(y) = eξ±
0

y, and

{

φ+

n,1(x) = eγ+
n (x+a), φ−

n,1(x) = eγ−
n x,

ψ±
n,1(y) = eξ+

n y + α±
n eξ−n y,

for n = 1, 2, . . . The subscript1 denotes the region of va-
lidity of the expansion. In region 2, we allow an incom-
ing Kelvin mode (i.e. one propagating from right to left)
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of unit amplitude, an outgoing Kelvin mode, and those
Poincaŕe modes which decay withx. Thus

η2 = φ−
0,2ψ

−
0,2 +

∞
∑

n=0

C+

n,2φ
+

n,2ψ
+

n,2,

whereφ±
0,2(x) = e±iσx/R, ψ±

0,2(y) = e∓y/R, and

φ+

n,2(x) = e−x
√

(1−σ2)/R2+(nπ/2L)2

ψ+

n,2(y) = einπy/2L + α+
n e−inπy/2L

}

n = 0, 1, 2, . . .

The unknown constantsC+

n,1, C−
n,1 andC+

n,2 are found
from the no-normal flow condition at the channel-head,

u1(−a, y) = 0 (|y| < L), (24)

together with matching conditions at the shelf edge,

H
(1)

0
u1(0, y) − H

(2)

0
u2(0, y) = 0, (25)

η1(0, y) − η2(0, y) = 0, (26)

also for|y| < L, and whereuj is found via (8) fromηj .
The solution to this set of equations is determined ap-

proximately by truncating all summations atn = 2M ,
and then applying a Galerkin method. Thus we introduce
the complete orthonormal sequence

χm(y) =
eimπy/L

√
2L

, m = 0,±1,±2, . . . , (27)

and require that the residual of equations (24)-(26) is or-
thogonal toχm for m = 0,±1, . . . ,±M.

Results
Model parameter values which approximate the phys-

ical characteristics of the northern Adriatic are given in
Table 1. Note thatαa/H

(1)

0
= 0.96 is not significantly

smaller than unity, and that, whilst a sub-inertial regime,
σ = 0.70777 does not conform to the regimeω ≪ f .
In region 1, no modified Poincaré modes propagate, and
the modified Kelvin waves oscillate but decay down-slope
with ane-folding length-scale of∼ 1667km.

Table 1: Model parameter values, taken from [2].

L 100km α 0.00054
a 800km f 1.03 × 10−4s−1

H
(1)

0
450m ω 7.29 × 10−5s−1

H
(2)

0
3500m σ 0.70777

The solution for the model parameters, shown in Fig-
ure 2, displays an anticylonic gyre in the shelf region, and
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Figure 2: Simulation of the northern Adriatic, using the
parameter values given in Table 1. Plotted are (a)|η| in m

(marked 1.8–2.4) andarg(η) in degrees (marked 9–17); (b)
|Re(u, v)| (arrows). In (b), the top-left velocity vector has a

magnitude of0.027ms−1; note also that velocity vectors
between the vertical dotted lines (x = 0,−175km) have been

shortened by a factor of10.

the characteristics of a double Kelvin wave (DKW) prop-
agating along the shelf edge. An exact superposition of
DKWs which also obey the no-normal flow conditions on
the channel wall is not possible at this frequency. Thus the
modified Kelvin and Poincaré modes are reproducing the
behaviour of a single DKW near the centre of the chan-
nel, but this combines with the effect of the channel walls
at y = ±L to form a further anticylonic gyre centred on
the shelf-edge itself.

Further results will be given in the presentation, includ-
ing an investigation of near-resonances at certain critical
values of the frequency parameterσ.
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Abstract
This work deals with the water-waves problem for

uneven bottoms in the long-wave framework on an un-
bounded two or three-dimensional domain. We aim here
at constructing, justifying and comparing new asymptotic
models taking into account the bottom topography. First,
two new classes of symmetric Boussinesq-like models are
derived by introducing two different regimes of bottom
topography : one for small variations in amplitude, and
one for strong variations. Then, starting from the two-
dimensionnal version of the class corresponding to small
topography variations, we recover a class of usual un-
coupled Korteweg-de-Vries-like models. At this step, a
discussion is performed and theses models are rigorously
improved by adding correction terms linked to the bot-
tom topography. Finally, all these models are integrated
numerically : results are presented and commented.

Introduction
The water waves problem for uneven bottoms consists

in describing the motion of the free surface and the evo-
lution of the velocity field of a layer of ideal, incompress-
ible and irrotationnal fluid. Our goal here is to rigorously
derive new asymptotic models taking the bottom topogra-
phy into account.

Starting from the classical water waves equations, we
use the Bernoulli formulation and non-dimensionnalize
the equations, which makes two parameters appear : ε
which measures the ration between the typical ampli-
tude of the waves and the mean depth and corresponds
to a small parameter in our long-waves framework, and
β which measures the ration between the typical ampli-
tude of the variations of bottom topography and the mean
depth. Finally we use the Zakharov formulation to get
the following system, ψ being the velocity potential ex-
pressed at the free surface, η the free surface and b the
bottom topography.





∂tψ − ε∂tηZε(εη, βb)ψ + 1

2

[
|Zε(εη, βb)ψ|

2

+ε |∇ψ − ε∇ηZε(εη, βb)ψ|
2
]
+ η = 0 ,

∂tη + ε∇η · [∇φ− ε∇ηZε(εη, βb)ψ ]

−1

ε
Zε(εη, βb)ψ = 0 .

where Zε(εη, βb) is a Dirichlet-Neumann operator de-

fined as Zε(εη, βb)f = ∂zu|z=εη
with u solution of :





ε∆u+ ∂2
zu = 0, −1 + β b ≤ z ≤ εη ,

∂zu− εβ∇b · ∇u = 0, z = −1 + βb ,

u(X, εη) = f, X ∈ R
d .

Two classes of symmetric Boussinesq-like models
At this point, we use our long-waves framework to look

for an asymptotic expansion of Zε(εη, βb)f in powers of
ε. To this end, we distinguish two different regimes con-
cerning the parameter β : β = O(ε) for small bottom
topography variations and β = O(1) for large variations.
Thanks to a general theorem, we are then able to rigor-
ously compute two asymptotic expansions of Zε(εη, βb)f
in the two previous regimes.

Small variations in amplitude of the bottom topography
If we plug the previous result for β = O(ε) in

the Zakharov formulation, we are able to derive a first
Boussinesq-like model for slightly variating bottoms. Un-
fortunately, this model is ill posed. Thus we follow the
global strategy put forward by Bona, Colin and Lannes in
([2]). This strategy consists in two successive changes
of variable on the velocity field V = ∇φ, a pseudo-
differential one and a non-linear one in which topogra-
phy terms appear. The first change of variable helps to
symmetrize the dispersive terms of the equations by intro-
ducing three arbitrary parameters, while the second one
symmetrizes the non-linear terms. In the end, we get the
following new class of symmetric models :





(1 − εa2∆) ∂tV + ∇η + ε
[

1

4
∇|η|2 + 1

4
∇|V |2

+1

2
(V · ∇)V + 1

2
V ∇ · V − 1

2
b∇η + a1∆∇η

]
= 0 ,

(1 − εa4∆) ∂tη + ∇ · V + ε
[

1

2
∇ ·

(
(η − b)V

)

+a3∆∇ · V ] = 0 .

where a1 = a3, a2 ≥ 0, a4 ≥ 0, these coefficients de-
pending on the three previously introduced parameters.

All the symmetric systems of this class are proved to be
well-posed on a long time interval [0; T

ε
], and we demon-

strate that their solutions, up to the inversion of the two
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previous change of variables, all furnish approximations
of the water waves solutions at the order O(ε2t) on [0; T

ε
].

Strong variations in amplitude of the bottom topography
This time, we plug the asymptotic expansion of

Zε(εη, βb)f in the case β = O(1) into the Zakharov
formulation of the water waves problem, and get a first
ill-posed Boussinesq-like model, more complex than the
previous one. This time, we have to adapt our strategy be-
cause of the huge influence of the bottom topography in
the equations. We propose two different changes of vari-
able, first a non-linear one and then a pseudo-differential
one. The first one symmetrizes both the order one deriva-
tive terms and the non-linear terms, while the second
symmetrizes the dispersive terms thanks again to the in-
troduction of three arbitrary parameters. We consequently
derive a whole class of symmetric Boussinesq-like mod-
els for this regime, these models being written as :





(
1 − ε

2
P1

h

)
∂tV +

√
h ∇η + ε

2

[
Fh

(
V

η

)

+b1
√
h∇∇ · (h2∇η) + b2

√
h∇(h∇h · ∇η)

+b3∇h∇ · (h
√
h∇η) + b4

√
h∇h(∇h · ∇η)

]
= 0 ,

(
1 − ε

2
P2

h

)
∂tη + ∇(

√
h · V ) + ε

2

[
fh

(
V

η

)

+∇ ·
(
c1h

2∇∇ · (
√
hV ) + c2h∇h∇ · (

√
hV )

+c3h
√
h∇(∇h · V ) + c4

√
h∇h(∇h · V )

)]
= 0 .

with h = 1 − b and where the coefficients (bi) and (ci)
depending on the three parameters can be taken such that
the whole system is symmetric. P1

h and P1

h are elliptic op-
erators, and Fh and fh correspond to the non-linear terms.

Here again, we are able to prove that all these sym-
metric systems are well-posed at least locally in time,
and possibly on a long time interval when ∇b = O(ε).
Up to the inversion of the two previous changes of vari-
able, their solutions furnish approximations of the water
waves problem solutions at the order O(ε2t) on [0; T

ε
]

when ∇b = O(ε). This result may hold without the last
condition.

An improved class of uncoupled Korteweg-de-Vries-
like models

We focus now on the case β = O(ε) of slightly variat-
ing bottoms, and we start with any of the corresponding
two-dimensionnal Boussinesq-like models previously de-

rived. At this step, we aim at recover the classical uncou-
pled Korteweg-de-Vries approximation.

The usual uncoupled Korteweg-de-Vries approximation
Diagonalizing the system by introducing U = V + η

and N = V − η leads to a new (class of) system. We
look for approximate solutions of this system in the clas-
sical form Ua = U0(T, x − t) + εU1(T, t, x − t);Na =
N0(T, x + t) + εN1(T, t, x + t) with T = εt. Pluging
this ansatz in the previous system leads to the following
Korteweg-de-Vries uncoupled equations on U0 and N0 :

{
∂TU0 + 3

4
U0∂xU0 + (a1 + a2+a4

2
)∂3

xU0

∂TN0 + 3

4
N0∂xN0 − (a1 + a2+a4

2
)∂3

xN0

and to an explicitly solvable equation on the correctors
U1 and N1. The previous uncoupled Korteweg-de-Vries
system of equations is similar to the one derived by Iguchi
in his work ([5]) where he considered - like us - slightly
variating bottoms.

Discussion and proposition of an improved model
The resulting Korteweg-de-Vries approximation con-

sists in writing vkdv = U0+N0

2
and ηkdv = U0−N0

2
. Like

Iguchi, we can prove that (vkdv , ηkdv) approximates the
solutions of the water waves problem at the order O(ε)
on a long time interval, but under the following condi-
tions : both initial conditions (v0, η0) and bottom topogra-
phy b must be very regular, f.e. belong to some weighted
Sobolev space. Even if such an assumption is quite usual
and acceptable on initial conditions, it is not the case as
far as the bottom topography is concerned.

Indeed the validity of the approximation is governed
by the estimates on the correctors U1 and N1 which must
have at worse a sub-linear growth in time. Unfortunately,
U1 and N1 contains topography terms that can have a lin-
ear growth in time in some cases where the bottom vari-
ation b is not L2, f.e. a step. In such a case, these topog-
raphy terms become so large on a long time intervall that
U1 and N1 are not correctors anymore. Hence we have
to adapt the ansatz to add these topography terms to the
order one terms U0 and N0.

Consequently, we propose a new Korteweg-de-Vries
approximation defined as the following :

{
vkdv = U0+N0

2
+ εBT1+BT2

2

ηkdv = U0−N0

2
+ εBT1−BT2

2

where BT1 and BT2 are topography terms coming re-
spectively from U1 and N1. This new approximation is
proved to be of order O(ε) on a long time intervall as
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long as initial conditions are regular enough and the bot-
tom variation b is in W∞

k (R) for k large enough.

Numerical comparison of the models
In this last part, we propose to compute and com-

pare both previous Boussinesq-like and Korteweg-de-
Vries-like models (classical and improved) in the case of
slightly variating bottoms on a two-dimensionnal domain.
We consider here the previously introduced case of a step
on the bottom topography, and we study the propagation
of a solitary wave over this step.

Presentation of the numerical schemes
The idea here is to consider quite simple and fast fi-

nite differences schemes that are able to reproduce faith-
fully the global behaviour of the solitary wave. To this
end, we use a Crank-Nicholson scheme on both KdV-like
uncoupled system and Boussinesq-like one. Non-linear
terms are treated with a predictor term U n+1/2 defined
as Un = Un+1/2

+Un−1/2

2
, in a way that preserves not only

the symmetric structure of the Boussinesq-like system but
also the discrete L2 norm of (U,N) for the KdV-like one
and a specific energy for the Boussinesq-like one.

Our aim here is to compare three models : our
Boussinesq-like one, the classical uncoupled KdV-like
model and our improved KdV-like one with topography
terms. We propose to consider here a solitary wave which
is propagated to the right by the first KdV equation : we
take the known expression of such a wave at t = 0 as
initial condition U0(t = 0) for the KdV-like model - and
N0(t = 0) = 0 - and we take V (t = 0) = η(t = 0) =
1

2
U0(t = 0) as initial conditions for the Boussinesq-like

one.

Numerical results and comments
The following results have been obtained with ε = 0.2

and a1 = 0; a2 = 1

6
; a4 = 1

6
. The figure shows the su-

perposition of the free surface obtained numerically with
each of the three models, in the case of a step at the bot-
tom, for t=12 in non-dimensionnal variables.

We immediately observe that our Boussinesq-like and
KdV-like models succeed in reproducing the phenomenon
of reflexion on the bottom : a smaller wave appears and
is propagated to the left at the same speed as the main
wave. It is obviously not possible to reproduce this phe-
nomenon with the classical uncoupled KdV-like model
which propagates the wave indepently of the bottom to-
pography. Moreover, our two new models successfully
describe the following physical phenomenons : the shoal-
ing which corresponds to the growth in amplitude of the

Boussinesq−like symmetric model with topography terms
KdV−like model with correctors
Classical KdV−like model

25 30 35 40 45 50 55

−1.0

−0.8
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t = 12

x

z

Figure 1: The case of a step

wave after the step; the deceleration of the wave after the
step : the waves obtained with our two new models are
behind the one obtained with the usual KdV-like model;
and finally the loss of symmetry of the wave, which can be
remarked by comparing the resulting wave with the still
symmetric one obtained with the usual KdV-like model.

An interesting remark on our new KdV-like model is
that we are able to identify precisely the role of each to-
pography terms in the phenomena described below : BT1

is responsible for the loss of symmetry and the decelera-
tion of the wave after the step, while BT2 generates the
reflected wave and the shoaling effect. This a main advan-
tage since these terms are calculated explicitly from the
solution (U,N) of the uncoupled KdV-like system : we
can thus easily isolate each phenomenon. Unfortunately,
this model has the drawback of diverging quickly when
time goes over 1

ε
. The Boussinesq-like model seems to

diverge less quickly when time grows, but identifying the
role of each term in the equations is significantly more
difficult.
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Abstract 
   The induced Stokes surface waves by Stokes internal 
waves in the stratified ocean are investigated using the 
power series-Fourier series expansion and symbolic 
operation. The expressions of the waveforms and the 
frequency-dispersion relation of Stokes 5th-order surface 
waves and Stokes 5th-order internal waves are yielded by 
theoretical analysis for general cases. Then, the time 
evolutions of the waveforms, the frequency-dispersion 
curves of the induced Stokes surface waves are generated 
by numerical calculation for specific sea conditions. 
Moreover, the effects of relative density difference, depth 
ratio, wave length on the above frequency-dispersion 
curves under the different wave steepness are analyzed 
and compared. 
 
Introduction 
   Stokes surface wave of a fluid is an interesting 
phenomenon studied since the famous work of Stokes [1]. 
Wu [2] did an exhaustive review on such problem. As we 
know, the surface wave can be induced by the internal 
wave underneath it. In fact, the shading and white stripes 
on the surface in the ocean can be treated with a kind of 
surface wave, which is modulated by the convergence and 
divergence of the sea water caused by the near–surface 
internal wave, and which can be imaged by radar such as 
satellite-borne Synthetic Aperture Radar (SAR) [3, 4]. The 
surface wave is a significant part of wave dynamics and 
has a practical application in many aspects, such as ocean 
engineering [5]. 
   The main interest in this work is aimed at the Stokes 
surface waves, which propagate at the free surface and are 
induced by Stokes internal waves in the stratified ocean. 
The Stokes internal waves propagate at the interface 
between a heavy fluid and an upper light one. The two-
layer fluid is bounded by the Stokes free surface wave and 
a rigid wall. In our investigation’s scope, the literature 
concerning the induced Stokes surface waves by Stokes 
internal waves in the stratified ocean is sparse. 
Considering the known literature, it is found that the 
Stokes surface wave in non-stratified fluid, the nonlinear 
interfacial waves under some special cases and the Stokes 
internal waves without free surface are investigated. These 
are not enough for the in-deep study on the surface waves, 
such as that induced by internal waves. So, we try to 

present the general theory of the induced Stokes surface 
waves by Stokes internal waves in the stratified ocean. 
   The main strategy we used is solving the nonlinear 
boundary value problem of the stream function using the 
power series-Fourier series expansion and symbolic 
operation. After the series expansion of the fifth-order 
Stokes surface wave and internal waves are obtained, the 
waveforms up to the fifth order at different times and the 
frequency dispersion curves up to the fifth order are all 
plotted and compared with each other for the special sea 
condition. The effects of relative density difference, 
wavelength and depth ratio on the fifth-order non-
dimension wave speed under the different wave steepness 
are analyzed and compared with each other. 
 
Problem Formulation 
   Suppose that the two-layer fluid considered is 
immiscible incompressible inviscid one bounded by a free 
surface and a rigid wall with lighter layer of density ρ1 and 
thickness h1 above and the heavier one of density ρ2 and 
thickness h2 below, respectively, which are initially 
statically stable, i.e., σ=ρ1/ρ2<1, and at rest at infinity (see 
Figure 1).  
 
 
 
 
 
 
 
 
 
Figure 1: Sketch of the Stokes surface wave and interfacial 

wave in a two-dimensional Cartesian x, z coordinate 
system 

 
   Establishing the above two-dimensional Cartesian x, z 
coordinate system, the corresponding stream function ψi(x, 
y, t) (i=1, 2) satisfy the following equations and boundary 
conditions: 
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                                                                 (2) 
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( )2 , 0x hψ − =                                                                      (3) 

( )1 1 1,x x Qψ η = −⎡ ⎤⎣ ⎦                                                              (4) 
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       (8) 

in which h=h1+h2 is the total water depth, σ=(ρ2-ρ1)/ρ2 is 
the relative density difference, Q1 and Q2 are both positive 
constants related to the total volume rate of flow 
underneath the Stokes surface wave and the Stokes 
internal wave per unit length normal to the (x, y) plane, R1 
and R2 are also positive constants related to the Bernoulli’s 
constant of the surface and the interface respectively. 
 
Expressions of Stokes Surface Waves and Stokes 
Internal Waves 
   In order to obtain the expressions of Stokes surface 
waves and Stokes internal waves, a non-dimensional 
wave-amplitude ε=kH/2 is introduced being similar to 
Fenton [6]and Cheng [7], in which H is the wave height of 
the Stokes internal waves, and k is the wave number. The 
stream function, the surface elevation and the interfacial 
elevation are all expanded as the following power series-
Fourier series expansion of ε and x. The quantities u , Q1, 
Q2, R1 and R2 mentioned in the above expressions are all 
expanded as the power series of ε. 
   Substituting the above power series-Fourier series 
expansions into Eqs.1~8, then, expanding them into the 
series of ε and letting the coefficients of the same order of 
ε be identical with each other, the equations of all the 
undetermined and dimensionless coefficients with 
trigonometric functions are derived. Letting the 
coefficients of the same trigonometric functions of the 
same angle be identical with each other, the equations of 
all the undetermined and dimensionless coefficients 
without any trigonometric function are obtained. Solving 
these equations, thus, all the unknown coefficients will be 
determined, and then, the expressions of Stokes surface 
wave and internal wave are both produced.  
   The process of reducing and solving is heavy and 
complicated, but there are many analogous steps in it, 
which is adapted to program using computer algebra. Just 
by computer algebra software, the expressions of the fifth-

order Stokes surface and internal waves are derived 
formally.  
   For the limited space, the solutions and all the 
derivations are also omitted. 
   Substituting the above solutions into the power series-
Fourier series expansions of the stream function, the 
surface elevation and the interfacial elevation, the 
expressions the fifth-order frequency dispersion relation, 
the fifth-order waveform and the fifth-order stream 
functions of the Stokes surface waves and Stokes internal 
waves are all obtained 
   From the expressions, it can be seen that the Stoke 
surface waves are affected by the Stoke interfacial waves 
and the sea conditions of the stratified ocean and that there 
are two kinds of wave mode: internal wave mode and 
surface wave mode. It can be verified that the wave height 
of the induced Stoke surface waves is H times b111, in 
which b111 is the coefficient of the first term in the power 
series-Fourier series of the kη1(x). 
 
Case Study of Stokes Surface Waves Induced by 
Stokes Internal Waves 
   The four oceanic conditions are selected. They have 
been applied to the study of the second-order to the fifth-
order theory of Stokes internal waves without free surface 
in [7]. In the following, they are used to discuss the 
characteristic of the induced Stokes surface waves. 
   According the simulations, the results of Stokes internal 
wave for internal wave mode and general case are similar 
to that without free surface [7]. In fact, the wave heights of 
the induced Stokes surface wave in the internal wave 
mode are all not very high that the effects of the induced 
Stokes surface wave on Stokes internal wave are less.  
   However, the wave heights of the induced Stokes 
surface wave in the surface wave mode are all higher. So, 
for this wave mode, the results of the induced Stokes 
surface wave, such as the frequency dispersion curves and 
the temporal evolution of the waveforms up to the fifth 
order, are investigated in the following. For brevity, only 
the results of case four are given below. 
 
Case Four 
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Figure 2: the fifth-order frequency dispersion curve and its 

comparison with the fourth-order curve for case four 
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   The fifth-order frequency dispersion curve and its 
comparison with the fourth-order curve are plotted in 
Figure 2 above. 
   It can be seen from Figure 2 that the fifth-order 
frequency dispersion curve is obviously more than that of 
the fourth-order, which means that the wave speed will 
increase with the order and the fixed wave steepness as the 
fixed wave steepness is more than some value. In the 
figure c0=0.999972, c/c0=1+326.311Λ2 for the 4th order 
curve and c/c0=1+326.311Λ2+ 41305.8Λ4 for the 5th order 
curve. 
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Figure 3 the waveforms up to the fifth and their 

comparison at a moment for case four 
 
   The time evolution of the waveforms up to the fifth of 
the induced Stokes surface wave for the surface wave 
mode are generated and compared with each other in 
Figure3. 
   It can be seen from Figure3 that the fifth-order 
waveform can be more acuminate and higher at the crest 
and more flat, wider and higher at the trough than the 
fourth-order waveform, which is similar to the 
characteristic of the Stokes internal wave for this case. 
 
Factor Analysis on Fifth-order Wave Speed for 
Surface Wave Mode 
   In order to discuss the variation of wave speed for the 
surface wave mode with different sea condition and 
Stokes internal wave, the effects of relative density 
difference, wavelength and depth ratio on the fifth-order 
non-dimension wave speed under the different wave 
steepness are analyzed by numerical simulation in the 
figures. For the limited space, these figures are all omitted. 
   From these figures, it can be seen that for the surface 
wave mode the effects of relative density difference, 
wavelength and depth ratio on the fifth-order non-
dimension wave speed under the different wave steepness 
are different from that for the internal wave mode [7]. 
 
Conclusions 
   Summarizing the above investigation, the following 
conclusions can be obtained. 
   The wave heights of the induced Stokes surface wave in 

the internal wave mode are all not very high that the 
effects of the induced Stokes surface wave on Stokes 
internal wave are less.  
   The wave heights of the induced Stokes surface wave in 
the surface wave mode are all higher. For this wave mode, 
the higher-order frequency dispersion curve is obviously 
more than that of the lower-order, which means that the 
wave speed will increase with the order and the fixed 
wave steepness as the fixed wave steepness is more than 
some value. Moreover, the higher-order waveform can be 
more acuminate and higher at the crest and more flat, 
wider and higher at the trough than the lower-order 
waveform, which is similar to the characteristic of the 
Stokes internal wave in the same case. 
   The effects of relative density difference, wavelength 
and depth ratio on the fifth-order non-dimension wave 
speed under the different wave steepness are different 
from that for the internal wave mode. 
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Abstract

We compute numerical solutions to the 2D Navier-Sto-
kes equations in a very long channel with a sudden ex-
pansion. The results show that, in the parameter regime
of interest, the development of a vortex wave is followed
by a faster and shorter wave. We carry out stability ana-
lysis which indicates that this faster wave is the result of
a linear instability mechanism.

Introduction

Use of a stepped channel combined with unsteady lam-
inar flow provides a powerful mixing mechanism that is
particularly applicable to processes where the fluid con-
tains delicate elements, for example, applications involv-
ing mass transfer in blood or in cell cultures. In such
channel flows there are parameter regimes where the flow
is described by the two-dimensional unsteady Navier-Sto-
kes equations. Sobey [1] showed both experimentally
and numerically that a standing wave of separated regions
developed behind a channel step during oscillatory flow
and called the resulting flow a vortex wave. Included
in his experimental observations were vortex waves of
extreme longitudinal extent and he conjectured that the
wave formed was, under the correct parameter conditions,
virtually undamped in the streamwise direction.

Ghaddar et. al. [2] considered flow through peri-
odically grooved channels at moderate Reynolds num-
bers via spectral element solution of the two-dimensional
Navier-Stokes equations. They developed a theory for
the frequency selection in oscillations observed in flow
based on linear stability analysis. They indicated that
the observed oscillations resembled Tollmein-Schlicht-
ing waves forced by a Kelvin-Helmholtz shear layer in-
stability. They noticed that the instability became self
sustaining for Reynolds numbers above a critical value
Rec for channels of appropriate length.

In this work, we consider gradually accelerated flow
through periodically grooved channels and we have have
undertaken calculations in a different parameter region
and this has been found to result in characteristically dif-
ferent bahaviour.
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y=0

y=-1

y=1

L
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Figure 1: Geometry for a 2D plane flow through a
periodic channel. The channel has a nondimensional

minimum width1, a maximum width2, periodic length
L and the length of the expansion isLs.

Numerical method
We consider flow through a channel with a sudden ex-

pansion as shown in Figure 1. Our channels have a length
that is characteristically much longer than the channels
used by Ghaddar et. al. in [2]. Whereas they computed
flows in channels in whichL in Figure 1 was no larger
than 10, we have undertaken computations is channels
whereL is around 100.

We solve the Navier-Stokes equations in dimensionless
form with distances scaled with the minimum channel
width h, velocities with the average velocityU , at peak
volumetric flux, and time with the frequency of oscilla-
tion Ω. This gives two nondimensional paramaters: the
Reynolds numberRe = Uh/ν, ν being the kinematic
viscosity and is the Strouhal numberSt = Ωh/U . Solu-
tion is schieved by using in the streamfunction-vorticity
formulation with the vorticityω and streamfunctionψ de-
fined in the usual way;

ω = −
∂u

∂y
+
∂v

∂x
, u =

∂ψ

∂y
, v = −

∂ψ

∂x
,

whereu andv are the nondimensional velocities inx and
y respectively. These definitions lead to the Poisson rela-
tionship;

ω = −

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

.

The 2D Navier-Stokes equations then lead to the vorticity
transport equation

St
∂ω

∂t
+
∂(uω)

∂x
+
∂(vω)

∂y
=

1

Re

(

∂2ω

∂x2
+
∂2ω

∂y2

)

.
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Figure 2: Instantaneous streamlines for flow through a periodic grooved channel showing the extent of the vortex wave
and KH-wave. Geometry parametersL = 160, Ls = 100 and flow parametersRe = 400, St = 0.005.

From the geometry in Figure 1 the boundary condi-
tions areu = v = 0 on all solid surfaces. The to-
tal nondimensional volumetric flowrate is prescribed at
2q(t) = 2 sin(2πt) and this gives the boundary condi-
tions

ψ = q(t), at the top wall and;

ψ = −q(t), at the bottom wall.

Periodic boundary conditions are used in the streamwise
coordinate giving

ψ(0, y, t) = ψ(L, y, t), and ω(0, y, t) = ω(L, y, t).

Finite difference versions of these equations form the
base of the numerical solution in a manner similar to [3].
The vorticity transport equation is used to step forward
in time, the Poisson equation is then used to compute the
streamfunction which gives the velocities at the next time
step. Centred differences are used for second order ac-
curacy and Lax-Wendroff discretisation is used for the
vorticity transport equation. Several numerical tests have
been carried out to confirm the validity of these computa-
tions and it is our conclusion that observed structures are
actually physical and are not due to numerical artefacts.

Results
We find that a sequence of two events occurs: one is

the formation of a vortex wave of finite extent (typically
2-4 vortices alternating on the two walls behind the step),
in agreement to the experimental and numerical observa-
tions of [1]; the second is a subsequent rapidly propagat-
ing wave of regular but slightly smaller vortices. This
second wave propagates at speeds that are much faster
than those observed in [2]. We believe that this is as a re-
sult of the short channel lengths that they carried out their
computations in: the lengths involved did not provide ad-
equate room for the waves to develop. The propagation
of this second wave is also such that its resolution would
have been beyond that of the apparatus used in [1]. In this
respect, we refer to the initial vortex wave as a “V-wave”
and the fast wave as a “KH-wave” as shown in Figure 2.

We observe that with periodic boundary conditions there
is a critical lengthLc below which the KH-wave is self-
sustaining. With lengths less thanLc disturbances travel
through to the downstream boundary of the channel and
trigger further effects in the V-wave upstream and thus the
resulting disturbance persists. For longer channels, the
KH-waves are damped before reaching the downstream
end of the channel.

Stability Analysis
In [4], Tutty and Pedley have developed a model for

the evolution of an inviscid rotational core flow that
is described by an evolutionary linearised Korteweg-de
Vries (KdV) equation. This has been shown to be con-
sistent with the genesis and evolution of the V-wave. Our
computations on an extension of this model show that the
V-wave can be accounted for by a similar KdV equation.
This predicts correctly the phase and group velocity of the
V-wave and also amplitude fluctuations in unsteady flow.
However the model fails to account for the fast moving
KH-waves as it assumes a long wavelength. As we be-
lieve that these are among the first calculations of these
fast moving waves, we believe that there is no unifying
theory to account for the existence of the KH-waves.

In order to understand the genesis of KH-waves we
have undertaken a study of starting flows in which the
fluid is accelerated from rest to either steady channel
flux or a flux with a small oscillatory component. We
have tested the hypothesis that the KH-wave results from
an Orr-Sommerfeld type instability of nearly parallel but
non-Poiseuille like flow. This has led us to study stability
of a base flow

u0(y) =
3

2
(1 − σy)(1 − y2), −1 ≤ y ≤ 1,

whereσ = 0 is Poiseuille flow andσ > 1 indicates re-
verse flow near one wall. That this might be a pluasible
base flow comes from observations that the flow is nearly
parallel over long sections of the channel and has a non-
Pouseuille profile.

The development of KH-waves has been considered in
channels with smoothly varying and sharp corners and us-
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ing different numerical methods, as well as with different
numerical resolution. We consider solutions of an Orr-So-
mmerfeld equation as the extent of a reverse flow region
is varied and investigate the consequences of instability
in the base flow on subsequent flow development. We
present wavenumber and frequency predictions from this
linear instability analysis. We also make approximations
for the damping rates of these waves and investigate how
these relate to the critical length of the channel.

The results we have indicate that the KH-wave is the
result of a linear instability mechanism described by an
Orr-Sommerfeld equation but with growth rates that are
orders of magnitude greater than those for disturbances to
symmetric Poiseuille flow and with instability occuring at
relatively low Reynolds number.

The complexity of unsteady flows calculated from the
full Navier–Stokes equations is remarkable and it is likely
that flows in other parameter regimes are dominated by
entirely different mechanisms.
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Abstract
This work concerns the numerical finite element com-

putation, in the frequency domain, of the diffracted wave
produced by a defect (crack, inclusion, perturbation of
the boundaries etc..) located in an infinite elastic waveg-
uide. The objective is to use modal representations to
build transparent conditions on the artificial boundaries
of the computational domain. This cannot be achieved in
a classical way, due to non standard properties of elas-
tic modes. In particular, the derivation of a “Dirichlet-
to-Neumann” operator (relating the normal stress to the
displacement) is not tractable. However, a biorthogonal-
ity relation allows to build an operator, relating hybrids
displacement/stress vectors. An original mixed formula-
tion is then derived and implemented, whose unknowns
are the displacement field in the bounded domain and the
normal component of the normal stresses on the artificial
boundaries. Numerical validations are presented in the
two-dimensional case.

1 The elastic waveguide
We consider a homogeneous isotropic elastic waveg-

uide of sectionS (S is a bounded domain ofR2), den-
sity ρ and Laḿe’s coefficientsλ andµ, with a stress-free
boundary. The domain is denoted byΩ (Ω = S × R) and
the propagation is modelized by the following classical
equations (ω > 0 denotes the pulsation andu the total
displacement field) :

{

−div σ(u) − ω2ρu = 0 in Ω,

σ(u).n = 0 on∂Ω,
(1)

whereσ(u), the stress tensor, is related to the strain tensor
ε(u) = 1/2(∇u + ∇t

u) by Hooke’s law:

σ(u) = λ div(u)Id + 2µε(u).

1.1 Elastic modes
Taking advantage of the cylindrical nature of the

waveguide, the propagation properties are deduced from
a modal analysis: the modes are the solutions of (1) of the
form

u(x1, x2, x3) = v(x1, x2)e
iβx3 , β ∈ C.

The dispersion relation can be calculated analytically in
the particular case of a 2D plate (Lamb modes) and of a

circular 3D rod (Pochammer modes). The correspond-
ing spectra (symmetric with respect toℜe β = 0 and
ℑmβ = 0) have been intensively studied [1]. At a given
frequency, there exist infinitely many modes, that we can
range in two categories: a finite number of propagative
modes (β ∈ R) and an infinity of evanescent modes
(β /∈ R), which are generally also oscillating (ℜe β 6= 0).
Dispersion curves of the propagative modes present some
strange particularities, like a possible sign-shift of the
group velocity. From the mathematical point of view,
the related spectral problem is not self-adjoint and use-
ful properties as completeness and orthogonality are not
straightforward. We will assume completeness in the fol-
lowing (see [2] and [3] for a proof in 2D) and explain how
to solve the question of orthogonality in the next section.
Let us finally introduce the following definitions:

• An evanescent mode is said to be rightgoing (resp.
leftgoing) ifℑmβ > 0 (resp.ℑmβ < 0).

• A propagative mode is said to be rightgoing (resp.
leftgoing) if its group velocity∂ω/∂β is positive
(resp. negative).

We will denote byu+
n (x1, x2, x3) = eiβnx3

v
+
n (x1, x2)

(resp.u−
n (x1, x2, x3) = e−iβnx3

v
−
n (x1, x2)) the rightgo-

ing (resp. leftgoing) modes.

1.2 The diffraction problem
Let us consider now a perturbed waveguide, with a lo-

calized defect, a crackΓ ⊂ Ω for instance. Our purpose is
the computation of the wave diffracted by the crack, when
the incident wave is supposed to be a propagative mode:

uinc(x1, x2, x3) = v
+

n0
(x1, x2)e

iβn0
x3 , βn0

∈ R.

The total displacement fieldutot then satisfies :
{

−div σ(utot) − ω2ρutot = 0 in Ω\Γ,

σ(utot).n = 0 on∂Ω ∪ ∂Γ,
(2)

where the diffracted wave defined asudif = utot − uinc

has to satisfy an outgoing radiation condition. More pre-
cisely, on each side of the perturbation,udif must be a
superposition of outgoing modes. IfΓ ⊂ {|x3| < R}:

udif (x1, x2, x3) =
∑

n∈N

a±n v
±
n (x1, x2)e

±iβnx3

for ± |x3| > ±R

(3)
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In order to solve the problem with finite elements, one
has to bound the computational domain. We will explain
now how to build transparent boundary conditions which
can be set on vertical artificial boundariesΣ±R = {x3 =
±R}.

2 The semi-infinite waveguide
In this section, we consider the semi-infinite waveguide

occupying the domainΩ+

R = S × {x3 > R}. Usually
(for the scalar problem for instance), to derive a Dirichlet-
to-Neumann map onΣR, we solve the Dirichlet problem
in Ω+

R, with a Dirichlet condition onΣR and an outgo-
ing condition at infinity; this is achieved through a modal
decomposition. Here, this approach does not work be-
cause no orthogonality relations of thev+

n are available.
Besides, well-posedness of the Dirichlet problem is not
guaranteed. The way to proceed relies on a generalized
orthogonality relation, known as the biorthogonality rela-
tion of Fraser [4], which is detailed now.

2.1 Biorthogonality
Consider two rightgoing modesv+

n andv
+
m. From the

ealstodynamic equations, one can derive the following re-
lation:

(β2

n−β2

m)

∫

S

(vm+

1
σn+

31
+vm+

2
σn+

32
)−vn+

3
σm+

33
= 0. (4)

Introducing the two vectorsX = (v1, v2, σ33) andY =
(σ31, σ32, v3), this relation becomes

(X+

m, Y +

n )Fr
def
= J+

n δnm (5)

where we have set

(X+

m, Y +

n )Fr
def
=

∫

S

(vm+

1
σn+

31
+ vm+

2
σn+

32
) − vn+

3
σm+

33
.

In generalJ+
n does not vanish except at particular fre-

quencies where the group velocity of thenth mode van-
ishes. We assume we are not in this case.

2.2 Modal representation
Thanks to Fraser relation (5), any vectorX given on

ΣR can be expanded on rightgoing modes as follows:

X =
∑

n∈N

(X, Y +
n )Fr

J+
n

X+

n

(a similar relation holds forY ). This leads naturally to
consider the following exterior problem, where the usual
Dirichlet condition has been replaced by a mixed con-
dition X = XR = (g1, g2, h3) on ΣR, for given data
g1, g2 ∈ H1/2(ΣR) andh3 ∈ H−1/2(ΣR):







−div σ(u) − ω2ρu = 0 in Ω+

R,

σ(u).n = 0 on ∂S × {x3 > R},

u1 = g1, u2 = g2, σ33 = h3 onΣR

(6)
The solution of this problem has the following expres-
sion:

u =
∑

n∈N

(XR, Y +
n )Fr

J+
n

v
+

n eiβn(x3−R).

The complementary Cauchy dataYR = (σ31, σ32, u3) on
ΣR can be recovered thanks to the following expansion:

YR =
∑

n∈N

(XR, Y +
n )Fr

J+
n

Y +

n .

Summing up, we have built a generalized Dirichlet-to-
Neumann mapT+

R such that

T+

R XR = YR

whereXR andYR are the Cauchy data associated to the
outgoing solution of (6).

3 The mixed formulation
Using the previous boundary maps, the original diffrac-

tion problem has the following equivalent formulation on
the bounded domainΩR = S × {|x3| < R} (the free
surface is denoted byΓS = ∂S × {|x3| < R}):















−div σ(utot) − ω2ρutot = 0 in ΩR\Γ,

σ(utot) · n = 0 on ΓS ,

Ytot − T+

R (Xtot) = 0 on ΣR.

Ytot − T−
R (Xtot) = Yinc − T−

R (Xinc) on Σ−R

(7)
whereXinc andYinc are related to the incident field.

To take into account the transparent boundary condi-
tions onΣ±R in a variational formulation, we introduce
an additional unknown, sayξ = σ33, defined only on
Σ±R and we get the following mixed formulation:

find u ∈ V andξ ∈ W such that∀v ∈ V, ∀θ ∈ W

{

a(u,v) + b(ξ,v) = l1(v)
−b(θ,u) + c(ξ, θ) = l2(θ)

(8)

where V = H1(ΩR\Γ) and W = H−1/2(ΣR) ×

H−1/2(Σ−R). The first equation is derived from the elas-
todynamic equation by a Green formula; the stresses ap-
pearing in the boundary terms are replaced by either the
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new unknown or their expression resulting from the trans-
parent conditions. The second equation is the weak form
of the relation betweenu3 andX, also coming from the
transparent conditions.

A similar approach in the scalar case leads to a coer-
cive + compact formulation. We observe here that some
useful properties of the bilinear forms are still valid (sym-
metry, positivity...) and we conjecture that problem (8) is
also of Fredholm type. However, a rigorous analysis re-
quires new results concerning completeness of modes and
Sobolev trace spaces caracterization in terms of modes.

This variational framework is well-suited for a finite
element approximation. As it is (probably) of Fredholm
type, no inf-sup condition is required and any conformal
discretizations ofV andW are allowed. Notice that the
bilinear forms involve infinite modal series expansions
which have to be truncated in practice.

4 Numerical results

The method has been implemented in the 2D case us-
ing the code MELINA [5]. More precisely, we deal with
a steel plate of thickness2 mm. The velocities of longitu-
dinal and transversal waves are given bycL = 6020ms−1

andcT = 3220ms−1. The computations are made for a
frequencyf = ω/2π =2MHz. At this frequency, it can
be shown that exactly 5 Lamb modes can propagate in the
plate : the two symmetric modes S0 and S1, and the three
antisymmetric ones A0, A1 and A2.

We use P2 Lagrange finite elements for both unknowns
u andξ, and we keep 35 terms in the modal expansions.
The method has been first validated in the case of a safe
plate (no crack) to check the transparency of the boundary
conditions. Then, as an example, we deal with a planar
crack of length1.4 mm. Below are the isovalues of the
real part ofu3 for the total and the diffracted fields.

The extension to the 3D case is in progress : in the case
of a general sectionS, it requires a preliminary numeri-
cal determination of the modes, contrary to the 2D case
where Lamb modes are known analytically.
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Abstract
We study the time reversal phenomenon in a waveg-

uide. We show the effectiveness of the DORT (french
acronym for Decomposition of the Time Reversal Op-
erator) method for selective focusing on small scatterers
and we prove the advantage of the waveguide boundaries
and multipath propagation by comparing the results to the
case of free space.

Introduction
Time reversal techniques have been studied in ultra-

sonics and underwater acoustics environments. In this
paper, we are concerned with the DORT method result-
ing from the analysis of the iterative time reversal pro-
cess which can be described as follows. A Time Rever-
sal Mirror (TRM), composed of an array of transducers,
£rst emits an acoustic wave in a non dissipative medium
containing some unknown obstacles, then measures the
diffracted £eld. The measured £eld is then time reversed
and reemitted. The time reversal operator T is obtained
by iterating this procedure twice.

The D.O.R.T method consists in calculating the
eigenelements of T for a £xed frequency. In this case, re-
versing the time amounts to a conjugation. It was shown
[5] that for small and distant enough scatterers in the free
space, the number of signi£cant eigenvalues of T is ex-
actly the number of obstacles and each eigenvector corre-
sponding to a nonzero eigenvalue of T provides the sig-
nals to be sent to the transducers in order to focus on one
scatterer.

We are interested in this paper in studying the focusing
properties of the eigenvectors of T when the medium of
propagation is a two-dimensional waveguide. The main
object is to study the effect of the multiple diffusion due
to the interfaces of the waveguide on the focusing. We are
then interested uniquely to the interactions between the
obstacles and the interfaces, and between the obstacles
themselves, the ones between the TRM and the obstacles
studied in [1] are neglected here. Therefore, we consider
a non intrusive TRM (whose presence do not perturb the
acoustic wave) constitued of pointlike transducers as in
Prada et al. [5].

Note the waveguide  = {x = (x1, x2) ∈ IR2, 0 ·
x2 · H} and consider Nt pointlike transducers placed at
x1 = a1 and some bounded scatterers. We denote by O
the union of these obstacles and by Γ = ∂O the union of
their boundaries (see £gure 1).

H

0

x1 = a1

Figure 1: The waveguide, the scatterers and the
transducers.

Time reversal process
The time reversal process is described as follows : let

Ai, i = 1 to Nt, be the points of  \ O where are placed
the transducers. As the transducers are supposed to be
pointlike, each one emits an incident £eld proportional to
the Green’s function G(Ai, .) de£ned in (3). The incident
£eld ϕI is then :

ϕI(x) =

Nt∑

i=1

G(Ai, x)gi (1)

where gi represents the emission intensity of the trans-
ducer Ai, 1 · i · Nt.

The diffracted £eld by the obstacles ϕD is then the out-
going solution of the problem :





¢ϕD + k2ϕD = 0  \ O
∂ϕD

∂n
= −

∂ϕI

∂n
Γ

ϕD = 0 ∂

(2)

The condition outgoing means that we consider only the
evanescent and the guided modes that propagate towards
in£nity (outgoing modes).

At the reception, each transducer measures the value of
the diffracted £eld without perturbing it. The measured
signal gR is then de£ned by

gR = {ϕD(Ai)}1≤i≤Nt
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gR is then conjugated and used to generate the incident
£eld in the next iteration.

Let g denote the vector composed of the complex am-
plitudes gi of transducers at the emission step and by
D, the transfer matrix describing the three successive
steps : Emission-Diffraction-Measure. Then, we have
Dg = gR. The time reversal matrix T is obtained by
iterating the time reversal process (Emission-Diffraction-
Measure-Conjugation) twice. T is de£ned by

Tg = DDg, or T = DD.

For x ∈  , we de£ne the Green’s function in the
waveguide G(x, .) as the outgoing solution of the follow-
ing problem :

½
¢G(x, .) + k2G(x, .) = ±x 

G(x, .) = 0 ∂
(3)

Different methods can be used to £nd an explicit rep-
resentation of the Green’s function. For numerical rea-
sons, we have chosen to decompose G on the modes of
the waveguide. By considering a source A(a = (a1, a2))
and by projecting the function x2 → G(a = (a1, a2), x =
(x1, x2)) on a basis composed of eigenvectors of the oper-
ator −∂2/∂x2

2 in H1
0
(0, H), we obtain the series decom-

position of G [2]:

G(a, x) =
1

H

+∞∑

n=1

1

ikn

sin
n¼x2

H
sin

n¼a2

H
eikn|x1−a1|

(4)

where kn =

√
k2 − (

n¼

H
)2 and Imag(kn) ¸ 0.

It is obvious from its expression that G is symmetric
on  × .

We de£ne the Green’s function GD like ϕD but associ-
ated to the incident £eld G instead of ϕI , we have then

Tij =

Nt∑

n=1

GD(An, Ai)GD(Aj , An)

By proving the symmetry of GD (see [1]), we deduce the
following proposition :
Proposition T is a hermitian and positive matrix. Its
eigenvalues (¸i)1≤i≤Nt

are then positive numbers.

Numerical results
The numerical simulation of the time reversal process

is realized using the Finite Elements (FE) code MELINA
[4]. The method of resolution is a coupling technique
between the FE method and the integral representation
[3].

We consider two disks of centers (0, 0.5) and (0.6, 0.5)
and of radius r1 = 0.02 and r2 = 0.01 respectively, Nt

uniformly distributed transducers are placed at a1 = −2.8
(we set Nt = 9).

We present in the £gures 2 and 3 the eigenvalues of
T according to k respectively in the case of a non intru-
sive TRM in the free space (when considering the Green’s
function in the free space) and the model considered here
for a waveguide of height H = 1.
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Figure 2: 4 £rst eigenvalues of T according to k (free
space).
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Figure 3: 4 £rst eigenvalues of T according to k

(waveguide).

We remark that in the free space case (£gure 2), there is
only one signi£cant eigenvalue (the ratio between the £rst
eigenvalue and the second is of order 104) which means
that the greatest obstacle masks the smallest one and we
can not focus selectively on them.

We are interested now in the case of the waveguide
(£gure 3). Note £rst that the picks represent the cutoff
frequencies (kn = n¼/H = n¼) for which the problem
(3) is ill-posed.

Modulus of the incident £eld

Figure 4: Emission of the £rst eigenvector k = 30.
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Modulus of the incident £eld

Figure 5: Emission of the second eigenvector k = 30.

Modulus of the incident £eld

Figure 6: Emission of the third eigenvector k = 30.

Modulus of the incident £eld

Figure 7: Emission of the fourth eigenvector k = 30.

At low frequencies, most precisely, when k < ¼, we
remark that the eigenvalues are very small (even the £rst);
this is can be explained by the fact that there are only
evanescent modes and then the incident £eld decreases
rapidly and the scattered £eld received by the TRM is of
low intensity.

When ¼ < k < 2¼, there is only one signi£cant eigen-
value due to the presence of one propagative mode but,
as the precedent case, we can not focus selectively on the
obstacles.

When k increases (k > 2¼), the second eigenvalue be-
comes signi£cant but the relation : “number of signi£cant
eigenvalues = number of obstacles” is not in general sat-
is£ed : there is not a clear separation between the two £rst
eigenvalues and the following ones.

For k = 30, the £rst eigenvalues are ¸1 = 1.54 10−2,
¸2 = 1.5 10−3 and ¸3 = 5 10−4. The £gure 4 (resp. 6)
shows that the emission of the £rst (resp. the third) eigen-
vector allows to focus selectively on the greatest obstacle

(resp. the smallest). Note that in this case, the obstacles
are small and distant. In addition, the selective focusing
has taken place for only a few number of transducers con-
trarily to the case of free space where the transducers must
be well-distributed and their number suf£ciently large.

To explain the presence of more than two signi£cant
eigenvalues, we have studied the case where there is only
one obstacle in the waveguide. In particular, we have
found that ¸1(only the smallest obstacle is present) =
1.05 10−3 ' ¸2(only the greatest one is present) =
8.6 10−4 which explains that the second and the third
eigenvalues of T in presence of the two obstacles are
comparable and that in this case it’s the third eigenvec-
tor which focuses on the smallest disk.

The numerical results presented in this paper seem in
contradiction with the ones obtained in [6], where a far-
£eld model for time-reversal in a waveguide containing
sound-soft scatterers (Dirichlet condition) is investigated.
In particular, a mathematical justi£cation of selective fo-
cusing for small obstacles is provided in [6] when the
number of propagating modes of the waveguide is large
enough. In our case, the number of propagative modes
does not exceed nine and probably this is the reason why
the number of signi£cant eigenvalues is not equal to the
number of obstacles.
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Abstract
An improved multimodal method is proposed for mod-

eling time harmonic acoustic propagation in a waveguide
with nonuniform impedance boundary condition without
or with uniform flow. The impedance is axially seg-
mented uniform, but varies circumferentially. The sound
pressure is expanded in term of rigid waveguide modes
and an additional function that carries the information
about the impedance boundary. The rigid waveguide
modes and the additional function are known a priori so
that calculations of the modes, which are difficult, are
avoided. By matching the pressure and axial velocity at
the interface between different uniform segments, scat-
tering matrices are obtained for each individual segment;
these are then combined to construct a global scattering
matrix for multiple segments. The radial rate of conver-
gence is shown to be O(n−4), where n is the radial mode
indices.

Introduction
Numerous methods have been proposed to study sound

propagation in waveguides with locally reactive liners
which are mathematically represented by an impedance
boundary condition. In the presence of circumferen-
tial variations of the lining impedance (e.g., hard walled
splices in the lined intakes of an aeroengine), the problem
to solve is fully three dimensional. When dimensionless
frequency K is high, where K = kR, k = 2πf/c, f

is frequency, c is sound velocity in air, and R is the ra-
dius of waveguide, it turns to be challenging to model it
efficiently.

In Ref. [1], we proposed a multimodal propagation
method (MPM) to study sound propagation in a nonuni-
form lined waveguide without flow. The sound pressure
is expressed as a double series of the rigid waveguide
modes which are known a priori. The boundary condi-
tion is satisfied in the integral sense. Calculations of the
eigenmodes of nonuniform lined waveguides, which are
very difficult, are avoided. Because the individual rigid
waveguide mode does not satisfy the impedance bound-
ary condition, the radial convergence rate is only O(n−2),
where n is the radial mode indices.

In this paper, we improve the MPM[1] by accelerating

Y( )

0

entrance section exit section

Y( )

z

äè

è

è

è

z=0

r

Figure 1: Configuration of one axial segment
nonuniform lined waveguide.

the radial convergence rate. The sound pressure is ex-
pressed as a double series of the rigid waveguide modes
and an additional function which carries the information
of the impedance boundary. This is motivated by Ref. [2]
which studies water waves over variable bathymetry re-
gions, and Ref. [3] and [4] which study sound propa-
gation in rigid waveguides with varying cross section. It
is shown that the radial convergence rate of the double
infinite series is improved from O(n−2) to O(n−4).

Derivation of the multimodal equations
We consider an infinite rigid waveguide with circular

cross section lined with a region of nonuniform liner. The
liner properties are assumed to be given by a distribu-
tion of locally reacting impedance. Without significant
loss of generality, the distribution may be assumed axi-
ally segmented, i.e., the impedance is set piecewise con-
stant along the waveguide, while being arbitrarily variable
along the circumference of each segment. In Fig. 1 the
configuration of one axial segment of lining impedance
is depicted, the circumferential variation of impedance is
presented as two acoustically rigid splices, which is a typ-
ical configuration in the intake of an aeroengine. Linear
and lossless sound propagation in air is assumed. With
time dependence exp(jωt) omitted, the three dimensional
wave equation with uniform flow is

1

r

∂

∂r
(r

∂p

∂r
) +

1

r2

∂2p

∂θ2
+

∂2p

∂z2
− D2

t p = 0, (1)
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where Dt = jK + M0∂z , M0 is the mach number of
uniform flow. The radial boundary condition is

∂p

∂r
= −

Y (θ)

K2
D2

t p, at r = 1, (2)

where Y (θ) = −jKβ(θ), and β(θ) is the liner admit-
tance.

Circumferentially uniform impedance boundary condi-
tion without flow

When there is no flow, and the impedance boundary
condition is circumferentially uniform, the boundary con-
dition is ∂p/∂r = Y0p, where Y0 = −jKβ0, and β0 is
the liner admittance and it is a complex constant.

The solution of Eq. (1) is expressed as an infinite series
and an additional function in order to satisfy the boundary
condition

pm(r, θ, z) =
∞∑

n=0

Pmn(z)Ψmn(r, θ)+Am(z)χm(r)e−jmθ,

(3)
where Pmn are the expansion coefficients, m and n refer
to azimuthal and radial mode indices respectively. The
basis functions

Ψmn =
1

√
πΛmn

Jm(αmnr)

Jm(αmn)
e−jmθ, (4)

are the eigenfunctions of the hard walled cylindrical cir-
cular waveguide, where Jm is the m order first kind
Bessel function, Λmn refers to the normalized constant.

In order to choose Amχm, two conditions can be im-
posed on χm(r)

χm(r)|r=1 = 0, (5a)
dχm(r)

dr
|r=1 = 1. (5b)

Substitution of the conditions (5) into the boundary con-
dition yields

Am(z) = Y0

∞∑

n=0

Pmn(z)
√

πΛmn

. (6)

Functions which satisfy the conditions (5) may be not
unique. One choice may be

χm(r) =
−1

βm,0Jm+1(βm,0)
Jm(βm,0r), (7)

where βm,0 refers to the roots of the m order first kind
Bessel function.

For calculating Pmn(z), we project p(r, θ, z) on the ba-
sis Ψmn. Following the matricial terminology, Eq. (3) is
written

p(r, θ, z) = Ψ
T
MP, (8)

where P and Ψ are column vectors, the superscript “T ”
indicates the transpose. M is a matrix, it is equal to

M = I + 2πY0NΦ
∗
Φ

T , (9)

where I refers to the identity matrix, N is a diagonal ma-
trix, its elements in the main diagonal are 1/(α2

mn −
β2

m,0). They come from the projection of χm over the
rigid mode eigenfunctions. Φ is a column vector, its ele-
ments are 1/

√
πΛmn.

Using Eqs. (8) and (9), we project Eq. (1) to yield

MP
′′ + AP = 0, (10)

where matrix A is

A = (K2
I − L)M + 2πY0Ψ

∗(1, θ)ΨT (1, θ), (11)

L is a diagonal matrix, its elements in the main diagonal
are α2

mn, the double prime refers to the second derivative
with respect to axial coordinate z.

Circumferentially nonuniform impedance boundary con-
dition without flow

When the boundary condition is circumferentially
nonuniform, we have to solve a full 3D problem. The
sound pressure cannot be separated in the r − θ plane.
Similarly to Eq. (3), the sound pressure is expressed as

p(r, θ, z) =

∞∑

m=−∞

∞∑

n=0

Pmn(z)Ψmn

+
∞∑

m=−∞

Am(z)χm(r)e−jmθ. (12)

As in the above section, substitution of Eq. (12) into the
boundary condition, yields

Am(z) =
∞∑

m′=−∞

1

2π

∫
2π

0

Y (θ)e−j(m′−m)θdθ

×
∞∑

n′=0

Pm′n′(z)
√

πΛm′n′

, (13)

where we have used Eq. (4) and imposed the conditions
(5). Function χm, satisfying conditions (5), is the same
as in Eq. (7). After we yield Am, the rest is similar to the
above section to yield an equation as Eq. (10).
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Matching between segments
Equation (10) is a constant coefficient matrix differen-

tial equation when the axial lining impedance is uniform
in one segment. Its solution can be directly written as

P = XD(z)C1 + XD(l − z)C2, (14)

where C1 and C2 are amplitude vectors of dimension Nt

(M × N , where M and N refer to the truncated dimen-
sions of mode indices m and n), X is the Nt × Nt matrix
whose columns are the generalized eigenvectors Xn of
matrix M

−1
A, and D(z) and D(l − z) are diagonal matri-

ces with exp(−jνnz) and exp(−jνn(l− z)) respectively
on the main diagonal, with νn =

√
dn, dn being the gen-

eralized eigenvalues of matrix M
−1

A. In the form of Eq.
(14), numerical stability is ensured because the propaga-
tion matrices D(z) and D(l − z) have only positive argu-
ments and contain no exponentially diverging terms due
to the evanescent modes. By matching the pressure and
axial velocity at the interfaces of the segment, the coef-
ficients of transmission and reflection are yielded. Scat-
tering matrices are then obtained for each individual seg-
ment; these are combined to construct a global scattering
matrix for multiple segments.

Circumferentially uniform impedance boundary condi-
tion with uniform flow

Consider the waveguide to include uniform flow. p in
Eq. (1) and boundary condition (2) refers to displacement
potential. The coefficient Am in Eq. (3) is difficult to
be decided explicitly as in Eq. (6). Am is then decided
numerically by an additional equation which is obtained
by projecting Eq. (1) over χm exp(jmθ).

Convergence analysis
The radial convergence properties are numerically

shown in Fig. 2 for fixed m.
The parameters are noted in Fig. 2. In this example,

incident modes (m = 2, n = 0) and (m = 98, n = 0) are
only scattered in corresponding radial modes of m = 2
and m = 98 respectively. The truncated dimension is
N = 1000. It is clearly shown that for incident mode
(2, 0), the convergence rate is O(n−4), when n > 10.
However, the rate O(n−4) takes place after n > 200 for
incident mode (98, 0). In the transient region n < 200,
the convergence rate is slower, about O(n−3) in the re-
gion 20 < n < 200, and O(n−2) in the region n < 20.

It is important to point out that in Fig. 2, although the
transient region is longer for the modes with m = 98 than
for the modes with m = 2, and in the transient region
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Figure 2: Convergence rates of radial order n for
different incident modes (m0, 0). Solid line refers to
m0 = 98, solid line with squares refers to m0 = 2,

dashed line with stars refers to n−4, dashed line with
circles refers to n−3, and dashed line with plus refers to

n−2. K = 31.26, Z/ρc = 2 − j, no splice, no flow.

the convergence rate is slower, the amplitudes |P98,n| are
already much smaller than |P2,n|.
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Email: vpagneux@univ-lemans.fr

Abstract
This work presents a multimodal method for the prop-

agation in waveguide. The coupled mode equations is ob-
tained by projecting the Helmholtz equation on the local
transverse modes. To solve this problem we integrate the
Riccati equation governing the admittance matrix (DtN
operator). For many propagating modes, ie at high fre-
quencies, the numerical integration of the Riccati equa-
tion shows that this operator has quasi-singularities asso-
ciated to quasi-trapped modes.

Introduction

h (x)

h (x)

1

2

y

x

x2x1

Figure 1: geometry of the 2D waveguide

The aim is to solve the helmholtz equation

�φ+ k2φ = 0 (1)

in the waveguide shown in figure 1 with Dirichlet bound-
ary conditions at the wall (φ = 0 for y = h1(x) and for
y = h2(x)). The same method could be also applied for
Neumann or mixed boundary conditions but we take here
the Dirichlet condition for the sake of clarity.

We first write the Helmholtz as a firt order evolution
equation along the direction x of the waveguide

∂x

(

φ
ψ

)

=

(

0 1
−∂y2 − k2 0

)(

φ
ψ

)

. (2)

Then, the transverse modes of the waveguide are used
to discretize the problem along the transverse direction y
so that φ and ψ are projected on the modes as

φ =
∑

+∞
n=1

an(x)gn(x;h)

ψ =
∑

+∞
n=1

bn(x)gn(x;h)
, (3)

where

gn(x;h) =

√

2

h
sin(

nπy

h
) (4)

and h = h2 − h1.
The projection of the evolution equation 2 yields the

coupled mode equation for the component on the modes
an(x) and bn(x):

a′ = −Fa+ b
b′ = −K2a+ F T b (5)

where primes denote differentiation with respect to x, a
(resp. b) is the vector of components an (resp. bn) with
n ≥ 1, F is a matrix with non-diagonal elements (n �= m)
given by

Fnm = − nm

m2 − n2

2

h

(

(−1)n+mh′
2
− h′

1

)

) (6)

and Fnn = 0, and K is the diagonal matrix of the
mode wavenumbers given by Knm = knδnm with kn =
√

k2 − n2π2/h2. Since the implicit harmonic time de-
pendance here is e−iωt the square root for kn is chosen
such that Re(kn) ≥ 0 and Im(kn) ≥ 0.

The coupled mode equations (5) cannot be integrated
directly as an initial value problem for two reasons:
firstly, the problem is posed as a boundary value problem
with a radiation condition given, say, at the right, and a
source given, say, at the left. Secondly, as an initial value
problem the system (5) is unstable because of the evanes-
cent modes that cause exponential divergence of the er-
rors [1]. The method chosen here to solve this problem is
to define the admittance matrix as

b = Y a. (7)

This admittance matrix is the representation of the DtN
operator on the mode basis. By inserting equation (7)
into the system (5), a Riccati equation is obtained for the
admittance matrix Y:

Y ′ = −K2 − Y 2 + Y F + F TY. (8)

The Riccati equation (8) is a first order differential
equation that enables us to obtain the admittance ma-
trix (DtN operator) for all x from the initial value of Y
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given by the radiation condition at, say, the right of the
waveguide (x = x2 see figure 1). This initial condition is
Y (x2) = Yc for the radiation condition corresponding to
only right-going waves in the region x > x2, where the
matrix Yc is Yc = iK; this initial condition is the same
as the DtN condition imposed in finite elements method.
Note that the same kind of method had been presented in
[1] and in [2].

Calculation of the wave field
If one is interested in the calculation of the whole field

in the waveguide, once the Riccati equation (8) has been
solved and the matrix Y has been stocked along x, it is
sufficient to solve the first equation of the coupled mode
equations (5) where b = Y a. It gives the first order equa-
tion for a:

a′ = (Y − F )a. (9)

Reflection and transmission matrix
The admittance matrix is directly related to the reflec-

tion matrix by

R = (Yc + Y )−1(Yc − Y ), (10)

where the waves has been decomposed into right and left
going parts as a = a+ + a− and b = Yc(a

+ − a−), and
the reflection matrix has been defined by a− = Ra+.

It is also possible to get the transmission matrix of the
waveguide at the same time as the Y matrix by defining
the propagator matrix G such that

a(x2) = G(x2, x)a(x), (11)

where x2 ≥ x and G(x2, x2) = Id. The equation govern-
ing G is then found to be

G′ = −G(−F + Y ), (12)

with the initial value G(x2, x = x2) = Id. and the trans-
mission matrix is given by

T = G(x2, x = x1)(I +R) (13)

(the definition of the transmission matrix is the classical
one: a+(x2) = Ta+(x1)).

To summarize, starting from x = x2 equations (8) and
(12) are integrated for x ≤ x2 with the initial conditions
Y (x2) = Yc and G(x2, x = x2) = I , and they yield
the reflection and transmission matrix by equations (10)
and (13). The great advantage of the method in this case
is that the matrices (Y and G) do not have to be stocked
during the integration of the differential equations (8) and
(12) along x.
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Figure 2: Real part of Y55 as a function of x for a case

with 20 propagating modes and showing the
quasi-singularites

Numerical integration

The Riccati equation (8) can be numerically integrated
owing to a classical scheme as the Runge-Kutta method
for instance. Nevertheless, as the frequency is increased
the admittance matrix Y show more and more quasi-
singularities that makes this kind of method very time
consuming or even useless. Figure (2) displays the be-
havior of the real part of the diagonal element Y55 for a
frequency corresponding to 20 propagating modes. The
quasi-singularities are apparent and necessitate very small
step size with a Runge-Kutta method. An alternative
has been proposed to avoid this problem by Schiff and
Shnider [3]: it consists in using the numerical integration
by a Magnus method of the linear system from which the
Riccati equation comes from (here the system (5)). Be-
sides, for the high frequencies, the Magnus method (see
[4]) is a very efficient method that necessitate very few
points to describe wildly oscillating solutions. So this
method is applied and enables us to get rather easily so-
lutions at high frequencies

Quasi-singularities of Y and quasi-trapped modes

The quasi-singularities of the matrix Y correspond to
an eigenvector of Y with a very high eigenvalue. For
this eigenvector Y as = λsas with λs → ∞ so that
as = 1/λsbs → 0 (bs = Y as). That means that the eigen-
vector associated to a quasi-singularity can be also associ-
ated to a quasi-trapped mode of the geometry. Practically,
if there is a quasi-singularity at x = xs for Y, we take
the associated eigenvector as as an initial condition of the
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evolution equation (9) and we calculate the values of a(x)
for xs ≤ x ≤ x2. The resulting quasi-trapped modes
are shown in the figures (3) and (4) for two different val-
ues of the quasi-singularity locations xs = 1.1157 and
xs = −0.294, in the case of a waveguide with semicircle
indentation. The frequency is such that kh0 = 22.3π
where h0 is the height of the waveguide in the leads.
That means that at this frequency there are 22 propagating
modes in the leads.
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Figure 3: Quasi-trapped mode for a quasi-singularity at
xs = 1.1157 for the semi-circle geometry at

kh0 = 22.3π
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Abstract
An asymptotic study of reflection of modes in a slowly

varying plane elastic waveguide is presented. The re-
flection occurs in the vicinity of a cross section where
the wave frequency coincides with the cut-off frequency.
Elastic constants and the volume density are assumed to
be even functions of the distance from this section. Partial
reflection and transmission of modes take place near this
section. Results are obtained by the method of matched
asymptotic expansions and are formulated in the general
form so that they can be applied to the waves of another
nature.

Introduction
The propagation of elastic waves in an inhomogeneous

plane elastic waveguide has been considered in the litera-
ture ( see [1] - [4] and references therein). We assume that
the properties of the waveguide vary smoothly and slowly
in the lateral direction, along the axis of the waveguide,
being constant in transverse directions. The width of the
waveguide is constant. The problem contains a small pa-
rameter that is the ratio of the wavelength and the scale
of the lateral inhomogeneity. The wave field in such a
waveguide is the superposition of modes which propagate
independently of one another. Their amplitudes vary in
such a way that the flux of energy in each mode is con-
served. We say that they propagate adiabatically. The
adiabatic approach fails to work near the cross section
where the phase speeds of two modes coincide. We call
the coordinate of a cross section where the coincidence
occurs a degeneracy point. The transformation of energy
between the degenerate modes takes place near the de-
generacy point. Our aim here is to develop an asymptotic
theory for describing this transformation.

The problem of describing the transformation of modes
in slowly inhomogeneous waveguides has a long history
(see, for example, [5]-[10]). Asymptotic formulae, which
arises, are similar to waves of a different nature: acoustic,
electromagnetic, elastic waves and so on. We formulate
the problem in general terms. All lines of argument and
results can be applied to problems of the propagation of
waves of another nature.

The asymptotic theory of modes transformation in a
slowly varying elastic waveguide has been developed in

paper [10]. We treat here the same problem but we do it
under another assumptions of lateral inhomogeneity near
a degeneracy point. It has been shown in [10] that the
points of the degeneracy are points where the frequency
of waves coincides with the cut-off frequency. It has
been obtained that a mode which runs in the direction
of the cut-off section reflects totally near this section and
the asymptotic description of this phenomenon has been
done. The consideration in [10] has been carried out in
the assumption that the properties of the waveguide vary
in the monotone way near the cut-off section. Here we
assume that the cut-off section is a specific section for
the inhomogeneity. It is a section of symmetry of the
waveguide and all the parameters of the waveguide, i.e.,
the elastic constants and the density, are even functions of
the distance from this section.

In our considerations we use the method developed
in [8], [9], [10]. We rewrite the elastic equations in
the form of a Schrödinger type equation. We construct
the asymptotic formulae for modes in the adiabatic ap-
proach. Next we consider reference homogeneous waveg-
uides which possess the same properties as the inhomo-
geneous waveguide in the cut-off cross section and near
it. We obtain expansions of the phase speed of degener-
ating mode and of its vertical structure in the reference
waveguide in terms of the distance from the cut-off cross
section by using the perturbation method. These expan-
sions helps to estimate the width of the resonance zone
in the inhomogeneous waveguide near the cut-off section
where the adiabatic approach fails to hold. To do this, we
examine the singularities that occur near cut-off section in
all terms of the adiabatic expansion. Then we introduce
a scaled distance variable and construct an inner asymp-
totic solution dependent on this variable, which works in
the resonance zone. We call it the resonance expansion. It
describes the common field of both degenerating modes.
Finally we match the inner and outer expansions in the
common zones of their validity.

The results are as follows. The transformation of en-
ergy between two modes occurs near a cut-off section
where the phase speeds of these modes coincides. A de-
generating mode incident on the cut-off section partially
reflects and partially penetrates to the other side of it.
The reflection and the transmission coefficients are calcu-
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lated. An asymptotic expansion near the cut-off section is
found.

Elastic equations and their reduction to
a Schrödinger type equation

The time-harmonic displacements in a linear isotropic
elastic plate −∞ < x1, x2 < ∞,−H ≤ x3 ≤ H are
described by the Lamé equations which are accompanied
by the traction-free boundary conditions on the faces:

−iρω2uq =
∂σqj

∂xj
, σqj = δqjλ

∂uk

∂xk
+ µ(

∂uq

∂xj
+

∂uj

∂xq
),

where uq is the qth component (q = 1, 2, 3) of the vector
of displacements, σqj is the stress tensor, ρ is the density,
ω is frequency, λ, µ are the Lamé coefficients, and sum-
mation on repeated indices is assumed. Lamé equations
are to be considered in conjunction with the traction-free
boundary conditions σq3|x3=−H = σq3|x3=H = 0, q =
1, 2, 3. We assume that all the components uq, σqj do not
depend on x2, i.e., the wave propagates along the axis x1.
All the variables here are dimensionless. We assume that
the waveguide is slowly irregular along the axis x1 and
µ = µ(εx1), λ = λ(εx1), ρ = ρ(εx1), where ε ¿ 1.
In what follows, we use two new variables x = εx1 and
z = x3/H that are of order of unity. We reduce the Lamé
equations to a Schrödinger type equation in the same way
as was done in [10]:

KΨ = −iεΓ
∂Ψ
∂x

, BΨ| z=1 = BΨ| z=−1 = 0. (1)

Here Ψ is the four component vector

(Ψ)1 = −iωu1, (Ψ)2 = −iωu3,

(Ψ)3 = σ11, (Ψ)4 = σ13 = σ31,

the matrix operators K, Γ and B are defined in such a
way:

K =




−ωρ 0 0 i ∂
∂z

0 −ωρ− 1
ω

∂
∂z

4µ(λ+µ)
2µ+λ

∂
∂z i ∂

∂z
λ

2µ+λ 0
0 i λ

2µ+λ
∂
∂z

−ω
2µ+λ 0

i ∂
∂z 0 0 −ω

µ


 ,

(Γ)1j = δ3j , (Γ)2j = δ4j , (Γ)3j = δ1j , (Γ)4j = δ2j ,

B =




0 0 0 i

0 − 4µ(λ+µ)
ω(2µ+λ)

∂
∂z i λ

(2µ+λ) 0
0 0 0 0
0 0 0 0


 ,

where δij is the Kronecker δ.

We introduce the inner product of two four-
component vector-functions f(z) and g(z) as (f ,g) =∫ 1
−1 f j(z)gj(z) dz, where summation is taken over the re-

peated subscripts and f j(z) denotes the complex conju-
gate of fj(z). The matrix G is symmetric, and the oper-
ator K is Hermitian (f ,Kg) = (Kf ,g) on the functions
f(z) and g(z) satisfying the boundary conditions.

Every solution of problem (1) satisfies the conserva-
tion law (Ψ,ΓΨ) = Const, which follows from (1) and
the fact that K is Hermitian. It can be interpreted as the
conservation of the average x - component of the flux of
energy (see [3]). Let Ψ1 and Ψ2 be any two different
solutions of Eq. (1). The conservation law can then be
generalized in the following way (Ψ1,ΓΨ2) = Const.

Modes in the adiabatic approximation
The standard asymptotic series for a mode reads [10]

Ψn = Φn exp ( i
ε

x∫
x∗

βn(x′)dx′), (2)

Φn = ϕn√
Nn

+ εΦ(1)
n + ε2Φ(2)

n + . . . , (3)

where βn and ϕn are consequently the eigenvalue and the
corresponding eigenelement, respectively, of the spectral
problem

Kϕn = βnΓϕn, Bϕn|z=1 = Bϕn|z=−1 = 0.

We deal here with modes corresponding to real eigen-
values. Then the notation Nn in (3) means that Nn =
(ϕn,Γϕn). It ensures that the average x - component of
the flux of energy of a mode is preserved and is equal
to unity in modulus. The sign of it determines the di-
rection in which the mode carries energy. For the sake
of definiteness, 0 ≤ arg(

√
Nn) < π. The approxi-

mations Φ(m)
n are determined from the recurrent system

KΦ(m)
n = βnΓΦ(m)

n −i∂Φ
(m−1)
n
∂x and boundary conditions

(1).
Our aim is to investigate the case where the adiabatic

approximation does not work. It happens at such distance
x∗ that Nn = 0 and Φn has a singularity. At this distance,
the frequency of the wave coincides with the cut-off fre-
quency and eigenvalues of two modes, say β1 and β2, co-
incides. We choose the amplitudes of eigenelements ϕ1

and ϕ2 in such a way that ϕ1(x∗, z) = ϕ2(x∗, z) and
N1 = (β2− β1)ζ, N2 = (β1− β2)ζ near x∗. The param-
eter ζ is equal to ±1, it depends on the behaviour of the
dispersion curves near cut-off frequency [10]. The func-
tions ϕ1, ϕ2 are of order of unity.
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The crucial point in what follows is an investigation of
the dependence of eigenvalues on the distance from the
cut-off section. It is shown here that, under some condi-
tions,

β1 − β2 = B(x− x∗) + o(x− x∗), B = const.

For example, this is the case when the elastic constants
and the volume density are even smooth functions of x−
x∗. We show that the singularities in higher-order terms
εmΦ(m)

n ,m = 1, 2, . . . increase as εm/(x − x∗)2m. This
implies that the width of the resonance zone is of order√

ε.

Transmission and reflection of modes
near a cut-off section

The main result of the paper is an asymptotic de-
scription of the process of reflection and transmission of
modes near a cut-off section in the case where this section
is a section of symmetry of the waveguide.

To the mode carrying energy in the positive direction of
x-axis we assign the number one; therefore N1 > 0. The
mode carrying energy in the negative direction has num-
ber two, we obtain N2 < 0. The first mode is incident on
the cut-off section. In the resonance zone, the interaction
of the first and second modes occurs, which produces the
reflected mode of number 2 for x < x∗ and the transmit-
ted mode behind the cut-off section for x > x∗. Outside
the resonance zone, we have

Ψ(x, z) = Ψ1(x, z) + RΨ2(x, z), x∗ − x À √
ε,

Ψ(x, z) = TΨ1(x, z), x− x∗ À
√

ε,

where R and T are the reflection and the transmission co-
efficients, respectively. The process of modes interaction
is described by an inner asymptotic expansion, which is
valid in the resonance zone. This expansion incorporates
the contributions of both modes interacting in the reso-
nance zone. This expansion is constructed, and the main
term of it is as follows:

Ψ(x, z) = ADµ(t)ϕ(x∗, z)eiθ(x) + . . . ,

θ(x) =
∫ x

x∗

β1(x′) + β2(x′)
2

dx′,

ϕ(x∗, z) = ϕ1(x∗, z) = ϕ2(x∗, z),
t = e−iπ/4

√
2B(x− x∗)/

√
ε,

where the positive square root is understood, Dµ(t)
stands for the parabolic cylinder function, which is the
solution of the differential equation

d2Dµ(t)
dt2

+ (µ +
1
2
− t2

4
)Dµ(t) = 0

(see [11]). Here ζ is chosen equal to -1.
The constants A, R and T are determined from the

matching of the inner expansion and the adiabatic expan-
sion in the common zone of their validity. The matching
gives the following values:

R = T =
1√
2
, A =

e−iπ/8

23/4B1/4
.
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Abstract
An efficient numerical method is developed for second

harmonic generation in two-dimensional wave-guiding
structures composed of segments that are invariant in the
main propagation direction. The method marches two op-
erators and two functions along the waveguide axis. A
Chebyshev collocation method is used to discretize the
longitudinal direction in each segment for computing the
Dirichlet-to-Neumann map and the locally generated sec-
ond harmonic wave.

Introduction
The nonlinear optical phenomenon of second harmonic

generation (SHG) has found applications in many fields.
In a number of applications, it is desirable to have SHG in
optical waveguides. SHG can be enhanced by a periodic
structure along the waveguide axis [1], [2], [3]. Efficient
numerical methods are needed to analyze SHG in such
piecewise uniform and periodic wave-guiding structures.
To analyze linear waves in piecewise uniform waveg-
uides, the eigenmode expansion method (EEM) and the
bidirectional beam propagation method (BiBPM) are par-
ticularly efficient. In [2] and [3], the BiBPM and the
EEM are extended to handle SHG, respectively. How-
ever, both methods become very complicated due to the
inhomogeneous term in the governing equation of the sec-
ond harmonic wave. In a recent work [4], we devel-
oped an efficient method for linear waves in piecewise
uniform waveguides based on the Dirichlet-to-Neumann
(DtN) maps. For a uniform segment fromzj−1 to zj , the
DtN mapM is an operator that maps the wave field at
zj−1 andzj to thez-derivative of the wave field there. A
highly accurate Chebyshev collocation method is used for
discretizingz in each uniform segment. In this paper, we
extend the DtN map method to SHG.

Operator marching scheme
We consider a two-dimensional (2D) wave-guiding

structure in thexz plane and assume that both the funda-
mental frequency and second harmonic waves are given
in the transverse electric (TE) polarization. Therefore,
the y-component of the electric field is the real part of
ue−iωt +ve−2iωt, whereω is the angular frequency of the
fundamental frequency wave. Although higher harmon-

ics can also be generated by the second order nonlinear
effect, they are typically very weak and can thus be ig-
nored. The governing equations for SHG are

∂2

zu + ∂2

xu + [k0n
(1)]2u = −k2

0
χ(2) ūv, (1)

∂2

zv + ∂2

xv + [2k0n
(2)]2v = −2k2

0
χ(2) u2, (2)

wherek0 = ω/c is the free space wavenumber,c is the
speed of light in vacuum,n(1) andn(2) are the linear re-
fractive index functions atω and 2ω, respectively,χ(2)

is an element in the second order nonlinear susceptibility
tensor. We assume that the structure is linear forz < 0
andz > a and piecewise uniform (i.e.,z-invariant) with
longitudinal discontinuities atz0, z1, . . . , zm satisfy-
ing 0 = z0 < z1 < . . . < zm = a. For the segment
(zj−1, zj), we haveχ(2) = χ

(2)

j (x), n(l) = n
(l)
j (x) for

l = 1, 2. This is valid even forj = 0 and j = m + 1
if we definez−1 = −∞ andzm+1 = +∞. Notice that
χ

(2)

0
= χ

(2)

m+1
= 0. For a given incident waveu+ (at the

fundamental frequency) inz < 0, we have transmitted
waves inz > a and reflected waves inz < 0 for both
frequencies. With a proper definition of the square root

operatorsL(l)
j =

√

∂2
x + [k0n

(l)
j ]2, we can write down the

boundary conditions as:

∂zu + iL
(1)

0
u = 2iL

(1)

0
u+(x, 0−), z = 0, (3)

∂zu − iL
(1)

m+1
u = 0 at z = a, (4)

∂zv + iL
(2)

0
v = 0 at z = 0, (5)

∂zv − iL
(2)

m+1
v = 0 at z = a. (6)

Under the undepleted-pump approximation, the effect of
the second harmonic wave on the fundamental frequency
field is ignored. Eq. (1) is then replaced by the linear
homogeneous Helmholtz equation:

∂2

zu + ∂2

xu + [k0n
(1)]2u = 0. (7)

This approximation is appropriate for the examples con-
sidered in this paper. Sinceχ(2) is small, the magnitude
of v is still much smaller than that ofu.

In principle, the method developed here can be used in
an iterative procedure to solve the fully nonlinear SHG
problem without the undepleted-pump approximation.
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The DtN marching method foru satisfying (7,3,4) was
developed in [4]. Here, we concentrate on the second har-
monic v and extend the method to the inhomogeneous
Helmholtz equation (2). For all solutions of (2) and (6),
we define the operatorsQj , Yj and functionsgj(x), fj(x)
to satisfy

∂zvj = Qj vj + gj , (8)

Yj vj = vm + fj, (9)

wherevj = v(x, zj), vm = v(x, a), ∂zvj = ∂zv(x, zj).
Condition (5) is excluded in the definition, therefore, the
above equations are valid for infinitely many solutions of
v. When the transverse variablex is truncated and dis-
cretized byN points,Qj andYj areN × N matrices,fj

andgj are column vectors of lengthN . From the bound-
ary conditions atz = a and the definitions, we have

Qm = iL
(2)

m+1
, gm = 0, Ym = I, fm = 0, (10)

where I is the identity operator. In the definition, the
functions fj and gj are the contributions of the right
hand side of (2). If Eq. (2) becomes homogeneous, then
gj = fj = 0 for all j. This implies that the operators
Qj andYj are defined independent of the inhomogeneous
term. Therefore, they can be marched exactly the same
way as in [4]. For the segment(zj−1, zj), we define the
local DtN mapM by

M

[

s(x, zj−1)
s(x, zj)

]

=

[

∂zs(x, zj−1)
∂zs(x, zj)

]

, (11)

wheres = s(x, z) is an arbitrary solution of the homoge-
neous Helmholtz equation at2ω:

∂2

zs + ∂2

xs + [2k0n
(2)

j ]2s = 0, zj−1 < z < zj . (12)

If we write down the DtN map in2 × 2 blocks

M =

[

M11 M12

M21 M22

]

,

then the two operatorsQj andYj can be marched fromzj

to zj−1 by the following formulas [4]:

Z = (Qj − M22)
−1M21, (13)

Qj−1 = M11 + M12Z, (14)

Yj−1 = YjZ. (15)

To find the marching formulas for the functionsgj and
fj, we consider an arbitrary solutionv of (2) and (6) and

split it asv = w + s in the segment(zj−1, zj), wherew

satisfies the inhomogeneous Helmholtz equation

∂2

zw + ∂2

xw + [2k0n
(2)

j ]2w = −2k2

0χ
(2)

j u2, (16)

for zj−1 < z < zj and zero Dirichlet boundary condi-
tions w = 0 at z = zj−1 and zj. Notice thatw cor-
responds to the locally generated second harmonic wave
in the segment. Meanwhile,s satisfies the homogeneous
equation (12). We can evaluate∂zv atzj−1 andzj through
(8), as well as throughv = w+s and the DtN mapM for
s. This gives rise to

gj−1 − ∂zw|zj−1
= (M11 − Qj−1)vj−1 + M12vj

gj − ∂zw|zj
= M21vj−1 + (M22 − Qj)vj .

Together with (13) and (9), the above leads to

h = (Qj − M22)
−1

(

gj − ∂zw|zj

)

, (17)

gj−1 = ∂zw|zj−1
− M12h, (18)

fj−1 = fj + Yjh. (19)

Starting from the initial values given in (10) and following
the marching formulas (13-19), we can calculateQ0, Y0,
g0 andf0, then the second harmonic field atz0 = 0 and
zm = a can be solved from

[

Q0 + iL
(2)

0

]

v0 = −g0, vm = Y0 v0 − f0. (20)

In each step, we need to find the local DtN mapM (if
it is not already available), to find the locally generated
second harmonic fieldw, to solve linear systems with co-
efficient matrixQj−M22 for Z andh, and to find the ma-
trix productsM12Z andYjZ, etc. Whenx is discretized
by N points, the operatorsQj , Yj, Z, M11, M21, etc, are
approximated byN ×N matrices. Therefore,O(N3) op-
erations are required for computingZ andh, M12Z and
YjZ. It turns out thatM andw can be obtained in less
operations. Therefore, the total required number of op-
erations in each step is stillO(N3). For a structure with
m uniform segments, the method requiresO(mN3) op-
erations. To take advantage of the property that the struc-
ture is piecewisez-invariant, we discretizez by a Cheby-
shev collocation method. If the segment(zj−1, zj) is dis-
cretized byq points, thenq is typically much smaller than
N . The DtN mapM can be found inO(qN2) operations.
To findw, we need to solve the inhomogeneous equation
(16) with zero Dirichlet boundary conditions. This can be
done inO(q2N) operations.
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A numerical example
We consider an example originally studied Locatelliet

al. in [2]. It is a 2D model (top view) of a deeply etched
waveguide with a semiconductor core. Starting from a
symmetric slab waveguide with air claddings and a core
of width 2.5 µm, we introduce eight equally spaced air
gaps in the waveguide core. The length of these air gaps
is 0.2 µm. There are seven guiding segments between the
air gaps. The length of each guiding segment is0.837 µm.
More precisely, we havez2k = 1.037 k (µm), z2k+1 =
1.037 k + 0.2 (µm) for k = 0, 1, ..., 7. The total length
of thez-varying part of the structure isa = z15 = 7.459
µm. In the waveguide core, we have a refractive index
n(1) = 3.15 at the fundamental frequency andn(2) = 3.3
for the second harmonic. In our notation, these two values
correspond ton(l)

2k(x) for |x| < 1.25 µm, l = 1, 2 and
0 ≤ k ≤ 8. The second order nonlinear coefficient is
assumed to beχ(2)

2k (x) = 300 pm/V in the waveguide core
(|x| < 1.25 µm) for the seven guiding segments (1 ≤ k ≤

7). Notice thatχ(2) is assumed to be zero forz < 0 and
z > a. The incident wave is the fundamental mode of
the original symmetric slab waveguide with a maximum
electric field amplitude of106 V/m.

We first calculate the linear transmission and reflection
properties of this structure. It is found that a transmission
resonance around1.55 µm matches well with another
transmission peak around0.775 µm. Using the method
described earlier, we calculate the second harmonic field
for a number of wavelengths. The maximum absolute
value of the generated second harmonic wave atz = a

is shown versus the free space wavelengthλ at the funda-
mental frequency in Fig. 1. Atλ = 1.55 µm, the max-
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Figure 1: Maximum amplitude of the generated second
harmonic wave atz = a.

imum we obtained is5.37 × 103 V/m. This is slightly
larger than the value5.1 × 103 V/m reported in [2]. Our
numerical results are obtained withq = 35 for the guid-
ing segments andq = 10 for the air gaps. Thex variable
is discretized form−2.5 µm to 2.5 µm with 201 points.
Perfectly matched layers are used at the two ends of the
interval.

Conclusions
We have developed a marching scheme for second har-

monic generation (SHG) in piecewise uniform waveg-
uides based on Dirichlet-to-Neumann (DtN) maps. It is
an extension of our earlier work [4] for linear waves. Due
to an inhomogeneous term in the governing Helmholtz
equation of the second harmonic wave, existing methods
for SHG require additional analytic approximations. Our
method solves the inhomogeneous Helmholtz equation
rigorously. Compared with the linear DtN map method,
the additional effort required for computing SHG is in-
significant. The total required number of operations for
computing the second harmonic wave in a structure with
m segments isO(mN3), whereN is the number of points
for discretizing the transverse variable. To take advan-
tage of the piecewise uniform nature of the structure, a
highly accurate Chebyshev collocation method is used to
discretizez in each segment for computing the DtN map
and the locally generated second harmonic field.
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