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2 Plenary Lecture, Monday, 24 July, 9:15–10:15

Discontinuous Petrov Galerkin (DPG) Method with Optimal Test Functions
for Wave Propagation Problem. An Overview

Leszek Demkowicz1,∗, Jay Gopalakrishnan2

1ICES, University of Texas at Austin, USA
2Fariborz Maseeh Department of Mathematics & Statistics, Portland State University, USA

∗Email: leszek@ices.utexas.edu

Abstract

We review the main facts about the DPG method:
possibility of different variational formulations,
the paradigm of broken test spaces, different in-
terpretations of the abstract DPG method, sta-
bility and dispersion analysis, and preliminary
results on iterative solvers. Contrary to stan-
dard Galerkin, the DPG method does not suffer
from any preasymptotic stability problems, and
enables adaptivity starting with coarse meshes
that do not satisfy the Nyquist criterion. The
DPG method automatically reproduces stabil-
ity of the continuous problem and enables solu-
tion of problems that may not be stable when
discretized with standard Galerkin, e.g. meta-
materials or cloaking problems. The main points
of the discussion will be illustrated with time-
harmonic acoustics, Maxwell and elastodynam-
ics equations.

Keywords: acoustics, electromagnetics, elas-
todynamics, DPG method
Acknowledgment: The work has been suppor-
ted with AFOSR grant FA9550-12-1-0484.

1 Introduction. Different variational for-
mulations

It may not be widely known that a boundary-
value (BV) problem can be formulated using
different variational formulations [1]. The for-
mulations differ in functional setting and imply
convergence in different norms when discretized
with finite elements. Consider, e.g. the “math-
ematician’s version” of time-harmonic acoustics
equations with the impedance boundary condi-
tion (BC):

iωp +divu = f in Ω
iωu +∇p = g in Ω

p = u · n on Γ
(1)

Here Ω ⊂ IRN is a Lipschitz domain with bound-
ary Γ, p, u denote pressure and velocity, f, g
are data, ω stands for the angular frequency,
and i is the imaginary unit. Assuming (f, g) ∈

L2(Ω)×(L2(Ω))N , we can rewrite the equations
in the operator language,

{
p ∈ H1(Ω), u ∈ H(div,Ω), p = u · n on Γ
A(p, u) = (f, g)

(2)
where A(p, u) = (iωp+ divu, iωu+ ∇p).

The strong formulation (2) is equivalent to
what we might call the trivial variational for-
mulation,


p ∈ H1(Ω), u ∈ H(div,Ω), p = u · n on Γ
iω(p, q) + (divu, q) = (f, q) q ∈ L2(Ω)
iω(u, v) + (∇p, v) = (g, v) v ∈ (L2(Ω))N

(3)
obtained by multiplying equations (1) with test
functions q, v and integrating over Ω. As usual,
(·, ·) denotes the L2(Ω) inner product with the
corresponding L2-norm denoted by ‖ ·‖. Again,
we can write the equation in a more compact
form as:


p ∈ H1(Ω), u ∈ H(div,Ω), p = u · n on Γ
(A(p, u), (q, v)) = (f, q) + (g, v)

q ∈ L2(Ω), v ∈ (L2(Ω))N

(4)
Each of the the two equations can now be re-
laxed, i.e. integrated by parts with the BC built
in. If we relax both equations, we obtain the ul-
traweak variational formulation,


p ∈ L2(Ω), v ∈ (L2(Ω))N

−((p, u), A(q, v)) = (f, q) + (g, v)
q ∈ H1(Ω), v ∈ H(div,Ω), q = −v · n on Γ

(5)
Note that the (formal) adjoint A∗ = −A, and
that the sign in the impedance BC for the test
functions has changed.

If we relax only one of the equations, we
obtain two mixed formulations. For instance,
relaxing the conservation of mass equation and
keeping the momentum equations in the strong
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form, we get,
p ∈ H1(Ω), u ∈ (L2(Ω))N

iω(p, q)− (u,∇q) + 〈p, q〉Γ = (f, q)
iω(u, v) + (∇p, v) = (g, v)

q ∈ H1(Ω), v ∈ (L2(Ω))N

(6)
Notice that the impedance BC has been built
into the first formulation by replacing normal
velocity u · n with pressure p. Brackets denote
duality pairing between H−1/2(Γ) and H1/2(Γ)
that, due to the regularity of traces of p, q on Γ,
reduces to the L2-product on Γ.

If we use the second equation to express u
in terms of ∇p, substitute it into the first equa-
tion, and multiply it side-wise by iω, we ob-
tain the classical variational formulation for the
Helmholtz equation,

u ∈ H1(Ω)
(∇p,∇q) + iω〈p, q〉Γ = (iωf + g, v)

v ∈ H1(Ω)
(7)

The second mixed formulation is obtained by
relaxing the momentum equations,

p ∈ L2(Ω), u ∈ V
iω(p, q) + (divu, q) = (f, q)
iω(u, v)− (p,divv) + 〈u · n, v · n〉Γ = (g, v)

q ∈ L2(Ω), v ∈ V
(8)

where the energy space for the velocity has now
to incorporate an extra regularity assumption
resulting from building in the impedance BC,

V := {v ∈ H(div,Ω) : v · n ∈ H1/2(Γ)} (9)

As before, we can eliminate now the pressure to
obtain a variational formulation in terms of the
velocity only,

u ∈ V
(divu,divv)− ω2(u, v) + iω〈u · n, v · n〉Γ

= (f + iωg, v), v ∈ V
(10)

The mixed formulations and their reduced coun-
terparts use symmetric functional settings and
can be discretized with the classical Galerkin
method.

It can be proved [1] that all formulations are
simultaneously well (ill) posed with related cor-
responding inf-sup constants1. A critical tool
in proving it are the two versions of the Closed

1They are of the same order.

Range Theorem, for continuous and for closed
operators. Similar results hold for the other two
model problems: Maxwell equations and elasto-
dynamics.

2 The paradigm of breaking test func-
tions

Each of discussed variational formulations ad-
mits a corresponding variational formulation with
broken test spaces. In a Finite Element (FE)
“slang”, we can say that we can “break the test
functions”. More precisely, we do two things:
we eliminate the boundary condition for test
functions (if present), and we replace the test
spaces with their corresponding “broken” coun-
terparts. The trivial formulation stays with-
out any change, the L2 space does not present
any conforming requirements. In the remaining
three formulations, and the two reduced for-
mulations the price we pay for breaking test
functions is the introduction of extra unknowns:
(pressure) traces p̂ ∈ H1/2(Γh) and (velocity)
traces2 û ·n ∈ H−1/2(Γh). The two trace spaces
are defined on mesh skeleton Γh :=

⋃
K∈Th ∂K

and can be viewed as traces of functions from
H1(Ω) and H(div,Ω) to the mesh skeleton [2]
equipped with quotient (minimum energy ex-
tension) norms.

The formulations with broken test spaces
corresponding to the classical and ultraweak for-
mulations are as follows.

Classical formulation: u ∈ H1(Ω), û · n ∈ H̃−1/2
0 (Γh)

(∇p,∇hq) + iω〈p, q〉Γ − 〈û · n, q〉Γh

= (iωf + g, v), v ∈ H1(Ωh)

(11)

where

H̃1/2(Γh) := trΓh
H1

0 (Ω)

H̃−1/2(Γh) := trΓh
H0(div,Ω)

In other words, the additional unknowns vanish
on domain boundary Γ.

Ultraweak formulation:
p ∈ L2(Ω), u ∈ (L2(Ω))N

p̂ ∈ H1/2(Γh), û · n ∈ H−1/2(Γh)
p̂ = û · n on Γ
−(p, iωq + divhv)− (u, iωv + ∇hq)
= (f, q) + (g, v) q ∈ H1(Ωh), v ∈ H(div,Ωh)

(12)

2Also called “fluxes”.
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Above, ∇h,divh define element-wise defined op-
erators, and sub-index h in H1(Ωh), H(div,Ωh)
indicates broken energy spaces.

The remaining formulations with broken test
spaces are introduced in a similar way. We can
show [2] that all formulations with broken test
spaces are well posed with inf-sup constants of
the same order as those corresponding to “un-
broken” test spaces. In particular, the stability
constants are mesh independent.

3 The ideal and practical DPG methods

The (ideal) DPG method can be viewed from
three angles.

DPG is a Petrov-Galerkin scheme with
optimal test functions. The test functions
are computed by inverting the Riesz operator
corresponding to the test inner product. More
precisely, if b(u, v), u ∈ U, v ∈ V denotes the
bilinear form corresponding to any of the dis-
cussed formulations, u denotes the (group) un-
known, and v stands for the (group) test func-
tions, the optimal test functions v = vδu corre-
sponding to a trial (basis, shape) function δuh ∈
Uh ⊂ U solves the variational problem{

vδuh ∈ V
(vδuh , δv)V = b(δu, δv) δv ∈ V (13)

In the case of broken test spaces and localizable
test norm,

v = {vK}K∈Th ‖v‖2V :=
∑
K

‖vK‖2V (K) (14)

with ‖vK‖V (K) being a norm of the local, ele-
ment K test space V (K), the inversion of the
Riesz product in (13) is done element-wise. In
other words, the computation of optimal test
functions increases the local but not the global
cost of the FE method. The test functions are
termed to be optimal since, with such test func-
tions, the discrete method automatically inher-
its stability properties of the continuous one.

DPG is a minimum residual method
with the residual measured in the dual
norm.

uh = arg minuh∈Uh
‖b(uh, ·)− l(·)‖V ′

= arg minuh∈Uh
‖R−1

V (b(uh, ·)− l(·))‖V
(15)

Above l(·) denotes the antilinear “load func-
tional”. Again the practical way to compute
the dual norm is to use the fact that the Riesz

operator RV for the test space is an isomorphic
isometry, and replace the dual norm in V ′ with
the test norm in V at the expense of inverting
RV .

DPG is a mixed method where one solves
simultaneously for the approximate solution uh ∈
Uh and the error representation function (Riesz
representation of the residual),

ψ = R−1
V (b(uh, ·)− l(·)) (16)

uh ∈ Uh, ψ ∈ V
(ψ, v)V − b(uh, v) = −l(v) v ∈ V
b(δuh, ψ) = 0 δuh ∈ Uh

(17)
This is a weird mixed problem as one solves for
the approximate solution uh coming from the
finite-dimensional approximate trial space, and
for ψ coming from the broken but still infinite-
dimensional test space.

The first two interpretations were proposed
in [3], the third one in [4]. Each of the inter-
pretations of DPG implies important proper-
ties of the method: DPG stiffness matrix is al-
ways Hermitian and positive definite (minimum
residuals), DPG is a Ritz method and as such,
contrary to standard Galerkin, does not suf-
fer from any preasymptotic behavior (minimum
residuals), DPG automatically guarantees sta-
bility for any well posed problem (optimal test
functions), and DPG comes with an a-posteriori
error estimation3 (‖ψ‖V = residual) built in.

Inversion of the Riesz operator can be done
only approximately. This is done by by re-
placing the test space V in all three interpre-
tations above with an enriched test space Ṽ ⊂
V with higher dimension than the trial space,
dimṼ >> dimUh. In practice we define Ṽ by
raising the order of approximation used to ap-
proximate uh. If uh is approximated using ele-
ments of order p, then the optimal test functions
vδuh and ψ, are approximated with polynomials
of order4r = p+ ∆p . Typically ∆p = 2.

The error caused by the approximate inver-
sion of the Riesz operator can be estimated us-
ing appropriately defined Fortin operators [2,5].

3Evaluation really.
4We use the exact sequence elements to discretize

p, u, p̂, û ·n. The order of approximation refers always to
the H1-conforming elements. This guarantees that best
approximation errors corresponding to different compo-
nents of the group unknown u, converge with the same
rates.
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4 Discussion

It should be clear by now that it is more ap-
propriate to talk about a DPG methodology
rather than a single DPG method. Not only we
have different choices of a variational formula-
tion but, given a particular functional setting,
we can choose different test norms. With dif-
ferent test norms, we minimize the residual in
different dual norms and obtain different con-
vergence properties. For any of the discussed
DPG methods, we can claim the following con-
vergence result:

‖u− uh‖U ≤
MC

γ︸ ︷︷ ︸
stability constant

inf
wh∈Uh

‖u− wh‖U

(18)
where M,C are the continuity constants for bi-
linear form b(u, v) and the Fortin operator men-
tioned above, and γ is the inf-sup constant. Re-
member that u represents here a group unknown,
and the error comprises of errors corresponding
to different components of u measured in differ-
ent norms.

In context of problems with large frequency
ω, two formulations stand out: strong (trivial)
formulation with L2 test norm leading to the
First Order Least Squares (FOSL) method, and
ultraweak formulation with test graph norm,

‖(q, v)‖2V := ‖A(q, v)‖2 + ‖(q, v)‖2 (19)

Both of these formulations are robust in ω, i.e.
the corresponding stability constants are inde-
pendent of ω. This is reflected in the spectral
structure of the corresponding stiffness matrix.
Fig. 1 presents spectrum for the stiffness ma-
trix for the 1D version of the discussed model
problem obtained after condensation of all in-
ternal degrees of freedom (d.o.f.). The number
of interface d.o.f. for all DPG formulations is
the same and it is roughly doubled compared
with the standard Galerkin. As illustrated in
Fig.1, the spectrum of the stiffness matrix for
Galerkin method is complex. Being a minimum
residual method, any DPG method delivers al-
ways a positive-definite Hermitian matrix with
a real and positive spectrum. Except for a cou-
ple of outliers, spectra for the ultraweak DPG
and least squares methods are the same whereas
the spectrum for the primal DPG method is
much more spread out. As expected, the Conju-
gate Gradient (CG) method converges with the

same number of iterations which is essentially
smaller than for the primal DPG method.

Figure 1: Spectrum of stiffness matrix corre-
sponding to classical Galerkin, least squares,
primal and ultraweak DPG methods.

Same spectral properties of the stiffness ma-
trix do not imply that least squares and ul-
traweak DPG deliver the same quality results.
The two methods deliver convergence in differ-
ent norms. For the ultraweak formulation, the
error in p, u is measured in L2-error, for the
strong formulation in the graph norm. The L2-
projection is pollution free 5 whereas the pro-
jection in the graph norm is not. In 1D, traces
and fluxes are just numbers and the correspond-
ing best approximation error (measured in any
norm) is zero. Consequently, the 1D ultraweak
DPG method is pollution free, whereas the least
squares exhibit very diffusive behavior [6]. The
different behavior of different methods for the
discussed 1D model problem is illustrated in
Fig. 2.

DPG enables automatic adaptivity start-
ing with coarse meshes. We conclude the
presentation with an example of an adaptive so-
lution. With guaranteed stability, lack of pre-
asymptotic behavior, and the a-posteriori er-
ror estimate built in, the DPG methodology
provides a very natural framework for adap-
tive methods, including hp-adaptivity. With
the DPG adaptive technology we aim at prob-

5Keeping number of elements per wavelength fixed
guarantees the same L2 error in percent of the L2-norm.



6 Plenary Lecture, Monday, 24 July, 9:15–10:15

lems for which the adaptivity matters: high fre-
quency and coupled problems with localized so-
lutions, and low and medium frequency prob-
lems with singular solutions. To illustrate the
points we present an adaptive solution to a 2D
Gaussian beam problem with 45 wavelengths
in the domain. We use the ultraweak formu-
lation starting with an initial 4 × 4 mesh of
quadratic elements that clearly does not sat-
isfy the Nyquist criterion. Fig. 3 presents three
meshes selected from a series of 44 hp-adaptive
meshes along with the corresponding solutions.
We “grow” the solution with the mesh, with the
final solution supported by a mesh refined only
where it is needed. The presented hp meshes
were obtained using a standard greedy method
based on element contributions to the global
residual and a simplified hp strategy: we pro-
ceed with h refinements until we reach an el-
ement size smaller than half-wavelength, and
then switch to p-refinements.

Remark. The enriched space methodol-
ogy guarantees the resolution of optimal test
functions (residual) with a negligible error pro-
vided the element length is of the order of half-
wavelength. With the use of the graph test
norm (essential for optimal stability properties
of ultraweak DPG), the condition is not satisfied
for coarse meshes (large elements). We circum-
vent the problem by adjusting the frequency in
graph test norm (19) to element size, i.e. we
replace ω in (19) with

min(ω,
6

h
) (20)

where h is the element size. As we resolve the
wavelength, the test norm eventually converges
to the optimal one. With a fixed test norm, the
residual must decrease monotonically with re-
finements. Not surprisingly perhaps, the same
behavior is observed in our case as well, as il-
lustrated in Fig.4. Contrary to the residual, the
L2 error does not decrease monotonically.

5 More about the presentation.

We will illustrate the points made in this note
with additional examples for Maxwell and elas-
todynamics problems including wave propaga-
tion in metamaterials and cloaking. We will
also outline our current work on precondition-
ing [7]. Finally, we will flash a few examples
showing application of the DPG technology to
inverse problems.
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Figure 2: 1D acoustics problem. Real part of pressure obtained with standard Galerkin, least squares,
primal and ultraweak DPG methods.

Figure 3: Gaussian beam problem, ω = 60π. First, 11th, 21st and 31st hp-adaptive mesh and the
corresponding numerical solution (imaginary part of pressure).

Figure 4: Gaussian beam problem. Convergence history for residual and L2 error.
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Hardy Space Infinite Elements

Thorsten Hohage1,∗

1Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Germany
∗Email: hohage@math.uni-goettingen.de

Abstract

In this talk we review the solution of time-harmonic
wave equations on unbounded domains using
Hardy space infinite elements. These elements
exhibit spectral order of convergence, they fit
naturally into the finite element context and are
easy to implement, and they can be used for
the computation of resonances as they preserve
the eigenvalue structure of the problem. The
starting point is a reformulation of the radiation
condition as a pole condition, which leads to a
stable – often orthogonal – decomposition of the
space of exterior solutions into a Hardy spaces
of incoming solutions and a Hardy space of out-
going solution. This approach offers consider-
able flexibility, and in particular it allows to
treat backpropagating modes, i.e. modes with
different signs of group and phase velocity as
they appear for example in elastic wave guides.

Keywords: transparent boundary conditions,
spectral convergence, backpropagating modes

1 Introduction

In this note we consider the solution of time-
harmonic wave equations in unbounded domains
Ω ⊂ Rd. For a given elliptic differential opera-
tor L on Ω and a given trace operator B on ∂Ω
we study the scattering problem

Lu− ω2u = f1 in Ω,

Bu = f2 on ∂Ω,

u outgoing

(1)

for a given angular frequency ω > 0 and given
compactly supported right hand sides f1 and
f2. The property “u outgoing”, also referred to
as radiation condition, physically means that
energy is transported to infinity and ensures
uniqueness. Mathematical definitions of radi-
ation conditions will be discussed in the next
section. We will have to assume that both Ω
and L are sufficiently “well behaved” outside of
some bounded region of interest.

Moreover, we will consider resonance prob-
lems 

Lu = ω2u in Ω,

Bu = 0 on ∂Ω,

u outgoing

(2)

where both the solution u and the frequency
ω are unknown. As opposed to scattering prob-
lems the frequency ω is typically complex-valued,
and the resonance function u may grow expo-
nentially at infinity.

To compute the solution of scattering and
resonance problems numerically by finite ele-
ments, Ω has to be truncated to some bounded
domain of interest Ω0 ⊂ Ω. On the artificial
boundary Σ := ∂Ω0 \ ∂Ω of Ω0 some boundary
condition has to be imposed. Such boundary
conditions are called transparent if they lead to
solutions which are close to the solutions of (1)
or (2) restricted to Ω0.

In the following we will discuss the construc-
tion of transparent boundary conditions using
Hardy Space Infinite Elemenets (HSIE). Com-
peting methods include Perfectly Matched Lay-
ers (PML), boundary element methods, other
infinite element methods, and local absorbing
boundary conditions. Some advantages of HSIE
have already been pointed out in the abstract.
For a comparision with the PML method we
refer to the discussion at the end of the note.

2 Pole condition as radiation condition

Let us first look at the case of a half-line Ω =
(0,∞). We will consider the Laplace transform

(Lu)(s) :=

∫ ∞
0

e−sru(r) dr, <s ≥ 0

of the solution. For the Helmholtz equation

u′′(x) + (nω)2u(x) = 0 x > 0

with some parameter n ∈ C (e.g. a refractive
index) satisfying <n > 0, =n ≥ 0 the general
solution is of the form

u(x) = C1e
inωx + C2e

−inωx.
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Figure 1: Illustration of the pole condition. The dots show poles of the Laplace transform of an
outgoing solution. It is holomorphic in the shaded region and decays at infinity. Hence it belongs to
the Hardy space H−(κ0R).

The second term proportional to C2 describes
a wave moving from right to left if time depen-
dence is given by e−iωt. Moreover, this term
grows exponentially at infinity if =n > 0. There-
fore, u is considered outgoing if C2 = 0. In this
case

(Lu)(s) =
C1

s− inω
.

More generally, we consider a function u on
(0,∞) as outgoing if it is a linear superposition
of exponentials eiκr with <κ > 0 and =κ ≥ 0.
If the superposition weights are decaying suf-
ficiently rapidly, Lu is holomorphic on {s ∈
C : <s > 0 or =s < 0} whereas it has poles or
other types of singularities in the quadrant {s ∈
C : <s ≤ 0 and =s ≥ 0}. This is the pole con-
dition as first suggested by Frank Schmidt [10].
Again assuming sufficient decay, the restriction
of u to a diagonal line κ0C with <κ0,=κ0 > 0
belongs to the Hardy space H−(κ0R) defined
below.

Definition 1 (Hardy spaces on half spaces)
Let κ0C with <κ0,=κ0 > 0. Then H±(κ0R) is
the set of all functions f ∈ L2(κ0R) for which
there exists a holomorphic function f̃ on {κ0s : s ∈
C,±=s < 0} and

sup
t<0

∫ ∞
−∞
|f̃((σ + it)/κ0)|2 dσ <∞,

lim
t↗0

∫ ∞
−∞
|f̃((σ + it)/κ0)− f(σ/κ0)|2 dσ = 0.

It is well-known thatH±(κ0R) is a Hilbert space
equipped with the L2 inner product and L2(κ0R) =

H+(κ0R)⊕H−(κ0R). We will enforce the radi-
ation condition

Lu ∈ H−(κ0R)

by a Galerkin ansatz. κ0 will play the role of a
tuning parameter of the method.

For higher dimensional problems we connect
each point of the artificial boundary Σ by a ray
to infinity, and require as radiation condition
that the Laplace transform of the solution along
each of these rays belongs to H−(κ0R). Usually
this has to be accompanied by some type of uni-
formity assumption with respect to the points
of Σ. The equivalence of this type of pole con-
dition to the Sommerfeld radiation conditiion
has been shown in [5], and the equivalence to
the Upward Propagating Radiation Condition
in half planes was addressed in [1].

3 Hardy space infinite elements

To apply HSIE we first have to transform a vari-
ational formulation of the differential equation
to a variational formulation in the Hardy space.
The basic identity for this purpose is∫ ∞

0
u(x)v(x) dx = q(Lu,Lv),

q(U, V ) :=
−i
2π

∫
κ0R

U(s)V (−s) ds

(3)

for a suitable dense set of test functions v (see [3,
Lemma A.1]). In higher dimensions integrals
over the exterior domain are split using Fubini’s
theorem into integrals over the boundary Σ and
integrals over the rays connecting Σ to infinity.
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Figure 2: Two examples of Hardy space infinite elements: Left panel: H1-conforming HSIE for
waveguide geometry. Right panel: Tensor product construction of an H(curl)-conforming HSIE in a
spherical geometry.

For coupling the exterior domain to the inte-
rior domain it is convenient to have the bound-
ary value u0 := u(0) as a degree of freedom.
Recall that it can be recovered from Lu be the
limit identity u0 = lims→∞ s(Lu)(s). More-
over, we need the transformation of the deriva-
tive operator to the Laplace domain. For these
purposes we introduce the operators Sm,Ss :
C×H−(κ0R)→ H−(κ0R) by

(Sm ( u0U )) (s) :=
u0 + U(s)

s− iκ0
,

(Ss ( u0U )) (s) :=
u0iκ0 + sU(s)

s− iκ0
.

It is easy to see that Lu for smooth, bounded
functions u belongs to the range of Sm and that

L(u′) = SsS−1m Lu. (4)

Together with (3) this is the basic identity for
transforming variational formulations of differ-
ential equations to the Hardy space. In one
space dimension we choose X : C × H−(κ0R)
as underlying Hilbert space. For example, if u
satisfies the variational equation∫ ∞

0
u′(x)v′(x)− ω2u(x)v(x) dx = u(0)f

and the pole condition, it follows by (3) and
(4) that ( u0U ) := S−1m Lu satisfies the variational
equation

q (Ss ( u0U ) ,Ss ( v0V )) + ω2q (Sm ( u0U ) ,Sm ( v0V ))

= u(0)f

for all ( v0v ) ∈ X. By looking for a solution ( u0U )
to this equation in X, the radiation condition is
automatically satisfied.

To construct a basis of X, recall that the
Möbius transformM(z) := iκ0

z+1
z−1 maps S1\{1}

to κ0R, and that M : H−(κ0R)→ H+(S1),

(MU)(z) :=

√
−2iκ0
z − 1

U(M(z))

is unitary. Here H+(S1) denotes the Hardy
space of all L2-boundary values of holomorphic
functions on the complex unit disk equipped
with the L2-norm. It has the natural orthog-
onal basis zm, m = 0, 1, 2, . . . ,. Therefore,

ϕm :=M−1zm

is an orthogonal basis of H−(κ0R). We have

q(ϕm, ϕn) = 2δn,m,

and with respect to this basis the operators Sm
and Ss are represented by bidiagonal matrices.
As finite dimensional subspace we will choose
span{ϕ0, . . . , ϕN} ⊂ H−(κ0R). Since for so-
lutions u to wave equations MLu is typically
infinitely smooth, these subspaces have the su-
peralgebraic approximation properties of spaces
of trigonometric polynomials.

In higher space dimensions HSIE are ten-
sor products of finite elements on the coupling
boundary Σ and the one-dimensional infinite el-
ements sketched above. Two examples are illus-
trated in Figure 2. The local element matrices
are typically sums of Kronecker products of lo-
cal element matrices on the coupling boundary
and explicitely given matrices for the infinite di-
rection. Thus they are easy to implement in a
finite element package, in which new (in)finite
elements can be added.

A contruction of HSIE for the Helmholtz
equation on the complement of a bounded do-
main in Rd together with a partial convergence
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Figure 3: Computation of a resonance for the time-harmonic Maxwell equation. Left panel: First
cartesian component of the computed resonance function. Right panel: Convergence as the number
of degrees of freedom in the Hardy space tends to infinity. (courtesy of L. Nannen)

analysis is described in [3]. A full convergence
analysis of HSIE for wave-guide geometries has
been derived in [4]. An exact sequence of HSIE
including H(curl) and H(div)-conforming ele-
ments and applications to Maxwell’s equations
are described in [8], see also Figure 3.

4 pole condition revisited: backpropa-
gating modes

The standard pole condition as well as the PML
method select modes of positive phase velocity.
However, physically outgoing modes are char-
acterized by a positive group velocity ∂κ

∂ω rather
than a positive phase velocity κ/ω. This does
not pose a problem as long as the signs of phase
and group velocities coincide, which is the case
for the Helmholtz equation and Maxwell’s equa-
tions. However, for many other wave equation,
for example the linearized elasticity equations
in a strip, modes with different signs of phase
and group velocity, so-called backpropagating
modes exist. In this case both the standard
HSIE and the PML method produce stable, but
wrong solutions.

As a simple example for backpropagating
modes we consider the following fourth order
ordinary differation equation:((
−∂2x − I

)2
+ I
)
u(x) = ω2u(x), x > 0 (5)

A function of the form u(x) = eik(ω)x solves
(5) if and only if k(ω) satisfies the dispersion

relation

(κ2 − 1)2 + 1 = ω2,

i.e.

κ = ±
√

1±
√
ω2 − 1. (6)

These four solution curves are illustrated in Fig-
ure 4 showing that (5) has propagating modes
with positive group and negative phase veloc-
ity if ζ ∈ (1,

√
2). The difficulty is that the set

of wavenumbers of outgoing solutions (marked
red) cannot be separated from the set of wavenum-
bers of incoming solution (marked blue) by a
straight line.

As a way out the use of Hardy space H−(Γ)
with a curved domain Γ− was suggested in [7].
The curved boundary Γ is chosen to separate
the incoming from the outgoing wave numbers.
A main challenge was the construction of a sta-
ble basis of such curved Hardy spaces. For given
complex parameters κ0 and κ1 consider the func-
tions

Ψn(s) :=
iκ0 + iκ1
s− iκ1

(
s+ iκ0
s− iκ0

)b(n+1)/2c(s+ iκ1
s− iκ1

)bn/2c
for n ∈ N0 where bxc := max{m ∈ Z : m ≤ x}.
Γ has to be chosen as a certain smooth algebraic
curve defined in terms of κ0 and κ1. The geo-
metric properties of this curve, and in particular
its intersection points with the real and imagi-
nary axis can be characterized explicitely. As a
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Figure 4: The first two panels show the real and imaginary parts of the dispersion curves (6) of
the model problem (5). Modes with positive group velocity ∂κ

∂ω are drawn in red and modes with
negative group velocity in blue. The right panel shows a separating curve Γ and the domain Γ− of
the corresponding Hardy space.

main result it was shown in [7] that these func-
tions form a Riesz basis of H−(Γ), and that the
condition number is small for reasonable choices
of the parameters κ0 and κ1. Based on this re-
sult exponential convergence of curved HSIE for
the model equation (5) could be shown.

In [2] curved HSIE have been successfully
applied to an elastic wave guide (see Figure 5).
However, so far no complete convergence anal-
ysis is available for this case.

5 Discussion and conclusions

Hardy space infinite elements are a flexible tool
for constructing transparent boundary condi-
tions for solving time harmonic wave equations
and computing resonances. A close relation of
the standard pole condition and hence standard
HSIE to the PML method has been shown in [6].
As opposed to PML, HSIE do not boil down
to solving some modified PDE in the exterior
domain and hence they cannot be implemented
within a blackbox finite element code. However,
if new finite elements can be added to a finite
element code, the implementation of HSIE is
not difficult. Advantages of HSIE are the spec-
tral order of convergence and the fact that only
the parameter κ0 (corresponding to choice of
the PML path in the complex plane) and the
polynomial degree in the Hardy space have to
be chosen whereas for PML the width of the
PML layer, a mesh in the PML layer, and the
order of the finite elements must be selected.
For some practical advice on the choice of κ0
we refer to [8]. Some numerical comparisons of
PML and HSIE can be found in [9].

For wave equations with backpropagating

modes for which the wave numbers of outgo-
ing and incoming modes cannot be separated by
a straight line, both PML and standard HSIE
fail. However, in certain relevant cases includ-
ing elastic wave guides incoming and outgoing
wave numbers can still be separated by a suit-
able curved line. Such equations can be solved
in a stable and spectrally accurate manner by
HSIE based on curved Hardy spaces.
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Can one hear the heat of a body?
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Abstract

Medical / industrial / geophysical imaging has
been for decades an amazing area of applica-
tions of mathematics, providing a bonanza of
beautiful and hard problems with real world
applications. One can find almost any area of
math being involved there. In this talk, I will
survey a recent trend of designing the so called
coupled physics (or hybrid, or multi-wave) imag-
ing methods and mathematical problems aris-
ing there. No prior background in imaging is
assumed.

Keywords: tomography, coupled-physics, hy-
brid

The number of tomographic techniques in use
and being developed is very large, one can men-
tion for instance X-ray CT, Ultrasound (UT),
Emission tomography (SPECT, PET), Magnetic
resonance imaging (MRI), Optical tomography
(OT), Electrical impedance tomography (EIT),
and quite a few others. Why do we need that
many? One obvious reason is that they “see”
different physical parameters: tissue den-
sity, electrical conductivity, optical absorption,
blood oxygenation, etc. Clearly, cost and safety
also differ. However, here we are interested
mostly in the following two parameters: tissue
contrast and image resolution. For instance,
some tumors have electrical conductivity and
optical absorption drastically higher than the
surrounding healthy tissues. Thus, electrical
impedance or optical tomography seem to be
highly appropriate. Unfortunately, both have
dismal resolution. On the other hand, for the
same types of tumors ultrasound might offer
dismal contrast, but sub-millimeter resolution.
This conflict between contrast and resolution is
rather common. So, what can one do? The
idea is to somehow combine, say, optical irradi-
ation with the ultrasound one, to get the best of
both. This leads to the so called hybrid meth-
ods. The definition of such a technique is too
broad, and we will discuss what is more appro-
priately called coupled physics methods.

Let us recall that every tomographic tech-

nique contains the following three main steps:

1. irradiating the non-transparent object
with some penetrating waves (e.g., acous-
tic or electromagnetic) or particles, to trig-
ger a response;

2. collecting the response data and process-
ing them mathematically;

3. producing a picture, tomogram.

Combining (hybridising) can happen at any of
these steps. For instance, one can do this at the
3rd step, correctly overlapping (registering)
the two independent pictures. This is a very
well developed technique, which we will not dis-
cussed (it does not improve the contrast or res-
olution of each individual tomogram).

Combination at the 2nd step is also rather
common: feeding the data of two scans into a
joint algorithm. For instance, X-ray scan data is
needed for the good reconstruction in SPECT.

The coupled-physics methods, on the other
hand, are based on the physical interaction
(transfer energy) between the two irradiations.
In other words, here one wave either physically
triggers, or modifies the other one.

Among such techniques, the most developed
is Thermo / Photo / Opto-acoustic tomography
(TAT, PAT), which leads to beautiful and chal-
lenging mathematics. A variety of other cou-
pled physics techniques are being developed, e.g.
Ultrasound modulated optical tomography
(UOT, UMOT), Magnetic resonance elastogra-
phy (MRE), Magnetic resonance electrical im-
pedance tomography (MREIT), Current den-
sity imaging (CDI).

An interesting observation is that in all these
cases, hybridisation stabilizes (improves resolu-
tion) formerly unstable (low resolution) tech-
niques, like EIT or OT. Surprisingly, a simple
microlocal explanation of this effect exists.

One can find a more detailed survey and ref-
erences in [1].
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Acoustic Invisibility and Causality
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Abstract

Recent progress on acoustic cloaking and scat-
tering reduction has focused on design of meta-
materials without consideration of the conse-
quences in the widest broadband sense. We
start from a top down look at a measure of the
scattering over all frequencies, the integrated
extinction (IE). New properties are derived, in-
cluding the recognition that broadband cloak-
ing places restraints on the material parameters,
specifically, the scatterer must radiate a wave-
front in the forward direction that precedes the
incident wavefront. This is a uniquely acoustic
requirement, there is no electromagnetic coun-
terpart to this non-causal (but certainly physi-
cal!) condition. Examples of scatterers satisfy-
ing the neutral acoustic inclusion condition are
described, and are related to broadband cloak-
ing. Time permitting, new results in active
cloaking will be described.

Keywords: Acoustics, invisibility, causality

1 Introduction

The integrated extinction, (IE), an integral of
the scattering cross-section over all wavelengths
[1], is a natural metric for measuring reduction
in scattering using physical mechanisms [2, 3].
The IE is proportional to a linear combination
of the monopole and dipole amplitudes if the
scattering is causal [4], that is, the scattered
wavefront in the forward direction arrives af-
ter an equivalent plane wavefront in the back-
ground medium. Causal scattering is the de-
fault for electromagnetics, but there is no such
limitation in acoustics. Many scattering situ-
ations of interest in acoustics are non-causal,
such as metal objects in water or air, for which
the IE expression of [4] does not apply.

Our first objective is an expression for the
acoustic integrated extinction that is valid un-
der all circumstances, and can provide new in-
terpretations for reduction of acoustic scatter-
ing. In contrast to the electromagnetic situa-
tion, it is possible to have the formal IE ex-
pression for causal acoustic scattering to zero.

We show that this is possible iff the acoustic
scatterer is non-causal. An important example
of such a scatterer is the neutral acoustic inclu-
sion, which by definition has zero monopole and
dipole scattered amplitudes. Based upon the IE
results derived in this paper we explore the rela-
tionships between integrated extinction, neutral
acoustic inclusions, cloaking and causality.

The paper proceeds as follows. In §2 the
scattering cross-section and integrated extinc-
tion are defined and the result of [4], originally
given for 3-dimensional scattering is presented
for causal acoustic scattering in 1, 2 and 3 di-
mensions. The main result for the IE is derived
in §2.2. Examples are given in §3 for one di-
mensional scattering for which the IE can be
found in explicit form. Neutral acoustic inclu-
sions are introduced in §4 as canonical scatter-
ers for which the purely causal scattering term
vanishes, and they therefore have unique trans-
parency qualities. Practical examples and po-
tential realizations are described in §5. Some of
the results presented here can be found in [5,6].

2 Integrated Extinction

2.1 Scattering Cross Section and Causal IE

Consider the Helmholtz equation for the acous-
tic pressure p(x) ∈ C outside of a finite region
Ω, the scatterer,

∇2p+ k2p = 0, x ∈ Rd/Ω. (1)

Here k = ω/c, ω is frequency and c is the sound
speed, with c = (Cρ)−1/2 where the uniform
exterior acoustic medium has mass density ρ
and compressibility C. Time harmonic depen-
dence is considered with the factor e−iωt under-
stood and omitted. The system may be one,
two or three-dimensional, d = 1, 2 or 3. The
total field is an incident plane wave plus the
scattered pressure ps,

p = eikx + ps(x). (2)

The far-field scattering amplitude S(θ, ω) is

ps = S(θ, ω)
( k

i2πr

) d−1
2
eikr

[
1 +O

( 1

kr

)]
(3)
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as r = |x| → ∞, where θ is the scattering di-
rection, θ = 0 corresponding to the direction of
incidence k̂. The scattering cross section, also
known as the extinction, is

σ(ω) =

∫
|ps|2ds (4)

where the integral is around a surface enclosing
the scatterer. The integrated extinction (IE),

Σ ≡
∫ ∞
0

σ(ω)

ω2
dω ≥ 0, (5)

defines the total scattering over all frequencies.

The scattering cross section typically tends
to a finite non-zero value as ω → ∞ while σ =
O(ω2) for ω → 0. Hence the only integer value
n for which the integral I =

∫∞
0 ω−nσdω is

bounded, and therefore meaningful, is n = 2,
i.e. I = Σ. Dirichlet boundary conditions on ∂Ω
presents an exceptional limit; for instance, the
scattering cross-section of a sphere tends to a
non-zero constant as ω → 0 and the IE of eq. (5)
is then undefined. The present results are there-
fore not applicable to scatterers with pressure-
release boundaries. However, such boundary
conditions are not strictly physical since a fluid
with a pressure-release inclusion is not stable
under static pressure perturbation. The IE can
also be expressed

Σ =

∫ ∞
0

dσ

dω

dω

ω
=

1

2πc

∫ ∞
0

σ dλ (6)

where λ = 2πc/ω is wavelength and limω→0 σ/ω =
0 has been used in the first identity.

Conservation of energy requires zero total
energy flux across the closed surface, which im-
plies the well known optical theorem

σ = −2<S(ω) where S(ω) ≡ S(0, ω) (7)

is the forward scattering amplitude. Equation
(3) is exact in d = 1 for x 6∈ Ω, where T =
1 + S(0, ω) and R = S(π, ω) are the transmis-
sion and reflection coefficients and the optical
theorem is the familiar identity |R|2 + |T |2 = 1.

Causality for forward scatter is here defined
such that wave motion in the forward direction
does not precede signals from the otherwise uni-
form medium. This implies that S(ω) is ana-
lytic in the upper half of the complex ω−plane.
The transform f(ω) of a causal function satisfies

the Sokhotski-Plemelj relations for real values of
ω [7, eq. (1.6.11)]

f(ω) =
1

iπ
−
∫ ∞
−∞

f(ω′)dω′

ω′ − ω
, (8)

where −
∫

denotes principal value integral. Set-
ting f(ω) = dS(ω)/dω, and using σ(−ω) =
σ(ω), it follows from (6)1, (7) and (8) that

Σ = Σpc where Σpc ≡ π=
dS(0)

dω
(9)

and ”pc” is included to emphasize that this re-
sult is strictly limited to purely causal forward
scattering. Equation (9) for d = 3 was de-
rived by Purcell [1] for electromagnetics and was
first used in acoustics by [4]. The identity (9)
also follows from the fact that −iS(ω) is a Her-
glotz function [8] (h(z) is a Herglotz function if
Imh(z) ≥ 0 for Im z > 0).

The zero frequency limit in (9) allows us to
interpret Σpc in terms of quasistatic properties.
If the scatterer is a volume V with compress-
ibility C ′(x) and uniform density ρ′, then [4]

Σpc =
π

2c

((〈C ′〉
C
− 1
)
V − k̂ · γ

( ρ
ρ′

)
· k̂
)

(10)

where γ is the polarizability dyadic [9] propor-
tional to V and 〈C ′〉 is the spatial average.

2.2 IE for Non-Causal Scattering

Acoustic forward scattering is not necessarily
causal. We distinguish the causal and anti-causal
components s+(t) and s−(t), respectively, by

s(t) ≡ 1

2π

∫ ∞
−∞

S(ω)e−iωtdω

= s−(t) + s+(t), s±(t) = 0 for t<>0. (11)

Hence s(t) = 0 for t < 0 if the scattering is
causal, and or non-causal scattering there is some
finite time before t = 0 for which s(t) 6= 0. The
time dependent function s(t) can be identified
as a forward scattered “impulse-response” func-
tion corresponding to an incident delta pulse
pinc(x, t) = δ(t − x/c). Subscripts + (−) de-
note functions that are causal (anti-causal) with
Fourier transforms analytic in the upper and
lower half planes, respectively. The forward
scattering function decomposes as

S(ω) = S−(ω) + S+(ω),

S±(ω) =

∫ ∞
0

s±(±t)e±iωtdt.
(12)
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For causal scattering s−(t) = 0, S−(ω) = 0; in
the non-causal case s−, S− are non-zero.

We note the generalization of the Sokhotski-
Plemelj relations (8),

f±(ω) =
±1

iπ
−
∫ ∞
−∞

f±(ω′)dω′

ω′ − ω
(13)

for ω real. Hence, (6)1, (7) and (13) give us the
first form of our main result

Σ = π=
(

dS+
dω

(0)− dS−
dω

(0)

)
. (14)

The identity (14) does not have an obvious
interpretation in terms of quasi-static quanti-
ties, unlike its causal version eqs. (9) and (10).
However, converting (14) to the time domain,

Σ = π

∫ ∞
−∞
|t| s(t)dt. (15)

This result applies for causal and non-causal
scattering. Note the appearance of |t| in (15).
The same integral with |t| replaced by t is sim-
ply = dS(0)/dω . Hence, eqs. (9) and (15) imply

Σ = Σpc−2π

∫ 0

−∞
t s(t)dt. (16)

This generalizes the causal-only result (9). Since
the non-causal response is zero for some t− < 0,
i.e. s(t) = 0, t < t−, the integral in (16) is only
over a finite interval of time from t− to 0.

3 Examples

3.1 One Dimensional Medium

Consider a 1D system with non-uniform proper-
ties ρ′(x), C ′(x) restricted to Ω = [0, a]. Define
the non-dimensional travel time

T = 〈c/c′(x)〉 (17)

where 〈·〉 = 1
a

∫ a
0 ·dx is the slab average. T is the

ratio of the travel time across the inhomogeneity
to the travel time across an equivalent uniform
slab. Hence the scatterer is causal if T ≥ 1, and
non-causal otherwise.

For causal scattering (T ≥ 1) the integrated
extinction of eq. (9) becomes [6]

Σpc =
π

2

a

c

(〈C ′〉
C

+
〈ρ′〉
ρ
− 2
)

= π
a

c

(
1

2

〈 c
c′

(√z′

z
−
√
z

z′

)2〉
+ T−1

)
(18)

where z = ρc is the background impedance and
z′(x) = ρ′c′. Since the scatterer is causal this
means that Σpc ≥ 0 with equality iff T = 1
and the local impedance is constant and equal
to the uniform impedance, i.e. z′ = z. In
summary, it is possible that the total IE of eq.
(18) can vanish, but only if the slab has (i)
uniform impedance and (ii) travel time equiv-
alent to the uniform medium. Condition (i)
is expected, it guarantees no reflection/back-
scattering, while (ii) ensures that the phase of
the transmitted wave is the same as that for the
uniform medium.

It does not appear to be possible to find
an expression for the IE under both causal and
non-causal conditions, with the exception of slabs
with constant impedance z′ = z. In that case it
is not difficult to show that

Σ = π
a

c
|T−1| for constant impedance. (19)

The specific example next helps us understand
how non-causal scattering effects the IE.

3.2 A Uniform Layer

A layer with uniform properties c′, z′ occupies
x ∈ [0, a] in the otherwise uniform background.
The forward scattering impulse response is

s(t) = −δ(t) +
(
R−2− 1

) ∞∑
n=1

R2nδ(t− tn) (20)

where R = z′−z
z′+z , tn = (2n − 1) ac′ −

a
c . Define

N ≥ 0 to be the number of non-causal pulses,
i.e. N = 0 for causal scattering c′ ≤ c and N >
0 for non-causal scattering with tN =max tn,
tn < 0. It can then be shown that [6]

Σ = 2π
a

c′

[(1 +R2

1−R2
− c′

c
+ 2N

)(
R2N − 1

2

)
+N

]
(21)

The simpler result for causal scattering, i.e. eq.
(18), is evident from eq. (21) with N = 0. The
parameter N is a positive integer for non-causal
scattering, and even though it is discontinuous
it can be shown that Σ is a continuous though
not necessarily smooth function of the layer pa-
rameters. Figure 1 shows the IE for a uniform
slab with impedance thrice the background as a
function of slab wave speed. Also shown is the
magnitude of the purely causal IE (eq. (18) or
(21) with N = 0). Clearly, Σ = Σpc for c′ ≤ c
as expected. It is also evident that Σ ≈ −Σpc
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for c′ > 5c with better approximation for larger
c′. This can be understood from the mathe-
matical form of Σ in eq. (21). The number N
increases approximately linearly with the slab
speed c′when all other slab parameters are held
fixed. The quantity R2N therefore decreases
with increasing c′, so that Σ→ −Σpc.

Figure 2 shows the same phenomenon for a
larger slab impedance (z′/z = 8). The limiting
behavior Σ ≈ −Σpc is again observed, this time
at larger values of c′ since the quantity R2N

decreases less rapidly than for Figure 1.

3.3 Two and Three Dimensions

Consider plane wave incidence on a uniform cir-
cular or spherical inhomogeneity of radius a and
properties ρ′, c′. The IE for causal scattering
follows from the low frequency forward scatter-
ing amplitude using standard methods [6], as

Σpc = η
ad

c

ρ

ρ′

( (ρ′
ρ − 1

)2
(d− 1)ρ

′

ρ + 1
+ T2−1

)
(22)

where T = c′/c is the ratio of travel times and
η = π2(d − 1)/d. It is interesting to compare
this with the analogous 1D result eq. (18). Since
T ≥ 1 for causal scattering, eq. (22) shows that
Σpc vanishes iff ρ′ = ρ, c′ = c, implying that
there is no combination of ρ′, c′ ≤ c that is
transparent except for the trivial case when the
scatterer is identical with the background fluid.
Despite the fact that there is no known example
of a 2- or 3-dimensional non-causal scatterer for
which Σ can be found in closed form, we can
make some general statements, next.
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0.5
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3

c′/c

Σ

Figure 1: The solid curve shows Σ as a function
of c′/c for a uniform slab z′/z = 3, a/c = 1.
The dashed curve shows the magnitude of the
causal integrated extinction Σpc.
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Figure 2: The curves are the same as in Figure
1 except that the slab impedance is z′ = 8z.

3.4 Discussion

The general form of the IE, eq. (16), is

Σ = Σpc +2 Σ(−) = −Σpc +2 Σ(+) (23)

where Σ(±) = π

∫ ±∞
0

t s(t)dt. (24)

Σ(+) and Σ(−) can be considered as causal and
non-causal parts of the IE since Σ = Σ(+) + Σ(−).
The purely causal result [1, 4] in eq. (9) follows
from the first identity in (23) with Σ(−) = 0. At
the other extreme, the scattering can be mainly
non-causal in the sense of the examples in Fig-
ures 1 and 2. This can occur in one, two or three
dimensions if the scatterer supports very fast
waves relative to the background, e.g. metallic
scatterers in air. Most of the energy is scattered
before t = 0, implying |Σ(−) | � |Σ(+) | and

Σ ≈ −Σpc (25)

which is essentially the opposite of the causal
identity (9). The quasistatic quantity Σpc which
seemed to be only relevant to causal scattering,
is also important for very non-causal scattering,
but in the opposite manner, i.e. a sign change!

The 1D case of the constant impedance layer,
eq. (19), provides the only example the authors
have found for which Σ = −Σpc. In fact, in
this example Σ = ±Σpc with no other possi-
bility. For general scatterers, as the above 1D
examples show, it is possible for Σ to differ sig-
nificantly from |Σpc |. Further understanding of
this divergence is essential if we are to achieve
truly broadband cloaking. We next consider a
first step in this direction, by considering scat-
terers for which Σpc vanishes.

4 Neutral acoustic inclusions

A neutral acoustic inclusion (NAI) has, by defi-
nition, zero monopole and dipole scattered am-
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plitudes. The two terms in the expression (10)
for Σpc correspond to the monopole and dipole
contribution to the forward scatter. Both terms
vanish for a NAI, implying Σpc = 0. Hence, a
neutral acoustic inclusion is a non-causal scat-
terer. The following identities are easily shown,∫ ∞

−∞
t s(t)dt = 0,

Σ = −2π

∫ 0

−∞
t s(t)dt,

 for a NAI. (26)

The IE for a NAI is therefore defined completely
by the non-causal part of the forward scatter.
For electromagnetic scattering, which is causal,
the IE equals Σpc and must be positive, and so
there is no EM analog of the NAI.

The NAI conditions reduce to constraints on
the compressibility and density of the scatterer:

〈C ′〉 = C, 〈ρ′〉 = ρ. (27)

The vanishing of the monopole and dipole am-
plitudes leads to reduced scattering in the low
frequency range, resulting in increased trans-
parency. The notion of causality, i.e. wave speed,
is not contained in the quasistatic definition of
neutral inclusions. The finding that neutral acous-
tic inclusions must be non-causal scatterers is
therefore remarkable in that a quasistatic effect
implies a necessary dynamic property.

Transparency over a wide range of frequen-
cies, known as cloaking, demands at the very
least that the object be transparent in the long
wavelength regime, which may be achieved by
making the cloak and the object being cloaked
together satisfy (27). We therefore conclude
that low frequency acoustic cloaking requires non-
causal scattering. In order to achieve perfect
cloaking one only needs (i) to satisfy the low
frequency cloaking conditions (27), and (ii) have
the forward signal arrive at t = 0 for all direc-
tions of incidence. The italicized ”only” empha-
sizes the question of whether or not these condi-
tions can be simultaneously satisfied in 2D and
3D apart from the trivial case C ′ = C, ρ′ = ρ.
By comparison, Σ = 0 is possible for non-trivial
C ′, ρ′ in 1D, as shown in eq. (19).

A first step towards achieving broadband
transparency is to convert the object into a neu-
tral acoustic inclusion, by surrounding it with
a “low frequency cloak” or otherwise. Further
improvement in broadband transparency is then

equivalent to minimizing the integral (26)2, an
integral over a finite time span, from the (nega-
tive) time of the first forward arrival until t = 0.
This provides a time-domain based metric for
broadband transparency that depends only on
the part of the signal that arrives before the
background wave. The benefit of this approach
is that it is restricted to a finite length time do-
main signal, while it provides a scalar measure
of the forward broadband scattering.
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empty shell

Figure 3: Comparison of the scattering cross
section for oscillator designs for an aluminum
shell of thickness h to radius a ratio h/a = 0.03.

5 Neutral acoustic inclusion examples

Specific examples of NAI will be discussed, start-
ing with cylindrical elastic shells in water [5]
which provide a practical design for NAIs. Elas-
tic solids have a natural ”reservoir” of both stiff-
ness and inertia, and by proper removal of ma-
terial the scatterer can have the effective prop-
erties (27). Adjusting the shell thickness gives
the appropriate effective compliance, 〈C ′〉 = C,
while it simultaneously matches the effective den-
sity so that γ = 0. The shell then has re-
duced total-scattering cross section in the long-
wavelength regime [5]. A very limited number
of materials can achieve these criteria, so ex-
tra measures must be taken, e.g. adding mass.
Figure 3 compares the scattering from some de-
signed NAI shells against that for a solid alu-
minum cylinder of the same radius.

The implications of the possibility for prac-
tical NAI designs will be discussed. While the
criterion for NAI material design is based on
low frequency considerations, numerical simula-
tions show that the low frequency transparency
can extend to high frequencies. Figure 3 shows
low frequency transparency extending to non-
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142 cm

30 cm

(a)

(b)

Figure 4: Absolute pressure field for a Gaussian
beam incident upon an 8×41 array of acrylic
shells in water. Plots (a) and (b) are at 22350
Hz and 27000 Hz, respectively.

dimensionally large frequencies. Figure 4 shows
a dramatic example: an array of cylinders that
are otherwise transparent exhibit strong and cor-
related scattering at certain frequencies. The
figure illustrates the coöperative scattering ef-
fects of the array radiation at a frequency band
near a flexural resonance of the individual cylin-
ders, resulting in strong scattering in the di-
rection orthogonal to incidence. This example
demonstrates the possibility for an otherwise
transparent array to scatter in a preferred di-
rection at certain frequencies.

Other examples will show more general ar-
ray designs and will also discuss the related topic
of active acoustic cloaking [10]. The idea is to
use a finite set of scatterers each with the ability
to radiate in response to insonification. Coher-
ent radiation by several scatterers can annul a
finite region of space, allowing cloaking of an
arbitrary object without the need to surround
it by passive although exceptional materials.
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Abstract

The existence of solitary-wave solutions to the three-
dimensional water-wave problem is predicted by the
Kadomtsev-Petviashvili (KP) equation in the case
of strong surface tension and the Davey-Stewartson
(DS) system in the case of weak surface tension. The
term solitary wave describes any solution which has
a pulse-like profile in its direction of propagation,
and these model equations admit three types of soli-
tary waves. A line solitary wave is spatially homo-
geneous in the direction transverse to its direction of
propagation, while a periodically modulated solitary
wave is periodic in the transverse direction. A fully
localised solitary wave on the other hand decays to
zero in all spatial directions.

In this talk I outline mathematical results which
confirm the existence of the three-dimensional soli-
tary waves for the full gravity-capillary water-wave
problem in its usual formulation as a free-boundary
problem for the Euler equations; both strong and
weak surface tension are treated. The periodically
modulated solitary waves are created when a line
solitary wave undergoes a dimension-breaking bifur-
cation, spontaneously losing its spatial homogeneity
in the transverse direction; an infinite-dimensional
version of the Lyapunov centre theorem is the main
ingredient in the existence theorem. The fully lo-
calised solitary waves are obtained by finding critical
points of a variational functional.

Introduction

The classical three-dimensional gravity-capillary
water wave problem concerns the irrotational flow of
a perfect fluid of unit density subject to the forces of
gravity and surface tension. The fluid motion is de-
scribed by the Euler equations in a domain bounded
below by a rigid horizontal bottom {y = 0} and
above by a free surface {y = h + η(x, z, t)}, where
h denotes the depth of the water in its undisturbed
state and the function η depends upon the two hor-
izontal spatial directions x, z and time t. Steady
waves are water waves which are uniformly trans-
lating in a distinguished horizontal direction with-
out change of shape; without loss of generality we
assume that the waves propagate in the x-direction

with speed c and continue to write x as an abbre-
viation for x − ct. In terms of an Eulerian velocity
potential φ(x, y, z, t) the mathematical problem for
steady waves is to solve the equations

φxx + φyy + φzz = 0,0 < y < 1 + η, (1)

φy = 0, y = 0, (2)

φy = ηxφx + ηzφz −
ηx,

y = 1 + η (3)

and

− φx +
1

2
(φ2x + φ2y + φ2z) + αη

− β

[
ηx√

1 + η2x + η2z

]
x

− β

[
ηz√

1 + η2x + η2z

]
z

= 0 (4)

on y = 1 + η, in which we have introduced dimen-
sionless variables. The equations involve two physi-
cal parameters α := gh/c2 and β := σ/hc2, where g
and σ are respectively the acceleration due to grav-
ity and the coefficient of surface tension. (Nontriv-
ial) steady water waves which satisfy η(x, z) → 0
as x → ±∞ are called solitary waves. A line soli-
tary wave is spatially homogeneous in the direction
z transverse to its direction of propagation, while
a periodically modulated solitary wave is periodic in
the z-direction. A fully localised solitary wave on
the other hand satisfies η(x, z)→ 0 as |(x, z)| → 0.

The steady water-wave problem (1)–(4) is a free
boundary-value problem with nonlinear bound-
ary conditions, and in this respect its solution poses
considerable mathematical difficulties. At a formal
level these difficulties may be overcome by replacing
the above equations by a simpler model equation (a
‘weakly nonlinear approximation’).

Strong surface tension (β > 1/3): The KP equa-
tion

∂xx

(
ζxx − ζ −

3

2
ζ2
)
− ζzz = 0, (5)

was derived formally by Kadomtsev and Petviashvili
[11] as a long-wave approximation for solutions of
(1)–(4) in which

β > 1/3, α = 1 + ε2, 0 < ε� 1;
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the variable ζ is supposed to approximate the free
surface of the water via the formula

η(x, z) = ε2ζ
(
ε x, ε2z

)
+O(ε4)

(up to scalings of η, x and z). The KP equation
admits explicit line and fully localised solitary-wave
solutions, namely

ζl(x) = −sech2
(x

2

)
,

ζf(x, z) = −8
3− x2 + z2

(3 + x2 + z2)2
,

and explicit formulae for a family of periodically
modulated solitary waves are also available (see Tajiri
and Murakami [13]). The waves are sketched in Fig-
ure 1.

Figure 1: Clockwise from top left: line, periodi-
cally modulated and fully localised solitary-wave so-
lutions to the KP system; the arrow shows the x-
direction.

Weak surface tension (β < 1/3): The DS system

ζ − ζxx − ζzz − |ζ|2ζ − ζψx = 0,

−ψxx − ψzz + (|ζ|2)x = 0

was derived formally by Djordjevic & Redekopp [4]
as a long-wave approximation for solutions of (1)–(4)
in which

β = β0, α = α0 + ε2, 0 < ε� 1

and

α0 =
µ20
2

cosech2µ0 +
µ0
2

cothµ0,

β0 = −1

2
cosech2µ0 +

1

2µ0
cothµ0

for some µ0 > 0; the variable ζ is supposed to ap-
proximate the free surface of the water via the for-
mula

η(x, z) =
ε

2

(
ζ(εx, εz)eiµ0x + ζ(εx, εz)e−iµ0x

)
+O(ε2)

(up to scalings of η, x and z). The DS system admits
explicit line solitary-wave solutions, namely

ζl(x) = ±sechx, ψlsw(x) = tanhx,

and there are existence theories for both periodically
modulated solitary waves (Groves, Sun & Wahlén
[8]) and fully localised solitary waves (Cipolatti [2]).
The waves are sketched in Figure 2.

Figure 2: Clockwise from top left: line, periodi-
cally modulated and fully localised solitary-wave so-
lutions to the DS system; the arrow shows the x-
direction.

The existence of line solitary-wave solutions to
(1)–(4) in the KP and DS parameter regimes has
been confirmed rigorously by respectively Amick &
Kirchgässner [1] and Iooss & Kirchgässner [10], who
also showed that the explicit solutions to the model
equations accurately describe the asymptotic form
of the solitary waves.

Periodically modulated solitary waves

Spatial dynamics

The phrase ‘spatial dynamics’ refers to an approach
where a system of partial differential equations gov-
erning a physical problem is formulated as a (typ-
ically ill-posed) evolutionary equation in which an
unbounded spatial coordinate plays the role of time.
We use the method by formulating (1)–(4) as a re-
versible evolutionary equation

wz = f(w), (6)
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where u belongs to a space X of functions which con-
verge to zero as x→ ±∞, so that all its solutions are
solitary waves. In particular, equilibirum and peri-
odic solutions correspond to respectively line and pe-
riodically modulated solitary waves. Let wlsw be the
solution to (6) corresponding to the KP or DS line
solitary wave in the appropriate parameter regime.
Using the translation w(z) = wlsw +u(z), we obtain
a new evolutionary equation

uz = f?(u)

= L?u+N?(u), (7)

small-amplitude periodic solutions of which corre-
spond to periodically modulated solitary waves emerg-
ing from the line solitary wave in a dimension-breaking
bifurcation (see Figure 3).

x

z

x

z

Figure 3: A family of periodic solutions surrounding
a nontrivial equilibrium solution to (6) in its phase
space (left) corresponds to a dimension-breaking bi-
furcation of a branch of periodically modulated soli-
tary waves from a line solitary wave (right).

Small-amplitude solutions to (7) are found us-
ing a generalisation of the classical Lyapunov centre
theorem (for finite-dimensional Hamiltonian or re-
versible systems) due to Iooss [9].

Theorem Consider a quasilinear, reversible evolu-
tionary equation

vt = Lv +N(v)

in the phase space X . Suppose that the linear op-
erator L has a pair ±ik of simple imaginary eigen-
values, that 0 is contained in its essential spectrum,
and that

(H1) all nonzero integer multiples of ±ik lie in the
resolvent set of L;

(H2) L satisfies the estimate ‖(L−iλI)−1‖ = O(λ−1)
as λ→ ±∞;

(H3) the range of the nonlinearity N lies in the
range of L, so that the equation Lv = −N(u)
is solvable for each function u in the domain
of N .

Under these conditions the above evolutionary equa-
tion admits a family of small-amplitude periodic so-
lutions whose frequency is near k.

To apply this technique to the steady water-wave
problem it is therefore necessary to formulate (1)–(4)
as an evolutionary equation of the form (6) and to
confirm the spectral hypotheses in Iooss’s theorem
for the KP and DS line solitary waves.

Luke’s variational principle

The key to obtaining the spatial dynamics formula-
tion (6) of equations (1)–(4) is the observation that
they follow from the formal variational principle

δ

∫ (∫ 1+η

0
(−φx +

1

2
(φ2x + φ2y + φ2z)) dy

+
1

2
αη2 + β(

√
1 + η2x + η2z − 1)

)
d(x, z) = 0(8)

(Luke [12]). A more satisfactory version of this vari-
ational principle is obtained using the change of vari-
able

y = Y (1 + η(x, z)), φ(x, y, z) = ψ(x, Y, z), (9)

which transforms the variable fluid domain into the
fixed domain {0 < Y < 1}. One obtains a new vari-
ational principle, which we (with a slight abuse of
notation) write as

δF = 0, F =

∫ (∫
F (η, ψ, ηz, ψz) dx

)
dz.

This variational principle takes the form of Hamil-
ton’s principle for an action functional in which z is
the time-like variable, (η, ψ) are the coordinates and
(ηz, ψz) the corresponding velocities. Following the
classical theory, we take the Legendre transform and
hence derive the (infinite-dimensional) Hamiltonian
system

ηz = δωH, ωz = −δηH, ψz = δξH, ξz = −δψH,

where

H(η, ω, ψ, ξ)

=

∫
ωηz dx+

∫∫
ξψz dY dx−

∫
F (η, ψ, ηz, ψz) dx
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and δ denotes a variational derivative; a solution of
this Hamiltonian system defines a steady water wave
via the formula (9).

An explicit calculation shows that the above Hamil-
tonian system is

ηz = W

(
1 + η2x
β2 −W 2

)1/2

,

ωz =
W

(1 + η)2

(
1 + η2x
β2 −W 2

)1/2 ∫ 1

0
Y ψY ξ dY

−

[
ηx

(
β2 −W 2

1 + η2x

)1/2
]
x

+ αη − ψx|Y=1

+

∫ 1

0

{
ξ2 − ψ2

Y

2(1 + η)2
+

1

2

(
ψx −

Y ηxψY
1 + η

)2

+

[(
ψx −

Y ηxψY
1 + η

)
Y ψY

]
x

+

(
ψx −

Y ηxψY
1 + η

)
Y ηxψY
1 + η

}
dY,

ψz =
ξ

(1 + η)
+
WY ψY
1 + η

(
1 + η2x
β2 −W 2

)1/2

,

ξz = − ψY Y
1 + η

−
[
(1 + η)

(
ψx −

Y ηxψY
1 + η

)]
x

+

[(
ψx −

Y ηxψY
1 + η

)
Y ηx

]
Y

+
W (Y ξ)Y

1 + η

(
1 + η2x
β2 −W 2

)1/2

.

This system is reversible with reverser S(η, ω, ψ, ξ) :=
(η,−ω, ψ,−ξ) and is accompanied by the boundary
conditions

ψY |Y=0 = 0

ηx +
ψY

1 + η

∣∣∣∣
Y=1

= ηx

(
ψx −

ηxψy
1 + η

)
+

Wξ

1 + η

(
1 + η2x
β2 −W 2

)1/2
∣∣∣∣∣
Y=1

which emerge as a consequence of the integration by
parts necessary to compute the variational deriva-
tive with respect to ψ. Note that the boundary
condition at Y = 1 is nonlinear. This difficulty is
overcome by a change of variable which converts the
Hamiltonian system into an equivalent system with
linear boundary conditions (see Groves [5]).

Linear spectral analysis

We now determine the purely imaginary spectrum of
the linear operator L? appearing in equation (7); an

explicit formula for L? is obtained from Hamilton’s
equations and the asymptotic formulae for the line
solitary waves. To this end we consider the resolvent
equation

(L? − iεnkI)u = u†, n =

{
2, β > 1/3,

1, β < 1/3,

where k 6= 0. Writing u = (η, ω, ψ, ξ), one can solve
three of the four components of the resolvent equa-
tion to find ω, ψ and ξ as functions of η and u† and
thus reduce the remaining component to a single
equation for η of the form

g(D)η = N (η, u†), (10)

where

g(µ) = α+ βq2 − µ2

q
coth q, q =

√
µ2 + ε2nk2

and the notation m(D) denotes a Fourier multiplier
with respect to x whose symbol is m.

We note that g(µ) ≥ 0 with equality if and only
if µ = µ0 (where µ0 = 0 for β > 1/3). We therefore
write η1 = χ(D)η, η2 = (1 − χ(D)η, where χ is the
characteristic function of the set (−µ0−δ,−µ0+δ)∪
(µ0−δ, µ0+δ) and decompose (10) into two coupled
equations for η1 and η2. One can solve one equation
to find η2 as a function of η1 and u† and thus reduce
the other to a single equation

η1 = χ(D)N (η1 + η2(η1, u
†), u†)

for η1.

The next step is to write

η1(x, z) = ε2ζ(εx)

for β > 1/3 or

η1(x, z) =
ε

2

(
ζ(εx)eiµ0x + ζ(εx)e−iµ0x

)
for β < 1/3. Inserting this Ansatz into the reduced
equation for η1 yields, after a lengthy calculation,
the equation

ζxxxx−ζxx−3(ζlζx)x−3(ζζ?x)x+O(ε)+k2ζ = ζ†(u†)

for β > 1/3 or the system

ζ − ζxx − 3(ζl)
2ζ

−(ζl)
2ζ − ζlψx +O(ε) + k2ζ = ζ†(u†),

−ψxx + 2(Re ζlζ)x + k2ψ = 0,
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for β < 1/3. The left-hand sides of these equa-
tions are perturbations of the linearisations of the
KP equation or DS system at their line solitary-wave
solutions.

We write the reduced equation for ζ as

(Bε,k + k2I)w = w†,

where of course B0,k is known explicitly (and does
not depend upon k). In particular, it is self-adjoint
and its spectrum consists of a simple negative eigen-
value and continuous spectrum [0,∞); standard spec-
tral perturbation theory shows that the same is true
of Bε,k (see Figure 4).

0λε,k

Figure 4: The spectrum of Bε,k.

This spectral analysis shows that Bε,k + k2I has
a simple zero eigenvalue if and only if

λε,k + k2 = 0 (11)

and is invertible if and only if this equation is not
satisfied.

Lemma Equation (11) has precisely one positive so-
lution kε.

Tracing back the spectral reduction, one finds
that ±iεnkε are simple eigenvalues of L? and L? −
iεnkI is invertible for all other values of k 6= 0.

Applying the spectral reduction procedure to the
equation

L?(u) = −N?(u†),

we arrive at the reduced equation

Cεζ = ζ†(u†),

where
Cεζ = ζxx − ζ + 3ζlζ +O(ε)

for β > 1/3 or

Cεζ = ζ − ζxx − 4(ζl)
2ζ − 2(ζl)

2ζ +O(ε)

for β < 1/3. Since C0 is invertible (under the re-
striction that ζ is symmetric in x), we find that Cε
is also invertible.

These observations confirm hypotheses (H1) and
(H3) in Iooss’s theorem, while (H2) is verified using
standard a priori estimates. Full details are given by
Groves, Haragus & Sun [6] for β > 1/3 and Groves,
Sun & Wahlén [7] for β < 1/3.

Fully localised solitary waves

The existence theories for fully localised solitary waves
are variational in nature, the starting point again be-
ing Luke’s variational principle (8). Observing that
the free-surface elevation η(x, z, t) and Dirichlet data
at the free surface Φ(x, z) = φ(x, 1+η(x, z), z) com-
pletely determine the wave motion, one may formu-
late the variational principle in terms of these vari-
ables as

δ

∫
R2

{
1

2
ΦG(η)Φ +

1

2
αη2

+ β(
√

1 + η2x + η2z − 1)−ηΦx

}
d(x, z) = 0,(12)

where G(η) is the Dirichlet-Neumann operator de-
fined by G(η)ξ = ∇φ.(−ηx,−ηz, 1)|y=1+η and the
potential function φ is the harmonic extension of ξ
into {0 < y < 1 + η} with Neumann data at y = 0.
(We specialise to fully localised solitary waves by in-
tegrating over the entire plane.) We proceed by re-
ducing (12) to a locally equivalent variational princi-
ple using a method analagous to the spectral reduc-
tion procedure for periodically modulated solitary
waves.

Examining the Euler-Lagrange equations for the
variational functional F (η,Φ) appearing in (12), one
finds that it is possible to solve one of these equa-
tions for Φ as a function of η (in fact Φ = G(η)−1ηx)
and thus reduce the variational principle to

δJ(η) = 0, J(η) = F (η,Φ(η)).

We next write η1 = χ(D)η, η2 = (1−χ(D)η, where χ
is the characteristic function of the setBδ((−µ0, 0))∪
Bδ((µ0, 0)) (with µ0 = 0 for β > 1/3) and the no-
tation m(D) now denotes a Fourier multiplier with
respect to (x, z) whose symbol is m. The Euler-
Lagrange equation for J(η) is correspondingly de-
composed into two coupled equations for η1 and η2.
One can solve one equation to find η2 as a function of
η1 and thus obtain the reduced variational principle

δJ(η1 + η2(η1)) = 0

for the other.
Finally, we write

η1(x, z) = ε2ζ(εx, ε2z)

for β > 1/3 or

η1(x, z) =
ε

2

(
ζ(εx, εz)eiµ0x + ζ(εx, εz)e−iµ0x

)
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for β < 1/3. Inserting this Ansatz into the reduced
variational principle for η1 yields, after a lengthy
calculation, the variational principle

δJ̃ε(ζ) = 0,

where

J̃ε(ζ) =
1

2

∫
R2

{
ζ2+ζ2x+(∂−1x ζz)

2−ζ3
}

d(x, z)+O(ε)

for β > 1/3 or

J̃ε(ζ) =

∫
R2

{
1

2
(|ζx|2 + |ζz|2) +

1

2
|ζ|2

− 1

4
|ζ|4 − 1

4
|ζ|2∆−1∂2x|ζ|2

}
d(x, z) +O(ε)

for β < 1/3. The functional J̃0 is the variational
functional employed to find ‘lump’ solutions of the
KP equation by de Bouard & Saut [3] or the DS
system by Cipolatti [2], and critical points of J̃ε
are found by correspondingly modifying the meth-
ods presented in those references. The main addi-
tional technical difficulty is that the O(ε) remain-
der term is a superquadratic, nonlocal function of
η1, so that standard applications of methods such
as concentration-compactness (for functionals whose
superquadratic parts involve only differential opera-
tors) are not immediately applicable.
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Abstract

The use of time-domain boundary integral equa-
tions (TDBIE) has gained in popularity in re-
cent years due to the emergence of stable and
efficient numerical methods for their discretiza-
tion and due to the advances in their analy-
sis. Consequently, the scope of their applica-
bility has also increased. For example rigorous
approaches to the construction and analysis of
coupled formulations with finite element meth-
ods have appeared. Working directly in time-
domain also allows the treatment of non-linear
problems. This is an avenue less explored up
to now, but in this paper we consider a simple
acoustic scattering problem with a non-linear
impedance boundary condition. We present a
stability analysis of the time-discretization by
convolution quadrature, discuss the implemen-
tation and extra cost compared to the linear
case, and end with numerical results.

Keywords: time-domain boundary integral equa-
tions, non-linear impedance, convolution quadra-
ture

1 Introduction

Consider the scattering problem

ütot −∆utot = 0, in Ω× [0, T ],

∂νu
tot = g(u̇tot), on Γ× [0, T ],

utot(·, t) = uinc(·, t), for t ≤ 0, in Ω,

(1)

where Ω is a bounded domain with boundary
Γ, ν is the exterior normal to Γ, uinc satisfies
the homogeneous equation in Rn and uinc(·, t)
is compactly supported in Rn \ Ω for t ≤ 0.
The existence and uniqueness and energy decay
of solutions to this type of problem in electro-
magnetism has been investigated in [7] and a
full FEM discretization has been investigated
in [12]. The above problem can also be seen
as a simplicfication of the wave equation with
non-linear damping investigated in [10]. For
a more complex system and for the physical
background, see also the use of such non-linear
boundary damping to stabilise non-linear acous-
tic boundary conditions [8]. Note that in [10] an

extra boundary Γ0 with homogeneous Dirichlet
condition is introduced. We state the problem
up to a finite time T > 0, so that for a suffi-
ciently distant Γ0 these problems are equivalent.
Instead of stating the properties of g in full gen-
erality of [10], let us state the most important
properties of g for the present analysis

xg(x) ≥ 0 and g′(x) ≥ 0.

Trivially, linear impedance g(x) = x satisfies
these conditions, but also for example

g(x) = x+ x|x|,

i.e., the usual linear impedance together with
a non-linear correction term. This is the non-
linear impedance condition that will be used in
the numerical experiments.

2 Boundary integral representation of the
scattered field

As usual we will not be solving for the total
field, but for the scattered field

u = usc = utot − uinc.

The scattered field satisfies zero initial condi-
tions and the boundary condition

∂νu = g(u̇+ u̇inc)− ∂νuinc.

The scattered field can be written in terms
of boundary potentials as

u = S(∂t)ϕ+ ∂−1
t D(∂t)ψ, (2)

where S(∂t) is the time-domain single layer po-
tential, D(∂t) the double layer potential, and
the densities are exterior traces ϕ = −∂νu, ψ =
u̇|Γ.

Remark 1 Above and for the rest of the paper
we make use of the convenient operational no-
tation [11]. In this notation

(K(∂t)u) (t) =

∫ t

0
k(t− τ)u(τ)dτ,
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where K(s) is the Laplace transform of k. Here
we assume

|K(s)| ≤ C(σ)|s|µ, Re s > σ ≥ 0.

Note that if µ < −1 then k(t) is a continuous
function with k(0) = 0. Otherwise K(∂t)u is un-
derstood to be the inverse Laplace transform of
K(s)(L u)(s), where we assume that the Laplace
transform of the data u is bounded as

|L u(s)| ≤ C(σ)|s|−m, m > 1 + µ.

If u is m-times continuously differentiable with
u(0) = u(1)(0) = · · · = u(m−1)(0) = 0, this con-
dition is satisfied.

The rationale behind the notation can eas-
ily be seen from the simple example K(s) = s,
where the action is that of differentiation. This
explains that in S(∂t), S(s) is the frequency do-
main single layer potential.

Differentiating in time and taking the trace
of (2) gives

ψ = ∂tV (∂t)ϕ+ (K(∂t) + 1
2I)ψ,

where V and K are the single and double layer
boundary integral operators. Taking the nor-
mal trace of (2) and using the boundary condi-
tion gives

g(ψ+u̇inc)−∂νuinc = (KT(∂t)−1
2I)ϕ−∂−1

t W (∂t)ψ,

where W is the usual hypersingular boundary
integral operator. Combining these two equa-
tions gives the boundary integral equation to
be solved

B(∂t)

(
ϕ
ψ

)
+

(
0 −1

2I
1
2I 0

)(
ϕ
ψ

)
+

(
0

g(ψ + u̇inc)

)
=

(
0

∂νu
inc

)
,

(3)

where B(∂t) is the Calderón operator

B(∂t) =

(
∂tV (∂t) K(∂t)

−KT(∂t) ∂−1
t W (∂t)

)
.

We will need the following result expressed
in the frequency domain, where we use the def-
inition

Bimp(s) = B(s) +

(
0 −1

2I
1
2I 0

)
.

Lemma 2 There exists β > 0 so that

Re

〈(
ϕ
ψ

)
, Bimp(s)

(
ϕ
ψ

)〉
Γ

≥

β min(1, |s|2)
Re s

|s|2
(
‖ϕ‖2

H−1/2(Γ)
+ ‖ψ‖2

H1/2(Γ)

)
for Re s > 0 and for all ϕ ∈ H−1/2(Γ) and ψ ∈
H1/2(Γ).

Proof: The same lower bound has been proved
for B(s) in [5]. Since the additional operator is
skew-symmetric, the result follows. �

We will also need the continuity of the oper-
ator Bimp(s) which follows from the continuity
of the constituting operators

‖V (s)‖H1/2(Γ)←H−1/2(Γ) ≤ C(σ)|s|,

‖K(s)‖H1/2(Γ)←H1/2(Γ) ≤ C(σ)|s|3/2,

‖KT (s)‖H−1/2(Γ)←H−1/2(Γ) ≤ C(σ)|s|3/2,

‖W (s)‖H−1/2(Γ)←H1/2(Γ) ≤ C(σ)|s|2.

For a proof of these facts see [2, 3] and for a
table with all these properties listed see [9].

3 Time-discretization

For time-discretization we employ convolution
quadrature based on an A-stable linear multi-
step method [11]. As this is the choice used in
the numerical experiments let us fix BDF2 as
our choice of linear multistep method, that has
the generating function

δ(ζ) = (1− ζ) + 1
2(1− ζ)2.

Given a time-step ∆t > 0, the convolution quadra-
ture weights are then defined by the expansion

Bimp (δ(ζ)/∆t) =

∞∑
j=0

Bjζ
j .

Setting tj = j∆t, the time-discretization of (3)
is given by[
Bimp(∂∆t

t )

(
ϕ
ψ

)]n
+

(
0

g(ψn + u̇inc(tn))

)
=

(
0

∂νu
inc(tn)

)
,

(4)

where[
Bimp(∂∆t

t )

(
ϕ
ψ

)]n
=

n∑
j=0

Bn−j

(
ϕj
ψj

)
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is the convolution quadrature approximation of

Bimp(∂t)

(
ϕ
ψ

)
at time t = tn and ϕn and ψn are approxima-
tions of ϕ and ψ at t = tn.

Remark 3 Here we are using the discrete op-
erational notation [11]. Again K(s) = s shows
the rationale behind this notation as

∂∆t
t u(t) =

3
2u(t)− 2u(t−∆t) + 1

2u(t− 2∆t)

∆t

is the second order backward difference approx-
imation of the derivative.

4 Spatial discretization and Newton it-
eration

To complete the discretization we perform a
spatial Galerkin discretization. This is done
by approximating (ϕn, ψn) by functions in the
space V 0

h × V 1
h ⊂ H−1/2(Γ) × H1/2(Γ) where

V 0
h is the space of piecewise constant functions

and V 1
h the space of continuous, piecewise lin-

ear functions. To obtain a fully discrete system,
the variational formulation (4) is tested by func-
tions in the space V 0

h × V 1
h . This gives rise to a

fully discrete system[
Bimp(∂∆t

t )

(
ϕ
ψ

)]n
(5)

+

(
0

P 1
hg(ψn + P 1

h u̇
inc(tn))

)
=

(
0
fn

)
, (6)

where ϕn ∈ V 0
h , ψn ∈ V 1

h , P 1
h is the L2 pro-

jection onto V 1
h , fn = P 1

h∂νu
inc(tn) and Bimp :

V 0
h × V 1

h → V 0
h × V 1

h .
To solve the non-linear system at each time-

step we apply Newton’s iteration where the so-
lution of the previous time-step is used as an
initial guess. Let

ψ0
n = ψn−1.

To obtain the Newton method we use the lin-
earization

g(ψn(x) + P 1
h u̇

inc(tn, x)) ≈ g(ψkn(x) + P 1
h u̇

inc(tn, x))

+ g′(ψkn(x) + P 1
h u̇

inc(tn, x))(ψn(x)−ψkn(x)).

Note that in our case g(x) = x + x|x|, g′(x) =
1 + 2|x| ≥ 0. Substituting this linearization

gives the Newton iteration

B0

(
ϕk+1
n

ψk+1
n

)
+

(
0

P 1
hg
′(ψkn + P 1

h u̇
inc(tn))ψk+1

n

)
= F̃n +

(
0
g̃kn

)
,

(7)

where the right-hand side is given by

F̃n =

(
0
fn

)
+

n−1∑
j=0

Bn−j

(
ϕj
ψj

)
and

g̃kn =− P 1
hg(ψkn + P 1

h u̇
inc(tn))

+ P 1
hg
′(ψkn + P 1

h u̇
inc(tn))ψkn.

Some comments are in order regarding the New-
ton iteration

– Since B0 = Bimp(δ(0)/∆t), from Lemma 2
it follows that B0 is coercive. As g′ ≥ 0 we
see that each linear system (7) is solvable.

– The expensive part of the numerical method
is the computation of the history. As the
history need not be recomputed, i.e., F̃n

is independent of k, at each iteration, the
extra costs due to the Newton iteration
as compared with the fully linear problem
are low.

5 Stability analysis

To prove the stability of the numerical scheme
we require a positivity preservation property of
convolution quadrature proved in [5]. Using this
and Lemma 2 we can show the following posi-
tivity result.

Lemma 4 Let T > 0, then for σ∆t > 0 small
enough and with a ρ = e−σ∆t + O(∆t2) there
exists a γ > 0 depending on T such that

N∑
n=0

ρ2n Re

〈(
ϕn
ψn

)
,

[
Bimp(∂∆t

t )

(
ϕ
ψ

)]n〉

≥ γ
N∑
n=0

ρ2n
(
‖(∂∆t

t )−1ϕn‖2H−1/2(Γ)

+ ‖(∂∆t
t )−1ψn‖2H1/2(Γ)

)
,

for any sequences of functions ϕn ∈ V 0
h and

ψn ∈ V 1
h and with N = T/∆t.
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We will also need continuity in the time-
domain which follows directly from estimates
in the frequency domain given in Section 2; for
a proof see [11].

Lemma 5 Let K(s) : X → Y be a bounded
linear operator between two Banach spaces, with

‖K(s)‖Y←X ≤ C(σ)|s|µ, Re s ≥ σ > 0,

for some σ > 0 and µ > 0. Then for m > µ+ 1
and any w : [0,∞)→ X, m times continuously
differentiable, with w(0) = w(1)(0) = · · · =
w(m−1)(0) = 0, we have

‖
[
K(∂∆t

t )w
]n ‖Y ≤ C(σ, tn)

∫ ∞
0

e−σt‖∂mt w(t)‖Xdt.

Using the two lemmas, we can prove the fol-
lowing stability result for (6).

Lemma 6 For a sufficiently smooth incident
wave u̇inc, the discrete solution is bounded as

∆t
N∑
n=0

ρ2n
(
‖(∂∆t

t )−1ϕn‖2H−1/2(Γ)

+ ‖(∂∆t
t )−1ψ̂n‖2H1/2(Γ)

)
≤ const,

where the constant depends only on uinc and the
final time T .

Proof: To apply Lemma 4, let ψ̂n = ψn +
P 1
h u̇

inc(tn) giving the system[
Bimp(∂∆t

t )

(
ϕ

ψ̂

)]n
+

(
0

g(ψ̂n)

)
= F̂n, (8)

where

F̂n =

(
0
fn

)
+

[
Bimp(∂∆t

t )

(
0

P 1
h u̇

inc

)]n
.

Next we test this equation with

(
ϕn
ψ̂n

)
, mul-

tiply by ∆t and sum over n. Note that since
g(ψ̂n) is the L2 projection of g(ψ̂n) and xg(x) ≥
0 we have that〈

ψ̂n,g(ψ̂n)
〉
≥ 0.

Hence applying Lemma 4

∆t
N∑
n=0

ρ2n
(
‖(∂∆t

t )−1ϕn‖2H−1/2(Γ)

+ ‖(∂∆t
t )−1ψ̂n‖2H1/2(Γ)

)
≤ γ−1∆t

N∑
n=0

ρ2n

〈(
ϕn
ψ̂n

)
, F̂n

〉
.

Here we would like to complete the proof by
continuity, however we have a mismatch, with
the discrete integral of ϕn and ψ̂n present on
the left but not on the right. This issue can be
overcome by placing (∂∆t

t )−1 on the variables
ϕn and ψ̂n and ∂∆t

t on F̂n. The justification
of this is based on an argument performed via
the frequency domain, as done in the proof of
Lemma 6.1 in [5]. Thus we obtain

∆t
N∑
n=0

ρ2n

〈(
ϕn
ψ̂n

)
, F̂n

〉

≤
[
∆t

N∑
n=0

ρ2n
(
‖(∂∆t

t )−1ϕn‖2H−1/2(Γ)

+ ‖(∂∆t
t )−1ψ̂n‖2H1/2(Γ)

)]1/2
·[

∆t

N∑
n=0

ρ2n‖∂∆t
t F̂n‖2H−1/2(Γ)×H1/2(Γ)

]1/2

.

Using the continuity of Bimp(∂∆t
t ) to bound F̂n

in terms of the data, we have the result of the
theorem. �

6 Numerical results

Here we report the results of a numerical exper-
iment. We let the incident wave be a Gaussian
plane wave, defined as

uinc(x, t) = p(x− t)

where

p(x) = exp(−((x−A)/C)2)

and
A = −2, C = 1/5.

The domain Ω is the unit circle and the spa-
tial and time discretizations are performed as
described in the previous sections. Recall that
the scattered wave solves the homogeneous wave
equation in R2 \ Ω with zero initial conditions
and impedance boundary condition

∂νu = g(u̇+ u̇inc)− ∂νuinc,

where we will compare the results of the linear
impedance g(x) = x with the non-linear g(x) =
x(1 + |x|).

In the following we have chosen T = 4, N =
120 and the size of spaces V 1

h and V 0
h was M =

200. The convolution quadrature was imple-
mented in the recursive, time-stepping way de-
scribed in [4]. The Newton method needed at
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Figure 1: The density u̇sc|Γ = ψ for the lin-
ear impedance on the top and for the non-linear
impedance on the bottom.

most 4 iterations to converge to a satisfactory
accuracy.

In Figure 1 we compare the density of the
scattered field u̇|Γ = ψ obtained with the linear
and non-linear impedance. When scaling the
incident wave to 4× uinc, the non-linear effects
are clearly visible in the changein gshape of the
density, see Figure 2.

7 Conclusions

Until recently time-domain boundary integral
equations have mostly been used for scattering
applications with Dirichlet of Neumann bound-
ary conditions. Recently rigorous stability and
convergence analysis of the coupling with finite
element methods has been performed [5], see
also [1]. Here we show how similar techniques
can be used to further expand the applicability
of TDBIE and perform rigorous stability analy-
sis of the full discretization of a scattering prob-
lem with a non-linear impedance boundary con-
dition. In the future the full convergence analy-
sis will be investigated. We expect that similar
techniques will also be applicable to the sta-
bilisation of non-linear [8] or linear [6] acoustic
boundary conditions and to similar systems in
electromagnetism [7].

Figure 2: The density u̇sc|Γ = ψ for the linear (top)
and non-linear (bottom) impedance with the four
times larger incident wave.
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Abstract

An edge state is a time-harmonic solution of
a conservative wave system, e.g. Schrödinger,
Maxwell, which is propagating (plane-wave-like)
parallel to, and localized transverse to, a line-
defect or “edge”. Topologically protected edge
states are edge states which are stable against
spatially localized (even strong) deformations of
the edge. A theoretical understanding of topo-
logical protection has mainly come from dis-
crete (tight-binding) models and direct numer-
ical simulation. In this paper we consider a
rich family of continuum PDE models for which
we rigorously study regimes where topologically
protected edge states exist.

Our model is a class of Schrödinger opera-
tors on R2 with a background two-dimensional
honeycomb potential perturbed by an “edge-
potential”. The edge potential is a domain-
wall interpolation, transverse to a prescribed
“rational” edge, between distinct periodic struc-
tures. General conditions are given for the bi-
furcation of a branch of topologically protected
edge states from Dirac points of the background
honeycomb structure. The bifurcation is seeded
by the zero mode of a one-dimensional effective
Dirac operator. A key condition is a spectral
no-fold condition for the prescribed edge.

We use this general result to prove the ex-
istence of topologically protected edge states
along zigzag edges of certain honeycomb struc-
tures. Our results are consistent with the physics
literature and appear to be the first rigorous re-
sults on the existence of topologically protected
edge states for continuum 2D PDE systems. We
also show that the Hamiltonians we study con-
tain cases where zigzag edge states exist, but
which are not topologically protected.

Keywords: Edge state, topological insulator,
Schrödinger operator, Dirac operator

1 Introduction

Wave transport in periodic structures with hon-
eycomb symmetry has been an area of intense
activity catalyzed by the study of graphene, a
single atomic layer two-dimensional honeycomb
structure of carbon atoms [1]. The remark-
able electronic properties exhibited by graphene
have inspired the study of waves in general hon-
eycomb structures or “artificial graphene” in
other contexts. One such property, observed
in electronic and photonic systems with hon-
eycomb symmetry is the existence of topologi-
cally protected edge states. Edge states are (i)
pseudo-periodic (plane-wave-like or propagat-
ing) parallel to a line-defect, and (ii) localized
transverse to the line-defect. Topological pro-
tection, refers to the persistence of these states
and their properties, even when the line-defect
is subjected to strong local or random perturba-
tions. In applications, edge states are of great
interest due to their potential as robust vehicles
for channeling energy.

There is an extensive physics literature which
explores edge states, in the context of approxi-
mate tight-binding (discrete) models or by nu-
merical simulations. First studied in the con-
text of the quantum Hall effect [2,3], protected
edge states have attracted huge interest due to
their role in the field of topological insulators
[4, 5]. The proposed realization of analogous
states in the photonic setting was made in [6,7],
and studied extensively in linear and nonlinear
photonics in [8–11].

We are interested in exploring these phe-
nomena in general energy-conserving wave equa-
tions in continuous media. We consider the case
of the Schrödinger equation on R2, i∂tψ = Hψ,
and study the existence and robustness of edge
states of time-harmonic form: ψ = e−iEtΨ. Our
model consists of a honeycomb background po-
tential, the “bulk” structure, and a perturb-
ing “edge-potential”. The edge-potential inter-
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polates between two distinct asymptotic peri-
odic structures, via a domain wall which varies
transverse to a given line-defect (“edge”). In
the context of honeycomb structures, the most
frequently studied edges are the “zigzag” and
“armchair” edges; see Figure 1. In the context
of tight-binding models of graphene, edge states
have been shown to localize on zigzag edges but
not on armchair edges.

Our goal is to clarify the underlying mech-
anisms for the existence of topologically pro-
tected edge states. Our model of an edge, which
breaks spatial inversion symmetry, is motivated
by [6, 7], where a domain wall is used to break
time-reversal symmetry. In [12, 13] we proved
that a one-dimensional variant of such edge-
potentials gives rise to topologically protected
edge states in periodic structures with symmetry-
induced linear band crossings, the analogue in
one space dimension of Dirac points (see below).
We explore a photonic realization of such states
in coupled waveguide arrays in [14].

2 Honeycombs, Dirac points and Edge
states

Let Λh = Zv1⊕Zv2 denote the regular (equilat-
eral) triangular lattice and Λ∗h = Zk1⊕Zk2 de-
note the associated dual lattice, with relations
kl · vm = 2πδlm, l,m = 1, 2. The honeycomb
structure, H, is the union of two interpenetrat-
ing triangular lattices: A + Λh and B + Λh.
A honeycomb lattice potential, V (x), is a real-
valued, smooth function, which is Λh− periodic
and, relative to some origin of coordinates, in-
version symmetric (even) and invariant under a
2π/3 rotation. We take the period cell to be
Ωh, the parallelogram spanned by {v1,v2}.

We begin with the Hamiltonian for the un-
perturbed honeycomb structure: H(0) = −∆ +
V (x). The band structure of H(0) is obtained
from the family Floquet - Bloch eigenvalue prob-
lems, parametrized by k ∈ Bh, the Brillouin
zone: (H(0) − E)Ψ = 0, Ψ(x + v) = eik·vΨ(x),
x ∈ R2, v ∈ Λh. Equivalently, ψ = e−ik·xΨ,
satisfies the periodic eigenvalue problem:(
H(0)(k)− E(k)

)
ψ = 0 and ψ(x + v) = ψ(x),

where H(0)(k) = −(∇ + ik)2 + V (x). For each
k ∈ Bh, the spectrum is real and consists of dis-
crete eigenvalues Eb(k), b ≥ 1, where Eb(k) ≤
Eb+1(k). The maps k 7→ Eb(k) ∈ R define the
dispersion surfaces of H(0). The collection of
these surfaces constitutes the band structure of

Figure 1: (a): A = (0, 0), B = ( 1√
3
, 0). The hon-

eycomb structure, H is the union of two sub-lattices
ΛA = A + Λh (blue) and ΛB = B + Λh (red). The
lattice vectors {v1,v2} generate Λh. (b): Brillouin
zone, Bh, and dual basis {k1,k2}. K and K′ are la-
beled. Other vertices of Bh are obtained via application
of R, rotation by 2π/3. (c): Zigzag edge (solid line),
Rv1 = {x : k2 · x = 0}, armchair edge (dashed line),
R (v1 + v2) = {x : (k1 − k2) · x = 0}, and cylinder for
the zigzag edge (gray area) are indicated. (d): Edge
state propagating parallel to a zigzag edge (Rv1).

H(0). As k varies over Bh, each map k→ Eb(k)
sweeps out a closed interval in R. The union
of these intervals is the L2(R2)− spectrum of
H(0).

A central role is played by Dirac points of
H(0). These are quasi-momentum / energy pairs,
(K?, E?), in the band structure of H(0) at which
neighboring dispersion surfaces touch conically
at a point [1,15]. The existence of Dirac points,
located at the six vertices of the Brillouin zone,
Bh (regular hexagonal dual cell) for generic hon-
eycomb structures was proved in [15]; see also
[13]. The quasi-momenta of Dirac points parti-
tion into two equivalence classes; the K− points
consisting of K, RK and R2K, where R is a
rotation by 2π/3 and K′− points consisting of
K′ = −K, RK′ and R2K′. The time evolution
of a wavepacket, with data spectrally localized
near a Dirac point, is governed by a massless
two-dimensional Dirac system [16].

Associated with the Dirac point (K?, E?) is
a two-dimensional eigenspace of K?− pseudo-
periodic states, span{Φ1,Φ2}: H(0)Φj = E?Φj ,
j = 1, 2, where Φj(x + v) = eiK?·vΦj(x), v ∈
Λh. It is also shown in [15] that a Λh− peri-
odic perturbation of V (x), which breaks inver-
sion or time-reversal symmetry lifts the eigen-
value degeneracy; a (local) gap is opened about
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the Dirac points and the perturbed dispersion
surfaces are locally smooth. The perturbation
of H(0) by an edge potential (see (1)) takes ad-
vantage of this instability of Dirac points with
symmetry breaking perturbations.

To construct our Hamiltonian, perturbed by
an edge-potential, we first choose a vector v1 ∈
Λh, the period lattice, and designate the line
Rv1 as the “edge”. Choose v2 such that Λh =
Zv1⊕Zv2. Also introduce dual basis vectors, K1

and K2, satisfying Kl · vm = 2πδlm, l,m = 1, 2.
The choice v1 = v1 is a zigzag edge. Introduce
the perturbed Hamiltonian:

H(δ) ≡ −∆ + V (x) + δκ(δK2 · x)W (x). (1)

Here, δ is real and will be taken to be suffi-
ciently small, and W (x) is Λh− periodic and
odd. The function κ, defines a domain wall. We
choose κ to be sufficiently smooth and to sat-
isfy κ(0) = 0 and κ(ζ)→ ±κ∞ 6= 0 as ζ → ±∞.
Without loss of generality, we assume κ∞ > 0,
e.g. κ(ζ) = tanh(ζ). We refer to the line Rv1

as a v1− edge.
Note that H(δ) is invariant under transla-

tions parallel to the v1− edge, x 7→ x + v1,
and hence there is a well-defined parallel quasi-
momentum, denoted k‖. H

(δ) transitions adia-

batically between asymptotic HamiltoniansH
(δ)
±

= H(0) ± δκ∞W (x) as K2 · x→ ±∞.
Suppose H(0) has a Dirac point at (K?, E?).

While H(0) is inversion symmetric, H
(δ)
± is not.

For δ 6= 0, H
(δ)
± does not have Dirac points; its

dispersion surfaces are locally smooth and for
quasi-momenta k such that if |k − K?| is suf-
ficiently small, there is an open neighborhood
of E? not contained in the L2(R2/Λh)− spec-

trum of H
(δ)
± (k). This “spectral gap” about

E = E? may however only be local about K?

[15]. If there is a real open neighborhood of

E?, not contained in the spectrum of H
(δ)
± (k) =

−(∇ + ik)2 + V ± δκ∞W for all k ∈ Bh, then

H
(δ)
± is said to have a (global) omni-directional

spectral gap about E = E?. However it is a “di-
rectional spectral gap” (stated in terms of the
spectral no-fold hypothesis of Theorem 1) that
plays a key role in the existence of edge states.

To formulate the eigenvalue problem in an
appropriate Hilbert space, we introduce the cylin-
der Σ ≡ R2/Zv1. If f(x) satisfies the pseudo-

periodic boundary condition, then f(x)e−i
k‖
2π

K1·x

is well-defined on the cylinder Σ. Denote by
Hs(Σ), s ≥ 0, the Sobolev spaces of functions
defined on Σ. The pseudo-periodicity and de-
cay conditions are encoded by requiring Ψ ∈
Hs
k‖

(Σ), for some s ≥ 0, where Hs
k‖

(Σ) consists

of f such that f(x)e−i
k‖
2π

K1·x belongs to Hs(Σ).
The edge state eigenvalue problem: Find
non-trivial pairs solutions of

H(δ)Ψ = EΨ, Ψ ∈ H2
k‖

(Σ). (2)

We next summarize the results of [17].

3 Theorem 1: General conditions for the
existence of topologically protected edge
states

We formulate hypotheses on the honeycomb po-
tential, V (x), domain wall function, κ(ζ), and
asymptotic periodic structure, W (x), which im-
ply the existence of topologically protected v1−
edge states, constructed as non-trivial eigen-
pairs δ 7→ (Ψδ, Eδ) of (2) with k‖ = K · v1,
defined for all |δ| sufficiently small. This branch
of non-trivial states bifurcates from the trivial
solution branch E 7→ (Ψ ≡ 0, E) at E = E?.
Key among the hypotheses is the spectral no-
fold condition. At leading order in δ, the edge
state, Ψδ(x), is a slow modulation of the degen-
erate nullspace of H(0) − E?:

Ψδ(x) ≈ α?,+(δK2 · x)Φ+(x) + α?,−(δK2 · x)Φ−(x),

Eδ = E? +O(δ2), 0 < |δ| � 1,

where {Φ+,Φ−} is an appropriately chosen ba-
sis for the kernel of H(0) − E?. The envelope
amplitude-vector, α?(ζ) = (α?,+(ζ), α?,−(ζ))T ,
is a zero-energy eigenstate, Dα? = 0, of the one-
dimensional Dirac operator:

D ≡ −i|λ]||K2|σ3∂ζ + ϑ]κ(ζ)σ1,

where the Pauli matrices σj . Here λ] ∈ C de-
pends on the unperturbed honeycomb poten-
tial, V , and is non-zero for generic V . The
constant ϑ] ≡ 〈Φ1,WΦ1〉L2(Ωh) is real and is
also generically nonzero. D has a spatially lo-
calized zero-energy eigenstate for any κ(ζ) hav-
ing asymptotic limits of opposite sign at ±∞.
Hence, the zero-energy eigenstate, which seeds
the bifurcation, persists for localized perturba-
tions of κ(ζ). In this sense, the bifurcating
branch of edge states is topologically protected
against a class of local perturbations of the edge.
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A Corollary of Theorem 1, is the existence
of edge states, Ψ(x; k‖) ∈ H2

k‖
(Σ) for all k‖ in a

neighborhood of k‖ = K · v1, and by symmetry
for all k‖ in a neighborhood of k‖ = −K · v1 =
K′ · v1. It follows that by taking a continuous
superposition of these states, one obtains time-
dependent states that remain localized about
(and dispersing along) the edge for all time.

4 Theorem 2: Existence of topologically
protected zigzag edge states

We consider the eigenvalue problem for zigzag
edges: v1 = v1, v2 = v2, and K1 = k1, K2 = k2.

H(ε,δ)Ψ = EΨ, Ψ ∈ H2
k‖

(Σ) (3)

H(ε,δ) ≡ −∆ + εV (x) + δκ(δk2 · x)W (x).

Here, ε and δ are chosen to satisfy

0 < |δ| . ε2 � 1. (4)

There are two cases, which are delineated by
the sign of the distinguished Fourier coefficient,
εV1,1, of the unperturbed (bulk) honeycomb po-
tential, εV (x). Here,

V1,1 ≡
1

|Ωh|

∫
Ωh

e−i(k1+k2)·y V (y) dy,

is assumed to be non-zero. We designate these:
Case (1) εV1,1 > 0 and Case (2) εV1,1 < 0.
Explicit families of honeycomb potentials are
displayed which can be tuned between Cases 1
and 2, by variation of a lattice scale parameter.

Under the conditions εV1,1 > 0 (Case (1))
and (4), we verify the spectral no-fold condi-
tion for the zigzag edge. The existence of zigzag
edge states then follows from Theorem 1 and
the Corollary. In particular, for all ε and δ
satisfying (4) and for each k‖ near K · v1 =
2π/3, the zigzag edge state eigenvalue problem
(2) has topologically protected edge states with
energies sweeping out a neighborhood of Eε?,
where (K, Eε?) is a Dirac point. Figures 2 and
3 are illustrative of Cases (1) and (2). Figure 2
displays, for fixed ε, the L2

k‖=2π/3(Σ)− spectra

of H(ε,δ) corresponding to a range of δ values
(strength / scale of domain wall -perturbation)
for Cases (1) εV1,1 > 0 (top panel) and (2)
εV1,1 < 0 (middle and bottom panels). Figure
3 displays the L2

k‖
(Σ)− spectra (plotted verti-

cally) for a range of k‖ with δ and ε held fixed.

Figure 2: L2
k‖=K·v1

(Σ)− spectra (K · v1 = 2
3
π) of

H(ε,δ) for the zigzag edge (Rv1). Top panel: Case
(1) εV1,1 > 0. Topologically protected bifurcation of
edge states, described by Theorem 1 (dotted red curve).
The branch of edge states emanates from intersection
of first and second bands (B1 and B2) at E = Eε? for
δ = 0. Middle panel: Case (2) εV1,1 < 0. Spectral
no-fold condition does not hold. Bifurcation of zigzag
edge states from upper endpoint, E = Ẽε, of the first
spectral band. Bifurcation is seeded by bound state of
a Schrödinger operator with effective mass meff < 0 and
effective potential Qeff(ζ) shown in the inset; bifurcation
is not topologically protected. Bottom panel: Case
(2) εV1,1 < 0 with domain wall function κ\, a localized
perturbation of κ, for which the edge state bifurcation
from upper endpoint of B1 (middle panel) is destroyed.
Non-protected bifurcations of edge states arise from left
endpoints of B1 and B2, at which meff > 0.

In Case (2), where εV1,1 < 0, we do not ob-
tain a bifurcation from the Dirac point. How-
ever, we find branches of edge states emanat-
ing from the endpoints of spectral band edges.
These states are not topologically protected; they
are destroyed by appropriate localized pertur-
bations of the edge.
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Transparent boundary conditions for complex media

Sonia Fliss1
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Abstract

We are interested in acoustic or elastic wave
propagation in time harmonic regime in a two-
dimensional medium which is a local pertur-
bation of an infinite anisotropic homogeneous
and/or periodic medium. We investigate the
question of finding artificial boundary condi-
tions to reduce the numerical computations to a
neighborhood of this perturbation. This ques-
tion is difficult due to the anisotropy and/or the
periodicity of the surrounding medium. Our ap-
proach consists in coupling several semi-analyti-
cal representations of the solution in half-planes
surrounding the defect with a FE computation
of the solution around the defect. The diffi-
culty is to ensure that all these representations
match, in particular in the infinite intersections
of the half-planes. It leads to a formulation
which couples, via integral operators, the solu-
tion in a bounded domain including the defect
and its traces on the edge of the half-planes.

Keywords:Transparent boundary conditions,
acoustics and elasticity, periodic media

This work is the result of various collaborations
with Anne-Sophie Bonnet-Ben Dhia, Julien
Coatléven, Patrick Joly and Antoine Tonnoir.

1 Introduction

We consider in this talk a 2D (x = (x1, x2))
anisotropic scalar acoustic model

Find u ∈ H1(Ω),
−div(A∇u)− ω2

ε ρ u = f in Ω
(1)

in time-harmonic regime with a small absorp-
tion, Im(ω2

ε) = ε > 0, where A is a symmetric,
positive definite matrix of (L∞(Ω))2×2 and ρ is
a strictly positive function of L∞(Ω).

The domain of propagation Ω is R2 and the sup-
port of the source term is supposed to be com-
pact and strictly included in a bounded region
denoted Ωa =]− a, a[2 with a > 0 (geometrical
defects included in Ωa can also be considered,
boundary conditions have to be added to the
model). We will consider two situations:

(I) Outside Ωa, the matrix A and the coeffi-
cient ρ are constant (independent of the
space variables). This problem is studied
in Section 3.

(II) Outside Ωa, the matrix A and the coef-
ficient ρ are (L1, L2)-periodic in the two
directions. Without loss of generality, we
will suppose that Lx = Ly = 1. This
problem is studied in Section 4.

Our objective is to propose an original numer-
ical method to compute the solution for these
two situations. A motivation, in particular for
the case (I), is to derive a method for the com-
putation of the solution of the time harmonic
anisotropic elastic problem:

Find u ∈ H1(Ω)2,
−divσ(u)− ω2

ε ρu = f in Ω

where σ(u) is the stress tensor, related to the
strain tensor ε(u) = 1/2(∇u+∇T u) by Hooke’s
law : σ(u) = C : ε(u), C being the 4th-order
elasticity tensor and ρ the mass density.

A natural idea is to reduce the pure numeri-
cal computations around the perturbation and
try to take advantage of the structure of the
medium outside the perturbation. In the case
where the surrounding media is homogeneous
(Case I), this is a very old problematic and var-
ious methods can be used. A first class of meth-
ods consists in applying an artificial boundary
condition which is transparent or approximately
transparent as in: (1) integral equation tech-
niques [1], (2) Dirichlet-to-Neumann (DtN) ap-
proaches providing that the boundary is prop-
erly chosen to allow separation of variables and
(3) local radiation conditions at finite distance
[2] constructed as local approximations at var-
ious orders of the exact non local condition.
However, none of these methods can be applied
or extended directly to general exterior periodic
media since they use the homogeneous nature
of the exterior medium (explicit formulas are
used for the Green function or more generally
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for the solution of exterior problems). For elas-
ticity problems, when the medium is isotropic,
all the methods can be extended [3] – it suffices
to use the Helmholtz decomposition of the so-
lution in terms of potential. However when the
medium is anisotropic, the extension of these
methods is difficult – the computation of the
Green tensor is much more costly since the ten-
sor depends not only on the distance between
two points but also on the orientation [4] – or
impossible – the separation of variables tech-
nique does not work anymore to determine the
DtN operator.

A second class of methods consists in surround-
ing the computational domain by an absorb-
ing layer in which the PML technique is ap-
plied. Roughly speaking, the PML absorbs the
waves with outgoing phase velocity, preventing
them to come back in the computational do-
main, while, in order to catch the physical solu-
tion, it should absorb the waves with outgoing
group velocities. That is why, in our knowledge,
the standard PML technique cannot work for
periodic media or anisotropic elasticity where
these two velocities differ. In the same spirit,
there also exist pole condition techniques [6]
that have been extended recently to anisotropic
elastic problem but not yet to periodic media.

By contrast, our method can cover all the afore-
mentioned cases. It is based on a simple idea:
the solution of –homogeneous or periodic– half-
space problems can be expressed thanks to its
trace on the boundary. As several halfspaces
surrounding the perturbations are needed to re-
cover the whole domain, they will necessarily
overlap. The difficulty is then to find conditions
to ensure the compatibility of the representa-
tions in the overlapping zones. This method
have links with domain decomposition meth-
ods with overlap [7], with the specific difficulty
that here the overlapping zones are unbounded.
For the two cases (I) and (II), the framework
of our method is the same and it is described
in the next section. Even if the next section
may seem technical because of the big amount
of notations, the ideas are really simple so never
say die! Besides the tools for the two cases dif-
fers : the Fourier Transform (FT) is used to
solve halfspace problems for the homogeneous
case (see Section 3) and analytical representa-

tions are derived, whereas the Floquet Bloch
Transform (FBT) is used for the periodic case
(see Section 4) and only semi-analytical repre-
sentations are derived. Moreover, the analysis
is complete for the homogeneous case and still
raises open questions for the periodic case.

2 Description of the method

Let us introduce some notations (see Figure 1)
for b ≥ a

Ωa =]− a, a[2 and Σ±,ja = ∂Ωa ∩ {xj = ±a}
Ωb =]− b, b[2 and Σ±,jb = ∂Ωb ∩ {xj = ±b}
Ω±,jH = {(x1, x2) ∈ Ω, ±xj ≥ a} and Σ±,jH = ∂Ω±,jH

It is quite obvious to see that if u is solution

Figure 1: Notations

of (1), then u|Ωb
is solution of

−div(A∇ub)− ω2
ε ρ ub = f in Ωb, (2)

and u|
Ω±,j

H
for j ∈ {1, 2} are solutions of

−div(A∇u±,jH )− ω2
ε ρ u

±,j
H = 0 in Ω±,jH . (3)

Besides, they satisfy, for instance (see Remark
3), the following transmission conditions, for all
j ∈ {1, 2},

A∇ub · exj = A∇u±,jH · exj on Σ±,jb , (4)

and for all j 6= k ∈ {1, 2},

u±,jH = ub on Σ±,ja

u±,jH = u+,k
H on ∂(Ω±,jH ∩ Ω+,k

H ),

u±,jH = u−,kH on ∂(Ω±,jH ∩ Ω−,kH ).

(5)

Conversely, using the well posedness of the prob-
lems set in the four quadrants and the well posed-
ness of the problem set in the ring Ωb ∩ Ωa, we
can show the following result.
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Theorem 1 Let ub ∈ H1(Ωb) be a solution of
(2) and u±,jH ∈ H1(Ω±,jH ) be solutions of (3) sat-
isfying the transmission conditions (4-5), then
u defined by u|Ωb

= ub and u|
Ω±,j

H
= u±,jH is

defined unequivocally and is solution of (1).

We have then rewritten the problem set in the
whole plane as a system of equations coupling 5
unknowns, one defined in the bounded domain
Ωb and 4 defined in each halfspace Ω±,jH . Let
us now explain how to eliminate the 4 halfspace
unknowns. We can express the solution of any
halfspace problem (analytically using the FT if
the coefficients are constant or semi-analytically
using the FBT if the coefficients are periodic)
given its trace on the boundary of the halfspace.
Therefore, for any ϕ ∈ H1/2(Σ±,jH ), we denote

by U±,jH (ϕ) the unique solution in H1(Ω±,jH ) of

−div(A∇U±,jH )− ω2
ε ρU

±,j
H = 0 in Ω±,jH

U±,jH = ϕ on Σ±,jH ,
(6)

Then we introduce the halfspace DtN operator
with an overlap, Λ±,jH , defined by

Λ±,jH ϕ = A∇U±,jH (ϕ) · exj |Σ±,j
b
, (7)

and 2 DtD operators D±,j+ and D±,j− defined by

D±,j+ ϕ = U±,jH (ϕ)|
Σ+,k

H ∩Ω±,j
H

D±,j− ϕ = U±,jH (ϕ)|
Σ−,k

H ∩Ω±,j
H
.

(8)

The expressions of the solutions U±,jH (ϕ) and

Figure 2: One halfspace problem

the operators Λ±,jH , D±,j+ and D±,j− will be given
in Section 3 for homogeneous media and in Sec-
tion 4 for periodic media.

We can then eliminate the halfspace unknowns
and reformulate the problem as a system of cou-
pled equations linking the solution in Ωb with
the traces on each edge of the four halfspaces.

More precisely, u|Ωb
and (u|

Σ+,1
H
, u|

Σ+,2
H
, u|

Σ−,1
H
,

u|
Σ−,2

H
) satisfy

−div(A∇ub)− ω2
ε ρ ub = f in Ωb

A∇ub · exj = Λ±,jH ϕ±,jH on Σ±,jbb

ϕ±,jH = ub on Σ±,jaa

ϕ±,jH = D+,k
± ϕ+,k

H on Σ±,jH ∩ Ω+,k
H

ϕ±,jH = D−,k± ϕ−,kH on Σ±,jH ∩ Ω−,kH

(9)

Conversely, we can prove the following result.

Theorem 2 Let ub ∈ H1(Ωb) and (ϕ+,1
H , ϕ+,2

H ,

ϕ−,1H , ϕ−,2H ) ∈ H1/2(R)4 be a solution of (9).
Then if b > a, u defined by u|Ωb

= ub and

u|
Ω±,j

H
= U±,jH (ϕ±,jH ) is defined unequivocally and

is solution of (1).

This implies existence and uniqueness of the so-
lution of (9) but does not provide stabilities
properties. As we will see in the next sections,
the equations involving the traces are non stan-
dard integral equations. For homogeneous me-
dia, this problem is shown to be of Fredholm
type but this question remains open for peri-
odic media. In any case, this is this system of
equations which is discretized and implemented
in practice.

Remark 3 If b > a, other transmission condi-
tions can be imposed instead of (4-5), for exam-
ple Robin traces instead of Neumann traces in
(4) and Neumann traces instead of traces in (5).

If we eliminate, when it is possible, the unknowns
(ϕ+,1

H , ϕ+,2
H , ϕ−,1H , ϕ−,2H ) in (9), we construct a

DtN operator linking the trace of ub on ∂Ωa to
its normal derivative on ∂Ωb.

For homogeneous media, and if Ωa and Ωb are
triangles, a similar formulation can be derived
with only 3 trace unknowns, see [8] for more de-
tails. A similar idea applies for hexagonal peri-
odic media involving the traces of the solutions
in 3 broken lines, see [9].

The case without dissipation (ε = 0) raises chal-
lenging open questions : the difficulty comes
from the proof of Theorem (1), more precisely
on the well posedness of the associated quad-
rant problems. However from a numerical point
of view, for the homogeneous case, this method
seems to work.
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Let us now give a more explicit form of this
system, first for homogeneous media and then
for periodic media.

3 Case (I) – The locally perturbed ho-
mogeneous media

To simplify the presentation, we consider the
situation of an isotropic acoustic medium (A =
I) but the method extends easily to any matrix.

To determine the expression of the solution of
the halfspace problems (6), it suffices to study
the FT of U±,jH which is solution – due to the ho-
mogeneity of the medium – of a 1D differential
equation set in L2(]a,+∞[) or in L2(]−∞,−a[),
for any dual variable ξ ∈ R. Using the inverse
FT, we obtain for ±xj ≥ ±a, xk ∈ R

U±,jH (ϕ) =
1√
2π

∫
R
ϕ̂(ξ) e∓

√
ξ2−ω2

ε (xj∓a)+ıξxk dξ,

where ϕ̂ is the Fourier transform of ϕ andRe
√

>

0 by convention. The operators Λ±,jH , D±,j+ and

D±,j− can then also be expressed analytically by
their definition (7) and (8). In particular, we
have for p.p. −b < x2 < b

(Λ+,1
H ϕ) (x2) = − 1√

2π

∫
R

√
ξ2 − ω2

ε ϕ̂(ξ)

e−
√
ξ2−ω2

ε (b−a)+ıξx2 dξ, (10)

and for p.p. x1 > a

(D+,1
+ ϕ) (x1) =

1√
2π

∫
R
ϕ̂(ξ)

e−
√
ξ2−ω2

ε (x1−a)+ıξa dξ. (11)

The equations of (9) involving only the trace
unknowns are then of integral form. If we con-
sider only the system of the four last equations,
given ψ ∈ H1/2(∂Ωa), find (ϕ+,1

H , ϕ+,2
H , ϕ−,1H , ϕ−,2H )

solution of

ϕ±,jH = ψ on Σ±,jaa

ϕ±,jH = D+,k
± ϕ+,k

H on Σ±,jH ∩ Ω+,k
H

ϕ±,jH = D−,k± ϕ−,kH on Σ±,jH ∩ Ω−,kH

(12)

we can show the fundamental result

Theorem 4 The system of equations (12) is of
Fredholm type and it is well posed in L2(R)4.

The proof relies on properties of the Laplace
transform, Hilbert-Schmidt operators, explicit

computations and analyticity arguments. This
result is true for anisotropic media for a suitable
choice of ∂Ωa and ∂Ωb. We deduce easily when
b > a, using the compactness of the halfspace
DtN operators, that the problem (9) is also of
Fredholm type.

The approximation relies on a truncation and
a discretization both in space and Fourier vari-
ables (to compute the integrals of type (10) and
(11)). The method has been implemented and
validated in the scalar acoustic case and in the
elastic case.

We represent in Figure 3, for an anisotropic
acoustic problem, the solution in the bounded
region Ωb and in two halfspaces Ω1,+

H and Ω2,+
H .

The different reconstructed parts of the solu-
tion coincide in the overlapping area because
the compatibility conditions on the traces are
satisfied.

Figure 3: Various reconstructed parts of the so-
lution for an anisotropic acoustic problem

4 Case (II) – The locally perturbed pe-
riodic media

We can now cover the case of periodic media. It
seems that there are very few works for the sim-
ulation of wave propagation in infinite periodic
media (or large compared to the wavelength). A
first class of methods covers problems where the
periodicity can be treated by homogenization
techniques [10], typically when the wavelength
is much larger than the period. The unbound-
edness of the homogenized and often anisotropic
media can then be handled using classical meth-
ods mentioned in Introduction or by the strat-
egy proposed in Section 3. A second class of
methods considers the periodicity as such but
only for finite media [11] or media which can be
reduced to finite domain (for instance the su-
percell method for the computation of localized
modes [12]).
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To simplify the presentation, we assume that
a = 1/2 and b = 3/2 but any a, b ∈ 1/2Z∗
can be considered. Let us now introduce the
privileged tool for the study of equations with
periodic coefficients.

Definition 5 The FBT of period 1 is defined
by (see [13]):

F : ϕ ∈ L2(R) 7→ Fϕ ∈ L2(K)

where p.p (x, ξ) ∈ K = (−1/2, 1/2)× (−π, π)

Fϕ(x, ξ) =
1√
2π

∑
n∈Z

ϕ(x+ n)e−ınξ.

Moreover we have the inversion formula: p.p.x ∈
[0, 1] ∀n ∈ Z,

ϕ(x+ n) =
1

2π

∫ π

−π
Fϕ(x, ξ)eınξdξ

We denote Fju the FBT of a function u of R2

applied in the xj-direction.

To determine the expression of the solution of
the halfspace problems (6), it suffices to study
the FBT in the transverse direction Û±,jH (ξk) =

FkU±,jH (·; ξk) of U±,jH . Because of the periodic-
ity of the problem, it is solution, for any dual
variable ξk ∈ (−π, π), of the strip problem

−div(A∇Û±,jH (ξk)− ω2
ε ρ Û

±,j
H (ξk) = 0, in B±,jH

Û±,jH (ξk)|xj=±a = Fkϕ (ξk)|xj=±a,

Û±,jH (ξk)|xk=a = eıξk Û±,jH (ξk)|xk=−a

A∇Û±,jH (ξk) · exk |xk=a

= eıξkA∇Û±,jH (ξk) · exk |xk=−a

where B±,jH = Ω±,jH ∩ {−a ≤ xk ≤ a}.

As explained in [14], we can characterize and
compute periodicity cell by periodicity cell, for
every ξk ∈ (−π, π), the solution of this semi-
infinite periodic waveguide thanks to the solu-
tions of two cell problems and a so-called prop-
agation operator P±,j(ξk). This operator is the
unique operator of spectral radius strictly less
than 1 to the stationary Ricatti equation

T±,j10 (ξk)P
±,j(ξk)

2 + T±,j01 (ξk)

+ (T±,j00 (ξk) + T±,j11 (ξk))P
±,j(ξk) = 0, (13)

where the operators T±,j`m (ξk) are local DtN op-
erators defined thanks to the cell problems. Ap-
plying the FBT inverse, U±,jH and the opera-

tors Λ±,jH , D±,j+ and D±,j− can then be expressed
semi-analytically. In particular, we have for all
n ∈ {−1, 0, 1}, p.p a+ n < x2 < a+ n+ 1,

(Λ+,1
H ϕ) (x2) = − 1√

2π

∫ π

−π
T+,1(ξ2)P+,1(ξ2)

F2ϕ
+,1
H (·; ξ2)eınξ2 dξ2,

where T+,1(ξ2) = T+,1
00 (ξ2) + T+,1

10 (ξ2)P+,1(ξ2)
and for all n ∈ N and p.p a+n < x1 < a+n+1

(D+,1
+ ϕ) (x1) =

1√
2π

∫ π

−π
D+,1(ξ2)P+,1(ξ2)n

F2ϕ
+,1
H (·; ξ2) dξ2,

where D+,1(ξ2) = D+,1
0 (ξ2) + D+,1

1 (ξ2)P+,1(ξ2)

and the operators D+,1
m (ξ2) are defined thanks

to the cell problems. Thus, using one of the
last equation of (9) for the “+”-case, j = 2
and k = 1, knowing the FBT of ϕ+,1

H , we can

recover ϕ+,2
H piece by piece for x1 > a. It is then

more natural to rewrite the equations involving
the FB transform of the trace unknowns. For
example, we find for the “+”-case and j = 2

2πF1ϕ
+,2
H (·; ξ1) =

√
2πub|Σ+,2

a

+

∫ π

−π

[
eıξ1D−,1(ξ2) (I−P−,1(ξ2)eıξ1)−1F2ϕ

−,1
H (·; ξ2)

+e−ıξ1D+,1(ξ2) (I−P+,1(ξ2)e−ıξ1)−1F2ϕ
+,1
H (·; ξ2)

]
dξ2

The equations of (9) involving only the trace
unknowns can be rewritten as integral equa-
tions. The properties of the corresponding sys-
tem of integral equations and then the extension
of Theorem 4 are still open questions.

From the numerical point of view, one has
to solve first families of decoupled cell prob-
lems and stationary Ricatti equations, then dis-
cretize the coupled integral equations both in
space and in the Floquet variables (ξ1, ξ2) and
finally construct a discrete FBT inverse for the
computation of the halfspaces DtN operators.
The method has been implemented and vali-
dated in the scalar acoustic case. For instance
Figure 4 represents the solution (right figure)
for a particular periodic media, whose ρ is rep-
resented in the left figure.
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Figure 4: Right figure : Solution of (1) for A = I
and ρ represented in the left figure.

5 Conclusions and ongoing works

Besides all the open questions already mentioned
in this abstract, the case without dissipation is
definitely the most challenging and interesting
question. It can be summarized as ensuring an
outgoing condition in 4 (or 3?) directions is
that sufficient to ensure the radiation condition
in all the directions?

Finally, this original method can be used to deal
with time domain wave equations (after semi-
discretization in time) or junctions of stratified
media (using a generalized Fourier transform to
solve the corresponding halfspace problems).
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Minisymposium: Advanced Computational Methods for Acoustic
and Elastic Wave Propagation
organised by Dan Givoli and Thomas Hagstrom

In recent years there has been an increased in-
terest in advanced computational methods for
acoustic and elastic wave problems. Impor-
tant issues where progress has been made re-
cently include multiscale wave phenomena that
require special solution techniques to resolve
the various scales, high-order absorbing bound-
ary conditions and Perfectly Matched Layers for
wave propagation in unbounded domains, high-

order methods for dealing with inhomogeneous
anisotropic media, solution of inverse problems
based on wave scattering, high order stable and
robust methods for time integration, and er-
ror estimation for wave problems and adaptive
schemes based on error estimates. This mini-
symposium will address some of these issues,
while concentrating on problems in acoustic and
elastic waves.
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Convergence analysis of leap-frog based local time-stepping for the wave equation

Loredana Gaudio1, Marcus J. Grote1,∗, Michaela Mehlin1

1Department of Mathematics and Computer Science, University of Basel, Switzerland
∗Email: marcus.grote@unibas.ch

This paper will be presented in the MS ”Ad-
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Abstract

Local mesh refinement severely impedes the effi-
ciency of explicit time-stepping methods for nu-
merical wave propagation. Local time-stepping
(LTS) methods overcome the bottleneck due to
a few small elements by allowing smaller time-
steps precisely where those elements are located [1].
In [2], leap-frog (LF) type LTS methods of ar-
bitrarily high accuracy were derived, which are
fully explicit and conserve an energy. Here we
rigorously prove convergence of the LF-LTS method
and present numerical experiments with an in-
terior penalty discontinuous Galerkin (IP-DG)
spectral element method (SEM) to illustrate their
usefulness in the presence of corner singulari-
ties.

Keywords: discontinuous Galerkin methods,
explicit time integration, multirate methods

1 Introduction

We consider the classical wave equation{
utt −∇ · (c2∇u) = f in Ω× (0, T )
u|t=0 = u0 ut|t=0 = v0 in Ω,

,

(1)
where Ω ∈ Rd denotes a bounded domain in Rd,
f ∈ L2(0, T ;L2(Ω)) a (known) source, and u0 ∈
H1

0 (Ω), v0 ∈ L2(Ω) prescribed initial conditions.
The speed of propagation, c = c(x), is assumed
piecewise smooth and strictly positive. At the
boundary, ∂Ω, we impose appropriate boundary
conditions for well-posedness.

For the spatial discretization of (1), we con-
sider a symmetric IP-DG SEM, which leads to
the second-order system of ordinary differential
equations:

M
d2U

dt2
(t) + KU(t) = F (t) , (2)

where the mass matrix M is diagonal. Hence,

we can directly compute M1/2 and write (2) as

d2z

dt2
(t) + Az(t) = R(t), (3)

with z(t) = M
1
2U(t), A = M− 1

2KM− 1
2 , R(t) =

M− 1
2F (t). The (scaled) stiffness matrix A is

sparse, symmetric and positive semi-definite.
In the absence of forcing and dissipation, the

wave equation (1) conserves the total energy.
When the standard leap-frog method is used for
the time integration of (3), the resulting fully
discrete formulation also conserves (a discrete
version of) the energy. Due to the CFL stability
condition, however, the time-step of any explicit
scheme will be dictated by the smallest element
in the mesh. In [2], energy conserving LF based
LTS methods were derived for (3), which over-
come that stringent stability condition without
sacrificing explicitness or accuracy.

First, we partition the unknowns in z(t) into
a “coarse” and a “fine” subset,

z(t) = (I−P)z(t) + Pz(t)

where the partitioning matrix, P, is diagonal:
its diagonal entries, equal to zero or one, iden-
tify the unknowns associated with the locally
refined region, that is where smaller time-steps
are needed. Then the LTS-LF algorithm – see
[2] for details – proceeds during each time-step
[tn, tn + ∆t] as

zn+1 = −zn−1 + 2 LTS2(zn,−A(I−P)zn), (4)

where the function ynew = LTS2(y, w) is defined
as:

1. ynew := y + 1
2

(
∆t
p

)2
(w −APy)

2. For m = 1, ..., p− 1

(i) yold := y; y := ynew

(ii) ynew := 2y−yold+
(

∆t
p

)2
(w −APy)

Here, ∆t, p, A and P are globally defined. Note
that the p multiplications with A only affect
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Figure 1: Left: initial mesh with refinement rate p = 8 – not drawn to scale. Right: the numerical
IP-DG-SEM solution uh at time t = 0.4 with ` = 2.

the unknowns Pz, i.e. those located in the re-
fined region, and hence correspond to p local
sub-steps each of size ∆t/p.

When the refined region itself contains even
finer elements, the recursive application of the
above LTS-LF algorithm recently led to a multi-
level LTS method, which also conserves a dis-
crete energy [3]. In [4], the multi-level LF-LTS
method in time-staggered Newmark form was
combined with the well-known spectral element
code SPECFEM3D for seismic wave propaga-
tion and achieved up to 90% parallel efficiency
on the massively parallel supercomputer ”Piz
Daint” at the Swiss Center for Scientific Com-
puting (CSCS).

Let uh(tn) denote the fully discrete numer-
ical FE solution. Under standard smoothness
assumptions on the solution u of (1), we can
rigorously prove that as ∆t, h→ 0

‖u− uh‖L∞(0,T ;L2(Ω)) = O(∆t2 + h`+1),

where ` ≥ 1 denotes the polynomial degree of
the underlying spatial discretization. This proof
underpins the optimal convergence rates previ-
ously observed [2].

2 Numerical Results

To illustrate the usefulness of the LTS-LF meth-
ods, we consider (1) with f = 0 on a two di-
mensional L-shaped domain – see Fig. 1. We
set homogeneous Neumann conditions on hori-
zontal and homogeneous Dirichlet conditions on
vertical boundaries. In (1) we let v0 = 0 and set
u0 to a vertical Gaussian plane wave centered

about x = 0.3. Towards the re-entrant corner
we use a graded locally refined mesh with 1:8
ratio. Since the typical mesh size inside the re-
fined (darker) region is about 8 times smaller
than that in the surrounding coarser region, we
take p = 8 local time-steps in the above LTS-LF
algorithm. In Fig. 1, the IP-DG SEM numeri-
cal solution with ` = 2 is shown at time t = 0.4.
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Schenk and B. Uçar, Load-Balanced Lo-
cal Time Stepping for Large-Scale Wave
Propagation, in Proc. of 29th IEEE Inter-
national Parallel & Distributed Processing
Symposium (IPDPS 2015).



Minsymposium Session: Thursday 10:30–12:30 Room 0.019 49

Galerkin Difference Methods from Bandlimited Interpolation Functions

Thomas Hagstrom1,∗, Jeffrey Banks2

1Department of Mathematics, Southern Methodist University, Dallas, TX USA
2Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY USA

∗Email: thagstrom@smu.edu

Abstract

We explore the use of bandlimited interpolation
functions in place of standard Lagrange inter-
polants to define wide-stencil difference meth-
ods for simulating waves. Experiments are pre-
sented indicating that the proposed schemes can
be significantly more accurate when broadband
signals are propagated. To address the prob-
lem of constructing stable boundary closures we
propose combining accurate extrapolations with
a discontinuous Galerkin construction of the dif-
ference schemes. This leads to methods akin
to compact difference schemes when exact inte-
gration is used, or boundary-corrected explicit
differences if mass-lumping is employed.

Keywords: Difference methods, discontinuous
Galerkin methods, bandlimited interpolation

1 Introduction

As computational power increases, one hopes to
simulate ever more challenging problems. For
wave-dominated systems, this challenge often
involves the accurate propagation of waves over
many wavelengths. As is well-known, due to
the effects of dispersion, the optimal approxi-
mation order for simple difference approxima-
tions, with fixed accuracy, increases with the
length of propagation. However, the dispersion
error of high-order difference methods is vanish-
ingly small at low frequencies and grows rapidly
as the wavelength decreases. For broadband
signals, then, much of the spectrum is overre-
solved.

Following on results presented in [1], we con-
sider an alternative approach which provides
uniform accuracy across a predetermined fre-
quncy band. Precisely we base our methods on
Knab’s bandimited interpolant [2], defined in
one dimension via translates of

sin πx
h

πx
h

·
sinh

(
πNδ

√
1−

(
x
Nh

)2)
sinh (πNδ) ·

√
1−

(
x
Nh

)2 , (1)

set to zero when |x| > N . Here 0 < δ < 1

is a parameter which balances the interpolation
error, 1

sinh (πNδ) , with the resolution, 2
1−δ points-

per-wavelength (PPW).

As an example, using exact evolution of the
interpolants as in [1], we simulate a turbulent
acoustic wave field in two space dimensions with
an energy decay in terms of the wave number k

E(k) ∝ k−2, (2)

and a sharp cutoff at 5 PPW. After a simu-
lation time corresponding to 1000 periods of
the shortest wave we find that the relative er-
ror using N = 8 and a Knab-based scheme is
4.0× 10−4 while for the same stencil and stan-
dard Lagrange interpolation it is 6.2× 10−3.

2 DG-based Boundary Closures

As with standard high-order difference meth-
ods, some modifications are needed at domain
boundaries. Typical approaches are based on
algebraic constructions which guarantee stabil-
ity using either Kreiss determinants [3] or dis-
crete energy estimates [4]. Here we pursue a dif-
ferent approach based on a discontinuous Galerkin
formulation, as proposed for Lagrange-based meth-
ods in [5]. The basic construction has three
parts. Away from boundaries use, as test and
trial functions, the Knab functions associated
with the grid points as in (1). Near bound-
aries represent data at “ghost” nodes outside
the computational domain via a bandlimited ex-
trapolation procedure. In the Galerkin frame-
work this means that the test and trial functions
corresponding to nodes used in the extrapola-
tion procedure are modified. Finally, impose
boundary conditions via fluxes.

The stability and accuracy of the resulting
method follows directly from standard DG the-
ory [6] combined with the accuracy properties
of the interpolation/extrapolation procedures.
The only significant bottleneck is the poten-
tial for generating a stiff differentiation matrix
due to the ill-conditioning of the bandlimited
extrapolation - ours is defined through a sinc-
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Hilbert matrix which we approximately invert
using a truncated SVD.

As a specific example we choose N = 8 and
δ = 3/5, for which the Knab interpolant has an
error tolerance of 5.6× 10−7 for waves resolved
with at least 5 PPW. We extrapolate to the
ghost nodes using 3N +1 interior nodes. In one
space dimension the resulting mass and stiffness
matrices have 25 × 25 nonzero blocks near the
boundaries and have 31 nonzero bands in the
interior. The spectral radius is 2.46h−1.

We applied the method to acoustics with
wall boundary conditions imposed via an up-
wind flux in one space dimension. Marching in
time using MATLAB’s ode113 and tight error
tolerances we simulate a turbulent wave field
with spectrum following (2), again for 1000 pe-
riods of the shortest wave. The relative error in
this case is 1.2×10−7. This is obviously compa-
rable to the interpolation error and much better
than what was obtained for an analogous exper-
iment in [1]. We note that the error, plotted in
Figure 1, is nearly constant in time, while in [1]
we observed linear growth. Thus dispersion er-
ror in the DG formulation is negligible.
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Figure 1: Simulation errors in time

3 Mass-lumping

In order to produce a diagonal mass matrix away
from boundaries, and to reduce the bandwidth
of the differentiation matrix, we replace the con-
tinuous integrals by an appropriate quadrature
rule. A seemingly ideal choice is one of Alpert’s
Gauss-trapezoid rules [7]. We employ a method
from this family which, on an interval [a, b], re-
duces to the standard trapezoid rule at nodes
a+12.88h, . . . , b−12.88h, with 15 special nodes

and weights at each end. It returns extremely
accurate results down to 2 PPW. Using the same
values ofN , δ and extrapolation matrix as above
the boundary blocks are still 25×25, but in the
interior the mass matrix reduces to hI and the
bandwidth of the differentiation matrix reduces
to 17. Applying the mass-lumped method is
up to four times cheaper than the standard DG
formulation. However, repeating the numeri-
cal experiment described above we find that the
method is dispersive so the final relative error
is much larger, 7.3× 10−4. A fairer comparison
of lumped and unlumped methods of equal cost
would thus be desirable.
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Abstract

Reduced order models approximate transfer func-
tions of large-scale linear dynamical systems by
small equivalent ones. We discuss some recent
applications of this powerful approach to the
numerical solution of hyperbolic problems. They
include multi-scale elasticity problems and wave
propagation in unbounded domains.

Keywords: multi-scale, mimetic model reduc-
tion

1 Introduction

We consider the hyperbolic initial-value prob-
lem

Au+utt = 0, u|t=0 = 0, ut|t=0 = b, t ≥ 0,
(1)

where A is a selfadjoint nonnegative second or-
der PDE operator on the unbounded domain
(e.g., R3) with absolutely continuous spectrum.

Until now, the method of choice for such
problems was the explicit finite-difference time
domain (FDTD) method coupled with PML ab-
sorbing boundary conditions. Large scale 3D
problems (in particular, used in seismic explo-
ration) can be prohibitively expensive even for
modern high performance computing. High or-
der and spectral spatial discretizations can sig-
nificantly reduce computational cost, however,
they require special treatment of coefficient dis-
continuities, e.g., interface conforming elements
as in the spectral element method. Such an ap-
proach may increase algorithm complexity and
often leads to unnecessary restrictive CFL lim-
its. Moreover, it can be practically impossi-
ble for complicated models with inhomo-
geneities spanned in multiple scales. To cir-
cumvent the above problems, we suggest here a
mimetic multiscale model reduction based dis-
cretization.

Another bottleneck of the classical FDTD
methods is the upper limitations on the time

step, which is particular severe for explicit meth-
ods. We address this problem by introducing a
reduced order model based on a scattering res-
onance representation.

2 Multiscale mimetic model reduction

The method presented here is an extension of
the techniques from [1, 2], where the so-called
optimal (spectrally matched) grids (a.k.a. finite-
difference Gaussian qudrature rules) were used
to construct the ROMs on the sub-domains. The
use of optimal grids relies on the medium being
uniform on each sub-domain. The method pre-
sented here avoids this limitation and allows for
arbitrary sharp discontinuities within the sub-
domains.

We consider a selfadjoint PDE operator A
(e.g., acoustic problem, elasticity or Maxwell’s
system), that can be described by (1), or by

Av + ω2v = b (2)

in the frequency domain, assuming that −ω2

not in the spectrum of A. To outline the idea
of our approach, we assume for simplicity that
A is defined on a bounded domain Ω, parti-
tioned into two closed non-overlapping subdo-
mains Ω1,Ω2, i.e., Ω = Ω1 ∪ Ω2 with bound-
ary interface Γ = Ω1 ∩ Ω2. We also assume
that b is supported on Γ and it is a single layer
charge distribution on that manifold with reg-
ular enough density b. We denote operator-
valued functions Mi(ω

2) by the partial NtD
maps (a.k.a. impedance or Weyl functions) of
the respected subdomains Ωi on Γ.

Extending results of [2] to operator-valued
impedance functions, we obtain spectrally con-
vergent approximation M(ω2) ≈ Mn(ω2) (for
the propagative modes) that can be formally
presented as operator Stieltjes continued frac-
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tion approximations of Mi(ω
2) in the form

Mn
i (ω2) =

1

Ĥ i
0ω

2 +
1

H i
1 +

1

. . . +
1

Ĥ i
n−1ω

2 +
1

H i
n
(3)

where Ĥi, Hi are Hermitian nonnegative low rank
operators (with the inverse understood as the
pseudo-inverse). By extending 1D results of [4],
this allows us to represent Mn(ω2) via a ‘three-
point finite-difference scheme’ with operator co-
efficients by introducing fictitious variables ui

j

for i = 1, 2 and j = 1, . . . , n− 1 via

(H i
1)−1

(
ui

1 − ui
0

)
+ qi = −ω2Ĥ i

0u
i
0, (4)

(H i
j+1)−1

(
ui

j+1 − ui
j

)
− (H i

j)
−1

(
ui
j − ui

j−1

)
= −ω2Ĥ i

ju
i
j , (5)

so Mn(ω2)qi = ui
0. The conjugation conditions

at Γ can be written as u1
0 = u2

0 = u0 = v|Γ, q1+
q2 = b. They allow us to substitute equations
(4) for i = 1, 2 by the single equation

(H1
1 )−1

(
u1

1 − u0

)
+ (H2

1 )−1
(
ui

2 − u0

)
(6)

= −ω2(Ĥ1
0 + Ĥ2

0 )u0 − b.

In the time domain, we replace −ω2 with
d2

dt2
in (6-5). That system mimics a second order

finite-difference scheme with block-tridiagonal sten-
cil, and this the reason we call it mimetic. How-
ever, similar to the above mentioned optimal
grid approach, it yields spectral convergence of
u0. It can be solved by standard FDTD al-
gorithm or the model reduction approach de-
scribed in the following section. Advantage of
the the block-tridiagonal stencil is low commu-
nication cost. To compute Mn

i (so-called offline
preprocessing), we use fine discretization grid
of subdomains Ωi. Its cost grows very rapidly
with grid size, so in practice we split the com-
putational domain into a large number of sub-
domains of moderate sizes. It also helps that
the offline preprocessing is independent for ev-
ery subdomain, i.e., it is an ‘embarrassingly’
parallel procedure.

The described approach is the most suit-
able for modern high performance computing,

in particular, for graphic processing units (GPUs),
however, even its serial implementation is al-
ready competitive for complex elastic models
with multiple scales.

3 Stability-corrected exponential prop-
agation in unbounded domains

To avoid spurious resonances, the reduced or-
der model should preserve spectral continuity of
the original problem, i.e., it should not contain
poles on the main Riemann sheet. This can
be achieved by using (non-Hermitian) complex
symmetric discretized operators AN dumped by
perfectly matched layers and a so-called stability-
corrected time-domain exponential (SCTDE) ma-

trix function =
(
A
−1/2
N ei

√
AN t

)
bN , approxima-

tion exact solution given by u = A−1/2 sin(A1/2t)b
[3].

The SCTDE matrix function is approximated
by the Krylov subspace projection algorithm,
based on the re-normalized Lanczos method.
With the same cost per step as FDTD, it over-
performs the latter for large propagation times.
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Abstract

We propose a solver for the 2D high-frequency
Helmholtz equation in heterogeneous acoustic
media, with online parallel complexity that scales
sublinearly as O

(
N
L

)
, where N is the number of

volume unknowns, and L is the number of pro-
cessors, as long as L is a small fractional power
of N . The solver decomposes the domain into
L layers, and uses transmission conditions in
boundary integral form to explicitly define “po-
larized traces”, i.e., directional waves sampled
at interfaces. The favorable scalability owes to
the availability of fast algorithms for the inte-
gral kernels. This note is a summary of [?].

1 Introduction

Solving the Helmholtz equation with a scalable
algorithm in the high frequency regime is a ques-
tion of great interest for applications in geo-
physical imaging. Direct methods often run out
of memory in realistic applications and they do
not scale well in distributed memory environ-
ments. Iterative methods require a large num-
ber of iterations to converge and standard alge-
braic preconditioners often fail to improve the
convergence rate to tolerable levels [?]. Do-
main decomposition methods also fail because
of internal reverberations [?]. Only recently, a
new type of preconditioners have been devel-
oped that achieve linear complexity; however,
they are often difficult to parallelize [?,?,?].

2 Method

Define the global Helmholtz equation in a bounded
domain Ω ⊂ R2, with frequency ω and squared
slowness m(x) = 1/c2(x), by(

−4−m(x)ω2
)
u(x) = f(x) (1)

with absorbing boundary conditions. For the
results that follow, Eq 1 is discretized with a 5-

point stencil, and the absorbing boundary con-
ditions are implemented via a perfectly matched
layer (PML). This leads to a linear system of
the form Hu = f . Let N be the total number
of unknowns of the linear system and n = N1/2

the number of points per dimension. There is
an important distinction between:

• the offline stage, which consists of any pre-
computation involving H, but not f ; and

• the online stage, which involves solving
Hu = f for many different right-hand-
sides f .

By online complexity, we mean the runtime
for solving the system once in the online stage.
The distinction is important in situations like
geophysical wave propagation, where offline pre-
computations are often amortized over the large
number of system solves with the same matrix
H.

The method of polarized traces can be seen
as a hybrid between direct and iterative: it uses
efficient direct solvers locally on large subdo-
mains, and shows how to properly couple those
subdomains with transmission conditions in the
form of incomplete Green’s integrals resulting in
a boundary integral equation, which is solved
iteratively. The novelty is twofold.

First, we show how to reduce the discrete
Helmholtz equation to a discrete integral sys-
tem at the interfaces, using the Green’s repre-
sentation formula. Simultaneously, we use local
Green’s functions in order to perform polariza-
tion into one-way components. For instance, a
wave is polarized as up-going at an interface Γ
when

0 = −
∫

Γ
G(x,x′)∂νx′u

↑(x′)dx′+∫
Γ
∂νx′G(x,x′)u↑(x′)dx′,

as long as x is below Γ. These polarization con-
ditions create cancelations the discrete integral
system, resulting in an easily preconditionable
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system for the polarized interface traces u↑ and
u↓ such that u = u↑ + u↓.

Figure 1: Sparsity pattern of the discrete in-
tegral system. The polarized traces precondi-
tioner consists in inverting the triangular upper-
left and lower-right blocks, corresponding to
the idea of sweeping for computing transmitted
waves. The precoditioned system is then solved
by GMRES.

Second, we show how to use an adaptive H-
matrix fast algorithm for the application of in-
tegral kernels, in expressions such as the one
above. Empirically, it is shown that one such
matrix-vector application can be done inO(N5/8)
complexity. (Theoretically, we only have the
bound O(N3/4). The difference owes to dis-
cretization effects.) The implementation details
are in [?].

The method reduces to a sweeping precon-
ditioner when there are as many layers as grid
points in one direction (L = n ∼ N1/2); and
it reduces to an efficient direct method when
there is no layering (L = 1). In both those lim-
its, the online complexity reaches O(N) up to
log factors. The polarized traces solver has on-
line complexity O(N/L) as long as L . N1/8,
asymptotically, hence it is only when the num-
ber of layers L obeys 1 � L � N that the
method’s online complexity is strictly better than
O(N).

3 Numerical results
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Figure 2: Geophysical benchmark BP 2004
model [?].

N ω/2π L = 64 L = 128

136× 354 1.4 (8) 0.84 (9) 1.52
269× 705 2.7 (9) 1.10 (9) 2.14
540× 1411 5.5 (9) 3.06 (12) 6.22
1081× 2823 11.2 (10) 5.75 (12) 12.7

Table 1: Number of GMRES iterations (bold)
required to reduce the relative residual to 10−7,
along with average execution time (in seconds)
of one GMRES iteration for different N and L.
The frequency is scaled such that ω ∼ n. The
wavespeed was given by the BP2004 model (Fig.
2).
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Abstract

The main advantage of the Boundary Element
Method (BEM) is that only the domain bound-
aries are discretized leading to a drastic reduc-
tion of the total number of degrees of freedom.
In traditional BE implementation the dimen-
sional advantage with respect to domain dis-
cretization methods is offset by the
fully-populated nature of the BEM coefficient
matrix. In the present work, we propose a fast
method to solve the BEM system in 3-D
frequency-domain elastodynamics. Using the
H-matrix arithmetic and low-rank approxima-
tions (performed with Adaptive Cross Approx-
imation), we derive a fast direct solver. We as-
sess the numerical efficiency and accuracy on
the basis of numerical results obtained for prob-
lems having known solutions. In particular, we
study the efficiency of low-rank approximations
when the frequency is increased. The efficiency
of the method is also illustrated to study seis-
mic wave propagation in 3-D domains.

Keywords: H-matrix, Boundary Element
Method, Direct solver, 3D Elastodynamics.

1 Context

The development of efficient approaches to sim-
ulate the propagation of seismic waves in a com-
plex media is crucial for many topics going from
understanding the geodynamics of the Earth,
the management of underground resources as
well as the mitigation of seismic risks. The main
advantage of the Boundary Element Method
(BEM) is that only the domain boundaries (and
possibly interfaces) are discretized leading to a
drastic reduction of the total number of degrees
of freedom (DOFs). In traditional BE imple-
mentation the dimensional advantage with re-
spect to domain discretization methods is offset
by the fully-populated nature of the BEM co-
efficient matrix, with set-up and solution times
rapidly increasing with the problem size.

The Fast Multipole Method (FMM) allows

one to overcome the drawback of the
fully-populated matrix by introducing a fast, re-
liable and approximate method to compute the
linear integral operator. The efficiency of the
method has been demonstrated in various fields
including in 3D elastodynamics [1]. The FMM
requires analytic closed-form expression of the
fundamental solution to approximate the inte-
gral operator and is defined together with the
use of an iterative solver. In 3D elastodynamics,
the iteration count becomes the main limita-
tion to use the Fast Multipole accelerated BEM
(FM-BEM) on realistic seismological problems
[2] (even though algebraic preconditioners can
be developed to accelerate the convergence of
the iterative solver).

2 Methodology

Other accelerated BEMs, based on hierarchical
matrices (H-matrices), have been proposed in
the literature [4]. H-matrices permits to ap-
proximate the fully-populated BEM matrix by a
data-sparse matrix. When used in conjunction
with an efficient rank revealing algorithm (for
example Adaptive Cross Approximation, ACA)
it leads to a data-sparse and memory efficient
approximation of the original fully-populated
BEM matrix. Contrary to the FM-BEM it is
a purely algebraic tool which does not require
a priori knowledge of the closed-form expres-
sion of the fundamental solutions. Such fast
BEMs can be used in conjunction with an it-
erative solver. In computational mechanics, the
method has successfully been applied to various
problems. For example Coulier et al. [3] have
applied the method to the layered half-space
elastodynamic fundamental solutions to study
soil-structure interaction. Milazzo et al. [5] have
applied the method to study anisotropic elasto-
dynamic media.

Recent works (for example [6]) have pro-
posed the development of fast direct solvers
based on H-matrices. In the present work, we
propose a direct solver based onH-matrices and
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ACA for 3-D frequency-domain elastodynamic
BEMs (based on the full-space fundamental so-
lutions).

3 Numerical efficiency of the fast BEM

The numerical efficiency and accuracy of the
method are assessed on the basis of numerical
results obtained for problems having known so-
lutions. In particular, a study of the efficiency
of low rank approximations when the frequency
is increased is presented: the number of un-
knowns N is a square function of the frequency
(Fig. 1). Finally, the efficiency of the method
to study seismic wave propagation in 3-D is
demonstrated.
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Figure 1: Comparison between the theoretical
N logN and experimental compression rate of
the system matrix.

Ongoing work concerns on one hand the study
of the efficiency of the method to simulate other
configurations like an elastic half-space, layered
elastic half-space or anisotropic media and on
the other hand the capabilities of suchH-matrix
based BEMs to define efficient preconditioners
for the FM-BEM.
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Abstract

A new approach, called the Double Absorbing
Boundary (DAB) is presented. DAB is devised
for solving wave problems in unbounded do-
mains. It has common features to high-order
ABC and to PML. However, it is different from
both methods and enjoys relative advantages
with respect to both.

Keywords: Double Absorbing Boundary,
Absorbing Boundary Condition, Non-Reflecting
Boundary Condition, Perfectly Matched Layer,
Acoustic Waves, Elastic Waves

1 Introduction

The need for artificial computational bound-
aries in the solution of exterior wave problems,
called “absorbing boundaries” among other names,
arises quite often in various fields of applica-
tion. In solid-earth geophysics they are needed
for practically every simulation. Since the mid
90’s two classes of methods have emerged as es-
pecially powerful: the Perfectly Matched Layer
(PML) method [1, 2] and the method of us-
ing high-order Absorbing Boundary Conditions
(ABCs), which are local and involve no high
derivatives [3, 4]. The use of ABCs has been
very popular already since the early 70’s, but
the term “high-order ABCs” relates to the abil-
ity to implement ABCs of an arbitrarily high
order. High-order derivatives are eliminated by
introducing auxiliary variables which are dis-
cretized on the boundary.

Most of the high-order ABCs proposed thus
far have been devised for the acoustic (scalar)
wave equation. Until recently, the only ABCs
proposed for elastic waves were that devised
by Tsogka and Joly and that devised by Ra-
binovich et al. Both turned out to be unstable
for long times.

2 The DAB Approach

In this presentation a new approach is reported
that has been devised for solving wave problems
in unbounded domains. It has common features
to high-order ABC and to PML. However, it is
different from both and enjoys relative advan-
tages with respect to both. The new method,
called the Double Absorbing Boundary (DAB)
method, is based on truncating the unbounded
domain to produce a finite computational do-
main, and on applying a local high-order ABC
on two parallel artificial boundaries, which are
a small distance apart, and thus form a thin
non-reflecting layer. Auxiliary variables are de-
fined on the two boundaries and inside the layer
bounded by them, and participate in the numer-
ical scheme.

The DAB method is first introduced in gen-
eral terms, and then it is applied to the scalar
wave equation in a wave guide, and to elasto-
dynamics problems in homogeneous and het-
erogeneous media. Standard finite element dis-
cretization in space and dissipative time step-
ping are employed. The computational aspects
of the method are discussed, showing its ad-
vantages over using a single ABC or a PML. A
stability proof is also provided. Numerical ex-
periments demonstrate the performance of the
new method.

Fig. 1 shows the “ladder” structure of the
DAB equations, for the case of acoustics. The
figure shows the flow of information on each of
the two artificial boundaries. The termination
condition on the outer boundary is the Lysmer-
Kuhlemeyer condition, which is responsible to
the stability of the ABC, as was proved in [5].

In [6], the new method was applied to the
scalar wave equation. We incorporated the DAB
in a fully explicit finite difference scheme in 1D,
and in a Finite Element (FE) scheme in 2D.
In [7] the DAB was applied to problems in 2D
isotropic elastodynamics, written in first-order
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Figure 1: The “ladder” structure of the DAB, showing the flow of information on the two boundaries
bounding the layer.

conservation form. The problem was discretized
using the Lax–Wendroff finite difference scheme.
In [8] we apply DAB to problems in elastody-
namics in a homogeneous and layered medium
using FEs in space and Newmark time-stepping.
In the entire study the problem is solved with a
waveguide geometry.

3 Stability

In [7], a well-posedness proof was provided for
the DAB scheme for the acoustics problem writ-
ten in second-order form. The energy method
was employed to obtain uniform-in-time esti-
mates of the norm of the solution and the auxil-
iary functions, thus establishing the well-posedness
and asymptotic stability of the DAB formula-
tion.

In the elastic case, our formulation and nu-
merical examples assume periodic boundary con-
ditions along the boundaries perpendicular to
the artificial DAB boundaries. This choice is
made since some stability issues arise when the
periodic conditions are replaced by some physi-
cal boundary conditions (e.g., traction free con-
ditions). Attempts to resolve these issues are
underway. No such difficulties occur in the acous-
tic case.
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A new discontinuous Galerkin formulation for wave equations in second order form
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Abstract

We develop and analyze a new strategy for dis-
continuous Galerkin discretization of wave equa-
tions in second order form. The method fea-
tures a direct, parameter-free approach to defin-
ing interelement fluxes. Both upwind and energy-
conserving discretizations can be devised. We
derive a priori error estimates in the energy
norm for certain fluxes and present numerical
experiments showing that optimal convergence
in L2 is obtained.

Keywords: Discontinuous Galerkin, Sec-
ond order wave equation

We consider, in general, wave equations as-
sociated with a nonnegative energy functional
or Hamiltonian

E(t) =

∫
Ω

1

2

∂u

∂t

2

+G(u,∇u,x). (1)

Here Ω ⊂ Rd, u(x, t) ∈ Rm. The system of
wave equations we aim to solve, which can be
identified as the Euler-Lagrange equations de-
rived from the action principle associated with

the Lagrangian 1
2

∂u
∂t

2−G−u · f , is given by

∂2ui
∂t2

=
∑
k

∂

∂xk

(
∂G

∂ui,k

)
− ∂G

∂ui
+ fi, (2)

where we define ui,k = ∂ui
∂xk

. Then introducing

as a new variable, vi = ∂ui
∂t , we find that the

change of energy on an element Ωj is given by
the source term and a boundary contribution

d

dt

∫
Ωj

1

2
|v|2 +G =

∫
Ωj

v · f +

∫
∂Ωj

∑
i,k

vi
∂G

∂ui,k
nk,

(3)

where n denotes the outward unit normal.
To discretize on a simplicial element we re-

quire that the components of (uh,vh) restricted
to Ωj be polynomials of degree s and q respec-
tively; that is elements of (Πs)m× (Πq)m. Typ-
ically we choose s = q + 1 corresponding to
the role of vhi as an approximate derivative of
uhi , but the stability theory allows independent
choice of approximation spaces.

Now specialize to the linear case; that is,
assume that G depends quadratically on u. We
seek approximations to the system

∂ui
∂t
− vi = 0, (4)

∂vi
∂t
−
∑
k

∂

∂xk

(
∂G

∂ui,k

)
+
∂G

∂ui
= fi, (5)

satisfying a discrete energy identity analogous
to (3). To motivate our choice consider the time
derivative of the discrete energy in Ωj :

dEhj
dt

=
∑
i

∫
Ωj

vhi
∂vhi
∂t

+
∑
k

∂G

∂ui,k

∂2uhi
∂xk∂t

+
∂G

∂ui

∂uhi
∂t

.

(6)
To develop a weak form compatible with the
discrete energy we test (4) with

−
∑
k

∂

∂xk

∂G

∂ui,k
(φu,∇φu,x) +

∂G

∂ui
(φu,∇φu,x),

φu ∈ (Πs)m, and (5) by φv,i ∈ Πq. In addition
we impose corrections based on boundary states

v∗i ≈ vi, w∗i,k ≈
∂G

∂ui,k
. (7)

This results in the equations for i = 1, . . . ,m:

∫
Ωj

(
−
∑
k

∂

∂xk

∂G

∂ui,k
(φu) +

∂G

∂ui
(φu)

)(
∂uhi
∂t
− vhi

)
=

∫
∂Ωj

∑
k

nk
∂G

∂ui,k
(φu)

(
v∗i −

∂uhi
∂t

)
, (8)

∫
Ωj

φv,i
∂vhi
∂t

+ φv,i

(
−
∑
k

∂

∂xk

∂G

∂ui,k
(uh) +

∂G

∂ui
(uh)

)
− φv,ifi =

∫
∂Ωj

φv,i
∑
k

nk

(
w∗

i,k −
∂G

∂ui,k
(uh)

)
. (9)
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Note that we have suppressed the dependence
on the gradient and the spatial coordinate.

Although, by construction, solutions of (8)-
(9) will satisfy an energy identity, these equa-
tions are often insufficient to uniquely deter-
mine the time derivatives within an element. In
particular, in many cases G is invariant with
respect to certain transformations of u. In the
linear case the transformations are generated by

null vectors, ui,k =
∂φ̃u,i
∂xk

, ui = φ̃u,i ∈ N associ-
ated with equation (8) and we must supplement
it by

∑
i

∫
Ωj

φ̃u,i

(
∂uhi
∂t
− vhi

)
= 0. (10)

Fluxes

To complete the problem specification we must
prescribe the states w∗, v∗ both at interelement
and physical boundaries. Label two elements
sharing an internal boundary by 1 and 2. Then
their net contribution to the energy derivative
can be shown to be the integral of

Jh =
∑
i,k

(
vhi,1n

(1)
k + vhi,2n

(2)
k

)
w∗

i,k +

(
v∗i − vhi,1

) ∂G

∂ui,k
(uh

1 )n
(1)
k +

(
v∗i − vhi,2

) ∂G

∂ui,k
(uh

2 )n
(2)
k .

This contribution can be controlled by choosing
the fluxes according to the general parametriza-
tion

v∗i =
(
αiv

h
i,1 + (1− αi)vhi,2

)
− τi[[D∇uiGh]],

w∗i,k = −βi[[vhi ]]k

+

(
(1− αi)

∂G

∂ui,k
(uh1) + αi

∂G

∂ui,k
(uh2)

)
.

Then

Jh = −
∑
i

[
βi

[[vhi ]]
2

+ τi[[D∇uiG
h]]2
]
,

leading to an energy stable method for βi, τi ≥ 0.
Some examples are:

Central flux : αi = 1/2, βi = τi = 0.

Alternating flux : αi = 0, 1, βi = τi = 0.

Sommerfeld flux : αi = 1/2, βi = 1
2 , τi = 1

2 .

The flux specification at boundaries is similarly
straightforward and will be discussed in the talk.

Error estimates

For the scalar wave equation we present error
estimates in the energy norm for all flux choices
considered. Optimal convergence is proven in
one space dimension for flux parameters satis-
fying a certain algebraic relation, which covers
both the energy-conserving alternating flux and
the dissipative upwind Sommerfeld flux. Sim-
ple numerical experiments with the scalar wave
equation lead to the observation that the con-
vergence in L2 is one order higher than in the
energy norm, and that optimal convergence with
the alternating or upwind flux is maintained for
a non-Cartesian grid of quadrilaterals.

Applications

We will present applications of the general for-
mulation to the scalar wave equation as well as
to the elastic wave equation (see also [1,2]). For
the elastic wave equation we will demonstrate
the approximation properties of the method by
solving a sequence of classical benchmark prob-
lems.
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Abstract

We consider the problem of a wave scattered
by a moving obstacle O ⊂ R2 having a suffi-
ciently smooth boundary Γ. The fictitious do-
main method ( [2]), or embedding method, con-
sists in extending artificially the solution inside
the obstacle and in imposing the boundary con-
dition on Γ weakly, by means of lagrange multi-
pliers. The main point is that the mesh for the
solution on the enlarged domain can be cho-
sen independently of the geometry of the obsta-
cle. In order to obtain a finite computational
domain, we further need to truncate the infi-
nite external domain by an artificial boundary B
and to impose on it transparent boundary con-
ditions. We choose a Non Reflecting Boundary
Condition (NRBC) based on a space-time in-
tegral equation and defining a relationship be-
tween the solution of the differential problem
and its normal derivative on B (see [1]). We
analyze the coupled problem and we apply it
to the scattering of waves by moving (rotating)
rigid bodies. In this case the method avoids the
complexity of constructing at each time step a
new finite element computational mesh.

Keywords: fictitious domain, absorbing bound-
ary conditions

1 Introduction

Let O ⊂ R2 be an open bounded domain, which
in general may be subject to a rigid motion,
with a sufficiently smooth boundary Γ . We
consider, in the time domain, the wave propa-
gation problem in R2\Ō and, for its solution by
a finite element method, we introduce an arti-
ficial boundary B where we impose transparent
conditions (see [1]). In particular, we introduce
the single and double layer integral operators

Vψ(x, t) =

∫ t

0

∫
B
G(x− y, t− τ)ψ(y, τ)dBydτ,

and

Kϕ(x, t) =

∫ t

0

∫
B
∂nDG(x−y, t−τ)ϕ(y, τ)dBydτ,

where G(x, t) = H(t − ‖x‖)/(2π
√
t2 − ‖x‖2)

denotes the fundamental solution of the wave
equation (being H(·) the Heaviside function).
We consider the following problem in the finite
computational domain Ω, which is bounded in-
ternally by Γ and externally by B:

utt −∆u = f in Ω

u = 0 on Γ
1
2u− V∂nu+ Ku = 0 onB
u(x, 0) = u0 in Ω

ut(x, 0) = v0 in Ω.

(1)

2 The fictitious domain approach

In order to describe the fictitious domain ap-
proach, we introduce the larger and simpler do-
main Ω̃ that includes O and is bounded by the
artificial boundary B. The main idea of the fic-
titious domain method (or domain embedding
method) consists in extending artificially the so-
lution of the exterior problem inside the obsta-
cle, and to solve the new problem in the whole
extended domain Ω̃. The main advantage of
this approach is the possibility of solving the
problem in a simpler domain by treating the
Dirichlet boundary conditions on Γ by lagrange
multipliers, and of choosing the mesh of the en-
larged domain independent of the geometry of
the obstacle, thus allowing to use structured,
regular meshes over the extended domain.

For a generic function w, we set w(t)(x) :=
w(x, t). Then, the problem defined in the do-
main of interest Ω̃ consists in:

find the unknown functions u(t) ∈ H1(Ω̃),
λΓ(t) ∈ H−1/2(Γ), λB(t) ∈ H−1/2(B) such that
the following generalized saddle-point evolution
problem
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(ü(t), v)Ω̃ + a(u(t), v)+

+ < λΓ(t), v >Γ + < λB(t), v >B= (f(t), v)Ω̃

< ϕ, u(t) >Γ= 0

2 < VλB(t), µ >B − < µ, u(t) >B

−2 < µ,Ku(t) >B= 0

u(0) = u0

du
dt (0) = v0.

(2)

holds in the distributional sense in (0, T ), where
a : H1(Ω̃)×H1(Ω̃)→ R is the bilinear form

a(v, w) =

∫
Ω̃
∇v · ∇w,

and (v, w)
Ω̃

=
∫

Ω̃
vw. The bilinear forms <

λΓ(t), v >Γ and < λB(t), v >B denote the dual-
ity pairing between H−1/2(Γ) and H1/2(Γ), and
H−1/2(B) and H1/2(B), respectively.

We discretize the space-time integral equa-
tion on B by combining a second order (in time)
BDF convolution quadrature and a Galerkin (or
a collocation) method in space. Such a dis-
cretization is then coupled with an uncodition-
ally stable ODE time integrator and a FEM in
space. The finite element mesh for the solution
in the enlarged domain Ω̃ is chosen indepen-
dently of the geometry of the obstacle, and the
constraint on Γ is imposed by a matrix Bh that
represents a discrete trace operator.

A particularly useful application of this ap-
proach is the scattering of a wave by moving
rigid bodies. In this case the method avoids the
complexity of constructing at each time step a
new finite element computational mesh and re-
quires only the construction of the discrete trace
operator Bh. We have applied the proposed
method to problems of waves generated by non
trivial data and scattered by rotating bodies.
In Figure 1 we show the snapshots of a wave
that, starting from a initial value u0 with initial
null velocity v0 , impinges upon an ellipsoidal
scattering that rotates with constant velocity
around the origin. In Figure 2 we show the be-
havior of the solution at a point P ≈ (10, 0) that
belongs to the artificial boundary (left plot) and
the energy behavior of the system with respect
to time (right plot). The wave bumps the ro-
tating obstacle around t = 3.5, and the energy
is preserved up to the time instant t ≈ 5, when

the wave reaches the transparent boundary and
leaves the computational domain.

Figure 1: Snapshots of the solution with a non triv-
ial initial datum u0, at different times.

t = 0 t ≈ 3.8 t ≈ 4.6 t ≈ 5.7

t ≈ 6.2 t ≈ 7.4 t ≈ 10 t ≈ 14

Figure 2: Behavior of the solution at P ≈ (10, 0)
(left plot) and energy dissipation (right plot).
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Minisymposium: Boundary Integral Equations for Time Harmonic
Scattering
organised by Xavier Claeys and Euan Spence

This minisymposium will focus on the deriva-
tion and numerical analysis of computationally
efficient boundary element methods for time
harmonic wave propagation problems, both
from theoretical and practical point of view.
Several talks will concern intrinsically well con-
ditioned boundary integral formulations dis-
cussing the Generalized Combined Field Inte-
gral Equation strategy in the context of elasto-
dynamics (S.Chaillat) or for transmission prob-
lems (C.Turc). Another important topic will
concern integral formulations for geometrically

complex problems such as scattering by fractal
planar screens (D.Hewett), or multi-subdomain
diffraction treated by means of a first kind
multi-trace formulation (C.Jerez) or a sec-
ond kind single-trace formulation (E.Spindler).
Other aspects of boundary element methods
discussed in this minisymposium will include
high frequency adapted quadrature techniques
(V.Dominguez) and a posteriori error analysis
and adaptative mesh refinement strategy in the
context of integral equations (M.Bakry).
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2LAMFA (UMR CNRS 7352), Université de Picardie Jules Verne, FRANCE
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Abstract

The fast multipole accelerated boundary ele-
ment method (FM-BEM) is a possible approach
to deal with scattering problems of
time-harmonic elastic waves by a
three-dimensional rigid obstacle. In 3D elasto-
dynamics, the FM-BEM has been shown to be
efficient with solution times of order O(N logN)
per iteration (where N is the number of BE
degrees of freedom). However, the number of
iterations in GMRES can significantly hinder
the overall efficiency of the FM-BEM. To re-
duce the number of iterations, we propose a
clever integral representation of the scattered
field which naturally incorporates a regularizing
operator. When considering Dirichlet boundary
value problems, the regularizing operator is a
high-frequency approximation to the Dirichlet-
to-Neumann operator, and is constructed in the
framework of the On-Surface Radiation Condi-
tion (OSRC) method. This OSRC-like precon-
ditioner is successfully applied to Dirichlet ex-
terior problems in 3D elastodynamics.

Keywords: Analytic Preconditioner, fast BEM,
approximate Dirichlet-to-Neumann operator,
OSRC, 3D Elastodynamics

1 Motivations

When considering the solution of scattering prob-
lems of time-harmonic elastic waves by a three-
dimensional rigid obstacle, the main difficulty
in the numerical simulation comes from the un-
bounded characteristic of the computational do-
main. The boundary element method (BEM)
is one possible approach to overcome this is-
sue. The method results from the discretiza-
tion of boundary integral equations (BIE). In
traditional boundary element (BE) implemen-
tations, the dimensional advantage with respect
to domain discretization methods is offset by
the fully-populated nature of the BEM coeffi-

cient matrix. The Fast Multipole Method
(FMM) permits to overcome the drawback of
the fully-populated matrix by introducing a fast
and approximate method to compute the lin-
ear integral operator in conjunction with the
use of an iterative solver (e.g. GMRES). In 3D
elastodynamics the FM-BEM has been shown
to be efficient [1] with solution times of order
O(N logN) per iteration (where N is the num-
ber of BE degrees of freedom). However, the
number of iterations in GMRES can significantly
hinder the overall efficiency of the FM-BEM
even though an algebraic preconditioner is ap-
plied [2]. Preconditioning the FM-BEM is there-
fore an important practical issue. A possible ap-
proach consists in exploiting mathematical prop-
erties of the relevant continuous integral opera-
tors.

2 Methodology

In [3], Darbas et al. present the successful com-
bination of an On-Surface Radiation Condition
(OSRC)-based preconditioner and a FM-BEM
to define an efficient solver for 3-D acoustic scat-
tering by sound-hard obstacles at high frequen-
cies. The idea is to consider a clever integral
representation of the scattered field which nat-
urally incorporates a regularizing operator. The
objective is to force the boundary integral op-
erator arising from this representation to be-
come a compact perturbation of the identity op-
erator. When considering Dirichlet boundary
value problems, the regularizing operator is a
high-frequency approximation to the Dirichlet-
to-Neumann (DtN) operator, and is constructed
in the framework of the On-Surface Radiation
Condition (OSRC) method. This approximate
method has been successfully proposed and ap-
plied in acoustics and electromagnetism but its
extension to 3D elastodynamics is involved. A
preparatory theoretical work has been proposed
by Darbas and Le Louër [4] to derive an OSRC-
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like preconditioner to solve Dirichlet exterior
scattering problems in 3D elasticity. We pro-
pose here a first extension of the OSRC method
to 3D elastodynamic problems and its applica-
tion as a preconditioner of the FM-BEM. The
preconditioned Combined field integral equation
for an incident field uinc reads:
Find ϕ = −γ+1 (u + uinc) solution to

(
I

2
+D′ − Λ′εS)ϕ = −(γ+1 uinc − Λ′εγ

+
0 uinc)

where S and D′ are the classical boundary inte-
gral operators; γ+0 and γ+1 are respectively the
Dirichlet and Neumann traces; and Λ′ε is the
approximation of the DtN.

3 Results

This communication is organized as follows.
First, the approximation of the DtN proposed
in [4] and its application in the OSRC context is
presented. The low costs of the ORSC method
to construct an approximate solution of the ex-
terior Navier problem at high frequencies is
demonstrated for different obstacles (see for ex-
ample Fig. 1). Then, the proposed approxima-
tion of the DtN is used to precondition the FM-
BEM in a black box framework. Finally, the
numerical efficiency of the combination of the
OSRC-based preconditioner with a FM-BEM
solver is presented on high-frequency 3-D cases.
The independence of the iteration counts with
respect to the mesh density and frequency is
confirmed on numerical examples. The addi-
tional computational cost of the preconditioner
is shown to be negligible compared to the cost
of a FMM accelerated matrix-vector product.
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Figure 1: Diffraction of plane P-waves by a unit
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Abstract

We present comparisons between the performance
of high-order Nyström solvers based on vari-
ous boundary integral formulations of transmis-
sion Helmholtz problems in Lipschitz domains
in the high-frequency regime. The main formu-
lations under considerations are: (1) the first
kind formulation of Costabel and Stephan [4];
(2) the second kind formulations of Kress and
Roach [1]; (3) the single integral formulation of
Kleinman and Martin [2]; (4) the Multiple Trace
Formulation of Claeys, Jerez-Hanckes and Hipt-
mair [3]; and (5) a direct regularized combined
field formulation recently introduced by some
of the authors [5]. We also establish the well-
posedness of some of the formulations above.

Keywords: Helmholtz transmission problems,
High-frequency, Lipschitz domains

1 Introduction

We consider the transmission Helmholtz prob-
lem involving two time-harmonic fields u1 and
u2 that result as an incident field uinc impinges
upon the boundary Γ of a homogeneous dielec-
tric scatterer D2. We assume that both media
occupying the bounded region D2 and its exte-
rior are nonmagnetic, and the electric permitiv-
ity of the dielectric material inside the domain
D2 is denoted by ε2 while that of the medium
occupying the exterior of D2 is denoted by ε1.
We seek a radiating field u1 and a field u2 such
that

∆u2 + k22u
2 = 0, in D2,

∆u1 + k21u
1 = 0, in D1 = R2 \D2,

(1)

given an incident field uinc, where the wavenum-
bers ki, i = 1, 2 are defined as ki = ω

√
εi, i =

1, 2 in terms of the frequency ω. In addition,
the fields u1, uinc, and u2 are related on the
boundary Γ by the following boundary condi-

tions

γ1Du
1 + γ1Du

inc = γ2Du
2 on Γ

γ1Nu
1 + γ1Nu

inc = νγ2Nu
2 on Γ. (2)

In equations (2) and what follows γiD, i = 1, 2
denote exterior and respectively interior Dirich-
let traces, whereas γiN , i = 1, 2 denote exterior
and respectively interior Neumann traces taken
with respect to the exterior unit normal on Γ.
We assume that the boundary Γ is a closed Lip-
schitz curve in R2. In what follows we denote
by Sj , Kj , K

>
j , and Nj the boundary integral

operators corresponding to the wavenumber Kj

that feature in the Calderón calculus.
We present next the main integral formu-

lation we consider. We start with the CFIEFK
formulation [4] and the CFIESK formulation [1]
posed in terms of the total field u = u1 + uinc

and its normal derivative on Γ taken with re-
spect to the unit normal pointing into D1:

−(K1 +K2)[u] + (ν−1S2 + S1)[∂nu] = uinc

−(N1 + νN2)[u] + (K>1 +K>2 )[∂nu] = ∂nu
inc,

(3)(
(K2 − ν−1K1) ν−1(S1 − S2)
N2 −N1 (K>1 − ν−1K>2 )

)(
u
∂nu

)
(4)

+
ν−1 + 1

2

(
u
∂nu

)
=

(
uinc

∂nu
inc

)
The single integral equation [2] (SCFIE) is

given by

−(1+ν)/2µ+Kµ−iηSµ = ∂nu
inc−iηuinc (5)

where µ is an unphysical density defined on Γ,
η ∈ R, η 6= 0 and K = −K>2 (νI − 2K>2 ) −
νK>1 (I+2K>2 )+2(N1−N2)S2 and S = −νS1(I+
2K>2 )− (I − 2K1)S2.
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The Multiple Trace Formulation (MTF) is [3]
K1 −S1 −I/2 0
N1 −K>1 0 −I/2
−I/2 0 −K2 S2

0 −I/2 −N2 K>2




γ1Du
1

γ1Nu
1

γ2Du
2

γ2Nu
2


(6)

= −1/2
(
γ1Du

inc γ1Nu
inc − γ1Duinc − γ1Nuinc

)>
.

Finally the direct regularized formulation (CFIER)
is given by

R
(
−(K1 +K2) S1 + ν−1S2
−(N1 + νN2) K>1 +K>2

)(
u
∂nu

)
(7)

+

(
I/2 +K2 −ν−1S2
νN2 I/2−K>2

)(
u
∂nu

)
= R

(
uinc

∂nu
inc

)
,

where

R :=

( 1
1+ν I

2
1+νSκ

− 2ν
1+νNκ

1
1+ν I

)
, =(κ) > 0.

The well posedness of the CFIEFK, CFIESK,
and MTF formulations has been established in
the literature. Furthermore

Theorem 1 In the case Γ is Lipschitz and kj >
0 the SCFIE are well posed in L2(Γ) and the
CFIER are well posed in H1(Γ)× L2(Γ).

2 Numerical Results

We use polynomially graded meshes based on
sigmoid transforms and we construct weighted
versions of the integral equations presented above.
The weights are simply the arclengths of para-
metrizations of Γ that incorporates piece-wise
sigmoid transforms—the weights vanish polyno-
mially at corners. The new weighted unknowns
are more regular than the original ones. We
used a Nyström method based on global trigono-
metric interpolation of the weighted unknowns
and logarithmic kernel splitting.

We present in Figure 2 the numbers of iter-
ations needed by the five formulations consid-
ered to reach GMRES relative residuals of 10−4

in the case of a transmission of a plane wave
by a unit square. We used Calderón precon-
ditioning for both the CFIEFK and MTF for-
mulations. We considered a high-contrast case
with ε1 = 1 and ε2 = 16, frequencies ω = 2i, i =
1, . . . , 7, and corresponding discretizations that

produce results accurate to four digits in the far-
field. As it can be seen from Figure 2, in the
high-contrast, high-frequency regime the formu-
lations SCFIE and CFIER outperform the other
three formulations.

Figure 1: Numbers of iterations to 10−4 GM-
RES residuals for the CFIEFK, CFIESK, SC-
FIE, MTF, and CFIER formulations, unit
square under plane wave incidence, ε1 = 1 and
ε2 = 16, frequencies ω = 2i, i = 1, . . . , 7.

References

[1] R. Kress, and G. Roach, Transmission
problems for the Helmholtz equation, J.
Math. Phys., 19 (1978), 1433-1437.

[2] R. Kleinman, P. Martin, On single integral
equations for the transmission problem of
acoustics, SIAM J. Appl. Math., Vol. 48,
2, (1998), 307-325.

[3] X. Claeys, R. Hiptmair, C. Jerez-Hanckes,
Multi-trace boundary integral equations,
Direct and Inverse 51 Problems in Wave
Propagation and Applications, (2012).

[4] M. Costabel, and E. Stephan, A di-
rect boundary integral equation method for
transmission problems, J. Math. Anal.
Appl. 106 (1985), 367-415

[5] Y. Boubendir, V. Dominguez, D. Lev-
adoux, and C. Turc, Regularized combined
field integral equations for acoustic trans-
mission problems, in press, SIAM (2015).



Minsymposium Session: Thursday 10:30–12:30 Room 1.067 69

Well-Conditioned Boundary Element Formulation for Scattering at Partly
Impenetrable Objects

E. Spindler1,∗, X. Claeys2, R. Hiptmair3

1Seminar for Applied Mathematics, ETH Zurich, Switzerland
2Laboratoire Jacques-Louis Lions, Paris VI, France

3Seminar for Applied Mathematics, ETH Zurich, Switzerland
∗Email: elke.spindler@sam.math.ethz.ch

Abstract

We consider acoustic scattering of time-harmonic
waves at partly impenetrable composite objects.
Using so-called multi-potentials, we cast the scat-
tering problem into a second-kind boundary in-
tegral equation for the Cauchy trace of the to-
tal field on the union of the material interfaces.
The new formulation is intrinsically well-con-
ditioned and allows to use any kind of L2-stable,
also discontinuous, trial and test functions in
the framework of a Ritz-Galerkin discretization.

In this respect it is superior to the first-
kind formulation proposed by T. von Peters-
dorff, which is the most popular boundary inte-
gral equation method to solve this kind of prob-
lem. Galerkin boundary element discretization
with low-order piecewise polynomials leads to
ill-conditioned linear systems on fine meshes.

We obtain competitive solutions by apply-
ing an inexpensive post-processing procedure to
the traces computed through the second-kind
formulation.

Keywords: Acoustic scattering, second-kind
boundary integral equations, Galerkin bound-
ary element methods

1 New Formulation

We treat acoustic scattering in the case of piece-
wise constant wave numbers attaining the con-
stant value κi ∈ R+ on each subdomain Ωi,
where

⋃n
i=0 Ωi = Rd, d = 2, 3. Ω0 denotes the

unbounded exterior domain.
We propose a new formulation, whose un-

knowns are both, the Dirichlet and Neumann
traces on the skeleton Σ :=

⋃n
i=0 ∂Ωi. Sound-

soft and sound-hard boundary conditions can
be handled.

We arrive at a second-kind boundary inte-
gral equation of the form

(Id− T)u = b ,

where in the absence of boundary conditions,

T is a compact operator mapping L2(Σ) into
L2(Σ).

The operator T encodes the cross-coupling
of all subdomains, also of those that are not
sharing a common interface. However, these
far-field interactions are amenable to low-rank
compression.

We have analyzed and implemented the new
Ritz-Galerkin boundary element method based
on a discretization with merely L2(Σ)-confor-
ming piecewise polynomial boundary element
spaces.

2 Numerical Tests

As a numerical example we consider a ball B
in R3 of radius r = 0.5 centered at the origin.
It is partitioned into two halves by the plane
z = 0. The exterior domain Ω0 := R \ B is
characterized by the wave number κ0 = 4, the
lower half ball Ω1 is impenetrable and the up-
per half ball Ω2 has wave number κ2 = 10. As
incident field, we take the plane wave from di-
rection d = (0, 1√

2
, 1√

2
)>. For a visualization,

see Figure 1a. As ansatz and test space we use
discontinuous piecewise constant boundary ele-
ments for the second-kind approach. We com-
pare our results with the classical first-kind ap-
proach called PMCHWT (see [3]), discretized
with continuous piecewise linear and discontin-
uous piecewise constant boundary elements for
Dirichlet and Neumann traces, respectively. The
tests confirm the excellent conditioning of the
Galerkin matrices of our second-kind approach
(see Figure 2b), resulting in fast convergence of
iterative solvers like GMRES (see Figure 2a).

The convergence results for the Galerkin so-
lutions in L2(Σ)-norm, can be found in Figure
1b, where the post-processed Dirichlet trace is
denoted by “Dirichlet proj. second-kind”. It is
obtained by projecting the discontinuous piece-
wise constant Dirichlet trace onto the contin-
uous piecewise linear boundary element space
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(a) Visualization of the geometry used
in the given numerical experiment. The
plotted data corresponds to the real part of
the Galerkin solution Uh.
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(b) Convergence of the error of the com-
puted Galerkin solutions uh in relative
L2(Σ)-norm wrt. to the inverse of the mesh size.
As a reference solution we use the Galerkin solu-
tion u calculated on a mesh of high resolution
(11264 mesh-elements and mesh size h = 0.023).

Figure 1: Convergence studies for the numerical
example.

in the L2-sense. In contrast to the widely held
belief that the accuracy of second-kind formu-
lations is inferior to that of the first-kind ap-
proach, the numerical results show competitive
accuracy.
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Abstract

We tackle high-frequency Helmholtz scattering
by heterogenous penetrable objects in 2D via
the local Multiple Traces Formulation. By weakly
imposing transmission conditions and bound-
ary integral equations per subdomain, we ob-
tain a Galerkin-Petrov formulation employing
weighted Chebyshev polynomials. FFT and reg-
ularization techniques are employed for quick
matrix computations. Numerical results for a
wide frequency sweeps and general structures
confirm the robustness of the formulation.

Keywords: Boundary integral equations, wave
scattering, multiple traces formulations

1 Introduction

We consider so-called high frequency scattering
problems, i.e. whenever wavelengths are much
smaller than the scatterer’s size. Available so-
lution methods are mostly based on: fast mul-
tipoles [1]; geometrical or physical optics [2];
Nyström approach [3]; and, hybrid numerical
asymptotic [4]. Still, questions arise as to when
and how these techniques should be applied and
what to do in situations that require accommo-
dating different ranges of frequencies as in het-
erogenous scatterers.

In this work, we propose a solution method
capable of dealing with 2D composite scatter-
ers with largely varying wavenumbers follow-
ing the Multiple Traces Formulations (MTFs)
[5, 6]. In particular, we will focus on a vari-
ant dubbed local since all unknown boundary
traces are locally defined on subdomain bound-
aries and transmission conditions per interface
are enforced weakly by local operators using
suitable test functions, i.e. functions that allow
interface duality pairings. On the continuous
level, the resulting first-kind Fredholm equation
possesses unique solutions with a block diago-
nal structure hinting at its amenability to par-
allelization and operator preconditioning. Nu-
merical analysis and results in two and three
dimensions validate this for low-order elements.
However, and as expected, such discretization

bases are not sufficient for high frequency re-
gimes, and so we will explore a purely spectral
or p-element approximation for boundary un-
knowns. In doing so, we will further extend
the formalism provided for the local MTF to
account for piecewise Cauchy data.

2 Generalized Local Multiple Traces For-
mulation

Following [5], we consider a bounded scatterer Ω
composed of two different materials with wave-
numbers κi and such that Ω := Ω1 ∪ Ω2 with
exterior domain Ω0 := R2 \ Ω and boundaries
∂Ωi. From the integral representation formu-
las, we retrieve weak Calderón identities on each
subdomain boundary :〈

λi , ϕi
〉
× =

〈(
1

2
Id + Ai

)
λi , ϕi

〉
×

(1)

wherein × denotes the cross duality pairing, the
standard boundary integral operators are con-
densed into Ai:

Ai :=

(
−Ki Vi

Wi K′i

)
: Vi → Vi, (2)

and Vi := H1/2(∂Ωi)×H−1/2(∂Ωi). Transmis-
sion conditions are weakly enforced across each
interface Γij . This is done via local restriction,
normal orientation and extension-by-zero oper-
ators X̃ij : Vi → Vpw,i, where “pw” denotes
piecewise per interface. The dual of Vpw,i is
≈
Vi:= H̃

1/2
pw (∂Ωi) × H̃−1/2

pw (∂Ωi). With this, the
system of equations takes the form:

〈Mλ , ϕ〉 = 〈g , ϕ〉× (3)

where λ = (λ0,λ1,λ2) belongs to p.w.-interface
Cauchy functions, ϕ = (ϕ0,ϕ1,ϕ2) in p.w.- in-
terface dual spaces, and

M :=

 A0 −1
2 X̃01 −1

2 X̃02

−1
2 X̃10 A1 −1

2 X̃12

−1
2 X̃20 −1

2 X̃21 A2

 . (4)

Observe that due to the local character of the
X̃ij , the matrix is dense only along the diagonal
blocks.
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3 Discretization by Spectral Elements

Define a canonical interface Γ̂ : [−1, 1] and set
the weight function ω(t) :=

√
1− t2. Based on

Tchebyshev polynomials of the first and second
kind, Tn, Un, respectively, we construct two sets
of bases provable dense in the associated test
and trial functional spaces. With them, we pro-
ceed to build the Petrov-Galerkin matrices aris-
ing from (3).

Particular attention is made to approxima-
tion properties of the BI kernels and their ac-
celeration via FFT. Specifically, we compute in-
tegrals of the canonical form:

IL =

∫
Γ̂

∫
Γ̂
FL(s, t)Tm(s)ω(t)Ul(t)dsdt,

where L is any of the BIOs and FL represents the
associated kernel together with the mappings
required to push the interfaces Γij onto Γ̂.

First, we approximate the kernel FL as a de-
generate kernel using Chebyshev polynomials so
one can make use of the FFT to compute coef-
ficients gn(t) such that

F (s, t) ≈
Nc∑
n=0

gn(t)Un(s),

for a suitable choice of Nc. Secondly, by apply-
ing the orthogonality properties of Un, one can
quickly obtain expressions of the form:

IL ≈
π

2

∫ +1

−1
gl(t)Tm(t)dt,

which can be easily obtained by Gauss–Legendre
quadrature.

4 Numerical Results

The geometry considered three domains such
that, Ω0 = {x ∈ R2, ‖x‖2 > 1} , Ω1 = {x ∈
R2, ‖x‖2 < 1, x1 < 0} , Ω2 = {x ∈ R2, ‖x‖2 <
1, x1 > 0}. This geometry contains all the diffi-
culties portraying Lipschitz domains with sharp
corners.

Fig. 1 shows two error measurements for the
solution traces of the scattered field –Dirichlet
jump and compliance with Calderón identity–
for a frequency sweep for fixed material param-
eters with κi = κ0

√
εi. The number of terms for

convergence follows the rule N = 1.4 max ki+7.
Quadrature rules, Nc and matrix computations
proved to be the most critical points when im-
proving approximation errors.
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Figure 1: Errors for ε0 = 1, ε1 = 2, ε2 = 3.

5 Conclusions and Future Prospects

Numerical results validate our claims. Further-
more, the formulation is amenable to operator-
type preconditioning with future developments
focused on improving computational accuracy.
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Abstract

We report some results arising from our inves-
tigations into boundary integral equation for-
mulations of acoustic scattering problems in-
volving planar screens with fractal boundaries.
Our focus is on determining the correct Sobolev
space setting in which to pose the integral equa-
tions. This is well understood when the screen is
smooth (Lipschitz). But for non-Lipschitz (e.g.
fractal) screens the situation is less clear, be-
cause many of the equivalences and relations be-
tween the standard definitions of Sobolev spaces
on subsets of Euclidean space (e.g. restriction,
completion of spaces of smooth functions, in-
terpolation...) that hold in the Lipschitz case,
fail to hold in general. We point to concrete
counterexamples for which the standard equiva-
lences fail, as well as discussing the implications
of this failure for the well-posedness (or other-
wise) of the classical screen scattering problem.

Keywords: Integral equations, Sobolev spaces,
Screen problems, Non-Lipschitz domains

1 Motivation

This paper concerns properties of Sobolev spaces
relevant to the study of integral equations on
non-Lipschitz domains. Our motivating exam-
ple is time-harmonic acoustic scattering in Rd+1

by a planar screen Γ × {0}, where Γ is a non-
empty bounded open subset of Rd, d = 1 or 2.
Such problems could represent simplified mod-
els for the performance of fractal antennas in
electrical engineering applications [1].

The Sobolev spaces we study are derived
from the Bessel potential spaces Hs(Rd), s ∈
R. Following the notation of [2], let Hs(Γ) :=
{U |Γ : U ∈ Hs(Rd)}, where |Ω denotes the (dis-
tributional) restriction to Γ. Let H̃s(Γ) denote
the closure of C∞0 (Γ) in Hs(Rd); we note that
Hs(Γ) is the dual space of H̃−s(Γ). For compact
K ⊂ Rd let Hs

K := {u ∈ Hs(Rd) : suppu ⊂ K}.
For the screen scattering problem with Neu-

mann boundary conditions, the scattered wave
satisfies the following boundary value problem:

Given gN ∈ H−1/2(Γ) (arising from the incident
wave), find u ∈W 1

loc(Rd+1\(Γ×{0})) such that
∆u+ k2u = 0 in Rd+1 \ (Γ×{0}), u is outgoing
at infinity, and ∂u/∂n = gN on Γ. (The lat-
ter condition can be written more precisely as
(∂±n (χu))|Γ = gN, where ∂+

n and ∂−n are Neu-
mann trace operators onto Rd × {0} from the
half spaces xd+1 > 0 and xd+1 < 0 respectively,
and χ ∈ C∞0 (Rd) is any cut-off function which
equals one in a neighbourhood of Γ× {0}.)

This problem is well-posed whenever Γ is a
Lipschitz subset of Rd. In [3] it is shown that to
ensure well-posedness (specifically, uniqueness)
for arbitrary Γ one has to impose the following
two additional conditions (with χ as above, and
γ± denoting Dirichlet traces):

[∂u/∂n] := ∂+
n (χu)− ∂−n (χu) = 0, (1)

[u] := γ+(χu)− γ−(χu) ∈ H̃1/2(Γ). (2)

Condition (1) ensures that u can be represented
as a double layer potential u = D[u] (with no
single layer potential component). A priori (from
the Helmholtz equation and boundary condi-

tion) [∂u/∂n] ∈ H−1/2
∂Γ , so (1) is required when-

ever Γ is rough enough that H
−1/2
∂Γ 6= {0}.

Condition (2) ensures that the resulting first-
kind boundary integral equation on Γ, involving
the hypersingular operator, has a unique solu-
tion: as shown in [3], this operator is invert-
ible between H̃1/2(Γ) and H−1/2(Γ). A priori,

[u] ∈ H1/2

Γ
⊃ H̃1/2(Γ), so (2) is required when-

ever Γ is rough enough that H̃1/2(Γ) $ H
1/2

Γ
.

We want to understand the how the geome-
try of Γ affects whether or not these additional
conditions are required. We might also ask the
question: Given two screens Γ1,Γ2, under what
conditions are the solutions u1, u2 for the re-
spective scattering problems equal? It turns
out that, under appropriate assumptions on the
form of the incident wave, this holds for ev-
ery incident wave if and only if H̃1/2(Γ1) =
H̃1/2(Γ2).
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2 Function space results

Motivated by the above considerations, we pose
the following general questions, with s ∈ R.

Q1: When is Hs
K = {0} for a compact set K?

Q2: When is H̃s(Γ) = Hs
Γ

for an open set Γ?

Q3: When is H̃s(Γ1) = H̃s(Γ2) for Γ1 6= Γ2?

Q1 concerns the “negligibility” of the set K in
terms of Sobolev regularity. It is straightfor-
ward to show that for every non-empty com-
pact K there exists sK ∈ [−d/2, d/2] such that
Hs
K = {0} for s > sK and Hs

K 6= {0} for s < sK .
If K has zero Lesbegue measure then sK can

be expressed in terms of Hausdorff dimension.
(Some partial results for sets with positive mea-
sure will be reported in the talk.)

Theorem 2.1 Let K be non-empty, compact,
and have zero Lesbegue measure. Then
sK = (dimH(K)− d)/2.

Theorem 2.2 (i) If Γ is C0 then s∂Γ ∈ [−1/2, 0],
and furthermore H0

∂Γ = L2(∂Γ) = {0}. (ii)
If Γ is C0,α for some 0 < α < 1 then s∂Γ ∈
[−1/2,−α/2]. (iii) If Γ is Lipschitz then s∂Γ =

−1/2, and furthermore H
−1/2
∂Γ = {0}.

These theorems provide open sets Γ for which

H
−1/2
∂Γ 6= {0}; for d = 2 this will hold whenever

dimH(∂Γ) > 1. For instance, one can take Γ to
be the interior of the Koch snowflake (dimH(∂Γ) =
log 4/ log 3), or the open set formed by removing
from a unit equilateral triangle the points of the
Sierpinski triangle (dimH(∂Γ) = log 3/ log 2).
A further example is Γ = ((0, 1) \ Cλ)2, for
1/4 < λ < 1/2. Here Cλ := ∩∞n=0Cλ,n is the
Cantor set where Cλ,0 = [0, 1] and, for n > 0,
Cλ,n is formed by removing an open interval
from the middle of each interval in Cλ,n−1 to
leave two subintervals of length λn (see figure
below).

Concerning Q2, it is well-known (see e.g.
[2]) that if Γ is C0 then H̃s(Γ) = Hs

Γ
for all s ∈

R. However, this equality fails in general. The
following result relates Q2 to Q1 and provides
a way of constructing counterexamples.

Theorem 2.3 If ∃ a compact set K ⊂ int(Γ)\Γ
for which H−sK 6= {0}, then H̃s(Γ) $ Hs

Γ
.

Q3 is also intimately related to Q1.

Theorem 2.4 For Γ1 6= Γ2, H̃s(Γ1) = H̃s(Γ2)
iff H−sK = {0} for every compact K ⊂ Γ1 	 Γ2.

We end with a remark on interpolation. For
Lipschitz Γ, both Hs(Γ) and H̃s(Γ) are interpo-
lation scales over s ∈ R. But for general open
Γ this can fail - see the counterexamples in [4].
It would seem that interpolation is a somewhat
unstable way of defining spaces on rough do-
mains.
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Abstract

In this work we propose and provide theoretical
support to a novel method for approximating
highly oscillatory double integrals. This kind
of integrals arises in intermediate calculations
in a wide variety of numerical algorithms, for
instance in high frequency scattering problems
(see [2] and references therein). The method
consists basically in: (a) a change of variables
which makes the oscillatory behavior depend in
a very simple form on only one variable; (b)
a combination of classical and Clenshaw-Curtis
product integration rules (for the oscillatory vari-
able) for handing the one-dimensional integrals.
The theoretical analysis identifies possible sin-
gularities in the integrands (either because these
were already in the original integral or appear as
a result of the change of variables), and adjusts
the underlying grids of the quadrature rules ac-
cordingly to improve the performance of the al-
gorithm.

Keywords: Numerical integration, Oscillatory
integrals, High frequency scattering problems.

1 Introduction

This work is concerned with the numerical ap-
proximation of integrals as

ID,k(F,G) =

∫∫
D
F (s, t) exp(ikG(s, t))ds dt

where F ,G are smooth, G real, k ∈ R (possibly
large) and i2 = −1. We assume

A1 D := {(s, t) : s ∈ (a, b), ϕ−(s) < t <
ϕ+(s)}, with ϕ± smooth;

A2 ∂tG(s, t) 6= 0, for all (s, t) ∈ D;

A3 The first derivatives of ψ±(s) := G(s, ϕ±(s))
can vanish only at a or b.

It is simple to check that the assumptions listed
above are not very restrictive in practice and
that problems on more complex domains can
be split into several integrals satisfying A1-A3.

a b

τ3

τ2

τ1

τ0

a b

a b

t τ

τ

s s

s

ϕ+

ϕ−

u1

u2

u3
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Figure 1: Original and transformed domain

2 A change of variables

Our approach starts with the change of vari-
ables (see Figure 1)

(s, τ) = (s,G(s, t)). (1)

Condition A2 ensures not only that the change
of variables is applicable but the Jacobian is in
fact a smooth function. The integral in the new
variables can be then written as a sum of, at
most, three new integrals of the form

I(m, k) :=

∫ τm+1

τm

[ ∫ um(τ)

`m(τ)
F(s, τ)ds

]
︸ ︷︷ ︸

=:fm(τ)

exp(ikτ)dτ.

Clearly τm, τm+1 ∈ {ψ±(a), ψ±(b)} and func-
tions `m, um are either constant functions (≡
a, b) or the inverse of ψ± (see Figure 2).

The first result at this point is that F is also
smooth. Therefore, the evaluation of fm(τ), the
inner integral, can be carried out using classical
methods (eg. Gaussian rules, Gauss-Lobatto,
Clenshaw-Curtis, etc).

However, some singularities in fm(τ) can
arise at the ends points if τ{m,m+1} corresponds
to a turning point of the domain (see Figure 2).
The correct description of such singularities is
one of the contributions in this work. We have
then two possibilities:

If fm is smooth, we use the (product inte-
gration or modified) Clenshaw-Curtis rule:

IN (m, k) :=

∫ τm+1

τm

fm,N (τ) exp(ikτ)dτ ≈ I(m, k).
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Figure 2: Integration in (s, τ)

In the expression above, fm,N ∈ PN and inter-
polates fm at the Chebyshev nodes on [τm, τm+1].
The benefit of using this rule has been well es-
tablished (see [1] and references therein):

The rule can be implemented rapidly, with
cost independent of k, and it converges superal-
gebraically as N → ∞ (actually exponentially
if fm is analytic) and both, the relative and ab-
solute error decay, for fixed N as k →∞.

If fm is singular, say at τm, we apply the
same rule but in a compound manner on the
graded grid

τm+

(
j

M

)q
(τm+1−τm), j = 0, . . . ,M, q > 1.

This strategy concentrates nodes close to τm
and leads to a new approximation which will be
denoted by IM,N,q(m, k). The exponential con-
vergence of the error is lost but it still converges
quickly provided that the grading parameter q
is suitably chosen.

3 Convergence of the rule

Theorem 1 Assume that fm, the inner inte-
gral, is evaluated within error ε.

If τm, τm+1 do not correspond to a turning
point then

|IN (m, k)−I(m, k)| .
[
ε+N−r+4k−2

]
‖F‖Cr(D).

If either τm or τm+1 is a turning point of order
n then taking q > nN as grading parameter, it
holds for all r ≤ N − 1

|IM,N,q(m, k)− I(m, k)|
.
[
ε+M−Nk−1

]
‖F‖Cr(D).

With “.” we mean that the omitted constants
in the bounds above are independent of k and
f as well as of N in the first case and M in the
second one. Therefore, the accuracy of the rule
improves as k grows to infinity.

4 Some extensions

The results described here can be extended to
handle stationary points, i.e., domains where
∂tG vanishes. It can be assumed that this hap-
pens at the boundary of the domain, which makes
the change of variables (1) still valid. However
the Jacobian introduces a stronger, but inte-
grable, singularity for which the same method
applies cf [2].

The adaptation of these ideas to functions F
with singularities is more straightforward. For
instance, a common case in BEM is F (s, t) ≈
A(s, t) log |s − t| which leads to integrals with
a singularity on the lower (or upper) part of
the boundary. It is easy to see that, in absence
of stationary points, function fm, has the same
singularity which can be handled in a similar
way, using the same graded meshes.
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Abstract

BEM++ is a C++/Python based library for
the solution of a variety of boundary element
problems. In this talk we give an overview of
the BEM++ features for the solution of acoustic
and electromagnetic wave scattering problems.
Various applications will be presented in which
BEM++ is currently being used.
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magnetics

1 An overview of BEM++

BEM++ (www.bempp.org) [1] is a project to
develop a comprehensive Galerkin boundary el-
ement library for the solution of Laplace,
Helmholtz and electromagnetic problems
in bounded and unbounded domains. Devel-
opment has started at the end of 2010 at Univer-
sity College London and is ongoing. BEM++
is based on a fast C++ core library and offers
a comprehensive Python interface. It imple-
ments the standard single-layer, double-layer,
adjoint double-layer and hypersingular opera-
tors for Laplace and Helmholtz, and the elec-
tric field and magnetic field integral operators
for Maxwell. Supported function spaces include
polynomial, discontinuous polynomial and Ra-
viart-Thomas elements on triangular sur-
face meshes. Fast boundary element methods
are enabled by built-in support for H-Matrix
compression.

While BEM++ does not yet have optimized
solvers for high-frequency wave problems it is
very capable for problems in the low to medium
frequency range. In the following we give an
overview of existing and in development fea-
tures of BEM++ for wave problems and demon-
strate some current applications of BEM++.

2 OSCRC preconditioners

Preconditioning based on OSRC (On-surface Ra-
diation Condition) formulations is a very effec-

Figure 1: HIFU simulation with BEM++

tive tool to reduce the number of GMRES itera-
tions necessary for the solution of high-frequency
Helmholtz problems [2]. OSRC precondition-
ers require the assembly and solution of surface
PDEs with shifted Laplace-Beltrami operators.
OSRC preconditioners have been implemented
in BEM++ and will become officially part of
version 3.0. An example application of OSRC
is scattering from ribcages in High-Intensity Fo-
cused Ultrasound (see Figure 2 and the corre-
sponding talk by Elwin van’t Wout).

3 FEM/BEM coupled wave problems

Coupling interfaces to
FEniCS (www.fenicsproject.org)

and to
DUNE (www.dune-project.org)

are in development. This allows the implemen-
tation of coupled FEM/BEM formulations for
waves scattering through inhomogeneous me-
dia. We will demonstrate the progress of these
efforts and show first example applications.

4 Maxwell transmission problems

BEM++ is able to solve a wide range of Maxwell
problems, including screen and transmission
problems. We will review the Maxwell function-
ality of BEM++ and demonstrate the applica-
tion to transmission problems in the simulation
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Figure 2: Light scattering from an ice crystal

of light scattering from ice crystals (see Figure
4) [4].

5 Time-domain problems via Convolu-
tion Quadrature

We have implemented parallel CQ methods with
BEM++. These will be eventually made avail-
able as part of BEM++ [3], and we will give
a brief update on these developments (see also
talk by N. Salles).

6 Support for fast solvers

Development is ongoing for built-in support of
hierarchical matrices in BEM++ and we will
present first results demonstrating the perfor-
mance of the BEM++ H-Matrix code. Support
for FMM via external libraries is in planning.

7 Summary

BEM++ offers a range of features for the so-
lution of low to medium frequency wave prob-
lems, making it simple to solve a wide area of
realistic applications. Many of the mentioned
developments are already included in the cur-
rent preview release and will be included in the
final 3.0 version. BEM++ is open-source and
can be downloaded from www.bempp.org.
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Śmigaj, Exponentially accurate evaluation
of time-stepping methods for the wave
equation via convolution quadrature type
schemes, to be submitted.

[4] S. P. Groth, A. J. Baran, T. Betcke, S.
Havemann and W. Śmigaj, The bound-
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Abstract

We extend some existing a posteriori error esti-
mates for the Boundary Element Method for the
2-dimensional Laplace equation to 2D-acoustic
wave propagation problems. We try to bypass
their efficiency constant issues by introducing
a new efficient and reliable a posteriori error
estimate. It is constructed by a new localiza-
tion technique of the residual from H±1/2 into
L2 which leads to an efficiency constant almost
equal to 1.

Keywords: a posteriori error estimate, bound-
ary element method

1 Introduction

The Boundary Element Method is a widely used
tool, based on boundary integral formulation,
for the resolution of wave propagation problems.
It features strong advantages since it requires
only the meshing of the boundary Γ of the scat-
tering object and the radiation condition is au-
tomatically taken into account. Its main disad-
vantages are a difficult implementation and, in
its ”raw form” the manipulation of fully popu-
lated matrices. However, the BEM in general
lack reliable, efficient and automatic tools for
the control of the error. Such tools are called
a posteriori error estimates and are an equiv-
alent norm of the error. They can be used to
build the optimal approximation space. In other
words, we would like to ensure that the error on
the solution is below a certain value, and this
process should be automatic.
Let us denote by η such an estimate, then

∃ {c, C} > 0, c η ≤ error ≤ C η. (1)

The right inequality is named reliability and
guarantees that the error converges at least as
fast as the estimate when the mesh size goes to
0. The left one is called efficiency and means
that the error converges at much as fast as the
estimate. We eventually require from η that it

has a local property, i.e. that if Th is a discretiza-
tion of Γ, then η2 =

∑
τ∈Th η

2
τ where ητ is a local

computable value. Unfortunately, the ”natural”
norm on the involved functional spaces are not
local, and once the estimate has been expressed
in terms of this norm, localization techniques
are used to map it into L2(Γ). We propose a
different point of view where we will use an op-
erator to transport the values of interest into L2.
We will eventually show that it gives us control
over the efficiency constant and the Galerkin
norm of the error.

2 The Λ-based a posteriori estimation

We study the propagation of a 2-dimensional
acoustic wave. Standard estimates such as the
one which can be found in [1], [2], [3] are based
on space reconstruction on polynomial spaces
of higher order, or on the localization of the
residual (the norm of the residual is, under inf-
sup condition, an equivalent norm of the er-
ror). However, the localization makes us lose
control over the efficiency constant which may
be geometry-dependent. Our goal is then to de-
sign an estimate for which its value will be as
close as possible to a reference, for example the
Galerkin norm of the error ‖|e|‖. We will base
it on the computation of the residual which is a
value we can ”easily” access.
Instead of a standard localization of the norm
of the residual, we will try to transport it into
L2(Γ). Let us suppose there exists an operator
Λ which is an isomorphism from the space V
where the residual rh of the equation (not the it-
erative resolution !) ”lives” into some subspace
W of L2(Γ). Let

ηΛ = ‖Λrh‖L2 , (2)

then ηΛ is reliable, efficient and local (this re-
sult is immediate). Much better, by carefully
choosing Λ, one can show that the estimate will
behave as

ηΛ ' α ‖|e|‖ (3)
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where α is a strictly positive constant, indepen-
dent from Γ (or at least weakly dependent for
non regular geometries), eventually equal to 1.
It remains the question on how to build such Λ.
We give here a hint on its construction. Let Ak
the operator of the equation which was solved,
k being the wave number. We suppose that
A can be decomposed in a coercive part and a
compact part, i.e. Ak = A0 + AC,k. Using the
definition of ‖Λrh‖L2 ,

‖Λrh‖2L2 = 〈ΛA e,ΛA e〉
= 〈A?Λ?ΛAe, e〉
= 〈A?0Λ?ΛA0e, e〉+ higher order

If we can choose Λ such that A?0Λ?Λ = αI +
compact perturbation, then

‖Λrh‖2L2 ' α‖|e|‖2 + higher order terms.

It appears that the most natural choice will be
to choose Λ as the square root of the inverse of
A0. We start by isolating the principal symbol
of A0, then we take the square root of its inverse
which allows us to build the kernel of Λ. We ad-
just α = 1 by scaling a multiplicative constant.
In the case of the 2D Helmholtz equation, the
Λ associated with the single layer potential is

ΛD : H1/2(Γ)/C→ V = {p ∈ L2(Γ),

∫
Γ
p dγ = 0}

(ΛDu)(x) =
2√
π
∇Γ

∫
Γ

√
|x− y|∇Γu(y) dγy

The single layer potential is of order −1 and ΛD

is of order 1/2. Similarly, we have the ΛN asso-
ciated with the normal derivative of the double
layer potential

ΛN : H−1/2(Γ)→ L2(Γ)

(ΛNu)(x) =
1√
π

∫
Γ

u(y)√
|x− y|

dγy

ΛN performs a ”half-integration”.

3 Simulation

Different simulations have been made for both
smooth and polygonal contours Γ. We present
on Figure 1 the convergence for a square with
side 1 and k = 15. Even though the theoreti-
cal results hold only (at this time) on smooth
boundaries for the Λ-based estimation, one can
see in Figure 1 that our new estimate behaves

Figure 1: Convergence of different estimates for
a square with sides of length 1 and k = 15. ηΛ

and the reference overlap.

well on singular geometries since we retrieve
with autoadaptive refinement the expected con-
vergence rate (O(N−3/2)) and we get an effi-
ciency constant really close to 1.
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Minisymposium: Fast Solvers for the Helmholtz Equation
organised by Wim Vanroose, Domenico Lahaye and Chris Stolk

This mini symposium presents an overview
of recent advances in solvers for large scale
Helmholtz problems. The problems appear
in many scientific and industrial problems
ranging from scattering in quantum systems
to seismic inversion. The numerical solu-
tion of the equation poses serious challenges

for numerical solvers. In this mini sympo-
sium we present the latest advances in using
shifted Laplacians, deflation, sweeping, domain-
decomposition, boundary integrals and other
preconditioners to accelerate the solution of the
Helmholtz equation.
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Abstract

We present a combination of multilevel meth-
ods and Krylov subspace methods to address
the different challenges related to the solution of
acoustic full waveform inversion in seismics. A
specific focus is first given on a geometric multi-
level preconditioner for the efficient solution of
heterogeneous Helmholtz problems. Secondly
recent block Krylov subspace methods that al-
low the use of a variable preconditioner for the
solution of linear systems with multiple right-
hand sides given simultaneously are detailed.
Their use in both forward and inverse prob-
lems in the context of full waveform inversion
is presented. Numerical experiments on three-
dimensional public domain applications in seis-
mics are shown to illustrate the efficiency of the
proposed combination. This talk is part of the
minisymposium ”Fast solvers for the Helmholtz
equation” organized by Wim Vanroose,
Domenico Lahaye and Chris Stolk.

Keywords: Acoustic full waveform inversion,
complex shifted Laplace preconditioner, flexible
Krylov subspace methods, Helmholtz equation,
heterogeneous media, variable preconditioning.

1 Introduction

In this talk, we address the solution of three-
dimensional heterogeneous Helmholtz problems
discretized with second-order or fourth-order fi-
nite difference methods with application to
acoustic waveform inversion in geophysics [11,
12]. In this setting, the numerical simulation
of wave propagation phenomena requires the
approximate solution of possibly very large in-
definite linear systems of equations. This task
is known to be challenging for iterative meth-
ods [6] and the design and analysis of efficient
and scalable multilevel preconditioners (e.g. of

multigrid or domain decomposition type) to be
used on massively parallel computing platforms
is a current open issue.

2 A multilevel preconditioner

For that purpose, we present an iterative two-
grid method proposed in [4]. This method is
acting on the original Helmholtz operator where
the coarse grid problem is solved inaccurately.
A geometric multigrid method applied to a com-
plex shifted Laplace operator [7, 9] is used as
a preconditioner for the approximate solution
of the coarse problem. A single cycle of this
novel method is then used as a variable precon-
ditioner of a flexible Krylov subspace method
such as flexible GMRES [10]. We review the
properties of the preconditioned operator. We
show numerical results that confirm the the-
ory and demonstrate the usefulness of the algo-
rithm on three-dimensional public domain ap-
plications related to heterogeneous media
(EAGE/SEG Salt dome [1]). The proposed nu-
merical method allows us to solve successfully
three-dimensional wave propagation problems
even at high frequencies on a reasonable num-
ber of cores of a massively parallel distributed
memory computer. Both weak- and strong scal-
ability properties of the numerical method will
be presented.

3 Application to the full waveform in-
version problem

It is known that full waveform inversion requires
the solution of linear systems with multiple right-
hand sides given simultaneously. Due to the
large size of the linear systems, block Krylov
subspace methods [8] are found to be relevant
candidates in this setting. We present recent
developments related to block Krylov subspace
methods to allow the use of a variable mul-
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tilevel preconditioner for the solution of such
systems [2, 3]. The numerical performance of
this combination is shown on realistic public
domain applications in seismics and scalabil-
ity with respect to the number of right-hand
sides is discussed. A new globally convergent
stochastic algorithm has been recently applied
to the acoustic full waveform inversion on par-
allel distributed memory platforms [5]. In such
formulation linear systems with both multiple
right- and left-hand sides naturally appear. To
conclude this presentation we will discuss possi-
ble strategies to design efficient preconditioned
Krylov subspace methods in this setting.
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On efficiency and pollution error in Helmholtz solvers
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Abstract

We consider the numerical solution of the Helmholtz
equation in an inhomogeneous medium in the
high-frequency regime in two and three dimen-
sions. As problems of increasing size are being
treated the dispersion errors associated with the
discretization must be very small, while the dis-
cretization should use as few points per wave-
length as possible on grounds of efficiency. From
this viewpoint we compare several existing reg-
ular mesh discretizations and a new optimized
finite difference method. The latter yields very
good results in both two and three dimensions,
e.g. a relative phase slowness error of 7 · 10−6

using just five points per wavelength in two di-
mensions. We discuss the implications of us-
ing such methods for some recently developed
solvers.

Keywords: Helmholtz equation, high-frequency
limit, pollution effect, multigrid solver

1 Introduction

We consider the Helmholtz equation

−∆u− k(x)2u = f

on unbounded domains in two and three di-
mensions, assuming that the computational do-
main is a rectangle, and some form of absorb-
ing layer (a perfectly matched layer or a conven-
tional damping layer) is present near the bound-
ary. As usual, k(x) = ω

c(x) , with c(x) the ve-
locity of the medium. Due to developments in
algorithms and computer equipment, these sys-
tems can be solved for increasingly large values
of k, using domains whose size is on the order
of several hundred wavelenghts. To have ac-
curate solutions, it is important that numerical
dispersion errors, closely related to pollution er-
rors [1], are tightly controlled. This means that
the differences between the phase slownesses (or
phase velocities) of the numerical scheme and
that of the continuous equation must be suffi-
ciently small.

There are many different discretizations. Here
we assume a regular mesh is used and we de-
note by G the minimum number of points per
wavelength. Second order finite differences with
G = 10 are often used as a testcase for solvers.
However, it is well known that this is insuffi-
cient. In the geophysical literature, optimized
finite difference methods have been proposed for
use with G as small as 4 [3]. In the mathe-
matical literature, higher order finite element
methods have been recommended. Also, certain
tailored finite element/finite difference methods
have been studied, in particular the quasi-stabilized
FEM method (QS-FEM) of [1]. For this latter
method we are, however not aware of a three di-
mensional generalization. In this work we will
study these schemes (except second order FD)
and then discuss a new optimized finite differ-
ence method for which very small phase errors
are obtained in both two and three dimensions,
comparable to QS-FEM. We will then discuss
how the use of these schemes affects the per-
formance of certain solvers compared to second
order finite differences at G = 10.

2 Phase slowness errors and optimized
finite differences

Phase slownesses are related to the plane wave
solutions of the Helmholtz equation−∆u−k2u =
0 with constant k = ω

c . When eix·ξ is a solution,
then the phase slowness vector is p = ω−1ξ. It
is easily seen that the phase slownesses are pre-
cisely the vectors with ‖p‖ = c. For numerical
schemes phase slownesses can be defined using
Fourier modes or Bloch waves on the mesh. The
numerical phase slownesses are in general differ-
ent from c, the relative difference will be called
the phase slowness error and denoted by ∆prel.
This error depends on the angle and on G.

The phase slowness errors directly translate
to errors in the solution. In a first approxima-
tion these are phase errors, that can be esti-
mated by 2π∆prel times the distance from the
source that the wave is observed measured in
wavelengths. While the required accuracy of
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Figure 1: Phase slowness errors vs. 1/G.

course depends on the application, the require-
ment

∆prel . 10−4 (1)

appears reasonable in our setting.
In Figure 1 we give the relative phase slow-

ness errors for several methods in two dimen-
sions as a function of 1/G. Results for finite
element methods using tensor products of poly-
nomials of order N = 1 to N = 8 are given.
These can satisfy the criterion (1), but are quite
demanding in terms of order N and value of G.
The results for the method of [3] are marked
with the text JSS. This method does not sat-
isfy (1). The QS-FEM method has very small
error, e.g. < 7 · 10−6 for G ≥ 5.

Generalizing ideas of [3] and [4] we will present
a new, compact stencil optimized finite differ-
ence method, called interpolated optimized fi-
nite differences (IOFD). Omitting the details we
present the phase slowness errors in the figure.
The relative phase slowness errors are very sim-
ilar to those of QS-FEM. The advantage is that
this method is easily generalized to 3-D.

3 Solvers using QS-FEM or IOFD

Solvers for high-frequency Helmholtz problems
are an active area of research, see e.g. [2,5] and
references. Many of these solvers are tested
using second order finite differences (often at
G = 10). The results will be different when the
QS-FEM of IOFD discretization is used. Vari-
ous issues play a role here. The larger stencils
will affect the cost per degree of freedom, an ef-
fect that should be offset by the smaller value
of G. Other factors also play a role, for exam-
ple multigrid performance in general decays for

smaller values of G. In the talk we will show ex-
amples how some of these solvers perform when
used with IOFD or QS-FEM discretization on
coarse grids.

4 Conclusions

To conclude, QS-FEM (in two dimensions) and
our new IOFD method are the most efficient dis-
cretizations in the regime under consideration.
They lead to very small phase slowness errors at
quite coarse grids. The extent to which efficient
solvers, such as those of [2, 5] can be used with
these methods will be discussed in the talk.
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Leonardo Zepeda-Núñez1,∗, Laurent Demanet1

1MIT, Department of Mathematics, Cambridge MA, USA
∗Email: lzepeda@math.mit.edu

Abstract

We present a compressed direct solver for the
Helmholtz equation with medium featuring res-
onant cavities and sharp interfaces, in the high
frequency regime. The online runtime scales
sublinearly with respect to the number of un-
knowns in a distributed memory environment,
with constants empirically independent of the
features of the medium. The offline complex-
ity (precomputation of the compressed factor-
ization) is however still quite large.

1 Introduction

A new class of highly efficient iterative algo-
rithms for solving the Helmholtz equation in
heterogeneous media was recently proposed [?,
?,?,?]. However, the performance of these meth-
ods often degrades when dealing with media fea-
turing resonant cavities and sharp contrasts. In
this note we explore a variant of [?], with a more
thorough offline precomputation, but a practi-
cally identical online parallel complexity: sub-
linear in N when the number L of cores scales
like a small fractional power of N .

The method may be called “compressed bound-
ary reduction”. Its ingredients (such as adap-
tive H-matrices) are not particularly novel by
themselves, but the documentation of the online
complexity claim seems to be new. The method
is potentially attractive in situations where the
precomputation is amortized over many right-
hand sides. Such applications range from op-
timizing the shape of waveguides and ring res-
onators in nanophotonics, to optimal survey de-
sign for seismic prospection, and to optimal fo-
cusing for intracraneal treatments using high in-
tensity ultrasound.

2 Method

Consider a rectangular domain Ω ⊂ R2 and con-
sider the symmetric formulation of the Helmholtz
equation with absorbing boundary conditions
for a velocity field c(x) and frequency ω (see
Eq. 107 in [?]), discretized using Q1 finite ele-
ments (see [?]). To compute the mass matrix,

the integrals are computed using an adaptive
quadrature resulting in a second order accurate
discretization, even in the presence of sharp in-
terfaces and high contrasts. Let N for the total
number of volume unknowns, n the number of
unknowns in each dimension, and we suppose
that ω ∼

√
n.

We decompose Ω in L non-overlapping lay-
ers {Ω`}L`=1. We consider local Helmholtz prob-
lems in each layer, with artificial absorbing bound-
ary conditions at the interfaces between layers.
Following [?], we build a discrete integral sys-
tem internal for interface unknowns u from an
application of Green’s representation formula
(GRF):

Mu = f . (1)

For the offline stage, a block LU factoriza-
tion of M is computed (without pivoting), giv-
ing LU = M. The diagonal blocks of the LU
factors are inverted explicitly. The blocks of
the modified LU factors are then compressed
in adaptive partitioned low rank form (PLR; a
special case of H-matrices, see Section 5 in [?]).
For the online step, the back-substitution rou-
tine relies only on fast matrix vector products,
allowing to solve the system in Eq. 1 in empir-
ical O(LN5/8) time.

Following [?], the source f is assembled from
local solves. After u is computed, the field u in
the volume is obtained from another set of local
solves.

3 Complexity

The offline stage of this algorithm is comprised
of the LU factorization of the local problems,
the computation of the local Green’s functions
to assemble M, its factorization, the inversion
of the diagonal blocks of the LU factors of M
and the compression in PLR form of the blocks
of the modified LU factors. The overall offline
complexity is dominated by the factorization of
the discrete integral system, which isO(LN3/2).

The online stage is composed of the local
solves at each local layer (O(N/L)), the solve of
Eq. 1 (O(LN5/8)) and the local reconstruction
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in the volume (O(N/L)). As in [?], the online
runtime is sublinear (O(N13/16)) if L is chosen
to grow as a small fractional power of N .

4 Numerical Experiments

The model in Fig. 4 was used for the numer-
ical experiments. The shape is kept constant,
with a background speed cblue = 1. The results
for L = 10 layers, different contrasts, frequen-
cies, and problem sizes, are shown in Fig.2. We
observe that the runtimes are independent of
the contrast at high frequency. The complex-
ity of [?] would severely deteriorate with high
contrasts.

Fig. 2, bottom, shows the runtime for a
fixed constrast (cred = 100) and shows the scal-
ing for the fast solve of Eq. 1. We obtain the
same scaling as in [?] for the cavity-free prob-
lem.

If we apply the same compressed LU tech-
nique to solve a Schur complement system as-
sociated to a layered partitioning, rather than
the GRF-based Eq. 1, we empirically obtain
the same scalings.

In principle, the cost of the of offline compu-
tation of the boundary-reduced LU factors and
their compression can be decreased by using H-
matrix algebra to perform the pivoting (see [?]).
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strasts and problem sizes. Bottom: runtime for
a fixed constrast. L is fixed throughout.



88 Fast Solvers for the Helmholtz Equation

A Parallelized DDM Sweeping Preconditioner for the Solution
of High-Frequency Helmholtz and Maxwell Equations

A. Vion1, C. Geuzaine1,∗

1Montefiore Institute, University of Liège, Belgium
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Abstract

We propose an improvement of the double sweep
preconditioner for the solution of Helmholtz and
Maxwell problems by an optimized Schwarz me-
thod. It consists in reducing the sweeping range
in order to perform several shorter sweeps in
parallel, thereby alleviating a major drawback
of the sweeping preconditioner—its sequential
nature. This modification leads to small to mod-
erate increase in the iteration count, which is
largely counterbalanced by the gain in time-to-
solution and better resource usage; pipe-lining
multiple right-hand sides is a complementary
option for maximizing throughput.

Keywords: Domain Decomposition Meth-
ods; Sweeping preconditioners; Parallel
solvers

Introduction

The idea of sweeping for helping the solution of
wave propagation problems has recently gained
interest [5, 6]. It is indeed quite natural since
it somehow accompanies the propagation of the
wave in the medium. An inherent problem of
this approach however is the sequential nature
of the sweeping process, that prevents the effi-
cient implementation of such methods on mas-
sively parallel architectures and makes the algo-
rithm quite slow, especially in the case of many
subdomains.

1 Non-Overlapping Optimized Schwarz
Domain Decomposition Method

Consider a domain Ω with boundary ∂Ω. We
decompose Ω into N non-overlapping slices
Ωi,1≤i≤N , with artificial boundaries Σij between
Ωi and Ωj . (This is a layered partitioning, not
a general 2D partitioning.) For the Helmholtz
equation with wavenumber k, the iterative sche-
me, detailed in [1, 2], uses impedance-matching
boundary conditions on Σij and recasts the prob-
lem in terms of the set of interface data g = {gij ,
1 ≤ i 6= j ≤ N, |i − j| = 1}. An iteration
amounts to solving the following subproblems

in parallel:

−(∆ + k2)u
(m+1)
i = 0 in Ωi

(∂n + S)u
(m+1)
i = (−∂n + S)u

(m)
j on Σij

= g
(m)
ij ,

and then performing the update

g
(m+1)
ij = −∂nu(m+1)

j + Su(m+1)
j on Σij

= −g(m)
ji + 2Su(m+1)

j .

(A similar formulation can be derived for the
time-harmonic Maxwell equations.) Boundary
conditions on ∂Ωi ∩ ∂Ω are conserved from the
original problem. This procedure can be rewrit-
ten as a fixed point iteration on the unknowns
g:

Fg = b, (1)

where applying the operator F amounts to solv-
ing the subproblems and updating g. The so-
lution of problem (1) can be accelerated using
GMRES.

The choice of operator S is critical for the
rate of convergence. It was shown in [4] that the
optimum is obtained if S is the DtN map for the
complementary of the subdomain of interest.
Different local approximations of the DtN map
have been proposed [2,3]; non-local approxima-
tions have also been proposed that make use
of PMLs [1, 6]. This last idea has proved par-
ticularly efficient in the non-homogeneous case,
where currently available local approximations
are less efficient.

In [1], we preconditioned system (1) by an
approximate inverse F̃−1 of operator F , expres-
sed as a sparse matrix made of transfer opera-
tors. We showed that it can be implemented as
a double (forward/backward) sequence of sub-
problem solves, or double sweep; a sweep can
be interpreted as the process of collecting and
transporting data over the full span of the do-
main, therefore similar to the action of a coarse
grid.

By construction, such a preconditioner works
best for accurate approximations of the DtN
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Ω1 Ω4bΩ2 Ω3 Ω4a Ω5 Ω6 Ω7

Figure 1: Introducing cuts in the sequence (here
Ω4) leads to smaller and independent sweeps,
reducing the preconditioner application time
when done in parallel.

map. The resulting method makes the conver-
gence rate virtually independent of the number
of subdomains N and wavenumber k, the draw-
back being the sequential nature of the sweeps,
leading to long application time in the case of
many subdomains, and long processor idleness
in the case where one CPU is assigned to each
subdomain. Similar findings were obtained us-
ing variations in the sweeping process [5, 6].

2 Parallelization of the Double Sweep

Here we propose to introduce cuts in the se-
quence of solves, in order to perform smaller
sweeps over groups of subdomains, as illustrated
on Figure 1. Since they are independent of
each other, they can be performed in parallel,
thereby partially re-enabling the parallelism of
the original Schwarz algorithm.

Of course, this block-Jacobi-type modifica-
tion of the preconditioner can be expected to
cause a degradation of its performance, since
information is no longer shared between all the
subdomains.

However, in practice, the degradation is lim-
ited once “not-too-short” sweeping lengths are
used. For example, on the standard marmousi
underground wave propagation benchmark with
64 subdomains, a sweeping length of 10 brings
quasi-optimal iteration counts (see Figure 2).
Remaining processor idleness can be exploited
for the solution of multiple right-hand sides, in
a pipe-lining fashion [7].
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Abstract

The Shifted Laplace preconditioned for
the Helmholtz equation is slower to converge for
large wave numbers. This can be explained by
the increase of small eigenvalues of the precon-
ditioned systems. In this work we look into de-
flating these small eigenvalues by multigrid vec-
tors. These vectors are constructed by standard
coarsening a uniform mesh. We consider two
algorithmic variants. The first deflates the pre-
conditioned operator and requires some form of
approximation to become computationally vi-
able. The second variant deflates the original
Helmholtz operator and can be applied directly.
The extension of both algorithms to multiple
levels of coarsening requires the deployment of
a Krylov subspace acceleration on each level.
This gives raise to so-called multilevel Krylov
algorithms. A Rigorous Fourier analysis con-
firms that the use of deflation results in a tighter
cluster of eigenvalues. This clustering favors the
convergence of the outer Krylov method. Nu-
merical results give evidence of a speedup of the
computations. Problems that were previously
too large can now instead be solved.

Keywords: Helmholtz equation, precondition-
ing, shifted Laplacian, deflation

1 Introduction

In [2] the authors propose to combine the shifted
Laplacian preconditioner for the Helmholtz equa-
tion with a deflation method. First the deflation
is applied to the preconditiond operator. Sub-
sequently the preconditioner and the deflation
operator are combined multiplicatively result-
ing in a composite preconditioner. The defla-
tion operator attempts to remove near-kernel
eigenmodes that hampers the convergence of
the Krylov method. Multigrid vectors are se-
lected as deflation vectors. The multilevel ex-
tension of the algorithm proposed requires a
Krylov acceleration at each level and a multi-
level Krylov method is arrived at.

In this work we propose a variant of the
method put forward in [2]. Instead of applying

the deflation to the preconditioned Helmholtz
operator, we apply the deflation to the Helm-
holtz operator directly. Other algorithmic com-
ponents carry over from [2]. We perform a rig-
orous Fourier two-grid analysis of a one-dimen-
sional problem with Dirichlet boundary condi-
tions assuming both the preconditioner
(or smoother) and the coarse grid correction
operator be inverted exactly. This analysis re-
veals that the deflation operator transforms the
spectrum into a spectrum that is more favorable
for the convergence of the outer Krylov accel-
eration. Numerical results confirm a reduction
in the number of outer Krylov iterations that
in turn yields a decrease in CPU time for suf-
ficiently large problems. More details can be
found in [1].

2 Spectral Analysis

In Figure 1 we plotted the spectrum resulting
from a Rigorous Fourier analysis of the two-level
composite deflated preconditioned operator for
wavenumbers k = 100 (top) and k = 1000 (bot-
tom). The figure shows for k = 100 a tight
cluster of eigenvalues around (1, 0) in the com-
plex plane. For k = 1000 however the clusters
smears out in both directions of the real axis.
Despite of this smearing, the use of deflation
turns out to be beneficial as shown by numeri-
cal experiments.

3 Numerical Results

In Table 1 we tabulated the number of outer
FGMRES iterations required to solve the Helm-
holtz equation on a unit square as a function of
the meshwidth and the number of gridpoints in
each direction. We listed the iterations count
for both the algorithm with and without defla-
tion. The boxed numbers on the diagonal cor-
respond to the use of ten grid points per wave-
length. The numbers clearly show the reduction
in iteration count for the algorithm with defla-
tion.
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Figure 1: Spectrum of the deflated preconditioned operator for two wavenumbers.

Wavenumber
Grid k = 10 k = 20 k = 30 k = 40 k = 50

n = 32 5/10 8/17 14/28 26/44 42/70

n = 64 4/10 6/17 8/28 12/36 18/45

n = 96 3/10 5/17 7/27 9/35 12/43

n = 128 3/10 4/17 6/27 7/35 9/43

n = 160 3/10 4/17 5/27 6/35 8/43

Table 1: Number of outer FGMRES iterations with and without deflation for unit square domain
problem
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Domain decomposition methods combined with absorption for the Helmholtz equation
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Abstract

There has been much recent research on precon-
ditioning (discretisations of) the Helmholtz op-
erator ∆ + k2 using the (approximate) inverse
of a discrete version of the so-called “shifted
Laplacian” ∆+(k2 +iε) for some ε > 0. Recent
work [5] has provided a theory of this, giving es-
timates on the rate of convergence of GMRES
explicit in k and ε, based on the assumption
that the discrete shifted Laplacian problem is
inverted exactly. To make this method practi-
cal this inverse should be replaced by a cheaper
approximation. In the literature a multigrid V -
cycle is a popular choice but there is no rigorous
theory for the use of such approximations and
this appears to be a fairly hard theoretical prob-
lem. The theoretical part of this talk describes
recent results on domain decomposition meth-
ods, with and without coarse grids for solving
the shifted problem. Their use in solving the
unshifted problem is then investigated experi-
mentally. Practical illustrations are given for
model homogeneous and heterogeneous prob-
lems in 2D and a few more substantial 3D prob-
lems motivated by applications in seismic inver-
sion. In the work we also include results on us-
ing domain decomposition as an inner solver in
the implementation of sweeping precondition-
ers.

Keywords: High frequency Helmholtz, Precon-
ditioning, Domain Decomposition, GMRES .

1 Introduction

In this talk we present some recent results on
solvers for the high-frequency Helmholtz equa-
tion

∆u+ k2u = f (1)

posed on some 2D or 3D domain Ω and discre-
tised by conventional low order finite element
methods. While these methods suffer from the
pollution effect, they still form the first dis-
cretisation widely used in practice, for which
the development of efficient iterative solvers is

of wide interest. The resulting linear systems
for high wavenumber k are notoriously hard to
solve and the analysis of Krylov space-based
iterative solvers such as GMRES is also hard,
since the corresponding system matrices are com-
plex, non-Hermitian and usually highly non-
normal and so information about spectra and
condition numbers of the system matrices gen-
erally does not give much information about the
convergence rate of iterative methods. We con-
sider preconditioners for this system built from
suitable approximations of the corresponding
problem with absorption - an approach which
has been explored in many papers, e.g. [3], [1],
but for which there remain many open ques-
tions. Our approach is both theoretical - to ex-
plain as rigorously as possible properties of the
solvers which are observed in practice, and also
practical - to obtain new methods based on this
understanding. In the theoretical part of the
talk we restrict to the case where Ω is a bounded
domain, the wavenumber k is constant, and the
problem is subject to the first order absorbing
boundary condition ∂u/∂n − iku = g on ∂Ω.
Numerical experiments will be given for this
case and also for more general boundary con-
ditions and cases when k is highly variable. Let
A,Aε denote, respectively, the system matrices
for discretizations of (1) and the corresponding
“shifted problem”, obtained by replacing k2 by
k2 + iε, ε > 0. Let B−1

ε denote any (efficient to
compute) approximate inverse for Aε which we
shall use as a (left or right) preconditioner for A.
Thus we will be interested in the convergence of
GMRES for solving systems with coefficient ma-
trix either B−1

ε A or AB−1
ε . Restricting to left

preconditioning (right is similar), and applying
the classical convergence theory for GMRES [2],
sufficient conditions for good convergence are
that (i) the matrix B−1

ε A is not too large in
norm and (ii) the distance of the field of values
of B−1

ε A can be bounded well away from the
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origin. Since we may trivially write

B−1
ε A = B−1

ε Aε(I + δε),

where δε = A−1
ε (A−Aε), it is easy to see that the

required conditions for B−1
ε A will follow pro-

vided (a) analogous conditions on B−1
ε A could

be established and (b) the “perturbation” term
δε is sufficiently small. Such conditions can be
established by delicate balances between
the choice of ε and the performance of B−1

ε as a
preconditioner for Aε. This justifies the analy-
sis of preconditioners for the shifted problem Aε
as a useful first step in finding good precondi-
tioners for A. The talk describes research along
these lines in the cases when B−1

ε is constructed
using classical additive Schwarz algorithms with
coarse grids [6] or by novel Schwarz methods
with optimised interface conditions [7], [8]. The
latter method is also used as an inner approxi-
mate solver in a hybrid variant [4] of the sweep-
ing preconditioner, and is used for some sub-
stantial 2D and 3D problems motivated by seis-
mic inversion in [7].
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Helmholtz equation. The Helmholtz equa-
tion plays an important role in many areas of
science and engineering. It describes the prop-
agation of waves through an object in the fre-
quency domain. The equation is(
−∆− k2(x)

)
u(x) = f(x), x ∈ Ω ⊂ Rd (1)

where k(x) is the wave number that describes
how the wave speed changes through the object,
u(x) is the scattering solution, and f(x) repre-
sents the source. The equation is defined on a
domain Ω ⊂ Rd, where d is the dimension of the
problem. Many physical problems typically re-
quire outgoing wave boundary conditions on the
boundary of Ω. Here we assume that k(x) only
differs from a constant background, denoted by
k0, inside a compact subset of the domain Ω.

After discretization of the equation (1) and
the absorbing boundary conditions one obtains
a large scale linear system Ax = b, which is in-
definite due the wave number and non-normal
due to the absorbing boundary conditions. More-
over, equation (1) is known to be hard to solve
using traditional iterative methods. In particu-
lar the failure of multigrid as a Helmholtz solver
is well-documented, see [1, 2].

Far- and near-field. In many applications
the scattered wave solution u(x) is not required
inside but rather outside the numerical domain
Ω. This is, for example, the case when one is
interested in calculating the near- or far field
scattered wave solution. The solution can then
be written as a integral over the numerical do-
main

u(x) =

∫
Ω
G(x, s)

[
f(s)−

(
k2

0−k2(s)
)
un(s)

]
ds

(2)
for any x ∈ Rd, where G(x, s) is the Green’s
function of the operator −∆−k2

0, and un is the
numerical solution of Eq. (1) on a domain that

<{z}

={z}

γ

Figure 1: Schematic representation of the complex con-
tour for the far field integral calculation (3) illustrated
in 1D. The full line represents the real-valued computa-
tional domain Ω, the dotted and dashed lines represent
the complex contour Z ⊂ C.

covers the compact subdomain in which k(x)
deviates from the constant background, with
outgoing wave boundary conditions.

When k(x) is an analytical function, the
contour of the volume integral, Eq. (2), can be
deformed into the complex domain without af-
fecting the value of the integral, as was shown
in [3]. Hence, the value of u outside the domain
can alternatively be calculated as an integral
over the solution un of the Helmholtz equation
on a complex valued domain Z ⊂ Cd, i.e.

u(x) =

∫
Z
G(x, z)

[
f(z)−

(
k2

0−k2(z)
)
un(z)

]
dz

(3)
Equivalence to complex shifted Lapla-

cian. One easily observes that the Helmholtz
equation along the deformed contour is equiv-
alent to a complex shifted Laplacian problem.
Indeed, consider the complex shifted Helmholtz
problem(
−∆− (1 + iβ)k2(x)

)
u(x) = g(x), x ∈ Ω,

(4)
with Dirichlet boundary conditions u(x|∂Ω) = 0
and a complex shift parameter β ∈ R. After fi-
nite difference discretization on a d-dimensional
Cartesian grid with fixed grid distance h in ev-
ery spatial dimension, one typically obtains a
linear system

−
(

1

h2
L+ (1 + iβ)k2

)
uh = gh, (5)

where L is the matrix operator expressing the
stencil structure of the Laplacian. Dividing both
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nx × ny × nz 163 323 643 1283 2563

k0

1/4 10 (10) 9 (59) 9 (560) 9 (4456) 9 (35165)
0.24 0.20 0.21 0.20 0.20

1/2 12 (12) 10 (63) 10 (611) 10 (4937) 9 (35405)
0.31 0.24 0.22 0.23 0.21

1 7 (8) 13 (83) 11 (691) 10 (4899) 10 (38975)
0.13 0.32 0.27 0.24 0.24

2 2 (4) 8 (54) 13 (809) 11 (5418) 10 (38051)
0.01 0.14 0.33 0.27 0.24

4 1 (3) 2 (17) 7 (457) 13 (6337) 11 (41848)
0.01 0.01 0.12 0.33 0.26

Table 1: 3D Helmholtz problem solved on a full complex grid rotated by θ = π/6 using a series of multigrid V(1,1)-
cycles with GMRES(3) smoother up to residual reduction tolerance 1e-6. Displayed are the number of V-cycle iterations,
number of work units and average convergence factor for various wavenumbers k0 and different discretizations. 1 WU is
calibrated as the cost of 1 V(1,1)-cycle on the 163-points grid k0 = 1/4 problem. Discretizations respecting the k0h < 0.625
criterion for a minimum of 10 grid points per wavelength are indicated by a bold typesetting.

sides in (5) by (1+iβ), we obtain the equivalent
system

−
(

1

(1 + iβ)h2
L+ k2

)
uh =

gh
1 + iβ

. (6)

The left-hand side matrix operator of this equa-
tion is a discretization of the original Helmholtz
operator −∆−k2 using a complex grid distance
h̃ =
√

1 + iβ h. Hence, (6) is the discrete repre-
sentation of the Helmholtz equation on a com-
plex grid Z, i.e. the operator

(
−∆− k2(z)

)
.

Recalling the integral (2), it clear that a
shifted problem needs to be solved in the first
step of the far field map calculation to obtain
the scattered wave un along the complex con-
tour Z. In Table 1 we show convergence results
for multigrid applied to the problem along the
contour. Note that the multigrid scheme is used
as a solver, contrary to its use as a precondi-
tioner in e.g. [4].

Comments on the contour approach.
Although the value of the integral is theoreti-
cally independent of the choice of the contour,
the contour can in practice not be defined ar-
bitrarily. Choosing the complex part of h̃ very
large corresponds to a large complex shift β,
which implies fast multigrid convergence. How-
ever, a large shift (or rotation angle) makes the
far field integral harder to calculate, since the
integrand is typically a product of an exponen-
tially decaying with a exponentially increasing
function, and a larger angle implies an increased
rate of decay and/or growth.

In [5] we have illustrated the effectiveness of
the method for the solution of high-dimensional

Schrödinger equations. The dependence on the
complex shift was analyzed and an additional
coarse grid correction was proposed to further
accelerate the method.
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Minisymposium: Low Frequency Electromagnetic Imaging and Elet-
rical Impedance Tomography
organised by Bastian v. Harrach and Roland Griesmaier

Low frequency inverse scattering and electrical
impedance tomography have been very active
fields of research in recent years. New trends
have emerged that have allowed to obtain fur-
ther insights and encouraging results for these

well established and fascinating inverse prob-
lems. The minisymposium focuses on innova-
tive contributions in this direction, consider-
ing both theoretical results and numerical al-
gorithms.
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Abstract

We investigate a multifrequency impedance
imaging technique that has recently been sug-
gested for mammography screenings. This MU-
SIC type technique uses boundary voltages gen-
erated by time harmonic (AC) boundary cur-
rents with the same spatial distribution but dif-
ferent driving frequencies.

We prove that the method will always find a
single small focal lesion in two or three space di-
mensions. Concerning the two dimensional case
we also discuss the potential of the method to
find and separate multiple inclusions. Generi-
cally, the given measurements not only allow to
locate the lesions but also to determine their
conductivities and permittivities to facilitate
their classification. It might also be possible
to extract shape information from these data.

Keywords: Electrical impedance tomography,
MUSIC method, polarization tensor

1 Introduction

We consider the conductivity equation for bio-
logical tissues given exciting AC currents with
small frequencies in the kHz regime. Assum-
ing a homogeneous background we search for
tiny inclusions with frequency dependent com-
plex admittivity. In the applications we have in
mind (like, e.g., breast cancer detection using
the TransScan TS2000 device [5]) it is only pos-
sible to impose a single spatial boundary current
distribution, and the only option for generating
multiple data sets is by varying the driving AC
frequency.

For this setting Scholz [5] suggested a vari-
ant of the well-known MUSIC algorithm to lo-
calize malign lesions within the breast. Am-
mari, Boulier, and Garnier [2] provided a the-
oretical justification, restricting themselves to
small inclusions with the shape of a disk in R2.

Together with Roland Griesmaier we re-
cently have shown [4] that the method finds
an inclusion of arbitrary shape, as long as it is
small and the number of driving frequencies is
sufficiently large. These results are based on a

detailed investigation [3] of the so-called polar-
ization tensor affiliated with the domain that is
taken by the inclusion, considered as a mero-
morphic function of the admittivity contrast.
The overall technique is strongly tied to two
space dimensions.

In this paper we extend the analysis of the
method to the more relevant setting in R3. We
prove that the method will always locate a small
single inclusion.

2 Problem Formulation

Let D ⊂ R3 be a bounded and simply connected
domain with boundary ∂D, and Ω ⊂ Ω ⊂ D
be the domain taken by an obstacle within D.
Imposing a (nontrivial) AC boundary current

F (x, t) = f(x)eiωt , x ∈ ∂D , t ∈ R ,

with driving frequency ω > 0 and fixed spatial
distribution f ∈ L2(∂D) with vanishing mean,
a time-harmonic potential U(x, t) = u(x;ω)eiωt

is generated in D, and under suitable physical
assumptions its spatial component satisfies the
boundary value problem

−∇ · (γ∇u) = 0 in D ,

∂νu = f on ∂D ,

with u having vanishing mean over ∂D. Here,
the frequency dependent complex admittivity γ
is assumed to be γ = 1 in D \ Ω and σ + iε in
Ω, where the constant quantities σ > 0 and ε >
0 are the conductivity and permittivity of the
obstacle, respectively. Our aim is to determine
the obstacle Ω from measurements of

gn = u( · ;ωn)
∣∣
∂D

for infinitely many frequencies ωn > 0. To this
end we compare gn with the reference potential
g0 = u0|Γ for the case Ω = ∅; note that g0 is
independent of the driving frequencies.

3 Theoretical Results

Our theoretical results treat the case when the
obstacle Ω within D ⊂ R3 is small. We assume
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that such an obstacle is located in a point x0 and
has the shape of a reference domain O, and that
its size is determined by a scaling parameter
δ > 0, i.e.,

Ω = x0 + δO .

Then a known asymptotic formula (cf., e.g., [1]
asserts that

1

δ3
(gn − g0) −→ hn , δ → 0 ,

where hn is the trace of a dipole potential lo-
cated in x0 with dipole moment pn ∈ R3 and
with homogeneous Neumann boundary condi-
tion on ∂D. the dipole moment pn depends an-
alytically on the frequency ωn and on the shape
O and the reference potential u0 near x0.

To retrieve the location of a small obstacle
we sample the points z ∈ D and use a MUSIC
scheme to check whether the trace φz on ∂D
of a corresponding dipole potential located in z
with dipole moment p = ∇u0(z) is spanned by
the relative data gn − g0. This is based on the
following result.

Theorem 1 Assume that ∇u0(x0) 6= 0 and z ∈
Ω. Then there exists (an) ∈ `1, such that

φz =
∞∑
n=1

anhn ,

if and only if z = x0.

4 Numerical Results

When there is more than one obstacle, this ver-
sion of the MUSIC scheme should be modified
by testing more than one dipole moment for
each test point z ∈ D, as this will increase
the robustness of the method. In R2 we have
provided in [4] a list of exceptional shapes and
orientations of two given inclusions where even
the stabilized method will fail. However, in the
generic situation the method will find all obsta-
cles present and may even be used to determine
their material parameters. This is illustrated in
the numerical reconstruction below.
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Abstract

In the past years monotonicity has been rec-
ognized as a key property for developing real-
time imaging methods for inverse medium or
obstacle problems such as Electrical Resistance
Tomography (governed by an elliptic PDE) or
Eddy Current Testing (governed by a parabolic
PDE). Recently, monotonicity has been found
also for transmission eigenvalues in wave prop-
agation problems. In this work we propose a
monotonicity based imaging method relying on
this property of transmission eigenvalues.

Keywords: Inverse Problems, Non-Iterative Imag-
ing, Monotonicity, Transmission Eigenvalues

1 Introduction

In the recent years a new class of Non-Iterative
Imaging Methods have been introduced that are
based on some monotonicity property associ-
ated with quantities/operators appropriate for
the problem. Monotonicity (based) Imaging Method
(MIM) was introduced initially in the context of
the inverse obstacle problem for Electrical Re-
sistance Tomography (ERT) [1] and, then, ex-
tended to Eddy Current Testing (ECT) [2, 3]
where experimental results are also available [4].
The objective of such papers was to find the
shape of an object in an otherwise homogeneous
material (the inverse obstacle problem). The
key feature in MIM is the existence of a proper
criterion (based on monotonicity) for establish-
ing if a test anomaly (prescribed in terms of
shape and position) is part of the unknown ob-
ject or not. By considering many different test
anomalies, one can reconstruct/approximate the
shape of the unknown object. This approach
provides upper and lower bounds for the un-
known object in the case of a finite number of
measurements (limited aperture data) [1]. In
ERT, it provides the exact shape in case of an

The research of David Colton and Peter Monk was
supported in part by a grant from the Air Force Office
of Scientific Research.

infinite number of measurements (full aperture
data) [5]. Moreover, its computational cost is
linear with the number of test anomalies (i.e.
voxels or pixels used to discretize the region of
interest).

Recently, it has also been found that wave
propagation problems, governed by a different
underlying physics, have a type of monotonicity.
Specifically, it has been proved that transmis-
sion eigenvalues depend in a monotonic way on
the refractive index [6]. Our contribution pro-
vides the description of an imaging algorithm
based on this monotonicity property together
with a first numerical example.

2 Transmission Eigenvalues and Mono-
tonicity Property

Transmission eigenvalues arise from the interior
transmission problem [7,8]:

∇2v + k2v = 0 in Ω (1a)

∇2u+ k2n2u = 0 in Ω (1b)

v = u on ∂Ω (1c)

∂nv = ∂nu on ∂Ω (1d)

where k is the wavenumber, n the refraction in-
dex, Ω the support of a scatterer and ∂n the nor-
mal derivative operator. Transmission eigenval-
ues are those values of k such that (1) admits
a non-trivial solution. Transmission eigenvalues
form a discrete sequence; hereafter we focus on
the real ones and we assume they are ordered
in increasing order.

In this work we focus on the inverse obstacle
problem where the goal is to retrieve the shape
of an anomalya scattereran object (equivalently,
the refraction index nI) in an otherwise homo-
geneous background material (refraction index
nBG, nI < nBG) occupying domain Ω. Let
nD (r) = nBG+(nI − nBG)χD (r) be the refrac-
tive index related to an anomaly in the subset
D ⊂ Ω. From [6] it follows that:

Da ⊆ Db ⇒ τ ia ≤ τ ib , ∀i ∈ N, (2)
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where τ ia and τ ib are the transmission eigenval-
ues associated to the refractive indices nDa and
nDb, respectively.

3 Inversion algorithm

The inversion algorithm is based on (2). Indeed,
the following proposition holds:

if ∃ i s.t. τ ia > τ ib ⇒ Da * Db. (3)

Proposition (3) is nothing but a simple test
for evaluating if an anomaly Da is contained in
another anomaly Db starting from the knowl-
edge of the transmission eigenvalues. Assuming
Ω is partitioned as Ω = ∪Nn=1Vn, we have the
following (basic) imaging algorithm: take as re-
constructed anomaly object the union of all the
Vn’s such that τ in ≤ τ i ∀i ∈ N, where τ in is re-
lated to a (known!) test anomaly in Vn and τ i

is related to the unknown object.

Figure 1: The domain Ω and its partition-
ing. Regions 3 and 4 represent the unknown
anomaly.

4 Inversion algorithm

The simple test case considered here is a 2D ax-
isymmetric problem: a dielectric cylinder illu-
minated by a TM wave (nBG =

√
10, nI =

√
3).

The domain, a circle of radius 0.5m, is parti-
tioned in five regions (V1, ... , V5) and the un-
known anomaly object is V3 ∪ V5 (see Figure
1). The following Table reports the first five
(numerically computed) transmission eigenval-
ues for the target ”unknown” object and for
each test anomaly V1, ... , V5. In this case, the
reconstruction algorithm of Section 3 provide
an error free image of the unknown object.

Tr. Eig. τ1 τ2 τ3 τ4 τ5

Object 2.772 3.930 5.509 7.211 7.947
Test 1 2.825 3.386 4.123 4.860 5.614
Test 2 3.018 3.754 4.333 4.965 5.649
Test 3 2.667 3.860 4.982 5.702 6.000
Test 4 2.719 3.386 4.333 5.386 6.053
Test 5 3.088 3.930 4.737 5.509 6.228
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Abstract

The inverse problem of electrical impedance to-
mography (EIT) with electrodes is delicate as it
is nonlinear, ill-posed, highly under-determined,
and entails uncertainties about the setting. Each
respect needs to be addressed carefully for suc-
cessful inversion. The presented reconstruction
scheme estimates unknown model parameters
from the measurements before solving the full
nonlinear problem. Therein, nonlinearity is re-
duced with a parameter transformation, under-
determination is resolved by a scheme promot-
ing non-oscillatory conductivities, and regular-
ization is applied with an inexact Newton method.
The reconstruction procedure is free of design
parameters and requires no calibration data. Nu-
merical results demonstrate the performance of
this concept.
Keywords: electrical impedance tomography,
inverse problem, complete electrode model, reg-
ularization, inexact Newton method

1 Problem and Model

The purpose of EIT is to determine a conductiv-
ity σ∈L∞+ (Ω) on a domain Ω∈R{2,3} from mea-
surements on its boundary. The realistic com-
plete electrode model (Somersalo et al. 1992)
describes the injection of currents I∈RL� ={x∈
RL :

∑
xi = 0} and the measurement of corre-

sponding potentials U ∈ RL� through L ∈ N≥2

electrodes E1, ... ,EL ⊂ ∂Ω with contact impe-
dances z1,...,L > 0. Recovering σ from the dis-
crete Neumann-Dirichlet map Rσ : I 7→U inher-
its the severe nonlinearity and ill-posedness of
its continuum counterpart (Alessandrini 1988),
and moreover is highly under-determined as Rσ
is finite-dimensional.

For a set ofM ∈N currents I :={I1,...,IM}∈
RL×M we measure a set of noisy potentials Uv :=
RσI+Nv, with each entry of the noise Nv ∈
RL×M being iid∼ N (0,v) with unknown variance
v. The inverse conductivity problem reads

Find σ given Uv. (1)

For iterated Newton-type methods, an estimate

of the contact impedances z1,...,L and an initial
conductivity σ0 are required for evaluating the
forward operator F : σ 7→ Rσ, and a good es-
timate of the noise level δ := ‖Nv‖Fro is valu-
able for applying regularization. Moreover, we
need a strategy to resolve the underdetermina-
tion and possibly to reduce the nonlinearity of
(1).

2 Initialization

The contact impedances, background conduc-
tivity and data noise level are usually unknown.
However, they can be estimated directly from
Uv. Assume that all contact impedances are ap-
proximately constant, z1,...,L≈ z, and denote by
V = {V 1,...,VM} a set of simulated potentials
for currents I, conductivity 1χΩ, and an arbi-
trary contact impedance ω > 0. Using Green’s
identity, we get an approximation for z and the
background σ0χΩ by setting ρ=σ−1

0 and solving
the M×2 linear regression problem

amρ+ bmz = cm, m = 1, . . . ,M,

with bm=
∑L

l=1|El|−1(Iml )2, cm=
∑L

l=1(Uv)ml I
m
l

and am =
∑L

l=1

(
V m
l −w|El|−1Iml

)
Iml ; see [1].

Moreover, knowing δ is valuable when apply-
ing Newton’s method with a discrepancy prin-
ciple. If I forms a generating set of RL� and I+

denotes its pseudo-inverse, then δ can be esti-
mated from Uv by exploiting the symmetry of
Rσ. Denoting by

ev :=
∥∥UvI+ −

(
UvI+

)>∥∥2

Fro

the symmetry error caused by noise of variance
v, it can be shown that Eev = 2(L−1)‖I+‖2Frov,
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and moreover Eδ ≈
√
MLv. Combining both,

we obtain the noise estimate

δCEM :=
√

MLev
2(L−1)

∥∥I+
∥∥−1

Fro ≈ Eδ,

a computable quantity even if v is unknown.
The quality of these estimates has been verified
numerically, even for inhomogeneous conductiv-
ities, varying contact impedances and different
current patterns, in [1].

3 Nonlinearity considerations

Problem (1) is constrained (σ > 0) and highly
nonlinear, which can lead to several problems
for Newton-type methods solving unconstrained
problems by linearization. Both issues are ad-
dressed simultaneously by performing a conduc-
tivity transformation, σ 7→t∗(σ) :=t, and consid-
ering the transformed operator F∗ : t 7→Rt−1

∗ (t).
A well-known example is t∗(σ) = log(σ), which
has an unconstrained parameter space t∈L∞(Ω)
and reduces nonlinearity in particular at small
constants. We suggest another transformation,
namely tα(σ) := (1−α)σ−1−ασ for α ∈ (0,1),
which is also unconstrained and has limited non-
linearity for all constant conductivities [1].

4 Newton-type inversion

When applying Newton’s method in EIT, the
evaluation of the forward operator and its Fréchet
derivative are usually done numerically by finite
elements, which requires a discretization of the
domain Ω = Ω1∪ ...∪ΩP , P ∈N. The Jacobian
S ∈RLM×P at t is then assembled column-wise
by Sp = col(F ′∗(t)[χΩp ]), p= 1,...,P, and the lin-
earized problem

Sη = d, d = col(Uv − F∗(t)I), (2)

is solved in each Newton iteration to compute
the Newton update η. Usually, LM � P and
(2) is highly under-determined and ill-posed.
The naïve pseudo-inverse attempt

η+ = S+d = arg min
η∈N (S)⊥

‖Sη − d‖2, (3)

resolves underdetermination, but is undesired as
it heavily depends on the local discretization ge-
ometry. However, the dependence can be lifted
using a weighted inner product 〈·,·〉W := 〈·,W ·〉
with weight matrix W = diag(w1,...,wP ), wp =
(t−1
∗ )′(t∗(σ))‖Sp‖2σ−1on Ωp, and picking a solu-

tion in the W -orthogonal complement of N (S),

η+W := arg min
η∈N (S)⊥W

‖Sη − d‖2. (4)

This choice is unique and almost independent of
the discretization. Moreover, it promotes non-
oscillatory conductivity updates. Finally, ill-
posed- ness is addressed using an inexact New-
ton method which approximates each Newton
update η+W by a regularized version. It ter-
minates by the discrepancy principle ‖F∗(t)I−
Uv‖< 1.1 ·δCEM.

5 Numerical examples

To investigate the capability of reconstructing
both low and high contrasts and multiple back-
grounds, we consider the test conductivity shown
in Fig. 1(a) and δ = 1%. Reconstructions are
performed for L=16 (b) and for L=64 (c) with
the proposed initializations, but without trans-
formation and using updates η+. The results
when using transformation tα and updates η+W

in the same setting are shown in (d) and (e), re-
spectively. We observe that the reconstruction
of high and low contrasts and multiple back-
ground succeeds from noisy EIT data, without
fine-tuning any parameters. For more examples
and tank experiments, see [1].
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Abstract

Within the framework of the periodic scalar con-
ductivity equation, this work focuses on a FFT-
based numerical method to convert full-field mea-
surements of intensity fields into maps of as-
sociated conductivity distributions. The pro-
posed algorithm aims at solving a Lippmann-
Schwinger equation for the unknown material
conductivity field by the method of successive
approximations. A set of numerical results is
presented to illustrate the performances of the
approach.

Keywords: Inverse problems, Full-field mea-
surements, Conductivity equation

1 Introduction

Consider a periodic medium with representative
volume element V ⊂ Rd and the associated con-
ductivity problem

div
(
γ(x)

(
∇u(x) + E

))
= 0 in Rd

u is V-periodic,
(1)

where γ ∈ L∞per(V,R+\{0}) denotes the V-periodic
map of material conductivity while u is a scalar
potential. The corresponding intensity field is
defined as e = ∇u+E while the angular brack-
ets 〈·〉 denote the spatial average over V

〈e〉 =
1

|V|

∫
V
e(x) dx,

so that E denotes the mean intensity that is
prescribed in the problem (1). There exists a
solution u ∈ H1

per(V,R) to (1) that is unique up
to an additive constant.

The framework adopted in this study relies
on the assumption that a number N of experi-
ments can be performed by varying the imposed
mean intensity as E = E` with ` = 1, . . . , N
in the problem (1), while we consider available
some internal measurements, or maps, of the
corresponding set of intensity field solutions [1],
i.e. e`(x) = ∇u`(x) + E` for all x ∈ V. In

this context, this study focuses on a numerical
method that makes use of these full-field im-
ages of measured intensity fields e`(x) in or-
der to reconstruct the conductivity distribution
x 7→ γ(x) of the material within V or alterna-
tively the corresponding contrast map associ-
ated with the mean value 〈γ〉.

2 Integral formulation

The first step is to establish a Lippmann-Schwinger
equation for the sought conductivity function
γ(x). For all k = 1, . . . , d, let ēk ∈ Rd and
`k ∈ {1, . . . , N} denote a companion label, so
that, given γ̄ ∈ R+\{0}, the original problem
(1) with prescribed mean E`k and associated
solution e`k can be recast as the following aux-
iliary problems which unknown is the conduc-
tivity field γ(x):

div(γ(x) ēk) = −div τk(x) in V
〈γ〉 = γ̄ γ is V-periodic

where the right-hand side term is given by

τk(x) = γ(x) δek(x) with δek(x) = e`k(x)−ēk.

Defining the periodic Fourier transform as

f̂(ξ) =
1

|V|

∫
V
f(x)e−2πix·ξ dx,

and assuming that {ēk}k constitutes an orthog-
onal basis of Rd, yet not necessarily normalized,
then the above set of d auxiliary problems can
be used to obtain in Fourier-space

γ̂(ξ) = −Γ̂(ξ) :
d∑

k=1

ēk ⊗ τ̂k
|ēk|2

∀ ξ 6= 0

γ̂(0) = γ̄

(2)

where Γ̂ is the periodic Green’s operator for the
conductivity problem which reads for all ξ 6= 0

Γ̂(ξ) =
ξ ⊗ ξ
|ξ|2

.



104 Low Frequency Electromagnetic Imaging and Eletrical Impedance Tomography

(a) True conductivity contrast δ̄γ(x) (b) Experience 1: u1(x) (c) Experience 2: u2(x)

Figure 1: (a) 2D configuration considered to compute synthetic data. (b–c) Scalar potential fields
uk solutions of (1) computed using the F.E. method with arrows corresponding to prescribed average
fields Ek and streamlines of intensity fields ek(x).

Therefore, one readily obtains from (2) the sought
Lippmann-Schwinger equation for the field γ as

γ(x) +
1

|V|

[
Γ ∗

d∑
k=1

ēk ⊗ ( γ δek )

|ēk|2

]
(x) = γ̄ (3)

where ∗ denotes the spatially convoluted dou-
bly contracted product.

3 Iterative reconstruction algorithm

An integral equation such as (3) is commonly
encountered in scattering theory. When the
terms δek, for k = 1, . . . , d, can be assumed
to be small then the unknown conductivity map
can be approximated by a series expansion. The
corresponding Neumann series reads

γ(x) =
∑
n>0

(
− 1

|V|
Γ ∗

d∑
k=1

ēk ⊗ ( · δek )

|ēk|2

)n
γ̄

where the operator raised to the power n is
to be interpreted as the in-parenthesis opera-
tor applied n times. If it exists, computing the
solution γ from the above series expansion is
achieved in this work using the method of suc-
cessive approximations [2]. To avoid using any
a priori information such as knowledge of the
mean conductivity 〈γ〉 = γ̄, the proposed al-
gorithm is recast in terms of the conductivity
contrast normalized by the mean conductivity,
a term we denote by

δ̄γ(x) =
γ(x)− γ̄

γ̄
. (4)

The approach discussed here is derived from
FFT-based numerical methods [3] for comput-
ing the response of non-linear composite mate-
rials.

Our aim is to analyse and discuss this it-
erative algorithm that alternates between real-
space and Fourier-space to circumvent the costly
computation of convolution terms. A set of nu-
merical results is discussed, see the example of
Figure 1 with the associated computed recon-
struction of Figure 2.

Figure 2: Reconstructed conductivity contrast
after 50 iterations of the algorithm.

References

[1] G. Bal. Hybrid inverse problems and inter-
nal functionals, Inside Out II, MSRI Pub-
lications, 2012.

[2] R. Kress. Linear Integral Equations,
Springer, 2014.

[3] H. Moulinec, P. Suquet. A numerical
method for computing the overall response
of nonlinear composites with complex mi-
crostructure, Comput. Meth. Appl. Mech.
Engrg, 69–94, 1998.



Minsymposium Session: Tuesday 10:30–12:30 Room 0.019 105

A conformal mapping method in inverse obstacle scattering

Houssem Haddar1, Rainer Kress2,∗

1CMAP, Ecole Polytechnique, Palaiseau, France
2Institut für Numerische und Angewandte Mathematik, University of Göttingen, Germany

∗Email: kress@math.uni-goettingen.de

Abstract

Over the last decade, Akduman, Haddar and
Kress [1, 2, 4] have analyzed a conformal map-
ping technique for the inverse problem to re-
construct a perfectly conducting inclusion in a
homogeneous background medium from Cauchy
data for electrostatic imaging. We propose an
extension of this approach to inverse obstacle
scattering for time-harmonic waves. The main
idea is to use the conformal mapping algorithm
in an iterative procedure to obtain Cauchy data
for a Laplace problem from the given Cauchy
data for the Helmholtz problem. In the talk, we
present the foundations of the method together
with a convergence result and exhibit the feasi-
bility of the method via numerical examples.

Keywords: conformal mapping, low frequency
iterations

1 The inverse problems

Assume that D0 and D1 are two simply con-
nected bounded domains in R2 with C2 smooth
boundaries Γ0 := ∂D0 and Γ1 := ∂D1 such that
D0 ⊂ D1 and denote by D the doubly con-
nected domain D := D1\D0. The inverse prob-
lems we are concerned with is to determine the
unknown interior boundary curve Γ0 from the
Cauchy data

f := u|Γ1 and g :=
∂u

∂ν

∣∣∣
Γ1

(1)

on Γ1 of a solution u ∈ H1(D) of the Laplace
equation ∆u = 0 or the Helmholtz equation
∆u + k2u = 0 with wave number k > 0 sat-
isfying the homogeneous Dirichlet condition

u = 0 (2)

on Γ0. Here, the unit normal ν to Γ1 is directed
into the exterior of D1 and the functions f and
g are assumed to be complex valued.

2 The Laplace case

To describe the conformal mapping method we
will identify R2 and C in the usual manner and

introduce the annulus B bounded by two con-
centric circles C0 with radius ρ < 1 and C1 with
radius one centered at the origin. By the Rie-
mann conformal mapping theorem for doubly
connected domains there exists a uniquely de-
termined radius ρ and a holomorphic function
Ψ that is unique up to rotations and that maps
B bijectively onto D such that the boundaries
C0 and C1 are mapped onto Γ0 and Γ1, respec-
tively. We parameterize the exterior boundary
Γ1 = {γ(t) : t ∈ [0, 2π)} and fix the freedom in
rotating B by prescribing Ψ(1) = γ(0). For the
unit circle C1 we use the canonical parametriza-
tion C1 = {c(t) : t ∈ [0, 2π)} where c(t) := eit.

Now we define the boundary correspondence
function ϕ : [0, 2π]→ [0, 2π] by setting

ϕ := γ−1 ◦Ψ ◦ c. (3)

Clearly the function ϕ uniquely determines Ψ as
the solution to the Cauchy problem with Ψ|C1 =
γ ◦ ϕ ◦ c−1.

The main ingredient of the conformal map-
ping method is the nonlocal and nonlinear or-
dinary differential equation

dϕ

dt
= Re

g ◦ γ ◦ ϕAρ(f ◦ γ ◦ ϕ)

|g ◦ γ ◦ ϕ|2
(4)

for ϕ together with the boundary conditions

ϕ(0) = 0, ϕ(2π) = 2π. (5)

Here Aρ : H1/2[0, 2π] → H−1/2[0, 2π] denotes
the Dirichlet-to-Neumann operator for the an-
nulus B that maps functions h onto the normal
derivative

Aρh :=
∂v

∂ν
◦ c (6)

of the harmonic function v ∈ H1(B) with bound-
ary values v = h ◦ c−1 on C1 and v = 0 on C0.
The differential equation (4) is complemented
by the equation

ρ = exp

−Re

∫
Γ1
g ds

∫ 2π
0 f ◦ γ ◦ ϕdt∣∣∣∫Γ1
g ds

∣∣∣2
 . (7)
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Though we only have the local result that
(4) and (7) can be solved by successive approx-
imations provided that D is sufficiently close to
B and f sufficiently close to a constant, numer-
ical examples exhibit convergence for a much
larger class of domainsD and functions f (see [1,
2]). Once ϕ and ρ are available the highly ill-
posed Cauchy problem to determine the holo-
morphic function Ψ in the annulus B from its
boundary values Ψ|C1 = γ◦ϕ◦c−1 can be solved
by a Laurent expansion that need to be stabi-
lized, for example, by a Tikhonov type regular-
ization.

Finally, the interior boundary Γ0 is obtained
by Γ0 = Ψ(C0). Summarizing, the conformal
mapping method for the Laplace case defines
a solution operator R taking the Cauchy data
(f, g) on Γ1 onto the interior boundary curve
Γ0, that is,

Γ0 = R(f, g). (8)

Its regularized version Rα with regularization
parameter α > 0 leads to a regularized solution
Γ0,α = Rα(f, g).

3 The Helmholtz case

Given incident fields ui,0 and ui,k by solutions
to the Laplace and Helmholtz equation in an
open set containing R2 \ D0, respectively, we
now consider the scattering problems for so-
lutions u0, uk in H1

loc(R2 \ D̄0) to the Laplace
equation ∆u0 = 0 or the Helmholtz equation
∆uk+k2uk = 0 in R2 \D̄0 satisfying the Dirich-
let boundary conditions

u0 = −ui,0 and uk = −ui,k on Γ0 (9)

together with an appropriate radiation condi-
tion at infinity. The solutions of these two exte-
rior Dirichlet problems define operators F0 and
Fk that for fixed incident fields ui,0 and ui,k map
the interior boundary Γ0 onto the Cauchy data
(fL, gL) and (fH , gH) of the total fields utot

0 :=
u0 + ui,0 and utot

k := uk + ui,k on Γ1, respec-
tively. Then, subtracting Fk(Γ0) from F0(Γ0)
and inserting (8) for Γ0 we arrive at the fixed
point equation

(fL, gL) = (fH , gH)+(F0−Fk)(R(fL, gL)) (10)

for the Cauchy data (fL, gL) for the Laplace so-
lution utot

0 , given the Cauchy data (fH , gH) for
the Helmholtz solution utot

k . It can be shown
(see [3]) that for sufficiently small wave numbers

k and incident fields given by plane waves (10)
can be solved via successive approximations

(fn+1, gn+1) := (fH , gH)+(F0−Fk)(Rα(fn, gn))

for n = 0, 1, 2, . . . starting with the given Helm-
holtz data as initial guess (f0, g0) = (fH , gH)
and using the regularized version Rα of the so-
lution operator with an appropriate choice of α
(provided D is close to B). Numerical examples
exhibit the feasibility of this approach for more
general domains (see [3]).

Each iteration step consists of two parts: In
the first part the two steps of the conformal
mapping algorithm for the Laplace case is ap-
plied with Cauchy data (fn, gn) to obtain an
approximation Γn = Rα(fn, gn) for the inte-
rior boundary curve. Then in the second part
both boundary value problems (9) are solved
for the interior boundary Γn to obtain both
F0(Rα(fn, gn)) and Fk(Rα(fn, gn)) in order to
update the Cauchy data.
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Abstract

We develop an inverse scattering scheme of re-
covering impenetrable anomalies buried in a two-
layered medium. The recovery scheme works
in a rather general setting and possesses sev-
eral salient features. It makes use of a single
far-field measurement in the half-space above
the anomalies, and works independently of the
physical properties of the anomalies. There might
be anomalous components of multiscale sizes
presented simultaneously. Moreover, the pro-
posed scheme is of a totally direct nature with-
out any inversion involved, and hence it is very
fast and robust against measurement noise. Both
theoretical foundation and numerical experiments
are presented.

Keywords: Inverse scattering, locating, single
far-field measurement, limited aperture data,
indicator functions.

1 Motivation and background

In this work, we consider the recovery of anoma-
lies buried in a two-layered medium; see Fig. 1
for a schematic illustration. Suppose the space
is delimited by a flat plane Γ0 into two half-
spaces: the upper one and the lower one. The
two half-spaces are occupied by two different
(homogeneous) mediums. It is further supposed
that some inhomogeneous anomalies are buried
or immersed in the lower half-space. We are
interested in recovering the anomalies by wave
detection made in the upper half-space, which
is proceeded as follows. One sends a certain
wave field from the upper half-space, and then
measures the perturbed wave field caused by
the anomalies together with the ambient lower-
space medium. The detecting wave field is re-
ferred to as the incident wave field and the per-
turbed wave field is referred to as the scattered
wave filed. The inverse problem that we are

concerned with is to recover the anomalies by
knowledge of the scattered wave field. Practi-
cal scenarios of our current study include the
underground mineral prospection, mines locat-
ing in the battlefield, and anti-submarine detec-
tion.

The inverse scattering problem described above
can be abstractly formulated as an operator equa-
tion,

F (O) = M, (1)

where O denotes the anomalous object, and M
denotes the wave measurement data. F is an
operator which sends the anomaly to the cor-
responding measurement, defined by the for-
ward wave scattering system. As a typical fea-
ture for various inverse scattering problems, (1)
is nonlinear by noting that generally one has
F (O1 ∪ O1) 6= F (O1) + F (O2), where O1 and
O2 are two different anomalies. This is mainly
due to the multiple wave scattering interaction
between O1 and O2. Moreover, it is easily seen
that the inverse problem (1) is ill-posed in the
sense of Hadamard.

In order to tackle the nonlinearity of various
inverse problems, a salient technique that has
been widely investigated in the literature is the
so-called sampling. A variety of schemes have
been developed in this category, including the
linear sampling method [3], the factorization
method [5] and the MUSIC-type methods [2],
among others. The cores of these methods are
certain imaging functionals, which are used to
indicate a space point belonging to the inte-
rior or the exterior of the scattering anomaly.
The process of calculating those imaging func-
tionals is linear and hence the nonlinearity of
the inverse problem is reduced to the determi-
nation of the belongingness of any given space
point, that can be easily visualized. In order to
tackle the ill-posedness, various regularizations
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Figure 1: Schematic illustration of the anomalies detection in a two-layered medium.

are incorporated into those schemes. Recently,
a novel sampling scheme was proposed for the
inverse scattering problem of locating inhomo-
geneities embedded in a homogeneous space in
[6]. The approach also relies on certain prop-
erly designed imaging functionals, whose calcu-
lations are totally direct without any inversion
involved. More notably, the method makes use
of only a single far-field measurement, which is
much fewer than the existing methods in the
literature. Hence, the method is very efficient
and robust against measurement noise, and easy
to implement as well. In this work, we extend
the method to the practical and interesting case
of recovering the multiscale anomalies buried in
a two-layered medium as described earlier. The
major novelty and difficulty of the current study
are the inhomogeneous two-layered background
medium.

Following a similar spirit to the study in [6],
we develop the new recovery scheme in three
steps. First, we consider the recovery of anoma-
lies with small size compared to the detecting
wavelength. This is based on linearizing the in-
verse problem (1). To that end, we derive the
asymptotic expansion of scattered wave field in
terms of the small diameter parameter of the
underlying anomalies. Second, we consider the
recovery of multiple regular-size anomalies. In
this case, we need require that the anomalies
are from an admissible class, which is known
in advance. The recovery is based on project-
ing the measured far-field pattern into a space
of far-field patterns generated by the admissible
scatterers. Finally, by concatenating the above
two procedures via a local tuning technique, one

can recover multiple multiscale buried anoma-
lies. We would like to mention in passing that
similar inverse problems of recovering buried
objects were also considered in [1, 4] with dif-
ferent methods.
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Abstract

Electric impedance tomography seeks to visu-
alize an object’s interior by means of current-
voltage-measurements at the object’s boundary.
In many situations it is of practical interest not
to completely recover the interior conductivity
but rather to detect the shape and location of
possible inhomogeneities hidden inside the ob-
ject. The convex source support extracts in-
formation about the support of such inclusions
from only one current-voltage-measurement. In
this talk, I will present this concept and demon-
strate its applicability to measurements taken
with a single pair of electrodes moved along the
boundary. Numerical experiments with both
- simulated data and measurements obtained
from a specially designed tomograph - may il-
lustrate the theoretical findings.

Keywords: electric impedance tomography, in-
verse source problem, anomaly detection, back-
scatter

1 Introduction

Electric impedance tomography aims to extract
information on the interior electrical properties
by means of current-voltage-measurements on
an object’s boundary. However, the recovery of
the conductivity distribution inside the object
is an extremely ill-posed problem. The care-
ful investigation of the information content of a
single electrostatic measurement is therefore of
vital importance.

Inspired by an approach of Kysiak and Syl-
vester in the scattering context [5], we intro-
duced the notion of the so-called convex source
support to electrostatics, cf. [1]. This concept
is applicable to a variety of different data types
in impedance tomography including sparse data
collected by a single pair of electrodes as demon-
strated in Sections 3 and 4.

2 Source Supports

Let us consider the inverse boundary value prob-
lem of impedance tomography in a bounded and

simply connected domain D ⊂ R2. We focus on
applications where the investigated object has
a known background conductivity but may be
contaminated by inhomogeneities. Thus, we as-
sume that the conductivity σ ∈ L∞(D) is strict-
ly positive and equal to one near the boundary.
We seek to recover the location and shape of
Ω = supp(1 − σ), which we will call inclusion
hereafter. Given a boundary current f on ∂D,
the resulting electrostatic potential u satisfies

∇ · (σ∇u) = 0 in D,
∂

∂ν
u = f on ∂D, (1)

supplemented with a normalization condition to
ensure uniqueness. The Dirichlet potential u|∂D
is registered, and the Cauchy-pair (f, u|∂D) con-
stitutes one measurement.

With the help of the reference potential u0
that satisfies (1) with σ replaced by one, we re-
phrase above problem to an inverse source prob-
lem for the Poisson equation. The relative po-
tential w = u − u0 is harmonic outside Ω, and
it satisfies

∆w = F in D,
∂

∂ν
w = 0 on ∂D (2)

with a distributional source F = ∇· (1−σ)∇u.
In this manner, the inhomogeneity Ω is charac-
terized as the support of the source F that gives
rise to the potential w with w|∂D = (u−u0)|∂D.
An intuitive idea for recovery is to harmonically
extend the data g = (u−u0)|∂D as far as possi-
ble into the domain D and luckily find Ω where
the harmonic extension comes to a halt. Un-
fortunately, the non-uniqueness of the harmonic
extension thwarts this attempt. We consider in-
stead the set Ug of all distributional sources F
for which the solution w of (2) satisfies w|∂D = g
on the boundary.

Definition 1 The convex source support Cg is
the intersection of the convex hull of the support
of all sources F generating g, i.e.

Cg =
⋂

F∈Ug

ch(suppF )
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o

o

Figure 1: The convex source support for back-
scatter data from an insulating inclusion.

In the talk, I will argue that the convex source
support indeed provides useful information on
the true inclusion Ω, for it is nonempty as long
as g 6= 0, and it is a subset of the convex hull
of Ω. Moreover, it can be numerically approxi-
mated in a efficient manner, see Section 4.

3 Backscatter data & locked angle data

The convex source support complies well with
data evoked and measured simultaneously by a
single pair of electrodes. The electrodes are ei-
ther kept very close to each other or in a fixed
distance, and they are moved along the bound-
ary ∂D collecting data at different positions.
The first data type are so-called backscatter data,
cf. [3], the second may be termed locked an-
gle data, cf. [4]. Both are sparse as not the
whole Dirichlet potential is registered but only
its value at the electrodes’ position. The theory
of the convex source support applies here since
backscatter as well as locked angle data are the
boundary value of an harmonic function outside
Ω. Thus, their convex source support may be
computed.

4 Numerical Results

The convex source support can be computed nu-
merically as we demonstrate for the case that D
is the unit disk in R2. Given the Fourier coef-
ficients (αn) of the data on ∂D one determines

the largest annulus AR = {x ∈ D : ‖x‖ > R}
on which the Laurent series of (αn) converges.
This procedure is repeated under different con-
formal coordinate transformation, i.e. Moebius
transforms, of the data. They all yield different
disks, and their overall intersection is an ap-
proximation of the convex source support, see
Figure 1. We present reconstructions from sim-
ulated backscatter data as in Figure 1. Further-
more, we apply the algorithm to locked angle
data that were measured by a specially designed
tomograph.
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Abstract

In the context of nonlinear inverse problems,
we present an efficient way to construct the lin-
ear subproblems of a Gauss–Newtonian itera-
tion. The method is based on solving the for-
ward problem in a high-dimensional parame-
ter domain by using spectral methods, result-
ing in a numerical solution that depends explic-
itly on the parameters. The computational cost
of evaluating the solution and its derivatives as
multivariate polynomials is analyzed. As an
example we study the inverse boundary value
problem of a parabolic PDE, but the method
is also applicable in, e.g., electrical impedance
tomography.

Keywords: inverse problems, spectral meth-
ods, least squares

1 Introduction

Iterative methods for nonlinear inverse prob-
lems typically require a forward PDE solver to
be available. The computational cost of solv-
ing forward problems and constructing the as-
sociated Jacobian matrices can be significant.
Here, we take another approach and solve the
forward problem for a large family of parameter
values before the actual inverse problem is even
touched. This is done by approximating the
parameter dependence with a spectral method,
i.e., by using orthogonal multivariate polynomi-
als.

These methods have been studied in the field
of uncertainty quantification, where the motiva-
tion is to propagate the uncertainty from the in-
put parameters to the solution [3]. For example,
statistics such as mean and variance can be ap-
proximated almost trivially once the stochastic
dependence is explicitly visible in the solution
as polynomial coefficients. The polynomial also
allows a direct evaluation of the solution for any
given parameter vector. This property can be
exploited when an inverse problem is iteratively
solved.

The parameter domain often lies in a very
high-dimensional space. Single-domain spectral

methods have turned out to be computation-
ally efficient discretization strategies, at least if
the parameter dependence is smooth enough.
Both Galerkin and collocation approaches can
be used; here we concentrate on the former. In
addition to choosing the parametrization and
the polynomial basis, the parametric forward
problem naturally requires spatial and tempo-
ral discretizations as well.

The presented method is versatile and can
be utilized for different types of inverse prob-
lems. Also, classical regularization techniques
and Bayesian paradigm with maximum a poste-
riori estimate can both benefit from the spectral
solution. Here, we study an inverse parabolic
problem related to thermal tomography [4], but
similar method has already been utilized for
electrical impedance tomography in [1].

2 Parametric parabolic equation

As a model problem we consider the diffusion
equation

∂tu−∇ · (a∇u) = 0 in Ω × (0, T )×Θ,
a∇u · n̂ = g on ∂Ω × (0, T )×Θ,
u = u0 in Ω × {0} ×Θ,

where Ω ⊂ Rd, d = 2, 3, is the spatial domain,
T > 0 is the final time and Θ ⊆ RP is the
high-dimensional parameter domain. We as-
sume that a : Θ → L∞+ (Ω) has time-independent
realizations that are bounded away from zero
and resort to a parametrization of the form

a(ϑ) =
P∑
p=1

ϑpψp, ϑ ∈ Θ,

where {ψp}Pp=1 ⊂ L∞(Ω).
The variational form, followed by discretiza-

tions of the spaces H1(Ω) and L2(Θ) with a
finite element method and a spectral Galerkin
method, respetively, yields an ODE

∂tMû + Aû = ĝ,

where M ,A ∈ RMN×MN and û, ĝ ∈ RMN .
Here, M denotes the number of degrees of free-
dom of the finite element space and N is the
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number of P -variate orthogonal polynomials. The
latter can be very large if polynomials of high
degree are used. However, due to the smooth
parameter dependence shown in [2], it may be
sufficient to use a surprisingly low degree. An
efficient time integration scheme, which requires
little or no additional storage, was proposed
in [5].

3 Inverse boundary value problem

Let us assume that we have a measurement vec-
tor Ũ ∈ RQ, which corresponds to given phys-
ical coordinates. The inverse problem of de-
termining the diffusivity a can be recast as a
regularized nonlinear least squares problem

arg min
ϑ∈Θ

{
‖U(ϑ)− Ũ‖22 + ‖R(ϑ)‖22

}
,

where U : Θ → RQ is a polynomial mapping
and R is some differentiable function. For sim-
plicity, we assume that R is easy to evaluate
and differentiate (e.g., R is a linear operator)
and thus ignore it in what follows.

Gauss–Newton based methods for nonlinear
least squares problems require evaluating the
objective function and its Jacobian

JU (ϑ) : Θ → RQ×P ,

as well as computing the solution for a linearized
least squares problem. The linear problem is
usually solved with the QR factorization of the
Jacobian and generally takesO(QP 2). We show
that if the parameter dependence is approxi-
mated by quadratic polynomials, the complex-
ity of evaluating U and its Jacobian is O(QP 2)
as well. In particular, the workload of the in-
verse problem is completely independent on spa-
tial and temporal discretizations of the forward
problem.

In a nutshell, the proposed method seems
feasible if the parameter dependence is smooth,
and if there is enough time to solve the para-
metric forward problem before doing the mea-
surements.

We consider the case where the measure-
ments are done on the spatial boundary ∂Ω ×
(0, T ), although the algorithm can handle inte-
rior measurements equally well. Numerical ex-
amples with simulated noisy boundary data are
provided in the unit square Ω ⊂ R2. Diffusivity
reconstructions indicate that the method works,
even though the optimal measurement settings

(e.g., boundary fluxes and measurement loca-
tions) have not been studied yet.
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[3] O. P. Le Mâıtre and O. M. Knio, Spec-
tral Methods for Uncertainty Quantifica-
tion: With Applications to Computational
Fluid Dynamics, Springer, 2010.

[4] J. M. Toivanen, T. Tarvainen, J. M. J. Hut-
tunen, T. Savolainen, H. R. B. Orlande,
J. P. Kaipio, V. Kolehmainen, 3D thermal
tomography with experimental measure-
ment data, International Journal of Heat
and Mass Transfer 78 (2014), pp. 1126–
1134.

[5] D. Xiu and J. Shen, Efficient stochas-
tic Galerkin methods for random diffu-
sion equations, Journal of Computational
Physics 228 (2009), pp. 266–281.



Numerical Bottlenecks in Helioseismology 113

Minisymposium: Numerical Bottlenecks in Helioseismology
organised by Juliette Chabassier and Damien Fournier

The goal of helioseismology is to recover internal
properties of the Sun (density, meridional circu-
lation, . . . ) via the analysis and the inversion
of acoustic waves propagating through the Sun
using surface observations. This topic is closely
related to Earth-seismology but numerical dif-
ficulties are different as the Sun is not a solid
body but a rotating heterogeneous fluid, sub-
ject to magnetic and gravitational fields. More-
over the acoustic sources, mostly due to convec-
tive turbulence, are not well characterized. The
aim of this mini-symposium is to present the
state-of-the-art in numerical methods for helio-
seismology and to gather people from different
communities who could give new insights in the
topic.

If the full 3D modeling of the solar interior is
still out of reach, simplified models (Helmholtz
or Galbrun’s equations with realistic physical

coefficients) that represent most of the propa-
gating aspect of the physics can be used. A
coupling with the magnetic field should then
be added because of their strong influence on
the fluid dynamics, a problem closely related to
electroseismic coupling in geophysics. Coupling
with gravitational waves is still an open issue.

Once a forward model is chosen and can
be solved efficiently, an inversion can be per-
formed. An interesting and powerful approach
coming from geophysics is the full-waveform in-
version. First attempt in this direction has also
been done in helioseismology. A characteristic
of helioseismology is that, due to convection,
the observations are stochastic. Adequate mod-
eling of the underlying noise leads to satifying
results but care must be taken to treat the in-
verse and forward problems.
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Abstract

Solar acoustic waves are continuously excited by
turbulent convection (a random process). The
forward problem of local helioseismology was
specified at the Waves 2013 conference: com-
puting the cross-covariance of the wave field be-
tween any two locations on the solar surface.
Here we solve the problem in the frequency do-
main using the finite element solver Montjoie.
One of the specificities of wave propagation pro-
blems in the Sun is the very sharp decrease of
sound speed and density with radius near the
surface. We show that the problem simplifies
considerably under the assumption that the co-
variance function of the source of excitation is
proportional to the attenuation.

Keywords: acoustics, forward problem, local
helioseismology

1 Scalar Acoustics

Rather than solving the forward problem in all
its complexity, we neglect gravity, assume that
the medium is steady, and consider linear adi-
abatic waves only. Under these approximations
the linearized equations of motion reduce to a
single equation for the scalar quantity

ψ = c divξ, (1)

where ξ is the wave displacement vector and c
is the sound speed. If we further assume that
waves are excited by a stationary random pro-
cess (source function s), we only need to solve
the problem one frequency ω at a time:

Lψ = s (2)

with the wave operator

L = −ω2 − 2iωγ − 2iωu · ∇+H (3)

Hψ = −c div

(
1

ρ
∇(ρcψ)

)
, (4)

where ρ is density, γ > 0 is the attenuation, and
u is the background flow. The factor c in the
definition of ψ is chosen such that the spatial
operator H is Hermitian symmetric under free
surface boundary conditions (ψ = 0 on ∂V ).
Since mass is conserved the advection operator
is also Hermitian, while the attenuation oper-
ator is anti-Hermitian. Note that the compu-
tational domain V ends approximately 500 km
above the solar photosphere, i.e. above the ob-
servation height.

2 Cross-Covariance Function

Consider ψ measured at positions r1 and r2
near the solar surface (inside the computational
domain). At frequency ω, the cross-covariance
function is

C(r1, r2, ω) = E[ψ∗(r1, ω)ψ(r2, ω)], (5)

as defined by Duvall et al. (1993) [1]. We study
the forward problem, i.e. how a change in solar
structure,

c(r)→ c(r) + δc(r),

ρ(r)→ ρ(r) + δρ(r),

u(r)→ u(r) + δu(r),

(6)

will affect the cross-covariance function,

C → C + δC. (7)

Using the first-order Born approximation and
the assumption that sources are spatially un-
correlated, Gizon (2013) [2] wrote

δC(r1, r2) = −
∫
V
G(r2, r) δL[C(r1, r)] ρdr

−
∫
V
G∗(r1, r) δL∗[C ∗(r2, r)] ρdr, (8)

where δL is the perturbation to the wave op-
erator L caused by the perturbations to the
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medium, and G is the Green’s function defined
by

LG(r, r′, ω) =
1

ρ
δ(r − r′). (9)

Thus the two quantities that really matter in
local helioseismology are the functions C and G
computed in the reference model.

3 Convenient Source of Excitation

It is well known that under appropriate condi-
tions the expectation value of the cross-cova-
riance is related to the imaginary part of the
Green’s function. If we could write such a sim-
ple relationship, our problem would simplify con-
siderably. In particular, for all practical pur-
poses, the problem would become deterministic
and the Green’s function would be the only re-
maining quantity in our problem.

Starting from the definition of the Green’s
functions G(r, r1) and G(r, r2;−u), where the
latter is for a medium with opposite background
flow, one can show

G(r2, r1)−G∗(r2, r1;−u) =

4iω

∫
V
γ(r)G∗(r1, r)G(r2, r) ρdr.

(10)
In order to obtain this result, generalized seis-
mic reciprocity was used:

G(r, r′) = G(r′, r;−u). (11)

Note that an extra surface integral should be
included above if the boundary condition is not
Dirichlet. By identification with equation (10),
we see that the choice of source covariance

E[s∗(r, ω)s(r′, ω)] = Ps(ω)
γ(r)

ρ(r)
δ(r − r′) (12)

implies

C(r1, r2) =
Ps

4iω
[G(r2, r1)−G∗(r2, r1;−u)] .

(13)
Thus the cross-covariance can be written as a
sum of causal and anti-causal Green’s functions.
The volume sources must be proportional to
the local attenuation to enforce energy equipar-
tition between the modes (see Snieder et al.
2007 [4] for a discussion).

4 2.5D FEM Forward Solver

To check if equation (13) is a good approxi-
mation, we compute the Green’s function for a

standard solar model (Model S) using the FEM
direct solver Montjoie from INRIA Pau, and
compare the cross-covariance and oscillation power
spectra with observations from the Solar Dy-
namics Observatory (NASA). The results are
very encouraging.

To speed up the computations, we consider a
solar background model that is symmetric about
an axis. The computational domain is a 2D gen-
erating section of the geometry, which is meshed
in quadrilateral elements.

5 Inverse Problem

The inverse problem consists of inferring the
properties of the medium (ρ, c and u) from
measurements of the cross-covariance function
(or travel times). An iterative inversion is pos-
sible since all the tools are in place to com-
pute the perturbation to the cross-covariance
starting from a completely general background
medium. Damien Fournier et al. will discuss
the inverse problem of local helioseismology at
the conference.
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Abstract

Galbrun’s equations are solved with different
formulations. Problems of convergence are ob-
served for the tested formulations for moderate
Mach numbers. Simplified Galbrun’s equations
are proposed without this problem of conver-
gence. Numerical results are presented for the
sun’s configuration.

Keywords: Galbrun’s equation, Discontinuous
Galerkin, Helioseismology

1 Introduction

When gravitational and magnetic forces are ne-
glected, the propagation of waves inside the sun
can be modelled with Galbrun’s equation (in
time-harmonic domain):

ρ0 (−iω + σ +M · ∇)2 u−∇
(
ρ0 c

2
0 divu

)
+(divu)∇p0 − (∇u)T∇p0 = f

(1)

where ρ0, c0, p0 are the background density, sound
speed and pressure, σ is a damping coefficient.
For a quiet sun, the flow M = (mx,my) is null,
but is non-null in the general case. In this talk,
we will explore different formulations in order
to solve Galbrun’s equations in 2-D and for an
axisymmetric geometry.

2 Equivalent formulations

Equation (1) will be solved directly with SIPG
(Symmetric Interior Penalty Galerkin) method.
An equivalent first-order formulation can be eas-
ily obtained

ρ0 (−iω + σ +M · ∇)u− ρ0v = 0

ρ0 (−iω + σ +M · ∇) v −∇(ρ0 c
2
0 p)

+p∇p0 − (∇u)T∇p0 = f

p− divu = 0

This formulation will be solved with LDG (Lo-
cal Discontinuous Galerkin) method. The last
equation of this formulation is similar to a con-
straint. In order to obtain a formulation close
to an hyperbolic system, we have introduced the

following first-order formulation

ρ0 (−iω + σ +M · ∇)u−∇p− ρ0 q = 0

ρ0 (−iω + σ +M · ∇) q − (∇σ) p− (∇M)T∇p
−M ·∇ρ0

ρ0
∇p+ (divu)∇p0 − (∇u)T∇p0 = f

ρ0 (−iω + σ +M · ∇) p− ρ20 c20 divu = 0

This equivalent formulation will be solved with
LDG as well. Finally, a H1 formulation (cou-
pled with discontinuous Galerkin) [1] has been
considered. All these formulations are equiva-
lent and should provide the same solution.

3 Linearized Euler Equations

Linearized Euler Equations are also considered

(−iω + σ +M · ∇)p+ div(c20 u)

+(γ − 1)(divM) p− (γ−1)
ρ0

u · ∇p0 = 0

(−iω + σ +M · ∇)ρ+ ρdivM + divu = 0

(−iω + σ +M · ∇)u+∇p+∇M(u+ ρM) =
g

ρ0

They give the same solution as Galbrun’s equa-
tions for an uniform flow and when

f = (−iω + σ +M · ∇)g

4 Convergence study

When the flow is uniform (or null), the differ-
ent formulations converge correctly in a similar
fashion. Tests have been conducted on a square
[−4, 4]2 with periodic coefficients:

mx = coeff ×
(
0.3 + 0.1 cos

(πy
4

))
/ρ0(x, y)

my = coeff ×
(
0.2 + 0.08 sin

(
πx
4

))
/ρ0(x, y)

ρ0 = 1.5 + 0.2 cos
(
πx
4

)
sin
(πy

2

)
p0 = 1.44ρ0 + 0.08ρ20 , c

2
0 = 1.44 + 0.16ρ0

ω = 0.78× 2π, σ = 0.1

When the coefficient coeff is small, the differ-
ent formulations seem to converge correctly (see
Fig. 1), but it is no longer the case for larger
values of this coefficient (see Fig. 2). r is the
order of approximation used. This default of
convergence is not observed for Linearized Eu-
ler Equations.
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Figure 1: Relative L2 error versus h/r for
quadrilateral elements and non-uniform flow
coeff = 0.1 with different formulations (r = 5).
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5 Application for the sun

Simplified Galbrun’s equations are proposed such
that they are equivalent to Galbrun’s equation
when M is null, and converge correctly:
ρ0(−iω + σ +M · ∇) p+ ρ20 c

2
0 divu = 0

ρ0(−iω + σ +M · ∇)u+∇p+
1

−iω+σ
(
(divu)∇p0 − (∇u)T∇p0

)
= g

They are solved for realistic coefficients of the
sun with a rotating flow, see figure 3. It can be
seen in figure 4, that original Galbrun’s equa-
tions exhibits curious oscillations that are not
converged.
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Figure 2: Relative L2 error versus h/r for
quadrilateral elements and non-uniform flow for
LDG formulation (r = 10) and different values
of coeff.
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Figure 3: Real part of ux for the sun (simplified
Galbrun’s equations).

Figure 4: Real part of ux for the sun (original
Galbrun’s equations).
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Over 90% of the global seismic data avail-
able for the Earth can be represented by one-
dimensional, radially symmetric wave speed mod-
els. Such models, e.g., PREM [5] and AK135
[6], form the basis for 3-D seismic tomography,
in which lateral variations in wave speed are
measured as a percentage difference, or anomaly,
relative to the chosen 1-D reference model. As
technological advances allow increasingly higher
resolution of 3-D structures in seismic tomogra-
phy, there is a greater impetus to interpret these
structures quantitatively in terms of dynami-
cally relevant parameters [9]. However, seismic
models themselves do not tell us about the un-
derlying dynamic behaviour of the Earth’s in-
terior — for this we need to know a range of
physical variables, most importantly chemical
composition and temperature, and we need to
know exactly which temperature and chemical
composition corresponds to a particular wave
speed or density. Such information is available
through mineral physics, and an intelligent in-
terpretation of seismic tomography requires us
to make a quantitative comparison between the
seismic and mineralogical data, taking into ac-
count the uncertainties in both [1]. However,
quantifying model uncertainties presents a chal-
lenge in traditional seismological inverse prob-
lems; consequently, most existing techniques are
pragmatic and based upon linear approxima-
tions. An assessment of model uncertainty is
natural in a Bayesian framework, in which all
inferences are probabilistic. Any inference made
about a model is the result of the conjunction
of our current (prior) knowledge and the abil-
ity of the model to explain the observations,
e.g. [10]. The posterior knowledge on the model,
i.e. the knowledge after observing the data,
represents the updated degree of belief in the
model, expressed by a probability density func-
tion (PDF). In this talk we will present a syn-
opsis of Bayesian techniques that have been em-
ployed in terrestrial seismology in order to in-
terpret seismic data.

1 Uncertainties in seismic observations

Seismic tomography on the Earth is both an ill-
posed and an ill-conditioned inverse problem.
Due to the irregular distributions of earthquakes
and seismic receivers, there are always parts of
the Earth which are under-determined by the
data and parts which are over-determined. This
results in significant null spaces in the tomo-
graphic model, and small errors in the data can
produce large errors in the model.

One technique for addressing these problems
is probabilistic tomography [12]. Instead of pro-
ducing one solution for the 3-D wave speed struc-
ture, the wave speed at each point in the tomo-
graphic model is represented by a probability
density function (PDF). Visually this is usually
shown by two maps: the mean of the PDF in
one map, and the standard deviation in another
(Fig 1). Probabilistic tomography models can
be obtained via the Neighborhood Algorithm,
where a Monte Carlo approach is used to infer
all the possible information from data [7, 11].

Since 3-D tomography models are expressed
as perturbations from a 1-D reference model,
then in isolation they can only be interpreted
in terms of lateral variations in physical prop-
erties. In order to determine the absolute val-
ues of physical properties, we must also refer to
the 1-D reference model and map its uncertain-
ties. Some methods which have been applied
to explore these uncertainties are the Reversible
Jump Markov Chain Monte Carlo Algorithm [2]
and machine learning techniques [4].

2 Uncertainties in mineral physics

Mineral physics forms the basis for any quanti-
tative interpretation of seismic observations, be-
cause it allows us to link seismic velocities seen
in the Earth with the physical properties of can-
didate rock-forming minerals. On the one hand,
phase equilibria tell us which minerals will be
thermodynamically stable at a given tempera-
ture (T) and pressure (P) for a chosen chem-
ical composition. On the other, the mineral
elastic parameters – namely, bulk modulus (K),
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Figure 1: Probabilistic tomography model of
the wave speed and density structure at 950 km
depth in the Earth [7]. Continents are shown
in black and plate boundaries and hotspots in
green.

shear modulus (G) and density (ρ) – allow us
to compute the aggregate seismic velocities of
a mineral assemblage. However, K, G and ρ
vary significantly as a function of temperature
and pressure. At the same time, experimental
limitations mean that both elastic parameters
and phase equilibria are only measured at a fi-
nite number of P, T conditions, and thus not
for all depths in the Earth. Additionally, each
datum is subject to measurement errors, and
studies of the same minerals by different meth-
ods are not always compatible. Subsequently,
we rely on Equations of State (EoS) to define
continuous relations between the elastic param-
eters and P and T. These equations are typically
derived through ad-hoc curve-fitting and ther-
modynamic reasoning. The further we extrap-
olate from the surface of the Earth, the more
uncertain the equations become, especially in
the lower mantle. Simple Monte-Carlo forward
modelling [1,2] can be used to explore the seis-
mic manifestation of mineral physics uncertain-
ties.

An added complication when interpreting
seismic data for the Earth’s mantle is that seis-
mic structures are likely generated by both ther-
mal and chemical effects, which can be indistin-
guishable from each other when we study only
one type of seismic observable. Inverting for two
or more variables, e.g. P-wave speed, S-wave
speed, ratios of P to S –wave speed, or density,
can help to distinguish between thermal and
chemical structures. When these observables

have been probabilistically determined, we can
simultaneously fit their distributions with corre-
sponding distributions of temperature and min-
eralogy, using techniques such as the Metropolis-
Hastings Algorithm [3,7, 8].
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Abstract

The goal of helioseismology is to infer proper-
ties of the Sun interior using observations of
solar oscillations on its surface. It requires a
good knowledge of the wave propagation inside
the Sun (forward model), of the noise prop-
erties of the observations and a reliable inver-
sion method. In this paper, a simplified model
(scalar acoustic wave equation) that captures
most of the propagating aspects of the physics
will be used. The goal is then to identify some
parameters of this PDE that characterize the
medium (density, sound speed) by using linear
and nonlinear inversions.

Keywords: inverse problem, helioseismology,
acoustic wave equation

1 Introduction

Helioseismology aims at recovering some prop-
erties of the solar interior from observations of
the line-of-sight velocity ψ(r, t) where r are points
on the surface and t is the time. From this time-
serie, one generally computes the time τ(r1, r2)
it takes for the wave to go between two points
r1 and r2 at the solar surface. These quantities
are the basic input of time-distance helioseis-
mology [1]. In order to recover some properties
q of the solar interior, they have to be linked to
the observations. A simplified forward model
that represents wave propagation in the Sun
(PDE satisfied by ψ) is presented in Section 2.
The observation operator that links travel-time
to ψ is given in Section 3 and finally different
inversion methods are compared in Section 4.

2 Forward problem

We consider that ψ satisfies an acoustic wave
equation in the Sun Ω with homogeneous Dirich-
let boundary conditions on ∂Ω. The medium is
assumed to be steady and is characterized by
its density ρ and sound speed c. The source S
is stationary and stochastic with zero mean and
known covariance. The problem decouples for

all frequencies ω and is given by{
Lψ := −σ2ψ − 2iωu · ∇ψ +Hψ = S in Ω
ψ = 0 on ∂Ω,

(1)
with σ = ω + iγ and

Hψ = −c∇ ·
(

1

ρ
∇(ρcψ)

)
. (2)

The waves are damped by γ and are subject to
a flow u. Without flow and if the coefficients
ρ and c are constant, then Eq. 1 is simply the
Helmholtz equation. In the Sun, these coeffi-
cients vary strongly close to the boundary (sev-
eral orders of magnitude) and care has to be
taken in the numerical resolution. We use the
Montjoie code 1 that solves Eq. 1 with finite ele-
ments. Details about the numerical scheme can
be found in [3] where it is also shown that even
if Eq. 1 is highly simplified, it captures most of
the propagating aspects of the physics.

3 Observation operator

In order to link travel-time to the observations,
let us first define the cross-covariances C12(ω) =
C(r1, r2, ω) in the Fourier space between pairs
of points (r1, r2) on the solar surface by

C12(ω) = ψ∗(r1, ω)ψ(r2, ω). (3)

The travel times are linearly dependent of the
cross-covariance

τ12 =

∫
W12(ω)∗

(
C12(ω)− Cref

12 (ω)
)
dω (4)

with Cref representing a reference cross-covariance
that can come from a solar model or averaged
observations [2] and W is a given function that
depends on Cref. We denote T the (quadratic)
operator that maps the observations to ψ

τ = T (ψ). (5)

1montjoie.gforge.inria.fr
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4 Inversion

The observations τ are linked to some internal
properties of the Sun q by a nonlinear inverse
problem

F (q) = τ, (6)

where F is defined implicitely by F (q) = (T ◦
L−1
q )ψ with Lq given by Eq. 1 and the obser-

vation operator T by Eq. 5. Then the inverse
problem can be stated:

The inverse problem (IP). Knowing the
observations τobs, the problem is to find the op-
timal parameter q solution of the nonlinear in-
verse problem (Eq. 6).

4.1 Linear inversion

A classical approach to solve (IP) in helioseis-
mology is to consider only first order pertur-
bations by using the first Born approximation
(single scattering approximation). In this case
the perturbations are linearly linked to the ob-
servations

E[τ ] =
∑
q

∫
Ω
Kq(r)δq(r)dV. (7)

The kernels are obtained by differentiating Eq. 4
and computing δψ at first order

Lq[δψ] = −δLq[ψ] + δS, (8)

with δLq computed by deriving formally Eq. 1.
For the different perturbations q, the sensitivity
kernels Kq can be written as a function of G,
C and of the operators H and σ. The exact
expression of the kernels can be found in [3].

Eq. 7 can be solved for example by Tikhonov
regularization

min
δq

(
‖Kqδq − E[τ ]‖2 + ‖Lδq‖2

)
, (9)

where L can be the identity or a discrete version
of a gradient or a Laplacian in order to impose
smoothness of the solution. (IP) can also be
solved by the adjoint method [4] which employs
techniques close to nonlinear inversions.

4.2 Nonlinear inversion

In order to find the optimal q by nonlinear meth-
ods, we need to be able to evaluate the forward
operator F (qk), its derivative F ′[qk]δq and the
adjoint of the derivative F ′[qk]

†δC. These three

ingredients are required for all types of nonlin-
ear inversions and can be computed by solving
the same PDEs (the forward operator and its
adjoint) but with different right hand side. For
example, the update ψk+1 = ψk+δψ is obtained
from F ′[qk]δq = T ′[ψk]δψ where δψ is the solu-
tion of

Lq[δψ] = −δLq[ψk](δq). (10)

An efficient method to solve (IP) is to use
the conjugate gradient applied to the normal
equation. We solve a quadratic least square
problem to find δqk that minimizes∥∥∥F ′[qk]δq + F (qk)− τobs

∥∥∥2
, (11)

and the regularization is made by choosing an
early stopping criterion at each iteration [5].

A comparison of the inversion methods will
be presented showing which types of perturba-
tions can be recovered with linear inversions and
when nonlinear methods become necessary.
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Abstract

Seismic attenuation contains valuable informa-
tion about the subsurface. In this work we in-
vestigate the applicability of 2D viscoacoustic
full waveform inversion (FWI) to synthetic ma-
rine reflection data. Viscoacoustic FWI is a
multiparameter inverse problem, and suffers
from the cross-talk between different parame-
ter classes. We investigate the cross-talk using
spatially uncorrelated models of velocity and at-
tenuation. Our results show a good reconstruc-
tion of the velocity model and satisfactory re-
covery of Q only in shallow areas. With increas-
ing depth we observe a stronger footprint of the
velocity model. This can be interpreted either
as low sensitivity of the synthetic data to atten-
uation properties in deep parts or as cross-talk
with explanation of attenuation-related
data misfit by the velocity model. We find that
the investigation of multiparameter inverse prob-
lems with spatially uncorrelated parameters has
to be considered as a necessary step to verify the
reliability of inversion strategies.

Keywords: marine seismics, full waveform in-
version, attenuation, viscoacoustic

1 Introduction

Attenuation and dispersion of seismic waves play
important role and need to be taken into ac-
count. However, our understanding of atten-
uation mechanisms and ability to get reliable
Q estimates [4] are still limited. The main re-
search question of our study is: Can spatial
distributions of velocity and intrinsic attenu-
ation be accurately inverted by applying full
waveform inversion (FWI) to reflection data?
Since the first numerical implementations of vis-
coacoustic FWI [8] until the most recent ones
both the modeling and inversion were mostly
developed in the frequency domain – exploit-
ing its benefits, such as easy implementation of
attenuation, computation of gradients for ve-
locity and Q without extra-cost, and natural
use of a multi-scale strategy with sequential in-

version from low to high frequencies. Time-
domain FWI in attenuative media is less pop-
ular [1]. First, implementation of strictly con-
stant Q within a wide frequency band is not
so easy. To get approximately constant Q for
a given frequency band, we have to consider a
sum of relaxation mechanisms [6]. From other
side, an advantage of time-domain implementa-
tions is efficient parallelizability. In this work
we investigate the applicability of time-domain
viscoacoustic FWI on synthetic marine reflec-
tion data. We show numerical results using spa-
tially uncorrelated models of velocity and atten-
uation.

2 Methodology

In time domain a general linear viscoacoustic
equation of motion consists of a convolutional
kernel representing Bolzmann’s superposition
principle. This integro-differential equation can
be reformulated as a system of differential equa-
tions with a new “memory variable”. Then, the
conventional constant QP model, i.e.,
QP(ω) = const. with frequency ω, can be ap-
proximated by the generalized standard linear
solid (GSLS) with L relaxation
mechanisms [2] and within the given frequency
band. The viscoacoustic medium is defined by
density ρ, the relaxed bulk modulus κr and the
relaxation parameter τP related to relaxation
mechanisms and QP, e.g., for one mechanism
τP = 2/QP. For a 2D viscoacoustic medium,
we have to solve a system of 3 + L differen-
tial equations (pressure field, field of particle ve-
locities and L memory variables) using a time-
domain finite-difference time-stepping method
[3, 5]. The inverse problem of finding the vec-
tor m(x) = [vp(x),Qp(x)] of model parameters
is formulated as a minimization problem using
the conventional L2-norm of a misfit between
the modelled and observed pressure fields. Al-
though the parameters of interest are velocity
vP and quality factor QP, our implementation
of viscoacoustic equations requires parameter
τP rather QP. However, since QP ranges over
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few orders of magnitude, we prefer to invert for
log(τP). We derived gradients of the misfit func-
tion using the adjoint-state method (e. g., [7]):

g[vP] =

∫ (
vPρ (1 + L τP)∇ ·w +

r

vP

)
p̂ dt,

g[log(τP)] =

∫ (
v2P ρ L τP ∇ ·w + r

)
p̂ dt,

where p̂ = p̂ (x, t) denotes adjoint pressure field,
w = w (x, t) represents the forward field of par-
ticle velocities and r = r (x, t) denotes the sum
of all L forward memory variables (due to clar-
ity in equations, spatial and temporal depen-
dences are omitted). We minimize the misfit
function using the preconditioned conjugate gra-
dient method. The iterative model updates of
vP and log(τP) comprise independently
computed step lengths using a parabolic line
search algorithm.

3 Synthetic FWI experiment

We apply viscoacoustic inversion to the 2D Mar-
mousi model and investigate its impact on spa-
tially uncorrelated models of vP and QP. Den-
sity model, source signal (Ricker wavelet with a
dominant frequency fs = 9 Hz) and parameters
in the water layer are assumed to be correct.
The acquisition geometry is a marine streamer
consisting of 32 explosive sources as well as a
maximum number of 300 hydrophones. To con-
sider the relevant frequency content, we use
three relaxation mechanisms. The trueQP (Fig.
1d) model is derived from vP (Fig. 1a) and
turned upside down to avoid spatial correlation.
The initial models for FWI can be found in Fig.
1b,e. The sequential inversion of both parame-
ters (i.e., first inverting for vP, then both vP and
QP) recovers a satisfactory vP model (Fig. 1c).
The QP model shows significant artefacts (Fig.
1f). However, we can distinguish a quite good
QP reconstruction in shallow areas and the un-
reliable footprint of vP in deeper areas due to
the cross-talk between both model parameters
and insensitivity of seismic data to attenuation.

4 Conclusions

In this work we implemented time-domain vis-
coacoustic full waveform inversion based on the
generalized standard linear solid. We tested its
applicability on synthetic reflection marine data
using the 2D Marmousi model. In contrast to
the most of existing studies, we considered spa-
tially uncorrelated models of vP and QP. While

vP is recovered very well, QP is inverted satis-
factorily only in shallow parts. The excellent
fit of recorded and modelled seismograms can
be interpreted either as low sensitivity of the
synthetic data to deeper parts or a cross-talk
effect where the QP-related data misfit is ex-
plained by the vP model. The Marmousi ex-
periment illustrates the improvement of the ve-
locity reconstruction by the satisfactory QP re-
covery in shallow areas and even by artificial
quality factors in deeper parts. In viscoacoustic
inversion, the conventional assumption of corre-
lated velocity and attenuation subsurface struc-
tures might induce an incorrect interpretation.
On the one hand, the preliminary QP result in
this work makes clear that further development
of inversion strategies is necessary to extract
the desired attenuation information from seis-
mic data. On the other hand, the investiga-
tion of multiparameter inverse problems with
(highly) spatially uncorrelated parameters has
to be considered as a necessary step to verify
the reliability of these strategies.
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Waveform inversion across the scales: A terrestrial perspective
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Abstract

We present a method for the joint full waveform
inversion for small-scale shallow-layer structure
and deeper larger-scale heterogeneities. The si-
multaneous inversion of higher-frequency data
within smaller submodels and lower-frequency
data in the surrounding domain overcomes the
numerical bottleneck that arises from the need
to mesh high-resolution subregions very densely.
Following a brief description of the methodol-
ogy, we present examples with terrestial seismic
waveform data.

Keywords: full waveform inversion, multiscale
methods, homogenisation

1 Introduction

Seismic tomography on the Sun and the Earth
is a multiscale problem where the resolution of
detailed structure affects the reconstruction of
large-scale features, and vice versa. The inter-
dependence of scales is particularly pronounced
in the relation between hardly resolvable near-
surface layers and large-scale deeper structure.
On the Earth, the shallow layer corresponds to
the thin crust, with thickness varying between
0 and ∼ 70 km; that is hardly more than 1
% of the Earth’s radius. Resolution of crustal
structure requires denser networks and higher-
frequency seismic data than resolution of deeper
mantle structure. The fine grid spacing needed
locally to image details of the shallow crust cre-
ates a numerical bottleneck in traditional wave-
form inversion techniques.
Here we present a novel approach to multiscale
full seismic waveform inversion based on the si-
multaneous inversion within subvolumes of vari-
able scale, ranging from few hundreds of kilome-
tres to the globe [1]. Following a condensed out-
line of the method, we present a real-data appli-
cation to the crust and mantle of the Eurasian
continent.

2 Multi-scale full waveform inversion

Our method rests on the decomposition of the
structural model domain into smaller subvol-

umes for which more densely sampled higher-
frequency data are available. Typically, on the
Earth, these subvolumes are defined by regions
with high seismicity and deployments of dedi-
cated seismometer arrays with an inter-station
spacing much less than the global average.
Within each subdomain, we perform traditional
full seismic waveform inversions based on the
combination of spectral-element wave propaga-
tion and adjoint techniques [2, 3].
Inversions in differently sized subdomains are
coupled with the help of non-periodic homogeni-
sation [4]. Following, for instance, an inversion
of higher-frequency data within a smaller sub-
domain, the obtained high-resolution model is
upscaled such that it can be meshed with a
grid size similar to the one in the surround-
ing lower-resolution domain. Subsequently, the
larger-scale domain is updated by a full wave-
form inversion that uses lower-frequency data
from less densely spaced receivers. This proce-
dure is repeated until the data in all submodels,
including the largest-scale base model, are ex-
plained to within the noise.
Our domain decomposition strategy circumvents
the numerical bottleneck that arises from the
requirement of a dense mesh in high-resolution
regions, and it can be applied to an arbitrary
number of subvolumes on any scale where suit-
able data are available.

3 Application

We illustrate our method with a multi-scale full
waveform inversion of the Eurasian continent.
Embedded high-resolution subregions include Ana-
tolia and the western Mediterranean. On the
continental scale we used 14, 525 recordings from
84 earthquakes in the period range from 30-
200 s, meaning that these data mostly constrain
upper-mantle structure. This was complemented
by 2, 312 regional recordings from 29 earthquakes
in Turkey with periods from 8-50 s that pro-
vide additional information on crustal hetero-
geneities. Furthermore, we added 13, 089 record-
ings with periods from 12-120 s from 52 earth-
quakes in the western Mediterranean region.



126 Numerical Bottlenecks in Helioseismology

Figure 1: Shear velocity structure beneath
Eurasia. Top: Mantle structre at 150 km
depth. Bottom: Zoom into the shallow
(crustal) structure in the Mediterranean region
at 40 depth.

Our final model shown in figure 1 is distinguished
by the joint resolution of shallow crustal struc-
ture and the underlying mantle to depths of
nearly 1, 500 km. This indicates that multi-
scale full waveform inversion is capable of bridg-
ing the classical gap between crustal and mantle
tomography.
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Minisymposium: Wave-based Discretizations
organised by David Hewett and Andrea Moiola

Wave propagation problems are notoriously dif-
ficult to solve numerically in the high frequency
regime when the wavelength is short compared
to the size of the scatterer or the propagation
domain. Conventional numerical methods such
as the finite element method or the bound-
ary element method, based on piecewise poly-
nomial approximations, suffer from the limita-
tion that a fixed number of degrees of freedom
per wavelength is required in each spatial di-
mension in order to represent the oscillations
in the solution, which leads to high compu-
tational cost at high frequencies. A promis-
ing and rapidly developing methodology for re-
ducing this cost is to use wave-based discreti-
sations, which use approximation spaces built

from oscillatory functions (often solutions of the
homogeneous wave equation under considera-
tion) which can more efficiently approximate
the wave solution than can piecewise polynomi-
als. The wave-based approach has been devel-
oped in many contexts, in standard FEM, DG
and BEM, both in the frequency domain, and
recently in the time domain. It has been suc-
cessfully applied to problems in acoustics, elec-
tromagnetics and structural mechanics. This
minisymposium will bring together experts in
wave-based discretisations selected from these
areas, with the aim of fostering communication,
collaboration and the exchange of novel analyt-
ical and computational techniques.
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Asymptotic Solution of High-Frequency Multiple Scattering Problems
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Abstract

Waves propagating in a configuration with mul-
tiple scattering obstacles at high frequency can
be seen as a collection of rays bouncing back and
forth. We show how to derive the asymptotic
expansion of each of these rays to high order,
including after several reflections, for the two-
dimensional Helmholtz equation based on an in-
tegral equation formulation. It is known that
rays can get trapped in a finite number of peri-
odic orbits in the scene, corresponding to quasi-
resonance modes. This is discouraging for phase
extraction methods in a raytracing scheme for
solving the integral equation. However, we show
that these rays quickly settle down to an asymp-
totic regime after a few reflections, possibly en-
abling phase extraction for the entire mode at
once.

Keywords: high-frequency scattering, asymp-
totic analysis, ray tracing

1 Introduction

It is well known that high-frequency solutions
to the Helmholtz equation

∆u+ k2u = 0

exhibit asymptotic behaviour. The asymptotic
analysis is typically localized, in the sense that
the path of a ray through a scene is determined
by local properties of the medium and any ob-
stacles in its way. A prime example is the princi-
ple of reflection of light: a light ray that hits an
obstacle reflects in a direction such that incom-
ing and outgoing directions make equal angles
with the normal at the surface in the contact
point. Higher order terms depend on the local
curvature of the obstacle.

We are interested in a full expansion of the
solution, in the form

u(x) ∼
∞∑
j=0

uj(x) k−j . (1)

Typically, the phase of the asymptotic solution
is determined from the governing PDE via the

eikonal equation, and subsequent terms in an
expansion of the form (1) can be found recur-
sively by solving transport equations [1].

More specifically, we wish to obtain the asymp-
totic expansion of a related integral equation,
explicitly and to high order. Consider the inte-
gral equation of the first kind∫

Γ
K(x, y)v(y)dsy = −ui(x), x ∈ Γ (2)

where ui(x) is an incoming wave field, Γ = ∂Ω
is the boundary of a scattering obstacle Ω and

K(x, y) =
i

4
H

(1)
0 (k|x− y|)

is the Green’s function of the 2D Helmholtz
equation. The asymptotic expansion of the den-
sity function v(y) was derived for a similar set-
ting in [2], and subsequent work focused on 3D
and other wave equations.

Furthermore, we aim for the asymptotic ex-
pansion of v(y) after several reflections, and an
analysis of the periodic orbits of trapped rays in
a configuration with multiple scattering obsta-
cles. Details of the derivation are found in [4].

2 Single reflections

The key to an asymptotic expansion for v(y) in
(2), is to plug in an appropriate ansatz for v(y).
We assume a right hand side of the form

−ui(x) = −uis(x)eikg(x), x ∈ Γ

where uis(x) is a non-oscillatory function on at
least a part of Γ, which furthermore satisfies

uis(x) ∼
∞∑
i=0

uis,j(x) k−j . k →∞ (3)

Locally near a point of reflection x, an in-
coming ray induces a reflecting ray correspond-
ing to a density with the same phase g(x). The
ansatz for v is

v(y) ∼ eikg(y)
∞∑

i=−1

vj(y) k−j . k →∞ (4)
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The coefficient functions vj(y) can be determined
recursively by plugging (3) and (4) into equa-
tion (2), expanding the integrals in the left hand
side asymptotically, and equating terms of equal
asymptotic order in k in left and right hand
sides. The integrals are expanded analytically
using the steepest descent method in terms of
the values and derivatives of a smooth param-
eterization κ(t) : [a, b] → Γ. Similar integrals
were evaluated analytically in [2] using known
expressions involving Hankel functions.

3 Multiple reflections

The solution to (2) can be determined asymp-
totically, with high order terms, at a point x on
the boundary. This results in a reflected wave at
points z ∈ R2 in the field, along the ray bounc-
ing off the point x. The phase at the point z is
g(x) + |z− x|, and the direction of the reflected
ray is such that x is a stationary point for the
oscillatory integral formally written as∫

Γ
K(z, y)eikg(y)

( ∞∑
i=−1

vj(y) k−j

)
dsy. (5)

This integral, too, can be expanded asymptot-
ically using the known expansion of the Han-
kel function for large argument and by localiz-
ing the integral around the stationary point x
– which is precisely where the expansion of v is
valid.

It is reasonably straightforward to follow the
path of a ray throught a scene. A more compli-
cated problem is the inverse, namely to deter-
mine which rays will leave the scene in a certain
direction. Indeed, several rays passing through
the scene may end up leaving in the same direc-
tion. Infinitely many, in fact, since rays can
stay within the configuration arbitrarily long
close to the periodic orbits, before leaving. For
the forward problem, experiments indicate that
a small number of iterations are sufficient for
an accurate solution, using higher order terms.
Furthermore, it appears possible to compute the
tail of the iterations in one go by solving for
quasi-resonance modes.

4 Quasi-resonance modes

We end with a few observations regarding the
rays that are trapped indefinitely in a multiple
scattering configuration, travelling in periodic
orbits along the paths that minimize the dis-
tance between two or more of the obstacles in

the scene [3]. These orbits are independent of
the incoming wave. The phases of the subse-
quently reflected waves quickly settle down to
an asymptotic limit. Moreover, the correspond-
ing amplitudes settle down to an asymptotic
distribution also, decreasing by a fixed constant
factor after each orbit due to the constant loss
of energy in rays leaving the scene.

Rays in such an orbit have the same phase,
up to a constant phase shift, each time they
hit one of the obstacles along their path. This
means that these phases can be extracted for
all iterations at once. The remaining smooth
amplitude functions can conceivably be solved
from a coupled integral equation formulation.
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Abstract

Standard numerical schemes for scattering prob-
lems have a computational cost that grows at
least in direct proportion to the frequency of the
incident wave. For many problems of scattering
by single obstacles, it has been shown that a
careful choice of approximation space, utilising
knowledge of high frequency asymptotics, can
lead to numerical schemes whose computational
cost is independent of frequency. Here, we ex-
tend these ideas to multiple scattering config-
urations, focusing in particular on the case of
two scatterers, with one much larger than the
other.

Keywords: Multiple scattering, BEM, high fre-
quency, Helmholtz equation, Hybrid Numerical
Asymptotic method

1 Introduction

We consider the problem of scattering of a time-
harmonic incident wave ui(x) := exp(ikx · d)
propagating in direction d with wavenumber
k > 0, by multiple sound-soft scatterers in two-
dimensions. For simplicity, here we consider the
case of two scatterers as shown in Figure 1. We
assume the larger scatterer is a convex polygon
with boundary Γ and denote the boundary of
the smaller scatterer by γ. What follows may
also be applied to more general cases where γ
is the union of many scatterers, which are not
required to be convex or polygonal. Our bound-
ary value problem is: Find u ∈ H1

loc(D)∩C2(D),
such that

(∆ + k2)u = 0 in D, u = 0 on Γ ∪ γ, (1)

where D ⊂ R
2 is the complement of the scatter-

ers and the scattered field us := u− ui satisfies
the Sommerfeld radiation condition.

D

γ

Γ

d ր

Figure 1: Re(u) in D, scattering by two tri-
angles. |Γ| = 6π, |γ| = 3π/5, k = 10, d =
2−1/2(1, 1)T .

Using the standard Green’s representation for-
mula (see e.g. [3]), the problem reduces to find-
ing ∂u/∂n on Γ∪γ. We use a direct formulation

A

[

∂u

∂n

]

= f on Γ ∪ γ, (2)

where A is the standard combined layer inte-
gral operator as in (for example) [1] and f con-
sists of known boundary data. For problems
with a low wavenumber k, a standard BEM can
approximate ∂u/∂n with piecewise polynomials
ϕℓ:

∂u

∂n
(x) ≈

Mγ
∑

i=1

βiϕi(x) on γ, αi ∈ C. (3)

With this approach, the number of degrees of
freedom Mγ must increase at least linearly with
k to maintain accuracy.

2 HNA ansatz for a convex polygon Γ

For a single convex scatterer, the Hybrid Nu-
merical Asymptotic (HNA) method [3] is used
to enrich the approximation space with care-
fully chosen oscillatory basis functions, designed
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to capture the oscillations of the diffracted waves.
The HNA approximation is

∂u

∂n
(x
)

≈ Ψ
(

x
)

+

MΓ
∑

ℓ=1

αℓφℓ
(

x
)

eikψℓ(x), x ∈ Γ,

where Ψ is the geometrical optics approxima-
tion which represents the reflected wave. The
phases ψℓ are chosen a priori, only the (non-
oscillatory) amplitudes of these oscillations are
approximated by the piecewise polynomials φℓ
with MΓ degrees of freedom.

3 Extension of the HNA ansatz to mul-

tiple scatterers

The HNA ansatz can be extended to account for
multiple scatterers [2], with an additional term
representing the contribution to the solution on
Γ from the solution on γ. The approximation
on Γ becomes

∂u

∂n

∣

∣

∣

Γ
(x) ≈ Ψ(x)+

MΓ
∑

ℓ=1

αℓφℓ(x)e
ikψℓ(x)+

Mγ
∑

i=1

βiGϕi(x)

(4)
where G : H−1/2(γ) → H−1/2(Γ) is defined by

Gϕ(x) := −2

∫

γ∩Uj

∂Φ(x,y)

∂n(x)
ϕ(y) ds(y), x ∈ Γj,

for each side Γj of Γ. Here Φ is the fundamental
solution to the Helmholtz equation and Uj is the
half-plane with Γj situated along its boundary,
such that Γ 6⊂ Uj (as in Figure 2). The term
G[∂u/∂n|γ ] represents the contribution from the
solution on γ to the solution on Γ.

4 Numerical results

We solve for the unknown on the large obstacle
Γ and small obstacle γ simultaneously, approxi-
mating ∂u/∂n using (4) on Γ and (3) on γ, with
piecewise polynomials ϕi and φℓ on a graded
mesh. A Galerkin method is used with the BIE
(2) as in [1]. For each k we observe exponential
convergence as the number of degrees of free-
dom increases, whilst the error does not appear
to grow with k for fixed degrees of freedom.

Γ1

Γ2

Γ3

γ

d ր

U2

Figure 2: The half-plane U2 relative to the
side Γ2 for configuration of Figure 1 is the
area to the left of the dotted line. Notice that
supp{G[∂u/∂n|γ ]} = Γ2, as the analogous half-
planes U1 and U3 do not contain γ.
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Figure 3: L2 convergence results. M := MΓ +
Mγ is the total number of degrees of freedom,
whilst vkmax denotes a reference solution for
each k, computed with higher M .
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Abstract

We consider time-harmonic scattering by pen-
etrable polygonal obstacles in 2D. We present
a boundary element method (BEM) based on
a hybrid numerical-asymptotic (HNA) approx-
imation space built from oscillatory basis func-
tions. The basis functions are carefully chosen
to capture the leading order terms in the high-
frequency asymptotic behaviour of the bound-
ary solution. Numerical experiments suggest
that the method can achieve fixed accuracy us-
ing a small (and frequency-independent) num-
ber of degrees of freedom, even at high frequen-
cies.

Keywords: Helmholtz, high-frequency scatter-
ing, transmission, boundary element method

1 Introduction

It is well-known that conventional numerical meth-
ods for time-harmonic scattering problems be-
come computationally expensive when the size
of the scattering obstacle is large relative to
the wavelength of the incident wave. The HNA
boundary element approach (see [1] and the ref-
erences therein) aims to address this by building
the high-frequency oscillatory behaviour of the
solution directly into the approximation space.

This is done by making a high-frequency
ansatz for the boundary solution of the form

V (x) = Vgo(x, k) +
M∑

m=1

Vm(x, k) exp(ikψm(x)),

(1)
where Vgo is the geometrical optics (GO) ap-
proximation and the summation term represents
the diffracted field. The phases ψm are cho-
sen by referring to asymptotic methods, such as
the Geometrical Theory of Diffraction (GTD).
If the phases are chosen correctly, the ampli-
tudes Vm will be slowly varying and hence may
be efficiently approximated by low-order poly-
nomials at all frequencies. To date, HNA meth-
ods have been applied successfully to problems
for which the asymptotics are known and (1)

requires only a small number of terms. In par-
ticular, to scattering by impenetrable convex,
as well as a class of non-convex, polygons.

Figure 1: Hexagonal scatterer with µ = 1.31.

The present work extends the HNA method-
ology to a transmission problem. In this prob-
lem, the GO and diffracted components are con-
siderably more complicated owing to internal
reflections. In fact, both components comprise
infinitely many terms. Furthermore, the rele-
vant canonical problem of scattering by an in-
finite penetrable wedge has, as yet, no known
closed form or asymptotic solution.

In [2] the construction of a HNA approxma-
tion space for this problem, using a heuristic
adaptation of classical GTD, was discussed. A
beam-tracing algorithm was employed to calcu-
late Vgo and, in the summation in (1), only the
leading order diffracted waves were considered,
i.e. both head waves and internal reflections of
diffracted waves were ignored. Here we present
the implementation of this approximation space
within a Galerkin BEM.

2 The transmission problem

Consider the 2D problem of scattering of a time-
harmonic wave ui by a penetrable polygon Ω, as
illustrated in Figure 1. We wish to determine
the field u1 in the exterior domain D and the
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field u2 within Ω such that

∆u1 + k2
1u1 = 0, in D := R2\Ω,

∆u2 + k2
2u2 = 0, in Ω, (2)

u1 = u2 and
∂u1

∂n
= α

∂u2

∂n
, on ∂Ω,

in addition to an outgoing radiation condition
for the scattered field us := u1 − ui at infin-
ity. Here α ∈ C, k1, k2 are the wavenumbers in
the exterior and interior domains respectively.
We shall write k2 = µk1, µ being the complex
refractive index of the scatterer with Im(µ) ≥ 0.

We may employ Green’s representation the-
orem to reformulate (2) as a system of boundary
integral equations, for example as

AV = f,

where V = (u1, ∂u1/∂n)T , f =
(
ui, ∂ui/∂n

)T
,

A =

(
1
2(I + α)− (D1 − αD2) S1 − S2

−α(H1 −H2) 1
2(I + α) + (αD′1 −D′2)

)
,

and Si, Di, D
′
i and Hi, for i = 1, 2, are the sin-

gle, double, adjoint-double and hypersingular
integral operators.

3 HNA for the transmission problem

Our HNA ansatz for V on each side is (as in [2])

V (x) ≈ Vgo + V +
1 eik1s + V −1 e−ik1s

+ V +
2 eik2s + V −2 e−ik2s +

n−2∑
j=1

V r
j e

ik2rj ,

where s is the arc-length along the side, n is the
number of corners, and r1, . . . , rn−2 are the dis-
tances between x and the n−2 corners not adja-
cent to the side. Therefore, this ansatz aims to
capture the “primary” diffraction on each side
arising from all the corners of the polygon. By
primary, we mean that we are excluding the ef-
fects of diffracted waves which have undergone
at least one internal reflection, and head waves.

Numerically, we aim to approximate the am-
plitudes V ±i by low-order piecewise polynomials
on overlapping meshes graded towards the cor-
ners. The amplitudes V r

j are approximated by
polynomials on a mesh with elements dictated
by discontinuities in Vgo.

4 Numerical results

The table below presents results for scattering
by an equilateral triangle with α = 1 at differ-
ent size parameters ak1, where a is the radius

of the smallest circle which circumscribes the
triangle. The maximum polynomial degree in
the approximation space is 3. The scattered
field us is calculated on a circle of radius 3a/2
with its centre coinciding with that of the tri-
angle. We also calculate the Kirchhoff approxi-
mation (KA) on this circle which is obtained by
replacing u1 and ∂u1/∂n in Green’s represen-
tation formula by their GO approximations on
∂Ω. The errors shown are relative errors calcu-
lated in the L2-norm and the reference solutions
are obtained using a standard BEM at high res-
olution (to ensure an accuracy of ∼ 1e − 6 rel-
ative error on Γ).

ak1 u1|∂Ω us uKA # DOF
error error error per λ

20 4.1e-3 2.9e-4 6.2e-2 5.5
40 2.5e-3 1.7e-3 4.6e-2 2.8
80 7.9e-4 4.0e-4 3.2e-2 1.4
160 3.0e-3 1.4e-3 2.3e-2 6.9e-1
320 1.2e-3 5.0e-4 1.64e-2 3.4e-1

We observe that an error of ∼0.4% or less
is maintained in both the field on the bound-
ary u1|∂Ω and the scattered field us as the size
parameter is increased. The number of degrees
of freedom (DOF) in the approximation space
was fixed at 138 for all ak1. We note that even
with this relatively small number of DOF (cor-
responding to only 0.34 DOF per wavelength in
the case ak1 = 320) we gain a significant im-
provement over the KA, which is a widely em-
ployed asymptotic approach. Moreover, the er-
ror in the HNA method appears to be bounded
independently of the size parameter.
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BEM-based Finite Element Methods with PDE-adapted basis functions on
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Abstract

In the development of numerical methods for
solving boundary value problems the require-
ment of flexible mesh handling gains more and
more importance. The BEM-based Finite Ele-
ment Method is one of the new promising strate-
gies which yields conforming approximations on
polygonal and polyhedral meshes. This flexibil-
ity is obtained by special trial functions which
are defined implicitly as solutions of local bound-
ary value problems related to the underlying
differential equation. Due to this construction,
the approximation space already inherits some
properties of the unknown solution. These im-
plicitly defined trial functions are treated by
means of Boundary Element Methods (BEM)
in the numerical realization.

Keywords:
BEM-based FEM, local Trefftz method, non-
standard FEM, polygnoal/polyhedral meshes

1 Introduction and Formulation

Let Ω ⊂ Rd, d = 2, 3 be a bounded domain and
Kh its decomposition into polygonal and poly-
hedral subdomains, respectively. We consider
the boundary value problem

Lu = f in Ω, u = 0 on ∂Ω,

where L is an elliptic, second order differential
operator with piecewise constant coefficients on
the decomposition Kh. The Galerkin formula-
tion reads

Find u ∈ V : a(u, v) = ϕ(v) ∀v ∈ V

with corresponding bilinear form a, right hand
side ϕ and V = H1

0 (Ω).
For the discretization, a Trefftz-like approxi-

mation space is chosen, which enables the appli-
cation on polygonal and polyhedral meshes, see
Figure 1. The finite dimensional space Vh ⊂ V
for the discrete Galerkin formulation is given
via its basis functions ψ ∈ Ψ. Every ψ ∈ Ψ is
defined piecewise on each subdomain K ∈ Kh

Figure 1: Polyhedral mesh

as solution of a local boundary value problem,
cp. Figure 2,

LKψ = p in K, ψ = q on ∂K,

where LK is the restriction of L onto K with
constant coefficients. In 2D, p and q are suitably
chosen polynomials, see [4], whereas a hierarchi-
cal construction is proposed in 3D, see [3]. The
3D construction makes use of boundary value
problems related to the underlying operator L
on faces and edges of the polyhedral subdo-
mains. Due to the global continuity, a conform-
ing approximation space is obtained on general
meshes. Its approximation order depends on
the choice of p and q. Furthermore, the hierar-
chical construction yields stabilizing effects in
numerical simulations, see [2].

Figure 2: Approximation of third order basis
function for LK = ∆ (left), and of first order
basis function for LK = ∆ + b · ∇ (right) over
rectangular element

2 BEM-based approximation

The implicitly defined basis functions are treated
by means of Boundary Element Methods. This
is possible due to the existence of a fundamental
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solution of LK . For simplicity let p = 0, then
ψ ∈ Ψ has the representation

ψ(x) =
(
VKγ

K
1 ψ

)
(x)−

(
WKγ

K
0 ψ

)
(x)

for x ∈ K, where γK0 ψ = q and γK1 ψ is the so
called conormal derivative. VK and WK are
boundary integral operators, namely the single
and double layer potentials. Obviously, it is
sufficient to know the Dirichlet and Neumann
traces γK0 ψ and γK1 ψ, respectively, for the treat-
ment of the basis functions. The unknown trace
γK1 ψ can be expressed by the Steklov-Poincaré
operator γK1 ψ = SKγ

K
0 ψ with

SK = DK +
(
1
2I + K′K

)
V−1K

(
1
2I + KK

)
,

which employs further boundary integral oper-
ators. In the numerical realization, these opera-
tors are discretized by Galerkin schemes involv-
ing only integrals over the boundary ∂K. Con-
sequently, the dimension of the comparatively
small local problems is additionally reduced by
one.

In the setup of the global system of linear
equations arising from the FEM formulation, it
is possible to proceed as usual. In a loop over
all elements, the system matrix is assembled by
adding the local contributions of the bilinear
form. Let aK be the restriction of a to the el-
ement K ∈ Kh. Thus, Green’s first identity
yields

aK(u, v) = (LKu, v)L2(K) + (γK1 u, γ
K
0 v)L2(∂K),

where the volume integral vanishes for the basis
functions with p = 0 and the boundary integral
can be approximated with the help of the dis-
cretized Steklov-Poincaré operator, which serves
as local stiffness matrix in the assembling pro-
cess.

3 Enhancements

The BEM-based FEM has its roots in domain
decomposition methods via boundary integral
equations and was originally designed for ellip-
tic equations. However, the ideas are transfered
into varies directions.

The first results on time dependent prob-
lems were presented in [5], where a time step-
ping scheme was applied to resolve the depen-
dence in the time variable.

Beside of scalar valued approximation, there
are results for vector valued problems. In [1], a

conforming approximation space for H(div) was
proposed, which benefits from the idea of local,
Trefftz-like basis functions treated by means of
Boundary Element Methods.
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Abstract

In order to take into account variable coeffi-
cients in a wave-like discretization, Generalized
Plane Waves (GPWs) are proposed as basis func-
tions. Their design, properties and use will be
discussed in this work.
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1 Introduction

In mathematical models, density fluctuations
appear as variable coefficients. Approximating
these variable coefficients by piecewise constant
functions and use classical plane waves could
provide a discretization procedure for such prob-
lems. Such plane wave methods are used in
the p regime, i.e. using a larger number of
basis functions per element for a fixed size of
mesh. However this process requires a very re-
fined mesh to obtain a good approximation in
a variable coefficient, and therefore ruins the
advantages of this type of method. This work
proposes to develop wave-like basis functions
adapted to variable coefficients. These basis
functions, namely the GPWs, are designed lo-
cally so that they would be approximated solu-
tions of the adjoint equation, see [2].

2 General Plane Wave design

The design process is based on a local Taylor
expansion. Consider the general equation Lu =
0 where

Lu = ∇ · (A∇u) + α(x, y)∂xu

+β(x, y)∂yu+ γ(x, y)u,

with A =

(
A11 A12

A21 A22

)
= A∗. A GPW ϕ is

defined locally at (xG, yG) as a function ϕ =

expP (x−xG, y−yG), P =
∑

0≤i+j≤degP

λi,jX
iY j .

In order for a GPW to be an approximated so-
lution of the adjoint equation L∗ϕ = 0, consider
the Taylor expansion of each differential opera-
tor applied to the GPW, for instance: denoting

for simplicity (x̃, ỹ) = (xG, yG)

∂2
xϕ = (∂2

xP (x̃, ỹ) + (∂xP (x̃, ỹ))2)ϕ

=

 ∑
0≤i+j≤degP−2

(i+ 2)(i+ 1)λi+2,j x̃
iỹj

+

 ∑
0≤i+j≤degP−1

(i+ 1)λi+1,j x̃
iỹj

2ϕ.

To approximate the adjoint equation L∗ϕ = 0,
we set the lowest order coefficients of the Taylor
expansion to zero so that L∗ϕ = O(|(x̃, ỹ)|q). It
is equivalent to a nonlinear system with

• Nu = (degP+1)(degP+2)
2 unknowns, the λi,js,

• Ne = q(q+1)
2 equations.

For instance the first equation reads

−2A11λ2,0 − (A12 +A21)λ1,1 − 2A22λ0,2

−2A11λ
2
1,0 − (A12 +A21)λ0,1λ1,0 − 2A22λ

2
0,1

+α(xG, yG)λ1,0 + β(xG, yG)λ0,1 + γ(xG, yG) = 0.

An explicit method to solve this system will be
discussed, based on first a convenient choice for
degP to ensure that the system is invertible,
then a careful study of the linear terms of the
system to obtain a systematic resolution algo-
rithm. Moreover this design provides a number
of free coefficients λi,j , which can be used to
build a set of linearly independent GPWs at a
given point for the operator L.

3 Interpolation properties

Interpolation properties of the GPWs are ex-
tended from interpolation properties of classi-
cal plane waves. For the operator L = −∆ +
γ(x, y) where γ is any C∞ function. Consider
a set of p GPWs defined at a given point −→g =
(xG, yG), and an order of approximation q such
that L∗ϕ = O(|(x̃, ỹ)|q) for each GPW ϕ. The
following interpolation result states a sufficient
condition on p and q to get a given order of
approximation of u by GPWs.
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Theorem 1 Assume Ω ⊂ R2 is a bounded do-
main, n ∈ N is such that n > 0, q ≥ n + 1,
p = 2n + 1. Consider that u is a solution of
scalar wave equation Lu = 0 which belongs to
Cn+1. Then there are a linear combination of
plane waves ua depending on γ and n, and a
constant C(Ω, n) depending on γ and n such
that for all −→m ∈ R2
|u (−→m)− ua (−→m)|

≤ C(Ω, n) |−→m −−→g |n+1 ‖u‖Cn+1(Ω) ,

‖∇u (−→m)−∇ua (−→m)‖
≤ C(Ω, n) |−→m −−→g |n ‖u‖Cn+1(Ω) .

(1)

The proof of such a result strongly relies on
properties of the polynomial coefficients λi,j that
stem from the design process described in the
previous paragraph. This proof will be outlined
to emphasize the design’s importance.

These interpolation properties can be vali-
dated numerically as displayed in Figure 1. The
numerical orders of convergence match perfectly
the theorem’s predictions.

4 Applications

Figure 1: Numerical validation of Theorem 1,
showing the relative L∞ error with respect to
h = max |(x̃, ỹ)|, for different values of n.

We incorporated the GPWs in a discretiza-
tion scheme, by coupling them with the Ultra-
Weak Variational Formulation (UWVF). The
UWVF was introduced in [1], while the idea of
the coupling was proposed in [3].

Some examples of applications will be pre-
sented, including a convergence study and plasma
oriented simulations. For instance, in order to
model what is called an O-mode wave propa-
gating toward a plasma and reflected at a cer-
tain cut-off density, consider the operator L =

−∆ + γ(x, y) where

γ(x, y) =

{
−κ2 x ≤ 2,
−κ2(4− x)/2 x ≥ 2.

In this model the cut-off is the line along which
γ(x, y) = 0. Figure 2 displays the behavior of a
wave sent from an antenna toward a cut-off.

Figure 2: Waves propagating toward and re-
flected by a cut-off, defined by γ(x, y) = 0.
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Study of damping in locally resonant metamaterials through unit cell modelling
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Abstract

Recently, locally resonant metamaterials have
shown great potential for noise and vibration
control engineering [1]. Understanding the in-
fluence of damping is important, as it impacts
the performance of these materials. Damping is
included in a unit cell modelling technique, the
results are studied and are in agreement with
earlier findings and measurements.
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1 Introduction

Through the addition of resonant structures to
a host structure, sound transmission loss can
be improved in specific frequency bands, called
stop bands, around their resonant frequency [1].

Periodic structure theory can be used for
stop band prediction for the considered struc-
tures [1]. Application of Bloch-Floquet peri-
odicity conditions to a finite element unit cell
(UC) model yields an eigenvalue problem in the
frequency f and propagation constants (µx, µy).
Assuming free wave propagation, thus imaginary
propagation vectors µ = (µx, µy) = j(εx, εy),
this eigenvalue problem can be solved for f . Stop
bands emerge as frequency zones for which no
free wave propagation is found. Due to peri-
odicity and symmetry of the considered rectan-
gular UC, only solutions along the irreducible
Brillouin contour (εx, εy) : O − A − B − O 7→
(0, 0), (π, 0), (π, π), (0, 0) need to be analyzed,
leading to dispersion curves as shown in figure 1:
for the sake of clarity, only the acoustically rele-
vant out-of-plane bending waves are shown [1].

The resonance based stop band can, however,
influence the radiation efficiency of the structure
[1]. This is indicated in figure 1, where a stop
band below the coincidence frequency creates an
additional zone of efficient radiation just above
the stop band. Also damping has an important
effect, as this increases the frequency range of
attenuation, at the expense of peak performance
[1]. The introduction of damping and its possible
contribution to radiation efficiency is studied.

Figure 1: Bending wave dispersion curves along
the irreducible Brillouin contour O−A−B−O 7→
(0, 0), (π, 0), (π, π), (0, 0) of the structure ( ),
efficiently radiating free propagating structural
waves ( ) and the dispersion curve of air ( )
for an infinite 5 mm thick steel plate without
(left) and with (right) spring-mass resonators
tuned at 1171 Hz [1].

2 Dispersion relations with damping

When damping is introduced, previous proce-
dure no longer applies. For real f , the solutions
for µx and µy are complex, implying spatial
decay. From observations in [1], the Brillouin
contour might no longer contain all necessary
information. The eigenvalue problem can be re-
formulated as a polynomial eigenvalue problem
in case f and the direction of wave propagation
θ are known, and the ratio

µy
µx

=
Ly

Lx
tan(θ) is

real [2]. This procedure allows calculating com-
plex dispersion relations for various propagation
directions.

Figure 2: Resonator and UC design from [1]
with Z denoting the out-of-plane direction.

In [1] resonant structures were added to a
periodic host structure, both polyamide compo-
nents (E = 1.65 GPa, ρ = 950 kg/m3, ν = 0.4),
to obtain a stop band between 1065 Hz and
1226 Hz. For the UC, as shown in figure 2, the
solutions are calculated along the O−A (= x)
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direction (θ = 0) without damping and with
2% structural damping. The undamped solu-
tions show good agreement, however, now also
solutions emerge inside the stop band (figure
3). From figure 4 it is seen that these are com-
plex µ-solutions, in agreement with the solutions
for a 1D problem in [1]. These complex solu-
tions represent mainly damped motion of the
resonators and strongly damped motion of the
host structure, corresponding well to the findings
and measurements in [1].

(a) No structural damping(b) 2% structural damping

Figure 3: Bending wave dispersion results for
the UC from [1] (free propagating ( ), damped
( )) without (left) and with (right) 2% structural
damping for the O−A 7→ (0, 0), (π, 0) direction,
results assuming free wave propagation ( )
and dispersion curve of air ( ).
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Figure 4: Bending wave dispersion results for
the UC from [1] without ( ) and with ( ) 2%
structural damping for the O−A 7→ (0, 0), (π, 0)
direction: propagating and attenuated part ver-
sus frequency.

When damping is added, the definition of
a stop band fades, since the dispersion curves

seem to close and no longer cover the entire
Brillouin contour (figure 3b), as was also found
for the 1D problem in [1]. As shown in figure 4,
the addition of damping leads to the formation
of loops in the complex µ-space. Previously
purely propagating solutions become damped,
while purely decaying solutions become partly
propagating.

Similar to [1], the size of the complex solution
loops varies with the amount of damping. De-
pending on the distance from the air dispersion
curve, location of the stop band and magnitude
of the real part of the propagation vector, the
presence of damping could strongly impact the
effectiveness of the metamaterial by causing a
larger zone of efficient radiation. Consequently,
the presence of damping might result in an even
bigger zone of efficient radiation than can be
expected by assuming free wave propagation.

3 Conclusions

A procedure is implemented for calculating com-
plex dispersion relations for locally resonant
metamaterial UC models with damping. Good
agreement is found with solution procedures for
free propagating waves and earlier results and
measurements. It becomes clear that a thor-
ough understanding of damping phenomena is
important for accurate prediction of the acoustic
behaviour of resonant metamaterial based stop
bands.
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The space-time Trefftz discontinuous Galerkin method for the wave equation
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Abstract

We consider a space-time DG scheme for the
scalar wave equation in which the basis func-
tions are (polynomial) piecewise solutions of the
same equation. We show well-posedness and
quasi-optimality. In one space dimension, we
prove high order, fully explicit, hp error bounds
in L2 norm.

Keywords: Trefftz method, discontinuous Ga-
lerkin method, space-time finite elements, linear
wave equation, a priori error analysis.

1 The model problem

We consider the initial boundary value problem
for the homogeneous wave equation with Dirich-
let boundary conditions, written as a first-order
system as follows:

∇v +
∂σ

∂t
= 0 in Q, (1)

∇ · σ +
1

c2
∂v

∂t
= 0 in Q,

v(·, 0) = v0, σ(·, 0) = σ0 on Ω,

v(x, ·) = g, on ∂Ω× [0, T ],

where Ω ⊂ Rn is a bounded Lipschitz domain
with outward unit normal n, n ≥ 1, Q := Ω ×
(0, T ) with T > 0; v0,σ0, g are the problem
data; c>0 is the wave speed, which is assumed
to be piecewise constant and independent of t.
The nabla symbol ∇ represents derivation in
the space variable x only. The equations in (1)
may be derived from the wave equation −∆U+
c−2 ∂2

∂t2
U = 0 setting v = ∂U

∂t and σ = −∇U .

2 Space-time DG and Trefftz methods

Among the countless numerical schemes devised
for the approximation of problem (1), the space-
time discontinuous Galerkin (DG) methods of-
fer high-order accuracy, great flexibility, ease of
implementation, space-time hp-refinement.

To reduce the number of degrees of freedom
needed to achieve a given accuracy and to in-

corporate the wave speed into the trial space,
we propose a Trefftz method, namely a scheme
in which all the discrete basis functions, when
restricted to a mesh element, are solution of
the PDE to be discretised. Trefftz methods
have been successfully used and analysed for
time-harmonic waves, see e.g. [1] and references
therein, while in time-domain they appeared
only recently in [3–5], where the acoustic and
the electromagnetic wave equations are consid-
ered.

3 Mesh assumptions and DG notation

We introduce a mesh Th on Q, such that its ele-
ments are Cartesian products of Lipschitz poly-
topes in Rn and time intervals. We assume that
the parameter c is constant in each element. We
call “space-like” the faces lying in a constant-
time hyperplane and “time-like” those orthogo-
nal to them. We denote with Fh :=

⋃
K∈Th ∂K

the mesh skeleton, F space
h the union of the in-

ternal space-like faces, F time
h the union of the

internal time-like faces, F0
h := Ω × {0}, FT

h :=
Ω× {T} and F∂

h := ∂Ω× [0, T ].
On a time-like interface between two ele-

ments K1 and K2, with outward unit normal
vectors nx

K1
= −nx

K2
, we define the averages

and the normal jumps of piecewise-continuous
scalar (w) and vector (τ ) fields in the standard
DG fashion:

{{w}} :=
w|K1

+ w|K2

2
, {{τ}} :=

τ |K1
+ τ |K2

2
,

[[w]]x := w|K1
nx
K1

+ w|K2
nx
K2
,

[[τ ]]x := τ |K1
· nx

K1
+ τ |K2

· nx
K2
.

On F space
h , we denote by w− and w+ the traces

of the function w from the adjacent elements at
lower and higher times, respectively.
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Seek (vhp,σhp) ∈ V(Th) such that a(vhp,σhp;w, τ ) = `(w, τ ) ∀(w, τ ) ∈ V(Th), where

a(vhp,σhp;w, τ ) :=

∫
Fspace

h

(
c−2v−hp(w

− − w+) + σ−hp · (τ
− − τ+)

)
dx +

∫
FT

h

(c−2vhpw + σhp · τ )dx

+

∫
Ftime

h

(
{{vhp}}[[τ ]]x + {{σhp}} · [[w]]x + α[[vhp]]x · [[w]]x + β[[σhp]]x[[τ ]]x

)
dS +

∫
F∂

h

(
σ · n + αvhp

)
wdS,

`(w, τ ) :=

∫
F0

h

(c−2v0w + σ0 · τ )dx +

∫
F∂

h

g(αw − τ · n)dS.

4 The Trefftz-DG method

We define the Trefftz space

T(Th) :=
{

(w, τ ) ∈ L2(Q)1+n, s.t.

(w|K , τ |K) ∈ H1(K)1+n,

∇w +
∂τ

∂t
= 0,∇ · τ + c−2

∂w

∂t
= 0 ∀K ∈ Th

}
,

and fix a finite-dimensional subspace V(Th) ⊂
T(Th) (arbitrary at this stage). Extending the
derivation of [2] (which in turn extends [3]) we
obtain the Trefftz-DG variational formulation
displayed in the box. Here 0 ≤ α ∈ L∞(F time

h ∪
F∂
h ) and 0 ≤ β ∈ L∞(F time

h ) are penalisation
parameters. We use upwind fluxes on space-like
faces and centred fluxes with jump penalisation
on time-like faces.

5 A priori error analysis

Assume that the penalisation parameters α and
β are uniformly positive. After defining two
mesh-dependent norms on T(Th), which we de-
note |||·|||DG and |||·|||DG+ , proceeding again as
in [2, §4.1] we can prove that the bilinear form
is continuous and coercive, thus the method is
well-posed and quasi-optimality holds:

|||(v,σ)− (vhp,σhp)|||DG

≤ 3 inf
(w,τ )∈V(Th)

|||(v,σ)− (w, τ )|||DG+ .

It is easy to show that for g = 0 (homogeneous
boundary conditions) the method is dissipative
and that energy is dissipated through the jumps
of the discrete solution across mesh interfaces.
Numerical tests show that the amount of dissi-
pation is small, decreases for “high order” dis-
crete spaces, and has a stabilising effect; it may
be further reduced using non-penalised methods
(α = β = 0).

In one space dimensions, if the wave speed
c is constant, we show that the L2(Q) norm of
the error is controlled by the DG norm [2, §4.2].

6 Discrete Trefftz spaces

Given p ∈ N, the discrete Trefftz space V(Th)
can be chosen as

∏
K∈Th Vp(K), where Vp(K)

is the space of the solutions (w, τ ) of the wave
equation in K that are polynomials of degree
at most p. The space Vp(K) has dimension
of order Op→∞(pn), thus for high polynomial
degrees it is much smaller than the full (space-
time) polynomial space Pp(Rn+1)1+n, which has
dimension Op→∞(pn+1).

A basis of the Trefftz space can be construc-
ted using “transport polynomials” in the form
(x · dj − ct)` for 0 ≤ ` ≤ q, where the propaga-
tion directions dj ∈ Rn, |dj | = 1, are suitably
chosen.

In one space dimension we prove hp best
approximation estimates for this space. This
leads to a priori, fully explicit, high order, hp-
error bounds for the Trefftz-DG method [2, §6].

Future work includes the extension of the
scheme to general meshes and of the L2 stability
and approximation results to higher dimensions.
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Abstract

We develop a time-space discontinuos Galerkin
method that allows the use of local solutions of
the homogeneous wave equation as basis func-
tions of the discrete space. The method gives
rise to an implicit, dissipative time-scheme. Nu-
merical experiments show excellent accuracy for
few degrees of freedom of the scheme.

Keywords: Trefftz methods, wave equation,
time-space dG methods

1 Introduction

In recent years there has been much interest
in using Trefftz methods for solving medium to
high frequency wave problems in the frequency
domain. Lately this interest has spread to the
time domain. Our formulation is most similar
to [1], that uses Lagrange multiplyer technique
unlike our method based on interior penalty dG.

We will consider the wave equation

1

c�x�2
ü �∆u � 0 in Ω � �0, T �,

u � 0 on ∂Ω � �0, T �,
u�x,0� � u0�x�, u̇�x,0� � v0�x�, in Ω,

(1)
where Ω is a bounded domain in Rd and ∂Ω is its
boundary. For simplicity in this paper we only
consider the homogeneous Dirichlet boundary
condition, however impedance condition can be
dealt with similarly.

We aim to discretize this problem by a time-
space dG method. In principle this could be
done on a general time-space mesh, however
for the simplicity of presentation (and imple-
mentation) we construct a time discretization
0 � t0 @ t1 @ � � � @ tN � T and a spatial-mesh T

of Ω consisting of open simplices such that Ω �

8K>TK. Therefore the space-time mesh con-
sists of time-slabs T � In, where In � �tn, tn�1�.
We will denote the spatial meshwidth h by h �

maxK>T diam�K�.
Next we define some notation. The skeleton

of the mesh is defined by Γ �� 8K>T ∂T and the
interior skeleton by Γint � Γ � ∂Ω. Let K� and
K� be two elements sharing a face e �K�

9K�
>

Γint with respective outward normal vectors n�

and n� on e. For u � Ω � R and v � Ω � Rd let
u� � e � R and v� � e � Rd be the traces on e
with limits taken from K�. The we set

�u� Se � 1

2
�u� � u��, �v� Se � 1

2
�v� � v��,

�u� Se � u�n� � u�n�, �v� Se � v� � n� � v� � n�,

and finally if e >K�
9∂Ω, we set �v� Se � v� and

�u� Se � u�n�. We will also require the jump in
time

Bu�tn�G � u�t�n� � u�t�n�, Bu�t0�G � u�t�0�.
As the local discrete test and trial space we

will use the space of local Trefftz polynomials
Spn,Trefftz. For example in 1-D this space con-

tains functions 1, �x � t�, �x � t�2, . . . , �x � t�p.
2 Derivation of a time-space discontin-

uous Galerkin method

To derive the weak form suitable for dG dis-
cretization we start with the standard symmet-
ric interior penalty discontinuous Galerkin for-
mulation on the time-slab In

S
In

�S
Ω
üv̇ � ©u � ©v̇dx

� S
Γ
�©u� � �v̇�ds � S

Γ
�u� � �©v̇�ds

� σS
Γ
�u� � �v̇�ds �dt � 0,

where note that we have tested with v̇. This
leads to the following definition of energy at
time t

E�t� � 1

2
Yu̇�t�Y2

L2�Ω� �
1

2
Y©u�t�Y2

L2�Ω�

�
1

2
σY �u�t�� Y2

L2�Γ� � S
Γ
�©u� � �u�ds.

Note that the energy is non-negative if the pe-
nalisation parameter σ is chosen in the standard
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way. Choosing as test function v � u and sum-
ming over n we obtain the energy identity

0 � E�t�N� �E�t�0� �
N�1

Q
n�1

BE�tn�G.

In order to allow for discontinuities in time, the
formulation needs to be modified in order to
control the terms BE�tn�G that have no sign. In
this way we arrive at the fully discrete formula-
tion: For n � 0, . . . ,N � 1

an�un, v� � bn�un�1, v� � �f, v�L2�Ω�In�,

for all v > Spn,Trefftz, where u�1 is obtained from
the initial data and

an�u, v� � S
tn�1

tn
�S

Ω
üv̇ �©u � ©v̇dx

� S
Γ
�©u� � �v̇�ds � S

Γ
�u� � �©v̇�ds

� σS
Γ
�u� � �v̇�ds �dt

� S
Ω
u̇�t�n�v̇�t�n�dx � S

Ω
©u�t�n� � ©v�t�n�dx

� S
Γ
�©u�t�n�� � �v�t�n��ds

� S
Γ
�u�t�n�� � �©v�t�n��ds

� σS
Γ
�u�t�n�� � �v�t�n��ds,

bn�u, v� � S
Ω
u̇�t�n�v̇�t�n�dx � S

Ω
©u�t�n� � ©v�t�n�dx

� S
Γ
�©u�t�n�� � �v�t�n��ds

� S
Γ
�u�t�n�� � �©v�t�n��ds

� σS
Γ
�u�t�n�� � �v�t�n��ds.

3 Stability and existence of solution

The following energy relation can be shown for
the above derived method

E�t�N� � E�t�1� �
N�1

Q
n�1

1

2
S

Ω
Bu̇�tn�G2

� B©u�tn�G2dx

�

N�1

Q
n�1
S

Γ
B�©u�tn��G � B�u�tn��G

�
1

2
σB�u�tn��G � B�u�tn��Gds

(2)

which shows that the method is dissipative. We
can further show that the natural dG norm is
in fact a norm and not just a semi-norm. From

this the uniqueness of solution follows. Further,
it can be shown that adding another term to
the formulation allows a convergence analysis
as well.

4 Numerical results

Here we compute the error in time-space L2

norm for Trefftz spaces of degree p � 2,3,4 with
Ω � �0,1� and T � 1. The initial data is

u0�x� � e��x�5~8�2~σ, v0�x� � 0, σ � 5 � 10�4.

0.02 0.03 0.04 0.05 0.06 0.070.080.090.1
10 -4

10 -3

10 -2

10 -1

p = 2
p = 3
p = 4

Figure 1: Convergence of the Trefftz method.

References

[1] S. Petersen, C. Farhat, and R. Tezaur, A
space-time discontinuous Galerkin method
for the solution of the wave equation in the
time domain, Internat. J. Numer. Methods
Engrg., 78 (2009), pp. 275–295.



144 Wave-based Discretizations

Minisymposium: Wave Motions of Fluid-Loaded Structures and Mul-
tiple Scattering
organised by Hyuck Chung and Malte Peter

The topic of the minisymposium is the wave
motion of structures, e.g., plates and cylinders,
which are surrounded by water or air, and mul-
tiple scattering involving such structures. The
existence of the fluid, either incompressible or
compressible, increases the complexity of the
mathematics required to study the waves. The
speakers have been active in both theoretical
researches and practical applications. The re-
search methods used by the speakers are both
analytical and numerical, and make full use of
various numerical computation techniques.

The primary aim of the minisymposium is to
exchange ideas about the current state of play in
the mathematical techniques for wave motions

of fluid-loaded structures and multiple scatter-
ing. In particular, we will see various ways how
the analytical methods, which used to be able
to deal only with highly idealized model, can
now be used for more complex models with the
increase of computing power. For example, a
purely numerical method such as the finite ele-
ment method is now used in combination with
an analytical technique such as Fourier series
or transform methods. Conversely, analytical
methods have evolved to take advantage of com-
puting power (e.g., parallel & cluster comput-
ing), which has become easily accessible. Dur-
ing this minisymposium, we will discuss such
methods and explore their current limits.
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Effective versus individual waves for water wave and thin plate problems
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Abstract

Numerical results are presented to show that,
for small-amplitude roughness, individual wave
elevations attenuate at a far slower rate than the
corresponding effective wave elevation for both
ocean waves travelling over a rough seabed in
intermediate depth and waves in a thin plate
in vacuo. Use of the effective wave elevation,
therefore, results in misleading predictions of
attenuation.

Keywords: Wave attenuation, random media,
effective wave field, multiple scattering

1 Introduction

Ocean surface waves attenuate with distance
travelled into the sea-ice covered ocean. Wave
propagation in the ice-covered ocean is conven-
tionally modelled using linear potential-flow the-
ory for the water and thin-plate theory for the
ice cover. Bennetts & Peter [1] conducted a
preliminary investigation of wave attenuation
in the ice-covered ocean due to ice roughness.
They modelled the roughness as random varia-
tions in stiffness and mass of the ice and derived
a semi-analytic expression for the attenuation
rate of the effective wave field, i.e. the mean
wave field with respect to realisations.

In a recent paper, Bennetts et al. [2] showed
that individual wave fields attenuate far slower
than the effective wave field for the related prob-
lem of free-surface waves over a rough seabed
in intermediate depth, originally considered by
Mei & Hancock [3]. They used large ensembles
of numerical solutions for randomly generated
realisations of the bed profile. Further, they re-
view the existing literature on wave propagation
over a rough seabed.

Here, we extend the study of Bennetts et
al. [2] to problems involving thin plates, with
the aim of establishing whether effective media
theory is valid to study wave propagation in the
ice-covered ocean. We summarise the method
and results of [2] in §2 and apply the method to

a rough thin plate in vacuo in §3.

2 Free-surface/rough-bed problem

Consider a linear monochromatic wave propa-
gating in the positive x-direction. In open wa-
ter, the wavenumber, k, is related to the an-
gular frequency, ω, via the dispersion relation
k tanh(kh) = K, where K = ω2/g, h is the fluid
depth and g is the gravitational acceleration.

The seabed fluctuates about z = −h̄, where
h̄ is an intermediate depth, i.e. kh̄ = O(1). The
fluctuations have a known correlation length, l,
and root-mean-square amplitude, ε � 1. The
function z = −h(x), where h(x) = h̄−εp(x) and
p = O(1) is an autocorrelated random function,
denotes the location of the bed.

The water velocity field is defined as the gra-
dient of Re{(g/iω)φ(x, z)e−iωt}. The velocity
potential, φ, satisfies

∂2
xφ+ ∂2

zφ = 0 (−h < z < 0), (1a)

∂zφ+ h′(∂xφ) = 0 (z = −h), (1b)

and is coupled to the wave elevation, denoted
z = Re{η(x)e−iωt}, via

φ = η and ∂zφ = Kη (z = 0). (1c)

Consider the problem in which the rough-
ness extends over a long, finite interval x ∈
(0, L). For given h(x), we approximate the rough
bed profile by a piece-wise constant function on
M � 1 sub-intervals and solve for the velocity
potential using an iterative algorithm.

Wave elevations are calculated for a large
ensemble of randomly generated realisations of
the bed profile, cf. [2]. Two measures of the at-
tenuation rate are obtained from the ensemble
of wave elevations. First, an attenuation rate,

Q
(rs)
eff , is extracted from the effective wave eleva-

tion via

|〈η〉|∝∼ e−Q
(rs)
eff x (0 < x < L). (2)

Second, an attenuation rate, Q
(rs)
ind , is calculated

as the ensemble average of attenuation rates
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of individual wave elevations. The attenuation
rate is defined as Q

(rs)
ind = 〈Qi〉, where Qi is ex-

tracted from the individual wave elevation η =
ηi, i.e.

|ηi| ∝∼ e−Qix (0 < x < L). (3)

It turns out that both rates are proportional to
the bed amplitude squared but differ by orders
of magnitude for a large range of parameters [2].

Figure 1 shows example individual wave ele-
vations and corresponding effective wave eleva-
tions for k̄l = 0.9 and 5. The wavenumber k̄ cor-
responds to the mean depth h̄, and k̄h̄ = 1 is set.
The smaller correlation length is chosen to pro-
duce visible (though weak) attenuation of the
individual wave elevation. The corresponding
effective wave elevation attenuates slightly more
rapidly than the individual wave elevation. The
largest correlation length is chosen to produce
maximal attenuation of the effective wave ele-
vation. The corresponding individual elevation
does not attenuate (on the scale shown). At-
tenuation of the effective elevation is, therefore,
not related to the individual elevations.
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Fig. 1: Example individual wave elevations (grey)
and corresponding effective wave elevations (black),
for k̄ε = 10−2 and k̄l = 0.9 (left) and 5 (right).

3 In vacuo plate problem

Next, we consider an infinitely long rough thin
plate in vacuo. The problem is one-dimensional
in the horizontal coordinate x. The spatial part
u(x) of the plate deflection Re{u(x)e−iωt} sat-
isfies the thin plate equation

β∂4
xu− γω2u = 0 (−∞ < x <∞), (4)

where β is the constant plate stiffness and γ(x)
is its varying mass.

We use an analogous iterative algorithm to-
gether with a step approximation as in the rough
bed problem, where the local wavenumber κm is
κ(x) = (ω2γ(x)/β)

1
4 , evaluated at the midpoint

of the mth sub-interval.
Again, solutions are calculated for large en-

sembles of different realisations of the varying

wavenumber function, which share a common
correlation length and roughness amplitude. Fig-
ure 2 shows the results for the in vacuo plate,
in analogy to figure 1 for the rough bed. As can
be seen, the behaviour is very similar and the
analogous conclusions are drawn.
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Fig. 2: As in Fig. 1 but for in vacuo plate problem.
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Transmission of ocean waves through a row of randomly perturbed circular ice floes
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Abstract

A method is described to compute the transmis-
sion matrix of a finite array of ice floes under
ocean wave forcing. We discuss the behaviour
of the transmission matrix when the floes are
regularly spaced and randomly positioned. The
scattering angles of the regular array are grad-
ually filtered out under increasing disorder.

Keywords: ocean waves, directional spectra,
scattering angles, random arrays

1 Introduction

We consider the multiple scattering of time-har-
monic ocean waves by a finite array of ice floes
floating at the surface of a fluid domain with
constant depth and infinite horizontal extent.
Our goal is to model wave attenuation and di-
rectional spreading due to scattering in inhomo-
geneous ice-covered seas. In particular, we seek
to understand better the effect of randomly per-
turbed arrays on these properties, which can be
extracted from the scattering matrix of the ar-
ray. We use the method proposed in [2] and
extend the analysis of [1] for acoustic waves to
discuss the effect of introducing random per-
turbations in a regular array of ice floes on the
scattering properties of the array.

2 Preliminaries

Cartesian coordinates x = (x, y, z) are used in
the fluid domain Ω with z = 0 and z = −h co-
inciding with the undisturbed free surface and
seabed, respectively. Let M denote the number
of floes. All floes are circular (with radius a),
have uniform thickness D and experience flexu-
ral motion when perturbed from rest. For each
floe j, 1 ≤ j ≤ M , we define the coordinates
(xj , yj) of its centre and the local polar coordi-
nates (rj , θj). We assume that the centres of all
floes are contained in the slab 0 ≤ x ≤ L.

Within the framework of time-harmonic lin-
ear water wave and thin elastic plate theories,
the potential Φ(x, t) = Re{(g/iω)φ(x)e−iωt} is
used to describe the fluid motion, where ω is
the radian frequency and g acceleration due to

gravity. The (reduced) potential φ then satisfies(
∇2 + ∂2z

)
φ = 0 (x ∈ Ω) (1)

∂zφ = 0 (z = −h) (2)

∂zφ = αφ (rj > a, z = 0) (3)(
β∇4 + 1− αd

)
∂zφ = αφ (rj < a, z = −d) (4)

∂rjφ = 0 (rj = a, −d < z < 0). (5)

We have introduced the parameters α = ω2/g,
β = ED3/12(1 − ν2)ρg, where E ≈ 6 GPa and
ν ≈ 0.3 are ice Young’s modulus and Poisson’s
ratio, respectively, ρ ≈ 1025 kg m−3 is the fluid
density and d = (ρi/ρ)D is the floe draught,
with ρi ≈ 922.5 kg m−3 the ice density. Free
edge conditions are further imposed at the floe
edges, and the scattered field obeys a radiation
condition in the far-field to ensure its decay.

3 Transmission matrix

We consider a wave forcing of the form

φIn(x) = ψ(z)

∫ π/2

−π/2
A(τ)eik(x cos τ+y sin τ) dτ,

(6)
where ψ(z) = cosh k(z + h)/ cosh kh describes
the vertical motion and k is the wavenumber
related to frequency ω through the free surface
dispersion relation gk tanh kh = ω2. The in-
cident field is a superposition of plane waves
travelling at angle τ ∈ (−π/2, π/2) with ampli-
tudes A(τ). The wave field transmitted through
the slab is given in the form

φT(x) = ψ(z)

∫ π/2

−π/2
B(χ)eik((x−L) cosχ+y sinχ) dχ,

(7)
for x > L, such that the unknown transmitted
spectrum B(χ) is related to the incident spec-
trum A(τ) through

B(χ) =

∫ π/2

−π/2
T (χ : τ)A(τ) dτ. (8)

The solution to the transmission problem is fully
described by the transmitted kernel T (χ : τ).
Similar relations exist for the reflected field, but
are not discussed here.
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Figure 1: Magnitude of the transmission matrix for (a) µ = 0, (b) 0.5 and (c) 1.

A solution method was developed in [2] which
provides semi-analytical expressions for the trans-
mitted (and reflected) kernels. The method is
summarised as follows:

1. derive a self-consistent multiple scattering
solution using cylindrical multipole expan-
sions to represent the field near each floe
(based on Graf’s addition theorem);

2. transform the multipole expansions into
integrals of plane waves using Sommer-
feld’s integral representation of Hankel func-
tions.

A numerical solution is then obtained by dis-
cretising A(τ), B(χ) and T (χ : τ) in (8) at N
regular angular samples τi and χi, 1 ≤ i ≤ N .
Using the trapezoidal rule for numerical inte-
gration (8) becomes

b = STa, (9)

where ST is the transmission matrix, and a and
b are discrete versions of A and B, respectively.

4 Results

We analyse the magnitude ST . The entry cor-
responding to T (χi : τj) describes the transmit-
ted wave amplitude at angle χ = χi due to an
impulse incident at angle τ = τj , i.e. A(τ) =
δ (τ − τj) with δ denoting the Delta function.
We consider an array of 51 floes regularly posi-
tioned along the y-axis with spacing s = 300 m,
such that yj = ỹj = s(j − 26), for 1 ≤ j ≤ 51.
We set h = 200 m, a = 100 m, D = 1.5 m
and the wave period T = 7 s. We then intro-
duce a random perturbation on the position of
each floe, such that (xj , yj) = (50εµ, ỹj +50εµ),
where 0 ≤ µ ≤ 1 and ε is a random variable
with uniform distribution in [−1, 1].

Figure 1 shows a grayscale image of the mag-
nitude of the entries of ST for µ = 0, 0.5 and
1. For the two latter cases, the entries are av-
eraged over 100 random realisations of the ar-
ray. The grayscale image shows clearly the exis-
tence of the scattering angles in the regular case
(µ = 0), which arise from scattering by regular
gratings and satisfy sinχ = sin τ + 2nπ/ks for
n integer. When perturbations are introduced
(µ > 0) and increase, the scattering angles are
gradually filtered out and the energy is redis-
tributed across the directional range (shaded ar-
eas). The dominant diagonal corresponds to a
transmitted wave travelling in the same direc-
tion as the incident wave. With sufficient dis-
order, waves are expected to transmit with di-
rectionality unaffected but reduced amplitudes.
These results are consistent with the findings
of [1] for acoustic waves.
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Abstract

This paper presents a novel model for the small
oscillations of a pressurized, elastic, spherical
shell. The shell has three features: a pressure
difference across the skin; a thin, tensioned mem-
brane; and a double curved interfacial surface.
An analytical solution for the natural frequen-
cies and mode shapes, incorporating the inertia
both of the shell and of the surrounding fluid,
is derived. When the membrane tension is set
to zero, the results converge to the analytical
solution for a spherical shell, and when the skin
elasticity is neglected, the results converge to
the constant-tension solution of a bubble.

Keywords: pressurised shell, elastic membrane,
vibration modes

1 Introduction

This paper describes a new model that com-
bines consideration of an elastic spherical shell,
the influence of skin pre-tension, and the iner-
tial effect of internal and external fluids. Ex-
ample of such shells are sports balls, biological
organs, airbags and balloons. There is a long
tradition of analytical models of spherical shell
vibrations, and the approach taken in this paper
builds on some established models.

2 Existing Models

A well-known model of elastic spherical shell vi-
brations is based on Love’s deep-shell equations
[1] and Lamb’s study on a thin spherical shell
[2]. This model is unsuitable for application to
the vibrations of pressurized, elastic, spherical
shells as it does not account for: (a) the pre-
tension in the skin that results from the pres-
sure difference across the surface, that is, the
initial stressed state; and (b) the influence of
the inertia of the internal and external fluids
on the radial momentum of the balloon. These
two effects are present in Grinfeld’s model of
the small oscillations of a spherical soap bubble
[3], which extends Lamb’s solution [4] for the

oscillation of a fluid drop to include the inertia
of the soap film. This model is, however, un-
suitable for the vibration of an elastic shell, as
it assumes constant uniform and isotropic skin
tension (surface tension) in line with Laplace’s
classical model of capillarity. This means that
the changes in stress state in the shell due to
elastic deformation are neglected. For this rea-
son, a new model is developed that draws on
elements of these two existing models.

3 Model Formulation

This formulation considers linearized, axisym-
metric, normal modes that are harmonic in time
with angular frequency ω. There is no loss of
generality in focussing on axisymmetric modes
for convenience, since a non-axisymmetric nor-
mal mode can be written as a linear combina-
tion of rotations of an axisymmetric mode of
the same frequency.

For simplicity, we assume that the fluids in-
side and outside the shell are incompressible
and inviscid. The effect of compressibility is
negligible provided that ω � c/R, where c is
the acoustic wavespeed andR is the shell radius.
The effect of fluid viscosity is negligible pro-
vided that the Reynolds number is much greater
than one. Euler’s equations for incompressible,
inviscid flow then apply, and axisymmetric solu-
tions in spherical coordinates are assumed. The
kinematic condition at the fluid-shell interfaces
requires that the shell’s normal velocity compo-
nent is equal to both the internal fluid’s normal
velocity component and the external fluid’s nor-
mal velocity component.

The motion of the thin, spherical shell re-
sults from the combination of three effects: elas-
tic thin-shell deformations; the pre-tension in
the shell that results from the initial pressure
difference across the surface; and the influence
of the inertia of the internal and external flu-
ids on the momentum of the shell. The elastic
shell deformations are captured in [1,2], and we
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now consider how to incorporate the tensile and
inertial effects into these equations.

The shell is considered to be under an ini-
tial state of isotropic tension T . When the shell
deforms from its equilibrium position, the ef-
fect of this tension is a radial restoring stress
proportional to the tension and the change in
curvature due to deformation. As the tension
is isotropic, no force occurs in the meridional
direction. As the fluids are assumed inviscid,
there are no fluid inertia effects in the merid-
ional direction; this influence is only in the ra-
dial direction. The radial restoring stress due to
the fluid inertia is simply the difference in pres-
sure between the internal and external fluids.

The small displacements in the radial and
meridional directions, u and v respectively, are
assumed to be of the form u = UPn(cosφ)eiωt

and v = V Qn(cosφ)eiωt, where Pn(cosφ) and
Qn(cosφ) are the Legendre functions of the first
and second kind, respectively. Then the govern-
ing equations of a shell of thickness h, density ρ,
Young’s modulus E and Poisson’s ratio ν are:

Eh

(1 − ν)R2
(−n(n+ 1)V + 2U) +

(n2 + n− 2)TU

R2

= Aρhω2U

(1a)

Eh

(1 − ν2)R2
[−n(n+ 1)V + (1 − ν)V + (1 + ν)U ]

= −ρhω2V

(1b)

where n = 0, 1, 2, ... is the mode number. The
non-dimensional parameter A represents the ef-
fective shell inertia:

A = 1 +
ρeR

ρh(n+ 1)
+
ρiR

ρhn
(2)

where ρe and ρi are the densities of the external
and internal fluids, respectively.

The natural frequencies of the shell are then
the (positive) solutions of ω. For each value of
n, two natural frequencies exist. These natural
frequencies correspond to different mode shapes
with varying ratios U/V of radial and merid-
ional motion of the skin. The lower branch has
more radial motion and the upper branch less,
but both branches involve elastic coupling be-
tween the two directions of motion.

Setting the skin tension to zero (T = 0) and
removing the effects of the internal and exter-
nal fluids (A = 1) recovers the solution for an

elastic shell given in [1,2]. The solution for a
pre-tensioned elastic shell with no surrounding
fluids is found by setting A = 1. Removing
the elasticity in the skin (E = 0) results in
a single governing equation, which can be re-
arranged to obtain Grinfeld’s solution for the
natural frequencies of a soap bubble. The re-
moval of the elasticity term results in only one
natural frequency per modenumber n, with the
corresponding modeshapes consisting of purely
radial skin motion.

4 Conclusions

This paper has described the formulation of a
model for the vibrations of an elastic, spherical
shell, subject to internal pressure. The model
formulation draws on elements of two existing
models: the well-known elastic shell model based
on Love’s deep shell equations and Lamb’s study
on a thin spherical shell; and a model for soap-
bubble vibrations that incorporates fluid effects.
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Abstract

Acoustic scattering by a ring comprising a large
number of equally spaced small circles is consid-
ered, using a combination of Foldy-type approx-
imations, circulant matrices and asymptotics.
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1 Introduction

Time-harmonic acoustic waves are scattered by
N obstacles. Such multiple scattering problems
can be solved exactly, in principle, by reducing
them to integral equations or to infinite systems
of linear algebraic equations [2].

In this paper, we are interested in the scat-
tering of an incident wave by N identical par-
allel circular cylinders arranged in a particular
way: in a cross-sectional plane, there are N cir-
cles (radius a) with their centres located on, and
equally spaced around, a larger circle (radius b).
We call this geometrical configuration a ring or
a cage, the latter word being used because we
can consider the configuration as giving a sim-
ple model of a Faraday cage.

Exact (numerical) methods have been ap-
plied to scattering by a cage. However, we are
especially interested when N is large, so that we
have many small circles around the ring with
small gaps between them.

Intuitively we expect that, in the limit (when
there are no gaps), we should approach the so-
lution for scattering by a single large cylinder
(with cross-section of radius b). Can this be
shown, and, if so, how fast is the limit achieved?

In a recent paper [3], we gave an analy-
sis of cage problems. The cylinders comprising
the cage were assumed to be small, both geo-
metrically (a � b) and acoustically (ka � 1,
where 2π/k is the incident wavelength). For
the scattering itself, we used Foldy’s method
[1], [2, §8.3]. This is an approximate theory, in
which the scattering by each circular cylinder
is represented by a single term (proportional to
H0(kr), see below) instead of the usual infinite
separation-of-variables series. However, all mul-

tiple scattering effects are taken into account.
The result is an N ×N linear algebraic system.
This reduction works for N scatterers at more-
or-less arbitrary locations. However, for a ring
of equally-spaced identical scatterers, the ma-
trix occurring has a special structure: it is a
circulant matrix. This means that it can be in-
verted explicitly, using a discrete Fourier trans-
form, and then the behaviour of the solution
as N grows can be analysed. It turns out that
the expected limit is achieved but the limit is
approached slowly, at best as N−1.

So far, we have not mentioned the boundary
condition on each cylinder. Most exact methods
can accommodate any choice, such as Dirichlet
(sound-soft) or Neumann (sound-hard) condi-
tions.

For the Foldy-type analysis described above,
the underlying assumption is that each cylin-
der scatters isotropically : note the presence of
H0(kr) with no dependence on the polar angle.
This is entirely appropriate for Dirichlet prob-
lems: we know that small (ka � 1) sound-soft
circles really do scatter like a monopole. How-
ever, sound-hard circles do not scatter isotrop-
ically: monopole and dipole contributions are
equally important and both must be retained.
The dipole gives a directional dependence to the
waves scattered by one circle, and this must be
incorporated into the calculation of the multi-
ply scattered waves when there are N circles.
Foldy’s method can be extended to cover sound-
hard scatterers, leading to a 3N × 3N linear al-
gebraic system. We can use this extension to
study scattering by a sound-hard cage.

2 Foldy approach

Foldy’s method, when applied to a cage of soft
circles, leads to an N ×N system,

N∑
j=1

Kn−jAj = fn, n = 1, 2, . . . , N, (1)

where fn = −uin(rn), uin is the incident wave,
K0 = −g−1, g = −[J0(ka)]/[H0(ka)],

Kj = H0(2kb | sin (jπ/N)|), j 6= 0 mod N
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and Kj is N -periodic: Kj+mN = Kj for all in-
tegers m. The nth circle is centred at rn, r = b,
θ = nh, where h = 2π/N is the angular spacing
between adjacent circles.

The unknown coefficients An appear in our
representation of the total field,

u(r) = uin(r) +

N∑
j=1

AjH0(k|r− rj |). (2)

The circulant structure means that we can
solve (1) explicitly, using discrete Fourier trans-
forms. Then all properties of the wavefield can
be found. In particular, it is possible to extract
asymptotic properties as N grows.

3 Extended Foldy approach

Sound-hard scatterers always generate a dipole
field. Foldy’s method can be generalized to cover
these situations [2, §8.3.3]. Thus, we add

N∑
j=1

qj · g(r− rj)

to the right-hand side of (2), where qj is an
unknown vector (dipole strength and direction),
g(r) = r̂H1(kr), r̂ = r/r and r = |r|.

For a cage, it is convenient to write qj in
terms of its radial and tangential components
with respect to the cage. Let ı̂ and ̂ be unit
vectors in the x and y directions, respectively.
Then r̂j = rj/b = ı̂ cos θj + ̂ sin θj with θj =

jh. Let θ̂j = ̂ cos θj − ı̂ sin θj be a unit tangent

vector, so that r̂j · θ̂j = 0. Write

qj = Bj r̂j + Cj θ̂j ,

so that the 3N unknowns are Aj , Bj and Cj ,
for j = 1, 2, . . . , N . These satisfy the system

N∑
j=1

Kn−jxj = fn, n = 1, 2, . . . , N, (3)

with fn = (−uin(rn), −r̂n·vin(rn), θ̂n·vin(rn))T ,
xj = (Aj , Bj , Cj)

T and vin(r) = k−1graduin.
Kj is a symmetric 3× 3 matrix; in detail,

K0 = KN =

 Z−10 0 0
0 (2Z1)

−1 0
0 0 −(2Z1)

−1

 ,

Zn = J ′n(ka)/H ′n(ka), and, for j 6= 0 mod N ,

Kj =

 K11 K12 K13

K12 K22 K23

K13 K23 K33

 ,

with entries as follows:

K11 = H0, K12 = −(2b)−1RjH1,

K13 = bR−1j H1 sin θj ,

K22 =
H1

kRj
cos θj +H2

R2
j

4b2
,

K23 =
H1

kRj
sin θj −

1

2
H2 sin θj ,

K33 = − H1

kRj
cos θj +H2

b2

R2
j

sin2 θj .

All Hankel functions have argument kRj with
Rj = 2b| sin (jπ/N)|. Clearly, Kj is N -periodic:
Kj+mN = Kj , m = ±1,±2, . . ..

The system (3) gives 3N equations for 3N
unknowns. Application of the discrete Fourier
transform breaks the system into N 3 × 3 sys-
tems, one for each xj , thus permitting further
analysis.
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Abstract

This work centres on problems involving the in-
teraction of water waves with thin rigid or flex-
ible plates which can either be fixed or freely-
floating on the surface of the fluid. A Fourier
transform method is key to developing integral
equations can subsequently be efficiently solved
numerically using a Galerkin approach. A large
class of problems can be considered using this
approach, including scattering by rectangular
and rhomboidal-shaped plates and eigenvalue
problems for sloshing modes in ice holes.
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1 Introduction

The reflection and transmission of surface grav-
ity waves by a rigid plate or ‘dock’ on the surface
of a fluid is a classical problem in the study of
linearised water waves. For example, when the
plate covers the half-plane – the so-called semi-
infinite dock problem – an explicit expression
for the reflection coefficient can be found us-
ing the Wiener-Hopf technique (see [1]). For a
plate that is infinitely-long and of uniform con-
stant width – the so-called ‘finite dock problem’
– exact solutions are no longer possible and var-
ious techniques have been employed all leading
to approximations of the reflection and trans-
mission. See for example, [2], [3].

In §2 we outline how a Fourier transform
method may be applied to this two-dimensional
scattering problem that results efficient and ac-
curate numerical results. We do not claim that
this approach is superior to existing methods,
but it does allow a number of extensions to be
considered and some of these are outlined in §3
and §4. Further extensions will be presented in
the talk.

2 A two-dimensional scattering problem
and its solution

To illustrate the main features of the approach,
we consider scattering of obliquely-incident plane
waves by a rigid thin plate fixed in the free sur-

face of water of infinite depth.
Cartesian coordinates are used with z = 0

in the mean free surface and the fluid extending
into z < 0. A rigid horizontal plate is placed on
the surface, z = 0, and extends uniformly in the
y-direction with −a < x < a.

Assuming time-harmonic incident waves of
angular frequency ω making an angle θ0 with
respect to the positive x direction, the velocity
field components are found from the gradient of
<{φ(x, z)ei(β0y−ωt)} where the velocity poten-
tial φ(x, z) satisfies

(∇2 − β20)φ(x, z) = 0, z < 0, (1)

with β0 = K sin θ0, K = ω2/g and

φz(x, 0)−Kφ(x, 0) = 0, (2)

on the free surface and |∇φ| → 0 as z → −∞.
The zero-velocity condition to be applied on the
plate is

φz(x, 0) = 0, |x| < a. (3)

and at the ends of the plate (as x approaches
±a) the potential should be bounded. Finally
radiation conditions are required and we write

φ(x, z) ∼

{
φi(x, z) +Rφi(−x, z), x→ −∞
Tφi(x, z), x→∞

(4)
where R and T are the complex reflection and
transmission coefficients and φi(x, z) = eiα0xeKz

with α0 = K cos θ0.
The Fourier transform of the scattered part

of the potential is defined by

φ(α, z) =

∫ ∞
−∞

(φ(x, z)− φi(x, z))e−iαx dx (5)

and the contour of integration in the inverse
transform will be defined in order to satisfy the
radiation condition.

The application of the Fourier transform yields
the following integral equation for the unknown
function φ(x, 0)

φ(x, 0) + (K0φ)(x) = eiα0x (6)
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for |x| < a where

K0φ =
K

2π

∫ ∞
−∞

eiαx

k0 −K

∫ a

−a
φ(x′, 0)e−iαx

′
dx′ dα.

and k20 = α2 +β20 . R and T can be expressed in
terms of simple integral relations of φ.

The unknown in (6) is expanded in terms of
a set of prescribed functions,

φ(x, 0) = 1
2

∞∑
n=0

inanPn(x/a), |x| ≤ a (7)

with unknown complex-valued coefficients an where
Pn are orthogonal Legendre polynomials.

The expansion (7) is substituted into (6)
which is multiplied through by p∗m(x/a) and in-
tegrated over −a < x < a. This Galerkin pro-
cedure results in the following infinite system of
equations for the unknown coefficients an:

am
2(2m+ 1)

+
∞∑
n=0

anKm,n = jm(α0a), (8)

m = 0, 1, 2, . . . where

Km,n =
Ka

2π

∫ ∞
−∞

jn(αa)jm(αa)

k0 −K
dα. (9)

and jm(x) is the spherical Bessel function. The
integral passes under the pole at k0 = K.

Numerical results show that a truncation to
just 1 term works well over a large range of Ka
and accuracy increases rapidly with increasing
truncation size.

3 Extensions to three-dimensional scat-
tering by finite docks

The main focus of the talk will be on using ex-
tensions of this method for 3-dimensional scat-
tering problems. The figures illustrate examples
of the results one can obtain. We show maxi-
mum surface amplitudes for monochromatic plane
incident wave (left to right) scattering by rect-
angular rigid plates and rhomboidal plates.

4 Eigenvalue problems

A second extension of the approach is in solving
geometrically complementary problems where
the surface is covered by a rigid plate apart
from a, say, rectangular section in which the
fluid forms a free surface. Mathematically we
have an eigenvalue problem in which the slosh-
ing modes and their frequencies can be deter-
mined from a homogenous system of equations.
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Figure 1: Wave amplitudes for left-right inci-
dent wave scattering by rigid plates in the sur-
face.
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Minisymposium: Waves and Plasmas
organised by Bruno Despres and Lise-Marie Imbert-Gerard

The mini symposium ”Waves and plasmas” in-
tends to make a tour on recent advances on
the mathematical and numerical theory (on the
broad sense) of waves in magnetic plasmas [7].
This is physically motivated by the fusion pro-
gram on Tokamaks [6] for which waves propaga-
tion will play an important role either for heat-
ing or for reflectometry purposes. It has mo-
tivated the development of new mathematical
and numerical tools and this mini symposium
will be the place to discuss these advances.

A mathematical model is the so-called cold
plasma model

curl curlE − ω2

c2
εE = 0

where the dielectric tensor ε ∈ C0(M3×3(C))
is non standard with respect to the standard
mathematical theory [2], and is representative
of the anisotropy of the wave propagation due
to the strong background magnetic field B0 .
Indeed the eigenvalues of ε change sign contin-
uously. One can refer to [4] where the solution
E is shown to be a Dirac mass plus a principle
value in the case of the hybrid resonance. It
has deep impact of numerical methods, a pre-
liminary work to be found in [5].

The mathematical theory of such problem
is quite close to the one of metamaterials [1], a
topic that will be discussed at KIT in other mini
symposia. Therefore we expect strong interac-
tions with our colleagues expert in the metama-
terial mathematical theory.
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ume 101, Issue 5, May 2014, Pages 623-
659.

[5] A generalized plane-wave numerical me-
thod for smooth nonconstant coefficients,
Lise-Marie Imbert-Gérard and Bruno De-
sprés, IMA 2013.

[6] ITER organization web page,
http://www.iter.org/

[7] D. G. Swanson, Plasma Waves, 2nd Edi-
tion, 2003, Series in Plasma Physics.



156 Waves and Plasmas
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Abstract

This work analyzes the stability of the Yee scheme
for non stationary Maxwell’s equations coupled
with a linear current model with density fluc-
tuations. Indeed the usual procedure may yield
unstable scheme for physical situations that cor-
respond to strongly magnetized plasmas in X-
mode (TE) polarization. We propose to use
first order clustered discretization of the
vectorial product that gives back a stable cou-
pling. We validate the schemes on some test
cases representative of direct numerical simula-
tions of X-mode in a magnetic fusion plasma
including turbulence at level relevant to simu-
late the experiments.

Keywords: Maxwell’s equation, fusion plasma,
stable scheme, FDTD, linear current model.

1 Introduction

The general model problem considered in this
work is the non stationary Maxwell system{

−ε0∂tE + curlH = J

µ0∂tH + curlE = 0
(1)

coupled with a linear equation for the electronic
current density J = eNeue,

me∂tue = e (E + ue ∧B0) . (2)

The unknowns are the electromagnetic field (E,H),
with the usual notation that H = B

µ0
, and the

electronic current is J. Equation (2) is the lin-
earized Newton law for electrons where the Lorentz
force on the right hand side is obtained by lin-
earization [4] of the full Newton law in a strongly
magnetized medium with bulk magnetic field
B0 6= 0, and vanishing electric field and cur-
rent E0 = J0 = 0. The coefficients are the
mass me and charge e < 0 of the electron, the
permittivity ε0 and permeability µ0 of vacuum.

The electronic density Ne = Ne(t,x) is a pre-
scribed function of the space and time variables.
The background magnetic field could as well
be dependent of the space and time variables
B0 = B0(t,x). The plasma frequency and cy-
clotron frequency are defined by

ωp =

√
e2Ne

meε0
and ωc =

|eB0|
me

. (3)

At any time, the total energy of the system is
naturally the sum of the electromagnetic energy
and the kinetic energy of electrons

E =

∫
Ω

(
ε0|E|2

2
+
|B|2

2µ0
+
me|J|2

2|e|2Ne

)
dx. (4)

The standard method to compute a numerical
approximation of (1)-(2) on a Cartesian grid
consists of coupling the Yee scheme with a linear
discretization of the current, see [5]. The prob-
lem is that it easily yields unstable numerical
solutions if the electronic density is highly non
uniform. This behavior is somehow non intu-
itive, since the basic numerical scheme was the
well-known Yee scheme and the linear current
equation is ”only” a ordinary differential equa-
tion. However the characteristic frequencies ωp
and ωc of the problem are comparable to the
frequency of the incoming wave ω. The reason
is the strong interaction between the linear cur-
rent equation and the scheme for the Maxwell
part, which may induce extremely strong nu-
merical instability at long time in particular
with resonances [3].

2 A solution

The proposed solution exploits the energy iden-
tity (4). Let n denote the time step (tn = n∆t).
In the standard approach of [1,5], the electrical
field is discretized on the integer time steps n,
n+ 1 ... , while the other fields are on the half
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time steps n − 1
2 , n + 1

2 ... The algorithmic
structure of the standard method reads then

ε0
En+1 −En

∆t
= curlHn+ 1

2 − Jn+ 1
2 ,

µ0
Hn+ 1

2 −Hn− 1
2

∆t
= −curlEn,

Jn+ 1
2 − Jn−

1
2

∆t
= ε0ω

2
pE

n

+ωcb ∧
Jn+ 1

2 + Jn−
1
2

2
.

(5)
The equation for Jh can be obtained as the limit
for small friction of the one from [5].

The key point is to use a clustered discretiza-
tion of the vectorial product as depicted in fig-
ure 1. This is counter-intuitive since this pro-
cedure is first -order accurate and the rest of
the scheme is second-order accurate. The proof
of stability relies on proving the discrete energy
estimate Ên+1

h ≤ Ênh with

Ênh = ‖Ên
h‖2h+‖B̂n− 1

2
h ‖2h+‖Ĵnh‖2h−∆t〈Ên

h, cRB̂
n− 1

2
h 〉h.

Figure 1: Graphical depiction of a (bulleted)
cluster of staggered degrees of freedom.

The structure of the scheme is as follows

H
n+ 1

2
h = H

n− 1
2

h − ∆t
µ0
RtEn

h

J
n+ 1

2
h =

(
I + S

(
θ

1+θ2

)
(b∧h)

+S
(

θ2

1+θ2

)
(b∧h)2

)
Wn

h

En+1
h = En

h + ∆t
ε0

(RH
n+ 1

2
h − J

n+ 1
2

h )

(6)

with θ = ∆tωc
2 and Wn

h = ∆tε0S(ω2
p)E

n
h + (I +

∆t
2 S(ωc)b∧h)J

n− 1
2

h .

Figure 2: Snapshot of max (Hz, 0).

3 Conclusion

Many numerical simulations [2] confirm the uni-
form stability of the new method which can now
be used for some simulations that were not pos-
sible before. Further researches will be devoted
to some optimization needed for time varying
density profiles like Ne(x− at).
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Abstract

This work deals with the construction of stable
perfectly matched layers (PMLs) for the wave
propagation in cold plasmas. This phenomenon
is described by Maxwell equations with an an-
isotropic tensor of dielectric permittivity that
depends on frequency. Traditional PMLs ex-
hibit instabilities for this model, due to the pres-
ence of backward propagating modes. In this
work we demonstrate how this difficulty can
be overcome for the case of cold plasma un-
der infinitely large background magnetic field.
Namely, in 2D we use of the anisotropic frequen-
cy-dependent absorption rate inside the PML.
In 3D we split the Maxwell equations into two
systems, one of which presenting no difficulties
for the traditional PMLs, and another one being
treated in a manner similar to the 2D system.
We present theoretical and numerical evidence
to support our arguments.

Keywords: perfectly matched layers, plasma,
Maxwell equations

1 Introduction

We consider electromagnetic wave propagation
in a cold collisionless plasma under a uniform
background magnetic field B0 = (0, 0, B0). For
simplicity, we assume that the plasma is com-
posed of particles of a single species, with mass
m and charge q, whose density N is constant.
As B0 → +∞, the electromagnetic field satisfies
(c.f. [1])

1

c
∂tE− curl B = −4π

c
qNve3,

1

c
∂tB + curl E = 0,

m∂tv = qE3,

(1)

where c is the light speed, E is an electric field,
B is a magnetic field, e3 = (0, 0, 1) and v is a
particle velocity.

To perform simulations in free space, we ma-
ke use of the PML technique. In this method
the computational domain is surrounded by a
layer (in practice of a finite width), within which

the original equations are modified so that their
solutions decay in space. A perfect matching
property ensures that there is no reflection be-
tween the computational and artificial domain.
The PMLs are typically constructed via intro-
ducing an anisotropic absorption into the orig-
inal equations. On the external boundary of
the PML the choice of zero boundary condi-
tions results in a numerically insignificant re-
flection. However, such PMLs are known [2, 3]
to be unstable in the presence of the backward
propagating waves defined as below.

Definition 1 A mode ω(k), k ∈ Rd, is called
backward propagating in the direction n ∈ Rd if(

dω

dk
· n
)(

ω

k

k

k
· n
)
< 0.

For plasmas the presence of such waves was no-
ticed in [5], however, no PML was proposed in
this work.

In this abstract we concentrate on the model
(1). It appears that already this simple situa-
tion gives rise to instabilities of the PML.

2 Stable Perfectly Matched Layers in 2D

In 2D, for solutions independent of x, the prob-
lem (1) can be split into the TM (for variables
By, Bz, Ex) and TE (Ey, Ez, Bx) modes. We
study the dispersion relation of the TE mode [4]

F2D(ω, ky, kz) =
k2z
ω2

+
k2y

ω2
(

1− ω2
p

ω2

) − 1 = 0,

where we used the scaling c = 1. Here ω2
p =

4πq2N
m . In the sense of Definition 1 in the direc-

tion n = ez all modes are forward propagating.
In the direction ey the situation is different: for
ω < ωp all respective modes are backward prop-
agating, and for ω ≥ ωp all modes are forward
propagating. Then stable PMLs can be con-
structed following the strategy:

1. in the direction ez use Bérenger’s PML;
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2. in the direction ey employ the technique
of [3]. The PML absorption rate is mul-
tiplied by a function ψ(ω) chosen so that
ψ(ω) is negative for ω < ωp (i.e. in the
presence of backward propagating modes),
and ψ(ω) is positive for ω > ωp (i.e. when
the standard PML is stable).

3 Stable Perfectly Matched Layers in 3D

In 3D the problem (1) has the dispersion rela-
tion of the form

F (ω, kx, ky, kz) = FwF2D(ω,
√
k2x + k2y, kz),

Fw = Fw(ω, kx, ky, kz) = k2x + k2y + k2z − ω2.

Like in 2D case, for all ω in the direction ez
and for ω > ωp in directions ex,y there exist only
forward propagating modes. However, in the di-
rections ex,y for frequencies ω < ωp there exist
both forward and backward propagating modes
for the same frequency. To deal with this
difficulty, we split the Maxwell system (1) into
two systems, one with the dispersion relation

F2D(ω,
√
k2x + k2y, kz), and another one with the

dispersion relation Fw(ω, kx, ky, kz) (perhaps
with additional modes that would not present
difficulties for the PML treatment). This split-
ting is done based on the analysis of the eigen-
spaces of (1) written in Fourier (in time and
spatial variables) space. Importantly, this can
be done only for the homogeneous problem (and
we assume that all coefficients are constant out-
side of a bounded domain, inside the domain
where the PML is constructed).

Then the PML is constructed as follows:

1. for the system with the dispersion relation
Fw(ω, kx, ky, kz) a standard PML appears
to be stable;

2. for the system with the dispersion rela-

tion F2D(ω,
√
k2x + k2y, kz) the behaviour

is similar to the 2D case. Thus in the di-
rections ex, ey the PML absorption rate
is modified as described in Section 2, and
in the direction ez the standard PML ab-
sorption is used.

The resulting systems are discretized with
the help of the Yee scheme. Inside the PML
the split system is used, and inside the physical
domain the original Maxwell system is solved.
The coupling between two systems is done on a
discrete, FDTD level, through a thin layer.

4 Outline and Future Work

We have constructed stable PMLs for Maxwell
equations in plasmas under very strong back-
ground magnetic fields. In the future work we
aim to study the following questions:

1. stable variational formulation (on a con-
tinuous level) for the coupling of the Max-
well system with the new split system;

2. construction of stable PMLs for Maxwell
equations in plasmas for arbitrary mag-
netic fields.
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Abstract

In this paper we report on the mathematical
theory and the numerical scheme at the basis of
the WKBeam code, which describes the propaga-
tion of electromagnetic wave beams in the hot,
magnetized plasma of a tokamak machine, the
primary candidate for a fusion energy reactor.
The code solves the wave kinetic equation in the
appropriate (toroidal) geometry and it accounts
for beam diffraction, absorption, and scattering
by turbulent fluctuations of the plasma density.
Keywords: Wave kinetic equation, turbulent
media, tokamak plasmas.

1 Introduction and wave equation

In plasma physics, beams of electron cyclotron
waves [1, 2] have frequency in the microwave
region of the spectrum. The problem there-
fore exhibits a large separation of scales: a mil-
limeter wave, propagating over distances of me-
ters, in an inhomogeneous plasma equilibrium
with scale length of several centimeters. There-
fore, semiclassical methods are ideal to solve ef-
ficiently the relevant equation for the wave elec-
tric field E(ω, x) for a large frequency ω.

Let the electric field be given on a plane Σ,
which represents a mirror of the wave launcher
system and is typically located in vacuum, away
from the plasma. In normalized form, we can
consider the field u(h, x) = E(ω, x)/E0, where
h = c

ωL � 1 is the ratio of the typical wave
length to the typical scale L of variation of the
plasma equilibrium and E0 is a reference nor-
malization, e.g., the peak value of |E| on Σ.

The problem for the wave electric field reads

Oph(D)u(h, x) = 0, u|Σ = ua, (1)

where u|Σ denotes an appropriately defined re-
striction of u to the plane Σ, and ua is the
boundary condition on the mirror. (Unique-
ness of the solution requires an additional con-
dition on the direction of propagation which we
do not specify in this note.) The linear opera-
tor Oph(D) is the semiclassical Weyl quantiza-

tion [3] of the symbol

Dij(h, x, ξ) = ξ2δij − ξiξj − εij(h, x, ξ), (2)

and ε(h, ·, ·) is the plasma dielectric tensor [1]
given as a function of both position x ∈ Rd and
refractive index vector ξ ∈ Rd.

All the information on the plasma dynamics
is encoded in the dielectric tensor ε(h, x, ξ). We
adopt the common approximation

ε(h, x, ξ) ≈ ε0(x) + ihε1(x, ξ),

where ε0(x) is the Hermitian part of the cold-
plasma limit of the dielectric tensor [1], while
ε1(x, ξ) is the anti-Hermitian part of the exact
plasma dielectric tensor. In fact, we replace the
Hermitian part of ε with the much simpler cold-
plasma approximation.

For a weakly turbulent plasma, the electron
density can be represented as a smooth back-
ground n(x) plus a perturbation

√
hδn(x), with

δn(x) being a random field independent of h and
satisfying E

(
δn(x)

)
= 0. The factor

√
h is in-

troduced in order to express the fact that fluc-
tuations are weak, δn(x) being understood as
an O(1) quantity. This particular scaling with
the frequency of the beam can only be justified a
posteriori [4]. In view of the particular structure
of the cold-plasma dielectric tensor, one has

ε(h, x, ξ) ≈ ε0(x) + ihε1(x, ξ)

+
√
h
(
I − ε0(x)

)δn(x)

n(x)
. (3)

In presence of fluctuations, the solution u(h, x)
is also a random field.

2 The wave kinetic equation for beams

Following McDonald’s work [5], we consider the
Wigner matrix of the two-point correlation func-
tion ρ(h, x, y) = E

(
u(h, x)u∗(h, y)

)
, i.e.,

W (h, x, ξ) =

∫
e−

i
h
ξ·sρ
(
h, x+ s

2 , x−
s
2

)
ds.

From equation (1), formal semiclassical asymp-
totics is obtained in the form [5]

W (h, x, ξ) ≈
∑

α
wα(h, x, ξ)eα(x, ξ)e∗α(x, ξ).
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This shows that, the leading-order Wigner ma-
trix is diagonal on the basis of the eigenvec-
tors eα(x, ξ) of the cold-plasma dispersion ten-
sor D0 = ξ2 − ξ ⊗ ξ − ε0(x, ξ); the index α runs
over all wave modes supported by the medium:
a polarization eα is included in the sum if the
eigenvalue Hα = e∗αD0eα vanishes on a non-
empty set Cα. For electron cyclotron waves,
one finds Cα = {(x, ξ) : ξ⊥ = nα(x, ξ‖)}, where
ξ⊥ = |ξ − πb(x)ξ| and ξ‖ = b(x) · ξ, whereas
πb = b⊗ b and b is the unit vector in the direc-
tion of the local magnetic field.

The Wigner functions wα are determined by
a boundary value problem for the steady state
wave kinetic equation, namely,

{Hα, wα} = −2γαwα +
∑

β
Sαβ(Γ, wα, wβ),

Hαwα = 0, wα|Σ = wα,a, (4)

where {·, ·} are canonical Poisson brackets, γα =
e∗αε1eα is the absorption coefficient, and Sαβ is
a matrix of scattering operators accounting for
the effects of turbulent density fluctuations and
depending on the Wigner matrix Γ(h, x, ξ) of
the density correlation E(δn(x)δn(y)

)
.

The constraint Hαwα = 0 implies that wα is
a singular distribution supported on Cα. In view
of the specific form of the latter, however, we
can consider distributions wα that are smooth
in position x, so that the restriction wα|Σ is well-
defined. The boundary value wα,a is obtained
from the Wigner transform of ua in equation (1).

3 Numerical solution

Due to the high dimensionality of the problem
which is formulated in phase space and the con-
straint which forces distributional solutions, the
natural choice of a numerical method for the
wave kinetic equation (4) falls on Monte Carlo
techniques.

We consider the auxiliary Cauchy problem
(neglecting cross-polarization terms that means
Sαβ ≈ 0, when α 6= β)

∂tfh + {Hα, fh} = −2γα + Sαα(Γ, fh, fh),

fh(t, x, ξ) = |n · ∇ξHα|wα,a ⊗ δΣ,

for (t, x, ξ) ∈ {0} × Σ× Rd,
(5)

where n is the unit normal to Σ and δΣ is the
Dirac’s delta on the plane Σ (given by δ(X1) in
coordinates (X1, . . . , Xd) such that the X1-axis
is directed along n).

When Σ is located in vacuum and ua corre-
sponds to a Gaussian beam, this choice of the
initial datum guarantees that fh is a positive
measure and w(h, x, ξ) =

∫
fh(t, x, ξ)dt satisfies

the wave kinetic equation (4) for the single po-
larization α.

Equation (5) is solved by Monte Carlo ray
tracing in the code WKBeam. First results for
a fully realistic tokamak geometry demonstrate
the validity of the method. A further quanti-
tative analysis shows that scattering from den-
sity fluctuations has detrimental effects for elec-
tron cyclotron wave heating and current drive
in large tokamaks.
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Abstract

The cold plasma model studied here is a sim-
ple model describing a plasma as a one species
fluid, namely electrons, neglecting the ions mo-
tion. (24) This model includes different types
of formal singularities, called resonances in the
physics literature. We are interested in describ-
ing the behavior of the solutions in the neigh-
borhood of the cyclotron resonance and the hy-
brid resonance, thanks to a limit absorption
principle. A singular behavior appears only in
the neighborhood of the hybrid resonance. It
can be explicitly described thanks to a careful
analysis based on Bessel functions.

Keywords: plasma physics, Bessel functions

1 Introduction

We consider a linearized model of interaction of
a plasma with an electromagnetic wave. This
model is associated with Tokamak studies, hence
one studies an applied magnetic field, orientated
along the vertical axis ~ez, depending on an hor-
izontal coordinate x. The physical quantities
of interest are n0(x), density of the plasma of
electrons, and B0(x) the intensity of the applied
magnetic field. From these two quantities, one
defines usually two frequencies ωc(x) = eB0(x)

m

(cyclotron frequency) and ωp(x) = (4πe
2n0(x)
m )

1
2

(plasma frequency). A traditional analysis of
the coupled system of equations relies on the
definition of an equivalent dielectric tensor ε(x, ω),
such that the resulting equation on the electric
field ~E writes

∇∧ (∇∧ ~E) = ω2c−2ε(x, ω) ~E. (1)

The equivalent dielectric tensor is singular at
ω = ωc(x) (namely (ω − ωc(x))ε(x, ω) has non
zero limit when ω − ωc(x) → 0, and its di-
agonal term ε11(x) = ε22(x) vanishes for ω =

(ω2
p(x) + ω2

c (x))
1
2 = ωh(x), which is called the

upper hybrid singularity. This second singular-
ity has been studied in a model case under the
name of ’Budden’ problem.
Our aim in this paper is to write a new formula-
tion of the interaction problem, in which on one
hand the cyclotron singularity does not give rise
to a singular behavior of the electromagnetic
field, and on the other hand, the upper hybrid
frequency (X mode in the literature) gives rise
to a singular behavior of the electromagnetic
field (namey ||(ω − ωh(x)) ~E(x)|| ≥ c > 0 in the
neighborhood of the point x where ω = ωh(x)).
This difference will be emphasized through a
physical quantity, called the heating of the plasma
(introduced in [1]).

2 The electromagnetic model

Recall the classical electromagnetic equations
with dissipation for the plasma of electrons char-
acterized by ν

∇∧ E = −∂tB, c2∇∧B = ∂tE − ε−10 J
∂tJ + νJ = ε0(ωp(x))2E − ωc(x)J ∧ ez

Assume that all fields depend only on (x, y, t),
that the dependency on y, t is characterized by
the phase iωc (sin θ0y− ct). One obtains the sys-
tem (1), where ε(x, ω) is replaced by εν(x, ω).
This system is not singular when ν > 0 and the
singularities appear when ν → 0+. To study
them, instead of obtaining an ODE on ~E, we
calculate (E1, J1, J2) in terms of E2, B3, and use
the result in
dE2
dx = iωB3 + ω

c sin θ0E1, c2 dB3
dx = iωE2 − J2.

The resulting system is (W = c2B3, the coef-
ficients aν , bν , cν being explicit from ε11(x) and
ε12(x) = −ε21(x))

d

dx

(
E2

W

)
=

(
aν(x, ω) bν(x, ω)
cν(x, ω) −aν(x, ω)

)(
E2

W

)
.

(2)
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The above matrix, called Mν , has a finite limit
when ν → 0 for x in a neighborhood of xc,
unique solution for a given frequency ω of the
equation ωc(x) = ω where ωc is the cyclotron
frequency, and is singular at the unique xh such
that ω = ωh(x).
Our analysis is thus valid only when, in the
neighborhood of the point that is considered,
the coefficients are analytic with respect to x
and to ν. This system (2) is equivalent to the
system:

d
dx( 1

cν
(x)dWdx ) = 1

cν
(a2ν + bνcν − cν(aνcν )′)W,

E2 = c−1ν (dWdx + aνW ).
(3)

The ordinary differential equation on W is reg-
ular for all ν in a neighborhood of xc, and has a
regular singular point at x = xh for ν = 0. This
regular singular point corresponds to a Bessel-
type behavior(identical to the one studied in
[2]), that we shall outline.

3 Bessel equation and solution

It is enough to recall that the Bessel equation
(equivalent to the classical one through a change
of unknown and variable) dh

dX = (− 1
4X2 − λ

4X )h

has
√
XJ0(λ

√
X) and

√
XY0(λ

√
X) as solutions.

We shall use that J0(z) has an analytic expan-
sion in powers of z2, and that T0(z) = J0(z) −
2
π ln zY0(z) has the same property.
Let us introduce the eikonal equation:

(ρ′)2(1 + ρ)

4ρ2
= cν(

aν
cν

)′−a2ν−bνcν+
√
−cν(

1√
−cν

)′′

(4)
Under the assumption that ε11(x) has an iso-
lated zero at xh, one proves that there exists
Xν ∈ C such that |(x − Xν)cν(x)| ≥ a > 0
in a neighborhood of (xh, 0). This leads to the
existence of σν(x), σν(Xν) = 1, such that the
unique bounded solution in the neighborhood of
xh of (4) is ρν(x) = (x−Xν)σν(x). One can then
define approximate solutions of (3) in the neigh-

borhood of Xν as Uν(x) =
√

ρ′ν(x)
ρν(x)

J0(
√
ρν(x))

and Vν(x) =
√

ρ′ν(x)
ρν(x)

Y0
√
ρν(x)).

With these notations, there exists Aν and Bν ,
smooth in a neighborhood of Xν uniformly in ν,
such that (thanks to a Volterra integral equa-
tion, non singular), any solution of (3) write

W (x) = Aν(x)Uν(x) +Bν(x)Vν(x)

uniformly in a neighborhood of (xh, 0) in C2.

4 Resonant heating

It has been introduced previously the following
quantity

Qν(a, b) = =
∫ b
a (εν(x) ~Eν(x), ( ~Eν)∗(x))dx

= −=(W ν(b)(Eν2 )∗(b)) + =(W ν(b)(Eν2 )∗(a))

where a and b are fixed.
In the case of the cyclotron singularity x =
xc, as the solution has a finite bounded limit
when ν → 0, the limits of W ν(b)(Eν2 )∗(b) and
of W ν(a)(Eν2 )∗(a) are real, hence the limit of
the resonant heating for the cyclotron singular-
ity is zero.
This proves that the so-called fluid model
of the interaction of the plasma and the
electromagnetic field has no singularity at
the cyclotron frequency.
On the other hand, when a and b belong to
the neighborhood on which all quantities are
extendable, and such that a ≤ <Xν − δ0 ≤
<Xν + δ0 ≤ b for all admissible values of ν.
There limit value for vanishing ν is the resonant
heating, and one gets

limν→0+Q
ν(a, b)

=
1
π |B0(xh)|2|ε012(xh)|2(sign(∂νε

ν
11)|ν=0(xh)).

5 References

References

[1] B. Després, L.-M. Imbert-Gerard and R.
Weder, Hybrid resonance of Maxwell’s
equations in slab geometry, J. Math. Pures
App. 101 (5), 2014, 623-659.

[2] O. Lafitte, M. Williams and K. Zum-
brun, High-frequency stability of multidi-
mensional ZND detonations, 2013, to be
published in Siam J. Math. Anal. arxiv
preprint http://arxiv.org/abs/1312.6906.



164 Waves and Plasmas

The electromagnetic wave propagation in magnetized plasmas of Tokamaks
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Abstract

Tokamaks plasmas must be heated to very high
temperatures to undergo fusion reactions. To
this end, many techniques exist such as Joule ef-
fect, injection of neutrals, and electromagnetic
waves. We will focus on the last one. The waves
are emitted by an antenna located on the wall of
the tokamak; the choice of the frequency selects
the region of the plasma which will be heated by
absorbing some of the wave energy. Thus, we
derive a model [1] for the propagation and the
absorption of electromagnetic waves in a mag-
netized plasma. We refer to [2, 5] for the finite
element discretization. The numerical results
show where the absorption of waves takes place.

Keywords: Magnetised plasma, Maxwell’s equa-
tions, Finite Element method

1 Introduction

Let us denote by Ω the domain representing the
tokamak and Bext the strong, external, static
magnetic field. The wave propagation and ab-
sorption in the plasma is described by the equa-
tions [1, 2, 4, 5]

curl curlE− ω2

c2
KE = 0 in Ω, (1)

div (KE) = 0 in Ω, (2)

where ω > 0 is the wave frequency and c the
speed of light satisfying ε0 µ0 c

2 = 1 with ε0
and µ0 the electric permittivity and magnetic
permeability of vacuum. If we use the Stix co-
ordinates, i.e., the third coordinate parallel to
Bext, the (complex and non-Hermitian) tensor
K(x) has the following form:

KS(x) =

 S(x) −iD(x) 0
iD(x) S(x) 0

0 0 PL(x)

 . (3)

The expressions of the entries S, D and PL in-
volve the plasma and cyclotron frequencies of
each species (ion and electron), and the colli-
sion frequency. The boundary conditions are

defined as follows: we split the boundary of the
domain Ω in two parts, ΓA being the antenna
and ΓC the rest of the boundary. We can con-
sider a Neumann boundary condition on ΓA and
a perfectly conducting condition on ΓC :

curlE× n = iωµ0js on ΓA

E× n = 0 on ΓC .

or This boundary-value problem admits a mixed
augmented variational formulation [1] where the
the divergence condition (2) is taken as a con-
straint. For a numerical approach, we reduce
the 3D problem to a series of 2D ones [3] by
using cylindrical coordinates (R,Z, φ) and by
expanding all functions as Fourier series in the
angular coordinate φ. The modal variational
formulation is then discretized using a Taylor–
Hood P2-iso-P1 finite element in (R,Z) [2, 5].
The equations (1)-(2) being valid in any coordi-
nate system, we derive from (3) the expression
of the matrix K in cylindrical coordinates:

K(x) = P(x)KS(x)P>(x). (4)

where P is the change of basis matrix from the
Stix to the cylindrical coordinates. In the fol-
lowing we assume that the external magnetic
field, and the electron and ion density and tem-
perature are independent of φ. This implies
that K is independent of φ, thus the divK op-
erator can be expanded in Fourier series without
a convolution product.

2 Accessibility conditions

We look for a solution to (1) in the form E =
Ẽeik·x. Plugging this ansatz in (1), we obtain a
linear system M Ẽ = 0, with:

M =

S − n2
‖ −iD n⊥n‖

iD S − n2
⊥ − n2

‖ 0

n⊥n‖ 0 P − n2
⊥


and n = c

ωk =
(
n⊥, 0, n‖

)>
in the Stix frame.

The plasma is accessible, i.e., the waves can
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propagate in it, if there exists n ∈ R3 such that
detM = 0. One finds: detM = Q(n2

⊥), where:

Q(X) = S X2−((S+P )r−D2)X+P (r2−D2),

and r = S − n2
‖. The discriminant of Q writes

as a function of r as:

∆Q(r) = (S−P )2r2−2D2(S+P )r+D2(D2+4SP ).

To find the sign of ∆Q(r) we study its discrim-
inant in r:

∆∆Q
= 16D2SP (D2 − (S − P )2).

Under conditions which are generally satisfied
in practice, one can show that the plasma is
accessible under either one of the following con-
ditions:

• ∆∆Q
6 0, with |r| > D or −D 6 r 6 r′ =

D2

S+P

• ∆∆Q
> 0 and r /∈]r−, r+[ with

r± =
2D2(S + P )±

√
∆∆Q

2(S − P )2
,

and, again, |r| > D or −D 6 r 6 r′.

3 Numerical results

We consider an external magnetic field with the
following expression

Bext(R,Z) =
B0R0

R

(
−Z

d(r) q(r)
,
R−R0

d(r) q(r)
, 1

)>
with B0 a constant, R0 the major radius of the
torus, d(r) =

√
R2

0 − r2, r =
√

(R−R0)2 + Z2,

and q(r) =
(

r
r0

)2
(qb−qc)+qc is the “safety fac-

tor”, with r0 the minor radius of the torus.

The first picture shows the accessibility of the
plasma (black where accessible, white elsewhere),
and the second the real part of the third com-
ponent of the electric field.
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Abstract

This talk describes a unified approach to de-
sign conforming and non-conforming Galerkin
schemes for the time-dependent Maxwell system
that preserve a proper discrete Gauss law when
coupled with a particle method for the Vlasov
equation, or even when considered alone. Our
approach consists of identifying structure rela-
tions that should be satisfied by the discrete
divergence involved in the Gauss law and the
associated discrete continuity equation. After
reviewing the case of curl-conforming finite el-
ements we indicate how to extend the method
to non-conforming schemes, and we provide nu-
merical illustrations.

Keywords: Maxwell-Vlasov system, compati-
ble Gauss law, charge-conserving method, dis-
crete continuity equation.

1 Introduction

In plasma physics the Maxwell evolution system{
∂tE − curlB = −J

∂tB + curlE = 0
(1)

is often coupled to the Vlasov equation

∂tf + v ·∇xf + (E + v ×B) ·∇vf = 0 (2)

where f = f(t,x,v) is the phase-space distribu-
tion of a charged particles gas. Here the current
density is J :=

∫
vf dv and if (1) is considered

alone, it is a given source term.
The problem of charge conservation is re-

lated to the fact that numerical schemes for (1)
should preserve a discrete analog of Gauss’s law

divE = ρ (3)

where ρ :=
∫
f dv is the charge density. It is

indeed the case at the continuous level, thanks
to the continuity equation

∂tρ+ divJ = 0 (4)

satisfied by the sources. However for a given dis-
cretization of (1)-(2) there is no reason that a
proper discrete continuity equation holds. This
leads to the development of small errors which
accumulate to large deviations for long simula-
tion times, see e.g., [6]

2 Structure preserving discretizations

At the continuous level, we see that the Gauss
law (3) is preserved by taking the divergence of
the Ampere equation and using the continuity
equation (4). Here we have also used that the
divergence of a curl always vanishes, i.e.,

div curl = 0. (5)

The idea of structure-preserving discretizations
is to get a discrete version of (4) and (5). Thus,
we shall look for approximations of the form{

∂tEh − curlhBh = −Jh

∂tBh + curlhEh = 0
(6)

with the following properties:

a) the approximated sources satisfy a discrete
continuity equation analog to (4),

∂tρh + divh Jh = 0 ; (7)

b) with underlying discrete operators that sat-
isfy an analog to (5),

divh curlh = 0. (8)

The resulting field will then preserve the cor-
responding Gauss law,

divhEh = ρh (9)

and a similar procedure can be applied for B.
This program gives satisfactory results for

several classes of solvers. For Finite Differences
schemes, conservative methods to compute Jh
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Figure 1: Beam test case. Numerical fields Ex computed with a curl-conforming scheme (left) and
DG schemes using either a standard current deposition method (center) or a compatible one (right).

have been introduced in [7] and later improved
by other authors. In the scope of curl-conforming
finite elements, deposition schemes have been
proposed in [4] and generalized to arbitrary or-
ders and unstructured meshes in [1].

However, for non-conforming schemes this
procedure fails to provide stable solutions, be-
cause (8) does not suffice to guarantee that the
preserved Gauss law is strong enough. Indeed
to ensure long-time stability (9) should allow to
characterize the fields in ker curlh, since their
temporal growth is not controlled in the evolu-
tion equation (6). If one considers the case of
metallic boundary conditions for simplicity, re-
lation (8) should then be replaced by the stronger

ker divh = (ker curlh)⊥ (10)

as is the case for the continuous operators. For
curl-conforming schemes, (10) is typically guar-
anteed by an exact sequence property satisfied
by the discrete finite element spaces [3]. To
design charge-conserving schemes for non-con-
forming Maxwell solvers we thus need to find
exact sequences that hold in the corresponding
non-conforming spaces. We will describe how
this approach can be applied to DG schemes,
leading to “source correction” methods.
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nendrücker, Gauss-compatible
Galerkin schemes for time-

dependent Maxwell equations, (2014),
http://hal.upmc.fr/hal-00969326.

[3] M. Costabel and M. Dauge, Computation
of resonance frequencies for Maxwell equa-
tions in non-smooth domains, in Topics
in computational wave propagation 2003,
Springer, Berlin, pp. 125–161.

[4] J.W. Eastwood, The virtual particle elec-
tromagnetic particle-mesh method, Com-
puter Physics Comm. 64 (1991), pp. 252–
266.

[5] P. Monk and L. Demkowicz, Discrete
compactness and the approximation of
Maxwell’s equations in R3, Math. of Com-
putation 70 (2001), pp. 507–523.

[6] C.-D. Munz, R. Schneider, E. Son-
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High-fidelity numerical simulation of the dynamic beam equation
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Abstract

A high-fidelity finite difference approximation
of the dynamic beam equation is derived. Dif-
ferent types of well-posed boundary conditions
are analysed. The boundary closures are based
on the summation-by-parts (SBP) framework
and the boundary conditions are imposed using
a penalty (SAT) technique, to guarantee linear
stability. The resulting SBP-SAT approxima-
tion leads to fully explicit time integration. The
accuracy and stability properties of the newly
derived SBP-SAT approximations are demon-
strated for both 1-D and 2-D problems.

Keywords: finite difference methods, high-order
derivative, high-order accuracy, stability, bound-
ary treatment, dynamic beam equation

1 Introduction

The dynamic beam equation (DBE), also known
as the Euler-Bernouilli beam equation, is a stan-
dard model of flexible body dynamics and is
thus of interest in many engineering applica-
tions where beams are used as the basis of sup-
porting structure or as axles, e.g when study-
ing vibrations of buildings or railway structures.
The DBE is derived from Euler-Bernoulli beam
theory, one of the simplest beam theories dating
back to the 18th century.

To capture the dispersive nature of the DBE
efficiently it is essential that high-order (i.e. higher
than second order) spatially accurate numerical
methods are used to capture the high-frequency
parts of the solution. Since the wave speed
scales as the frequency the physics require dt '
dx2. In the literature, numerical analysis of the
DBE in time-domain is very scarce, in partic-
ular concerning higher-order methods. In the
present study we analyse and solve the DBE in
time-domain using an explicit time-symmetric
finite difference method, with a CFL condition
similar to the physical time-step requirement.
The dispersive nature of the DBE makes a high-
fidelity numerical simulation computationally de-
manding. A well-proven approach to reduce the
computational cost is to employ a high-order ac-

curate finite-difference method. The major dif-
ficulty with higher-order finite difference meth-
ods is to obtain a stable boundary treatment,
which has received considerable past attention.

The SBP-SAT method is a robust and well-
proven high-order finite difference methodology
that ensures stability of time-dependent partial
differential equations (PDE). The SBP-SAT ap-
proach has so far been developed for problems
involving first and second derivatives in space
(see for example [1, 3]). Recently, high-order
accurate SBP operators for third and fourth
derivatives were derived [2].

2 The dynamic beam equation

For a beam of length L with its axis along the
x-direction, denote the deflection of the beam
from its axis as u. The governing equation of
the 1-D DBE is given by,

µutt = −(E I uxx)xx + F , 0 ≤ x ≤ L, t ≥ 0 ,

where F = F (x, t) is a forcing function, E the
elastic modulus of the beam, I the second mo-
ment of area of the cross section of the beam
and µ the mass per unit length.

A few of the most commonly used and well-
posed boundary conditions (BC) for the DBE
are listed below,

u = 0, ux = 0, ’Clamped’,
uxx = 0, uxxx = 0, ’Free’,
u = 0, uxx = 0, ’Hinged’,
ux = 0, uxxx = 0, ’Sliding’ .

(1)

Next to each of the BC in (1) the physical inter-
pretation of the BC imposed on a homogeneous
beam is stated. By specifying the ingoing char-
acteristic variables (here referred to as the char-
acteristic BC) we obtain the most dissipative
set of well-posed BC,

uxt − uxx = 0, ut + uxxx = 0, x = 0 ,
uxt + uxx = 0, ut − uxxx = 0, x = L .

(2)

This will introduce damping through the bound-
aries (, i.e., nonreflecting BC). In the present
study the clamped BC is of special interest as
they are particularly difficult to impose using
the SBP-SAT method.
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m log l2
(2nd)

q(2nd) log l2
(6th)

q(6th)

51 -1.43 -3.09
101 -1.67 0.82 -4.58 4.93
201 -2.32 2.15 -6.32 5.80
401 -2.69 1.66 -8.02 5.81

Table 1: log(l2 − errors) and convergence q.
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Figure 1: The l2-error as a function of runtime.

3 Computations

The accuracy and efficiency properties of the
SBP-SAT approximations are verified against
analytic solutions in 1-D. In Table 1 we present
the convergence results (with clamped BC) us-
ing the second- and sixth-order accurate SBP-
SAT approximations. The convergence rate is
calculated as

q = log10

(
‖u− v(m1)‖h
‖u− v(m2)‖h

)
/ log10

(
m1

m2

)
, (3)

where u is the analytic solution, and v(m1) the
corresponding numerical solution with m1 un-
knowns.
‖u−v(m1)‖h is the discrete l2 norm of the error.
In Figure 1 we compare the efficiency for differ-
ent orders of accuracy. We plot the l2 − error
as a function of runtime (where the unit is sec-
onds).

A 2-D extension of the DBE with clamped
BC is also presented. In Figure 2 a sixth-order
accurate simulation using 401× 401 grid-points
is presented. The initial data is a Gaussian
pulse, and at t = 0.003 the dispersive waves
have reached the boundaries.

A detailed convergence and efficiency analy-
sis (not shown in this short abstract) for the 2-D
simulations were performed and showed similar

Figure 2: A high-fidelity simulation of the 2-D
DBE with clamped BC. Initial data (Gaussian)
and the solution at t = 0.003.

results as presented in Figure 1 and Table 1.
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High-fidelity numerical simulation of solitons in the nerve axon
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Abstract

We derive high-order accurate finite difference
schemes for a non-linear soliton model of nerve
signal propagation in axons. Two types of well-
posed boundary conditions are analysed. The
boundary closures are based on the summation-
by-parts (SBP) [4] framework and the boundary
conditions are imposed weakly using a penalty
technique [3], to guarantee linear stability. The
resulting finite difference approximations lead
to fully explicit time integration. The accuracy
and stability properties of the newly derived fi-
nite difference approximations are demonstrated
for a 1-D soliton solution.

Keywords: finite difference methods, high-order
derivative, high-order accuracy, stability, bound-
ary treatment, nerve signals, solitons

1 Introduction

Commonly, nerve signals in the axon are mod-
eled using the Hodgkin and Huxley model [1].
However, it has been suggested that the HHM
does not accurately describe certain phenomena
observed in experiments. Some examples are
the effects of anesthesia, temperature induced
nerve pulses and thickness changes with pulse
propagation. Trying to address these discrep-
ancies, researchers are looking for new ways to
describe the propagation of nerve signals. In
a series of recent publications by Heimburg et
al. [2] an alternative thermodynamic model is
proposed in which nerve pulses are described as
a localized density pulse (soliton) in the axon
membrane. This model will be referred to as
the nerve soliton model (NSM) in the present
study.

2 The equation

The NSM is a partial differential equation in
time and one dimension of space. It’s founda-
tion is the the wave equation for area density
changes,

∂2

∂τ2
∆ρA =

∂

∂z

[
c2
∂

∂z
∆ρA

]
, (1)

where τ is time, z is position, c is the speed of
sound and ∆ρA is the density offset from the
equilibrium. The sound velocity in the lipid
membrane is considered a function of density,
and is represented by a truncated power series,

c2 = c20 + p∆ρA + q
(
∆ρA

)2
, (2)

where p and q are parameters determined by
measurements and c0 is the velocity of small
amplitude sound. To account for dispersion ob-
served in experiments an extra term −h ∂4

∂z4
∆ρA

is added. We finally arrive at the following
mathematical model for the density of the lipid
membrane in the axon,

∂2

∂τ2
∆ρA =

∂

∂z

[
B(∆ρA)

∂

∂z
∆ρA

]
− h ∂

4

∂z4
∆ρA,

(3)
where

B(∆ρA) = c20 + p∆ρA + q
(
∆ρA

)2
(4)

By introducing the variable changes

u =
1

ρA0
∆ρA, x =

c0
h
z, t =

c20√
h
τ,

γ1 =
ρ0
c20
p, γ2 =

ρ20
c20
q,

(5)

we obtain the following dimensionless version of
(3),

utt = (b(u)ux)x − uxxxx, (6)

where
b(u) = 1 + γ1u+ γ2u

2, (7)

and subscripts denote differentiation.

Remark 1 The empirical values of γ1 and γ2
guarantees that b(u) > 0 for all u.

In the present study we analyse two kinds of
well-posed boundary conditions, characteristic
BC,

uxt − uxx = g
(1)
0 (t), x = 0 ,

σut − bux + uxxx = g
(2)
0 (t), x = 0 ,

uxt + uxx = g
(1)
L (t), x = L ,

σut + bux − uxxx = g
(2)
L (t), x = L ,

(8)
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m log l2
(4th)

q(4th) log l2
(6th)

q(6th)

51 -1.51 -1.49
101 -2.01 1.66 -2.71 4.03
201 -3.56 5.15 -4.46 5.81
401 -4.99 4.77 -5.91 4.83

Table 1: log(l2− errors) and convergence rates
comparing the fourth- and sixth-order accurate
SBP-SAT approximations (10).

and Dirichlet-Neumann BC

u = g
(1)
0 (t) ux = g

(2)
0 (t) x = 0

u = g
(1)
L (t) ux = g

(2)
L (t) x = L

. (9)

3 The semi-discrete problem

Utilizing the SBP-SAT framework write the semidis-
crete version of (6) with BC in (9) as

vtt = D1BD1v −D4v +H−1τ
(1)
l

{
eT1 v − g

(1)
0

}
+H−1τ

(2)
l

{
d1;1v − g(2)0

}
+H−1τ (1)r

{
eTmv − g

(1)
L

}
+H−1τ (2)r

{
d1;mv − g(2)L

}
.

(10)

where τ
(j)
i are penalty paramters. We show that

by choosing the penalty parameters correctly
and letting the operators satisfy a compatibil-
ity condition we achieve stability for the frozen
coefficient problem.

4 Computations

We present a convergence study where we com-
pare the numerical solution to an analyitical
soliton solution. The analytical solution is im-
posed at the boundaries. The results are shown
in Table 1. Figure 1 shows a soliton reflecting
off of a homogenouse Dirichlet-Neumann BC.
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Figure 1: Soliton interaction with homogeneous
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Uniformly optimised wavenumber approximations by central finite difference operators
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Abstract

We construct accurate central difference schemes
for problems involving high frequency waves or
multi-frequency solutions over long time inter-
vals, with a relatively coarse spatial mesh, and
with an easily obtained error bound. It is demon-
strated that the problem of constructing cen-
tral difference stencils that have minimal dis-
persion error in the L∞-norm can be recast into
a problem of approximating a continuous func-
tion from a finite dimensional subspace with
a basis forming a Chebyshev set. In this new
formulation, characterising and numerically ob-
taining optimised schemes can be done using
established theory.

Keywords: Dispersion relation, wavenumber
approximation, finite differences.

1 Introduction

Numerical schemes that preserve dispersion re-
lations have received considerable attention in
the past few decades. Among the early compre-
hensive treatments are [1, 2]. The motivation
comes from problems involving wave propaga-
tion, where one must consider errors stemming
from inexact approximations of wave speed. In
particular, waves with high wavenumbers re-
quire small spatial increments, ∆x, in order to
be properly resolved. Over sizeable intervals the
dispersion error may dominate the error in the
approximation, which restricts the size of ∆x.
Such problems are common in computational
fluid dynamics, aeroacoustics and electromag-
netism.

We will henceforth consider centered finite
difference stencils. Traditionally such stencils
have been constructed by optimising the ap-
proximation accuracy with respect to the band-
width of the scheme. However, it can be shown
that these classical stencils underestimate the
phase and group speeds of propagating waves,
which stems from poor preservation of the dis-
persion relation of the governing problem.

We present a new family of central spatial
discretisation that mimic the dispersion prop-
erties of the governing problem by minimising
the dispersion error in the L∞-sense.

2 Improved dispersion preservation

Consider a central difference stencil approximat-
ing a first derivative of the function u(x, t):(
∂u

∂x

)
i

+O(∆x2p) =
1

∆x

p+n∑
k=1

ak(ui+k − ui−k).

Such a scheme uses (p+n) points on either side
of xi to approximate the derivative, however the
formal accuracy is O(∆x2p). Here ak are the co-
efficients of the stencil. Only p of the coefficients
are required to fulfil the accuracy requirements.
We are thus left with n degrees of freedom that
we shall use to minimise the dispersion error.

The numerical wavenumber corresponding
to this scheme is (see e.g. [2])

ξ̄ = 2

p+n∑
k=1

ak sin (kξ).

Here ξ = κ∆x, where κ denotes the exact or
analytic wavenumber. Let ã = (a1, . . . , ap+n).
Our goal may be formulated as: Find

argmin
ã∈Rp+n

‖ξ − ξ̄‖∞ (1)

ensuring that the stencil has accuracy O(∆x2p).
It is known (see e.g. [3]) that a unique so-

lution to problem (1) exists if, for any choice
of ã, the function ξ̄ has at most n − 1 zeros in
some finite interval. Unfortunately this cannot
be guaranteed for any n ≥ 1. We are thus forced
to reformulate the problem. The following the-
orem is useful:

Theorem 1 The numerical wavenumber of the
2pth order central difference stencil can be equiv-
alently written as

ξ̄ = ξ̄c + ψ(ξ,a)
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where ξ̄c is the numerical wavenumber of the
2pth order classical central difference stencil and

ψ(ξ,a) =

n∑
j=1

ap+jφj(ξ),

φj(ξ) = 2 sin ((p+ j)ξ) + 2

p∑
k=1

α
(j)
k sin (kξ).

Here, the vector a = (ap+1, . . . , ap+n) and the

coefficients α
(j)
k are independent of a and ξ.

The functions φj are linearly independent and
thus span some n-dimensional vector space Ξn.
Hence, we may reformulate problem (1) in terms
of the equivalent problem: Find

argmin
a∈Rn

‖Ec − ψ(ξ,a)‖∞ (2)

where Ec is the dispersion error of the classical
2pth order stencil and ψ ∈ Ξn.

We can show the following theorem:

Theorem 2 The functions φj form a Cheby-
shev set on the interval ξ ∈ (0, π). Equiva-
lently, any non-trivial function ψ(ξ,a) ∈ Ξn has
at most n− 1 zeros in this interval.

This is sufficient to guarantee the existence and
uniqueness of a solution to problem (2) and thus
also to problem (1) [3].

Conveniently, due to Remez [4], there is a
convergent algorithm for finding the desired vec-
tor a. Thus, in principle we may find new cen-
tral differences stencils of arbitrary accuracy and
with n free parameters that minimise the dis-
persion error in the L∞-sense.

A toy example is presented in Fig. 1. Here
the dispersion error of a 31 point wide stencil of
formal accuracy O(∆x2) is shown. The stencil
is optimal in the L∞-sense for wavenumbers in
the interval ξ ∈ [0, π/2]. This particular stencil
has a dispersion error of the order O(10−12).
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Adaptive Eigenspace Inversion for the Helmholtz Equation
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Abstract

An adaptive inversion method was presented in
[1] for time-dependent inverse scattering prob-
lems set in a (known) constant background med-
ium. Here we extend that approach to a gen-
eral varying background in the frequency do-
main, while dispensing with the need for an
open observational subset. The resulting adap-
tive eigenspace inversion (AEI) method not only
proves more accurate and robust to missing data,
but also incurs only a fraction of the computa-
tional cost of a standard grid-based truncated
Gauss-Newton approach.

Keywords: Full wave-form inversion, time har-
monic scattering, inverse medium problem.

1 Inverse medium problem

We consider a time-harmonic scattering prob-
lem in unbounded space. Given NE sources fk
inside a bounded region Ω ⊂ Rd, d ≤ 3, and cor-
responding measurements at the boundary ∂Ω,
we wish to reconstruct the (unknown) velocity
u(x) inside Ω. Outside Ω, the velocity u0(x)
is known and may vary. Then, for each source
fk, the scattered field yk satisfies the Helmholtz
equation:−∇ · (u

2∇yk)− ω2yk = fk in Ω ,
∂yk
∂n

=
iω

u0
yk on ∂Ω.

(1)

Here ω is the time frequency and we impose a

Sommerfeld boundary condition on ∂Ω, for sim-
plicity. Next, we let q = u2 and discretize (1)
with second-order finite differences on an equi-
spaced Cartesian grid. This yields the linear
systems

A(q)yk = fk , k = 1, . . . , NE . (2)

Given measurements ŷk, k = 1, . . . , NE ,
different methods from PDE-constrained opti-
mization can be used to retrieve q by minimiz-
ing the misfit, stated either in the full-space [2]
or in the reduced-space [3] formulation.

Here, we opt for the reduced-space approach
and thus seek q, which minimizes

min
q∈S

L(q) =
1

2

NE∑
k=1

∥∥V A(q)−1fk − ŷk

∥∥2 , (3)

where V is the evaluation matrix at the sensor
positions. To solve (3), we use a standard trun-
cated Gauss-Newton (G-N) method and solve
the linear systems inexactly using a fixed num-
ber of CG iterations [4,5], which avoids the need
for extra regularization.

To reduce the risk of convergence to a false
local minimum, we use frequency stepping, that
is we solve (3) for a sequence of increasing ω, ini-
tializing each optimization run with the solution
qω obtained from the previous lower frequency.

2 Adaptive eigenspace basis

Usually q is described by grid-based point values
and hence expanded in a nodal basis. In the
AEI method, we instead expand q as

q(x) = q0(x) +

K∑
m=1

βmφm(x) , (4)

where φm are the first K eigenfunctions of{
−∇ · (µ(x)∇φm(x)) = λmφm(x) x ∈ Ω ,

φm(x) = 0 x ∈ ∂Ω ,

and µ is defined as

µ(x) =
1

|∇qω(x)|p + ε
, ε > 0 . (5)

In (5) we set p = 0 for the initial frequency, ω0,
and p = 1 otherwise. To handle the varying sur-
rounding medium, we determine q0 in (4) from
the solution of{
−∇ · (µ(x)∇q0(x)) = 0 in Ω ,

q0(x) = u20(x) on ∂Ω ,
(6)

We start with a small number of eigenfunctions
K and as ω increases, we also increase K.
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Figure 1: Left: true profile q; Right: real part
of yk with fk at (0.1, 0.8) and ω = 90.

Numerical Experiments

We consider the true profile, q, shown in Fig-
ure 1, which mimics a layered material with
regions of different wave speed. The receivers
are located on the four lateral boundaries of
Ω = (0, 1) × (0, 1). Moreover, nine Gaussian
sources are located at (0.1, 0.8), . . . , (0.9, 0.8)
and one additional source at (0.15, 0.15). We
use a 500× 500 mesh and set the initial profile
q = 1. To avoid any inverse crime, we calcu-
lated the reference solution on a 1024 × 1024
mesh. Starting at the lowest frequency ω0 = 8,
we use frequency stepping at the frequencies
ω = 10, 12, 14, . . . , 90. The reconstructed pro-
files are shown in the top of Figure 2 either for
a nodal basis (left) or the adaptive eigenspace
basis (right).

Full data Partial data

Basis Err Nq Err Nq

Nodal 15.91% 501,000 30.24% 501,000

AEI 4.65% ≤ 360 4.80% ≤ 360

Next, we repeat the previous experiment,
but now omit the receivers at the lower bound-
ary of Ω together with the tenth source located
at (0.15, 0.15). As shown in the bottom of Fig-
ure 2, the AEI method is still able to recover q,
unlike the standard grid-based approach, while
using only a small fraction of the number of con-
trol variables Nq. Thus, we dramatically reduce
the number of control variables, while the recon-
structions are more accurate and more tolerant
to missing data.

Figure 2: Top, full boundary data: nodal basis
(left), AEI (right); Bottom, partial boundary
data: nodal basis (left), AEI (right).
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Abstract

We propose a new approach to prove that there
are no square-integrable nonzero solutions to
the two-dimensional Helmholtz equation in a
homogeneous conical domain with a vertex an-
gle greater than π. This shows that for a medium
filling the whole plane, there can be no trapped
modes if all the inhomogeneities (penetrable or
not) are concentrated in a conical domain with
a vertex angle less than π.

Keywords: Helmholtz equation, Rellich type
theorem

1 Introduction

We are interested in the question of existence
of square-integrable solutions to the Helmholtz
equation in a non-homogeneous unbounded do-
main in the absence of source. Such solutions
are often called trapped modes, for their energy
remains confined in a bounded region despite
the unboundedness of the propagative medium.
Trapped modes are known to occur for local
perturbations of closed uniform infinite waveg-
uides [3] but not open uniform waveguides [2],
that is, when the transverse section becomes un-
bounded (e.g., optical fibers). Our aim here is
to prove the absence of trapped modes for 2D
inhomogeneous media filling the whole plane as
soon as all the inhomogeneities (penetrable or
not) are concentrated in a conical domain with
a vertex angle less then π. This follows from the
following theorem and the unique continuation
principle.

Theorem 1 Let k > 0, θ ∈ (0, π/2) and Ω :=
{(x, y) ∈ R2; y > −|x| tan θ}. If u ∈ L2(Ω)
satisfies the Helmholtz equation

∆u+ k2 u = 0 in Ω (1)

in the distributional sense, then u = 0.

This theorem is optimal in the sense that it
becomes false if θ = 0. Indeed it is easy to con-
truct solutions to the Helmholtz equation which
are square-integrable in a half-plane.

We present below the main steps of the proof,
where the functional details are omitted for clar-
ity. Following [1, 2] (inspired by the pioneering
work of Weder [4]), the main ingredients are a
modal representation of the acoustic field and
an analyticity property. The latter property de-
rives here from an original idea which consists
in using the modal representation in two oblique
directions.

2 Elements of the proof

Our basic tool can be formulated as follows.

Lemma 2 Let Π := R× (0,+∞). If u ∈ L2(Π)
satisfies the Helmholtz equation (1) in Π, then

u(x,y) =
1√
2π

∫
|ξ|>k

ϕ̂(ξ) eixξ−y
√
ξ2−k2 dξ (2)

for all (x,y) ∈ Π, where

ϕ̂(ξ) :=
1√
2π

∫
R
u(x, 0) e−ixξ dx

is the Fourier transform of u(·, 0) along the x-
direction, which satisfies ϕ̂(ξ) = 0 if |ξ| < k.

The proof of this lemma is easy : we sim-
ply have to apply the Fourier transform to the
Helmholtz equation and solve the resulting dif-
ferential equation by taking into account the as-
sumption u ∈ L2(Π). Formula (2) then follows
from the inverse Fourier transform.

This formula appears as a modal represen-
tation of u in the sense that it can be inter-
preted as a superposition of the waves exp(ixξ−
y
√
ξ2 − k2) where ϕ̂(ξ) stands for the ampli-

tude of the superposition. These waves are prop-
agative in the x-direction and evanescent in the
y-direction (since |ξ| > k in (2)). The fact that
ϕ̂(ξ) = 0 if |ξ| < k expresses actually the ab-
sence of propagative waves in the y-direction,
which results from the assumption u ∈ L2(Π).

The proof of Theorem 1 is based on three
uses of Lemma 2. Let u = u(x, y) a L2-solution
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to the Helmholtz equation (1) in Ω. First no-
tice that the conclusions of the lemma hold true
in the half plane {y > 0} (i.e., with (x,y) =
(x, y)). In particular, ϕ̂(ξ) = 0 if |ξ| < k. Then
the main argument consists in proving that ϕ̂(ξ)
extends to an analytic function of ξ in a com-
plex vicinity of the real axis. As ϕ̂ vanishes on
the interval (−k,+k), analyticity implies that it
must vanish everywhere: ϕ̂(ξ) = 0 for all ξ. The
modal representation (2) tells us that u vanishes
in the half-plane {y > 0}, so also in the whole
domain Ω by virtue of the unique continuation
principle. This completes the proof of Theorem
1.

It remains to prove the analyticity of ϕ̂(ξ).
To do this, the key idea is to split the definition
of ϕ̂ in the form

ϕ̂(ξ) =
1√
2π

∑
±

∫
R±

u(x, 0) e−ixξ dx (3)

and to express u(·, 0)|R± by using again Lemma
2 in two half-planes contained in Ω and defined
respectively by the equations y > ∓x tan θ. Us-
ing both changes of variables

x = x cos θ ∓ y sin θ,

y = ±x sin θ + y cos θ,

we obtain the following modal representations:

u(x, 0) =

∫
|η|>k

ϕ̂±(η) eiηx cos θ∓
√
η2−k2x sin θ dη√

2π

for x ∈ R±. Hence, substituting these expres-
sions in (3) and using Fubini’s theorem, we ob-
tain

ϕ̂(ξ) =
1

2π

∫
|η|>k

F (η, ξ) dη,

where

F (η, ξ) :=
∑
±

ϕ̂±(η)

∓i(η cos θ − ξ) +
√
η2 − k2 sin θ

.

For almost every η, this function extends to an
analytic function of ξ in any complex domain in
which both denominators do not vanish. The
complex values of ξ for which there exists a η ∈
R \ (−k,+k) such that one of the denominators
vanishes is the hyperbola defined by

(Re ξ)2

cos2 θ
− (Im ξ)2

sin2 θ
= k2,

which crosses the real axis at points ±k cos θ.
Hence, for almost every η, F (η, ξ) is an analytic

function of ξ in the three connected components
of the complex plane delimited by this hyper-
bola. By the Lebesgue’s dominated convergence
theorem, we deduce that the same holds true for
ϕ̂(ξ). As we already know that ϕ̂ vanishes on
(−k,+k), the analyticity in these components
implies that ϕ̂(ξ) vanishes everywhere, in par-
ticular for ξ ∈ R\(−k,+k), which is the desired
result.

3 Consequences and possible extensions

One interesting consequence of our result con-
cerns the case of curved open waveguides (e.g.,
bended optical fibers). Unlike closed waveg-
uides for which trapped modes confined near
the bend may occur, Theorem 1 implies that
trapped modes cannot exist if the core of the
waveguide is located in a cone with vertex an-
gle less than π. More generally, this result holds
true regardless this cone is composed of (pro-
vided the unique continuation principle applies).

Theorem 1 holds true for higher space di-
mensions and can be extended for some situ-
ations which involve non-homogeneous media
(using a generalized Fourier transform instead
of the usual one, see [1, 2]). Works on these
subjects are in progress.
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Abstract

We prove sharp bounds on the exterior Dirichlet-
to-Neumann and Neumann-to-Dirichlet maps for
the Helmholtz equation in nontrapping domains.
We also prove a sharp bound on the solution of
the interior impedance problem for the Helmholtz
equation.

Keywords: Helmholtz, wavenumber-explicit bounds,
Dirichlet-to-Neumann map, Neumann-to-Dirichlet
map, interior impedance problem.

1 Introduction

Proving bounds on solution of the Helmholtz
equation

∆u+ k2u = −f (1)

(where k > 0) has a long history. Nevertheless,
the following problems remain open (see, e.g.,
the discussion in [4, §1].

1. There do not exist sharp bounds on the
Dirichlet-to-Neumann (DtN) or Neumann-
to-Dirichlet (NtD) maps for the homoge-
neous Helmholtz equation (i.e. (1) with
f = 0) in exterior nontrapping domains.

2. There do not exist sharp bounds on the
solution of the interior impedance prob-
lem (IIP) for general domains, where this
boundary value problem (BVP) consists
of (3) posed in a bounded domain with
the boundary condition

∂u

∂n
− iηu = g (2)

where g is a given function and η ∈ R\{0}.

This paper fills these gaps in the literature.
The motivation for studying the exterior DtN

and NtD maps for the Helmholtz equation is
fairly clear, since these are natural objects in
the study of scattering problems. The motiva-
tion for studying the IIP is two-fold.

(i) It has become a standard model problem
used when designing numerical methods
for solving the Helmholtz equation, and
to prove error estimates one needs bounds
on the solution of the BVP.

(ii) The integral equations used to solve the
exterior Dirichlet, Neumann, and impedance
problems can also be used to solve the IIP;
therefore, to prove bounds on the inverses
of these integral operators, one needs to
have bounds on the solution of the IIP
(see, e.g., [4, §1.3] and the references therein).

2 Statement of the main results

Let Ω− ⊂ Rd, d = 2, 3, be a bounded, Lipschitz
open set with boundary Γ := ∂Ω−, such that
the open complement Ω+ := Rd \ Ω− is con-
nected. Let γ± denote the trace operators from
Ω± to Γ, let ∂±n denote the normal derivative
trace operators, and let ∇Γ denote the surface
gradient operator on Γ.

Theorem 1 (Exterior DtN map bounds) Let
u ∈ H1

loc(Ω+) satisfy the Helmholtz equation

∆u+ k2u = 0 in Ω+, (3)

and the Sommerfeld radiation condition

∂u

∂r
− iku = o

(
1

r(d−1)/2

)
(4)

as r := |x| → ∞, uniformly in x̂ := x/r. If
either Ω+ is nontrapping or Ω− is a nontrap-
ping polygon (in the sense of [2, §5]) or Ω− is
Lipschitz and star-shaped, then, given k0 > 0,∥∥∂+

n u
∥∥
H−1/2(Γ)

. k ‖γ+u‖H1/2(Γ) , (5)

for all k ≥ k0. Furthermore, if γ+u ∈ H1(Γ)
then ∂+

n u ∈ L2(Γ) and, given k0 > 0,∥∥∂+
n u

∥∥
L2(Γ)

. ‖∇Γ(γ+u)‖L2(Γ) + k ‖γ+u‖L2(Γ)

(6)
for all k ≥ k0.



Contributed Session: Monday 10:45–12:45 Room 0.014 183

Theorem 2 (Bounds on the NtD map) Let
Ω+ be nontrapping and let u ∈ H1

loc(Ω+) satisfy
the Helmholtz equation (3) and the Sommerfeld
radiation condition (4). Let β = 2/3 in the
case when Γ has strictly positive curvature, and
β = 1/3 otherwise. Then, given k0 > 0,

‖γ+u‖H1/2(Γ) . k1−β ∥∥∂+
n u

∥∥
H−1/2(Γ)

, (7)

for all k ≥ k0. Furthermore, if ∂+
n u ∈ L2(Γ)

then γ+u ∈ H1(Γ) and, given k0 > 0,

‖∇Γ(γ+u)‖L2(Γ)+k ‖γ+u‖L2(Γ) . k1−β ∥∥∂+
n u

∥∥
L2(Γ)

,

(8)
for all k ≥ k0.

By considering the specific examples of Γ
the unit circle (in 2-d) and the unit sphere (in
3-d) and using results about the asymptotics
of Bessel and Hankel functions, it was shown
in [4, Lemmas 3.10, 3.12] that the bounds (5)
and (6) are sharp, and that (7) and (8) are sharp
in the case of strictly positive curvature.

Theorem 3 (Interior impedance bound) Let
Ω be a bounded C∞ domain in 2- or 3-d with
boundary Γ. Let a, b be real-valued C∞ func-
tions on Γ and assume that b ≥ 0 and there
exists an a− > 0 such that either

a(x) ≥ a− > 0 for all x ∈ Γ

or
−a(x) ≥ a− > 0 for all x ∈ Γ.

Let η(x) := a(x) + ib(x). Given g ∈ L2(Γ), f ∈
L2(Ω), and η defined as above, let u ∈ H1(Ω) be
be the solution to the interior impedance prob-
lem

∆u+ k2u = −f in Ω

and
∂nu− iηγu = g on Γ.

Then, given k0 > 0,

‖∇u‖L2(Ω) + k ‖u‖L2(Ω) . ‖f‖L2(Ω) + ‖g‖L2(Γ)

(9)
for all k ≥ k0.

Note that the allowed values of η in Theorem
3 include the common choices η = ±k.

3 Outline of how these results were ob-
tained

The DtN bounds in Theorem 1 are obtained
using an argument first introduced in [3] (and
then further used in [4]) which obtains (non-
sharp) DtN bounds from (i) the resolvent es-
timate for the problem and (ii) bounds on the
DtN map for the modified Helmholtz equation
(i.e. the equation ∆u−k2u = 0). Instead of us-
ing bounds on the modified Helmholtz equation,
we use bounds on the equation ∆u+(k2+ik)u =
0, and this change in the argument yields the
sharp Helmholtz DtN bounds.

The NtD bounds in Theorem 2 are obtained
using a collection of estimates proved by [5] for
solutions to the wave equation with Neumann
(or indeed many other) boundary conditions.

The IIP bound in Theorem 3 is obtained
from the results of [1] about the wave equation
with damping boundary condition.
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Abstract

We present a high-order Nyström solver for the
time-harmonic electromagnetic wave scattering
problem where the bounded material inhomo-
geneity is anisotropic and penetrable. The high-
order convergence of this integral equation based
procedure is attained through a combination of
changes of parametric variables to resolve the
singularities of the Green function and use of
specialized weighted Clenshaw-Curtis quadra-
tures to effectively deal with near singular in-
tegrals. A brief account of the main algorith-
mic components of the scheme are presented,
together with some numerical results that ex-
emplify its performance.

Keywords: Electromagnetic scattering, Nyström
method, High-order method

1 Introduction

We consider the scattering of time-harmonic elec-
tromagnetic wave by a penetrable anisotropic
medium of compact support. The electric field
E and the magnetic fieldH satisfy the Maxwell’s
equations ∇×E− ikH = 0,∇×H+ ikNE = 0,
with the wave number k > 0 and the refractive
index, independent of the x3 coordinate, is as-
sumed to have the form

N = N (x) =

n11(x) n12(x) 0
n21(x) n22(x) 0

0 0 n33(x)

 , where

Re(N ) is positive definite, Im(N ) semi-positive
definite andN−I has compact support Ω ⊂ R2,
for the 3×3 identity matrix I. The TM scatter-
ing problem is modeled by Lippmann Schwinder
integral equation that can be solved to high-
order by employing available numerical tech-
niques (e.g., [1]). The TE scattering problem,
on the other hand, with u = H3 satisfies ∇ ·
(N∇)u+ k2u = 0 where N = N(x) =

1
n11(x)n22(x)−n12(x)n21(x)

[
n11(x) n21(x)
n12(x) n22(x)

]
. The in-

tegral equation formulation for this problem is
given by [3], u(x) − (Au)(x) = ui(x), x ∈ Ω
where (Au)(x) =

∫
Ω∇Φ(x, x′).(M(x′)∇u(x′))dx′

with kernel Φ(x, x′) = i
4H

1
0 (k|x−x′|) andM(x) =

I −N(x), I being the 2× 2 identity matrix.
We note that the singularity present in the

kernel ∇Φ of the integral operator A is more se-
vere that what occurs in the integral equation
for the TM case, and require a more careful nu-
merical treatment if a high-order accuracy is to
be achieved. This text proposes a high-order
Nyström scheme for solution of the TE scatter-
ing problem that we present next.

2 Numerical Method

We begin by constructing a finite overlapping
cover {Ω` : ` = 1, . . . , L} of the scattering me-
dia Ω where each patch Ω` is homeomorphic
to (0, 1)2 via a smooth invertible parameteriza-
tion x` = x`(s, t). With the help of a parti-
tion of unity {ψ` : ` = 1, . . . , L} subordinate to
this cover, we rewrite the integral operator A

as (Au)(x) =
L∑̀
=1

(A`u)(x), where (A`u)(x) =∫ 1
0

∫ 1
0 ∇Φ(x, x`(s

′, t′)) · (V u)(s′, t′) ds′ dt′, with
(V u)(s, t) is given by
ψ`(x`(s, t))j`(s, t)M(x`(s, t))∇u(x`(s, t)), j` be-
ing the Jacobian of the transformation x`.

The O(1/|x− x′|) singularity present in the
kernel of the integral operator needs to be re-
solved for accurate evaluation of A`. One can
overcome this difficulty by moving to polar vari-
ables centered around the target point (s, t) =
(x`)

−1(x). The integration in polar coordinates
is localized with the help of a smooth cut-off
function η = η(ρ) satisfying η(ρ) = 0 for ρ > ρ0

and η(ρ) = 1 for ρ < αρ0 for a suitable choice
of α < 1. Indeed, (A`u)(x) = (AR` u)(x) +
(AS` u)(x) where (AR` u)(x) =∫ 1

0

∫ 1

0
ΦR
` (x; s′, t′) · (V u)(s′, t′) ds′ dt′ (1)

with a smooth kernel ΦR
` (x; s′, t′) =

(1− η(|(s, t)− (s′, t′)|))∇Φ(x, x`(s
′, t′)) and∫

[0,1]2∩Dρ0 (s,t)
ΦS
` (x; ρ, θ) · (Ṽ u)(ρ, θ) dρ dθ, (2)

with ΦS
` (x; ρ, θ) = ρ∇Φ(x, x`(s+ρ cos θ, t+ρ sin θ)),

(Ṽ u)(ρ, θ) = η(ρ)(V u)(s + ρ cos θ, t + ρ sin θ)
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Figure 1: Splitting of angular integration

yields (AS` u)(x). In (2), Dρ0(s, t) denotes the
disc centered at (s, t) of radius ρ0.

For ` corresponding to interior patches on
which ψ` vanish to high order in all directions,
the integral in (1) of a smooth and compactly
supported integrand is approximated to high-
order using trapezoidal rule in both variables.
The computation of (2), where integration do-
main can be extended to all of Dρ0(s, t) can be
carried out in a manner similar to the one in-
troduced in [2].

On edge patches, where ψ` vanish to high or-
der only in s′ variable, we obtain high-order ap-
proximations of (1) by using trapezoidal rule for
s′ integration and Chenshaw-Curtis quadrature
in t′ variable. The accurate evaluation of (2),
particularly when Dρ0(s, t) does not completely
lie within [0, 1]2, demand splitting of the angu-
lar integration into multiple pieces. The exam-
ple in Figure 1 depicts a typical scenario, where∫
[0,1]2∩Dρ0 (s,t)

· · · =
θ0∫

−π−θ0

ρ0∫
0

· · · +
π−θ0∫
θ0

1−t
sin θ∫
0

· · · .

Both angular and radial integrals are handled
accurately by Clenshaw-Curtis quadrature. An
additional difficulty in the form of near singu-
lar behavior of the θ-integrand presents itself
when t is very close to 1. We employ a weighted
Chenshaw-Curtis quadrature that explicitly re-
solves the near singular scenarios to obtain rapidly
convergent approximations.

N Relative Error Order

3× 16× 16 1.22× 10−2 -

3× 32× 32 9.24× 10−4 3.72

3× 64× 64 1.46× 10−5 5.98

3× 128× 128 3.90× 10−7 5.22

Table 1: Convergence for Disc shape scatterer.

(a) Plane wave incidence (b) Total field

Figure 2: Scattering of a plane wave by an or-
thotropic penetrable disc of size ka = 10 —
numerical approximation on a 3× 64× 64 grid
with 0.077% error compared to the Mie series
solution.

3 Numerical Results

We present, in Table 1, a convergence study
for scattering of a plane wave with wavenum-
ber k = 1, by an anisotropic penetrable unit
disc. The refractive index matrix N is chosen
to have entries n11 = 2, n12 = 1, n21 = −1, and
n22 = 2. This study clearly show the high-order
nature of our integral equation solver. In Figure
2, we depict the incident and total wave from
the same anisotropic penetrable disc when the
wave number k = 5.

References

[1] A. Anand, A. Pandey and J. Paul, A high-
order Nyström scheme for acoustic scatter-
ing by inhomogeneous penetrable media in
two dimensions, Proceedings of the 11th
International Conference on Mathematical
and Numerical Aspects of Waves, 2013, pp.
269-270.

[2] O. P. Bruno and L. A. Kunyansky, A Fast,
High-Order Algorithm for the Solution of
Surface Scattering Problems: Basic Imple-
mentation, Tests, and Applications, Jour-
nal of Computational Physics, 169, 2001,
pp. 80–110.

[3] R. Potthast, Electromagnetic scattering
from an orthotropic medium, Journal of In-
tegral Equation and Applications, 11(2),
1999, pp. 197-215.



186 Contributed Session: Monday 10:45–12:45 Room 2.066

A High-Order Integral Equation Solver for Problems of Electromagnetic Scattering by
Three-Dimensional Open Surfaces
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Abstract

We present a computational methodology for
accurate solution of problems of electromagnetic
scattering by three-dimensional smooth open sur-
faces. Our integral equation solver is a gener-
alization of the Nyström method for acoustic
scattering problems by open smooth surfaces in-
troduced in [1]. High-order discretization of the
EFIE is obtained by i) introducing an appropri-
ate ansatz that accounts for the edge singular-
ity of the densities and, ii) an overlapping-patch
representation of the open surface which allows
for the use of high-order trapezoidal rule in-
tegration and FFT differentiation/interpolation
of the unknown smooth densities. The use of an
appropriate preconditioner that yields a signifi-
cant reduction of the number of iterations of the
Krylov-subspace iterative linear-algebra solvers
is discussed. The method exhibits spectral con-
vergence for the examples considered.

Keywords: open PEC surface scattering, inte-
gral equation methods, high-order methods

1 Introduction

We consider the problem of scattering of an
electromagnetic plane-wave Einc by a perfect
electric conductor (PEC) open surface Γ ⊂ R3,
which is assumed of class C∞. The surface is as-
sumed to be covered by a finite number of over-
lapping patches, each one of them parametrized
by a bijective smooth mapping r(u, v), where
u and v are the local coordinates of the patch
(see [1, 2] for details). In the classical electric
field integral equation (EFIE) setting, the scat-
tered electric field is represented as

Es = ikSk [J] +
i

k
∇Sk[ div ΓJ] in R3 \ Γ

in terms of an unknown current density J, where
Sk denotes the single-layer potential. By impos-
ing the boundary conditions on the PEC sur-
face, we arrive to the EFIE:

ikn×Sk[J] +
i

k
n×Nk[J] = −n×Einc on Γ,

where

Sk[J](x) =

∫
Γ
Gk(x,y)J(y) ds

Nk[ div ΓJ] = ∇
∫

Γ
Gk(x,y) divΓJ(y) ds.

The unknown density J can be obtained by solv-
ing the EFIE, however, as is well-known, the
components of J along the edge of Γ behaves
asymptotically as 1/ω where ω =

√
d, d denot-

ing the distance to the to edge, while the nor-
mal components of the density behaves like ω
(see [3]). The surface divergence div ΓJ on the
other hand, behaves like 1/ω.

In order to deal with the edge singularity of
the density we introduce the ansatz J = W j,
where, for a current density j = juru + jvrv
defined inside an edge patch, W j is given by

W j =
1

ω
juru + ωjvrv.

The regularized electric field integral equation
(REFIE) is then given by TW [j] = −n × Einc

where

TW [j] = ikn× Sk[W j] +
i

k
n×Nk[ div Γ(W j)].

In order to improve the spectral properties of
the integral operator TW , and consequently, im-
prove the convergence of the Krylov-subspace
linear algebra solver, we introduce an analytic
preconditioner given by [4]

Tω[j] = ikn× Sk[W j] +
i

k
n×Nk[ω div Γj],

so that we look for solutions of the integral
equation

Tω ◦ TW [j] = −Tω[Einc] on Γ.

The operators in the integral equation above
are applied in a successive manner. The high-
order quadrature rules we use for these oper-
ators resolve the multiple Green function and
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N Ex Ey Ez

162 + 2× 20× 16 1.62e-2 3.20e-2 2.08e-2
322 + 2× 40× 32 5.12e-4 1.07e-3 6.45e-4
642 + 2× 80× 64 1.14e-5 1.04e-5 8.42e-6

Table 1: Convergence test: Error for various
grid refinements.

edge singularities and thus give rise to super-
algebraically fast convergence as the discretiza-
tion sizes are increased. Tangential derivatives
of single-layer potentials are obtained by accu-
rate evaluation of Cauchy principal-value inte-
grals [1], while the surface divergence of the den-
sity in the application of TW is obtained by FFT
differentiation [2].

2 Numerical Results

The proposed algorithm produces highly accu-
rate solutions of electromagnetic scattering prob-
lem by smooth open surfaces. Table 1 below
shows the results of a convergence test for the
problem of scattering of a plane-wave with wave-
number k = 1 by a disc of unit radius. The disc
is represented by three overlapping patches; one
interior patch and two edge patches. The total
number of discretization points N is given by
N = n2 + 2 ×m × n, where the first term de-
notes the number of points in the interior patch
while the second term account for the points in
the edge patches. The resulting linear system of
equations is solved iteratively by using the GM-
RES algorithm with a tolerance of tol =1.0e-4.
The electric field E = (Ex, Ey, Ez) is then evalu-
ated at a plane one diameter away from the disc,
and the error is estimated by comparing the dif-
ferent components of the electric field with the
field obtained by solving the discretized integral
equation using the grid N = 1282+2×160×128.
Finally, Figure 1 shows the magnitude of the
electric field obtained by solving the problem of
scattering by a disc of diameter 10λ. Its solution
required 37 GMRES interactions. Remarkably,
the Poisson spot is visible at the center of the
shadow region under the disc.
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Abstract

We study boundary integral equation methods
for electromagnetic scattering by impenetrable
obstacles with uncertain geometry. The un-
certainty in the geometry is accounted for by
means of the flow of a stochastic vector field
defining a stochastic deformation. A first order
perturbation approximation is developed which,
under conditions derived in the paper, allows for
efficient estimates.
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1 Introduction

In order to obtain useful information from nu-
merical computations, one has to provide more
than the results for just one numerical model
for a physical configuration. There are many
reasons why significant differences may appear
between the computational results for the cho-
sen numerical representation and what would be
observed in the physical situation being mod-
elled. Besides the inevitable discretisation er-
rors there are uncertainties in both the geomet-
rical realisation and the physical constitution of
the objects playing a role in the process. One
of the approaches to capture this, is to refine
the deterministic numerical models into proba-
bilistic models in which such uncertainties are
modelled as well. What we essentially want to
do is to find as detailed as possible characteri-
sations of the statistics of observable quantities
(i.e. which can be put into correspondence with
the outcome of measurements). In all but the
most trivial situations, we will have to be sat-
isfied with computing the dominant moments:
the average, i.e., the conventional deterministic
computation, the standard deviation, capturing
the sensitivity to fluctuations around the aver-
age, and the higher order moments like skew-
ness and kurtosis, which provide more and more
structure information of the probability distri-
bution of the observables.

In this contribution, we develop the exam-
ple of the electromagnetic plane wave scattering

operator. It maps incident plane-waves, charac-
terised by a polarisation vector e−(ϑ−) orthog-
onal to the propagation direction ϑ ∈ S2

1 , to
asymptotic scattered-field polarisations

e+(ϑ+) =

∫
ϑ−∈S2

1

S(ϑ+, ϑ−)e−(ϑ−)

The scattering coefficients S(ϑ+, ϑ−) are vector-
valued linear forms on the (complexified) tan-
gent spaces of the unit sphere. They have the
following integral representation

Spq(ϑ
+, ϑ−) =

jωµ0

∫
∂Ω
ψ−ϑ+ep(ϑ

+) ∧Heq(ϑ−)

where ep(ϑ) is a basis polarisation of a co-tangent
frame in (ϑ), ψϑ(x) = exp(−jkϑ·x) and Heq(ϑ−)

is the surface current density induced by an in-
cident plane wave defined by (eq, ϑ

−).
The scattering coefficients are our observ-

ables and we consider ∂Ω the boundary of the
obstacle to be a stochastic deformation of an
average surface. We first explain how we model
these stochastic fluctuations and then study the
boundary integral equation over this surface to
characterise the the stochastic distribution. (The
final step, i.e. to compute the variances of the
scattering coefficients will be shown in the pre-
sentation only.)

2 Modelling stochastic geometries

In order to let all realisations of the stochastic
surface be “realistic” we have to warrant that
the stochastic deformations have a convenient
spatial covariance. We can achieve this by tak-
ing the deformation as the flow of a stochastic
vector field on the embedding space and fix the
spatial covariances of this vector field. A sim-
ple stochastic linear combination of vector fields
can be sufficient.

vα =
∑
p

αpvp
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∂Ωα
∂Ω

µα
x

t = 0

t = 1

µ(x, 1)

Figure 1: Illustrating the deformation of a sur-
face using the flow of a stochastic vector field

with αp centred random reals. The flow µα of
the vector field is defined by

∂tµα(x, t) = vα(µα(x, t))

The stochastic boundary is a deformation

∂Ω0 3 x 7→ µα(x, 1) ∈ ∂Ωα

of the nominal or average boundary ∂Ω0.

3 Stochastic integral equation

We consider the Electric Field Integral Equa-
tion (EFIE) on deformed boundaries

[∫
y∈∂Ωα

Gehx (y) ∧H(y)
]
∂Ωα

= −
[
Ei
]
∂Ωα

(x)

This is pulled-back to the nominal boundary∫
y∈∂Ω

(µ∗α × µ∗αGeh)(x, y) ∧ µ∗αH(y)

= −(µ∗αE
i)(x)

Written formally as Bj = e, with B a stochas-
tic operator and e a stochastic field on a fixed
surface ∂Ω.

4 First order asymptotics

Let j1 = j0 + j1α be the first-order asymptotic
solution of the stochastic integral equation. Its
coefficients satisfy

B0j0 = e0

B0j1 = e1 −B1j0

where of B0,1 are the first two terms of the ex-
pansion of the operator B. The kernel distribu-
tion of B1 is a function of the distance between
two points on ∂Ωα expressed in coordinates on
∂Ω. For scattering by obstacles in free space,
the first order perturbation of the Green func-
tion

G1(x, y) = −G0(x, y)

θ(x, y) · (v(x)− v(y))(1 + jk‖x− y‖)
‖x− y‖

fixes the kernel of B1. In the presentation, we
shall develop the consequences of the observa-
tion that this kernel vanishes locally near the
“diagonal” (x → y) when the deformations are
orthogonal to the surface.

5 Conclusion

In this contribution, it is shown that when the
fluctuations of a stochastic boundary surface,
which is locally flat on the scale of the correla-
tion length, are along the normal an interesting
simplification is obtained in boundary integral
equations on stochastic surfaces.
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Curious energy losses at corners of metallic inclusions.
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Abstract

We consider a Transverse Magnetic time-har-
monic scattering problem. The scatterer is a
metallic object whose cross-section has corners
and whose permittivity is a function of the fre-
quency, typically given by Drude’s law. When
the dissipation effects in the metal are neglected,
it has been proved in [2] that there is a range of
frequencies where some energy is trapped by the
corners, due to the so-called plasmonic black-
hole waves. The purpose of this work is to
show that a similar phenomenon can be ob-
served when considering a realistic dissipative
metal, like silver.

Keywords: electromagnetic scattering, Drude’s
model, singularities, black-hole waves, energy
balance

1 The scattering problem

For simplicity, let us suppose that the cross-
section Ω of the metallic scatterer has the shape
of a droplet (see figure 1), with a single corner,
located at the origin. The relative dielectric per-
mittivity in the metal obeys the following law,
known as the Drude’s model

εγ(ω) = 1−
ω2
p

ω2 + iωγ
, (1)

where ω > 0 is the pulsation, γ ≥ 0 (for a har-
monic regime in e−iωt) characterizes the dissi-
pative effects, and ωp > 0 is the plasma fre-
quency (for silver γ = 0.113 1015 Hz and ωp =
13.3 1015 Hz [1]). We are interested in a fre-
quency range ω < ωp below the plasma fre-
quency, where the real part of εγ(ω) is neg-
ative while its imaginary part is positive (see
figure 1). We consider the following scatter-
ing problem: find uγ = uinc + usca

γ such that
div
(
ε−1
γ ∇uγ

)
+ ω2c−2uγ = 0 in R2 and

lim
ξ→+∞

∫
|x|=ξ

∣∣∣∂usca
γ

∂r
− iωc−1usca

γ

∣∣∣2 dσ = 0,

Figure 1: Permittivity of silver and geometry

where uγ represents the transverse component
of the magnetic field, uinc is a plane wave, c
denotes the light speed and εγ is a function de-
fined by εγ = 1 in R2 \ Ω and εγ = εγ(ω) in
Ω.

For γ > 0, thanks to the imaginary part of
εγ(ω), one can prove with standard arguments
that this problem is well-posed in H1

loc(R2), and
if Γ is a circle enclosing the droplet, we have:

−=m
(∫

Γ

∂uγ
∂r

uγ

)
= =m

(
−1

εγ(ω)

)∫
Ω
|∇uγ |2.

This quantity, denoted in the sequel by Jγ(ω),
is strictly positive and corresponds to the en-
ergy dissipated during one time period in the
metallic inclusion.

2 The non-dissipative case γ = 0

If γ is small compared to ωp, there is a range of
frequencies between γ and ωp where it may be
relevant to neglect the dissipation in the metal
by taking γ = 0 (see figure 1). Then the per-
mittivity ε0 is a real-valued function, negative
in the metal and positive elsewhere. The well-
posedness of such a sign-changing transmission
problem has been extensively studied and the
results for the scattering problem depend on the
value of ω (see [2] for the details). If we denote
by Φ the angle at the corner, we define the fre-
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quency interval I(Φ) by the following property:

ω ∈ I(Φ)⇔ ε0(ω) ∈
]
−2π − Φ

Φ
,−1

[
.

If ω /∈ I(Φ), the scattering problem is well-
posed in H1

loc(R2) and there is no energy dis-
sipation (J0(ω) = 0). On the contrary, if ω ∈
I(Φ), the scattering problem is not well-posed
in H1

loc(R2). However the well-posedness can
be recovered in a different functional framework
[3]. The solution u0 (which is the limit of uγ
when γ → 0) may be very singular at the cor-
ner, it behaves like a exp(iκ log r) (in polar coor-
dinates) with κ ∈ R, where the constant a ∈ C
depends on the incident wave. When a 6= 0,
this so-called black-hole wave carries energy to-
wards the corner, which results in a dissipation
of energy (J0(ω) > 0), even if the dissipation in
the material has been neglected.

3 The slightly dissipative case

From a physical point of view, the relevance of
this strange phenomenon (dissipation of energy
in a non dissipative material) is discussed in the
literature [4]. Indeed one could suspect that
it is due to idealized non-realistic hypotheses,
like the perfect corner and the non dissipative
material (γ = 0). Our objective here is to show
that the phenomenon of leakage at the corner is
still present in a realistic dissipative material.

We have computed Jγ(ω) as a function of
ω for the case of silver for two different inci-
dences and for two inclusions, a droplet-shaped
one as described above, with an angle Φ = π/6,
while the second one has the shape of a disk.
For the comparison, the two shapes have the
same perimeter as losses are due to the plas-
monic surface wave propagating at the surface
of the metal (the wave does not propagate inside
the metal because the real part of ε and µ have
opposite signs). Obviously, for the disk, the two
incidences give the same result represented by
the black dashed curve. For the droplet, the
first incidence in red is such that the black-hole
wave is excited while it is not for the second
incidence in blue.

As expected, the energy losses for the droplet
are much larger than for the disk in the interval
I(Φ) when the black-hole wave is excited.

Let us mention that a refined mesh near the
interface would be necessary for the frequencies

at the right end of I(Φ), which correspond to
the almost ill-posed case <e(εγ(ω)) = −1.

Figure 2: Energy dissipation for a droplet and
a disk inclusions, for two directions of incidence

The computations are done with the code
Xlife++ [5].
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Finite Element Heterogeneous Multiscale Method for Maxwell’s Equation in Frequency
Domain
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Abstract

To solve numerically Maxwell’s equations, de-
scribing electromagnetic phenomena, one usu-
ally uses Nédélec’s first family of edge finite el-
ements. If the medium, where the electromag-
netic wave is propagating through, oscillates on
a microscopic length scale, this approximation
becomes infeasible since the mesh must resolve
all details of the medium. We propose a mul-
tiscale scheme to overcome this difficulty fol-
lowing the framework of the finite element het-
erogeneous multiscale method (FE-HMM). We
prove convergence to the homogenized solution
in the periodic case, and show some numerical
experiments.

Keywords: Maxwell’s Equations, heterogene-
ous multiscale methods, Nédélec finite element

1 Model problem

Let Ω be a bounded polyhedral domain of R3,
and denote by V := H0(curl; Ω) the Sobolev
space of functions in L2(Ω) whose curl is in
L2(Ω) with vanishing tangential trace on ∂Ω.
We assume that within Ω the electric permit-
tivity εη and the inverse of the magnetic perme-
ability νη are admissible quasi-periodic tensors,
i.e. they are given almost everywhere by

εη(x) = ε(x, η−1x) and νη(x) = ν(x, η−1x),

where η is a small parameter, and ε and ν are
uniformly bounded and coercive matrix-valued
functions, which are Y = (−1/2, 1/2)3-periodic in
their second variable.

We consider the model problem correspond-
ing to Maxwell’s equations in frequency domain{

Find uη ∈ V , such that ∀v ∈ V
Bη(uη, v)− ω2 (uη, v)η = (f, v) ,

(1)

where (·, ·) is the standard L2 inner product,
(v, w)η := (εηv, w), and

Bη(v, w) := (νη∇× v,∇× w) .

To ensure the well-posedness of equation (1)
for small η we assume that there is γ > 0 such
that for a threshold value η̃ we have

inf
0<η≤η̃

inf
λη∈Λη

(∣∣ω2 − λη
∣∣) ≥ γ > 0.

Here, Λη denotes the discrete set of the eigen-
values of the eigenproblem associated to (1).

2 Homogenization theory

Under the assumptions mentioned above, the
sequence of solutions of (1) converges weakly
in L2(Ω) as η → 0 to u0, the solution of the
homogenized problem{

Find u0 ∈ V , such that ∀v ∈ V
B0(u0, v)− ω2

(
u0, v

)
0

= (f, v) ,
(2)

where (v, w)0 = (Hdiv(ε)v, w) and

B0(v, w) = (Hcurl(ν)∇× v,∇× w) .

The homogenized permittivity Hdiv(ε) and the
homogenized inverse permittivity Hcurl(ν) dis-
play no oscillation on the micro scale of order
η. Both operators Hdiv and Hcurl map a quasi-
periodic tensor to its homogenized counterpart.
The operator Hdiv is the usual homogenization
operator appearing in homogenization of a sec-
ond order elliptic equation and given by

Hdiv(ε) =

∫
Y
ε(x, y)

(
I +DT

y χ
ε(x, y)

)
dy,

where χε = (χε1, χ
ε
2, χ

ε
3)T and χεi solves

Find χεi : Ω→ H1
per(Y ), such that∫

Y
ε(x, y)(ei +∇χεi ) · ∇z dy = 0,

for all z ∈ H1
per(Y ).

On the other hand, the operator Hcurl is de-
signed for Maxwell’s equation. It is given by

Hcurl(ν) =

∫
Y
ν(x, y)

(
I +∇×Xν(x, y)

)
dy,
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where Xν = (Xν
1 , X

ν
2 , X

ν
3 ) and Xν

i solves
Find Xν

i : Ω→ Hper(curl, Y ), such that∫
Y
ν(x, y)(ei +∇×Xν

i )× (∇× z) dy = 0,

for all z ∈ Hper(curl, Y ).

Convergence of uη to the homogenized solution
u0 can be proven using two-scale convergence,
cf. [2]. The multiscale scheme proposed next re-
flects the specific structure of the homogeniza-
tion operators involved.

3 Multiscale method

Let VH be the finite dimensional space of lowest
order Nédélec elements on a macroscopic trian-
gulation TH of Ω into simplices K. This trian-
gulation does not need to resolve the fine scale
structure, i.e. mesh sizes H � η are allowed.
Our FE-HMM scheme is given by{

Find uH ∈ VH , such that ∀vH ∈ VH
BH(uH , vH)− ω2 (uH , vH)H = (f, vH) .

(3)

The FE-HMM bilinear form is defined as follows

BH(vH , wH) =∑
K,j

ωK,j∣∣Y η
K,j

∣∣ ∫
Y ηK,j

νη(x)(∇× vh) · (∇× wh) dx,

where Y η
K,j := xK,j + ηY , (xK,j , ωK,j)

J
j=1 are

the nodes and weights of a quadrature formula
on the simplex K and vh (resp. wh) are the FE
solution of

∇×
(
νη(x)(∇× vh)

)
= 0 in Y η

K,j ,

∇ · vh = 0 in Y η
K,j ,

∫
Y ηK,j

vh dx = 0,

vh(x)− vH,curl(x) is ηY -periodic.

We use the linear function vH,curl given by

vH,curl(x) =

vH(xK,j) +
1

2

(
∇× vH(xK,j)

)
× (x− xK,j).

to couple the macro and micro scales. By con-
struction, vH,curl(x) = vH(xK,j) and

∇× vH,curl(xK,j) = ∇× vH(xK,j),

which are the important properties.

The FE-HMM scalar product is given by

(vH , wH)H =∑
K,j

ωK,j∣∣Y η
K,j

∣∣ ∫
Y ηK,j

εη(x)(∇ϕh) · (∇ψh) dx,

where ϕh (resp. ψh) are the FE solution of
−∇ ·

(
εη(x)(∇ϕh)

)
= 0 in Y η

K,j ,∫
Y ηK,j

ϕh dx = 0,

ϕh(x)− vH(xK,j) · (x− xK,j) ηY -periodic.

The FE-HMM scalar product is closely re-
lated to standard FE-HMM schemes, see e.g.
[1]. In contrast, the use of curl-curl micro prob-
lems for the FE-HMM bilinear form is a novelty.

4 A priori error estimate

The following theorem can be proven combining
classical arguments of numerical analysis with
the discretized version of T -coercivity [3].

Theorem. Under sufficient regularity assump-
tions, we have for H small enough

∥∥u0 − uH
∥∥
V
. inf

vH∈VH

(∥∥u0 − vH
∥∥
V

+ sup
wH∈VH\{0}

∣∣B0(vH , wH)−BH(vH , wH)
∣∣

‖wH‖V

+ sup
wH∈VH\{0}

∣∣ (vH , wH)0 − (vH , wH)H
∣∣

‖wH‖V

)
.

The consistency error terms on the second
and third line can be bounded further.
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Analysis of Multiscale Methods for Long Time Wave Propagation in Locally Periodic
Media
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Abstract

In the present work, we give an analysis of the
upscaling error for a multiscale method approx-
imating long time effective solutions of the mul-
tiscale scalar wave equation. In particular, we
consider a multi-dimensional locally-periodic me-
dia and prove that the long time effects are ac-
curately captured by the method.

Keywords: multiscale methods, multiscale wave
propagation, homogenization

1 Introduction

We consider the scalar wave equation in locally-
periodic media

∂ttu
ε(t, x) = ∇ ·

(
A(x, x/ε)∇uε(t, x)

)
, (1)

uε(0, x) = g(x), ∂tu
ε(0, x) = h(x).

We assume that (x, t) ∈ Ω × [0, T ε] where Ω ⊂
Rd and T ε = O(ε−1). Moreover, A = A(x, y)
is a bounded symmetric positive-definite matrix
function in Rd×d. We denote the d-dimensional
unit cube by Y = [0, 1]d and assume thatA is Y -
periodic in the y variable and Aij ∈ C∞(Ω×Y ).
Here ε � 1 represents the size of microscopic
variations in the media.

When ε � 1, a numerical simulation of (1)
becomes expensive since the small scales must
be resolved over the entire Ω. To decrease the
cost one can resort to multiscale methods, where
the idea is to avoid resolving small scales ev-
erywhere at the expense of targeting only the
coarse part of uε.

The coarse part of uε is related to the the-
ory of homogenization where effective equations
are obtained by mixing the heterogeneities in-
finitely, achieved in the limit as ε −→ 0. In
locally-periodic media and in addition when the
final time T = O(1) is independent of ε, the ho-
mogenized solution u0 solves

∂ttu
0(t, x) = ∇ ·

(
Â(x)∇u0(t, x)

)
, (2)

where Â is the homogenized coefficient. Â is
computed by solving another set of non-oscillatory
problems over Y .

One of the limitations of homogenization the-
ory is that in general it is not possible to find
explicit expressions for Â. Another drawback
of (2) is that it does not describe the effec-
tive properties over long time scales. In the
present study we consider a multiscale method
which, unlike homogenization, does not assume
any knowledge about A and still give a good ap-
proximation of the effective properties for the
long time setting as well. We first assume a
locally-periodic setting and derive an effective
equation accurate up to O(ε−1) time scales. We
then present a multiscale method and show that
the long time effects are accurately captured by
the method.

2 Effective Equations

There has been a great interest in finding ef-
fective equations describing the long time be-
haviour of the scalar wave equation. In purely
periodic media, when A is constant in x, the
following effective equation was derived in [1]:

∂ttv̂(t, x) =
∑
i,j

Âij∂xixm v̂ + ε2L[v̂], (3)

where L :=
∑

i,j,`,mCij`m∂xixjx`xm , and C is a
fourth order tensor which can be computed us-
ing A, and Â is the standard constant homog-
enized coefficient. Similar effective equations
were derived later in [2] as well.

The effective equation (3) is valid in purely-
periodic media and accurate up to O(ε−2) time
scales. In locally-periodic media, using asymp-
totic expansions, we have derived the effective
equation

∂ttv̂(t, x) = ∇ ·
((
Â(x) + εB(x)

)
∇v̂(t, x)

)
+ ε

d∑
j,m,`=1

∂xj (Djm`(x)∂xmx` v̂(t, x)) , (4)

where Â is again the homogenized coefficient
and B, and D can be computed by solving a set
of non-oscillatory cell problems over Y .

Note the difference between (4) and (3). When
the medium is locally-periodic, and when d ≥ 2,
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the non-trivial effects show up in much shorter
time scales, i.e., T ε = O(ε−1). This is the case
also for system of wave equations, see e.g. [4].
Therefore, the study of locally-periodic setting
better uncovers the generic behaviour of long
time waves.

3 Multiscale Method

We introduce a finite difference heterogeneous
multiscale method (FD-HMM) from [3] for nu-
merical approximation of (1). For similar ap-
proaches in the finite element setting see e.g. [5].
The FD-HMM has a macro- and a micro model.
The macro model is

∂ttU(t, x)−∇ · F = 0. (5)

Here U is the macroscopic solution and the flux
F is the missing data in the model. A numer-
ical approximation of the macro model (5) by
a standard finite difference (FD) method would
require values for F at discrete points in Ω. Let
r0 be an arbitrary grid point in Ω. To compute
F (r0) we first solve

∂ttu
ε −∇ · (A(x, x/ε)∇uε) = 0,

uε(0, x) = ū(x), ∂tu
ε(0, x) = 0,

(6)

over a microscopic box Ωη × [0, τ ], where τ =
O(ε) is a microscopic time and Ωη := r0 +
[−Lη, Lη]d where Lη ≥ η + τ

√
|A|∞ and η =

O(ε). The flux F (r0) is then computed by

F (r0) = (7)∫ τ

−τ

∫
Ωη

Kη(x− r0)Kτ (t)A(x, x/ε)∇uε(t, x)dxdt,

where Kη(x) := 1/ηK(x/η), and K is an aver-
aging kernel such that K(q+1) ∈ BV (R) and∫

R
K(t)trdt =

{
1 r = 0,

0 r ≤ p.

Moreover, let û(x) be a piecewise polynomial
interpolant of the macroscopic solutions. Then
the initial data ū(x) is chosen such that the local
average in time and space of uε agrees with û(x).

4 Analysis

Assume that the initial data in (6) is linear and
given by ū = û = s·(x−r0), where s ∈ Rd is the
slope of the macro solutions. With this choice
the FD-HMM captures the effective coefficients
Â and B in (4). To capture D as well, the micro

problem (6) should be provided with atleast a
second order polynomial. Here we consider only
linear initial data and prove the following theo-
rem.

Theorem 1 Let F and K be given as above.
Then with η = τ and η = ε1−β for 0 < β < 2/7
we have∣∣∣F (x)−

(
Â(x)∇û+ εB(x)∇û

)∣∣∣ (8)

≤ C
(
εβ(q−2) + ε2−7β

)
|∇û|∞ .

where C does not depend on x, ε, η but may de-
pend on K, p, q, d or A.

The first term in the right hand side of (8)
accounts for the averaging error in FD-HMM
while the second term is due to the higher or-
der effects of waves. The estimate (8) shows
that the FD-HMM captures the right long time
effects up to O(ε2) accuracy upon choosing an
arbitrarily small β and a large q, e.g. q = k/β.
Note that small values for β imply lower com-
putational cost as η = O(ε1−β). Moreover, q
can be taken arbitrarily large without further
increasing the computational cost.
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Abstract

The interaction of seismic waves with fractured
reservoirs is analyzed on the base of finite-difference
simulation with locally refined grids. The neces-
sity to use such grids is caused by significantly
differing scale of heterogeneities in the back-
ground (coarse grid) and reservoir (fine grid).
Computations for subdomain with coarse and
fine grids are carried out in parallel by a group
of processor units. The data exchange between
these groups is done simultaneously with cou-
pling the coarse and fine grids by spatial inter-
polation on the base of Fast Fourier Transform.

To understand peculiarities of seismic waves’
propagation through the fractured reservoir we
construct the generalized realistic digital seis-
mic model on the base of real seismic and well
log data for some East Siberian oil field (YU-
rubchen). The data obtained are used to con-
nect azimuth distribution of scattered energy
and fracture orientation. The results are justi-
fied by the data of a downhole fracture monitor.

Keywords: seismic waves, multiscale media,
scattering, fractures, finite-difference simulation,
parallel computations

1 Introduction

Over the last decade the use of scattered waves
won a significant place among the wide range
of seismic processing techniques. But so far
the main area of their application is narrowed
to spatial localization of micro heterogeneities
clusters, like cracked and fractured areas, cavi-
ties and so on. In other words these waves are
used just to say ”yes” or ”no” to the presence
of a microstructure. At the same time more

detailed knowledge about fine structure of hy-
drocarbon reservoirs, like orientation of fracture
corridors is extremely important.

Recently the finite-difference techniques for
seismic waves’ simulation in multiscale 3D het-
erogeneous media is developed and justified (Kostin
et al., 2015). Let us stress, that the necessity
to use locally refined in time and space grids
is caused by significantly different scales of het-
erogeneities in the background (coarse grid) and
reservoir (fine grid).

On this base special software for supercom-
puters with parallel architecture is implemented.
Therefore the people has got the unique pos-
sibility for the in situ studying of processes of
waves’ propagation in realistic 3D heterogeneous
multiscale models of geological media. We ap-
ply this software to simulate seismic waves’ prop-
agation through realistic digital model devel-
oped for some East Siberian oil field (Yurubchen).

2 Model description and numerical ex-
periments

The general view of the model of fractured car-
bonate reservoir is presented in Fig.1 together
with the classification of fractures following (Pe-
tit and Bazalgette, 2002).

The software with local grid refinement is
applied to generate the full synthetic wave field.
Next we split specular reflection and scattering
by means of the Gaussian beam decomposition
and spectral filtration of the images obtained
(Protasov et al., 2015). The Fig.2 represents
the azimuth distribution of the scattered energy
extracted from the full wave field for a central
point of acquisition. There are two global max-
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Figure 1: Top: general view of a fractured layer.
Bottom: fractures classification. FC - fracture
corridors, HPF - high persistent fractures, MBF
- multibed fractures, BCF - bed controlled frac-
tures.

ima corresponding to azimuths 90◦ and 270◦ co-
inciding with orientations of the most intensive
fracture corridor. At the same time there is
some secondary maximum corresponding to the
direction of the orthogonal set of fractures.

Figure 2: Fracture energy azimuth distribu-
tion (horizontal direction). Zero corresponds to
west-east direction in the Fig.1, top.

3 Comparison with real data

To verify the approach of estimation of fracture
orientation the real data processing was done.
Results can be seen in Fig.3. Here the azimuth
distribution of the scattered energy (green) is
compared with distribution of fractures obtained
with the help of a downhole fracture monitor at
the depth corresponding to the fractured layer
(red). Correlation coefficient between the shapes
of two these curves is equal to 0.79, which con-
firms the reliability of the approach proposed.

4 Conclusion

On the base of the finite-difference technique
with local refinement in time and space the ap-
proach to estimate orientation of fractures is
proposed and justified by real field data.

Figure 3: Green: azimuth distribution of a scat-
tered energy at the time slice 973 - 989 ms.
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Eliminating the pollution effect in Helmholtz problems by local subscale correction
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Abstract

We introduce a new Petrov-Galerkin multiscale
method for the numerical approximation of the
Helmholtz equation with large wave number κ
in bounded domains in Rd. The discrete test
spaces are generated from standard mesh-based
finite elements by local subscale corrections in
the spirit of numerical homogenization. The
precomputation of the corrections involves the
solution of coercive cell problems on localized
subdomains of size `H; H being the mesh size
and ` being the oversampling parameter. If
the mesh size and the oversampling parame-
ter are such that Hκ and log(κ)/` fall below
some generic constants, the method is stable
and its error is quasi-minimal; pollution effects
are eliminated in this regime.

Keywords: pollution effect, Helmholtz prob-
lem, finite element, multiscale method, numeri-
cal homogenization

This talk concerns the numerical solution of the
Helmholtz equation by the finite element method
or related schemes in the regime of large wave
numbers. The highly oscillatory nature of the
solution plus a wave number dependent pollu-
tion effect puts very restrictive assumptions on
the smallness of the underlying mesh. Typi-
cally, this condition is much stronger than the
minimal requirement for a meaningful represen-
tation of highly oscillatory functions from ap-
proximation theory, that is, to have at least
5 − 10 degrees of freedom per wave length and
coordinate direction.

The wave number dependent preasymptotic
effect denoted as pollution or numerical disper-
sion is well understood by now and many at-
tempts have been made to overcome or at least
reduce it. However, for many standard meth-
ods, this is not possible in 2d or 3d [1].

Inspired by the numerical homogenization of
diffusion problems with rough and highly oscil-
latory diffusion tensor [4] , this talk introduces
a novel Petrov-Galerkin multiscale method of
to cure pollution in the numerical approxima-
tion of the Helmholtz problem. The discrete

trial and test spaces of the method are gener-
ated from standard mesh-based finite elements
by local subscale corrections. The precomputa-
tion of the corrections involves the solution of
H−d coercive cell problems on localized subdo-
mains of size `H; H being the mesh size and
` being the adjustable oversampling parameter.
If the data of the problem (domain, boundary
condition, force term) allows for polynomial-in-
κ bounds of the solution operator and if the
mesh size and the oversampling parameter of
the method are such that the resolution condi-
tion Hκ . 1 and the oversampling condition
log(κ)/` . 1 are satisfied, then the method is
stable and satisfies the error estimate

κ‖u− umsPG‖L2(Ω) + ‖∇(u− umsPG)‖L2(Ω)

≤ C(H + β`)

with generic constants C > 0 and β < 1 inde-
pendent of κ. For a fairly large class of Helmholtz
problems, including the acoustic scattering from
convex non-smooth objects, this result shows
that pollution effects can be suppressed under
the quasi-minimal resolution condition Hκ ≤
O(1) at the price of a moderate increase of the
inter-element communication, i.e., logarithmic-
in-κ oversampling. The complexity overhead
due to oversampling is comparable with that
of [5, 6], where instead of increasing the inter-
element communication, the number of degrees
of freedom per element is increased via the poly-
nomial degree which is coupled to log κ in a sim-
ilar way. While [1] shows that pollution cannot
be avoided with a fixed stencil, our results show
that already a logarithmic-in-κ growths of the
stencil can suffice to eliminate pollution.

Although the results are constructive, their
practical relevance for actual computations is
not immediately clear in any case. The mul-
tiscale method requires accurate precomputa-
tions on sufficiently fine subgrids. These pre-
computations are both local and independent,
but the worst-case (serial) complexity of the
method can exceed the cost of a direct numer-
ical simulation on a global fine mesh. In this
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context, this talk also shows how, in a struc-
tured mesh, the number of cell problems can
be reduced from O(H−d) to O(`d), where the
hidden constant depends only on the number
of geometric feature of the computational do-
main. This complexity reduction turns the ap-
proach into a feasible and competitive numer-
ical method for acoustic scattering problems.
Several numerical experiments will demonstrate
the practical performance of the method.

This talk is based on the recent preprints [7]
and [2].
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A high frequency boundary element method for scattering by three-dimensional screens

J. A. Hargreaves1, D. P. Hewett2, Y. W. Lam1, S. Langdon3,∗

1School of Computing, Science and Engineering, University of Salford, U.K.
2Mathematical Institute, University of Oxford, U.K.

3Department of Mathematics and Statistics, University of Reading, U.K.
∗Email: s.langdon@reading.ac.uk

Abstract

We propose a numerical-asymptotic boundary
element method for time-harmonic acoustic scat-
tering of an incident plane wave by sound-soft
three-dimensional (3D) screens. Standard nu-
merical schemes require the number of degrees
of freedom to grow rapidly in order to main-
tain accuracy as frequency increases. Here, we
enrich our approximation space away from the
edges of the screen with oscillatory basis func-
tions carefully designed to capture the high fre-
quency behaviour of the solution. We show that
reasonable accuracy can be achieved for a range
of frequencies using relatively few degrees of
freedom.

Keywords: Helmholtz, high frequency, hybrid
numerical-asympotic boundary element method

1 Problem statement

We consider the 3D problem of scattering of
the time harmonic incident plane wave ui(x) =
eikx·d, where x = (x1, x2, x3) ∈ R3, k > 0 is
the wavenumber and d is a unit direction vec-
tor, by a sound soft screen Γ := {(x1, x2, 0) ∈
R3 : (x1, x2) ∈ (0, 2π) × (0, 2π)}. The bound-
ary value problem (BVP) we wish to solve is:
given ui, determine u ∈ C2(D) ∩W 1

loc(D) such
that

∆u+ k2u = 0 in D := R3\Γ̄, u = 0 on Γ,

and the scattered field us := u − ui satisfies
the Sommerfeld radiation condition. For the
solution of the above BVP, a form of Green’s
representation theorem holds:

u(x) = ui(x)+

∫
Γ

Φk(x,y)

[
∂u

∂n

]
(y) dy, x ∈ D,

where Φk(x,y) = exp(ik|x− y|)/4π|x− y| and
[∂u/∂n] =: φ is the jump in the normal deriva-
tive ∂u/∂n across Γ. Then φ satisfies the bound-

ary integral equation (see, e.g., [1, §7.6])

Skφ(x) :=

∫
Γ

Φk(x,y)φ(y) dy = ui(x), x ∈ Γ.

(1)

2 Approximation space

The key idea of our approach is to adapt our
approximation space for the solution of (1) to
the high frequency asymptotic behaviour of the
solution. Specifically, for x ∈ Γ we write

φ(x) = Ψ(x)+
M∑

m=1

Vm(x, k) exp(ikψm(x)), (2)

where Ψ := 2∂ui/∂n represents the Geomet-
rical Optics approximation, and our aim is to
choose the phase functions ψm, m = 1, . . . ,M ,
in such a way that the corresponding ampli-
tudes Vm(·, k) are (relatively) non-oscillatory.
For the equivalent 2D problem (see [2]) it is suf-
ficient to take M = 2, in which case V1 and V2

are provably non-oscillatory (i.e. all of the oscil-
lations are captured completely by a small num-
ber of phase functions). For the 3D problem
this is not the case, since the waves diffracted
by the edges and corners of the screen are red-
iffracted infinitely often by the other edges and
corners of the screen, taking a different direc-
tion of travel after each rediffraction. However,
it turns out that with a judicious choice of ψm

in (2) we can represent φ to a reasonable degree
of accuracy away from the edges of the screen
(where the solution is singular and a standard
approximation space is used) using only a small
value of M . Specifically, we choose M = 8,
and ψm, m = 1, . . . , 8, so that exp(ikψm(x)),
m = 1, . . . , 4, represent plane waves propagat-
ing in the direction of the singly-diffracted rays
predicted by the Geometrical Theory of Diffrac-
tion (see [1, §7.6]), with one such wave associ-
ated to each of the four edges of the screen, and
exp(ikψm(x)), m = 5, . . . , 8, represent their re-
flections by other edges (this being sufficient to
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capture all rereflections from edges, due to the
regular nature of the screen). Using (2) we can
design an appropriate approximation space to
represent ϕ := φ − Ψ, the difference between
[∂u/∂n] and its Geometrical Optics approxima-
tion. Precisely: within a tenth of a wavelength
of each edge of the screen we use a standard
(piecewise polynomial) approximation space on
an appropriate graded mesh (in order to capture
the singular behaviour near the edges); away
from the edge of the screen we divide the screen
into nine elements, and on each element our ap-
proximation space consists of piecewise poly-
nomials (of maximum order p) multiplied by
each of the four plane waves described above,
as shown in Figure 1.

Figure 1: Coarse mesh away from edges, stan-
dard (graded) mesh near edges

3 Numerical results

We use a Galerkin method to select an element
from our approximation space, denoted by Vp,k.
That is, we seek ϕp ∈ Vp,k such that

〈Skϕp, v〉Γ =
〈
ui − SkΨ, v

〉
Γ
, ∀v ∈ Vp,k, (3)

where the duality pairings in (3) are L2 inner
products. With d = (3, 1, 1)/

√
11 we solve (3)

for p = 0, 1, 2, giving up to 1, 4, 9 polynomials
respectively on each coarse element. So, with
eight wave directions and nine coarse elements,
we have, for p = 0, 1, 2, respectively 72, 288,
and 648 total degrees of freedom on our coarse
mesh, and we keep this value fixed for each dif-
ferent value of k tested. Note that this central
part of the screen covers k − 0.2 wavelengths
in each direction, so a standard scheme requir-
ing, say, 10 degrees of freedom per wavelength,
might require of the order of 100(k − 0.2)2 de-
grees of freedom on this region in order to rep-
resent the solution to “engineering accuracy”.
In Figure 2 we plot on a logarithmic scale the
relative L2 errors in φ on this central section

(we restrict attention here to this central por-
tion because we are primarily interested in un-
derstanding how well we can represent the os-
cillatory behaviour), against k, for p = 0, 1, 2,
demonstrating that we can achieve a reasonable
level of accuracy using this approach with a very
small number of degrees of freedom compared to
standard methods.

Figure 2: Convergence results
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High-frequency asymptotic compression of dense BEM matrices
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Abstract

A Boundary Element Method (BEM) discretiza-
tion matrix for a high-frequency scattering prob-
lem is typically large and dense. A matrix-
vector product is very costly, unless accelerated
by FMM. We introduce an alternative, and rel-
atively simple technique to reduce the cost of
a matrix-vector product by introducing spar-
sity. The matrix represents the action of an
oscillatory integral operator on an oscillatory
function, and at high frequencies this action is
essentially local in nature. We show how to
exploit this locality by modifying the Green’s
function using well-chosen windowing functions
in an otherwise standard BEM implementation.
We present proof-of-concept results to illustrate
that asymptotic compression can be achieved
even for near-trapping domains and multiple
scattering obstacles.

Keywords: BEM, oscillatory integration, high-
frequency scattering, compression

1 Introduction

In sound simulations, one converts the Helm-
holtz equation into a Boundary Integral equa-
tion. The scattered field by an obstacle with
boundary Γ can be represented via Green ’s the-
orem by the single layer potential

us(~x) =

∫
Γ
K(~x, ~y)v(~y)ds(~y), (1)

where K(~x, ~y) represents the Green’s function.
For a sound-soft obstacle, we have

us(~x) = −uinc(~x),∀~x ∈ Γ, (2)

with incident wave uinc(~x). A collocation ap-
proach solves the linear system Ax = b, where
b represents the right hand side of (2) at the
collocation points ~xi, x the density v(~y) at ~xi
and Ax approximates the integral in (1).

We have chosen an incident plane wave in
Figure 1, for a slightly non-convex obstacle with
wave number k = 256. We have used N =
1, 536 degrees of freedom in the discretization.
There are no multiple reflections in this scene,
but results for other domains are included fur-
ther on.

Figure 1: Scattering simulation for a near-
convex obstacle using k = 256 and N = 6k.
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Figure 2: Real part of the 20-th row of A (blue),
resp Ã (green), times x for k = 256 and N = 6k.

2 Oscillatory integration

In Figure 2, we have shown the real part of the
vector A[20, :]T . ∗ x, which sums to b[20]. This
approximates the oscillatory integrand in (1).
Most of the oscillations cancel out when sum-
ming, and even more so when k increases.

This agrees with results in asymptotic anal-
ysis: contributions to the integral originate in
points of singularity, or in so-called stationary
points. The latter are points where the deriva-
tive of the phase of the integrand vanishes, which
renders the integrand locally non-oscillatory.

The singularity is present everywhere along
the diagonal of the matrix and self-reflections
correspond to stationary points at the correspond-
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Figure 3: Nonzero pattern of Ã.

ing location in A. First order compression could
be based on a simple visibility condition.

In order to assess the possible rate of com-
pression, we follow a crude but fully automatic
technique to locate stationary points. We mul-
tiply each row of the matrix A with a sliding C∞

window and compute correlations with the ex-
act solution vector x. Small correlation means
there is no contributing point inside the support
of the window. After thresholding and enforcing
adding the singularity along the diagonal, this
results in a pattern shown in Figure 3. For col-
location points inside the shadow region, there
is a stationary point in the illuminated region.

3 Method and results

The exact phase of the solution is known only
for simple convex obstacles [2]. However, when
the Green’s function is multiplied by a smooth
cut-off function around each stationary point,
the resulting integral is asymptotically the same,
even if the phase is not known explicitly.

This C∞ window is based on our correlation
test, resulting in a compressed matrix Ã which
avoids approximating zero. Note that it is not
sufficient to simply discard entries of A. Simi-
lar patterns were seen in [1, 3], based on phase
extraction which we do not employ here.

Results are shown in Table 1 for k = 28

and 210, using the windows found at the former
also for the larger wavenumber, since station-
ary points are independent of frequency. One
could also use increasingly smaller windows for
rising frequencies, thus reducing computational
complexity but still with an increasing N .

Results are included for a self-reflecting ob-
stacle and a near-trapping domain. Here, the
support of the window functions is rather large

Obstacle % nnz Error at 28 Error at 210

Ellipse 25% 5.0% 0.22%
Figure 1 28% 6.2% 0.14%
Self-reflecting 51% 12% 1.9%
Near-trapping 52% 5.1% 0.63%
3 ellipses 31% 14% 12%

Table 1: Pct. of nonzeros and ||x̃−x||/||x|| for
5 domains at different k, using N = 6k.

and compression deteriorates. However,
the method remains applicable in principle, and
results improve with increasing frequency. A
scene with 3 scattering ellipses can also be asymp-
totically compressed, although our preliminary
implementation exhibits higher errors.
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Abstract

Medical therapies with high-intensity focused
ultrasound have promising applications in the
non-invasive treatment of cancer. Yet, their
clinical use is limited when the diseased tissue
is located behind a rib cage. Numerical meth-
ods can play an important role in the treatment
planning. This necessitates the computation of
acoustic scattering at MHz frequencies. Mod-
ern boundary element methods provide fast and
accurate computation of large-scale scattering,
but quick convergence is difficult to achieve at
high frequencies. This paper presents the use of
an operator preconditioner based on on-surface
radiation conditions that effectively improves
convergence in the high-frequency range. The
feasibility for medical applications is demonstrated
with scattering analysis of a human rib cage by
focused ultrasound of 1 MHz.

Keywords: boundary element method, medi-
cal physics, acoustic scattering, preconditioning

1 Introduction

The convential medical treatments of liver can-
cer are surgical resection and transplantation.
These invasive procedures pose severe health
risks to the patients. As a non-invasive alterna-
tive, high-intensity focused ultrasound (HIFU)
can be used to ablate tumours by heating a lo-
calised region of tissue. Although HIFU treat-
ment has been demonstrated to be feasible for
a range of different cancers, there are a number
of significant challenges which currently hinder
its more widespread clinical use. In particular,
the scattering of ultrasound by ribs can result
in overheating of the bone and abberations at
the focal region. The patient-specific planning
for transcostal HIFU treatment is likely to rely
on numerical modelling to optimise the multi-
element array of ultrasound transducers.

The boundary element method (BEM) has
shown great promise relative to other numerical

schemes because of its ability to solve large-scale
scattering problems [1]. However, the applica-
bility of BEM is limited by the large demand for
computational resources, the weak convergence
and the presence of spurious resonance modes
for simulation of high-frequency scattering. In
this paper, we will use a Burton-Miller formula-
tion with a high-frequency preconditioner based
on on-surface radiation conditions (OSRC) [2].
The improvement that such techniques can bring
to the effectiveness of BEM for HIFU simula-
tions will be demonstrated.

2 Methodology

Let us consider a bounded domain Ω ⊂ R3 rep-
resenting a rib cage, with a Lipschitz smooth
boundary Γ = ∂Ω. The time-harmonic scatter-
ing of acoustic waves on a rigid surface can be
modelled with the Helmholtz exterior boundary
value problem

∆p+ k2p = 0,

∂n(p+ pinc)|Γ = 0,

lim|x|→∞ |x|
(
∇p · x

|x| − ikp
)

= 0

where p denotes the unknown pressure field and
k the wavenumber. The scattered field can be
rewritten in terms of the double-layer potential
ϕ = (pinc − p)|Γ on the surface. To avoid spu-
rious resonances, a Burton-Miller formulation
with coupling parameter η ∈ C will be used:(

1
2I +M − ηD

)
ϕ = −pinc|Γ + η∂npinc|Γ

where I, M and D denote the identity, double-
layer and hypersingular boundary operators. The
convergence of the Galerkin discretised Burton-
Miller formulation deteriorates at high frequen-
cies, where the wavelength is small compared
with the dimension of the scatterer. Precondi-
tioning of the unbounded hypersingular bound-
ary operator is necessary to achieve fast conver-
gence. A regularising operator Ṽ : H−

1
2 (Γ) →
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H
1
2 (Γ) will be used as preconditioner and in-

cluded as η = Ṽ in the Burton-Miller formula-
tion. Specifically, we use a high-frequency ap-
proximation of the Neumann-to-Dirichlet map
with the OSRC technique [2], given by

Ṽ =
1

ik

(
1 +

∆Γ

(k + iε)2

)− 1
2

where ∆Γ denotes the Laplace-Beltrami opera-
tor. Singularities are prevented with a damped
wavenumber k+ iε, ε > 0. After approximating
this pseudo-differential operator with a Padé se-
ries, Galerkin discretisation results in a sparse
set of linear equations and thus fast computa-
tions. The preconditioner is particularly accu-
rate for high-frequency scattering and therefore
results in quick convergence for HIFU simula-
tions. Moreover, it can be combined with fast
multipole methods or H-matrix compression.

3 Numerical experiments

The OSRC preconditioned Burton-Miller for-
mulation for acoustic scattering of rigid surfaces
has been implemented in the open-source soft-
ware package BEM++ [3]. Test problems on a
sphere confirm the improved convergence for
high frequencies; in fact, the number of iter-
ations for the GMRES algorithm remains al-
most constant for increasing wavenumber. To
demonstrate the applicability to HIFU simula-
tion, we use a model of four ribs with a length
of approximately 12 cm from a human rib cage,
embedded in water. A transducer array that
has already been optimised for focusing behind
a rib cage will be used as excitation [1]. The
256 piston sources have a common frequency
of 1 MHz. The triangular surface mesh results
in 78 297 degrees of freedom for piecewise con-
tinuous linear test and basis functions. The
OSRC preconditioned BEM converges in 94 it-
erations and 2 minutes on a desktop computer
with 12 cores and 80 GB RAM. This is a consid-
erable improvement compared to the 4741 iter-
ations and 69 minutes required for the Burton-
Miller formulation. Furthermore, the realistic
pressure field, depicted in Figure 1, demonstrates
the applicability of OSRC preconditioned BEM
to transcostal HIFU simulation.
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[3] W. Śmigaj, S. Arridge, T. Betcke,
J. Phillips and M. Schweiger, Solv-
ing Boundary Integral Problems with
BEM++, accepted for publication in ACM
Transactions on Mathematical Software
(2015).



208 Contributed Session: Monday 15:30–17:00 Room 0.014

Inverse Scheme for Acoustic Source Localization based on Microphone Array
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Abstract

In the last years, considerable improvements have
been achieved in acoustic source localization us-
ing microphone arrays. However, main restric-
tions include simplified source models and using
Green’s function for free radiation as the trans-
fer function between source and microphone sig-
nal. To overcome these limitations, we aim to
solve the corresponding partial differential equa-
tion (Helmholtz equation) with the actual bound-
ary conditions as given in the measurement setup.

Keywords: Acoustic source localization, in-
verse method, Helmholtz equation

1 Introduction

Acoustic beamforming is used to determine source
locations and distributions, measure acoustic spec-
tra for complete models and subcomponents,
and project results from the array to far field
points. The fundamental processing method,
Frequency Domain Beamforming (FDBF) [?] is
robust, fast, and renders continuous source dis-
tributions as continuous images. Here, the beam-
forming map is computed by

a(g) = g∗Cg (1)

with g the steering vector, ∗ the complex con-
jugate, and C the cross spectral matrix (CSM)
of the array. The CSM is computed out of the
measured microphone signals and is modeled by

C =
M∑
j=1

σjgg
∗ (2)

with M the number of assumed sound sources.
Assuming that only the source σk is nonzero,
we obtain

C = σkgkg
∗
k (3)

and the source map results in

a(g) = σkg
∗
kgkg

∗
kgk . (4)

By forcing g∗
jgj = 1, we obtain the correct

source location with strength σk. The resolu-
tion is limited by the Rayleigh limit [?], and
the dynamic range to about 20 dB by the fi-
nite aperture of the microphone array and fur-
ther reduced to 7-12 dB by the sparse array
design that is necessary for high frequency op-
eration with a limited number of microphones.
A second processing step is required to convert
a raw FDBF map into a source density map.
This can be done by application of an overall
scaling factor, known as the integration tech-
nique [?] or deconvolution by, e.g., CLEAN [?],
DAMAS [?] or CLEANSC [?]. A main restric-
tion is currently that the sources are modeled
as monopoles or/and dipoles and the steering
vector g describing the transfer function be-
tween source and microphone signal is modeled
by Green’s function for free radiation. To over-
come these limitations, we plan to solve the cor-
responding PDE with the actual boundary con-
ditions as given, e.g., in aeroacoustic wind tun-
nels, where such measurements are often per-
formed.

2 Physical Model

We assume that we have the original geometry
of the setup and Fourier-transformed acoustic
pressure signals pmi(ω) (ω being the angular fre-
quency, i = 1, ...,M) measured by microphones
at positions xi. Therefore, our physical model
is the Helmholtz equation

∆p+ k2p = σ (5)

with the wave number k and the searched for
acoustic sources σ(x, ω). Since we will do the
identification separately for each frequency ωj ,
we will neglect dependence on ω in the follow-
ing. For the acoustic sources, we may write

σ(x) =
N∑
j=1

aje
iϕjδxj (6)

with delta pulses δxj located at N grid points
xj , the searched for amplitudes a1, a2, ..., aN ∈
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R and phases ϕ1, ϕ2, ..., ϕN ∈ [−π/2, π/2]. Our
goal is to minimize the following term

1

2

M∑
i=1

|pi(xi)− pmi|2

+α

 N∑
j=1

∣∣∣aj∣∣∣q + γ
N∑
j=1

ϕ2
j

 (7)

(with a small regularization factor α > 0 and
a fixed value γ) such that (5) is fulfilled. The
exponent q > 1 is chosen close to one to en-
hance sparsity [?], i.e. to pick the few true
source locations from a large number N of trial
sources. Here, the Lq norm is used as a smooth
approximation of the L1 norm. According to
the discrepancy principle, we choose α = 2−m

(m = 0, 1, 2,) such that√√√√ M∑
i=1

(pi(xi)− pmi)
2 ∼ ε (8)

with ε the measurement errror.

3 Numerical Scheme

According to our model, we define the following
Lagrange functional L(a1, .., aN , ϕ1, .., ϕN , p, z)

1

2

M∑
i=1

|pi(xi)− pmi|2

+α

 N∑
j=1

∣∣∣aj∣∣∣q + γ

N∑
j=1

ϕ2
j


+Re

∫
Ω

k2pz −∇p · ∇z −
N∑
j=1

aje
iϕjδxj z

 dΩ

 .

In a next step, we perform the directional deriva-
tives of our Lagrange functional w.r.t. the ar-
guments. Starting with the searched for ampli-
tudes aj , we obtain the first defining equation

0 =
∂L
∂aj

[z] = αq
∣∣∣aj∣∣∣q−1

sign(aj)−Re
(
eiϕjz(xj)

)
.

(9)
For the searched for phases, we get

0 =
∂L
∂ϕj

[z] = 2αγϕj + ajIm
(
eiϕj z(xj)

)
. (10)

For the directional derivative w.r.t. the acoustic
pressure p, we perform a linearization in the
direction of v and finally arrive at

∆z + k2z =
M∑
l=1

(
p(xl)− pm(xl)

)∗
δxl

(11)

with ∗ the conjugate complex operation. The
last directional derivative w.r.t z results in the
state equation (5).

Thereby, our scheme is based on interatively
solving (9) to (11) and (5).

4 Outlook

In the talk, we will provide details of our in-
verse scheme and its application to real world
problems to demonstrate the additional bene-
fit of our scheme as compared to the classical
approach.
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The generalized linear sampling method for limited aperture data
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Abstract

In [1] we propose and analyse a new formula-
tion of the Linear Sampling Method, the Gen-
eralized Linear Sampling Method that gives an
exact characterization of the target’s shape in
terms of the so-called farfield operator (at a
fixed frequency). In this paper we present an
extension of this method to the case of limited
aperture data. This case has only been studied
in the restricted situation where the direction
of the incident plane waves and the measured
farfield patterns are the same ( this situation
corresponds to measure in transmission). We
extend the theoretical justification of the Gen-
eralized Linear Sampling method to any set of
direction of incidence and measurement.

Keywords: Inverse scattering, Qualitative method,
Limited aperture

1 Introduction

We are interested in extending the result from
[1] to the case of limited aperture data. We will
restrict ourselves to the case of scalar acoustic
waves and penetrable obstacle. First we will re-
call the equations that defines the farfield opera-
tor and its factorization. Secondly we will recall
the result of the GLSM that applied in the case
of full aperture (and when the direction of inci-
dence and measurement are the same. Finally
we will give the modification that one should ap-
plied to GLSM in order to have an exact charac-
terization of the support of the obstacle in term
of the limited aperture farfield operator.

2 Direct problem

We restrict ourselves to the case of scalar time
harmonic waves and we focus on farfield mea-
surements associated to incident plane waves.
For a wave number k > 0, the total field solves
the Helmholtz equation:

∆u+ k2nu = 0 in Rd

for d = 2 or 3 and n the refractive index, where
=(n) ≥ 0. We denote by D̄ the support of n−1
and assume that D is a bounded domain with
Lipschitz boundary and connected complement.
We are interested in the case where u is gener-
ated by an incident plane wave, ui(θ, x) := eikx·θ

for x ∈ Rd and θ ∈ Γs, where Γs ⊂ Sd−1 is the
set of angles of the incident plane waves. We
also introduce the scattered field us defined by:

us(θ, ·) := u− ui(θ, ·) in Rd,

lim
r→∞

∫
|x|=r

∣∣∂us
∂r − iku

s
∣∣2 ds = 0.

(1)

We introduce the farfield u∞(θ, x̂) defined
through the following expansion:

us(θ, x) =
eik|x|

|x|(d−1)/2
(u∞(θ, x̂) +O(1/|x|))

for |x| → ∞ and for all (θ, x̂) ∈ Γs × Γm, where
Γm ⊂ Sd−1 is the set of angles of the measured
farfield pattern (.

Leading to the farfield operator:

Fg(x̂) :=

∫
Γs

u∞(θ, x̂)g(θ)ds(θ).

It is well known [3] that the farfield operator ad-
mits the factorization F = H∗mTHs. The com-
pact operator Hs : L2(Γs) → L2(D) is defined
by :

Hsg :=

∫
Γs

eikx·θg(θ)ds(θ), g ∈ L2(Γs), x ∈ D,

(2)
and is dense in {v ∈ L2(D) s.t. ∆v + k2v =
0 in D}. We can define Hm the same way and
its adjoint: H∗ : L2(D)→ L2(Γm) is defined by
:

H∗mϕ(x̂) :=

∫
D
e−iky.x̂ϕ(y)dy, ϕ ∈ L2(D), x̂ ∈ Γm.

Finally we define T : L2(D)→ L2(D) by:

Tui := −k2(1− n)u, (3)
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The operator T satisfies (under hypothesis 1)
:

|(Th, h)| ≥ µ ‖h‖2 ∀h ∈ R(H), (4)

where µ > 0 is a constant independent of h.

Hypothesis 1 The index of refraction n and
the domain D satisfy n ∈ L∞(Rd), supp(n −
1) = D, =(n) ≥ 0 and there exist a constant
n∗ > 0 such that <(n(x) − 1) ≥ n∗ for a.e.
x ∈ D.

3 The GLSM

In this subsection we suppose that Γi = Γm = Γ
which is the case in full aperture or transmis-
sion measurement. This implies that F has a
symmetric factorization F = H∗TH∗. We in-
troduce the farfield pattern of the Green func-
tion:

φz(x̂) := e−ikx̂·z

and the key ingredient of the GLSM:

Theorem 1 Assume that k is not an interior
transmission eigenvalue [2]. Then G = H∗T is
compact, injective with dense range and φz ∈
R(G) if and only if z ∈ D.

We outline the main results of the GLSM
in the case of noisy data (see [1]). The noisy
operator, F δ is such that

∥∥F δ − F∥∥ ≤ cδ where

c is a real constant.Let gα,δz ∈ L2(Sd−1) be the
minimizer of

Jδα(φz; g) := α(|
(
F δg, g

)
|+δ ‖g‖2)+

∥∥∥F δg − φz∥∥∥2
,

(5)
for α > 0, δ > 0 and φz ∈ L2(Γ). The functional

Aα,δ(g) := |
(
F δg, g

)
|+ δ ‖g‖2 (6)

gives a characterization of D through the fol-
lowing result.

Theorem 2 Under the aforementioned hypoth-
esis on k and n we have:

• z ∈ D implies lim sup
α→0

lim sup
δ→0

Aα,δ(gα,δz ) <

∞,

• z /∈ D implies lim inf
α→0

lim inf
δ→0

Aα,δ(gα,δz ) =
∞.

4 The limited aperture case

We now suppose that Γs 6= Γm and we suppose
that D is included in a larger domain E. From
the definition of Hs (and Hm) it is obvious that
they can be extended to operator from L2(Γs)
to L2(E).

Let gα,δs,z ∈ L2(Γs) and gα,δm,z ∈ L2(Γs) be the
couple that minimizes the modified cost func-
tional (5) :

Jδα(φz; gs, gm) := α(|
(
F δgs, gm

)
|+ δ(‖gs‖2 + ‖gm‖2))

+ ‖Hsgs −Hmgm‖2L2(E) +
∥∥∥F δgs − φz∥∥∥2

,

(7)
for α > 0, δ > 0 and φz ∈ L2(Γm). The

functional

Aα,δ(gs, gm) := |
(
F δgs, gm

)
|+ δ(‖gs‖2 +‖gm‖2)

(8)
gives a characterization of D through the fol-
lowing result.

Theorem 3 Under the aforementioned hypoth-
esis on k and n we have:

• z ∈ D implies lim sup
α→0

lim sup
δ→0

Aα,δ(gα,δs,z , gα,δm,z) <
∞,

• z /∈ D implies lim inf
α→0

lim inf
δ→0

Aα,δ(gα,δs,z , gα,δm,z) =
∞.
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Zixian Jiang1,∗, Armin Lechleiter2
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Abstract

Interior eigenvalues of bounded scattering ob-
jects can be rigorously characterized from multi-
static and multi-frequency far field data. This
characterization, the so-called inside-outside du-
ality, holds for various types of penetrable and
impenetrable scatterers and is based on the be-
havior of a particular eigenvalue of the far field
operator. It naturally leads to a numerical al-
gorithm for computing interior eigenvalues of a
scatterer that does not require shape or phys-
ical properties of the scatterer as input. Since
the non-linear inverse problem to compute such
interior eigenvalues from far field data is ill-
posed, we propose a regularizing algorithm that
is shown to converge as the noise level of the far
field data tends to zero. We illustrate feasibility
and accuracy of our algorithm by numerical ex-
periments where we compute Robin eigenvalues
of the Laplacian in three-dimensional domains
from scattering data of these domains due to
plane incident waves.

Keywords: time-harmonic scattering, interior
eigenvalue, inside-outside duality, regularization.

1 Introduction

We consider the time-harmonic scattering at wave
number k > 0 from a impenetrable scatterer
D ⊂ R3 (bounded Lipschitz domain with con-
nected complement). The total field u is gov-
erned by

∆u+ k2u = 0 in R3 \D, (1)

∂νu|∂D + τ u|∂D = 0 on ∂D, (2)

where τ ∈ L∞(∂D,R) is real-valued. It is well-
known [1,2] that for an incident plane wave ui :
x 7→ exp(ik θ ·x) of direction θ ∈ S2 there exists
a unique total field u ∈ H1

loc(R3) solving (1)–(2)
such that the scattered field us = u−ui satisfies
the Sommerfeld radiation condition,(

∂us

∂|x|
− ikus

)
= O

(
1

|x|2

)
as |x| → ∞. (3)

Hence, us behaves like an outgoing spherical
wave as |x| → ∞,

us(x, θ) =
exp(ik|x|)

4π|x|

(
u∞(x̂, θ) +O

(
1

|x|

))
,

with a far field pattern u∞(·, θ) ∈ L2(S2). The
far field operator F on L2(S2) is defined by

Fg(x̂) :=

∫
S2
u∞(x̂, θ)g(θ) dS(θ). x̂ ∈ S2, (4)

For problem (1)–(3) F is compact and normal.
There exists a complete orthonormal eigensys-
tem (λj , gj)j∈N with λj → 0 as j → ∞ such
that

Fg =
∑
j∈N

λj(g, gj)gj for all g ∈ L2(S2).

The eigenvalues can be ordered according to
their magnitude, i.e. |λ1| ≥ |λ2| ≥ . . . . It is
well-known [2] that each eigenvalue λj lies on a
circle of radius 8π2/k centered at 8π2i/k in the
complex plane. In polar coordinates it writes

λj = rj exp(iϑj) with rj ≥ 0, ϑj ∈ [0, π). (5)

We set νj = 0 if λj = 0. Since Re (λj) > 0 for
all j > N large enough [4], the phases ϑj →
0 as j → ∞. Hence the largest phase ϑ∗ =
maxj∈N ϑj of the eigenvalues is well defined and
attained by some eigenvalue λ∗ 6= 0.

Theorem 1 (Th. 13 in [4]) k20 > 0 is a Robin
eigenvalue of −∆ in D, i.e. −∆v = k20v in D
and ∂νv + τv = 0 on ∂D hold for some non-
trivial v ∈ H1(D), if and only if

lim
k↘k0

ϑ∗(k) = π.

To construct a numerical algorithm comput-
ing interior Robin eigenvalues of D based on
Theorem 1 we first compute the eigenvalues of
a finite-dimensional approximation FN(k) to the
far field operator F (k) gained from discrete far
field data u∞(θj , θ`) at finitely many directions
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θj,` ⊂ S2, and repeat this for sufficiently many
wave numbers k in a given interval of interest
(or a sufficiently dense grid K of wave numbers
in that interval). Secondly, check at which wave
numbers the largest phase of these eigenvalues
jumps to π; these numbers approximate square
roots of interior Robin eigenvalues.

Since the essential spectrum of F is the ori-
gin, FN may have many eigenvalues inside a
small ball around zero whose radius equals the
approximation error ε = ‖FN−F‖. These eigen-
values in general possess arbitrary phases in [0, 2π).
Thus, a crucial regularization step consists in
neglecting eigenvalues of FN that are smaller in
magnitude than, roughly speaking, the approx-
imation error. The maximal phase of the re-
maining eigenvalues of FN(k) is called the largest
regularized discrete phase and denoted by ϑ※(k,N).

2 Main results

Assume that the approximation error ε→ 0 as
N → ∞ and that the sequence of wave num-
bers ki ∈ K tends from above to k as i →
∞. Then k2 is an interior Robin eigenvalue if
and only if the largest regularized discrete phase
ϑ※(ki, Ni)→ π as i→∞ at least for some sub-
sequence {Ni}i∈N ⊂ N.

As the error between the largest regular-
ized discrete phase ϑ※(k,N) of FN and the ex-
act largest phase ϑ∗(k) of F tends to zero as
N → ∞, numerically checking for jumps of ϑ※

thus yields approximations to the square roots
of interior Robin eigenvalues of D. The accu-
racy of these approximations of course depends
on the step size of the grid K and the approxi-
mation error of FN(k) for k ∈ K.

3 Numerical examples

We choose D to be the unit cube (0, 1)3, such
that the exact interior Robin eigenvalues can
be analytically computed. τ = 1 in the Robin
boundary condition. The approximation FN to
F is gained from discrete far field data of N =
120 equally distributed directions for incident
waves and observations (θj , θl)

N
j,l=1 on the sphere

S. Reconstruction results of interior Robin eigen-
values are shown in Figure 1.
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of the square roots of the exact Robin eigenval-
ues.

[2] A. Kirsch and N. I. Grinberg. The Factor-
ization Method for Inverse Problems. Ox-
ford University Press, Oxford, 2008.

[3] A. Kirsch and A. Lechleiter. The inside-
outside duality for scattering problems by
inhomogeneous media. Inverse Probl.,
29:104011, 2013.

[4] A. Lechleiter and S. Peters. Analytical
characterization and numerical approxima-
tion of interior eigenvalues for impene-
trable scatterers from far fields. Inverse
Probl., 30:045006, 2014.



214 Contributed Session: Monday 15:30–17:00 Room 2.066

Hydrodynamic model for surface plasmon polaritons in metallic nanostructures

Giuseppe Toscano1,∗, Jakob Straubel2, Carsten Rockstuhl1

1Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), D-76131
Karlsruhe, Germany

2Institute of Theoretical Solid State Physics and Institute of Nanotechnology, Karlsruhe Institute of
Technology (KIT), D-76131 Karlsruhe, Germany

∗Email: giuseppe.toscano@kit.edu

Abstract

We study the optical response of metal nanopar-
ticles by using the hydrodynamic model of the
electron gas, that can be derived from its clas-
sical Hamiltonian. By applying a perturbation
expansion, we calculate the linear response of
the electron fluid to an exciting electromagnetic
field of low intensity. The resulting system of
linear equations is coupled to Maxwell’s wave
equation, and implemented in a finite element
method numerical scheme. Computational de-
tails as well as properties of the algorithm are
discussed and selected results are presented.

Keywords: plasmonics, hydrodynamic equa-
tions, electrodynamics

1 Introduction

The optical response of metallic nanoparticles
to an electromagnetic fields is usually described
in classical electrodynamics by means of a model
known as Drude model. However, this model
fails to properly predict the effects that are en-
countered for metallic nanoparticles of critical
dimensions comparable to the characteristic di-
mension of the electron gas in a metal. The
latter length scale is known as the Fermi wave-
length λF . The usual value of λF is about 0.1 nm
for noble metals such as Au and Ag, that are
employed in the plasmonic applications. This
limitation can be mitigated by introducing more
refined models to describe the electron gas, that
take into account its wave nature. We propose
here to use the Hydrodynamic Model (HDM)
[1], that describes the electron gas as a fluid ex-
posed to electromagnetic radiation. The HDM
is a semiclassical model that reproduces the quan-
tum effects of the electron-electron interactions
with a low computational complexity and high
accuracy. A simplified version of this model,
that does not describe surface effects such as
the electron spill-out in free space, has been ex-
tensively used in the recent years [2], and has

proven to give accurate results for isolated or
coupled systems of nanoparticles made of no-
ble metals where the spill-out effects can be ne-
glected. Here, we will consider the general for-
mulation of the model, that can be used to fully
describe the spill-out and electron tunneling ef-
fects.

2 Methodology

The Bloch Hamiltonian for the electron gas can
be written as:

H[n(r, t),p(r, t)] = (1)

G[n(r, t)] +

∫
(p(r, t)− eA(r, t))2

2m
n(r, t)dr

+e

∫
φ(r, t)n(r, t)dr + e

∫
Vback(r)n(r, t)dr,

where n(r, t) is the electron density and p(r, t) =
mv(r, t)+eA(r, t) its conjugate momentum, with
e being the electron charge and m the electron
mass. The electrons are coupled to the elec-
tromagnetic field expressed by the retarded po-
tentials φ(r, t) and A(r, t). The electrostatic
potential Vback(r) is a confining background po-
tential, that is generated by the positive ions
in a metal, i.e. ∇2Vback(r) = −ρ+(r)/ε0, where
ρ+(r) is the positive charge density of the metal
ions. The term G[n(r, t)] is the internal energy
of the electron gas, which is given by the sum of
a kinetic energy and exchange-correlation func-
tional:

G[n(r, t)] = T [n(r, t)] + Fxc[n(r, t)].

The kinetic-energy functional is given by the
sum of the Thomas–Fermi functional and the
von Weizsäcker functional,

TTFW[n] = TTF[n] + TW[n] =

3

10

~2

m
(3π2)2/3

∫
n5/3(r, t) dr +

+
1

72

~2

m

∫
|∇n(r, t)|2

n(r, t)
dr. (2)



Contributed Session: Monday 15:30–17:00 Room 2.066 215

The equations of motion can be obtained
from Eq. 1 by means of the methods of the
Hamiltonian formulation of fluid dynamics [3].

The force balance on a fluid element is stated
by the Euler equation

mn
(∂v
∂t

+v · ∇v
)

= −n∇δG
δn

+ne(E+v×B),

(3)
where the density n satisfies the charge conti-
nuity equation

∂n

∂t
= −∇ · (nv). (4)

Equations 3 and 4 can be linearized for small
perturbations of the electron density n1(r, t) re-
spect to the equilibrium density n0(r). It can
be shown [4] that n0(r) satisfies(δG

δn

)
0

+ e(φ0 + Vback) = µ, (5)

where φ0 is the potential generated by the equi-
librium charge density ρ0 = en0. Thus φ0 and
ρ0 are related by Poisson’s equation ∇2φ0(r) =
−ρ0(r)/ε0. The quantity

(
δG
δn

)
0

is the the func-
tional derivative evaluated at the equilibrium
density n0, and µ represents the (constant) chem-
ical potential of the electron gas. The equation
5 has been extensively studied [5–7], and it is
known as Thomas-Fermi-Dirac-von Weizsäcker
equation.

The linearized versions of both Eq. 3 and
Eq. 4 can be written in terms of the electric-
charge density perturbation ρ1 = en1, and the
electric current-density vector J1 = ρ0v1,

∂J1

∂t
= −ρ0

m
∇
(δG
δn

)
1

+ ω2
pε0E1, (6)

while the linearized continuity equation becomes

∇ · J1 = −∂ρ1
∂t

. (7)

The quantity
(
δG
δn

)
1

in Eq. 6 is the first order

term of the perturabative expansion of
(
δG
δn

)
,

and ωp = [e2n0/(mε0)]
1/2 is the plasma fre-

quency of the electron gas. The vector fields
E1 and J1 satisfy Maxwell’s wave equation

∇×∇×E1 +
1

c2
∂2E1

∂t2
= −µ0

∂J1

∂t
. (8)

The linear system given by Eqs. 6, 7, and 8 is
closed, and can be solved once the density ρ0(r)
has been calculated by means of Eq. 5.

Both the Eq. 5 and the system (6, 7, 8) can
be easily rewritten in a weak form, and included
in a finite element scheme. In our case, we im-
plemented these equations in COMSOL Multi-
physics, and we studied the impact of the sur-
face effects on the plasmonic response of sys-
tems of isolated particles, such as Na and Ag
cylinders and spheres. We found that the HDM
provides accurate results, that can be compared
with those obtained with more refined quantum
models such as TD-DFT. This allows to study
metallic nanoparticles of bigger size, and can be
applied to arbitrary nanoplasmonic systems of
much larger sizes than accessible with TD-DFT
methods.
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Abstract

Nanophotonics is a field of physics that allows
for observing unusual phenomena, through the
illumination of nanometric structures. Their
exploitation is at the basis of a lot of strik-
ing applications. In this context, computational
nanophotonics is essential. The physical charac-
teristics and scales of the media considered are
complex and give rise to problems in terms of
modelling and numerical efficient simulations.
The mathematical modelling relies on the time
dependent Maxwell’s equations, describing the
propagation of waves, coupled to a model of dis-
persion of the media. In this work, we study dif-
ferent types of dispersion models, propose and
analyze a discretization framework (Discontin-
uous Galerkin) that is adapted to the specific
requirements of nanophotonics. Academic and
realistic numerical simulations illustrate the re-
sults.

Keywords: Maxwell’s equations, Dispersion
models, Discontinuous Galerkin, Nanophoton-
ics

1 Modelling aspects in Nanophotonics

Nanophotonics finds its power in the ability of
controlling and exploiting the interaction of light
with nanometer scaled devices. Metals are espe-
cially interesting, leading to a special branch of
nanophotonics, called nanoplasmonics. At op-
tical frequencies and nanometer scales, matter
starts to exhibit peculiar features that allow for
numerous applications such as sub-wavelength
imaging, perfect lenses, plasmonics resonators
and plasmonics waveguides, to cite but just a
few.

The modelling of these phenomena rely on
characterizing the interaction of electromagnetic
waves with media at the nanometer scales. In
this precise context, dispersion effects can not

be neglected anymore: the electrons present in
the metal do not react instantaneously to the
applied electric field, leading to the existence
of a polarization. In terms of modelling, this
is rendered via a coupling between the time-
domain Maxwell’s equations and an ordinary
differential equation describing the evolution of
the polarization, as in the so-called Drude model:

µ
∂H

∂t
+ curlE = 0,

ε0εr
∂E

∂t
− curlH = J− σE,

∂J

∂t
= −J + ε0ω

2
dE.

(1)

where σ, µ, ε0, εr denote respectively the con-
ductivity, the permeability, the vacuum permit-
tivity and the relative permittivity. J denotes
the polarization current due to dispersion and
ωd the plasma frequency. In the frequency do-
main, this is expressed as a frequency dependent
permittivity entering Maxwell’s equations. We
will detail this model and some other classical
models for this kind of dispersion and explain
their derivation.

We intend in addition to go further in the
modelling. Indeed, by reaching even smaller
scales (namely close to the Fermi distance of in-
teraction of the electrons), experimenters start
to discover new effects that could not be ren-
dered with the latter type of models. Thus one
has to enrich the classical dispersion models.
One has to take into account that the reaction of
the electrons in the metal depend on the electric
field, not only at the precise position of the elec-
tron, but also in its neighborhood. This is quali-
fied as a non local behavior (in space) expressed
via both a frequency and wave-vector depen-
dent permittivity. In the time domain, that
is our main concern in this work, this is mod-
elled via a coupling between Maxwell’s equation
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and a partial differential equation describing the
evolution of the polarization (rather than an or-
dinary differential equation as in (1)). We will
present and study one type of non local model
and discuss some of its properties.

2 Numerical approximation and results

Beyond experiments, there is a need of efficient
simulation tools able to deal with all the specific
challenges of nanophotonics. There are indeed
several types of complexity arising from: the ge-
ometry of the domain, its scale and the physical
characteristics of the media. That’s why, one
needs accurate numerical methods able to cap-
ture fine phenomena such as high field enhance-
ment with regards to this complexity level.

Finite Differences Time Domain methods,
based on Yee’s scheme, are the most popular in
the nanophotonics community. They have a lot
of advantages, but present also several serious
limitations in terms of accuracy when dealing
with the above mentioned difficulties. Thus Fi-
nite Elements type methods based on unstruc-
tured meshes begin to have their own place in
this context. Among these, we choose to con-
centrate in this work on Discontinuous Galerkin
approaches. These types of methods proved to
be robust and flexible enough to treat the type
of problems encountered in nanophotonics (see
e.g. [1]).

We more precisely propose to study a Time
Domain Discontinuous Galerkin scheme of high
order, specially designed for dispersion models
(from local ones to non local ones). Stability
and convergence properties are studied in the
context of local dispersion models, and a first
insight through the analysis of the non local
models will be presented. We concentrate on
the full tri-dimensional case for local dispersion
models and the two-dimensional (TE modes)
case for non local ones. Some standard (see
figure 1) and more realistic test cases such as
plasmonic waveguides will illustrate the results
(see [3] and [2]).
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Abstract

Nanoplasmonics forms a major part of the field
of nanophotonics, which explores how electro-
magnetic fields can be confined over dimensions
on the order of or smaller than the wavelength.
Here, we present an integral-equation formula-
tion of the mathematical model that delivers
accurate solutions in small computational times
for surface plasmons coupled by periodic corru-
gations of flat surfaces.

Keywords: nanoplasmonics, integral equations

1 Introduction

Nanoplasmonics forms a major part of the field
of nanophotonics, which explores how electro-
magnetic fields can be confined over dimensions
on the order of or smaller than the wavelength.
Initiated in 1902 by R.W. Wood [1] with the dis-
covery of grating anomalies, this phenomenon
has attracted significant attention over the last
hundred years [2,3]. Mie in 1908 gave a mathe-
matical description of light scattering from spher-
ical particles of sizes comparable to the wave-
length [2], describing an effect that would come
to be known as localized surface plasmons in
the context of nanoplasmonics. It is based on
interaction processes between electromagnetic
radiation and conduction electrons at metallic
interfaces or in small metallic nanostructures,
leading to an enhanced optical near-field at sub-
wavelength dimension. In 1899, Sommerfeld
had described surface waves (waves propagat-
ing at the surface of metals) mathematically,
and in 1902 Wood observed anomalous drops in
the intensity of light reflected by a metallic grat-
ing [2]. But theory and observation would not
be linked until 1941, by Fano [4]. Further exper-
imental validation came in 1968, when Kretsch-
mann and Raether used prism coupling to ex-
cite surface waves with visible light [5]. Other
forms of coupling to surface plasmons have been
thoroughly investigated since then. All of the
phenomena mentioned above are based entirely
on classical electromagnetics, and thus can be

mathematically described by Maxwell’s equa-
tions. In this paper, an integral-equations for-
mulation is given for an infinitely periodic metal
surface whose period d is on the nanometer scale.
The metal is assumed to extend infinitely below
this surface, while a dielectric material extends
infinitely above the surface. Some details of the
numerical implementation and the results of a
few numerical experiments are also given in Sec.
2 and 3.

2 Formulation and Algorithm

In this section, a system of integral equations
for the total exterior field u (u = Ez in Trans-
verse Electric –TE– and u = Hz in Transverse
Magnetic –TM– polarizations) and its normal
derivative ∂u

∂n on the surface ∂D are given. The
metal surface ∂D is infinitely thick and periodic
and satisfies f(x + d, y) = f(x, y). These fields
[u, ∂u∂n ] satisfy [5];

ui(r) =

∫
P
Gi(r, r

′)
∂ui(r′)

∂n(r′)
− ∂Gi
∂n(r′)

(r, r′)ui(r′)ds(r′),

ue(r) =

∫
P
ue(r′)

∂Ge
∂n(r′)

(r, r′)−Ge(r, r′)
∂ue(r′)

∂n(r′)
ds(r′),

for x ∈ D, and for x ∈ Dc, respectively where
n is the unit normal to ∂D directed into the
exterior of D and P is a single period of the
surface ∂D. Here, G(r, r′) is the quasi-periodic
Green’s function [6] given by

GQ(r, r′) =
i

4

∞∑
n=−∞

eiαndH
(1)
0 (krn)

where α = k sin(θ) and θ is incidence angle.
As x → ∂D and using the boundary condi-

tions, the surface integral equations become

uinc(r) = ψ(r) +

∫
P

∂(Gi −Ge)
∂n(r′)

(r, r′)ψ(r′)dr′

−
∫
P

(νGi −Ge)(r, r′)
∂ψ(r′)

∂n(r′)
dr′,

∂uinc(r)

∂n(r)
=
ν + 1

2

∂ψ(r)

∂n(r)
+

∫
P

∂2(Gi −Ge)
∂n(r)∂n(r′)

(r, r′)ψ(r′)dr′

−
∫
P

∂(νGi −Ge)
∂n(r)

(r, r′)
∂ψ(r′)

∂n(r′)
dr′,
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Figure 1: The error in the total field and its normal
derivative as a function of the number of collocation
points for the sinusoidal grating. The error is shown
on a logarithmic scale for where a plasmon is generated.

for r ∈ ∂D with the unknowns ψ(r) = ue(r) +
uinc(r) and ∂ψ(r)/∂n(r). Here uinc(r) denotes
the incoming incident wave and ν = 1 for TE
polarization and ν = ki/ke for TM polarization.

Our numerical algorithm depends on seek-
ing the unknowns on the surface of the grating,
and the matrix elements are evaluated through
the derivation of a careful decomposition that
allows for explicit evaluation of the singular and
non-singular parts of the kernels [7].

3 Numerical Results

In this section, we provide numerical experi-
ments for the algorithm described above imple-
mented in MATLAB. The test cases in the simu-
lations that follow correspond to (“two-dimensio-
nal”) infinitely periodic metal gratings that in-
variant in the z direction. To investigate the ex-
istence of plasmonic resonances, we concentrate
on the analysis at length scales where these do
appear, namely

h << λ ∼ d

where d is the period, h is the height of the
rough surface and λ is the wavelength. The
grating profile consists of a (Fejér-smoothed)
approximation to a semi-elliptical profile rep-
resented with 51 Fourier modes (See Fig. 4).
The “linewidth” (size of the major axis of the
ellipse) is 400 nm, and the period is d = 630nm.
Here we present results of the integral solver for
heights h = 20nm and h = 30nm, and display a
specific verification against the high-order per-
turbation method introduced in [8] (See Fig. 5).
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Abstract

We consider the two-dimensional nonlinear prob-
lem describing steady gravity water waves with
vorticity in a channel of a finite depth. The
water motion is assumed to be unidirectional
and the surface tension is neglected. For small-
amplitude waves we prove a stability estimate
that imply uniqueness with a prescribed Cauchy
data of the profile at some point and provide a
parametrization by the height for waves of small
amplitude. This allows to verify the so-called
Benjamin and Lighthill conjecture for steady
water waves for waves with near-critical values
of the Bernoulli’s constant.

Keywords: nonlinear water waves.

Let an open channel of uniform rectangular
cross-section be bounded below by a horizon-
tal rigid bottom and let water occupying the
channel be bounded above by a free surface not
touching the bottom. In appropriate Cartesian
coordinates (x, y), the bottom coincides with
the x-axis and gravity acts in the negative y-
direction. We use the non-dimensional vari-
ables proposed by Keady and Norbury; namely,
lengths and velocities are scaled to (Q2/g)1/3

and (Qg)1/3 respectively. Here Q and g are the
dimensional quantities for the rate of flow and
the gravity acceleration respectively, whereas
(Q2/g)1/3 is the depth of the critical uniform
stream in the irrotational case.

The steady water motion is supposed to be
two-dimensional and rotational; the surface ten-
sion is neglected on the free surface of the water,
where the pressure is constant. These assump-
tions and the fact that water is incompressible
allow us to seek the velocity field in the form
(ψy,−ψx), where ψ(x, y) is referred to as the
stream function. The vorticity distribution ω is
supposed to be a prescribed continuous function
depending on ψ.

We choose the frame of reference so that the
velocity field is time-independent as well as the
unknown free-surface profile. The latter is as-

sumed to be the graph of y = η(x), x ∈ R,
where η is a positive continuous function, and
so the longitudinal section of the water domain
is D = {x ∈ R, 0 < y < η(x)}. The follow-
ing non-dimensional free-boundary problem for
ψ and η which describes all kinds of waves has
long been known:

ψxx + ψyy + ω(ψ) = 0, (x, y) ∈ D;

ψ(x, 0) = 0, x ∈ R;

ψ(x, η(x)) = 1, x ∈ R;

|∇ψ(x, η(x))|2 + 2η(x) = 3r, x ∈ R.

In the last condition (Bernoulli’s equation), r is
a constant considered as the problem’s param-
eter and referred to as Bernoulli’s constant/the
total head. In what follows, we suppose that ψ
is a strictly monotonic function of y, say

ψy(x, y) > 0 for all (x, y) ∈ D̄,

which means that the flows we are going to
study are unidirectional.

In 1954, Benjamin and Lighthill made a con-
jecture concerning irrotational steady gravity
waves on water of finite depth. According to
this conjecture, all steady water waves with zero
vorticity may be parametrized by points in some
cusped region on the (r, s)-plane (r and s are the
non-dimensional Bernoulli’s constant and the
flow force, respectively) and any point of the re-
gion corresponds to some steady wave motion.
The flow force s is defined by

s(x) =

[
r +

2

3
Ω(1)

]
η(x)−

1

3

[
η(x)2 +

∫ t

0

(
(Ψx)2 − (Ψy)

2 + 2Ω(Ψ)
)
dy

]
and is independent of x ∈ R. We prove this con-
jecture for steady waves in the presence of vor-
ticity when the Bernoulli’s constant is around
its critical value. Our proof is based on the fol-
lowing stability estimate∫

R
|η(1)(x)− η(2)(x)|2e−ν|x−x0|dx ≤
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C
[
|η(1)(x0)− η(2)(x0)|2 + |η(1)x (x0)− η(2)x (x0)|2

]
which is valid for any two small-amplitude so-
lutions of the problem with constants C and η
independent of x. A similar stability estimate is
valid for solitary type waves that allows to prove
that in the absence of surface tension no solitary
waves of depression exist (even with vorticity).
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Abstract

We outline a provably entropy stable approxi-
mation for the shallow water magnetohydrody-
namic (SWMHD) equations. In the absence of
magnetic fields the SWMHD model becomes the
classical shallow water equations. The method
incorporates two source terms, one to account
for non-constant bottom topographies and an-
other to guarantee that the scheme is entropy
stable. A specific discretization of the bottom
topography contribution guarantees the method
is well-balanced, an attribute property that an
approximation preserves a steady-state solution
of constant water height.

Keywords: entropy stability, shallow water mag-
netohydrodynamics, discontinuous Galerkin

1 Introduction

The SWMHD equations comprise a nonlinear
hyperbolic system and may be written in a con-
servative form with an additional divergence-
free constraint on the magnetic field quantities.
For the SWMHD system the issue of entropy
conservation and satisfaction of the divergence-
free condition are inextricably linked. To derive
an entropy conservative numerical flux function
we weaken the divergence-free condition and in-
corporate a source term [4,5] (analogous to the
Janhunen source term for the ideal MHD equa-
tions) and find the augmented one dimensional
model

∂

∂t


h
hv1

hv2

hB1

hB2

+
∂

∂x


hv1

hv2
1 + g

2h
2 − hB2

1

hv1v2 − hB1B2

0
hv1B2 − hv2B1



= − ∂b

∂x


0
gh
0
0
0

− ∂(hB1)

∂x


0
0
0
v1

v2

 ,

where g is the gravitational constant, we de-
note the vector of conserved variables by u =
(h, hv1, hv2, hB1, hB2)T , and the bottom topog-
raphy b(x).

In Sec. 2 we present the main results of the
discrete entropy analysis and skew-symmetric
high-order discontinuous Galerkin (DG) approx-
imation described by the authors in [4,5]. Then
in Sec. 3 we give brief remarks regarding our
entropy stable approximation.

2 Entropy Stable DG Approximation for
SWMHD

We summarize a high-order entropy stable DG
approximation for the SWMHD equations in
Thm. 1. Generally, we denote vectors by low-
ercase bold and matrices by uppercase bold let-
ters. Complete details and derivations are pro-
vided by the authors in [4, 5]:

Theorem 1 (ESDGSEM) An element-wise, en-
tropy stable, discontinuous Galerkin spectral el-
ement approximation for the SWMHD equations
is given by

J ∂tu1 + Df1 = S [f∗1 − f1] ,

J ∂tu2 + Df2 + shv2 + sh2 − shB2
1

= S [f∗2 − f2]− gHDb

− 1

2

(
{{h}}L JbKL

ω0
e0 +

{{h}}R JbKR
ωN

eN

)
,

J ∂tu3 + Df3 + shv1v2 − shB1B2 = S [f∗3 − f3] ,

J ∂tu4 + Df4 + shv1B1 − shB1v1 = S [f∗4 − f4]−V1DHB1

− 1

2

(
{{v1B1}}L
{{B1}}L

JhB1KL
ω0

e0 +
{{v1B1}}R
{{B1}}R

JhB1KR
ωN

eN

)
,

J ∂tu5 + Df5 + shv1B2 − shB1v2 = S [f∗5 − f5]−V2DHB1

− 1

2

(
{{v2B2}}L
{{B2}}L

JhB1KL
ω0

e0 +
{{v2B2}}R
{{B2}}R

JhB1KR
ωN

eN

)
,

where J = ∆x
2 , D is the standard polynomial

derivative matrix, S = diag
(

1
ω0
, 0, . . . , 0,− 1

ωN

)
is the surface matrix scaled by the Gauss-Lobatto
quadrature weights [2], {{·}} is the arithmetic
mean, and J·K is the linear jump. Further there
are the discrete flux components

f1 = Hv1,

f2 = Hv2
1 +

g

2
h2 −HB2

1,

f3 = HV1v2 −HB1B2,

f4 = 0,

f5 = HV1B2 −HV2B1,
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with, for example, H = diag(h), and nonlinear
correction terms in the discrete product rule

shv21 =
1

2

[
−DHv2

1 + HV1Dv1 + V1DHv1

]
,

sh2 =
g

2

[
−Dh2 + 2HDh

]
,

shB2
1

=
1

2

[
−DHB2

1 + HB1DB1 + B1DHB1

]
,

shv1v2 =
1

2
[−DHV1v2 + HV1Dv2 + V2DHv1] ,

shB1B2 =
1

2
[−DHB1B2 + HB1DB2 + B2DHB1] ,

shv1B1 =
1

2
[−DHV1B1 + HV1DB1 + B1DHv1] ,

shB1v1 =
1

2
[−DHB1v1 + HB1Dv1 + V1DHB1] ,

shv1B2 =
1

2
[−DHV1B2 + HV1DB2 + B2DHv1] ,

shB1v2 =
1

2
[−DHB1v2 + HB1Dv2 + V2DHB1] .

Finally we compute an entropy stable numerical
flux

f∗,es = f∗,ec − 1

2
R|Λ|TRT JqK ,

where we use the entropy conserving flux derived
in [4] as a base

f∗,ec =


{{h}} {{v1}}

{{h}} {{v1}}2 + g
2

{{
h2
}}
− {{hB1}} {{B1}}

{{h}} {{v1}} {{v2}} − {{hB1}} {{B2}}
{{h}} {{v1}} {{B1}} − {{hB1}} {{v1}}
{{h}} {{v1}} {{B2}} − {{hB1}} {{v2}}

,

define the vector of entropy variables

q =
(
g(h + b)− 1

2

(
v2

1 + v2
2 + B2

1 + B2
2

)
, v1, v2, B1, B2

)T
,

the matrices

R =



1 0 1 0 1

v1 − cg 0 v1 0 v1 + cg

v2 1 v2 1 v2

0 0
c2g
B1

0 0

B2 1 B2 −1 B2

 ,

T = diag

(
c2

2gc2
g

,
c2

2g
,
B1

gc2
g

,
c2

2g
,

c2

2gc2
g

)
,

and the diagonal matrix of eigenvalues

Λ = diag(v1 − cg, v1 −B1, v1, v1 + B1, v1 + cg),

with wave celerity c2 = gh and magnetogravity
wave celerity c2

g = gh + B2
1 .

Remark 2 (Well-Balancedness) The surface
contributions of the bottom topography compo-
nent are analogous to the discretization devel-
oped by Fjordholm et. al. [1]. A complete proof
of entropy conservation, high-order accuracy, and
well-balancedness for a skew-symmetric DG ap-
proximation for the shallow water equations can
be found for one and two dimension spatial di-
mensions in [2, 3] respectively.

3 Concluding Remarks

We summarized a high-order, entropy stable DG
approximation for the SWMHD equations. In
the absence of magnetic fields the scheme be-
comes an entropy stable approximation for the
classical shallow water model. We note that
the dissipation in f∗,es is the amount necessary
for stability, but is not enough to guarantee an
overshoot free approximation in the presence of
shocks. We present the ESDGSEM as a base-
line scheme to which additional artificial viscos-
ity can be added to control overshoots.
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An asymptotic technique for computing travelling water waves
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Abstract

In this talk we consider the classical water wave
problem described by the Euler equations with
a free surface under the influence of gravity over
a flat bottom. We restrict our attention to two-
dimensional, finite-depth periodic water waves
with general vorticity. This is joint work with
Adrian Constantin and Otmar Scherzer and is
triggered by a penalization method for comput-
ing large amplitude water waves.

Keywords: water waves, asymptotics

1 Introduction

Starting from the Euler equations, we formulate
a free boundary problem with the presence of a
parameter in the boundary conditions, [1]. This
parameter is the so-called Bernoulli’s constant
which represents the total mechanical energy on
the free boundary and here is treated as a bi-
furcation parameter, for details see [3]. Next,
we transform this problem to a fixed boundary
value problem, however nonlinear. An asymp-
totic technique is applied to approximate the so-
lutions of this problem that correspond to non-
laminar flows, see [2].

We denote by (u, v), η and P the velocity
field, the free surface and the pressure of the
fluid, respectively. Assuming that the water is
inviscid and incompressible the Euler equations
[3] that govern the flow take the form

ux + vy = 0,

− cux + uux + vuy = −Px,
− cvx + uvx + vvy = −Py − g, in D,

with boundary conditions

P = Patm on S,

v = (u− c)ηx on S,

v = 0 on B,

where

D = {(x, y) : −π < x < π and −d < y < η(x)} ,

which is bounded from above by the free curve

S = {(x, y) : −π < x < π and y = η(x)} ,

and from below by the flat bottom

B = {(x, y) : −π < x < π and y = −d} .

Here d is the depth, g is the gravitational con-
stant and Patm is the atmospheric pressure.

2 The free boundary problem

Define the relative mass flux by

p0 :=

∫ η(x)

−d
(u− c)dy < 0.

Define the stream function ψ by

ψx = −v, ψy = u− c in D,
ψ(x,−d) = −p0 .

Define the vorticity function

γ := uy − vx.

The constants g (gravitational constant), p0
(relative mass flux), Q (hydraulic head) and the
function γ : [p0, 0] 7→ R (vorticity) are given.

Moreover, for given η, which we assume to
be normalized to satisfy

∫ π
−π η(x)dx = 0, let ψ =

ψ[η] be the solution of

∆ψ = γ(ψ),

with boundary conditions

ψ(x,−d) = −p0, on B and ψ = 0 on S,

ψ(π, y) = ψ(−π, y) and ψx(±π, y) = 0,

for y ∈ [−d, η(x)].
For given η this linear PDE is overdeter-

mined by imposing the non-linear boundary con-
dition, known as the Bernoulli’s law

BB[ψ] := |∇ψ|2 + 2g(η(x) + d) = Q, on S.

The free boundary problem consists in using
the over-determinacy to determine η.

Definition 1 The free boundary value problem
can also be viewed as solving an operator equa-
tion

G(η) = 0 ,

where G : η 7→ BB[ψ[η]].
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3 Dubreil-Jacotin transformation

Since, ψ is constant both on the bottom and
the free surface, we now introduce the Dubreil-
Jacotin transformation

q = x, p = −ψ,

which transforms the domain D to the rectangle

R = {(q, p);−π < q < π and p0 < p < 0} .

x πy=−d−π

y

y=    (x)η

p

q πp=p
0

−π

p=0

q=x

p= − ψ

Figure 1: The Dubreil-Jacotin transformation.

Define the height above the flat bottom by

h(q, p) = y + d.

Then the constitutive equations for the height
function, which is even and 2π-periodic in q, are

H[h] := (1 + h2q)hpp − 2hphqhpq

+ h2phqq − γ(−p)h3p = 0 on R,

B0[h] := 1 + h2q(q, 0) + (2gh−Q)h2p(q, 0) = 0,

B1[h] := h(q, p0) = 0.

In the new formulation the free boundary
η(x) is given by h(q, 0).

4 Approximation of non laminar flows

For γ(−p) =constant, we consider a parametrized
family of functions, see [2], of the form

ĥ(q, p) = h0(p)+bh1(q, p)+b
2h2(q, p), for b ∈ R ,

where h0 is the laminar flow, i.e the q-independent
solution. We analytically determine the explicit
formulas for h1 and h2 such that

H[ĥ](p, q) = O(b3) , B0[ĥ](q) = O(b3)

and
B1[ĥ](q) = 0 .

Below, we depict the height function ĥ(q, p) along
the streamlines (p=constant) for the values of
vorticity γ = 1 and γ = −2, respectively.

Figure 2: γ = 1

Figure 3: γ = −2
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A discretisation method with the Hdiv scalar product
for the electric field integral equation
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Abstract

A discretisation method with the Hdiv scalar
product for the EFIE (Electric Field Integral
Equation) is proposed. The EFIE with the con-
ventional Galerkin discretisation show bad ac-
curacy for problems with a small frequency and
this problem is known as a low-frequency prob-
lem. The discretisation method proposed in
this paper utilises the Hdiv scalar product with
a scalar coefficient for the Galerkin discretisa-
tion and overcomes the low-frequency problem
by choosing an appropriate value of the coeffi-
cient. The efficiency of this method is verified
through some numerical examples.

Keywords: Boundary element method, Maxwell’s
equations, Galerkin method

1 introduction

Boundary element methods (BEMs) are efficient
numerical methods for electromagnetic problems.
It is, however, well known that BEMs show
bad accuracy for electromagnetic problems in
low frequencies. This problem is called “low-
frequency problem” and various methods which
remedy this problem have been suggested [1,2].
In this paper, we will propose a new method
which accurately solves a electric field integral
equation (EFIE) in low frequencies by utilizing
a Hdiv scalar product for discretisation.

2 formulation

We consider a simple connected scatterer Ω− ∈
R3 enclosed by a smooth boundary Γ. We de-
note R3\Ω− by Ω+ and the outward normal vec-
tor defined on the surface Γ by n. We are in-
terested in solving the following boundary value
problem:

∇×E = iωµH, ∇×H = −iωεE in Ω+

m := E+ × n = 0 on Γ

subjecting to the raditation conditions for the
scattering fields (Esca, where E and H are un-
known electric and magnetic fields, ω is the fre-
quency, ε and µ are the permittivity and perme-

ability of Ω and the scattering fields are defined
by (Esca,Hsca) = (E − Einc,H −H inc) with
the incident waves denoted by Einc and H inc in
the exterior domain Ω+, respectively.

For solving this problem, we will use the
EFIE:

iωµn× Φijjj = Einc
i × n (1)

where

Φkl =

(
δkl +

1

k2
∂k∂l

)
G(x),

G(x) =
eik‖x‖

4π‖x‖
.

Note that we use the summation convention to
repeated indices in these formulae.

3 discretisation

The Galerkin method is widely used for dis-
cretising equation (1). In general, the Rao-
Wilton-Glisson (RWG) basis functions ti [3] is
applied as the testing function with the L2(Γ)
scalar product:

(n× ti, iωµn×Φj)L2
T (Γ)

=(n× ti, E
inc × n)L2

T (Γ) (2)

This equation is numerically ill-conditioned for
small frequency since, in the LHS of equation
(2), the term 1/k2

∫
∂k∂lGjl is dominant and

this term vanishes for any functions with divSj =
0

For solving this problem, we utilise the Hdiv

scalar product

(u,v)Hdiv(Γ) := (u,v)L2
T (Γ) + c(divSu,divSv)L2(Γ)

for discretising the boundary integral equations
in (1) as

(si, iωµn×Φj)Hdiv(Γ)

=(si, E
inc × n)Hdiv(Γ) (3)

where c is a positive constant and si is a test-
ing function. For the functions si, the Buffa-
Christiansen (BC) basis function [4] is used if
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we expand the unknown function j with the
RWG basis function since the testing function
does not include the term n×, which is different
from equation (2). Equation (3) can be calcu-
lated as follows:

(si, iωµn×Φj)L2
T (Γ) − c(divSsi, n · iωµΨj)L2(Γ)

= (si, E
inc × n)L2

T (Γ)

− iωµ+c(divSsi, n ·H inc)L2(Γ) (4)

where Ψkl = ekjl∂jG(x). Hence the EFIE dis-
cretised with the Hdiv inner product is equal
to the sum of the tangiential component of the
EFIE and the normal component of the mag-
netic field integral equation (MFIE).

Equation (4) is numerically well-conditinoed
due to the second term, the normal component
of MFIE. The value of the constant c is, there-
fore, set so that this term does not vanish for
small frequency as shown in the next section.

4 Numerical examples

We consider a spherical scatterer with a 0.25
radius illuminated by the plane wave:

Einc(x) = Einc
0 eik·x

where k = (0, 0, k)T , Einc
0 = (1, 0, 0)T .

We test the discretidsation methods with
the Hdiv(Γ) and L2(Γ) scalar product for equa-
tion (1). In the discretisation method with the
Hdiv(Γ) scalar product, we set the constant c =
ω−1, ω−2 and 1. The surface of the spherical
scatterer is decomposed with 2000 triangular
meshes, and we utilise the RWG basis function
for expanding the unknown function j, and the
BC basis function as a testing function. The
linear equations obtained with the discretisa-
tion methods are solved with the generalised
minimul residual method (GMRES) with error
tolerance 10−5.

Figure1 shows the L2 relative error of the
numerical methods for several frequencies. The
error of the conventional L2(Γ) scalar product
becomes large for small frequencies. TheHdiv(Γ)
scalar products with c = ω−1 and ω−2, however,
show good accuracy for any frequencies.

5 Conclusion

A new discretisation method with theHdiv scalar
product for the EFIE is investigated. This dis-
cretisation method improves the accuracy of BEMs
for the low-frequency problems.

Figure 1: L2(Γ) relative error.
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Abstract. We propose a simple block-SOR
solution method for the PMCHWT-type Maxwell
integral formulation, that is well suited for the
low-frequency, high-conductivity limit typical of
eddy current (EC) testing methods. We also
derive an asymptotic expansion of the Maxwell
integral formulation in powers of the relevant
(small) non-dimensional number γ1 and show
its relation to Hiptmair’s EC integral formula-
tion. Both aspects are validated on 3D numer-
ical experiments.

Keywords: Boundary element method, Eddy
current approximation, non destructive testing

Background. Eddy current (EC) non-destruc-
tive testing (NDT) aims to assess the presence
of defects (cut, corrosion ...) in a conductive,
and possibly magnetic, medium. Such testing
is typically done on highly conductive parts and
at low frequencies, i.e. in situations where γ1 :=
(ε0ω/σ)1/2L� 1 and γ2 := (µ0ωσ)1/2L ∼ 1 (σ:
conductivity, L: characteristic part diameter,
ω: angular frequency). It proceeds by creating
a magnetic current in the probed part using a
nearby electromagnetic source. The presence of
a defect perturbs this current and induces an
impedance variation in a receiver coil. As the
latter may be small relative to the complete sig-
nal, such tests are often modeled by determining
a primary field in the defect-free part and then
computing the response of an assumed defect.
For time-harmonic excitations, and since the
considered media are usually piecewise-homoge-
neous, the primary field may be computed using
boundary integral equations for either the har-
monic Maxwell equations or their EC approxi-
mation [1].

For a conductive part in air, Maxwell inte-
gral formulations (e.g. the PMCHWT formula-
tion) result from taking weighted combinations
of inner and outer (tangential or rotated-curl)
traces of the Stratton-Chu identity written for
the conductive medium or the air, and setting
them in Galerkin form, see [4]. The main un-
knowns are the tangential parts J and M of the

electric and magnetic fields on the air-part in-
terface Γ.

Block-SOR Maxwell integral formulation.
We focused on a Maxwell-based approach, in or-
der to be able to model testing either (i) within
the EC approximation (for which γ1 � 1) or
(ii) using higher frequencies for poorly conduc-
tive media (where γ � 1 no longer holds).

Maxwell integral formulations suffer from a
well-known low-frequency breakdown if γ � 1
[2]. While the latter can be circumvented by
applying a Helmholtz (”loop-tree”) decompo-
sition to the approximation space (see [3] for
EC NDT), the resulting global linear system
remains highly ill-conditioned. The normaliza-
tion method proposed in [2] for circumventing
ill-conditioning at low frequencies is not appli-
cable here, as it relies on a low-wavenumber ex-
pansion of the fundamental solution for a non-
conductive body.

Instead, the loop-tree decomposition applied
to the electric and magnetic current densities
on the air-part interface is used to partition the
global system into a 4× 4 block system, whose
diagonal blocks are found empirically to have a
stable condition number over the physical pa-
rameter range of interest for NDT modeling,
and in particular as γ → 0. The system is
then solved by means of a block-SOR (succes-
sive over-relaxation) method.

Several test cases allowed to validate the ap-
proach. For example, we considered a truncated
tube (σ= 10 MS/m, inner and outer diameters
19.68 mm and 22.22 mm, height 10 mm, either
non-magnetic or magnetic with µr = 100), ex-
cited by a coaxial coil (inner and outer diame-
ters 15.66 mm and 17 mm, height 2 mm). The
condition numbers of the global matrix Z and of
each diagonal block Zββαα produced by the loop-
tree decomposition are shown (Fig. 1) against
the frequency for a fixed mesh (2640 Raviart-
Thomas quadrilateral boundary elements). The
block SOR algorithm is seen in Fig. 2 to con-
verge within a reasonable number of iterations,
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Figure 1: Condition number against frequency
for non-magnetic (left) and magnetic (right)
tubes. Z is the global BEM matrix; indices J,
M, L and T indicate partitioning into electric,
magnetic, solenoidal (loop) and non-solenoidal
(tree) components.

Figure 2: SOR iteration count N (with stopping
criterion defined by relative residual less than
10−6) against the SOR relaxation parameter η
(non-magnetic tube).

except for the lowest two frequencies which in
fact are not physically relevant (the skin depth
then exceeding the tube thickness).

Eddy current asymptotics. To gain insight
into links between Maxwell and EC integral for-
mulations, we derived an asymptotic expansion
of the former about γ1 = 0 in powers of γ1, as-
suming power series expansions of the loop and
tree components JL,JT ,ML,MT of the surface
unknowns and expanding in powers of γ1 the
Green’s functions involved in the integral op-
erators and right-hand sides. This approach in
particular differs from [5], where the leading be-
havior of low-frequency expansions of Maxwell
and EC models are shown to coincide. The lead-
ing asymptotic behaviour of the unknowns is
obtained as

JL = JL0 + o(1), JT = γ21J
L
2 + o(γ21),

ML = γ1M
L
1 + o(γ1), MT = γ1M

L
1 + o(γ1),

Figure 3: Condition number of integral op-
erators Z (governing the leading unknowns
JL0 , M

L
1 , M

L
1 ) and ZH of Hiptmair’s EC formu-

lation.

and the resulting integral problem for the lead-
ing unknowns (JL0 , M

L
1 , M

L
1 ) is found to coin-

cide with the EC integral formulation of [1] up
to blockwise normalization by powers of γ1, i.e.
defines a better-conditioned version of the latter
for γ1 � 1 (see Fig. 3). Higher-order expansions
in powers of γ1 of the Maxwell integral problem
may moreover be defined to extend the validity
of the EC approximation.
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Abstract

A computational method is presented which
enables one to trace exact frequency dependent
rays when a solution to the Helmholtz equa-
tion is already available. In this paper also is
provided the analysis of the properties of exact
frequency dependent rays and compare them
with the standard ray-tracing and time domain
finite-difference modelling.

Keywords: frequency dependent ray, Hemholtz
solver

1 Introduction

There were several attempts to account band
limited nature of seismic energy while remain-
ing within the framework of ray tracing scheme.
In the paper [1] author uses an approximation
to the Helmholtz equation. There are calcu-
lated frequency dependent slowness fields where
conventional ray tracing is performed. This ap-
proach suffers from the fact that the solution
of lower frequencies relies on the solution of
higher frequencies. An alternative frequency-
dependent ray-tracing method that captures the
band-limi- ted structure of wave propagation
was presented in the paper [3] as the wavelength-
smoothing (WS) method. The WS method av-
erages the velocity model within the plane per-
pendicular to the ray by a weighting function
whose width is proportional to the wavelength.

One more way to capture the band-limited
wave propagation property of finite-difference
me- thods with the least compromise is to do
frequency dependent ray tracing. In the pa-
per [2], frequency dependency of rays was vi-
sualized by looking at the phase of the solution
of the Helm- holtz equation. This approach re-
quires a Helm- holtz solver which is computa-
tionally more demanding than ray tracing. But
this approach gives exact frequency dependent
rays while all other approaches give different ap-
proximations. Therefore in this paper we de-
veloped computational method to extract those
rays. Also we provide the analysis of their prop-

erties and compare them with the standard ray-
tracing and time domain finite-difference mod-
elling.

2 Method

Whenever a solution of the Helmholtz equa-
tion is known, it is possible to determine what
the ray path trajectories would be if a ray the-
ory approximation is not invoked. To see how
this comes about, let us suppose that a solution
Ψ to the Helmholtz equation

4Ψ + k2Ψ = f(ω)δ(x− xs) (1)

is known for some particular source configura-
tion (f(ω) - source singature, xs - point source
position) and wave number k(x) in a lossless
medium. After computing the gradient of the
defining equation for A and Ψ, namely Ψ =
AeıΦ, one obtains

∇Ψ

Ψ
=
∇A
A

+ ıK. (2)

Since A and K = ∇Φ are real, evidently

∇A
A

= Re
∇Ψ

Ψ
, (3)

and

K
dr

ds
= Im

∇Ψ

Ψ
. (4)

The latter is a first order differential equation
for the ray path. It is desirable for computa-
tional reasons to Eliminate K from the ray path
equation by defining a new path parameter σ
for such that Kdσ = ds. Then equation (4)
becomes

dr

dσ
= Im

∇Ψ

Ψ
. (5)

One traces a ray by integrating equation (5),
usually by numerical methods. One also can
calculate K by

K =

∣∣∣∣Im∇Ψ

Ψ

∣∣∣∣ , (6)

which results in achieved by computing K · K
using (4). Also available is the amplitude A, by
way A2 = ΨΨ∗.



Contributed Session: Monday 17:15–18:15 Room 0.014 233

That the ray path (5) is a first order dif-
ferential equation has several remarkable con-
sequences, two having to do with the compu-
tational process of solving ray path equations,
or tracing rays, and another having to do with
the qualitative behaviour of the paths them-
selves. Only one initial condition is required
in order to solve a first order differential equa-
tion, while a second order equation requires two
initial or boundary conditions for its solution.
Another peculiar consequence of the exact ray
equation being first order is that eigenrays for
arbitrary points can often be found by tracing
the ray backwards from an observation point to
the source. This is accomplished by requiring
the numerical integrator to solve (5) for decreas-
ing, rather then increasing, values of σ. The
resulting ray trace will proceed from the obser-
vation point right back to the source.

3 Examples

Let the acoustic velocity field be a linear gra-
dient with depth v(z) = a∗z+b. The parameter
a and b are as follows a = 3.1 and b = 1600 m/s.
In this case it is easy to construct analytical so-
lution to the classical ray theory. On the Fig.1
one can observe the convergence of the exact
rays to the classical rays, as we increase the fre-
quency for in the Helmholtz equation.

4 Conclusions

A computational method is presented which
enables one to trace exact frequency dependent
rays when a solution to the Helmholtz equa-
tion is already available. Some of the properties
of the exact rays which distinguish them from
their classical counterparts are: the ray trajec-
tories depend on the source frequency and on
the boundaries, the exact frequency dependent
rays intrude into shadow zones impenetrable by
classical rays, the field is finite at caustics, the
exact frequency dependent rays never exhibit
multipathing, which is the hallmark of classical
rays diagrams.
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Figure 1: The corresponding classical ray tra-
jectories (red) vs. exact ray paths (blue) are
shown on each plot.
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Multilevel Monte Carlo method for Helmholtz equation with random coefficients
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Abstract

We apply the multilevel Monte Carlo method [1]
to Helmholtz equation with random coefficients.
The mean of the solutions at the fixed wave
number is more accurate than the usual Monte
Carlo method, or the computational complexity
is less for the same order of error.

Keywords: multilevel Monte Carlo, Helmholtz
equation, random coefficient

1 Monte Carlo Approximation

For simplicity, we consider an elliptic problem
with a random coefficient under homogeneous
Dirichlet boundary condition on a spatial do-
main D. Let V = H1

0 (D) be a Sobolev space
of square integrable functions with square in-
tegrable first derivatives and null trace on the
boundary of D. Shape regular simplicial tri-
angulations Tl of D with mesh size hl form a
collection of the hierarchical triangulation on
D when all nodes of Tl−1 belong to those in Tl,
for 0 ≤ l ≤ L. Let Vl be the space of piecewise
linear functions on simplices in Tl, i.e.,

Vl =
{
v ∈ V : v

∣∣
K
∈ P1(K), ∀K ∈ Tl

}
,

where P1(K) is a linear polynomial space on a
simplex K ∈ Tl. Let {ul,k}Ml

k=1 ⊂ Vl be Galerkin
approximations in Vl corresponding to the re-
alizations of the random variable ω ∈ Ω. Then
the Monte Carlo (MC) estimator EMl

(ul) of so-
lutions ul in Vl is defined by

EMl
(ul) =

1

Ml

Ml∑
k=1

ul,k.

Assume the boundedness of the coefficient and
the regularities of the coefficient and forcing
term. There exist a constant Cf = C‖f‖L2(Ω;L2(D))

such that

‖u− ul‖L2(Ω;V ) ≤ Cfhl. (1)

Here, the square of the Bochner norm ‖·‖L2(Ω;V )

is ‖u‖2L2(Ω;V ) = E[‖u‖2V ] for the mean opera-
tor E, which is an integration of a function de-
fined on Ω with a probability measure P, or

E[u] =
∫

Ω u(ω) dP(ω). For a given tolerance

ε > 0, let C2
fh

2
l = 2−1ε2 and C2

fM
−1
l = 2−1ε2.

Then the mean square error is less than or equal
to ε2. We obtain hl = O(ε) and Ml = O(ε−2).
Since the complexity of solving a sparse linear
system in the spatial dimension d is of the same
order of the degree of freedom Nl = O(h−dl ),
the complexity of the MC method in Vl is

C(EMl
(ul)) = O(ε−3), d = 1,

= O(ε−4), d = 2,

= O(ε−5), d = 3.

2 Multilevel Monte Carlo Method

The Multilevel Monte Carlo (MLMC) estimator
EL(u) is defined by

EL(u) =
L∑
l=0

EMl
(ul − ul−1), u−1 = 0.

Under (1) for all l ≥ 0, we set C2
fh

2
L = 2−1ε2,

C2
f (hl +hl−1)2Ml

−1 = 2−1(L+ 1)−1ε2 for l ≥ 1,

and C2
fM0

−1 = 2−1(L + 1)−1ε2. By imposing
hl−1 = 2hl, for l ≥ 1, we have hL = O(ε),
and Ml = 4−lO(ε−2). Since Nl = O(h−dl ), the
complexity of the MLMC method is

C(EL(u)) = O(ε−2), d = 1, 2,

= O(ε−2 + ε−3), d = 3.

The MLMC method reduces the computational
complexity by at least one power factor com-
pared to that by the MC method.

3 Model Problem

For a wave number k, the Helmholtz problem
with a random coefficient is

−∇ · (a∇u)− k2u = f, in D,

and

u = g, on Γ1, a
∂u

∂ν
− iku = 0, on Γ2,

where ∂D = Γ1 ∪ Γ2. The random coefficient a
is a truncated Karhunen-Loève (KL) expansion
up to mode NKL, see [1–4].
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The assumption (1) takes the form of

‖u− ul‖L2(Ω;V ) ≤ Cf (k̃hl + k̃3h2
l ), (2)

where k̃2 = k2/amin for the minimum amin of
the coefficient a. By setting k̃hL + k̃3h2

L ≈ ε,
we obtain hL ≈ k̃−1.5ε0.5. The complexity of
the MLMC method for the Helmholtz equation
is

C(EL(u)) = O(ε−2 + k̃6ε−2), d = 1, 2, 3.

We impose khL = 0.0156 for the finest grid
size and use a covariance operator of σ = 1 and
λ = 0.3 to generate eigen pairs for a truncated
KL expansion up to NKL = 1000 modes. We
regard a mean of solutions in the fine grid for
900, 000 samples as an ideal mean for a fixed
wave number k = 10. In Figure 1, relative er-
rors versus computational complexities for the
MC and MLMC methods are depicted in log-log
scale.
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Figure 1: Complexity versus tolerance

4 Conclusion

The MC method needs quadruple samplings to
reduce the error in half, which is expressed as
the order of convergence being 1/2. The MLMC
method uses the solutions at the coarse grid
and saves the computational cost by decreas-
ing samples at the fine grid. Since the MLMC
method is one of the variance reduction method,
we show the same order of convergence as the
MC method. Thus the same property of the
MC method holds for the MLMC method, i.e.,
we need quadruple samples to reduce the error
in half.

The MLMC method is a variant of the MC
method and inherits the property of convergence.
It improves the computational complexity and
saves the computational effort by using coarse
grid solutions. The error easily gets worse due
to the uncertainty of the random coefficient and
always increases the complexity to keep the same
order of convergence.
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Abstract

We investigate the numerical solution of a sim-
ple magnetostatic problem by the method of
auxiliary sources (MAS) and show analytically
(by proving a certain asymptotic formula) that
it is possible for the vector potential to converge
to the correct potential function even in the case
when the auxiliary currents diverge.

Keywords: method of auxiliary sources, con-
vergence of numerical methods, Laplace’s equa-
tion, oscillations

1 Introduction

Several wave scattering problems are modeled
by the method of auxiliary sources (MAS) [1].
The MAS approximates the solution of a bound-
ary value problem by a superposition of fields
of auxiliary sources located outside the prob-
lem’s domain and being proportional to the fun-
damental solution of the governing PDE. The
boundary conditions on the physical boundary
determine the fields amplitudes.

Investigations of scattering problems for the
Helmholtz equation have revealed that the MAS
field can converge to the correct scattered field
even when the MAS currents diverge [2]. This
MAS currents divergence is accompanied by un-
physical oscillations which are similar but unre-
lated to matrix ill-conditioning oscillations.

The purpose of this paper is to investigate
the corresponding Laplace problem. The moti-
vation comes from engineering applications like
crack singularities [3] and inductance calcula-
tions [4]. We prove an asymptotic formula for
the oscillating currents in the static case and
show that the magnetostatic vector potential
converges to the correct potential function even
in the case when the auxiliary currents diverge.

2 Statement of the Problem

We consider a simple 2-D magnetostatic prob-
lem. An infinitely long z-directed current I,
located at (ρ, φ) = (ρfil, 0), illuminates a per-

fectly conducting circular cylinder of radius ρcyl
(ρcyl < ρfil). The cylinder acts as a current re-
turn path, so that its total current is −I. The
total magnetostatic vector potentialAz (ρobs, φobs)
satisfies Laplace’s equation for ρobs > ρcyl and
(ρobs, φobs) 6= (ρfil, 0). Appropriate boundary
conditions are: (i) Az is constant on the con-
ducting surface, Az (ρcyl, φcyl) = C and (ii) Az
vanishes at ρobs = ∞. The latter is consistent
with that the current on the cylinder is −I.

3 Application of the MAS

Application of the MAS to magnetostatic prob-
lems requires caution because the total poten-
tial vanishes at ρobs = ∞, while that due to I
and each individual potential due to a MAS cur-
rent are logarithmically infinite at ρobs =∞ [3].

The N MAS currents Il and the N collo-
cation points are located at (ρaux, φA + 2πl/N)
and (ρcyl, φC + 2πp/N), where ρaux < ρcyl and
− π
N < φA, φC ≤ π

N . Then, by the Biot-Savart
law, the total vector potential takes the form

Az,N (ρobs, φobs) =− µ0
2π

[
I ln

(
Rfil,obs
dref

)
+
N−1∑
l=0

Il ln

(
Rl,obs
dref

)]
(1)

where dref > 0 and

Rfil,obs =
(
ρ2obs + ρ2fil − 2ρobsρfil cosφobs

) 1
2

Rl,obs =
(
ρ2obs + ρ2aux − 2ρobsρaux×

cos (φA + 2πl/N − φobs)
) 1

2

For Az,N to vanish, we demand that (1) presents
no logarithmic singularity at ρobs =∞, or that

N−1∑
l=0

Il = −I (2)

Now enforcing the boundary condition

Az,N (ρcyl, φC + 2πp/N) = C (3)
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gives the N equations (for p = 0, 1, . . . , N − 1)

N−1∑
l=0

Il ln

(
bl−p
dref

)
= IC − I ln

(
dp
dref

)
, (4)

in which IC = −2πC/µ0 is yet unknown and

bl =
(
ρ2cyl + ρ2aux − 2ρcylρaux

cos (φA − φC + 2πl/N)
) 1

2

dp =
(
ρ2cyl + ρ2fil − 2ρcylρfil cos (φC + 2πp/N)

) 1
2

Eqs. (2) and (4) are a (N + 1) × (N + 1)
system with unknowns I0, I1, . . . , IN−1, and IC .

4 Exact and Asymptotic Expressions for
Magnetostatic Currents

The MAS currents Il are determined from their
DFT’s I(m) which are given by

I(m) = − I

N
eimφA

f (m) (ρcyl, ρfil, φC)

f (m) (ρaux, ρcyl, φC − φA)
(5)

with (for m 6= 0 and 0 < ρ1 < ρ2)

f (m) (ρ1, ρ2, φ) =

− 1

2

∞∑
q=−∞

1

|qN +m|

(
ρ1
ρ2

)|qN+m|
eiqNφ, (6)

while
I(0) = −I/N . (7)

As N →∞, from (6) we get

f (m) (ρ1, ρ2, φ) ∼ −1

2

1

|m|

(
ρ1
ρ2

)|m|
, (8)

and hence obtain

I(m) ∼ − I

N

(
ρcri
ρaux

)|m|
eimφA , m 6= 0 , (9)

where the critical radius is defined by

ρcri ≡ ρ2cyl/ρfil . (10)

Since ρaux < ρcri, it can be shown that the Il
oscillate and do not converge to a continuous
surface current density.

5 Convergence/Divergence of MAS Vec-
tor Potential

We examine the convergence of the MAS vector
potential Ascattz,N (ρobs, φobs) for N → ∞, ρobs >

ρcyl > ρaux. We replace I(m) (m 6= 0) by its
large-N expression (9) and use (7) to find

Ascattz,limit(ρobs, φobs) =
µ0I

2π

[
ln

(
ρobs
dref

)
− 1

2

∑
m 6=0

1

|m|

(
ρcri
ρobs

)|m|
eimφobs

]
(11)

which is independent of all MAS parameters
(N , ρaux, φA, and φC). Eq. (11) is simplified
as

Ascattz,limit(ρobs, φobs) =
µ0I

2π
ln

(
Rcri,obs
dref

)
(12)

where

Rcri,obs = (ρ2obs + ρ2cri − 2ρobsρcri cosφobs)
1
2 .

Eq. (12) gives the potential at (ρobs, φobs) due to
an image at (ρ, φ) = (ρcri, 0) and carrying a cur-
rent −I. Consequently, this limit equals (even
when ρaux < ρcri) the true scattered vector po-
tential and when added to the incident field, the
result in (12) becomes independent of dref and
vanishes at ρobs = ∞. For ρaux < ρobs < ρcyl,
the series in (11) converges when ρcri < ρobs <
ρcyl, diverges when ρaux < ρobs < ρcri, and has
a singularity at (ρobs, φobs) = (ρcri, 0).

References

[1] D. I. Kaklamani and H. T. Anastassiu, As-
pects of the Method of Auxiliary Sources
(MAS) in computational electromagnetics,
IEEE Antennas Propagat. Magazine. 44
(2002), pp. 48–64.

[2] G. Fikioris, On two types of convergence
in the Method of Auxiliary Sources, IEEE
Trans. Antennas Propagat. 54 (2006),
pp. 2022–2033.

[3] Z.-C. Li, T.-T. Lu, and G. Q. Xie, The
method of fundamental solutions and its
combinations for exterior problems, Engi-
neering Analysis with Boundary Elements
36 (2012), pp. 394–403.

[4] E. E. Nigussie, Variation Tolerant on-Chip
Interconnects, Springer, New York, 2012.



238 Contributed Session: Monday 17:15–18:15 Room 0.019

Impedance Transmission Conditions for the Electric Potential across a Highly
Conductive Casing

A. Erdozain1,∗, V. Péron1,2
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Abstract

We present Impedance Transmission Conditions
(ITCs) for the electric potential in the frame-
work of borehole through-casing resistivity mea-
surements. Such ITCs substitute the part of
the domain corresponding to a highly conduc-
tive casing. The naturally small thickness of
the casing makes it ideal for exhibiting ITCs.
We numerically observe the delivered order of
accuracy.
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1 Introduction

Borehole resistivity measurements are commonly
used when trying to obtain a better charac-
terization of the earth’s subsurface. Often a
metallic casing is employed to surround the well,
which allows to protect the well and avoid pos-
sible collapses. The use of such casing highly
complicates the analysis due to large contrast
between the conductivities of the casing and the
rock formations.

This work is motivated by realistic configu-
rations [2] where the conductivity of the casing
is σc ≈ ε−3 when ε denotes the thickness of the
casing. In this framework, our aim is to derive
ITCs for the electromagnetic field across such a
casing. As a first approach we derive ITCs for
the electric potential.

We refer to [1] where the authors derive ITCs
for eddy current models with a conductivity pa-
rameter of a thin sheet of the form σ ≈ ε−2.

We first introduce the mathematical model.
Then, we explicit two asymptotic models of or-
der two and four. Finally, we numerically anal-
yse the performance and order of accuracy of
the ITCs.

2 The Mathematical Model

We consider a transmission problem for the static
case of the electric potential, the governing equa-
tions read as follows



σi∆ui = fi in Ωε
i

σe∆ue = fe in Ωε
e

σc∆uc = 0 in Ωε
c

ui = uc on Γεi
uc = ue on Γεe

σi∂nui = σc∂nuc on Γεi
σc∂nuc = σe∂nue on Γεe

u = 0 on ∂Ω

(1)

We
¶Wi
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¶

¶

Ge
¶Gi

¶

n

n

Figure 1: Domain of interest.

The considered domain Ω ⊂ R2 is formed by
three subdomains Ωε

i , Ωε
c, Ωε

e, which are char-
acterized by different conductivities σi, σe, σc.
These subdomains have rectangular shape and
Ωε

c is a thin layer of uniform thickness ε, as
shown in Figure 1. In (1), fi, fe, σi, σe and σc

are known data and u corresponds to the un-
known, whose restrictions to the different sub-
domains are denoted as u|Ωε

i
= ui, u|Ωε

e
= ue,

u|Ωε
c

= uc.
In this framework, we address the issue of

ITCs for u (as ε→ 0) when the conductivity of
the casing is σc = αε−3 (α ∈ R).

3 Main Results

For developing ITCs, we perform a formal ex-
pansion of the solution u in power series of ε.
This leads to a collection of problems which can
be solved successively. Then truncating the se-
ries we build asymptotic models by obtaining
ITCs between Γεi and Γεe.
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Definition 1 Let u be the solution of problem
(1). We say that u[k] satisfies an asymptotic
model of order k+ 1 when (for ε small enough)

||u− u[k]||L2(Ωε
i ∪Ωε

e) ≤ Cεk+1, C ∈ R.

We derive two asymptotic models of order
two and four.

Order 2 model

{
σi∆u

[1]
i = fi in Ωε

i

u
[1]
i = 0 on ∂Ωε

i

{
σe∆u

[1]
e = fe in Ωε

e

u
[1]
e = 0 on ∂Ωε

e

Order 4 model



σi∆u
[3]
i = fi in Ωε

i

σe∆u
[3]
e = fe in Ωε

e[
u[3]
]

= 0[
σ∂nu

[3]
]

= − α
ε2

∆Γ

{
u[3]
}

u
[3]
i = 0 on ∂Ωε

i \Γεi
u

[3]
e = 0 on ∂Ωε

e\Γεe

Here, the jump and mean value of a function
u across the domain Ωε

c are

[u] := ue|Γε
e
− ui|Γε

i

{u} :=
1

2

(
ue|Γε

e
+ ui|Γε

i

)
.

The validation of these models consists in
proving estimates for u−u[k] (see Definition 1).
Hereafter, we present numerical validations for
each asymptotic model.

4 Numerical Results

We developed a finite element code to solve prob-
lem (1) and the two asymptotic models. We
consider fi = 1, fe = 1 as right hand sides and
we select σi = 3, σe = 5, σc = ε−3 as the differ-
ent conductivities.

We compute the L2 error between the so-
lution of problem (1) and the solution of each
asymptotic model for different values of ε by

using triangular elements and degree five La-
grange polynomials. We observe these results
in Figure 2 and the corresponding slopes of the
graphics in Table 1. Each numerical conver-
gence rate converges to the formal order of ac-
curacy.
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Figure 2: L2 error of the order 2 and order 4
model for different values of ε

Casing Thickness ε 0.0117 0.0234 0.0469 0.0938

Order 2 Slopes 1.9944 1.9848 1.9537 1.8456

Order 4 Slopes 3.9906 3.9699 3.8962 3.6430

Table 1: Slopes corresponding to the curves of
Figure 2

5 Perspectives

Among the future perspectives, we would like
to derive asymptotic models for different con-
figurations including the non-static case of the
electric potential and electromagnetic field. We
plan to perform mathematical proofs to validate
these asymptotic models.
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Abstract

For wave propagation phenomena, the limiting
amplitude principle (LAP) holds if the time-
harmonic regime represents the large time asymp-
totic behavior of the solution of the evolution
problem with a time-harmonic excitation. Con-
sidering a two-layered medium composed of a
dielectric material and a Drude metamaterial
separated by a plane interface, we prove that
the LAP holds except for a critical situation re-
lated to a surface resonance phenomenon.

Keywords: Maxwell’s equations, metamateri-
als, spectral theory.

1 Introduction

In the frequency domain, the permittivity and
permeability of a non-dissipative dispersive ma-
terial ε(ω) and µ(ω) are real-valued functions of
the frequency ω. For metamaterials, these coef-
ficients may become negative in particular fre-
quency ranges, which raises theoretical and nu-
merical difficulties. In [1], the authors proved
that for a transmission problem between a di-
electric material and a metamaterial separated
by a smooth interface, the time-harmonic prob-
lem is well-posed except when both ratios of
ε and µ across the interface are equal to −1
(which is the case of the “perfect lens” [3]).
Nevertheless, the associated time-dependent prob-
lem remains well-posed. What is the link be-
tween both problems, in particular when the
harmonic problem is ill-posed? We answer here
the question in the case of a planar transmission
problem which involves a Drude metamaterial.

2 Formulation of the problem

We consider a two-layered medium composed of
a standard dielectric material and a Drude ma-
terial, both homogeneous and non-dissipative,
which fill respectively the half planes R3

− = {x =
(x, y, z) ∈ R3 | x < 0} and R3

+ = {x = (x, y, z) ∈
R3 | x > 0}. (ex, ey, ez) will refer to the canon-
ical basis of R3. We denote by E and H the

electric and magnetic fields and by D and B the
electric and magnetic inductions. In the pres-
ence of a source current density Js, the evolu-
tion of (E,D,H,B) is governed by Maxwell’s
equations:

∂tD −CurlH = −Js

∂tB + CurlE = 0,

(where the usual transmission conditions at the
interface x = 0 are implicitly understood). These
equations must be supplemented by the consti-
tutive laws of each material. In the dielectric
material, they are simply expressed by

D = ε0 E and B = µ0 H,

for two positive constants ε0 and µ0. In a dis-
persive media, these laws involve two additional
unknowns, the electric and magnetic polariza-
tions P and M :

D = ε0E + P and B = µ0H + M .

For the Drude model, the fields P and M are
related to E and H through

∂tP = J and ∂tJ = ε0 Ω2
e E

∂tM = K and ∂tK = µ0 Ω2
mH,

where Ωe and Ωm are positive parameters. By
eliminating D, B, P and M in the above equa-
tions, we obtain

(P )


ε0 ∂tE −CurlH + Π J = −Js in R3,
µ0 ∂tH + CurlE + Π K = 0 in R3,
∂tJ = ε0 Ω2

e E in R3
+,

∂tK = µ0 Ω2
mH in R3

+,

where Π denotes the operator of extension by 0
of a vectorial field defined on R3

+ to R3.
When looking for time-harmonic solutions

of (P ): (E(x),H(x),J (x),K(x)) e− iωt for a
periodic current density Js(x)e− iωt, we can elim-
inate J (x) and K(x). In the half-plane R3

+ filled
by the Drude material, we obtain

i ωε(ω)E + CurlH = J s

−i ωµ(ω)H + CurlE = 0, where
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ε(ω) = ε0

(
1− Ω2

e

ω2

)
and µ(ω) = µ0

(
1− Ω2

m

ω2

)
.

In the half-plane R3
− filled by the dielectric ma-

terial, we obtain the same equations with ε(ω)
and µ(ω) replaced by ε0 and µ0. Note that in
the Drude material, ε(ω) and µ(ω) become neg-
ative at low frequencies (which justifies the word
“metamaterial”). Moreover, both ratios ε(ω)/ε0
and µ(ω)/µ0 are simultaneously equal to −1 at
the same frequency if and only if Ωe = Ωm (:=
Ω∗) and ω = ±Ω∗/

√
2 (:= ±ω∗), where ω∗ is

called the plasmonic frequency.

3 Main results

We are interested in the long-time behavior of
the solution of the transverse magnetic (TM)
version of (P ) for a time-harmonic source term
Js(x, t) = Js(x, y) e− iωtez with ω > 0 and zero
initial conditions. In this case, we have E =
(0, 0, Ez) and H = (Hx, Hy, 0) where Ez, Hx

and Hy do not depend on z, as well as the same
properties for J and K. We express below our
main result in terms of the electrical field Ez but
the same results hold for the other unknowns
Hx, Hy, Jz,Kx,Ky.

Theorem 1 (i) If Ωe 6= Ωm, the LAP holds at
all frequencies, in the sense that for all ω > 0,
there exists a function Ez (related to the time-
harmonic problem) such that

Ez(·, t) = Ez(·) e−i ωt + o(1) as t→ +∞,

where o(1) stands for a function which tends to
0 in L2

loc(R2).
(ii) If Ωe = Ωm, the LAP never holds. More

precisely, with the same notations as above,
• if ω 6= ω∗, then there exists functions E∗z,± and
Ez such that

Ez(·, t) =
∑
±
E∗z,±(·) e∓iω∗ t + Ez(·) e−iωt + o(1);

• If ω = ω∗, then there exists functions E∗z and
Ez such that

Ez(·, t) = t E∗z (·) e−iω∗t + Ez(·) e−iω∗t + o(1).

4 Method of Analysis

The (very technical) proof follows from stan-
dard arguments (see, e.g., [4]). The main diffi-
culty here is related to the dependence of ε(ω)
and µ(ω) with respect to ω (see [2] for details).

We first rewrite the original problem (P ) as an
abstract Schrödinger equation

dU

dt
+ iAU = F e−i ωt with U(0) = 0,

where A is an unbounded self-adjoint operator
in an appropriate Hilbert space H. The key of
the analysis is the spectral theory of the opera-
tor A. This permits a quasi-explicit representa-
tion of the solution via the (generalized) diago-
nalization of A. This is achieved by combining
a partial Fourier transform along the interface
with Sturm-Liouville type techniques in the or-
thogonal direction. For Ωe = Ωm, the resonance
phenomenon is linked to the fact that A admits
at the plasmonic frequency ω∗ an eigenvalue of
infinite multiplicity.
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Abstract

In this talk, we will present some of our recent
works on mathematical analysis and finite ele-
ment modeling of cloaking devices constructed
by metamaterials. Our talk will focus on the
cloaking simulation in time-domain.

Keywords: Cloak, metamaterial, finite element

1 Introduction

In June 23, 2006’s issue of Science magazine,
Pendry et al and Leonhardt independently pub-
lished their works on electromagnetic cloaking.
In Nov.10, 2006’s Science, Pendry et al demon-
strated the first practical realization of such a
cloak with the use of artificially structured meta-
materials. Since then, there is a growing inter-
est in using metamaterials to construct invisi-
bility cloaks cf. [1, Ch.9].

In recent years, mathematicians have started
investigating this fascinating subject, but most
works are still limited to frequency-domain or
the quasi-static regime by mainly solving the
Helmholtz equation, and the time-harmonic
Maxwell’s equations. In this talk, we will focus
on our recently published work on time-domain
carpet cloak [2].

2 The carpet cloak model

A triangular carpet cloak shown in Fig.1 (Left)
can be achieved with spatially homogeneous an-
isotropic dielectric materials. The cloaked re-
gion is the bottom triangle with vertices (0, H1),
(−d, 0) and (d, 0). The cloaking region is the
quadrilateral region formed by vertices (−d, 0),
(0, H1), (d, 0) and (0, H2), where H1, d > 0.
In order to make the hiden objects inside the
cloaked region invisible to outside observer, the
permittivity and permeability in the cloaking

region need to be specially designed:

ε =

[
a b
b c

]
=

[
H2

H2−H1
− H1H2

(H2−H1)d
sgn(x)

− H1H2
(H2−H1)d

sgn(x) H2−H1
H2

+ H2
H2−H1

(H1
d )2

]
,

µ =
H2

H2 −H1
,

where sgn(x) is the standard sign function. By
construction, it is assumed that H2 > H1 > 0.

Denote

λ1 =
a+ c−

√
(a− c)2 + 4b2

2
,

λ2 =
a+ c+

√
(a− c)2 + 4b2

2
,

p1 =

√
λ2 − a
λ2 − λ1

, p2 =

√
a− λ1
λ2 − λ1

· sgn(x),

p3 = −
√

λ2 − c
λ2 − λ1

· sgn(x), p4 =

√
c− λ1
λ2 − λ1

,

and matrices MA and MB:

MA =

(
p21λ2 + p22 p2p4 + p1p3λ2

p2p4 + p1p3λ2 p23λ2 + p24

)
,

MB =

(
p22 p2p4
p2p4 p24

)
ω2
p,

where ωp is the plasma frequency. We can ob-
tain the governing equations for the carpet cloak:

Dt = ∇×H, (1)

ε0λ2
(
Et2 + ω2

pE
)

= MADt2 +MBD,(2)

µ0µHt = −∇×E, (3)

where H denotes the magnetic field, and D and
E represent 2D electric displacement and elec-
tric field. The curl operators are in 2D sense.
To make the model complete, we assume that
(1)-(3) satisfy the initial conditions

D(x, 0) = D0(x), E(x, 0) = E0(x),

H(x, 0) = H0(x), ∀ x ∈ Ω, (4)
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Figure 1: The physical space of the carpet cloak.

and the PEC boundary condition:

n×E = 0 on ∂Ω, (5)

where D0,E0 and H0 are some properly given
functions, n is the unit outward normal vector
to ∂Ω, and Ω denotes the cloaking region.

The well-posedness of this model and the
following stability is proved.

Theorem 1 For solution (D,E) of (1)–(5) and
any t ∈ [0, T ], the following stability holds true:

(||
√
MADt||2 + ||

√
MBD||2 + ||Et2 ||2

+||Et||2 + ||E||2 + ||
√
MA∇×Et||2)(t)

≤ C(||
√
MADt||2 + ||

√
MBD||2 + ||Et2 ||2

+||Et||2 + ||E||2 + ||
√
MA∇×Et||2)(0),

where the constant C > 0 depends on the phys-
ical parameters ε0, µ0, d,H1, H2 and ωp.

A leap frog type scheme with edge elements
is developed for our model and many simula-
tions are carried out. Due to page limit, here we
show one example by choosingH1 = 0.05m,H2 =
0.2m, d = 0.2m, and Ω = [−0.3, 0.3]m×[0, 0.3]m,
which is partitioned by a uniform triangular
mesh with a mesh size h = 0.00625. The PML
region surrounding Ω is partitioned by a uni-
form rectangular mesh. Our final mesh yields
53330 total edges, 26960 total triangular ele-
ments, and 6258 total rectangular elements. In
the test, we choose the time step size τ = 2 ∗
10−13 s, and the total number of time steps
15000, i.e., the final simulation time T = 3.0
nanosecond (ns).

The incident wave is generated by a plane
wave source Hz = 0.1 sin(ωt) imposed at line
x = −0.3, where ω = 2πf with frequency f =
3.0 GHz. The numerical electric fields Ey at dif-
ferent time steps are presented in Fig.2, which
shows clearly that the plane wave pattern is

recovered very well after passing through the
cloaking region, which makes any objects hiden
inside the cloaked region invisible to observers
at the far end.

Figure 2: The Ey fields at 5000, 7000, 10000,
and 15000 time steps.
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Homogenization for the one-dimensional wave equation with periodic coefficients in a
bounded domain.
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∗Email: thitrang.nguyen@femto-st.fr

Abstract

We present a method for periodic homogeniza-
tion of the one-dimensional wave equation in a
bounded domain. It allows modelling both low
and high frequency waves. In this presentation,
we focus mainly on the high frequency model
part. It includes oscillations at the microscopic
scale with amplitudes governed by a well-posed
hyperbolic system constituting the macroscopic
equations. This model was already presented in
[1] but only for the entire n-dimensional space.
The formulation of the boundary conditions were
left as an open problem. Numerical simulations
are provided to corroborate the theory.

Keywords: Homogenization, Bloch waves, Wave
equation, Two-scale convergence

1 Introduction

For a one-dimensional bounded open set Ω =
(0, α) ⊂ R+ and a finite time interval I = (0, T ) ⊂
R+, we establish a homogenized model for the
wave equation,

ρε∂ttu
ε − ∂x (aε∂xu

ε) = f ε in I × Ω,
uε (t = 0, x) = uε0, ∂tu

ε (t = 0, x) = vε0 in Ω,
(1)

with homogeneous Dirichlet boundary conditions.
The coefficients are positive, and given ε > 0 a
small parameter, they are ε-periodic. Namely
aε = a

(
x
ε

)
and ρε = ρ

(
x
ε

)
where a (y) and ρ (y)

are 1-periodic in R. An asymptotic analysis of
this problem is carried out when ε tends to zero.

The homogenization of the wave equation
has been studied in various works. The con-
struction of homogenization and corrector re-
sults for the low frequency waves has been pub-
lished in [3], [4]. These works were taking into
account only a small part of fast time oscil-
lations, so these models reflect only a part of
physical solutions. In [1], an asymptotic anal-
ysis of the solution uε (t, x), that exhibit time

and space oscillations occurring both at low and
high frequencies in a bounded domain, has been
introduced. It is derived from a formulation of
the wave equation as a first order system and
uses a decomposition over Bloch modes. The
resulting asymptotic model includes separated
parts for low and high frequency waves respec-
tively. The latter is comprised with a micro-
scopic equation and with a first order macro-
scopic equation which boundary conditions are
missing. A similar result has been obtained
in [2] for an unbounded domain, based on the
second order formulation of the wave equation,
which homogenized solution is periodic in space
because it does not include a decomposition on
Bloch modes. In this presentation, we synthe-
size these ideas in a model, based on the sec-
ond order formulation of the wave equation, us-
ing the Bloch wave decomposition of the solu-
tion and more importantly including boundary
conditions. Moreover, for the sake of compar-
ison, the homogenization is also presented for
the first order formulation as in [1], enriched by
the boundary conditions. This work is a part
of the thesis work [5].

The model derivation method is based on
the modulated two-scale transform defined in [1]
for both the time and space variable, and the
Bloch wave decomposition consists in an expan-
sion over a family of the eigenfunctions solution
to the spectral problem

∂y

(
a∂yφ

k
)

= −λkφk

posed in the reference cell Y ⊂ R equipped
with k-quasi-periodic boundary conditions for
k ∈ [−1

2 ,
1
2). The homogenization process starts

with a very weak formulation of the wave equa-
tion. Applying our method yields two-scale mod-
els including the expected high frequency parts
but also a low frequency part.
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2 Homogenization results

Considering a subsequence ε such that the se-
quence αk

ε −
[
αk
ε

]
converges to a limit lk, the

approximation of the solution uε is

uε (t, x) ≈ u0 (t, x) + εθ
(x
ε

)
∂xu

0 (t, x) (2)

+ε
∑
k

∑
n∈Z∗

ukn (t, x) e
sign(n)i

√
λk|n|t/εφk|n|

(x
ε

)
.

where u0 and θ
(
x
ε

)
∂xu

0 represent the classical
low frequency solution and its usual elliptic cor-
rector not detailed here. The remaining sum is
the high frequency corrector and is made with
Bloch waves. The amplitudes (ukn)n∈Z∗ are solu-
tion of the high frequency macroscopic problem,
a first order system of differential equations. In
particular, for k /∈

{
0,−1

2

}
and for each n, the

high frequency macroscopic model has the form

b (k, n, n) ∂tu
k
n + c (k, n, n) ∂xu

k
n = F kn (3)

b (−k, n, n) ∂tu
σ
n + c (−k, n, n) ∂xu

−k
n = F−kn

in I×Ω, with some initial conditions not precise
here, and boundary conditions on the form

uknφ
k
|n| (0) e

2iπlkx
α + u−kn φ−k|n| (0) e−

2iπlkx
α = 0 (4)

on I×∂Ω. The two partial differential equations
in (3) are coupled by their boundary conditions
only. The coefficients c (., ., .), b (., ., .) and the
right-hand sides F±kn are defined from the Bloch
eigenelements and with the function f ε. For k ∈{

0,−1
2

}
the Bloch eigenvalues are double and

the macroscopic model statement has a similar
form.

Moreover, the homogenization of the wave
equation expressed as a first order system yields
a first order formulation of the Bloch modes but
a similar form of the macroscopic equation. The
figures below represent a numerical example is-
sued from the homogenized model of the first
order system which unknown is the vector of
first order derivatives

(√
aε∂xu

ε,
√
ρε∂tu

ε
)
.
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de mathématiques pures et appliquées 71
(1992), pp. 197–231.

[4] GA. Francfort and F. Murat, Oscillations
and energy densities in the wave equation,
Communications in partial differential equa-
tions 17 (1992), pp. 1785–1865.

[5] TT. Nguyen, Contributions to periodic ho-
mogenization of a spectral problem and of
the wave equation, PhD thesis, University
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On the homogenization of a transmission problem
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Abstract

This study deals with the homogenization of
a transmission problem for bounded scatterers
with periodic coefficients in Rd (d = 2, 3). The
focus is on the Helmholtz equation where the
index of refraction and its companion “matrix”
coefficient are C∞ functions over the unit cell
with characteristic size ε. By way of multi-
ple scales expansion, the analysis aims to un-
veil the O(εk), k = 1, 2 bulk and boundary
corrections of the (leading-order) homogenized
transmission problem. The analysis in partic-
ular provides the H1 and L2 estimates of the
error committed by the first-order-corrected so-
lution considering i) bulk correction only, and
ii) boundary and bulk correction. The study
also establishes the O(ε2)-bulk correction for
the mean motion inside the scatterer, and an
explicit treatment of the O(ε) boundary correc-
tion when the scatterer is a unit square.

Keywords: homogenization, Helmholtz equa-
tion, transmission problem

1 Introduction

Consider the transmission problem for a bounded
scatterer D ⊂ Rd (d = 2, 3) with periodically
varying coefficients, namely

∇ ·
(
a(x/ε)∇uε

)
+ k2n(x/ε)uε = 0 in D

∆uε + k2uε = 0 in Rd \D
u+ε − u−ε = f on ∂D

(∇uε · ν)+ − (a(x/ε)∇uε · ν)− = g on ∂D(1)

where uε satisfies the Sommerfeld radiation con-
dition at infinity. Here ν is the outward unit
normal on ∂D, while superscripts “+” and “−”
denote the respective limits on ∂D from the
exterior and interior of D. The matrix coef-
ficient function a(y) and its scalar companion
n(y) are assumed to be C∞-periodic functions
of y ∈ Y , where Y = [0, 1]d is the unit cell in d
dimensions. We are interested in developing the
asymptotic theory for this problem as ε→ 0, as

was done previously for Dirichlet and Neumann
problems [2, 3] on bounded domains. One ex-
pects the homogenized problem to read

∇ ·A∇u0 + k2nu0 = 0 in D

∆u0 + k2u0 = 0 in Rd \D
u+0 − u

−
0 = f on ∂D (2)

(∇u0 · ν)+ − (A∇u0 · ν)− = g on ∂D

where u0 satisfies the Sommerfeld radiation con-
dition; n is the unit cell average of n, i.e.

n =

∫
Y
n(y)dy,

and A is a constant-valued matrix given by the
weighted averages

Aij =

∫
Y

(
aij(y)− aik(y)

∂χj

∂yk
(y)

)
dy, (3)

which make use of the Einstein’s summation
convention. Here χj(y) are the cell functions [1]
which represent the Y -periodic solutions to

∂

∂yi

(
aij(y)− aik(y)

∂χj

∂yk
(y)

)
= 0. (4)

The additive constant for χj is chosen so that

χ̄ :=

∫
Y
χj dy = 0,

whereby the solutions to (4) are unique inH1
#(Y ),

the space of H1 functions on the d-dimensional
torus, and are themselves C∞ due to the smooth-
ness of a. To derive this asymptotic limit and
prove convergence, we will use the standard tech-
nique [1] which regards the solution as that de-
pending on a “slow” variable x, and a “fast”
variable y = x/ε. Following [2], we further write
the equation for uε inside D as a first-order sys-
tem

a(x/ε)∇uε − vε = 0

∇ · vε + k2n(x/ε)uε = 0 (5)
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which allows us to obtain (lower regularity) L2-
based estimates of the error. In this setting, an
ansatz for the bulk expansions inside D reads

uε = u0(x, x/ε) + εu(1)(x, x/ε) + . . .

vε = v0(x, x/ε) + εv(1)(x, x/ε) + . . . (6)

For the bulk expansion in Rd\D, on the other
hand, it suffices to use

uε = u0(x), vε = v0(x),

since there is no microstructure in the exte-
rior. We note however that the boundary cor-
rector functions are completely different story
and, as is frequently the case with homogeniza-
tion problems involving compact support, they
must be accounted for both in D and Rd\D in
order to obtain higher-order convergence esti-
mates. Such corrector functions solve problems
which are substantially more difficult than our
original; none- theless they are necessary for full
understanding of the behavior of the solution.

2 Main results

The first-order bulk correction in (6) can be
computed as

u(1) = −χj(y)
∂u0
∂xj

. (7)

Next, let q(x, y) be the solution to

roty(q) = v0 −A∇u0, (8)

and define

v̂(1) = rotx (q) + k2a(y)∇yβ(y)u0 (9)

where β is unique zero-mean solution to

∇y · (a∇yβ(y)) = n− n(y). (10)

With such definitions, the first-order boundary
correction (θ̂) of the transmission problem can
be shown to solve

∇ · a(x/ε)∇θ̂ε + k2n(x/ε)θ̂ε = 0 in D

∆θ̂ε + k2θ̂ε = 0 in Rd \D
θ̂+ε − θ̂−ε = u(1) on ∂D

(∇θ̂ε · ν)+ − (a(x/ε)∇θ̂ε · ν)− = (11)

=

(
v0 − v0

ε
+ v̂(1)

)
· ν on ∂D.

Theorem 1 Let uε be the solution to (1), u0
the solution to (2), and let the bulk correction
u(1) be given by (7) in the interior of D and zero
on the exterior of D. Then for any ball BR of
radius R > 0 which contains D,

‖uε − (u0 + εu(1))‖H1(BR) 6 CR ε
1/2

and

‖uε − u0‖L2(BR) 6 CR ε
(
1 + ‖θ̂ε‖L2(BR)

)
where the boundary correction θ̂ solves (11) and
constant CR is independent of ε.

Remark 2 While the bulk correction is neces-
sary to obtain the H1 convergence, it does not in
general improve upon the L2 estimate. That is,
unless the boundary correction approaches zero
(which is not true in general), or is somehow
accounted for,

‖uε − (u0 + εu(1))‖L2(BR) 6 CR ε

is the best that one can obtain.

In the remainder of this work, we continue
with the asymptotic expansion of the transmis-
sion problem in terms of higher powers of ε.
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Abstract

Using matched asymptotics, we construct high
order transmission conditions between an ho-
mogeneous and an homogenized periodic half
space, since classical homogenization theory po-
orly takes into account interfaces. The analysis
is based on an original combination of Floquet-
Bloch transform and a periodic version of Kon-
dratiev techniques. The obtained conditions in-
volve Laplace-Beltrami operators at the inter-
face and requires to solve “cell” problems in in-
finite strips.

Keywords: homogenization, periodic media,
matched asymptotics

1 Problem statement

We want to solve the transmission problem be-
tween an homogeneous and a periodic half space
(x = (x1, x2) ∈ R2):

−∇ ·
[
a
(x
ε

)
∇uε(x)

]
− ω2uε(x) = f(x) (1)

where ε > 0 is a small parameter, ω the fre-
quency with Imω2 > 0, f ∈ L2(R2) a source
term whose support is compactly supported in
Ω− := {x1 < 0}, and a is an uniformly bounded
and coercive function such that, in Ω−, a is a
constant a0 > 0, and in Ω+ := {x1 > 0}, a is
1-periodic in the two directions.

2 Classical homogenization results

The aim of periodic homogenization is to derive
an effective homogeneous media from a periodic
one when ε→ 0. A classical method is the two
scale asymptotic expansion [1] which consists in
expanding the solution uε of (1) as

uε(x) =

{∑
n≥0 ε

nu−n (x) in Ω−∑
n≥0 ε

nu+
n (x,x/ε) in Ω+

(2)

where the functions u+
n are 1-periodic w.r.t. the

fast variables y := x/ε.

For the zeroth order, we obtain the homog-
enized transmission problem{
−∇ · (A∗∇u0)− ω2u0 = f on R2 \ Γ

[u0]Γ = 0, [A∗∇u0 · n]Γ = 0
(3)

where A∗ = a0 on Ω− and A∗ = a∗ on Ω+.
Here, a∗ ∈M2(R) is the homogenized tensor

a∗ij :=

∫
Y
a(y)

[
∂yjwi(y) + δij

]
dy

whereW = (w1, w2) ∈ (H1
per(Y ))2, Y := (0, 1)2,

are the solutions of the 2 cell problems{
−∇ · [a(y)∇wj ] = ∂yja(y) on Y∫
Y wj = 0.

(4)

For the next order, in Ω+, u+
1 is given by

u+
1 (x,y) = ∇xu0(x) ·W (y) + û1(x)

where û1 does not depend on y. Each function
u−1 and û1 solves respectively the same volumic
equation of (3) in Ω− and Ω+.

However, the expansions (2) does not lead
to coherent transmission conditions for (u−1 , û1);
they would have to depend on the fast vari-
ables y. This is a well-known problem linked to
the presence of boundary layers [1]. A common
choice in the literature to avoid this difficulty
is to take u−1 = û1 = 0, but this leads to quite
disappointing error estimates: defining

v :=

{
u−0 in Ω−

u+
0 + ε∇xu

+
0 (x) ·W (x/ε) in Ω+,

gives the following non-optimal error estimates{
‖uε − v‖H1(R2) = O (

√
ε)

‖uε − v‖L2(R2) = O(ε).
(5)
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3 Matched asymptotics

We want to enrich the homogenized transmis-
sion problem (3) by deriving higher order trans-
mission conditions which better take into ac-
count the phenomenon near the interface. We
employ for this purpose a method which com-
bines the techniques of matched asymptotics [3]
and periodic homogenization [1].

We make different expansions on each area.
Far from the interface Γ, we expand uε as in (2)
and obtain the same volumic equations for the
so-called far fields u±n . Near the interface, we
look for a different asymptotic expansions of uε

uε(x) =
∑
n≥0

εnUk

(x1

ε
, x2,

x2

ε

)
(6)

where the so-called near fields Uk are 1-periodic
w.r.t. y2 = x2/ε but not w.r.t. y1 = x1/ε.
The expansion (6) leads to a family of problems
on the infinite strip B = R× (0, 1) of the form{
−∇ · [a(y)∇Un] = L(Un−1, Un−2) on B
Un 1-periodic w.r.t. y2.

(7)
In order to match the behaviour of the far

and near fields at the interface, we need to al-
low polynomial growing at y1 = ±∞ of the near
fields Un. Without entering into details, to jus-
tify the well-posedness of these problems, we
adapt Kondratiev techniques [2] in a periodic
framework via the Floquet-Bloch transform.

4 Approximate problem

From all these expansions, we can finally build
an approximate problem of order 1 by matching
the behaviour of the near fields when y1 → ±∞
with the behaviour of the far fields when x1 →
0± (using Taylor expansions). We are able to
construct a problem whose solution vε is close
to the first non oscillating 2 terms of the far
fields expansion, namely vε = u−0 + εu−1 on Ω−

and u+
0 +εû1 on Ω+. We obtain the (first order)

homogenized transmission problem
−∇ · (A∗∇vε)− ω2vε = f on R2 \ Γ

[vε]Γ = εP(vε)

[A∗∇vε · n]Γ = εQ(vε)

(8)

where P is the operator

P(u) = C1∂x1〈u〉∗ + C2∂x2〈u〉

with 〈·〉 the average over Γ and 〈·〉∗ the weighted
average 〈u〉∗ = (a0u|Γ− +a∗11u|Γ+)/2, and where
Q is a Laplace-Beltrami operator defined as

Q(u) = C3∂
2
x1x2
〈u〉∗ + C4∂

2
x2x2
〈u〉+ ω2C5〈u〉.

The coefficients Cj are constants computed
from the so-called profil functions, which are
solution of problems of type (7). In particu-
lar they are defined on the infinite strip B =
R× (0, 1) and have polynomial growth at infin-
ity. From a numerical point of view, the profil
functions and the Cj can be determined restrict-
ing the computational domain around the in-
terface by using Dirichlet-to-Neuman operators
(see [4] for the construction of such operators in
periodic waveguides).

Moreover, if we add the oscillating part to
vε on Ω+:

ṽε :=

{
vε in Ω−

vε + ε∇xvε(x) ·W (x/ε) in Ω+,

we obtain the expected error estimates{
‖uε − ṽε‖H1(Ω) = O(ε)

‖uε − ṽε‖L2(Ω) = O(ε2).
(9)

for any Ω ⊂ R2 such that Ω ∩ Γ = ∅.
Numerical results will be shown during the

presentation.
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Abstract

We consider problems of the acoustic wave prop-
agation through panels consisting of several vi-
brating periodically perforated Reissner-Mindlin
plates. The proposed model of the wave trans-
mission through a layer involving the acoustic
fluid and the panel is derived using the homog-
enization method. This provides homogenized
transmission conditions which are prescribed on
a flat interface representing the panel, so that
the computational complexity of the vibroacous-
tic problem is reduced, although the geomet-
rical arrangement of pores in the panel is re-
spected in a detail. For a suitable mutual ar-
rangement of holes in two, or more parallel plates
there is a coupling between transverse and sur-
face acoustic waves propagating along the panel.

Keywords: Acoustic transmission, porous panel,
Reissner-Mindlin plate, homogenization

1 Introduction

Usually the models of the acoustic impedance
are based on semi-empirical formulae which are
tuned by experiments. To treat the vibroacous-
tic problem in a rigorous and efficient way, we
derive a reduced model of the acoustic trans-
mission which is based on the two-scale homog-
enization [1].For this we extend the approach
developed in [2], where homogenization of rigid
plates was pursued to derive effective nonlocal
transmission conditions.

2 Vibroacoustic interaction on plates

We consider a layer Ω ⊂ R3, see Fig. 1, with
the thickness δ bounded by surfaces Γ+

δ and Γ−
δ

parallel to the midplane Γ0 (defined by x3 = 0),
so that Ωδ = Γ0×] − δ/2, δ/2[⊂ R3. ε is the
characteristic size of the perforation of plates,
whereby δ = κε for a given κ > 0, see Fig. 1.

The layer contains two elastic perforated plates
Σε
K , K = I, II, whereby ε is the characteris-

tic size of the perforation; for a given κ > 0,

δ = κε.
Each elastic plate Σε

K is represented by the
perforated domain ΓεK ⊂ ΓK , the thickness hεK =
εh̄K . Its vibration is described using the Reissner-
Mindlin (R-M) plate model. The following equa-
tions in ΓεK govern the plate displacements uK =
(uε,K , wε,K) and rotations θε,K (below the suf-
fix K is omitted) as the harmonic response the
acoustic pressure acting on the plate surface

−ω2hερuε − hεdiv[CC∇S(uε)] = tε ,
−ω2hερwε − hεdiv[γ(∇wε − θε)] = f ε ,

−ω2 (h
ε)3

12 ρθε − (hε)3

12 div[CC∇S(θε)]

−hεγ(∇wε − θε) = mε ,
(1)

where ∇ = (∂α) is the in-plane gradient, CC, γ
are elastic coefficients, ω is the frequency and
the generalized loads tε = (bα), α = 1, 2, f ε =
b3, and mε, as well as the Neumann condi-
tions prescribed on the holes ∂ΓεK \ ∂ΓK , are
derived from the boundary traction forces bε =
iωρ0np

ε, where ρ0 is the fluid density, acting
on free surfaces ∂fΣε

K of the plate and involv-
ing the acoustic potential pε. The plates are
clamped on ∂ΓK and the Neumann conditions
expressed in terms of pε are prescribed on the
holes ∂ΓεK \ ∂ΓK .

The total acoustic potential, pε satisfies the
following equalities in Ωε and on ∂Ωε,

c2∇2pε + ω2pε = 0 in Ωε ,

∂pε

∂n
=


−iωgε± on Γ±δ ,
−iωn · uε on ∂Σε ,
0 on ∂Ω \ (Γ+

δ ∪ Γ−
δ ) ,

(2)

where c is the speed of sound propagation, n is
the normal vector, and gε± represents the trans-
verse acoustic velocity.

3 Homogenized transmission conditions

The homogenization procedure which consists
in the asymptotic analysis ε → 0 of the sys-
tem (2)-(1) reduces the 3D vibroacoustic in-
teraction problem to a 2D problem involving
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Figure 1: A Schematic view of the transmission layer with 2 plates of different perforation design.
The layer thickness δ = κε, the plate thickness hεK = εh̄K .

limit acoustic potential p0, transverse velocity
(represented by g0) and limit plate displace-
ments uK = (u0,K , w0,K). The following set
of equations imposed in Γ0 constitutes an im-
plicit form of the Dirichlet-to-Neumann opera-
tor which couples the jump in external acoustic
fields (p+ext − p

−
ext)/ε0, whereby ε0h̄K is the ac-

tual plate thickness, with the transverse acous-
tic velocity ≈ g0 and its mean fluctuation ∆g1,

− ω2mKuK − ω2
∑

L=I,II

IMKLuL −∇ · IDK∇uK

+ iωIPK∇p0 − ω2INKg0 = 0 ,

iω
∑

L=I,II

IPL∇uL − ω2
(κ
c2

+ ρ0TK
)
p0

− κ∇ ·A∇p0 − iωB · ∇g0 = −∆g1 ,

− ω2
∑

L=I,II

INL · uL + iωB · ∇p0 + ω2Fg0

=
iω

ε0
(p+ext − p

−
ext) ,

wheremK , IMKL, INK , IDK , IPK ,B , F,A are the
homogenized parameters; to compute them, lo-
cal problems for characteristic responses must
be solved in the representative periodic cell Y
consisting of the fluid part and solid parts Ξ1,2

representing the plates, see Fig. 1. The coeffi-
cients B are responsible for coupling the trans-
verse and tangential acoustic waves; they do not
vanish when different perforations of the two
plates are used.

4 Conclusion

The obtained model represents implicit trans-
mission conditions involving g0 and other inter-

nal variables, p0, (uK), whereby
∂p±ext
∂n = ±iωg0

is prescribed on Γ0 representing the perforated
panel. Due to the scaling of the plate thick-
nesses, the homogenized bending stiffness of the

panel vanishes in the limit. As the main advan-
tage, this homogenization based modelling ap-
proach reduces significantly the computational
complexity of solving the acoustic wave trans-
mission through the panel numerically. In the
paper report numerical aspects of the model and
compare its response with the one on the rigid
panel, see [2]. Our further research is focused on
the optimal perforation design problem, see [3].

The research is supported by the grant project
GACR P101/12/2315.

Figure 2: Transversal acoustic velocity g0.
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Abstract

The near-field to far-field mapping is a tool used
to describe radiation at far distances from scat-
terers. We consider the geometric setting of a
bounded scatterer mounted on a substrate, and
investigate the contribution of different asymp-
totic terms in the far-field functional. A closed
form representation is given in term of both vol-
ume and boundary integrals. When finite ele-
ment methods are used to solve Maxwell’s equa-
tions approximately, the volume based expres-
sion is more accurate than the boundary inte-
gral. We confirmed the validity of our results by
performing several numerical experiments and
compared them with other numerical and ex-
perimental results.

Keywords: far-field mapping, asymptotic anal-
ysis, scattering, substrate.

1 Introduction

In many electromagnetic scattering problems,
the key quantity of concern is the radiation pat-
tern at far distances. However, numerical meth-
ods like Finite Elements or Finite Differences
provide the solution to Maxwell’s equations within
some finite computational domain.
Field values at far distances can be obtained us-
ing a post-processing procedure called near-field
to far-field mapping. The mapping is a linear
operator on the near-field solution. Formulas
for far-field calculations for structures in free
space are well known. However, for structures
located above a substrate, the calculations are
more challenging [1, 2].
We present an asymptotic analysis for outgo-
ing electromagnetic waves and derive a closed
form expression for the field of a dipole over a
substrate at far distances. Then, far-field func-
tionals are stated in terms of a boundary inte-
gral over a surface surrounding the scatterer.
Since boundary integrals are not well-defined
on the natural variational space, we reformu-
late the far-field mapping in terms of a volume
integral.

2 Theory

Electromagnetic field components can be rep-
resented in terms of vector and scalar poten-
tials.The vector potential is the solution of the
vector Helmholtz equation [3, Section 2.2]. In
Cartesian coordinates, the vector Helmholtz
equation can be decomposed into three scalar
Helmholtz equations. The Green’s function for
scalar Helmholtz equation g0(r, r′) at point r =
(x, y, z) is obtained by considering a point source
at r′ = (x′, y′, z′)

∆g0(r, r′) + k2 g0(r, r′) = δ(r− r′) (1)

where k is the wave number.
The solution of (1) in free space can be ex-
panded in terms of plane waves and cylindri-
cal waves using Weyl and Sommerfeld identities,
respectively. In the presence of a substrate, re-
flected and transmitted waves must be added to
the expansions.
The asymptotic analysis of improper radiation
integrals in the complex plane consists of exam-
ining following additive contributions:

• Saddle point contribution
The stationary phase method is used to
derive it [4].

• Critical points contribution
There are three types of critical points:

– branch point singularity

– pole singularity

– integration end points.

The far-field asymptotics of each contri-
bution can be determined using the method
of steepest descent [4].

We analyze each of these contributions asymp-
totically and show that [3, Section 3]

• The saddle point contribution gs(r, r
′) in

the presence of a substrate comprises a
direct wave, reflected wave, and transmit-
ted wave. gs(r, r

′) decays according to 1
r

(r = |r|) for r →∞.
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• The branch point contribution decays ac-
cording to 1

r2
for r →∞.

• The pole contribution plays a role only
under the condition that the substrate is
highly lossy and the observation point is
located on the substrate. Under these con-
ditions, a term with decay rate of 1√

r
oc-

curs for r →∞. This term resembles sur-
face waves. However, investigating other
terms in the final formula reveals that at
far distances the pole contribution does
not play any significant role due to fast
exponential decays.

• No contribution arises from the end point
at far distances.

As soon as we obtain the asymptotic form of
the Green’s function at r →∞, we can use the
Huygens principle to derive field values for scat-
tering problems at far distances [1].
Yet, the boundary integrals, which are tradi-
tionally used to calculate the far-field pattern,
are not well-defined on the natural variational
space. We reformulate the far-field mapping in
terms of a volume integral

E∞(r̂) · ˆ̀=

∫
Ωf

∇r′ ×E(r′)·

∇r′ ×
(

Ψ(r′)G∞(r, r′, ˆ̀)
)

−
∫

Ωf

∇r′ ×G∞(r, r′, ˆ̀)·

∇r′ ×
(
Ψ(r′)E(r′)

)
dr′

(2)
where E∞(r̂) is the far-field pattern and ˆ̀ is the
direction of the observed field. G∞(r, r′, ˆ̀) =
g0(r, r′)ˆ̀ as r →∞. Ωf is a subregion between
two closed path Γi and Γo around the scatterer
and Ψ(r′) ∈ H1(Ωf ) is a cut-off function such
that

Ψ(r′)|Γi ≡ 1 , and Ψ(r′)|Γ0 ≡ 0 (3)

3 Numerical results

We analyze the plasmon resonances of gold
nanoparticles (NP) in the presence of a glass
substrate. The far-field pattern is calculated
within a finite aperture and compared with op-
tical measurements reported in [5]. The NPs
are elliptical gold cylinders. The Three princi-
pal axes of the cylinder are a, b, and h where a
and b are in-plane axes and h is the height of
the NP. λa is the resonance frequency of the NP

when the incident electric field is parallel to the
a axis. Figure 1 shows how λa depends on the
size of a axis when b and h are kept constant.
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Figure 1: Dependence of the resonance fre-
quency λa on the size of principle axis a.
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Figure 1: Schematic

In the talk we consider prop-
agation of waves across vari-
ous star-shaped, not necessar-
ily convex, interfaces and inho-
mogeneous media. We develop
numerical approach based on
Calderon’s operators and the
Difference Potentials Method
[1]. Our methodology pro-
vides high order accuracy and
at the same time employs only
simple structured grids, e.g.,
Cartesian or polar, regardless
of the shape of the interfaces
or external boundaries. There-
fore the computational com-
plexity of the developed al-
gorithms is that of a finite-
difference schemes on a simple
grid. We will illustrate the ac-
curacy and robustness of devel-
oped methods on several nu-
merical tests in 2D.

Keywords: Difference potentials, Boundary pro-
jections, Calderon’s operators, Curvilinear / non-
conforming boundaries / interfaces on regular
grids, Variable coefficients, High order accuracy,
Exterior problems,

We consider high order numerical solution of
the Helmholtz equation for the domains where
the interfaces do not necessarily conform to the
mesh. The general formulation involves a ge-
ometrically large region of space separated by
several arbitrarily shaped interfaces. The mate-
rial properties are assumed smooth between the
interfaces, whereas at the interfaces they may
undergo jumps. Examples include scattering
about complex shapes (see Figure 1) and bodies
with multiple layers or several (non-homogeneous)
media.

Smooth, but not constant, ma-
terial characteristics lead to
variable coefficient extensions
to the wave number in the
Helmholtz equation. Due to
pollution errors, it is desirable
that the solution be approxi-
mated with high order accu-
racy, especially for high fre-
quencies. However, the ex-
istence of interfaces typically
degrades the accuracy of the
scheme.

We focus on a scalar mono-
chromatic wave field, or equiv-
alently, acoustic propagation in
the frequency domain. Our
goal is to guarantee that the
method for solving this class
of problems will provide high
order accuracy notwithstand-
ing the presence of interfaces.
It should match the geomet-
ric flexibility of boundary inte-

gral methods, yet without singular integrals and
without being limited to constant coefficients.
At the same time, it should be efficient while
not being constrained to regular geometries.

Our new method uses only simple structured
grids, e.g., Cartesian or polar, regardless of the
shape of the interface. In the regions of smooth-
ness, it employs high order accurate finite differ-
ences schemes on compact stencils. The inter-
faces that are not aligned with the grid, which
are usually a major difficulty, are treated by
Calderon’s operators and the method of differ-
ence potentials [1]. This involves no loss of ac-
curacy regardless of the shape of the interface
(as long as it is smooth).

Calderon’s projections, unlike in the classi-
cal potential theory, reduce the differential equa-
tion from the domain to the boundary irrespec-
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tive of the specific boundary value problem (e.g.,
Dirichlet or Neumann). Moreover, the discrete
counterparts of Calderon’s operators doesn’t ap-
proximate singular integrals, they are built by
solving discretized PDEs on a regular grid. The
approximation of the continuous potential by
the difference potential is then established [1].
The boundary representations inherit the ac-
curacy of the core scheme, and high order ac-
curacy is achieved on regular grids for curved
boundaries with no adverse effects due to stair-
casing. Variable coefficients present no difficul-
ties and the reduced boundary problem is al-
ways well-posed as long as the original formu-
lation on the domain is well-posed. The pro-
cedure is automatic, and the discrete equations
are fully characterized in algorithmic terms. Fi-
nally, the extension from interior domains to
problems on unbounded domains can be han-
dled in a natural way.

Let Lj be the Helmholtz operator Lj = ∆+
k2j on the domain Dj , where j ∈ 0, 1. Consider
the following problem:{

L1u = 0, x ∈ D1,
L0u = 0, x ∈ D0 = Rn \D1,

(1)

with the geometry depicted in Figure 1, driven
by a given impinging wave u(imp). For unique-
ness we require the Sommerfeld radiation con-
dition at infinity. We also require that the so-
lution and its first normal derivative be contin-
uous across the interface.

We split problem (1) into two distinct aux-
iliary problems (AP) according to the sub-do-
mains, see Figure 1 external (top) and internal
(bottom) subproblems. The condition on Γ de-
pends on the solution on each side of the inter-
face which is not known ahead of time. Hence,
finding the solution and satisfying the interface
condition has to be done simultaneously. We
implement the interface condition using an ex-
pansion in some basis, e.g., Fourier, so the prob-
lem is reduced to finding the coefficients of the
expansion of the solution u on an interface Γ.

The analytical interface Γ is transformed to
a grid interface γ using the intersection of the
unification of stencils centered at D1 with the
unification of those centered in D0. To guaran-
tee nth order accuracy of the numerical solver
to be the accuracy of the overall solution one
transforms the basis functions from Γ to the
grid boundary γ using a Taylor expansion of

order n + 1, see [3]. The truncation of the in-
finite series in the basis can be experimentally
chosen to fit the desired accuracy.

Figure 2: Results.

Preliminary numerical results include the so-
lution of a transmission/scattering problem for
D1 being a submarine-like parametric surface,
k0 = 10 and k1 =20e−10r6(r−r0)6 for r 6 r0 and
k= k0 for r > r0, where r0 = 1.6. The incident
wave is a plane wave impinging at 40◦. The inte-
rior AP is solved on a rectangular grid, while the
exterior AP problem is solved using polar coor-
dinates. In Figure 2 (right), we are showing the
absolute value of the solution, and in Figure 2
(left), we are showing the grid convergence on
a logarithmic scale. The latter clearly demon-
strates fourth order accuracy and thus confirms
the theoretical design properties of the method.
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Volume integral method for solving scattering problems from locally perturbed
periodic layers
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Abstract

We investigate the scattering problem for the
case of locally perturbed periodic layer in R2.
Using Floquet-Bloch transform in x1−direction
we reformulate this scattering problem as an
equivalent system of coupled volume integral
equations. Using periodization in the x2−direction
we apply a spectral method to discretize the
problem and compute a numerical approxima-
tion of the solution. The convergence of this
method is established and numerical validating
results are conducted.

Keywords: Floquet-Bloch transform, volume
integral formulation, spectral discretization

1 Introduction

The scattering problem that we consider is de-
fined as: Find u ∈ H1(R2),

∆u+ k2nu = f in R2, (1)

where n = np outside a compact set, np ∈
L∞(R2) is a periodic function with respect to
x1−variable with period L, f ∈ L2(R2) is a
compactly supported function and the wave num-
ber k2 is complex with positive imaginary part.
Some notations will be useful in the sequel: Ωm :=
[(m− 1

2)L, (m+ 1
2)L]× R, Hs

ξ (Ω0) is closure of

C∞ ξ−quasi periodic functions in R2 with re-
spect to the Hs(Ω0) norm. Further assume that
supp(n − np) ∪ supp(f) ⊂ Ω0 := R × [−1

2 ,
1
2 ].

Then, after applying the Floquet-Bloch trans-
form to (1) and observing that the Floquet-
Bloch transform of n − np and f coincide with
n − np and f (respectively) in Ω0, we obtain
the coupled quasi periodic equations: Find ũ ∈
L2([− π

L ,
π
L ], H1

ξ (Ω0)) such that:{
∆ũ(·; ξ) + k2npũ(·; ξ) + k2(n− np)u = f in Ω0

u = L
2π

∫ π
L

− π
L
ũ(·; ξ)dξ

(2)
Thanks to elliptic regularity ũ(·; ξ) also belongs
to H2

ξ (Ω0) and u(·) extended to R2 by:

u(x1, x2) :=
L

2π

∫ π
L

− π
L

ũ(x1 −mL, x2; ξ)eimξLdξ

∀m ∈ Z, (x1, x2) ∈ Ωm is solution to (1).

2 Periodized volume integral equation

We first consider the periodic problem with-
out perturbation (n = np). Then problem (2)
is equivalent to find solution uξ := u(·, ξ) ∈
H1
ξ (Ω0) to:

∆uξ + k2npuξ = f in Ω0. (3)

Let h > 0 such that np−1 = f = 0 in {|x2| > h}
and set Ωh

0 := [−L
2 ,

L
2 ] × [−h, h]. Let Gξ(·) ∈

L2(R2) be the Green’s function to the ξ−quasi-
periodic Helmholtz equation in R2 and define
the volume potential

Vξf(·) =

∫
Ωh0

Gξ(· − y)f(y)dy, x ∈ R2. (4)

Then Vξ is bounded from L2(Ωh
0) into H2

ξ (Ω0)

and for all f ∈ L2(Ωh
0), the potential u := Vξf ⊂

H2
ξ (Ω0) is the unique ξ−quasi-periodic solution

to: ∆u+ k2u = −f in Ω0. Solving (3) is equiv-
alent to solving the following volume integral
equation in L2(Ωh

0):

uξ = k2Vξ((np − 1)uξ)− Vξfξ. (5)

To find a numerical solution using spectral el-
ement method as in [2], we consider GRξ which
is ξ−quasi periodic in x1 and 2R−periodic in
x2, R > 2h such that GRξ (x) = Gξ(x), ∀x =
(x1, x2) ∈ R × (−R,R), then define the peri-
odized volume potential Vξ,per as in (4) with
Gξ replaced with GRξ . The solution to the peri-

odized integral equation in L2(ΩR
0 ), where ΩR

0 :=
[−L

2 ,
L
2 ]× [−R,R]:

uξ = k2Vξ,per((np − 1)uξ)− Vξ,perfξ (6)

coincides with the solution to (5) in Ωh
0 . Define

the trigonometric orthogonal basis
{ϕjξ := 1√

LR
exp

(
i
(
ξ + 2π

L j1
)
x1 + i πRj2x2

)
, j =

(j1, j2) ∈ Z2} and the finite dimensional space
T Nξ := span{ϕjξ, j ∈ Z2

N}, where Z2
N := {j ∈

Z2| − N1
2 + 1 ≤ j1 ≤ N1

2 ,−
N2
2 + 1 ≤ j2 ≤ N2

2 }.
Then a numerical approximation uNξ ∈ T Nξ to
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problem (6) can be computed using spectral el-
ement discretization and FFT based-iterative
scheme by solving:〈

uNξ − k2Vξ,per
(
(np − 1)uNξ

)
, vNξ

〉
L2(ΩR0 )

=〈
−Vξ,pergξ, vNξ

〉
L2(ΩR0 )

, ∀vNξ ∈ T Nξ .

Theorem 1 There exists an integer N0 > 0
and a positive constant C > 0 that are inde-
pendent of ξ such that, ∀N > N0:

‖uξ − uNξ ‖L2(ΩR0 ) ≤ C inf
vNξ ∈T

N
ξ

‖uξ − vNξ ‖L2(ΩR0 ).

3 Discretization of the locally perturbed
periodic problem

We first consider the discretization of problem
(2) with respect to the Floquet-Bloch variable
using M sub-intervals of size ∆ξ = 2π

ML . Defin-
ing ξj = j∆, ξ j = −M

2 · · · M
2 , we obtain

the following system of coupled equations: Find
uξj ,M ∈ H1(Ωh

0), j = −M
2 + 1 · · · M2 such that:

uξj ,M − k2Vξj ((np − 1)uξj ,M )−
k2Vξj ((n− np)uM ) = −Vξj (f) in L2(ΩR

0 ),

uM = 1
M

∑M
2

j=−M
2

+1
uξj ,M .

(7)
One can prove that extending uξj ,M by ξj− quasi
periodicity to R2 defines through the second
equation in (7) a function uM ∈ H1(ΩM ) which
is ML periodic and satisfies equation (1) in ΩM .
Then using the exponential decay of the solu-
tion with respect to |x| (see for instance [1]), we
have the following theorem.

Theorem 2 There exists a constant C > 0 in-
dependent of M and τ > 0 such that

‖u− uM‖H1(ΩM ) ≤ Ce−τML‖eτ |x|u‖H1(ΩM ).
(8)

Now we discretize the M coupled problems in
space using spectral element method as in Sec-
tion 2, i.e., find uNξj ,M ∈ T

N
ξj ,M

solution to:

〈
uNξj ,M − k

2Vξj ,per

(
(np − 1)uNξj ,M

)
, vNξj ,M

〉
L2

−k2
〈
Vξj ,per

(
(n− np)(∆ξ

∑
l u

N
ξl,M

)
, vNξj ,M

〉
L2

=
〈
−Vξ,pergξ, vNξ

〉
L2
, ∀vNξ ∈ T Nξ ,

uMN := 1
M

∑M
2

l=−M
2

+1
uNξl,M ,

(9)

where T Nξj ,M is defined similarly to T Nξ . Then,

one can also prove (with involved calculations)
that extending uNξj ,M by ξj− quasi periodicity

to R2 defines through the second equation of
(9) a function uNM which is ML periodic. We
then prove:

Theorem 3 For allM > 0, there exists N0(M) ∈
N and C > 0 independent ofM and N such that
∀N = (N1, N2), N1, N2 > N0:

‖uM − uNM‖L2(ΩRM ) ≤ C(
1

MN1
+

1

N2
)‖f‖L2(Ωh0 ).

4 A numerical example

We just present here a preliminary validating
example by comparing the solution obtained by
our algorithm (Fig. (b)) with the solution ob-
tained by the Finite Element software FreeFem
(Fig. (a)).

The index of refraction in-
side the squares is n = 3,
k = 1 + 0.1i, L = 2π. We
used M = 14, N1 = 28 and
N2 = 29. The incident field
is a point source at x0 =
(0, 5π). Mesh for FreeFem

solution

(a) (b)
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Improvement of the Foldy-Lax model for three dimensional multiple scattering by small
obstacles.
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Abstract

This paper deals with multiple scattering of time-
harmonic scalar wave by obstacles whose size is
small compared to the wavelength. One way to
tackle this problem is to use the heuristic Foldy-
Lax model which allows to recast the problem as
a linear system. We compute an asymptotic ex-
pansion by means of matched asymptotic tech-
niques, with respect to the size of the objects,
that gives a justification of this model. Finally,
it is shown how this model can be improved.

Keywords: Multi-scattering, Foldy-Lax model.

1 Introduction

Let Oj be N obstacles, with Lipshitz boundary,
whose characteristic size is a small positive adi-
mensional parameter δ. The multiple scattering
problem reads as follow:

(∆ + κ2)uδ = 0 in R3 \ ∪Nj=1Oj ,
uδ = 0 on ∂Oj ,(
∂|x| − iκ

)
(uδ − uinc) = o(1/|x|),

(1)

where uinc(x) = exp (iκd · x/|x|) is a plane
wave propagating in the direction of the unit
vector d and κ is the wavenumber.

The Foldy-Lax model (see [4]) consists in
replacing uδ by a superposition of uinc and N
unknown monopoles located at a point cj ∈ Oj
called the center of phase:

uFLδ (x) = uinc(x) +
∑N

l=1A
(l)h0(κ|x− cl|),

A(j) = iκδσ
(j)
0 (uinc(cj) +

∑
l 6=j A

(l)h0(κ|cj − cl|)),
(2)

where σ
(j)
0 are the so-called scattering coefficient

and hn are the spherical Hankel functions.
The justification of this model has been done

using Fourier series in 2D [2], with integral equa-
tion in 3D [5] and an extended Foldy-Lax model
including dipoles and self-interaction effects can
be found in [3]. The main drawback of these
works is that the error estimates are based on

a 1st-order asymptotic expansion. The multi-
ple scattering effects are thus neglected so only
first-order Born approximations are involved and
there is no gain solving Foldy’s system.

In this paper, we compute a full asymptotic
expansion of the multiple scattering problem
and next propose an improvement of (2). This
allows to set the cj in a non arbitrary fashion
and also introduce self interaction terms. Mul-
tiple interactions are then really taken into ac-
count leading to an additional order of conver-
gence.

2 Matched asymptotic expansion

To compute an asymptotic expansion of uδ, we
use the method of matched asymptotic expan-
sions [1]. An outer expansion describing the
field outside all the small obstacles is then de-
fined

uδ(x) = uinc(x)+δu1(x)+δ2u2(x)+· · · , x 6= cj .

One also needs N inner expansions giving the
behavior in the vicinity of each Oj . They de-
pend on the fast variable X = (x − cj)/δ and
are found through the identification

uδ(cj + δX) = Π0(X) + δΠ1(X) + · · · .

Note that the inner fields Πj are defined on the

exterior of a scaled obstacle Ôj . The match-
ing conditions are obtained according to the
Van Dicke principle saying that the inner and
outer expansions are related to the same func-
tion. The above expansions are determined by
replacing them in (1) and identifing terms hav-
ing same power of δ.

Theorem 1 ( [1] p.32) The matched asymp-
totic expansion exists at any order. Let U be a
bounded domain such that infj dist(cj ,U) = γ >
0, then one has the optimal error estimates

‖uδ − uinc −
k∑

n=1

un‖H1(U) ≤ Cδk+1.
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3 Improvement of the Foldy-Lax model

Foldy’s model and its improvement are based on
the explicit determination of the second order
outer expansion. The latter is obtained with
the solution to the problems

∆Φ(j) = 0, in Ôj
c
,

Φ(j) = 0, on ∂Ôj
c
,

Φ(j)(X) = 1 + o(1)


∆Λ(j) = 0, in Ôj

c
,

Λ(j) = 0, on ∂Ôj
c
,

Λ(j)(X) = X + o(1).

Using integral representation together with asymp-
totic expansion of the Laplace Green kernel, one
can compute the terms in the expansions

Φ(j)(X) = 1 +
σ
(j)
0
|X| +

σ
(j)
1
|X|3 + O(|X|−3),

Λ(j)(X) = X +
S

(j)
0
|X| + O(|X|−2).

The first outer coefficient is then given by a su-
perposition of monopoles located at cj [1] p.39

u1(x) =
N∑
j=1

iκσ
(j)
0 uinc(cj)h0(κ|x− cj |).

uinc + δu1 then coincides with the first order
expansion of uFLδ , see (2). From theorem 1, we
infer the justification of the usual Foldy’s model
with error O(δ2) .

To improve the Foldy’s model, one needs u2,
see [1] p.43. It is given by u2(x) =∑N

j=1[iκ
2u0 (cj)h

(1)
1 (κ |x− cj |)σ(j)

1 ·
x−cj
|x−cj |+

iκσ
(j)
0

 ∑N
`=1
` 6=j

iκσ
(`)
0 u0 (c`)h

(1)
0 (κδ |cj − c`|)

+iκσ
(j)
0 u0 (cj) + ∇u0 (cj) · S(j)

0


×h(1)0 (κ |x− cj |)].

The main idea is to consider a correction of
the center of phase, instead of chosing arbitrary
cj , hence replacing them by

ccorj = cj +
δ

σ
(j)
0

σ
(j)
1 .

Green’s identity gives that σ
(j)
0 6= 0 so ccorj are

well-defined. With ccorj , one gets ( [1] p.37)

σ
(j)
0 unchanged, σ

(j)
1 = 0 and S

(j)
0 = 0. (3)

The improved Foldy-Lax model is then

uIFLδ (x) = uinc(x) +
N∑
l=1

A(l)h0(κ|x− ccorl |),

A(j) =
iκδσ

(j)
0

1−iκδσ(j)
0

×
(
uinc(c

cor
j ) +

∑
l 6=j A

(l)h0(κ|ccorj − ccorl |)
)
,

Using (3), we see that the 2nd order expansion
of the uIFLδ coicides with uinc +δu1 +δ2u2. The-
orem 1 then gives that the error of the improved
Foldy’s model is O(δ3).
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Locally Implicit Time Integration for Linear Maxwell’s Equations
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Abstract

An attractive feature of discontinuous Galerkin
(DG) spatial discretizations of the Maxwell’s
equations is their ability to handle complex ge-
ometries by using unstructured, possibly locally
refined meshes. Furthermore, DG methods lead
to block diagonal mass matrices which in combi-
nation with an explicit time integrator allow for
a fully explicit scheme. However, such explicit
approaches require a constraint on the time step
size related to the diameter of the smallest mesh
element to ensure stability. A natural way to
overcome this restriction is to use implicit time
integrators. The drawback of such methods is
that they require the solution of a large linear
system in each time step.

If only a small part of the grid contains tiny
elements, the combination of the both upper
approaches provides a promising alternative for
the time integration. These so called locally im-
plicit methods have been considered in [1,2], for
instance.

In this talk we will present an error analy-
sis for the full discretization of locally implicit
methods for linear Maxwell’s equations based
on a variational formulation and energy tech-
niques.

Keywords: Maxwell equations, locally im-
plicit schemes, error analysis, full discretization,
discontinuous Galerkin methods

1 Linear Maxwell’s Equations

The Maxwell’s equations for linear isotropic ma-
terials are given by

∂t(µH) =− curlE, div(µH) =0,

∂t(εE) =curlH− J, div(εE) =ρ,
(1)

for x ∈ Ω, t > 0. Here, E(t, x), H(t, x) ∈ R3 de-
note the electric and magnetic fields, µ(x) and
ε(x) ∈ R denote the electric permittivity and
magnetic permeability, respectively. Moreover,
J(t, x) ∈ R3 is the electric current density, and
ρ(t, x) ∈ R is the electric charge density. These
equations are complemented with initial condi-

tions H0(x), E0(x) ∈ R3 and metallic boundary
conditions (n×E)|∂Ω = 0.

2 Space Discretization

We discretize (1) in space using the DG method
with central fluxes and with polynomial order k.
This leads to the semidiscrete problem

∂tHh =−CEEh,

∂tEh =CHHh − Jh,
(2)

where CE and CH denote the discretized curl
operators. It is well-known that these opera-
tors are adjoint w.r.t. the weighted L2(Ω)-inner
products with weights ε and µ, i.e.

(CHHh,Eh)ε = (Hh,CEEh)µ. (3)

3 Time Discretization

In order to obtain a fully discrete scheme we
further have to integrate (2) in time. Employ-
ing an explicit time integration scheme, e.g., the
leap frog scheme

H
n+1/2
h −Hn

h = − τ
2CEE

n
h,

En+1
h −Enh = τCHH

n+1/2
h − τ

2 (Jn+1
h + Jnh),

Hn+1
h −H

n+1/2
h = − τ

2CEE
n+1
h ,

requires a severe restriction on the time step
size τ in order to guarantee stability. In fact,
we cannot use step sizes larger than τ ∼ hmin,
where hmin denotes the diameter of the smallest
mesh element (CFL condition).

This constraint can be overcome by using
an implicit scheme, for instance the Crank–
Nicolson method

H
n+1/2
h −Hn

h =− τ
2CEE

n
h,

En+1
h −Enh = τ

2CH(Hn+1
h + Hn

h)

− τ
2 (Jn+1

h + Jnh),

Hn+1
h −H

n+1/2
h =− τ

2CEE
n+1
h .

However, this requires the solution of a large
linear system for En+1

h in each time step.
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Figure 1: Locally refined mesh. The dark orange elements indicate the fine part of the mesh, the light
orange elements their neighbors. Orange elements are treated implicitly, white elements explicitly.

4 Locally Implicit Scheme

We consider the case where the spatial mesh
contains only a small number of tiny elements,
see Figure 1 for an example. Unfortunately,
even one single tiny element requires using very
small time steps for the time integration of
an explicit scheme. In [1] Verwer suggested
to tackle this problem by blending an explicit
with an implicit time integration method. In
fact, he proposed to apply the Crank–Nicolson
method on the tiny elements and to use the
leap frog scheme on the coarse elements. His
work is based on a matrix formulation of the
discretization (treating the problem as a sys-
tem of ordinary differential equations) and not
on a variational approach. Hence it also did
not consider meshes or space discretization er-
rors, which turns out to be indispensable for the
error analysis of the fully discrete scheme.

In order to realize Verwer’s idea in the con-
text of DG methods we use indicator functions
χi and χe to assign the mesh elements to the
implicitly and explicitly treated parts, respec-
tively. It turns out that besides the small mesh
elements we also have to treat their direct neigh-
bors implicitly, see Figure 1, where the light or-
ange elements belong to the coarse mesh but are
treated implicitly.

We define discretized split operators by

Ci
H := CH ◦ χi, Ce

H := CH ◦ χe,
Ci
E := χi ◦CE , Ce

E := χe ◦CE .

This decomposition was done such that CH =
Ce
H + Ci

H , CE = Ce
E + Ci

E and that (3) is
inherited, i.e.

(Cb
HHh,Eh)ε = (Hh,C

b
EEh)µ, b ∈ {e, i}.

The resulting locally implicit time integrator
reads

H
n+1/2
h −Hn

h = − τ
2CEE

n
h,

En+1
h −Enh = τ

2C
i
H(Hn+1

h + Hn
h)

+ τCe
HH

n+1/2
h − τ

2 (Jn+1
h + Jnh),

Hn+1
h −H

n+1/2
h =− τ

2CEE
n+1
h .

This scheme can be implemented very effi-
ciently, see [1, 2] for numerical examples.

Our main result is the following.

Theorem 1 The locally implicit method is sta-
ble under a CFL condition depending on the
coarse mesh only. It converges of order k in
space and two in time with constants being in-
dependent of the mesh sizes of the fine mesh.

The proof is based on an energy technique
[3] and the properties of the splitted operators.
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Abstract

A family of fourth order locally implicit schemes
is presented as a special case of fourth order cou-
pled implicit schemes for linear wave equations.
The domain of interest is decomposed into sev-
eral regions where different (explicit or implicit)
fourth order time discretization are used. The
coupling is based on a Lagrangian formulation
on the boundaries between the several non con-
forming meshes of the regions. Fourth order
accuracy follows from global energy identities.
Numerical results in 1d and 2d illustrate the
good behavior of the schemes and their poten-
tial for the simulation of realistic highly hetero-
geneous media or strongly refined geometries,
for which using everywhere an explicit scheme
can be extremely penalizing. Fourth order ac-
curacy reduces the numerical dispersion inher-
ent to implicit methods used with a large time
step, and makes this family of schemes attrac-
tive compared to classical approaches.

Keywords: High-order numerical methods, Time
discretization, Locally implicit schemes.

1 Continuous system

We want to solve for time t > 0, the system
(closed with Neumann homogeneous boundary
conditions):

∂2
t u0 −∇ · c2(x)∇u0 = s0 in Ω0, (1a)

c2(x)∇u0 · n0 = λ on Γ, (1b)

∂2
t u1 −∇ · c2(x)∇u1 = s1 in Ω1, (1c)

c2(x)∇u1 · n1 = −λ on Γ, (1d)

u0 = u1 on Γ (1e)

in a domain Ω composed by disjoint sets Ω =
Ω0 ∪ Ω1 separated by Γ = Ω0 ∩ Ω1. s0 and s1

are given source terms, and c(x) > c0 > 0 is
the inhomogeneous velocity of the waves. Any
solution to (1) satisfies the energy identity:

dE01

dt
=

∫
Ω0

s0 ∂tu0 +

∫
Ω1

s1 ∂tu1, where

E01 =
1

2
‖∂tu0‖2L2(Ω0) +

1

2
‖∂tu1‖2L2(Ω1)

+
1

2
‖c∇u0‖2L2(Ω0) +

1

2
‖c∇u1‖2L2(Ω1) (2)

2 Semi discrete system

We consider spatial meshes of Ω0 and Ω1 upon
which are based finite dimensional finite ele-
ment spaces: Vh,0 ⊂ H1(Ω0), Vh,1 ⊂ H1(Ω1)
and Γh ⊂ H−1/2(Γ). One have leeway in the
choice of (Vh,0,Vh,1) after which Γh must be cho-
sen so that an inf-sup type condition is satisfied,
see [1, 3, 4]. (Ũh,0, Ũh,1, Λ̃h) is the solution of:
d2
tMh,0Ũh,0 +Kh,0Ũh,0 −tCh,0Λ̃h = Mh,0S̃h,0(3a)

d2
tMh,1Ũh,1 +Kh,1Ũh,1 +tCh,1Λ̃h = Mh,1S̃h,1(3b)

Ch,0 Ũh,0 = Ch,1 Ũh,1 (3c)

A semi discrete energy identity can be obtained.

dE01,h

dt
= Mh,0S̃h,0 · dtŨh,0 +Mh,1S̃h,1 · dtŨh,1,

where

E01,h =
1

2
‖dtŨh,0‖2Mh,0

+
1

2
‖dtŨh,1‖2Mh,1

+
1

2
‖Ũh,0‖2Kh,0

+
1

2
‖Ũh,1‖2Kh,1

(4)

where ‖X‖2M = MX · X for any nonnegative
matrix M . In the following, Ih will denote the
identity matrix.

3 Discrete system

The proposed numerical discretization is based
on the following definitions:

D2
∆tU

n
h :=

(
Un+1
h − 2Unh + Un−1

h

)
/∆t2

{Uh}nθ := θ Un+1
h + (1− 2θ)Unh + θ Un−1

h

The consistency analysis of the fourth order fam-
ily of schemes [2] applied to each equation of
system (3) instigates the following scheme:
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Mh,0D
2
∆tU

n
h,0 +Kh,0{Uh,0}nθ0 −

tCh,0Πn
h = Mh,0 S

n
h,0

+∆t2α0Kh,0M
−1
h,0

[
−Kh,0{Uh,0}nϕ0

+ tCh,0Πn
h

]
(5a)

Mh,1D
2
∆tU

n
h,1 +Kh,1{Uh,1}nθ1 + tCh,1Πn

h = Mh,1 S
n
h,1

+∆t2α1Kh,1M
−1
h,1

[
−Kh,1{Uh,1}nϕ1

− tCh,1Πn
h

]
(5b)

Ch,0
Un+1
h,0 − U

n−1
h,0

2∆t
− Ch,1

Un+1
h,1 − U

n−1
h,1

2∆t
= 0 (5c)

where αi = θi − 1/12. Any solution to (5) sat-
isfies the energy identity:

En+1/2
01,4,h − E

n−1/2
01,4,h

∆t
= Ĩ−1

h,0 Mh,0 S
n
h,0·

Un+1
h,0 − U

n−1
h,0

2∆t

+ Ĩ−1
h,1 Mh,1 S

n
h,1 ·

Un+1
h,1 − U

n−1
h,1

2∆t
,

where the discrete energy reads

En+1/2
01,4,h =

1

2

∥∥∥∥∥U
n+1
h,0 − U

n
h,0

∆t

∥∥∥∥∥
2

M̂h,0

+
1

2

∥∥∥∥∥U
n+1
h,1 − U

n
h,1

∆t

∥∥∥∥∥
2

M̂h,1

+
1

2

∥∥∥∥∥U
n+1
h,0 + Unh,0

2

∥∥∥∥∥
2

Kh,0

+
1

2

∥∥∥∥∥U
n+1
h,1 + Unh,1

2

∥∥∥∥∥
2

Kh,1

where the modified mass matrices M̂h,i are de-

fined by M̂h,i = Ĩ−1
h,i M̃h,i where

Ĩh,i = Ih,i + ∆t2
(
θi −

1

12

)
Kh,iM

−1
h,i

M̃h,i = Mh,i + ∆t2
(
θi −

1

4

)
Kh,i

+∆t4
(
θi −

1

12

)(
ϕi −

1

4

)
Kh,iM

−1
h,iKh,i

The positivity of the energy can be proven un-
der standard CFL condition that depend on the
parameters (θi, ϕi). Despite the non standard
form of this energy, stability in L2-norm can be
proved in the case θi ≥ 1/4 and ϕi ≥ 1/4. L2-
Stability in the other cases is not proven yet but
show good numerical behavior.
A 1d numerical experiment is performed where
the segment [0, 1] is cut in two intervals Ω0 =
[0, 0.5] and Ω1 = [0.5, 1]. Ω0 and Ω1 are respec-
tively divided into 7 and 13 elements. Sixth
order spectral elements are implemented. A
fourth order explicit scheme is used on Ω0 (θ0 =
ϕ0 = 0) while an unconditionally stable implicit
scheme is used on Ω1 (θ1 = ϕ1 = 1/4). A gaus-
sian initial condition is set on the left interval
and crosses the middle point around time 0.3.

Fig. 1 shows that the energy is preserved up
to machine precision. Fig. 2 shows that the
coupling of second order implicit and explicit
schemes only provides second order accuracy (as
expected), while our scheme provides fourth or-
der accuracy.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−15

−10

−5

0

x 10
−15

time (s)

re
la

ti
ve

 e
n

er
g

y 
d

ev
ia

ti
o

n

Figure 1: Relative energy deviation
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Figure 2: Relative L2 error with the analytical
solution as the time step tends to zero.

Numerical illustrations in 2D as well as details
about stability and consistency of scheme (5)
will be presented at the oral session.
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Runge-Kutta type Explicit Local Time-Stepping for Electromagnetics
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Abstract

We propose high-order local time-stepping (LTS)
schemes based on explicit Runge-Kutta (RK)
methods for the simulation of electromagnetic
waves. By using smaller time-steps precisely
were the small elements in the mesh are located,
these methods overcome the severe stability re-
strictions caused by local mesh refinement with-
out sacrificing the explicitness, accuracy or effi-
ciency of the original RK method.

Keywords: high-order methods, explicit time
integration, local time-stepping, multirate meth-
ods, Runge-Kutta methods

1 Introduction

We consider Maxwell’s equations

ε
∂

∂t
E−∇×H + σE = j, (1)

µ
∂

∂t
H +∇×E = 0, (2)

in a linear isotropic medium. Here µ, ε and σ
denote the relative magnetic permeability, the
relative electric permittivity and the conductiv-
ity of the medium, respectively, while the source
term j corresponds to the applied current den-
sity. The spatial discretization of (1)-(2) with
standard edge finite elements (FE) with mass-
lumping or a discontinuous Galerkin (DG) me-
thod [5] leads to a system of ordinary differential
equations

y′(t) = By(t) + F(t), (3)

where the matrix B involves the inverse, M−1,
of the mass matrix M. Since M is essentially
diagonal, its inverse is explicitly known, and so
is B.

Standard explicit numerical methods for the
time integration of (3) include explicit Runge-
Kutta (RK) and Adams-Bashforth (AB) meth-
ods, whose time-step, ∆t, is dictated by the
smallest elements in the mesh. When mesh re-
finement is restricted to a small region, using
the small time-step ∆t on the entire computa-
tional domain is generally too high a price to
pay.

Various recent methods overcome that ge-
ometry induced stability restriction without loss
of accuracy by using either smaller time-steps or
an implicit scheme, but only where the small-
est elements in the mesh are located. Locally
implicit methods [1, 6] build on the long tra-
dition of hybrid implicit-explicit (IMEX) algo-
rithms. Unlike locally implicit schemes, multi-
step based LTS methods [2, 4] remain fully ex-
plicit.

2 Time Integration

Here we discuss LTS schemes based on RK meth-
ods. Starting from (3) with F = 0 for simplicity,
we first split the vector of unknowns y as

y(t) = (I−P)y(t) + Py(t)

= y[c](t) + y[f](t). (4)

In (4), the entries of the diagonal matrix P,
equal to zero or one, identify the unknowns as-
sociated with the locally refined regions, y[f];
the remaining ”coarse” are located in y[c].

Hence the exact solution of (3) is given by

y(tn + ξ∆t) = y(tn) +

∫ tn+ξ∆t

tn

By[c](t) dt

+

∫ tn+ξ∆t

tn

By[f](t) dt . (5)

To derive an LTS method that overcomes the
stringent stability conditions dictated by the
smallest elements in the mesh, we shall treat
the fine elements differently from the remaining
coarser elements. In doing so, we approximate
the first integral in (5) by the quadrature for-
mula associated with the RK scheme. In the
resulting expression, we approximate the (un-
known) values of y[c] at the quadrature points
by Taylor expansion. Differentiation then leads
to a modified differential equation, which is solved
numerically from tn to tn + ∆t by using a RK
method with local time-step ∆τ = ∆t/p; here,
p denotes the coarse to fine mesh aspect ratio.

In [3] we have proved that the LTS-RKs(p)
methods yield the same rate of convergence as
the underlying RKs scheme:
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Theorem 1 Starting from a standard explicit
RKs method of order k, the corresponding LTS-
RKs(p) scheme is k-th order accurate.

Theorem 2 For s = k = 2, 3, 4 the LTS-RKs(p)
scheme is convergent of order k.

3 Numerical Results

To illustrate the usefulness of LTS-RK methods,
we consider (1)-(2) in TM (transverse magnetic)
form in two spatial dimensions:

ε
∂Ez

∂t
−
(
∂Hy

∂x
− ∂Hx

∂y

)
+ σEz = j,

µ
∂Hx

∂t
+
∂Ez

∂y
= 0,

µ
∂Hy

∂t
− ∂Ez

∂x
= 0.

Next we let the spatial domain Ω be rectan-
gular of size [0, 3] × [0, 1] adjacent to a roof
mounted antenna of thickness 0.01 – see Figure
1. We consider homogeneous source data, PEC
boundary conditions, model parameters σ = 0,
µ = ε = 1 and a Gaussian pulse for Ez as initial
condition.

We use P3 nodal DG FEM [5] in space on
a triangular mesh which is highly refined near
the antenna, see Figure 1 (top). For the time
discretization, we choose the fourth-order LTS-
RK4 scheme. Thus, the numerical method is
fourth-order accurate both in space and time
with respect to the L2-norm. Since the typical
mesh size inside the refined region is about p =
7 times smaller than the mesh size in the sur-
rounding coarser region, we take p local time-
steps of size ∆τ = ∆t/p for every time-step ∆t.
In Figure 1 (bottom) we present a snapshot of
the electric field Ezh at time t = 0.75.
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Abstract

Locally refined meshes severely reduce the effi-
ciency of explicit Runge-Kutta (RK) methods
for numerical wave propagation, as the maxi-
mal time step is dictated by the smallest ele-
ments in the mesh. Local time-stepping (LTS)
methods circumvent this bottleneck caused by
a few small elements by taking small time-steps
precisely where the small elements are located.
However, when the locally refined region con-
tains a sub-region of even smaller elements, the
stability constraint on the local time-step again
becomes overly restrictive. To overcome the re-
peated bottleneck caused by hierarchical mesh
refinement, we propose multi-level local time-
stepping (MLTS) methods. Starting from clas-
sical or low-storage explicit RK methods, we de-
rive explicit MLTS methods of arbitrarily high
accuracy. The resulting time-integration schemes
retain the high accuracy, stability and efficiency
of the underlying RK methods.

Keywords: time-integration, Runge-Kutta meth-
ods, multi-level local time-stepping

1 Runge-Kutta based local time step-
ping

Consider the scalar damped wave equation,

utt + σut = ∇ ·
(
c2∇u

)
in Ω× (0, T ), (1)

u = 0 on ∂Ω× (0, T ) , (2)

where the damping coefficient σ = σ(x) is non-
negative and the speed of propagation c = c(x)
is piecewise smooth and strictly positive. When
solving (1)-(2) numerically, local mesh refine-
ment severely decreases the efficiency of explicit
time-integration schemes because of the overly
small time-step dictated by a few small elements.
Local time-stepping (LTS) methods overcome
that bottleneck by using smaller time-steps only
where the smallest elements are located. In
[1], explicit second-order LTS methods for (1)-
(2) were derived, which are based on the leap-
frog scheme. In the absence of damping, i.e.,

σ = 0, these LTS-schemes yield schemes of ar-
bitrarily high order by the modified equation
approach. However, when σ > 0, this approach
cannot readily be extended beyond order two.
To achieve arbitrarily high accuracy also when
damping is present, explicit LTS methods were
derived in [2], based on Adams-Bashforth multi-
step schemes.

Here, we consider explicit high-order LTS
schemes based on classical or low-storage Runge-
Kutta (RK) schemes [3]. In contrast to Adams-
Bashforth methods, RK methods are one-step
methods; hence they do not require a start-
ing procedure and easily accommodate adaptive
time-step selection. To facilitate also efficient
hierarchical mesh refinement, we propose multi-
level LTS-RK (MLTS-RK) methods, which per-
mit the appropriate time-step at each level of
mesh refinement.

2 Numerical experiments

To verify the accuracy and stability properties
of the MLTS-RK schemes, we consider the 1-D
problem defined by (1)-(2) with Ω = [0, 6] and
c = 1, σ = 0.1. The initial conditions u(x, 0) =
sin(πx), ut(x, 0) = −σ

2 sin(πx) yield the exact
solution

u(x, t) = e−σt/2 cos

(√
π2 − σ2

4
t

)
sin(πx) .

Following the method of lines approach, we
discretize (1)-(2) in space using either nodal dis-
continuous Galerkin, continous finite element,
or finite difference methods. In the case of finite
difference methods, we opt for Summation-By-
Parts–Simultaneous Approximation Term (SBP-
SAT) methods [4]. In Ω1 = [0, 2] we discretize
with space-step h. In Ω2 = [2, 4] and Ω3 = [4, 6],
we refine the grid 2 and 6 times, respectively,
such that the space-step is h/2 in Ω2 and h/6 in
Ω3. Figure 1 shows the numerical solution ob-
tained with such a grid at time t = 0.1. In Ω1 we
choose the time-step ∆t as the maximal time-
step permitted by the CFL stability condition.
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In Ω2 and Ω3, we use the local time-steps ∆t/2
and ∆t/6, respectively, i.e., the maximal time-
steps allowed by the CFL condition in these re-
gions.

Table 1 shows the L2-errors compared to the
exact solution at the final time t = 8.7 for the
MLTS methods derived from the classical RK3
and RK4 schemes, here combined with a 4th
order SBP-SAT finite difference discretization
in space. The expected 3rd and 4th order con-
vergence rates are obtained. Moreover, as the
MLTS methods permit the maximal time-step
at every level of grid refinement, we conclude
that the numerical stability of the underlying
RK methods is retained. In that sense, the CFL
condition of our MLTS-RK schemes is optimal.

x

0 2 4 6

-1

-0.5

0

0.5

1
t = 0.1

Figure 1: Numerical solution at time t = 0.1.
The locations of the grid points are marked by
vertical bars on the line y = −1. In the regions
[0, 2], [2, 4] and [4, 6] the space-steps are h, h/2
and h/6, respectively. Similarly, the local time-
steps are ∆t, ∆t/2, and ∆t/6.
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h log e
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Abstract

We characterize interior transmission eigenval-
ues of penetrable anisotropic acoustic scattering
objects by a technique known as inside-outside
duality. Under certain conditions on the an-
isotropic material coefficients of the scatterer,
the inside-outside duality allows to rigorously
characterize interior transmission eigenvalues
from multi-frequency far field data. This theo-
retical characterization moreover allows to de-
rive a simple numerical algorithm for the ap-
proximation of interior transmission eigenval-
ues.

Keywords: Transmission Eigenvalues, Inside-
Outside Duality

1 Determining Interior Transmission
Eigenvalues from Far Field Data

In our model the scatterer D ⊂ R3 is repre-
sented by the material parameter A = Id + Q,
which is assumed to be real-valued, symmet-
ric and positive definite in R3 and the matrix-
valued contrast Q : R3 → R3×3 is supported
and sign-definite in the closure of the scatterer
D. We want to determine positive wave num-
bers k > 0 such that k2 is an interior transmis-
sion eigenvalues, i.e. there exists a non-trivial
pair (v, w) of functions defined in D such that

div(A∇v) + k2v = 0 in D,

∆w + k2w = 0 in D,

v = w on ∂D,

ν>A∇v = ∂w
∂ν on ∂D,

where ν is the exterior unit normal to the do-
main D. To determine the eigenvalues we con-
sider the corresponding scattering problem

div(A∇u) + k2u = 0 in R3.

The total wave field u can be split into a sum
of an incident plane wave ui(x, θ) = exp(ik θ ·x)
with direction θ ∈ S2 = {x ∈ R3, |x| = 1}
and a scattered field us(·, θ) that satisfies Som-
merfeld’s radiation condition. The scattered

wave us(·θ) behaves like an outgoing spherical
wave, such that it can be represented by its far
field u∞(x̂, θ̂). In particular the far field oper-
ator F : L2(S2) → L2(S2) can now be defined
as

Fg(x̂) :=

∫
S2
u∞(x̂, θ)g(θ)dS(θ), x̂ ∈ S2.

The far field operator is compact and normal
and its eigenvalues λj lie on a circle of radius
8π2/k with center 8π2i/k in the complex plane
(see e.g. [1]). We represent the eigenvalues in
polar coordinates such that

λj = rj exp(iϑj), rj > 0, ϑj ∈ (0, π).

It can be shown that the eigenvalues λj con-
verge to zero from the left if Q is positive defi-
nite and from the right if Q is negative definite.
Therefore in the first case the eigenvalue λ∗ with
the smallest phase ϑ∗ is well-defined and in the
second case the eigenvalues λ∗ with the largest
phase ϑ∗ is well-defined.
Under certain conditions to the contrast Q our
main result is the following (see [3]):
If Q is positive definite, then k20 is an interior
transmission eigenvalue if and only if the small-
est phase ϑ∗ of the eigenvalue λ∗ of F con-
verges to zero as k approaches k0 from below.
If Q is negative definite, then k20 is an interior
transmission eigenvalue if and only if the largest
phase ϑ∗ of the eigenvalue λ∗ of F converges to
π as k approaches k0 from below.
Crucial tools we use in the proof are the eigen-
value decomposition of the far field operator F ,
a particular factorization F = −H∗TH we de-
rive for this scattering problem and the proper-
ties of the arising operators.

2 Numerical Results

To verify our theoretical results for the case that
the constrast Q = q · Id is either constant neg-
ative or constant positive we created far field
data using the software package BEM++ (see
[2]) to solve the arising boundary integral equa-
tions. As domains of computation we chose the
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unit ball B1(0) and the unit cube C := [0, 1]3.
As a result we obtained a matrix FN as a numer-
ical approximation to the far field operator F .
In particular we obtained numerical approxima-
tions λNj and ϑNj to the eigenvalues λj and its
corresponding phases ϑj . Depending on the sign
of Q, we are either interested in the behaviour
of the smallest phase ϑ∗ or the largest phase ϑ∗

with varying wavenumber k. Therefore we plot-
tet the phases ϑNj against the wavenumber k.
First we use the unit ball as a scattering object
with positive constrast q = 10 to obtain graph
in Figure 1. In this special case, we can analyt-
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Unit ball with positive constrast q = 10

Figure 1: Dots mark the phases ϑNj (k) of the

numerical eigenvalues λNj (k). Red dots on the
{ϑ = 0}-axis mark the extrapolated positions
of the transmission eigenvalues.

ically compute the square roots of the first four
transmission eigenvalues k0,1, .., k0,4 to compare
them to the numerically computed values in the
following table.

B1(0), q = 10 k0,1 k0,2 k0,3 k0,4
computed ITE 5.199 5.888 6.106 7.245
exact ITE 5.204 5.886 6.104 7.244

For the case of Q with negative sign, we use
the unit cube as a scattering object and ob-
tain the graph in Figure 2. The square roots
of the first three computed transmission eigen-
values are listed in the following table.

D = [0.1]3, q = −0.9 k0,1 k0,2 k0,3
computed ITE 2.863 3.029 3.164

In summary we see that the numerical com-
putations confirm the predicted behaviour of
the smallest phase ϑ∗(k) or the largest phase

1 1.5 2 2.5 3 3.5
0
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1

1.5

2

2.5

3

3.5

wavenumber k

p
h
a
s
e
s
 ϑ

n
(k

)

Cube with negative contrast q=−0.9

Figure 2: Dots mark the phases ϑNj (k) of the

numerical eigenvalues λNj (k). Red dots on the
{ϑ = π}-axis mark the extrapolated positions
of the transmission eigenvalues.

ϑ∗(k) in the proximity of interior transmission
eigenvalues.
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Abstract

We formulate the transmission eigenvalue prob-
lem using boundary integral equation. Under
the assumption that the contrast is constant
near the boundary of the support of the inho-
mogeneity, we prove that the set of transmission
eigenvalues is discrete with positive infinity as
the only accumulation point.

Keywords: Transmission eigenvalue problem,
boundary integral equations, Maxwell’s equa-
tions

1 Introduction

Let D ∈ R3 be a bounded open and connected
region with C2-smooth boundary ∂D := Γ and
let ν denotes the outward unit normal vector
on Γ. In general we consider a 3 × 3 matrix-
valued functionN with L∞(D) entries such that
ξ · Re(N)ξ ≥ α > 0 and ξ · Im(N)ξ ≥ 0 in D
for every ξ ∈ C3, |ξ| = 1. The transmission
eigenvalue problem can be formulated as find-
ing E,E0 ∈ L2(D), E − E0 ∈ H(curl2, D) that
satisfy

curl curl E− k2NE = 0 in D (1)

curl curl E0 − k2E0 = 0 in D (2)

ν ×E = ν ×E0 on Γ (3)

ν × curl E = ν × curl E0 on Γ (4)

where

L2(D) :=
{
u : uj ∈ L2(D), j = 1, 2, 3

}
H(curl2, D) :=

{
u ∈ L2(D), curl u ∈ L2(D)

and curl curl u ∈ L2(D)

}
Definition 1 Values of k ∈ C for which the
(1)-(4) has a nontrivial solution E,E0 ∈ L2(D),
E − E0 ∈ H0(curl2, D) are called transmission
eigenvalues.

2 Boundary Integral Equations for Con-
stant Electric Permittivity

Define the Hilbert spaces of tangential fields de-
fined on Γ:

Hs1,s2(div,Γ) = {u ∈ Hs1
t (Γ),div Γu ∈ Hs2(Γ)}

Hs1,s2(curl,Γ) = {u ∈ Hs1
t (Γ), curl Γu ∈ Hs2(Γ)}

and the boundary layer potentials

Tk(u) =
1

k
γΓ

(
curl 2

∫
Γ

Φk(·,y)u(y) dsy) dsy

)

Kk(u) = γΓ

(
curl

∫
Γ

Φk(·, y)u(y) dsy

)
where γΓ u = ν×(u×ν). Furthermore we define

L(k) =

(
k
√
nTk

√
n − kTk Kk

√
n −Kk

Kk
√
n −Kk

1
k
√
n
Tk
√
n − 1

kTk

)
To analyse the boundary integral operator we
prove the following.

Lemma 2 Let ut ∈ H−
1
2
, 1
2 (curl,Γ) and u ∈

H−
3
2
,− 1

2 (div,Γ). Then
〈
ut,u

〉
is a well-defined

duality with respect to L2(Γ) as a pivot space.

Lemma 3 For a fixed k, the linear operator

L(k) : H
− 1

2
t (Γ)×H−

3
2
,− 1

2 (div,Γ)

→ H
1
2
t (Γ)×H−

1
2
, 1
2 (curl,Γ)

is bounded. Moreover, the family of operators
L(k) depends analytically on k ∈ C\R−.

Following the work in [1] and representing E−
E0 using boundary integrals we can prove the
following

Theorem 4 Assume there exists non trivial E,
E0 ∈ L2(D), E − E0 ∈ H(curl2, D) such that
(1)-(4) holds. Then there exists non trivial (M,J)

∈ H
− 1

2
t (Γ)×H−

3
2
,− 1

2 (div,Γ) such that

L(k)

(
M
J

)
=

(
0
0

)
. (5)



Contributed Session: Tuesday 10:30–12:30 Room 2.067 273

This theorem will be proved to be true for matrix
valued function N where L(k) is replaced by (6)
in Section 3.

Define H0(Γ) := H
− 1

2
t (Γ)×H

− 3
2
,− 1

2
0 (div,Γ) where

H
− 3

2
,− 1

2
0 (div,Γ) is the space of u ∈ H−

3
2
,− 1

2 (div,Γ)
with div Γu = 0. Let H∗(Γ) be the dual space
of H0(Γ). Having defined these spaces we can
prove

Lemma 5 Let κ > 0. The operator L(iκ) :
H0(Γ)→ H∗(Γ) is strictly coercive.

Lemma 6 Let γ(k) :=
k21−k2
|k1|2−|k|2 and k1 = k

√
n

for k ∈ C \ R−. Then L(k) + γ(k)L(i|k|) :
H0(Γ)→ H∗(Γ) is compact.

Define H1(Γ) :=
{
∇Γp, p ∈ H

3
2 (Γ)

}
, then by

Helmholtz decomposition J = Q+P where Q ∈
H
− 3

2
,− 1

2
0 (div,Γ) and P ∈ H1(Γ). The equation

(5) is equivalent to

L̃(k)

 M
Q
P

 = 0

for (M,Q,P) ∈ H
− 1

2
t (Γ) × H

− 3
2
,− 1

2
0 (div,Γ) ×

H1(Γ). L̃(k) is a 3 × 3 operator and satisfies
the following property.

Lemma 7 The operator L̃(k) : H0(Γ)×H1(Γ)→
H∗(Γ)×H−

1
2 (Γ) is Fredholm with index zero.

3 General Inhomogeneous Medium

Let O be a neighborhood of ∂D in D. Assume
that N = nI in O, where n 6= 1 is a positive
constant. We can express E0 in D and E in O
by boundary integrals, and in D \O we can ex-
press E in the form of partial differential equa-
tion with Cauchy data connected to E in O.
Hence we can obtain Theorem 4 where the op-
erator L(k) is written as

L(k) = Ln(k)− LΣ,Γ(k)A−1(k)LΓ,Σ(k) (6)

where Ln(k) is the boundary integral operator
corresponding to the transmission eigenvalue prob-
lem with constant n − 1. Furthermore LΣ,Γ(k)
and LΓ,Σ(k) are compact and A(k) is invertible.
By writing L(k) as a 3×3 operator L̃(k) similar
to Lemma 7 we can have the following.

Lemma 8 The operator L̃(k) : H0(Γ)×H1(Γ)→
H∗(Γ)×H−

1
2 (Γ) is a Fredholm with index zero.

4 The existence of non transmission eigen-
value wave numbers

Following the idea of [3] for the scalar case we
have

Theorem 9 Assume N = nI in O, n 6= 1 is
constant. Then there exists a sufficiently large
real λ > 0 with k = iλ such that (1)-(4) has
only trivial solutions.

5 Discreteness of transmission eigenval-
ues

From Theorem 9 we can prove

Lemma 10 Assume N = nI in O, n 6= 1 is
constant. There exists a sufficiently large k > 0
such that L̃(ik) is injective.

Combining Theorem 4, Lemma 8, Lemma 10
and using the analytic Fredholm theory yields

Theorem 11 Assume N = nI in O, n 6= 1 is
constant, then the set of the transmission eigen-
values in C is discrete.
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Abstract

We consider the interior transmission eigenvalue
(ITE) problem, which arises when scattering
by inhomogeneous media is studied. The ITE
problem is not self-adjoint. We show that pos-
itive ITEs are observable together with plus or
minus signs that are defined by the direction
of motion of the corresponding eigenvalues of
the scattering matrix (when the latter approach
z = 1). We obtain a Weyl type formula for the
counting function of positive ITEs, which are
taken together with ascribed signs.

Keywords: interior transmission eigenvalue,
Weyl law

1 Introduction

Let O ∈ Rd be an open bounded domain with
C2 boundary ∂O and the outward normal ν. In-
terior transmission eigenvalues (ITEs) are de-
fined as values of λ ∈ C for which the problem

−∆u− λu = 0, x ∈ O, u ∈ H2(O),
−∆v − λn(x)v = 0, x ∈ O, v ∈ H2(O),

u− v = 0, x ∈ ∂O,
∂u
∂ν −

∂v
∂ν = 0, x ∈ ∂O,

has a non-trivial solution. Here n(x) > 0, x ∈
O, is a smooth positive function, H2(O) is the
Sobolev space.

This spectral problem for a system of two
equations in a bounded domain O ∈ Rd ap-
pears naturally when the scattering transmis-
sion problem (scattering of plane waves by an
inhomogeneous medium) is studied. The scat-
tering problem is stated as

−∆u− λu = 0, x ∈ Rd\O,
−∆v − λn(x)v = 0, x ∈ O,

u− v = 0, x ∈ ∂O,
∂u
∂ν −

∂v
∂ν = 0, x ∈ ∂O,

where u is the sum of the incident plane wave
and the scattered wave, i.e., u = eik(ω,x)+ψsc, λ =

k2, ψsc satisfies the radiation conditions as
r = |x| → ∞

ψsc = f(k, θ, ω)
eikr

r
d−1
2

+O
(
r−

d+1
2

)
, θ =

x

r
.

The main relation between the scattering
and ITE problems is due to the following fact:
if the far-field operator F = F (k) : L2(S

d−1)→
L2(S

d−1):

Fφ =

∫
Sd−1

f(k, θ, ω)φ(ω)dSω

has zero eigenvalue at the frequency k = k0 > 0,
then λ = k20 is an ITE [3]. This relation between
ITEs and operator F is very important in the
study of scattering by inhomogeneous media. In
particular, it is known that positive ITEs are
observable. They have been extensively used in
the study of the inverse problem, starting from
papers [3], [2], [8].

The transmission problem considered above
has a simple analogue, which is scattering by a
soft or rigid obstacle O. It is the exterior prob-
lem with the Dirichlet or Neumann boundary
condition. The corresponding interior problem
in the latter case is the eigenvalue problem for
the Dirichlet or Neumann (negative) Laplacian
in O. Unlike the Dirichlet or Neumann eigen-
values, the ITEs are defined by a much more
complicated spectral problem, which is neither
symmetric nor elliptic.

One of the important properties of the eigen-
values for the Dirichlet or Neumann negative
Laplacian is the Weyl law for the counting func-
tion of the eigenvalues. The goal of this paper
is to obtain an analogue of the Weyl law for the
signed counting function of positive ITEs and
establish an important connection between pos-
itive ITEs and the scattering matrix.

2 Main result

Due to the lack of symmetry (and ellipticity),
the discreteness of the spectrum of the ITE prob-
lem, the existence of real eigenvalues, and their
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asymptotics can not be obtained by soft argu-
ments. Moreover, the existence of non-real ITEs
was shown in [7], and an example of an elliptic
ITE problem where the set of ITEs is not dis-
crete can be found in [5, Examples 1,2].

There is extensive literature (see the review
[1]) on the properties of ITEs and corresponding
eigenfunctions. The following results are most
closely related to our study. It was shown in [9]
that the set of ITEs is discrete if n(x) 6= 1 every-
where at the boundary of the domain ∂O. The
latter condition (which means that the inhomo-
geneity has a sharp boundary) will be assumed
to hold in our study. It was shown that the stan-
dard Weyl estimate holds for the complex ITEs
located in an arbitrary cone containing the real
positive semi-axis when λ→∞:

#{i : |λTi | ≤ λ} ∼
λ

d
2ωd

(2π)d

[
Vol(O) +

∫
O
n

d
2 (x)dx

]
,

(1)
where ωd is the volume of the unit ball in Rd.
Earlier we have shown that if

γ := Vol(O)−
∫
O
n

d
2 (x)dx 6= 0,

then the set of positive ITEs (which are the
most important for applications) is infinite, and
moreover, if λ→∞, then

#{0 < λTi < λ} ≥ ωd
(2π)d

|γ|λ
d
2 +O(λ

d
2
−δ).

Obviously, the coefficient |γ| is always smaller
than the corresponding coefficient in (1). We
plan to show that there are signs that can be
naturally ascribed to positive ITEs λTi in such
a way that the Weyl law for the signed counting
function (that counts the eigenvalues with the
ascribed signs) for positive ITEs is valid with
the coefficient γ in the first term.

Thus we will ascribe a value σi = ±1 to each
simple positive ITE. These values are observ-
able and defined by the direction (clockwise or
counterclockwise) of the rotation of the eigen-
values of the scattering matrix. In the case of an
ITE of geometric multiplicity n > 1, we ascribe
a coefficient σi, |σi| ≤ n, to the whole group, not
to each of ITEs separately. The main result of
this paper [6] is formulated as follows.

Theorem 1 Let n(x) 6= 1, x ∈ ∂O. The Weyl
law holds for the signed counting function for

positive eigenvalues of the interior transmission
problem as λ→∞:∑
i : 0<λTi <λ

σi =
ωd

(2π)d
γλ

d
2 +O(λ

d
2
−δ), δ =

1

2d
.

This statement generalizes the standard Weyl
law for the Dirichlet/Neumann Laplacian where
σi = 1, i ≥ 1. It was noted in [4] that the sign
of σi can vary in the transmission problem.
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Abstract

The numerical calculation of eigenvalues of the
interior transmission problem arising in elec-
tromagnetic scattering for constant contrast in
three dimensions is a challenging task. A new
method based on the boundary integral equa-
tion method and complex-valued contour inte-
grals is presented which is able to calculate nu-
merically interior transmission eigenvalues for
various obstacles with computational cost lower
than those of existing methods. Furthermore,
the algorithm is capable of finding the multi-
plicities of the eigenvalues as well as complex-
valued eigenvalues. Up until now, the proof
of existence of such eigenvalues is still an open
question.

Keywords: interior transmission problem, in-
terior transmission eigenvalue, boundary inte-
gral equation, contour integral, electromagnetic
scattering, Maxwell equations

1 Introduction

Interior transmission eigenvalues play an im-
portant role in electromagnetic scattering, since
they carry information about material proper-
ties. Thus, they might serve to detect abnor-
malities inside homogeneous media (see for ex-
ample [2]). They first appear in Kirsch [4] for
the acoustic case. The numerical results given
in Kleefeld [5] for the acoustic interior trans-
mission problem are extended to the electro-
magnetic case. He combines the boundary inte-
gral equation method recently proposed by Cos-
sonnière [3] and the complex-valued contour in-
tegral algorithm by Beyn [1] to provide a new al-
gorithm which is able to calculate interior trans-
mission eigenvalues for various obstacles in three
dimensions. Additionally, the multiplicities of
such eigenvalues can be provided. Further, the
algorithm is capable of finding complex-valued
eigenvalues. A proof of existence is still missing.

2 Problem statement

Assume that D is a domain in R3 with a con-
nected boundary Γ belonging to class C2. Fur-

ther, assume that R3\D is connected. We de-
note the wavenumber by κ, the normal point-
ing in the exterior by ν, with N = n I the con-
stant contrast, and E and H are the electric and
magnetic field, respectively. Find a non-trivial
solution (E,E0) to the electromagnetic interior
transmission eigenvalue problem:

curl curlE− κ2N E = 0 in D ,

curl curlE0 − κ2 E0 = 0 in D ,

E× ν −E0 × ν = 0 on Γ ,

curlE× ν − curlE0 × ν = 0 on Γ .

Interior transmission eigenvalues are values of
κ for which this problem has non-trivial solu-
tions. The system of boundary integral equa-
tions is derived by employing the first and sec-
ond Stratton-Chu formula, using the jump rela-
tions, and the given boundary conditions. This
yields the system Tκ

√
n −Tκ Kκ

√
n −Kκ

Kκ
√
n −Kκ

Tκ
√
n

κ2n
− Tκ

κ2

[ M
J

]
=

[
0
0

]
with the two boundary integral operators Kκ,

Tκ : H
−1/2
× (divΓ,Γ) → H

−1/2
× (divΓ,Γ) defined

by

(Kκψ) (x) = curlx {(Aκψ) (x)} × ν(x) ,

(Tκψ) (x) = curlx curlx {(Aκψ) (x)} × ν(x) ,

(Aκψ) (x) =

∫
Γ
ψ(y) Φκ(x, y) ds(y) ,

where Φκ denotes the fundamental solution of
the Helmholtz equation. Further, we set

M = E × ν = E0 × ν ∈ H
−1/2
× (divΓ,Γ)

and

J = curlE × ν = curlE0 × ν ∈ H
−1/2
× (divΓ,Γ)

on the surface Γ. The system above can be writ-
ten abstractly as Z(κ)V = 0 with the obvious
definition of the operator Z(κ) and the func-
tion V . After discretizing, one has to solve the
nonlinear eigenvalue problem

Z(κ)v = 0 , κ ∈ Ω ⊂ C
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with v ∈ Cm , v 6= 0 and Z(κ) ∈ Cm×m, where Ω
is some open domain in the complex plane and
its boundary is denoted by ∂Ω assuming that
there are k � m eigenvalues inside the con-
tour including multiplicities. It is solved with
the complex-valued contour algorithm which is
based on Keldysh’s theorem reducing the orig-
inal nonlinear eigenvalue problem to a linear
eigenvalue problem of size k (see [1]).

3 Numerical results

First, numerical results are presented using the
method of Cossonnière to calculate real-valued
interior transmission eigenvalues in the interval
[3, 4] for a unit sphere centered at the origin, an
ellipsoidal surface with semi-axis (1, 1, 6/5) in
the interval [5/2, 4], and a peanut-shaped sur-
face in the interval [5/2, 4] given parametrically
by x = % sin(φ) cos(θ), y = % sin(φ) sin(θ), and
z = % cos(φ) with % defined by the expression
%2 = 9

{
cos2(φ) + sin2(φ)/4

}
/4 using n = 4.

We are able to detect five real-valued interior
transmission eigenvalues. We detect eleven and
nine interior transmission eigenvalues for the
ellipsoidal surface and the peanut-shaped sur-
face, respectively. In Table 1, we report the
first four eigenvalues including their multiplic-
ities (listed in square brackets) using the new
method, where we used the contour of an el-
lipse centered at (7/2, 0), (3, 0), and (3, 0) with
semi-axis (1/2, 1/4) for the unit sphere, the el-
lipsoidal obstacle, and the peanut-shaped obsta-
cle, respectively. Note that the new method is

EV Unit sphere Ellipsoid Peanut

1. 3.14 [3] 2.92 [2] 3.00 [2]
2. 3.49 [5] 3.06 [1] 3.04 [2]
3. 3.59 [3] 3.23 [2] 3.37 [1]
4. 3.69 [5] 3.31 [3] 3.42 [1]

Table 1: The four eigenvalues (EV) for the in-
terior transmission problem for n = 4.

more than ten times faster and at the same time
provides better accuracy. Finally, we use the
new method to calculate complex-valued eigen-
values. We use the contour of an ellipse cen-
tered at (5/2,−1/2) with semi-axis (1/2, 1/2)
for the first two obstacles under consideration.
We obtain the two eigenvalues 2.69− 0.71i and
2.40−0.68i with multiplicities three and five for
the unit sphere. For the ellipsoidal surface, we
get the five eigenvalues 2.19−0.55i, 2.22−0.60i,

2.64− 0.64i, 2.50− 0.70i, and 2.32− 0.71i with
multiplicities one, two, one, two, and two, re-
spectively.

4 Summary and outlook

A new method is presented which is able to cal-
culate numerically interior transmission eigen-
values including their multiplicities arising in
electromagnetic scattering. Additionally, the
method is able to calculate complex-valued in-
terior transmission eigenvalues. Further inves-
tigation regarding those is subject of future re-
search.
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Abstract

We consider time-harmonic linear elasticity
equations in domains with cylindrical waveguides.
Since for such problems there exist modes with
different signs of group and phase velocity, stan-
dard PML methods fail. We apply an infinite el-
ement method based on a pole condition, which
characterizes outgoing solutions by the poles of
their Laplace transform in propagation direc-
tion. Since this condition is frequency indepen-
dent, it is well-suited for resonance problems.

Keywords: Elastic waveguide, resonance prob-
lem, pole condition, Hardy space infinite ele-
ment

1 Introduction

Let Ω = Ωint ∪ Ωext ∪ Υ be a Lipschitz domain
with a bounded interior domain Ωint ⊂ Rd (d =
2, 3), a bounded interface Υ = {0} × Υ̃ ⊂ ∂Ωint

with Υ̃ ⊂ Rd−1, and an unbounded waveguide
Ωext = R+ × Υ̃ with Ωext ∩ Ωint = Υ. We con-
sider the time-harmonic isotropic linear elastic-
ity problem

−div σ(u)− ω2u = f in Ω. (1)

Here, <(u(x)e−iωt) for x ∈ Ω and time t > 0 is
the time-harmonic displacement vector, ω > 0
the angular frequency, σ(u) the stress tensor,
and f a volumetric force with compact support
in Ωint. We assume traction-free boundary con-
ditions σ(u) · n at ∂Ωext \ Υ and a suitable
boundary condition with compact support in
∂Ωint \ Υ. Additionally, we need a radiation
condition in order to get physically relevant so-
lutions.

2 Elastic Waveguide

The radiation condition for elastic waveguides
is constructed out of a modal expansion: The
modes

u(ξ, η;ω) = eiκ(ω)ξw(η;ω), (ξ, η) ∈ R+ × Υ̃,

are solutions to (1), if and only if the wavenum-
ber κ(ω) ∈ C solves a dispersion relation. A
mode is called outgoing, if

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

ω

κ
n

Figure 1: The first eight dispersion curves for a
two-dimensional waveguide. Modes correspond-
ing to the red solid part have positive group
velocity and modes corresponding to the blue
dashed part have negative group velocity.

• it is evanescent, i.e. =(κ(ω)) > 0, or

• if the group velocity ∂κω(κ) and with it
the energy transport is positive for κ(ω) ∈
R.

Fig. 1 shows a typical situation for real wavenum-
bers: There exist backward propagating modes
with positive group and negative phase velocity
ω/κ. A standard complex scaling method fails
in such cases, since it selects modes with posi-
tive phase instead of positive group velocities.

More details for the modal decomposition
can be found in [1]. In particular it is shown
in [1], that there exists a sequence of positive
frequencies (ωj)j∈N such that the traces of out-
going modes are dense in H1(Υ) for all ω ∈
R+ \ {ωj , j ∈ N}. In Fig. 1 there exist eight
such frequencies ωj with vanishing group veloc-
ity, six of them with vanishing wavenumbers.

3 Pole Condition

The modal radiation condition is frequency de-
pendent and therefore not well-suited for reso-
nance problems. An alternative radiation con-
dition is the pole condition, which assumes the
Laplace transform in propagation direction

Lu(•, η;ω)(s) =
w(η;ω)

s− iκ(ω)
, s ∈ C \ {iκ(ω)},

to be holomorphic in some region of the complex
plane for all modes, all η ∈ Υ̃ and all frequen-
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Figure 2: Lowest outgoing (red) and incoming
(blue) wavenumbers (multiplied with i) for ω ∈
(1.57, 1.78) with separating curve Γ (green).

cies ω ∈ (ω̃1, ω̃2)\{ωj , j ∈ N} with 0 < ω̃1 < ω̃2.
For the second interval in Fig. 1 the situation is
sketched in Fig. 2: There exist an oriented curve
Γ with Γ+ on the left and Γ− on the right, such
that most of the outgoing poles of Lu(•, η;ω)
are separated by Γ from the incoming poles.
Only two frequencies exist with vanishing group
velocities and poles on Γ.

For the exact definition of the pole condition
and the Hardy space infinite element method
based on this framework we refer to [2,3]. Note,
that the radiation condition is clearly indepen-
dent of ω in an interval of frequencies.

4 Resonance Problem

(1) leads after discretization to a linear system
of the form (A − ω2B)uh = fh with frequency
independent matrices A and B. For the cor-
responding resonance problem we are looking
for resonances ω ∈ C with <(ω) > 0 with non-
trivial eigenfunction uh such that

Auh = ω2Buh.

5 Numerics

We study the scattering of a wave signal con-
taining a backward propagating mode by a cav-
ity in a two dimensional waveguide, see Fig. 3

Figure 3: Scattering of an incoming wave by a
cavity
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Figure 4: Frequency dependency

for the domain. In Fig. 4(a) the stress in the
cavity was measured for different frequencies.
The first peak coincides with the resonance with
|=(ωres)|most low. The second peak corresponds
to a second resonance with small absolute value
of imaginary part, which is hidden in Fig. 4(b)
behind the discretization of an essential spec-
trum. A zoom into this region illustrates this
resonance.

Hence, the Hardy space method is well-suited
for resonance as well as scattering problems even
in the case of backward propagating modes.
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Abstract

In this work, we propose new transparent bound-
ary conditions for the time-harmonic diffraction
problem in an acoustic or elastic waveguide.
These new conditions use the natural modal
decomposition in the waveguide and are said
“with overlap” by analogy with the domain de-
composition methods. Among their main ad-
vantages, they can be implemented in general
anisotropic waveguides, for which usual Dirich-
let to Neumann maps are not available. More-
over, the traditional benefit of the overlap for
iterative resolution is obtained, independently
of the size of the overlap.

Keywords: transparent boundary conditions,
waveguides, modal decomposition, anisotropic
elasticity, iterative methods.

1 Model problem

To present the method, for the seek of sim-
plicity, we consider a diffraction problem in an
acoustic isotropic half-guide Ω = S×]− a,+∞[
where S ⊂ R2 denotes the bounded cross-section
of the guide (see figure 1 for notations). At the

Figure 1: Geometry and notations

frequency ω, the pressure field p satisfies

∆p+ ω2c−2p = f in Ω,
∂νp = 0 on ∂Ω.

(1)

Here ν is the exterior normal to ∂Ω, c the ve-
locity of sound, the source term f is supposed

to be compactly supported in {z < 0} and we
seek for the outgoing solution. We denote by p`
(resp. p∞) the restriction of p to the subdomain
Ω` = Ω∩{z < `} (resp. Ω∞ = Ω∩{z > 0}) and
we want to derive transparent boundary con-
ditions for p` on Σ`. Looking for the outgoing
solution, p∞ admits the following expression

p∞(x, y, z) =
∑
k≥0

a∞k ϕk(x, y)eiβkz (2)

involving the right-going modes ϕk(x, y)eiβkz (the
ϕk being an orthonormal basis of L2(S)). The
a∞k are the unknown modal amplitudes.

In the usual approach, we impose the two
following matching conditions on the outer bound-
ary Σ`:

p`|Σ`
= p∞|Σ`

and ∂νp`|Σ`
= ∂νp∞|Σ`

. (3)

Then, using the formula (2) and the orthogonal-
ity of the ϕk, one can derive a transparent con-
dition for p`, involving the classical Dirichlet-
to-Neumann operator:

∂p`
∂z

=
∑
k≥0

iβk(p`, ϕk)Σ`
ϕk on Σ`. (4)

Let us emphasize that this method requires the
orthogonality of the modes, which does not hold
for instance in anisotropic acoustic waveguides
or in elastic waveguides (even isotropic [2]). We
will present now two other approaches.

2 The Dirichlet-to-Neumann operator
with overlap

A natural extension (see [1] for more details)
of the above approach consists in imposing the
matching conditions on two different boundaries:

p`|Σ0 = p∞|Σ0 and ∂νp`|Σ`
= ∂νp∞|Σ`

. (5)

This leads to the following Dirichlet-to-Neumann
condition with overlap:

∂p`
∂z

=
∑
k≥0

iβke
iβk`(p`, ϕk)Σ`

ϕk on Σ` (6)
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which has better mathematical properties than
(4) (thanks to the sequence eiβk` which decreases
exponentially with k, the related term in the
variational formulation is compact). This for-
mulation is therefore more suitable for an it-
erative resolution, and similarly to domain de-
composition methods, we can prove that, up to
a point, the larger ` is, the faster the iterative
algorithm is.

The difficulty is that the equivalence with
the initial problem is not obvious. This equiv-
alence holds if and only if v = p` − p∞, defined
in B` = Ω` ∩ Ω∞ and verifying

∆v + ω2c−2v = 0 in B`,
v = 0 on Σ0,
∂νv = 0 on ∂B` \ Σ0,

(7)

is equal to 0, which is true except when ω is an
eigenfrequency of the above homogeneous prob-
lem. Let us remark that we easily avoid these
”box frequencies” by using for instance a Robin
type condition on Σ` [1].

Again, this approach cannot be generaliz-
able when the orthogonality of the modes does
not hold, contrary to the next approach.

3 The ”outgoing” to Neumann approach

This last method consists in changing the con-
dition on Σ0. Since p` can be decomposed in B`
on the right-going and left-going modes:

p`(x, y, z) =
∑
k≥0

(
a+
k e

iβkz + a−k e
−iβkz

)
ϕk(x, y),

we propose to consider as transmission condi-
tions

a+
k = a∞k on Σ0 and ∂νp`|Σ`

= ∂νp∞|Σ`
.
(8)

On Σ0, it amounts to match the modal ampli-
tudes of the outgoing modes.

Now to prove that v = p` − p∞ = 0 in B`,
we notice that thanks to the modal condition
on Σ0, we have

v(x, y, z) =
∑
k≥0

a−k ϕk(x, y)e−iβkz in B`.

Then the condition ∂νv = 0 on Σ` directly im-
plies that v = 0. In some sense, spurious effects
of the box B` have been eliminated. Numeri-
cally, we observe that the rate of convergence of
iterative methods of resolution is now indepen-
dent of the size ` of the overlapping.

Finally, we can again eliminate p∞ to derive
a transparent boundary condition for p` which
takes the following form:

∂p`
∂z

=
∑
k≥0

iβke
iβk`a+

k ϕk on Σ` (9)

where

a+
k =

1

2

(
1

iβk
(∂νp`, ϕk)Σ0 + (p`, ϕk)Σ0

)
.

The normal derivative in the expression of the
a+
k must be understood in a weak sense and can

be eliminated by integrating by part in small
volumic domain.

A main advantage of this last approach is
that the latter formula can be generalized in the
anisotropic case (and in the elastic case) thanks
to the general biorthogonality relations verified
by the modes [2].

Numerical illustrations will be presented for
2D and 3D waveguides.
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An Infinite Element Method Treating Backward Waves in Unbounded Elastic Plates

Martin Halla1,∗, Lothar Nannen1

1Institute for Analysis and Scientific Computing, Vienna University of Technology, Austria
∗Email: martin.halla@tuwien.ac.at

Abstract

We consider time-harmonic wave propagation in
unbounded elastic plates. These kind of prob-
lems admit waves with different signs of group
and phase velocity, leading to numerical difficul-
ties, as standard perfectly matched layer meth-
ods fail in these cases. We explain how to con-
struct a transparent boundary condition based
on a pole condition and a numerical scheme
incorporating the physical radiation condition.
The method is based on a transformation to
cylindrical coordinates and the Laplace trans-
form in propagation direction. Numerical simu-
lations showing the effectiveness of the method
are presented.

Keywords: transparent boundary condition,
pole condition, waveguide, backward waves

1 General Setting

We consider plates P := R2 × (−1, 1) with lo-
cal pertubations, i.e. Ω := P \K with compact
scatterer K ⊂ P , 0 ∈ K. We are looking for
solutions u ∈

(
H1

loc(Ω)
)3

to the time-harmonic
linear isotropic elasticity equation

−div σ(u)− ω2u = 0 in Ω, (1a)

σn(u) = 0 on ∂Ω ∩ ∂P, (1b)

u = g on ∂Ω \ ∂P, (1c)

u satisfies a radiation condition, (1d)

with boundary datum g ∈
(
H1/2(∂Ω \ ∂P )

)3
.

Outside a cylinder containing K (1a)-(1b) ad-
mit solutions in cylindrical coordinates [1]

u(r, θ, z) = einθ

(
κf1(z)H′

n(κr)+f2(z)n
r
Hn(κr)

i
(
f1(z)n

r
Hn(κr)+κf2(z)H′

n(κr)
)

κf3(z)Hn(κr)

)
,

where fl are known functions depending on ω, κ,
Hn are Hankel functions of the first kind and
n ∈ Z is the circumferential index. κ ∈ C has to
fulfill a symmetric dispersion relation Fω(κ) =
0. The roots κj of Fω are called wave-numbers.
The physical radiation condition demands so-
lutions to be either damped, i.e. =(κj) > 0,
or to have positive group velocity, i.e. κj ∈

R, dω/dκj > 0. The sign of the latter may
not coincide with the sign of the phase velocity
ω/κj , see Fig. 1. In this case, infinitely many
backward modes exist, because the dispersion
relation is independent of the circumferential in-
dex.
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Figure 1: Wave-numbers belonging to red
solid/blue dashed dispersion curves yield modes
with positive/negative group velocity.

2 Pole Condition

To derive a numerical method we choose a trans-
parent boundary Υ. Let x̂ : D ⊂ R2 → Υ be a
parametrization. We demand Υ to be of the
form ∂Υ̃ × (−1, 1), where Υ̃ ⊂ R2 is a con-
vex domain with (piece-wise) smooth bound-
ary, s.t. K ⊂ Υ̃ × [−1, 1]. The exterior domain

Ωext := Ω \ Υ̃× (−1, 1) is then parametrized in
cylindrical coordinates with

Tcyl(r, α, β) := x̂(α, β) + r‖a(α, β)‖−1a(α, β),

where e3 := (0, 0, 1)> is the cylindrical axis and
a(α, β) := x̂(α, β)−e3〈e3, x̂(α, β)〉 the direction
of propagation. Since the Laplace transforms

(
L(u ◦ Tcyl(•, α, β))

)
(s) :=

∫ ∞
0

u ◦ Tcyl(r, α, β)e−srdr

of Hn(±κj•) have singularities at ±iκj , we pro-
ceed as in [2]: We chose a point-symmetric con-
tour Γ, splitting the complex plane in two parts
Γ±, s.t. all (un)physical wave-numbers are con-
tained in (−iΓ−) −iΓ+, see Fig. 2. Let H−(Γ) ⊂
L2(Γ) be the Hardy space on Γ, consisting of
all L2-traces of in Γ− holomorphic functions.
We say that u satisfies the pole condition, if
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Figure 2: Physical/unphysical wave-numbers κj
multiplied with i are marked as red squares/blue
diamonds. Γ is marked in green.

its Laplace transform has a holomorphic exten-
sion in H−(Γ) ⊗ L2(D). For modal solutions
the pole condition is equivalent to the radiation
condition.

3 Variational Formulation

To obtain a numerical method the weak formu-
lation of (1a)-(1b) in Ωext is transformed by Tcyl

to cylindrical coordinates and the identity∫ ∞
0

u(r)v(r)dr =

∫
Γ
(Lu)(s)(Lv)(−s)ds

is applied. This leads to a variational formula-
tion in a subspace of H−(Γ)⊗L2(D), similar to
the one obtained in [3]. The radiation condition
is thereby posed in an essential sense.

Moreover, we show a convenient factoriza-
tion of the Jacobian J := Dr,α,β Tcyl. This en-
ables the analytic computation of all infinite el-
ement matrices arising in the bilinear form.

4 Numerical Results

We couple the method with a high-order finite
element discretization of the interior problem
and use tensor product basis functions for the
discretization of H−(Γ)⊗L2(D). For Fig. 3 the
boundary datum g was set to be the trace of
the sum of a forward and a backward mode. A
relative error in the H1(Ωint)-norm of 4.7e-3 is
obtained with 3× 48 191 degrees of freedom for
the interior finite element space, 17 d.o.f. for the
Hardy space and 3× 114 950 d.o.f. in total.

5 Conclusion

We showed how the pole condition can be ap-
plied to reformulate the physical radiation con-

Figure 3: Computed real part of the third
Cartesian component.

dition in the context of elastic plates and pre-
sented a numerical method to discretize the prob-
lem under investigation. The method is capable
of treating backward waves and does not require
the computation of modal solutions. Essential
ingredients for this are the use of cylindrical
rather than euclidean coordinates and the cru-
cial scaling by ‖a‖−1 in Tcyl. To our knowledge,
this is the first non-modal method for problems
with infinitely many backward modes.
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Abstract
As Fast Multipole Method (FMM), adap-

tive cross approximation (ACA) or H-matrices,
various algorithms for fast convolution on un-
structured grids have been developed for many
applications (e.g. electrostatics, magnetostatics,
acoustics, electromagnetics, etc.). The goal is
to reduce the complexity of matrix-vector pro-
ducts, from O(N2) to O(N logN).

In [1], we described a new efficient numeri-
cal method (SCSD), based on a suitable Fou-
rier decomposition of the Green kernel, sparse
quadrature formulae and Type-III Non Uniform
Fast Fourier Transform (type-III NUFFT) [5,6].
This talk summarizes the approach and gives re-
sults of an application of our new open-source
boundary element solver, MyBEM.

1 Fast formulation with SCSD
Boundary element formulations lead to the

classical single layer potential expression, defi-
ned as :

Sλ(x) =
∫

Γ
G(x,y)λ(y)dΓy, ∀x ∈ R3,

where G(x,y) is the Green kernel and Γ the
boundary. Using a discrete quadrature of Γ, this
convolution product needs a fast computation of
discrete sums as :

G ? f(x) ∼
N∑
n=1

G(x,yn)fn, (1)

where the potential (fn)1≤n≤N is known for all
yn.

In the case of the tridimensional Helmholtz
Green kernel, defined as :

G(x,y) = e−ik|x−y|

4π|x− y| ,

the imaginary part can be evaluated on the unit
sphere S2 by spherical integral representation :

Im (G(x,y)) = k

(4π)2

∫
S2
eiks·xe−iks·yds.

Since in this formula, the variables x and y are
well separated, the imaginary part of the dis-
crete Green convolution (1) can obtained by a
standard quadrature (sm;σm)1≤m≤M on S2 :

Im (G ? f(x)) ∼ k

(4π)2

M∑
m=1

eikx·smgm,

with gm = σm

N∑
n=1

e−iksm·ynfn,

where each sum is fastly and successively com-
puted using a type-III NUFFT (complexityN logN).

For the real part, we have proposed a qua-
drature rule to approximate the cosine function
as sum of (dilated) sine functions (e.g. [1, 2]),
enough sparse on a large interval of k|x− y|. It
leads to a final quadrature (ξl;ωl)1≤l≤L of the
full space R3, constructed as concentric spheres.
The final formalism for eq. (1) is :

G ? f(x) ∼ k

(4π)2

L∑
l=1

eikx·ξlhl,

with hl = ωl

N∑
n=1

e−ikξl·ynfn,

where each sum is evaluated by type-III NUFFT.
The complexity has been theoretically studied
for the Green Laplace kernel in [1], numerically
evaluated for Helmoltz kernel in [2], and the fi-
nal mono-level algorithm goes as N

6
5 logN .

2 Test case, a Dirichlet problem
To evaluate the approach, a Matlab solver

with Galerkin boundary element approximation
has been developed, firstly for Helmholtz equa-
tion. This library, called MyBEM, provide di-
rect BEM resolution, iterative FMM (from L.
Greengard [3, 4]) and new SCSD computation.
This library was parallelized, using the Matlab
Parallel Toolbox, and an 8-core computer ca-
denced at 3GHz was used.

For this validation, analytical results from
infinite spherical scattering u∞ is compared to
the numerical solution u provided by MyBEM,
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SNR (dB) BEM F MM SCSD

Ndof f (Hz) krmax SNR2 SNR∞ SNR2 SNR∞ SNR2 SNR∞

103 300 5 0.017 0.032 0.033 0.067 0.016 0.032
104 1000 19 0.002 0.008 0.017 0.060 0.009 0.024
105 3200 118 - - 0.011 0.039 0.019 0.073
106 10000 368 - - 0.021 0.120 0.014 0.090

TOTAL TIMES (s) BEM F MM SCSD

Ndof f (Hz) krmax Time (s) Time (s) Niter Time (s) Niter

103 300 5 2.91 1.76 5 1.67 5
104 1000 19 162 15.7 7 8.07 7
105 3200 118 - 197 9 95.8 9
106 10000 368 - 2700 12 1400 12

Figure 1 – Time and accuracy comparison beetween direct BEM, FMM and SCSD computation.

and following signal to noise ratio gives the ac-
curacy :

SNR2 =

√√√√ 1
n

n∑
i=1

[
20 log 10

(∣∣∣∣∣ uiu∞i
∣∣∣∣∣
)]2

,

SNR∞ = max
i∈[1,n]

∣∣∣∣∣20 log 10
(∣∣∣∣∣ uiu∞i

∣∣∣∣∣
)∣∣∣∣∣ .

In this case, a piecewise linear approximation
with Brackage-Werner formulation was used to
solve boundary integral equation. As shown in
figure 1, MyBEM provides a good accuracy from
103 to 106 degrees of freedom Ndof . Moreover,
the SCSD seems to be significantly faster than
the FMM.

3 Conclusion
We provide a new promising fast convolu-

tion on unstructured grid method, and first re-
sults from concrete implementation in numeri-
cal solver gives good matching with well known
methods as FMM. Same results obtained by
MyBEM, not detailed in this abstract, are ob-
tained for the Maxwell equations.
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Abstract

Convolution Quadrature (CQ) methods are Laplace
transform type methods for the solution of time-
domain problems, usually using Boundary Inte-
gral Equations. Several new analytical results
on the convergence of the numerical solution of
acoustic problems computed using a CQ type
method with multistep schemes are presented.
We will show that it’s possible to achieve ex-
ponential convergence of the numerical solution
to the exact solution of the underlying time-
stepping scheme solution. The rate of conver-
gence relies upon the underlying time-stepping
scheme and upon the radii of analyticity of the
Laplace-domain boundary condition and solu-
tion, and so on the integral formulation. Actu-
ally, the integral formulation employed has a big
impact on the rate of convergence that can be
obtained. Numerical examples computed with
the BEM++ library will be presented.

Keywords: convolution quadrature, wave equa-
tion, boundary element method

1 Introduction

Convolution Quadrature (CQ) is an efficient tech-
nique for the solution of time-domain problems
using Boundary Element Methods with an in-
teresting property: independent frequency-domain
problems have to be solved [1, 2]. We use this
technique to solve the acoustic problem that fol-
lows:

∂2u

∂t2
(x, t)− c2∆xu(x, t) = 0, x ∈ Ωe,

u(x, 0) =
∂u

∂t
(x, 0) = 0,

u(x, t) = g(x, t) for x ∈ Γ,

(1)

where Ω ⊂ R3 is a compact obstacle, Γ = ∂Ω its
boundary and Ωe = R3\Ω̄ the exterior domain
where we solve the wave equation.

The idea is based on a Z-Transform of the
time steps of an underlying time-stepping scheme
and a simple (but accurate) trapezoidal rule to
approximate the inverse Z-Transform. For the
wave equation, this leads to a range of modified

Helmholtz problems. The time domain solution
is then synthesised by an inverse Z-transform.
Typically, the number of frequency problems is
chosen to be the same as the number of time
steps. However, in contrast to previous presen-
tations we decouple the number of frequency
solves from the number of time steps in order
to achieve a better accuracy. Actually, an ex-
ponential convergence to the solution of the un-
derlying time-stepping scheme is obtained [6].

2 Convolution Quadrature Methods

The time-domain solution, related to a multi-
step scheme, of (1) is obtained by the inverse
Z-transform, that is given as a simple contour
integral of the Laplace-domain variable Ud

ud(x, tn) =
1

2πi

∫
C

Ud(x, z)

zn+1
dz, (2)

where C is a contour around the origin in the
region of convergence of the Z-transform. Ud
is the solution of a frequency-domain problem,
actually the modified Helmholtz problem:(

γ(z)

c∆t

)2

Ud(x, z)−∆Ud(x, z) = 0, x ∈ Ωe,

Ud(x, z) = G(x, z), x ∈ Γ, (3)

where γ(z) is the generating polynomial of the
multistep scheme used, ∆t is the time step, c
is the speed of the sound in Ωe, and Ud(x, z) =∑∞

n=0 ud(x, tn)zn, andG(x, z) =
∑∞

n=0 g(x, tn)zn,
are the Z-Transforms of respectively the solu-
tion and the Dirichlet data. For example, for
Backward Euler it holds that γ(z) = 1− z. For
the contour integration, we use a circle of radius
λ: C = {z ∈ C : |z| = λ} for some appropriately
chosen λ > 0.

By choosing λ such that the Laplace-domain
solution Ud is analytic in the neighborhood of
the disk of radius λ > 0, we can take advan-
tage of the property of the exponential conver-
gence of the trapezoidal rule [4] to approximate
(2). The trapezoidal rule is performed with Nf

frequencies at the points zk = e
−2πi k

Nf with
k = 1, . . . , Nf . This leads to
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u
(Nf )
d (x, tn) :=

λ−n

Nf

Nf∑
`=1

Ud(x, λz`)

zn`
. (4)

The accuracy of computing u
(Nf )
d via (4) de-

pends on the number Nf of frequency problems
solved and on the ratio λ

λU
, with λU the radius

of analyticity of Ud.

3 Integral formulations and Convergence

In [6], we present for
∣∣∣ud(x, tn)− u(Nf )

d (x, tn)
∣∣∣

an estimate and an asymptotic estimate when
Nf →∞ that allow to choose λ and Nf to get a
desired accuracy. The error estimate relies upon
the radius of analyticity of the Laplace-domain
solution Ud of (3) and then on the location of
the closest scattering poles [3] and the eigenfre-
quencies related to the interior problem. These
eigenfrequencies, that play a major role in the
convergence, are result of the integral formula-
tion chosen. It is new to study the influence of
the integral formulation on CQ methods. Sev-
eral indirect integral formulations (first kind,
second kind and combined formulation with dif-
ferent combining coefficients) will be compared.
Figure 1 shows the absolute error of the solution
obtained with an indirect second kind formula-
tion for several λ (see also [6]).
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Figure 1: Absolute difference of the solution
with a reference solution for the scattering by
the unit sphere using indirect second kind for-
mulation for several different λ. The accuracy
obtained usually is indicated by Nt = Nf .

4 Conclusion

The convergence of CQ methods, actually of (4)
to (2), when the number of frequencies increases
is studied. The integral formulation used, the
number of frequencies and the radius λ of the

contour play a major role. Actually, the key
point is the location of the resonant poles and
the eigenfrequencies of the interior problem rel-
ative to the contour. Numerical results obtained
using the BEM++ library1 [5] will be shown.
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Using impedance transmission conditions in time domain - the application to thin
sheets for the eddy current model.
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Abstract

Impedance transmission conditions (ITC) are
used for the model reduction of eddy current
problems with thin conducting sheets. We show
how ITC derivated for frequency domain can be
applied for problems in time domain. Due to
the time convolution, the resulting systems ex-
hibit in general a nonlocal dependency in time.
For the time discretisation we use convolution
quadrature (CQ) and fast and oblivious convo-
lution quadrature method (FOCQ), developed
in [1, 2], see also [3].
Keywords: impedance transmission con-
ditions, convolution quadrature

Model problem

We consider a time dependent eddy current prob-
lem in the open bounded domain Ω, consisting
of insulating domain Ωd

ext and conducting sheet
Ωd

int of thickness d, where Ωd
ext = Ω \ Ω

d
int,

µσut −∆u = 0 in Ωd
int × (0, T ),

−∆u = f in Ωd
ext × (0, T ),

u(·, t) = 0 on ∂Ω× (0, T ),

u(·, 0) = 0 in Ω,

(1)

with fixed time T > 0 and source term f ∈
L2(0, T ;L2(Ω)) with f(·, 0) = 0. In frequency
domain the term ut in (1) is replaced by −iωû
(or in Laplace domain by sû). Here, ITC are ap-
proximate conditions on the mid-line Γ of Ωd

int,
which replace the first equation in (1). In [4, 5]
several ITC in the form

−[û] = T̂12{û}+ T̂13{∂nû},
−[∂nû] = T̂22{û}+ T̂23{∂nû},

(2)

are proposed.
In (2), û is the Laplace transform of (an ap-

proximation to) u, T̂ij some functions, which
depend on the choice of the ITC, [·] denotes the
jump, and {·} the mean value over Γ. With the

b
a

R

d

Ωd
ext

Ωd
int

Γ

Figure 1: Geometrical setting. Ωd
ext – insulating,

Ωd
int - conducting, Γ – interface on which the Ωd

int
is reduced.

Laplace inversion formula, we get

Kijg :=

∫ t

0
Tij(t− τ)g(τ) dτ

=
1

2πi

∫
γ
T̂ij(s)

∫ t

0
es(t−τ)g(τ)dτ ds, (3)

where Tij is the inverse Laplace transform of T̂ij .
The inner integral is the solution of the initial
value problem y′ = sy + g, y(0) = 0, which is
solved by time integration, e.g., a Runge-Kutta
method.

In case of ITC-1-0, ITC-1-1 and ITC-2-0, for
which only T̂22 is non zero, the model in the time
domain can be written as

−∆u = f in Ω× (0, T ),

[∂nu] +K22{u} = 0 on Γ× (0, T ),
(4)

with initial and boundary conditions as in (1).
A spatial discretisation of (4) leads then to the
mixed system

B11u(t) + B12λ(t) = ϕ(t) for t ∈ (0, T ),

K22B21u(t) + B22λ(t) = 0 for t ∈ (0, T ),

where u(t) and λ(t) are the coefficient vectors
for u(t) and [∂nu](t), B11 is the stiffness matrix
in Ω, B12,B21 and B22 are mass matrices on Γ.



Contributed Session: Tuesday 15:30–17:00 Room 0.014 291

10−5 10−4 10−3 10−2

10−8

10−7

10−6

10−5

10−4

10−3

10−2

2.87

3.04

Thickness d

ITC-1-0
ITC-1-1
ITC-2-0

Figure 2: Relative error over thickness d.

An approximation to K22B21u(tn), for n =
1 . . . N, (N+1)∆t = T , is obtained using Runge-
Kutta values ũj and∑n

j=0
(Wn−j ⊗B21)ũj (5)

with weighting matrices Wj , depending on T̂22.
Using CQ, the evaluation of (5) requires O(N2)
multiplications.

We use FOCQ for an efficient evaluation of (5).
Here, the effort to compute the convolution be-
haves only like O(N logN). Moreover, only log-
arithmicaly few linear combinations of ũj are
kept in memory [2].

Numerical results

ITC in frequency domain improve the accuracy
for thinner sheets, which however depend on the
frequency. For a time-dependent source, contin-
uous in frequency, we observe a convergence rate
of approximately 3 for the ITC-1-0, ITC-1-1 and
ITC-2-0 models, see Fig. 2. Numerical experi-
ments show a convergence in step size ∆t, which
corresponds to the order of underlying Runge-
Kutta method, see Fig. 3.
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Wave splitting for time-dependent scattered field separation
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Abstract

Starting from classical absorbing boundary con-
ditions, we propose a method for the separation
of time-dependent scattered wave fields due to
multiple sources or obstacles. In contrast to pre-
vious techniques, our method is local in space
and time, deterministic, and also avoids a priori
assumptions on the frequency spectrum of the
signal.

Keywords: Wave splitting, multiple scatter-
ing, absorbing boundary conditions

1 Introduction

When an incident wave illuminates a target, it
generates a scattered wave which carries infor-
mation about the obstacle. However, if the lo-
cation, spatial distribution or time dependence
of the original source are not precisely known,
or other undesired sources interfere with the sig-
nal, extraction of the scattered field by subtrac-
tion of the incident wave becomes non-trivial.

In the frequency-domain, various methods
are available to extract a single scattered field
from the superposition of multiple wave fields [1,
2]. In the time-domain, Potthast et al. [4] ap-
plied via Fourier transform the point source me-
thod, which relies on integral based formula-
tions. Here we propose a different approach,
which is local in space and time, deterministic,
and also avoids any a priori assumptions on the
frequency spectrum of the signal.

2 Wave splitting

We consider wave scattering from two bounded
disjoint scatterers in unbounded two- or three-
dimensional space, which are well separated, i.e.
which can be surrounded by two non-intersecting
spheres S1 and S2. In the unbounded region Ω
outside the two spheres, we assume that the
medium is homogeneous, isotropic and source-

free. Hence the scattered field u satisfies:

∂2u

∂t2
− c2∆u = 0 in Ω, t > 0, (1)

with constant wave speed c > 0. Moreover we
assume that u is initially confined to the inte-
rior of the two spheres. Hence it splits into two
unique wave fields u1 and u2 [3]:

u = u1 + u2 in Ω, t > 0, (2)

where each uk satisfies (1) and is purely outgo-
ing outside of Sk, k = 1, 2.

Now, let Γ denote a surface patch in three
dimensions or a curve segment in two dimen-
sions, not necessarily closed or connected. Given
the measured values of u on Γ, we wish to re-
cover the entire time history of u1 and u2. Since
each uk is outgoing, it can be written as a pro-
gressive wave expansion in inverse powers of dis-
tance. In 1980, Bayliss and Turkel [5] derived
a sequence of differential operators that annihi-
late the leading order terms in that expansion:

Bk[uk] = O

(
1

r2m+1
k

)
, k = 1, 2, (3)

where k identifies the local spherical coordinate
system (rk, θk, ϕk) centered about the origin of
the sphere Sk. Neglecting the error term in (3),
we thus obtain on Γ for j = 1, 2:

Bj [uk] = Bj [uk + uj ] = Bj [u], k 6= j. (4)

Since u is known on Γ, equation (4) yields a par-
tial differential equation for the unknown wave
field uk. In general, it will involve tangential,
normal and time derivatives. By rewriting the
normal derivative as a combination of tangen-
tial and radial derivatives, and then using (3) to
replace radial by time derivatives, the resulting
equation will involve only tangential and time
derivatives and thus be restricted to Γ.
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Figure 1: Snapshot of the total field. The inci-
dent wave originates from a point source, which
impinges on a sound-soft fish-shaped obstacle.

Clearly, appropriate initial and boundary con-
ditions must also be set for well-posedness.

3 Two-dimensional example

We consider a numerical experiment in two-space
dimensions with Bj in (4) set to the first-order
Bayliss-Turkel boundary condition from (3) with
m = 1. On a circular arc Γ, after replacing
normal by tangential and time derivatives, (4)
becomes[
αk(θk)

∂

∂t
+ βk(θk)

∂

∂θk
+ γk(θk)

]
(
√
rkuk) = Bj [u]

(5)
where αk(θk), βk(θk) and γk(θk) can be explicited.
Since (5) is hyperbolic, we set boundary condi-
tions according to its characteristics. Moreover
we set homogeneous initial conditions, since at
the initial time, all fields vanish in Ω.

Now, an incident wave originating from a
point source u1 generates a scattered field u2 as
it impinges upon a sound-soft fish-shaped inclu-
sion, see Fig. 1. To recover u1 at P1, we only
need to solve (5) on the short arc connecting
the two points θ1 = 0 and P1, due to the direc-
tion of the characteristics, see Fig. 1. In Fig. 2,
we display at location P1 the total field u to-
gether with u1, obtained from (5), and also u2
obtained by subtraction.

Figure 2: Recovery of wave fields u1 and u2
from total field measurements u at location P1.
Top: total field u. Middle: u1 recovered by solv-
ing (5). Bottom: u2 obtained by subtraction.
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Far field splitting by iteratively reweighted `1 minimization
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Abstract

The aim of far field splitting for time-harmonic
acoustic or electromagnetic waves is to decom-
pose the far field of a wave radiated by an en-
semble of several compactly supported sources
into the individual far field components radi-
ated by each of these sources separately. With-
out further assumptions this is an ill-posed in-
verse problem. Observing that far fields radi-
ated by compactly supported sources have nearly
sparse representations with respect to certain
suitably transformed Fourier bases that depend
on the approximate source locations, we refor-
mulate the far field splitting problem as a weighted
`1 minimization problem in the spirit of basis
pursuit. To this end we assume that some a pri-
ori information on the locations of the individ-
ual source components is available. We discuss
the equivalence of this minimization problem
with the far field splitting problem, consider a
numerical algorithm to approximate its unique
solution, and we propose an iterative strategy
to successively improve the required a priori in-
formation on the approximate source locations.

Keywords: Helmholtz equation, far field split-
ting, source splitting

1 Introduction

Given a compactly supported function f ∈ L2
0(R2)

and a fixed wave number κ > 0 we consider the
source problem for the Helmholtz equation

−∆u− κ2u = f in R2 , (1a)

lim
r→∞

√
r
(∂u
∂r
− iκu

)
= 0 for |x| = r . (1b)

It is well known that the unique solution u ∈
H1

loc(R2) to (1) has the asymptotic behavior

u(x) =
eiπ/4√

8πκ

eiκ|x|√
|x|

u∞(x̂) + O
(
|x|−3/2

)

as |x| → ∞, where x̂ := x/|x| and

u∞(x̂) =

∫
R2

e−iκx̂·yf(y) dy , x̂ ∈ S1 . (2)

We refer to f as the source and to u∞ as the
far field radiated by f .

2 Splitting far field patterns radiated from
well-separated domains

Suppose next that u∞ from (2) is the superpo-
sition

u∞ = u∞1 + · · ·+ u∞m (3)

of m far fields u∞1 , . . . , u
∞
m supported in well

separated balls Br1(z1), . . . , Brm(zm), i.e., |zj −
zl| � rj + rl for 1 ≤ j, l ≤ m, j 6= l. By this we
mean that there exist sources fj ∈ L2

0(Brj (zj)),
j = 1, . . . ,m, such that FBrj (zj)

fj = u∞j , where

the restricted far field operator FBrj (zj)
: L2(Ω) →

L2(S1) is given by

(FBrj (zj)
f)(x̂) :=

∫
Brj (zj)

e−iκx̂·yf(y) dy .

The decomposition on the right hand side
of (3) is uniquely determined. In fact, it follows
immediately from [3, Lemma 6] that

R(FBrj (zj)
) ∩R(FBrl

(zl)) = {0} , j 6= l .

On the other hand, the adjoint of the restricted
far field operator FBrj (zj)

, 1 ≤ j ≤ m, is the

Herglotz operator F∗Brj (zj)
: L2(S1) → L2(Ω),

(F∗Brj (zj)
g)(y) =

∫
S1

eiκx̂·yg(x̂) ds(x̂) ,

and using the one-to-one correspondence between
Herglotz wave functions and their kernels (cf. [1,
Theorem 3.15]) it follows that F∗Brj (zj)

is injec-

tive, and thus FBrj (zj)
has dense range. In this

talk we consider the inverse problem to split the
far field u∞ as in (3) into its individual compo-
nents u∞1 , . . . , u

∞
m .

Assuming that the approximate locations of
the individual source components are known a
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priori, we recently discussed in [2] a Galerkin
method for this far field splitting problem. More
precisely, this algorithm requires the centers and
the radii of well separated balls in space

Br1(z1), . . . , Brm(zm)

as above containing the supports of the indi-
vidual source components. The finite dimen-
sional subspaces used in this Galerkin scheme
are spanned by singular vectors of the restricted
far field operators FBr1 (z1)

), . . . ,FBrm (zm)) as-
sociated with the balls containing the individ-
ual source components, and the number of de-
grees of freedom is directly related to the size of
these balls. The Galerkin approach has both ad-
vantages and shortcomings: It is very fast and
highly accurate as long as the balls containing
the individual source components given as a pri-
ori information are sufficiently small relative to
their distances. However, if this is not the case
for whatever reasons (e.g., if the a priori infor-
mation is not sharp), then the Galerkin scheme
becomes ill-conditioned and the reconstructions
deteriorate.

The aim of the method presented in this
talk is to reduce the dependence of the recon-
structed far field components on the accuracy
of the given a priori information on the approx-
imate source locations. To this end we replace
the Galerkin approach, which may be consid-
ered as a finite dimensional least squares best
approximation problem, by a weighted `1 min-
imization problem in the spirit of basis pur-
suit. We prove that the unique solution to this
weighted `1 minimization problem coincides with
the solution to the far field splitting problem,
and we discuss its numerical approximation. Fur-
thermore, we propose an iterative strategy to
successively improve the available a priori infor-
mation by solving a sequence of these weighted
`1 minimization problems, where estimates of
the approximate locations of the individual source
components that are used as a priori informa-
tion for the next iteration are computed from
the value of the current solution. This also grad-
ually decreases the ill-posedness of the splitting
problem, and it significantly improves the qual-
ity of the reconstructions. We present a series
of numerical examples to demonstrate the per-
formance of this algorithm.
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Abstract

We present a high-order method for solving a volume-

surface integro-differential equation, which is used to

model the acoustic and electromagnetic scattering prob-

lem for penetrable, inhomogeneous media with variable

material properties in two-dimensions. The rapid con-

vergence is achieved through suitable changes of vari-

ables aimed at analytically resolving the singularities

present in the integral operator. This procedure also

employs efficient and accurate interpolation schemes for

off-grid evaluation of the discrete data needed by quadra-

tures as well as for accurate approximations of differen-

tial operators.

Keywords: Wave scattering, High-order meth-
ods, Penetrable inhomogeneous media.

Introduction

We present a high-order method to solve an in-
tegral equation (1), see [4],

ψ(r) = ψinc(r) + (Kψ)(r) + (Sψ)(r), (1)

with (Kψ)(r) =
∫
Ω

Ge(r, r
′)(V ψ)(r′) dv′, and

(Sψ)(r) =
∫
∂Ω

Ge(r
′, r′)F (r′) dσ′,

that is equivalent to the scattering problems
modeled by Bergmann’s equation (2),

ρ(r)∇ ·
[

1

ρ(r)
∇ψ(r)

]
+ κ(r)2ψ(r) = 0, (2)

where ψ is the unknown field, ρi, ρe and κi, κe
are the densities and the wave-numbers inside
the obstacles Ω and exterior to Ω, respectively,
while ψ and (1/ρ)∂ψ/∂n are continuous across
the interface of Ω and ψ−ψinc satisfies the Som-
merfeld radiation condition. The kernelGe(r, r

′) =
1/4H1

0 (κe|r−r′|) , V ψ = (κ2
e−κ2

i )ψ+ρ−1
i (∇ρi)·

∇ψ, and F = {ρe/ρi − 1}∂ψ/∂n′. Recall that
(1) models the electromagnetic scattering prob-
lem with ψ = Ez, ρ = µ in TM-mode, and
ψ = Hz, ρ = ε in TE-mode, in addition to the
two-dimensional acoustic scattering problem.

To our knowledge, only limited attempts have
been made toward obtaining high-order numer-
ical solution to this problem in its general con-
figuration. One among them is [2], where the

authors provide a fast solver for the problem in
three dimensions, fails to achieve rapid conver-
gence. The main goal of the present work is
to extend the ideas presented in [3] and [1], to
produce a high-order method for solution of a
general version of the scattering problem where
density vary inside the obstacle and is allowed
to be discontinuous across the interface ∂Ω.

We begin by splitting the integral domain,
using a fixed partitions of unity {ωp(r) : p =
1, . . . , PB, PB + 1, . . . , P = PB + PI}, into PB

number of boundary patches and PI number of
interior patches, where boundary patches are
homeomorphic to (0, 1)×(0, 1] and interior patches
are homeomorphic to (0, 1)×(0, 1) via a smooth
invertible parametrizations rp = rp(s, t) for p =
1, . . . , P . This allows us to rewrite the volume

operator K as (Kψ)(r) =
P∑

p=1

(Kpψ)(r), where

Kpψ)(r) =

∫ 1

0

∫ 1

0
Ge(r, r

′)Vp(r
′)ds′dt′,

Vpψ = (κ2
e−κ2

i (r
′
p))ψ(r′p)+ρi(r

′
p)
−1(∇ρi(rp(s′, t′)))·

∇ψ(rp(s
′, t′))wp(r

′)Jp(r
′), r′p = rp(s

′, t′) and Jp
is the Jacobian of the transformation rp. We
observe that {ωp(r|t=1), p = 1, . . . , PB} serves
as a partitions of unity for ∂Ω, which enable us
to rewrite the surface operator S as (Sψ)(r) =
PB∑
p=1

(Spψ)(r), where

(Spψ)(r) =

∫ 1

0
Ge(r, r

′)Fp(r
′)ds′, and Fpψ =

{ρe/ρi(r′p)−1}∂ψ(r′p)/∂n
′(r′p)ωp(r

′|t=1)JB
p (r′),

where JB
p is the surface Jacobian.

1 Numerical Schemes

We place our grid in such a way that, it simul-
taneously conforms to the requirements of the
high order quadratures for approximations of
volume and surface integral operators. Before
discussing the approximation of integral oper-
ators, we briefly describe our approach for the
computation of differential operators in (1).
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Table 1: Convergence study for scattering by a disc
centered at (0,0) with radius 1, with κi/κe =

√
2 and

ρe/ρi = 10−2. NB
u , NB

v are number of discretization
points in a boundary patch and NI

u ,NI
v are number of

discretization points in an interior patch.

NB
u NB

v NI
u NI

v Rel. Err. Ord. Conv.

16 8 16 16 4.6e-02 -
32 16 32 32 1.7e-02 1.42
64 32 64 64 3.6e-04 5.56
128 64 128 128 3.38e-06 6.77

Differential Operators: We employ an FFT
based efficient and accurate two dimensional in-
terpolation scheme, see [1], for off-grid evalu-
ation of the discrete data. This allows us to
compute required derivatives using finite differ-
ence approach with very fine step size, yielding
highly accurate approximations in an efficient
manner.

Surface Integral: For computing Spψ when
r ∈ ∂Ω or is close to the boundary, we adopt an
approach similar to the one discussed in [1]. As
a first step, the singularity in the kernel is local-
ized using a floating partition of unity. In this
region, a change of integration variable centered
around the point of singularity with vanishing
derivatives at the origin, analytically resolves
the logarithmic singularity of the kernel. We
then use a high-order quadrature rule to inte-
grate accurately. The case when r is sufficiently
away from the surface, on the other hand, can
be integrated in a straightforward manner ow-
ing to the smoothness of the underlying inte-
grand.

Volume Integral: To integrate over an inte-
rior patch, we adopt the methodology similar to
the one introduced in [3]. Once singularity has
been extracted out using a floating partition of
unit, the smooth and bi-periodic integrands are
integrated using trapezoidal rule. The singular
part are handled by changing to polar variables
centered around the singularity followed by an
application of trapezoidal rule for accurate ap-
proximation of the integral.

Our methodology to integrate over bound-
ary patches, on the other hand, follows closely
the steps prescribed in [1] where the numerical
approach utilizes a change of variable in s′ vari-
able that not only resolve the kernel singular-
ity, but also helps overcome the near singular
behavior of the integrand. We refer the read-
ers to [1] for a more detailed discussion on this

methodology.

2 Numerical Results

In Table 1, we present the convergence of the
proposed numerical scheme for the scattering
of a plane wave incidence by a disc with con-
stant material properties where a series solution
is available for direct comparison.

Figure 1: Incident field and real part of the computed
field inside a disc.

(a) Incident field (b) Real Part of the
computed field

In subfigures (a) and (b) of Figure 1, we
present the incident field and real part of the
field inside of a disc of radius 0.8λ, centered at
(0,0) with κi/κe =

√
2 and ρe/ρi = 10−2 with a

relative error of 10−6.
Acknowledgment: Akash Anand gratefully
acknowledges support from SERB-DST through
contract No. SERB/F/5152/2013-2014.
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A Super-Algebraic Convergent Solver for Systems of Biperiodic Integral Equations and
Applications to Scattering of Electromagnetic Waves by Biperiodic Gratings
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Abstract

We present a numerical solver for electromag-
netic scattering in 3D. The solver has super-
algebraic convergence rate, provided the surface
is smooth enough. From a theoretical point of
view, we show the basic ideas – ending up with
a formulation of the main convergence theorem.
And for illustrating some applications, we give
numerical examples for a bounded obstacle and
for an obstacle whose surface is biperiodic.

Keywords: scattering, electromagnetic waves,
boundary integral equation, collocation method

1 Problem Setting

In the following let Ω ⊆ R3 be an unbounded
domain with ∂Ω = graph(f), where f ∈ C∞(R2,R)
is assumed to be Q-periodic. We consider Max-
well’s equations

∇× E − ikH = 0

∇×H + ikE = 0
in R3 \ Ω

with boundary condition n × E = 0 on ∂Ω for
the total field. In addition, appropriate period-
icity and radiation conditions have to be posed.

To solve this problem, we make an ansatz

E(x) = ∇×
∫
∂Ω
G(x, y)ϕ(y) ds(y),

H(x) =
1

ik
∇× E(x),

x ∈ R3\Ω,

with density ϕ, being a tangential field on ∂Ω,
and the quasi-periodic Green’s function G for
the Helmholtz equation [1,3]. This leads to the
boundary integral equation

ϕ+Mϕ = ψ on ∂Ω, (1)

where ψ is determined by the incident field and

Mϕ(x) = 2

∫
∂Ω
n(x)×

[
∇x×

(G(x, y)Pϕ(y))
]

ds(y), x ∈ ∂Ω.

P is the orthogonal projection onto the tangen-
tial space on ∂Ω and appears for numerical rea-
sons. It simplifies the required spaces.

Unique solvability of a variational formula-
tion of (1) in Sobolev spaces of quasi-periodic
functions is obtained by adapting correspond-
ing ideas in [1].

2 System of Integral Equations

Let Q = (−π, π)×(−π, π). For s ≥ 0 we denote
by Hs

Q the space

Hs
Q =

{
ϕ ∈ L2(Q)

∣∣ ∑
µ∈Z2

(1 + |µ|2)s|ϕµ|2 <∞
}
,

where ϕµ are the Fourier coefficients of ϕ. Fix-
ing some n ∈ N, we set Hs

Q = (Hs
Q)n. Prob-

lem (1) can be reformulated as a system of Q-
periodic integral equations: for given ψ ∈ Hs

Q,
find ϕ ∈Hs

Q such that

ϕi(t)−
n∑
j=1

∫
Q
k(i,j)(t, τ)ϕj(τ) dτ = ψi(t)

t ∈ Q, i = 1, . . . , n. (2)

All integral operators turn out to be at most
weakly singular so that Fredholm’s theory is ap-
plicable. A unique solution to (2) can be shown
to exist.

3 Numerical Method

The method is a variant of the method of Bruno
and Kunyanski, see [4] and references therein.
A convergence analysis of this variant was first
given in [1] and subsequently improved by the
authors in [2]. This variant is a fully-discrete
collocation method in a space of trigonometric
polynomials.

First of all, the kernel functions in (2) have a
representation k = k̂+ ksmooth, where ksmooth ∈
C∞(R2 × R2) is Q-periodic in both variables
while k̂ ∈ C∞((Q × Q) \ {(t, t) | t ∈ Q}) is
weakly singular but also Q-periodic with re-
spect to both arguments. Here and in the fol-
lowing we suppress the superscripts and assume
n = 1 for the moment for simplicity. To remove
the weak singularity, we use the substitution
τ = t+ Π(p), where

Π(p) = r
%

π

(
cos θ
sin θ

)
, p = (r, θ)> ∈ Q,
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with some fixed 0 < % < π. Then, for ϕ ∈
Hs
Q and t ∈ Q, we write

∫
Q k(t, τ)ϕ(τ) dτ =

J1ϕ(t) + J2ϕ(t) with the integral operators

J2ϕ =

∫
Q
ksmooth(·, τ)ϕ(τ) dτ and

J1ϕ =

∫
Q
kpolar(·, p)χ1(Π(p))ϕ(·+ Π(p)) dp

and where χ1 denotes some appropriate cut-off
function. Now, kpolar can be considered as a
smooth and Q-periodic function (in both argu-
ments), too. Denoting by TN the space of trigo-
nometric polynomials up to order N and by PN
the projection operator onto TN by trigonomet-
ric interpolation, we introduce approximations
of J1 and J2 in the form

J2,Nϕ(t) =

∫
Q
PN [ksmooth(t, ·)ϕ](τ) dτ

and, due to reasons of stability and reduced
computational costs,

J1,M,M̃ϕ(t) =

∫
Q
PM
[
kpolar(t, ·)

OM
[{
χ2 ÕM̃ [χ3 ϕ(t+ ·)]

}
◦Π
]]

(p) dp,

where OM is the L2-orthogonal projection onto
TM , with ÕM̃ a scaled version of it, and χ2, χ3

are again some cut-off functions. The operator
J1,M,M̃ is of non-standard form, which requires
some effort for the analysis of its approximation
behaviour.

For the general case, n > 1, we obtain a
fully-discrete system

(I − PNJ1,M,M̃ − PNJ2,N ) ϕ̂ = PNψ,

for ϕ̂ ∈ T N = (TN )n. By a straightforward
procedure we can generalize the following con-
vergence result, see [2, Theorem 3.12].

Theorem 1 Suppose I − J1− J2 ∈ L(Hs
Q) and

boundedly invertible for all s ≥ 0. Let α ∈
(0, 1/3) and % = (π/N)α. Assume σ ≥ 0. Then
for sufficiently large s > 1, there exists C,N0 >
0 such that

‖ϕ̂− ϕ‖Hσ
Q
≤ C N (σ−s)(1−3α)/2‖ϕ‖Hs

Q

for all N ≥ N0.

Here, ϕ denotes the exact solution. This super-
algebraic convergence rate was verified by sev-
eral numerical examples in [2].
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A system of boundary integral equations for transient wave-structure interaction
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Abstract

In this paper we present a system of time-domain
boundary integral equations describing the scat-
tering of acoustic waves by an elastic obstacle.
The analysis of well-posedness is done simul-
taneously at the continuous and semidiscrete
level. We use Laplace domain techniques for
the analysis of well-posedness and for the study
of the error due to Galerkin semidiscretization
of the integral system.

Keywords: boundary integral equations, wave-
structure interaction, vector-valued distributions

1 The differential system

We will consistently use evolution equation no-
tation for our partial differential equations. Like
this, a function of space-and-time variables will
be thought as a function of time with values in a
vector space of functions of the space variables.
Differentiation with respect to the space vari-
ables will be written with the usual symbols of
vector calculus (gradient, divergence, laplacian)
without making any reference to the space vari-
ables. Differentiation with respect to time will
be written with an upper dot. Time-domain
integral operators and potentials will be writ-
ten in convolutional notation, emphasizing this
same effect: considered as vector- or operator-
valued distributions of the time variable, they
correspond to causal convolution of distribu-
tions of a single variable.

Consider a bounded Lipschitz domain (pos-
sibly non-connected) Ω− ⊂ Rd with boundary
Γ and exterior Ω+. Let us assume that a lin-
early elastic material, subject to small deforma-
tions, occupies Ω−. We characterize the mate-
rial properties of this object by its two Lamé
parameters and its mass density. This means
that the displacement field satisfies the elastic
wave equation

ρsü = divσ(u), (1)

where

σ(u) = µ(∇u + (∇u)>) + λ(∇ · u) I

is the stress tensor for a Hookean material. The
normal traction on Γ is denoted t(u) = σ(u)ν,
where ν is the unit normal vector field on Γ
pointing from Ω− to Ω+.

An acoustic field is measured on a fluid sur-
rounding Ω−. The interaction [3] will be trig-
gered by a given incident wave vinc. The total
wave vtot = v+vinc is decomposed as the sum of
the incident wave and a scattered wave, which
satisfies the acoustic wave equation

c−2v̈ = ∆v (2)

and a radiation–causality condition that can be
expressed in simple terms: at every time t > 0
the support of v is contained in a ball of radius
that grows proportionally to ct. The interaction
is mathematically represented by two transmis-
sion conditions:

u̇ +∇vtot · ν = 0 (3)

and
t(u) + ρf v̇

totν = 0. (4)

The parameters c and ρf are the speed of waves
and density of the acoustic fluid. At time t =
0 we assume that the incident wave has not
reached the elastic obstacle and therefore the
solid is at rest and the only acoustic field is the
incident one.

The simplest approach to prove that (1)-(4)
is well posed consists of taking Laplace trans-
forms of the equations and write a variational
formulation [1]. Assuming that vinc is a tem-
pered causal distribution with values in

H1
∆(O) := {v ∈ H1(O) : ∆v ∈ L2(O)},

where O is an open neighborhood of Γ, we can
prove that (1)-(4) has a unique solution (u, v)
which is a causal Laplace transformable distri-
bution with values in H1

σ(Ω−)3×H1
∆(Ω+), where

H1
σ(Ω−) :={u ∈ H1(Ω−)3 : σ(u) ∈ L2(Ω−)3×3}.
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2 An equivalent integral system

The layer potentials associated to the acoustic
wave equation around Γ can be defined as de-
termining the unique causal H1

∆(Rd \ Γ)-valued
solution v = S ∗ η −D ∗ φ of the wave equation

c−2v̈ = ∆v

satisfying the transmission conditions

γ−v − γ+v = φ,

∂−ν v − ∂+
ν v = η,

where the superscripts ± are used to tag traces
and normal derivatives from Ω±. Four retarded
integral operators can be defined as follows:

V ∗ η := γ−(S ∗ η) = γ+(S ∗ η),

K ∗ φ := 1
2γ
−(D ∗ φ) + 1

2γ
+(D ∗ φ),

J ∗ η := 1
2∂
−
ν (S ∗ η) + 1

2∂
−
ν (S ∗ η),

W ∗ φ := −∂−ν (D ∗ φ) = −∂+
ν (D ∗ φ).

Definitions in very much the same spirit can be
given for the elastic retarded layer potentials
and operators, which we will denote with the
same letters in boldface. We finally need two
operators related to the normal vector field:

Nφ := φ · ν, Ntη := ην.

This work relates the system (1)-(4) with the
following system of integral equations:

W ∗ φ+ ρfNtV ∗ (Nφ̈) (5)

+ρf (Nt(K ∗ φ̇)−J ∗ (Nφ̇))

= −ρfNt∂ν v̇
inc

+ρf (−1
2Ntγv̇inc + J ∗ (Ntγv̇inc))

ρf (N(K ∗ φ̇)− J ∗ (Nφ̇)) (6)

+ρ2
fNV ∗ (Ntφ̈) + ρfW ∗ φ

= ρf (1
2∂νv

inc + J ∗ ∂νvinc)

−ρ2
fNV ∗ (Ntγv̈inc)

In this work we prove that the wave-structure
interaction problem (1)-(4) is equivalent to the
system (5)-(6) in the sense that the unknowns of
the latter are related to the values of the former
by

φ = γ−u, φ = γ+v.

We also show that the system (5)-(6) admits
a unique solution, even after Galerkin semidis-
cretization in space with any discrete pair Y h×

Yh ⊂ H1/2(Γ)d × H1/2(Γ). The study also in-
cludes mapping properties for the solution of
(5)-(6) and the reconstruction of the solution of
(1)-(4) using integral representation formulas.
It also incorporates the study of the effect of
semidiscretization in space. This is done with
techniques developed in a systematic way in [4],
but going back to the seminal work [1]. Follow-
ing [2], the analysis leaves the full discretization
with Lubich’s Convolution Quadrature ready to
be applied and analyzed.
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Spectral properties of selfadjoint rational operator functions and applications to wave
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Abstract

In this paper we analyze operator-valued func-
tions, where frequency dispersive material prop-
erties lead to a rational nonlinearity. In partic-
ular, the analysis applies to wave propagation
in photonic crystals when the λ-dependent per-
mittivity is of Lorentz type and losses are ig-
nored. The corresponding block operator ma-
trix is then selfadjoint with a non-empty essen-
tial spectrum.

Keywords: nonlinear eigenvalue problem, block
operator matrix

1 Introduction

Block operator matrices are frequently used to
study coupled systems of partial differential equa-
tions but the theory is also an indispensable tool
for analyzing operator functions. The studied
rational operator function will be analyzed by
considering the corresponding selfadjoint block
operator matrix.

2 Operator formulation

LetH, Ĥ, and Ĥ` be infinite dimensional Hilbert
spaces and let B` : Ĥ` → H, ` = 1, 2, . . . de-
note bounded linear operators. Moreover, as-
sume that A : H → H is a self-adjoint operator
with compact resolvent that is bounded from
below. In this work we consider rational opera-
tor functions in a Hilbert space H of the form

S(λ) = A− λ−
L∑

`=1

B`B
∗
`

c` − λ
, λ ∈ C \ {c1, c2, . . . }

(1)
with c1 < c2 < · · · < cL, domS(λ) = domA.

Set Ĥ := Ĥ1⊕· · ·⊕ĤL, then S is the Schur
complement of the operator matrix A in the

Hilbert space H̃ = H⊕ Ĥ given by

A =

(
A B
B∗ C

)
=


A B1 B2 · · · BL

B∗
1 c1 0 · · · 0

B∗
2 0 c2 · · · 0
...

...
...

. . .
...

B∗
L 0 0 · · · cL

 ,

(2)
where domA = domA ⊕ Ĥ. The block opera-
tor matrix A is selfadjoint and bounded from
below with essential spectrum {c1, c2, . . . , cL}
[1, 8]. Hence, we can apply the classical varia-
tional characterisation of the eigenvalues below
c1 [7].

In recent years, it has been an increased in-
terest in numerical analysis of selfadjoint spec-
tral problems with non-empty essential spec-
trum. Points in the discrete spectrum, which
are enclosed in between two points of the essen-
tial spectrum are called non-variational eigen-
values since the classical min-max principle only
applies below the minimum of the essential spec-
trum. However, variational principles can in
some cases also be established above the mini-
mum of the essential spectrum and we will con-
sider such a case. In this work, we establish
variational principles in (c`, c`+1) without pos-
tulating that the infimum of the Rayleigh func-
tional exists [6]. Moreover, we apply the new
theory to an unbounded operator function with
periodic coefficients. The main applications for
this operator function are photonic crystals and
periodic waveguides. These nano-sized struc-
tures can be used to control the flow of light
and the rational terms in the function (1) is
a consequence of frequency dependent material
parameters [2–5]. The block operator matrix
is discretised with a high order finite element
method and several examples illustrate the gen-
eral theory. In particular, we show the connec-
tion between eigenvalue accumulation at c` and
a numerical approximation of the corresponding
singular sequence.

This talk is based on a joint work with Heinz
Langer and Christiane Tretter [6].
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Abstract

Dielectric resonators have several applications
in photonics that vary from optical switching
devices to lasers. The computation of scatter-
ing resonances with a finite element method re-
quires an outgoing wave condition. For this,
we compare two well known methods: Dirich-
let to Neumann maps (DtN) and the perfectly
matched layer (PML) [1, 2]. In particular, we
study systems where the materials are characte-
rized by a complex permittivity function ε(r, ω).
We use the Lorentz-Drude model for the fre-
quency dependent material and discretize the
resulting nonlinear eigenvalue problem with a
high-order finite element method. The com-
puted eigenvalues show an accumulation towards
the poles of the Lorentz-Drude model and we il-
lustrate with numerical examples the behavior
of the solutions when the eigenvalues approach
these poles. Moreover, we show that the num-
ber of spurious eigenvalues can be reduced by
using a high-order method.

Keywords: nonlinear eigenvalue problem, per-
fectly matched layer, non-selfadjoint

Introduction

Metallic and dielectric resonators in unbounded
domains are a keystone in photonic circuits. In
this work we compute scattering resonances [3],
which are closely related to the localization of
energy peaks of an incoming plane wave. In disk
or sphere-shaped resonators the so-called whis-
pering gallery modes feature extremely high Q-
factors, when studying scattering of electromag-
netic waves. These resonant modes exhibit en-
ergy peaks that can be used as ultra narrow
optical filters.

Problem formulation

The use of the DtN for resonance problems of
the Helmholtz type posed on exterior domains,
will always give raise to a nonlinear eigenvalue
problem involving transcendental functions in
dimensions 2 and 3. Meanwhile, for frequency

independent material parameters the PML
results in a linear eigenvalue problem.

Metals and many dielectrics typically show a
strong dispersive behavior at optical frequencies
and we use the Lorentz-Drude model to take
this frequency dependency into account:

ε(ω) = ε∞ +

Np∑
j

ξ2j
η2j − ω2 − iγj ω

(1)

where Np is the number of poles in the ratio-
nal model and ε∞, ξj , ηj and γj are material
dependent coefficients.

The use of the DtN results in a fully nonlin-
ear eigenvalue problem, while the PML method
produces a rational eigenvalue problem that can
be linearized in different ways [4,5]. We choose
a Schur complement method as it results in a
significant reduction of the degrees of freedom
of the discrete system.

Using the PML approach the eigenvalue pro-
blem for the transverse magnetic (TM) polar-
ization reads

∇ · (A∇u) + ω2αα̃ ε(r, ω)u = 0 (2)

where ω is the spectral parameter, α, α̃ and the
matrix A are PML coefficients. The permitti-
vity ε is one outside the scatterer and given by
a Lorentz-Drude model (1) inside the scatterer.
Note that the operator-valued function used to
model the resonances is always non-selfadjoint,
where the corresponding problem with quasi-
periodic boundary conditions (photonic crystal)
is selfadjoint if γj = 0, j = 1, . . . , Np [6].

We discretize in space by using a high order
finite element method and observe that for both
DtN and PML spurious eigenvalues appear if
the discretization is not sufficiently good.
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Abstract

Electromagnetic material properties are in gen-
eral characterized by complex-valued functions,
which depend on the frequency ω. The spec-
tral parameter relates often to the frequency,
leading to spectral analysis of operator-valued
functions. We study problems where the ω-
dependent permittivity is of Lorentz type, which
implies that the nonlinearity is rational. If losses
are ignored the problem can be analyzed by con-
sidering the corresponding selfadjoint block op-
erator matrix. However, in this work the losses
are included and the block operator matrix is
non-selfadjoint. The analysis applies for exam-
ple to wave propagation in metallic photonics
crystals, which are attractive materials for con-
trolling electromagnetic waves.

Keywords: nonlinear eigenvalue problem, block
operator matrix, non-selfadjoint operator

1 Introduction

Conservative photonics crystals are considered
in the vast majority of publications and con-
siderable mathematical progress has been made
[1]. However, dispersion and material losses
(absorption) in lossy dielectrics and metals sig-
nificantly change the wave propagation through
the crystal. There are only a few mathematical
investigations of the absorbing case [2,3] and, to
our knowledge, no detailed investigation of the
spectral properties of common material models
such as the Lorentz model.

2 Operator formulation

Let H and Ĥ be infinite dimensional Hilbert
spaces and let B : Ĥ → H denote a bounded
operator. Assume that A : H → H is a self-
adjoint operator with compact resolvent that
is bounded from below. Let d ≥ 0 and set
θ =

√
c− d2/4, in this work we consider for

ω ∈ C\{±θ − id/2} rational operator functions

T (ω) : H → H of the form

T (ω) = A− ω2 −B c− idω
c− idω − ω2

B∗, (1)

with c ≥ 0 and dom T (ω) = domA. If the
damping coefficient d is set to 0 it is convenient
to study the spectrum problem with spectral
parameter λ = ω2 which can be linearized to a
selfadjoint block-operator matrix. This spectral
problem is studied in [5]. The block operator A
corresponding to the function T (ω) is defined
as

A =



0 A
θ − 1

2 id√
2θ

B
θ + 1

2 id√
2θ

B

I 0 0 0

0
θ − 1

2 id√
2θ

B∗ θ − 1
2 id 0

0 −
θ + 1

2 id√
2θ

B∗ 0 −θ − 1
2 id


,

(2)
where dom A= H⊕domA⊕Ĥ⊕Ĥ. The block
operator matrix A is similar to the lineariza-
tion obtained in [6], where the finite dimen-
sional case was studied. It is then shown that
the essential spectrum of A is given by the two
poles of the rational problem and that the dis-
crete part of the spectrum of A coincides with
the spectrum of T (ω). The block operator ma-
trix A is clearly non-selfadjoint for each value
of the d. However for d = 0, we prove that A
is selfadjoint in a Krein space K [4,7]. Damped
problems, 2

√
c > d > 0, can then be studied as

a perturbation of a block operator matrix that
is selfadjoint in a Krein space. Hence, it possi-
ble to write the block-operator matrix as

A = A< + iA=, (3)

whereA< is selfadjoint inK and iA= is a bounded
skew-symmetric perturbation growing with d.
This is used to show that the imaginary part of
the eigenvalues of A is negative and to obtain
a lower bound for the imaginary part. Further-
more, it is shown that as the real part of the
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eigenvalues approaches infinity the imaginary
part approaches zero in at least quadratically
pace.
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Abstract

The Maxwell-Klein-Gordon equation (MKG) de-
scribes the motion of a charged particle in an
electromagnetic field. It is described by a set
of coupled nonlinear equations for a complex
scalar field z(t, x) and a four-vector potential
(Φ(t, x),A(t, x)). In the Coulomb gauge, i.e.
divA ≡ 0, the MKG equation reads

(
∂t
c

+ i
Φ

c

)2

z −
(
∇− iA

c

)2

z + c2z = 0,

∂ttA− c2∆A = P
[
cRe (iz∇z)−A |z|2

]
,

∆Φ = Re (iz (∂t − iΦ) z) /c2,
(1)

where P[J ] denotes the projection of J : Rd →
Rd smooth enough onto its divergence-free part.

Solving this equation in the non-relativistic
limit regime c � 1 is numerically very delicate
as the solution becomes highly oscillatory in
time. In order to resolve the oscillations, stan-
dard numerical time integration schemes require
severe time step restrictions.

The idea to overcome this numerical chal-
lenge is to filter out the high frequencies explic-
itly and asymptotically expand the exact solu-
tion with respect to the small parameter c−2

as in [1] such that the problem reduces to a
Schrödinger-Poisson system independent of the
large parameter c, which we can solve very ef-
ficiently. Finally we obtain an approximation
z0(t, x) which gets closer to the exact solution
the larger c gets.

Keywords: highly oscillatory, Maxwell-Klein-
Gordon, non-relativistic limit

1 Introduction

In order to get familiar with the ideas of deriv-
ing such an approximation, for sake of simplicity
we neglect the influence of the vector potential
A at first, i.e. we set A ≡ 0, and we consider
periodic boundary conditions.

Hence our starting point in this paper is the
Klein-Gordon equation coupled to a scalar real

potential Φ on the torus Td with smooth initial
data, i.e.



(
∂t
c

+ i
Φ

c

)2

z + 〈∇〉2c z = 0,

∆Φ = Re
(
i
z

c
D0z

)
,

z(0) = ϕ, D0z(0) = 〈∇〉−1
c ψ,

(2)

where 〈∇〉c :=
√
−∆ + c2, D0z := 1

c (∂t + iΦ)z.
The idea is now to rewrite (2) as a first order

system for functions u, v such that
∂t

[
u
v

]
= ic 〈∇〉c

[
u
v

]
− i

2
Φ+

[
u
−v

]
− i

2
Φ−
[
v
−u

]
,

∆Φ =
1

4c
Re

(
(u+ v) 〈∇〉c (u− v)

)
,

u(0, x) = ϕ− iψ, v(0, x) = ϕ− iψ,

where
Φ± := Φ± 〈∇〉−1

c Φ 〈∇〉c .

In particular we have that z = 1
2(u+ v).

Applying a Taylor series expansion to 〈∇〉c
and using the ansatz[
u
v

]
(t, x) = eic

2t

[
u0

v0

]
(t, x)+

∞∑
n=1

c−2neic
2t

[
un
vn

]
(t, x)

then yields a Schrödinger-Poisson system for the
first terms in the expansion, i.e. u0, v0 satisfy

∂t

[
u0

v0

]
= −i1

2
∆

[
u0

v0

]
− iΦ0

[
u0

−v0

]
∆Φ0 =

1

4
(|u0|2 − |v0|2),

u0(0, x) = ϕ− iψ, v0(0, x) = ϕ− iψ,

(3)

which are the so-called limit equations, cf. [2].
Note that this Schrödinger Poisson system is

independent of the large parameter c. Hence it
can be solved numerically very efficiently with-
out time step restrictions by using for instance
a Strang splitting method.
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The numerical advantage is that now we have
an approximation

z0(t, x) =
1

2

(
eic

2tu0(t, x) + e−ic
2tv0(t, x)

)
such that z(t, x) = z0(t, x) +O

(
c−2
)
, see Theo-

rem 1 below, where u0 and v0 can be computed
efficiently.

2 Asymptotic error in Hs

First we state the asymptotic approximation er-
ror of z0.

Theorem 1 Let s > d
2 , and let ϕ,ψ ∈ Hs+4

the initial data of (2). Then there exists T > 0
such that

‖z(t)− z0(t)‖s ≤ c
−2K(T,m0,m1,m2) ∀t ∈ [0, T ],

where

m0 = max{‖ϕ‖s+4 , ‖ψ‖s+4 , },
m1 = max

t∈[0,T ]
(‖u(t)‖s+2 + ‖v(t)‖s+2),

m2 = max
t∈[0,T ]

(‖u0(t)‖s+4 + ‖v0(t)‖s+4).

For the Rd setting see [2].
Idea of the proof: The error ‖z(t)− z0(t)‖s

can be estimated by applying the triangle in-

equality and then estimating
∥∥∥u(t)− eic2tu0(t)

∥∥∥
s

and
∥∥∥v(t)− eic2tv0(t)

∥∥∥
s
. In the mild formula-

tion of u and eic
2tu0 the dominant terms are of

type eic〈∇〉cξu(ξ) and ei(c
2− 1

2
∆)ξu0(ξ). Then we

use that eic〈∇〉ct as well as ei∆t is an isometry
in Hs and together with the estimate for some
w0 ∈ Hs+4, i.e.∥∥∥∥c 〈∇〉cw0 − (c2 − 1

2
∆)w0

∥∥∥∥
s

≤ c−2C ‖w0‖s+4 ,

after some calculation we find an inequality such
that Gronwall’s lemma applies. �

3 Error of the method

Next we apply a Strang splitting method with
time step size τ < 1 to the system (3), where
we solve the kinetic part and the potential part
separately. Note that in the potential part Φ0 is
constant. Thus, we can solve both subproblems
exactly in time.

Hence for sufficiently smooth initial data the
error of un0 ≈ u0(tn), tn = nτ, n = 0, 1, 2, . . .
satisfies ‖u0(tn)− un0‖s ≤ Cτ2, see [4].

Setting the numerical approximation as
zn0 := eic

2tnun0 + e−ic
2tnvn0 ≈ z(tn), we can apply

the estimate of section 2 and obtain the main
result of the paper, namely that

‖z(tn)− zn0 ‖s ≤‖z(tn)− z0(tn)‖s + ‖z0(tn)− zn0 ‖s
≤C

(
c−2 + τ2

)
.

Note that for large values of c only the time inte-
gration error of the splitting scheme is relevant.
For more information on splitting methods we
refer to [3] and [4].

4 Work in progress

Our aim is to also construct efficient numerical
time integrators for the full MKG (1) on Td.
As stated in [2] on Rd, we expect that the cor-
responding limit equations for c→∞ read

∂t

[
u0

v0

]
= −i1

2
∆

[
u0

v0

]
− iΦ0

[
u0

−v0

]
∆Φ0 =

1

4
(|u0|2 − |v0|2),

∂ttA0 = c2∆A0.

such that for all t ∈ [0, T ] there holds

‖z(t)− z0(t)‖s ≤ K1c
−2

‖Φ(t)− Φ0(t)‖s ≤ K2c
−2

‖A(t)−A0(t)‖s ≤ K3c
−1.
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Abstract

Our aim is to prove error bounds for hybrid
particle-in-cell (PIC) methods applied to a cou-
pled system of Maxwell-like equations. We want
to achieve second-oder convergence under real-
istic regularity assumptions and without any se-
vere step size restriction.

Keywords: high-frequency solutions, splitting
method, hybrid particle-in-cell (PIC) method,
overdense plasma, no step size restriction

1 Introduction

We consider the convergence of a 3-D full elec-
tromagnetic relativistic hybrid plasma code de-
veloped in [3]. To simulate complex laser-plasma
physics this hybrid PIC method combines a PIC
method for the low-density hot plasma and a
hydrodynamic model for the high-density cold
background plasma. As a physical application
one can consider electron propagation through
solid targets and the resulting target normal
sheath acceleration (TNSA).

In the hydrodynamic model we have to deal
with the fundamental plasma frequency ωp, which
is the frequency of the plasma electrostatic oscil-
lations. Standard explicit and implicit methods
are usually computationally expensive if the fre-
quency is huge. In [3], a splitting method was
proposed, which interprets each of the split dif-
ferential equations exactly. Unfortunately this
method suffers from resonances, so filter func-
tions were used to achieve second-order conver-
gence.

Although numerical experiments yields good
results, an error analysis was missing in [3]. In
an ongoing dissertation project by G.Jansing
(Düsseldorf) second-order convergence with strong
filter functions is shown in a special case of a
single frequency ωp = ω.

Our aim is to prove second-order conver-
gence for more general frequencies under real-
istic assumptions and without any step size re-
strictions.

2 Hybrid Model

The simplified model considered in [3] consists
of the Maxwell equations coupled to a momen-
tum equation for the hydrodynamically treated
particles. In dimensionless variables it reads

dp

dt
= E,

∂E

∂t
= ∇×B − ω2

pp,

∂B

∂t
= −∇×E,

where E and B denote the electric and mag-
netic field vectors, respectively, and p is the
momentum. The equations on a spatial domain
in Rd, d = 1, 2, 3 are equipped with appropri-
ate boundary conditions, like periodic boundary
conditions in a large simulation box. The scaled
plasma frequency is given by

ω2
p =

nh
γh
, γh =

√
1 + ‖p‖2,

where nh = nh(x) describes the density of the
hybrid particles and γh is the relativistic factor.
For the error analysis we neglect relativistic ef-
fects and set γh ≡ 1, which means that ωp is a
function of the spatial variable only. Moreover
the energy is finite, thus a constant K exists
such that

‖ωpp(t)‖2 + ‖E(t)‖2 + ‖B(t)‖2 ≤ K .

3 Numerical Algorithm

After space discretization (with the Yee scheme,
finite elements or discontinuous Galerkin meth-
ods) we split the system into three parts

ṗ = E, Ė = −Ω2p, Ḃ = 0,

ṗ = 0, Ė = ∇h ×B, Ḃ = 0,

ṗ = 0, Ė = 0, Ḃ = −∇h ×E,

where∇h× denotes the discretized∇×-operator
on a spatial mesh and Ω is a diagonal matrix
containing the values ωp(xj) on a spatial grid as
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Figure 1: Absolute error in the E field for differ-
ent step sizes without filter functions (top) and
with suitable chosen filter functions (bottom)

diagonal entries. We are now interested in the
case ωmax = ‖Ω‖ � h−1, where h is the small-
est spatial step size. For the splitting ansatz
the three parts are integrated exactly using the
flows ϕjτ , j = a, b, c over the time τ > 0 and
combining them in a symmetric way

ϕτ = ϕcτ/2 ◦ ϕ
b
τ/2 ◦ ϕ

a
τ ◦ ϕbτ/2 ◦ ϕ

c
τ/2 .

Although the scheme is of classical order
two, it suffers from resonances if the density ωp
becomes large (see Fig.1). Similar effects have
been observed in [1], where second-order can be
retrieved by introducing filter functions ψ and
φ:

Bn+ 1
2 = Bn − τ

2
∇h × φ(τΩ)En

(E+)n = En +
τ

2
ψ(τΩ)∇h ×Bn+ 1

2

pn+1 = cos(τΩ)pn + τsinc(τΩ)(E+)n

(E−)n+1 = −Ω sin(τΩ)pn + cos(τΩ)(E+)n

En+1 = (E−)n+1 +
τ

2
ψ(τΩ)∇h ×Bn+ 1

2

Bn+1 = Bn+ 1
2 − τ

2
∇h × φ(τΩ)En+1

The numerical solution can be computed very
efficiently, since the trigonometric matrix func-
tions are evaluated at diagonal matrices τΩ.

4 Error analysis

For our error analysis we eliminate B and p
in the coupled Maxwell system and obtain the
wave equation

Ë = −Ω2E −∇h ×∇h ×E .

Note that the application we are interested in
requires not only E but also B and p, so solv-
ing the wave equation instead of the Maxwell
system is not an option. On the other hand,
analyzing the splitting method for the complete
system turns out to be very difficult. We thus
exploit that the numerical scheme can be shown
to be equivalent to the two-step formulation

En+1 − 2 cos(τΩ)En + En−1 =

− τ2 cos2(12τΩ)ψ(τΩ)∇h ×∇h × Φ(τΩ)En

with initial steps E0 and an appropriately cho-
sen E1.

Motivated by the convergence analysis of [1]
we showed second order convergence for En,
Bn, and pn. As in [1], the bounds are inde-
pendent of the spatial mesh width but require
certain assumptions on the filter functions and
on the initial values.

As an alternative approach we study the
Gautschi-type integrators from [2] with more
general filter functions. For second order prob-
lems of the form

ÿ = −Ω2y + g(y)

we consider the two-step scheme

yn+1 − 2 cos(τΩ)yn + yn−1 = τ2ϑ(τ2Ω2)gn,

where gn = g
(
φ(τΩ)yn

)
for an appropriate fil-

ter function φ. In [2], various choices of φ but
a fixed ϑ(ξ) = sinc2(ξ/2) was considered. Moti-
vated by the two-step formulation of the plasma
problem above, we now present an error analy-
sis for other filter functions ϑ.
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Abstract

We analyze and modify a triple splitting method
that was proposed by Hochbruck, Liljo, Kar-
makar, Pukhov and Tückmantel in [1,2] for sim-
ulating laser-plasma interactions with over-dense
plasmas, where the large density parameter gives
rise to numerical stability issues in classical time
integration methods. The method contains an
exponential integrator in its central component
and was specifically designed for systems that
describe those interactions. We will analyze a
slightly generalized version of the method and
identify modifications, which then allow to prove
second order convergence.

Keywords: splitting method, laser-plasma in-
teraction, highly oscillatory differential equa-
tions

1 Problem Description

We consider the propagation of a short laser
pulse in vacuum targeted at a plasma around a
thin foil. The electric and magnetic field E and
B describing the laser are governed by Maxwell’s
equations. In this simple model the plasma is
modeled as a fluid by the electron number den-
sity ρ (number of electrons per volume) and the
probability density function of the impulses of
the electrons p.

∂tE = ∇×B − eρp, (1a)

∂tB = −∇× E, (1b)

∂tp = eE. (1c)

Here we make the simplifying assumptions that
the positively charged nuclei do not move and
hence ρ is constant in time. The electrons how-
ever will oscillate, which is reflected by their
time-dependent impuls p. Additionally we ne-
glect the influence of the magnetic field on the
electrons and do not take into account relativis-
tic effects. Initial values are concentrated away
from the plasma and for simplicity, we assume
periodic boundary conditions.

e = −1 is the electron charge. In (1) space is
scaled to the wave number and time to the laser

frequency. Due to the high electron density we
have a large ρ, say ρ = 105, in the region of
the foil and ρ vanishing elsewhere. A typical
simulation of a partially reflected pulse is shown
in Fig. 1.

0 10 20 30
−2
−1
0
1
2

t = 0

0 10 20 30
−2
−1
0
1
2

t = 10

Figure 1: Two snapshots of the laser pulse re-
flected at a “plasma wall” (black) at x = 20. E
(blue), B (red), p (green).

2 Time integration scheme

Discretizing in space by the Yee-scheme, we de-
note by CE and CB discretized versions of the
curl operator, such that CE = CTB and by

Ω =

[
0 0
0 ωI

]
, ω = e

√
ρ, ρ� 1

the discretization of the density profile. We
have to assume that there is only one fixed ω.
For a time step-size τ the explicit time inte-
gration scheme proposed in [1, 2], which can be
interpreted as a certain exponential triple split-
ting of (1) with filter functions φ and ψ, is given
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by

Bn+ 1
2

= Bn − τ
2CEφ( τ2 Ω) En, (2a)

E+
n = En + τ

2ψ( τ2 Ω)CBBn+ 1
2
, (2b)[

pn+1

E−
n+1

]
=

[
cos(τΩ) τ sinc(τΩ)
− 1

Ω sin(τΩ) cos(τΩ)

] [
pn
E+
n

]
,

(2c)

En+1 = E−
n+1 + τ

2ψ( τ2 Ω)CBBn+ 1
2
, (2d)

Bn+1 = Bn+ 1
2
− τ

2CEφ( τ2 Ω)En+1. (2e)

Filter functions to avoid resonances in a nu-
merical schemes for highly oscillatory differen-
tial equations are widely used in the literature,
cf. [3, Ch. XIII.2].

Numerical experiments in [1] with φ(z) =
ψ(s) = sinc(z) indicate convergence of second
order in τ . A more detailed experiment however
reveals that the method in [1] shows only first
order convergence in τ .

Our new convergence analysis of the above
scheme allows to formulate conditions on the
filter functions to obtain second order conver-
gence in τ . We have the following

Theorem 1 Provided that the initial values E(0)
B(0) p(0) are sufficiently smooth and bounded
independently of ω and that the fields are ini-
tially “small” in the plasma region, i.e. ΩE(0),
Ω2p(0) and Ω2CBB(0) are bounded independent
of ω, choosing φ(z) = sinc(z) and ψ(z) = sinc2(z),
for τω > c0 the time discretization error is

‖En − E(tn)‖ ≤ Cτ2

‖Bn −B(tn)‖ ≤ Cτ2

‖pn − p(tn)‖ ≤ Cτ2

where the generic constant C in the estimate
depends on the spatial discretization of the curl
operators and on T = nτ , but is independent of
n, τ and ω.

The idea of the proof is as follows. We view the
equation as Hamiltonian system and rewrite (2)
as a two step-method for the electric field E. By
this the oscillator step (2c) results in a “natural
filter”. A small modification of the initial step,
and we have to prove that the modification is
small in some sense, allows to apply Theorem
4.1 from [3, Ch. XIII.4.1]. The estimates for
the magnetic flux and the impulse can be done
borrowing ideas from [4] and some trigonomet-
ric identities.

In fact Theorem 1 can be formulated more
generally than it is stated here. We obtain con-
ditions on the filter functions for first order con-
vergence and some more conditions for second
order convergence. For the filter functions used
in [1] our convergence analysis proves first order
convergence.
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An FMM for waveguide problems for Helmholtz’ equation in 2D
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Abstract

We present an FMM for solving waveguide prob-
lems for Helmholtz’ equation in a 2 dimensional
infinite strip with homogeneous Neumann B.C.
on the sides. Costly evaluation of Green’s func-
tion for the problem is avoided with the help of
the method of images and the FMM. We solve
transmission problems for multiple scatterers to
observe that even a few scatterers give rise to
stopbands in the waveguide.

Keywords: waveguide problems, Green’s func-
tions, FMM, stopband

1 Introduction

Waveguide problems are of interest in engineer-
ing with various applications. We therefore con-
sider a Boundary Integral Equation Method (BIEM)
for waveguide problems for 2 dimensional Helmholtz’
equation in an infinite strip using Green’s func-
tion which satisfies homogeneous Neumann B.C.
on the sides of the strip. In BIEM it is im-
portant to accelerate the algorithm because a
naive BIEM costs O(N2) computational time
where N is the degrees of freedom. This is par-
ticularly the case in the present case since the
evaluation of Green’s function is costly. In this
paper, we present an FMM accelerated BIEM
for waveguide problems using the method of im-
ages and lattice sums as in the case of periodic
problems [1]. We show some numerical exam-
ples including the stopband phenomena caused
by multiple scatterers in the waveguide.

2 Formulation

We consider 2 dimensional Maxwell’s equations
with the e−iωt time dependence. Let P ⊂ R2 be
an infinite strip given by P = [−1

2 ,
1
2 ]×R, whose

sides are denoted by S±1 = {x ∈ R2|x1 = ±1
2}.

We assume that P is divided into a bounded
open set Ω2 (scatterer) and the remainder Ω1 =
P \ Ω̄2. We consider an incident plane wave
uinc in the strip P . Our problems is to find
u which satisfies the 2 dimensional Helmholtz
eq.: ∆u(x) + k2

i u(x) = 0, x ∈ Ωi (i = 1, 2),
B.C.s on ∂Ωi: u1 = u2,

1
ε1
∂u1
∂n = 1

ε2
∂u2
∂n , ho-

mogeneous Neumann B.C.s on the sides of the
strip: ∂u

∂x1
|S±

1
= 0, and the outward radiation

conditions for the scattered wave u − uinc as
|x2| → ∞, where ki, εi are the wavenumber
and permitivity in each domain Ωi (i = 1, 2),
respectively. The symbol ui stands for the lim-
iting value of u from Ωi on ∂Ωi, and ∂ui

∂n de-
notes the similar limit of the normal derivative
and n is the unit outward normal from Ω2 to
Ω1. By using Green’s function Γ which sat-
isfies ∆Γ(x,y) + k2

1Γ(x,y) = −δ(x − y) and
∂Γ(x,y)
∂x1

|S±
1

= 0 (y ∈ P ), we obtain the following

boundary integral equation which is well-known
as the PMCHWT formulation :(

−(DΓ +DGk2
) ε1SΓ + ε2SGk2

−(NΓ
ε1

+
NGk2
ε2

) D∗Γ +D∗Gk2

)(
u
q

)
= binc (1)

where S,D are the single and double layer po-
tentials and D∗, N are their normal derivatives,
respectively. The subscripts show the kernel
function of the potentials. The discretized equa-
tion of (1) converges fast with GMRES [2].

We consider a fast method of computing po-
tentials including Γ. Note that Green’s function
Γ can be written as the lattice sum of the fun-
damental solution Gk1 for k1:

Γ(x,y) =

∞∑
l=−∞

Gk1(x,y2l) +

∞∑
l=−∞

Gk1(x,y′2l),

(2)
where source points y2l and y′2l are given by
y2l = (y1+2l, y2) and y′2l = (−y1+2l+1, y2), re-
spectively. The representation (2) of Γ enables
us to regard the potentials as the superposition
of contributions from the infinite number of the
mirror images of the scatterer (Fig.1), thus lead-
ing to a natural extension of the ordinary FMM
to our problem. To implement the FMM for
Γ, we divide the mirror images into square cells
whose side lengths are equal to the width of the
strip as shown in Fig.1. We set these cells as
level 0 FMM cells. We now focus on the target
cell in Fig.1 painted in black where we compute
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Same direction as the real image
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Figure 1: method of images
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Figure 2: Energy Transmitted

the potentials. We can compute the contribu-
tions from white cells around the target cell by
using the ordinary FMM. Contributions from
other cells in Fig.1 can be evaluated as one uses
the following lattice sums as the coefficients for
the M2L translations at level 0 in the FMM al-
gorithm:

Oeven
n (s) =

∑
l

On(−(2le1 + se2)) (3)

Oodd
n (s) =

∑
l

On(−((2l + 1)e1 + se2)) (4)

where e1,2 are unit vectors in x1,2 directions and
we set the center of the target cell to be (0, 0).

Also, On is defined by On(x) = inH
(1)
n (k1r)e

inθ

with (r, θ) being the polar coordinate of x and
Hn the Hankel function of the first kind and the
n-th order. Lattice sums in (3) and (4) are used
to evaluate the contributions from cells filled
with checker and stripe patterns which are |s|
units away from the target cell along the x2 di-
rection, respectively (see Fig.1). Since the series
(3-4) converge very slowly, we compute them by
using Fourier integrals as in [1] when |s| < 2,
and by using the Poisson summation formula
when |s| ≥ 2. Since these lattice sums depend
only on k1, we can precompute them once for
all in the FMM algorithm. In addition, the rest
of the algorithm is exactly the same as the stan-
dard FMM. We thus see that the computational
complexity of our FMM is the same as that of
the ordinary FMM, which is O(N) in low fre-
quency problems.

We note that the Green’s function Γ diverges
at specific wavenumbers given by k1 = pπ, ∀p ∈
N and the numerical solvers which use Γ give
inaccurate results near these wavenumbers in
general. We can, however, deal with this prob-
lem by modifying our approach using techniques
used in [3].

3 Numerical Examples

We consider transmission problems for multi-
ple scatterers. Let Ω2 consists of M circular
scatterers given by x2

1 + (x2 − i)2 ≤ 0.42 (i =
0, · · · ,−M + 1) with ε2 = 4 and ε1 = 1. Each
circle is discretized with 500 piecewise constant
elements. In Fig.2, we plot the transmitted en-
ergy for the cases of M = 1, 4, 16, 32 and vari-
ous values of ω. Computational time needed at
each ω is 291s at the longest (we used a clus-
ter of Appro GreenBlade 8000, 16 Intel Xeon
cores). In Fig.2, we see that the energy trans-
mittance for a single scatterer (M = 1) varies
smoothly with ω. In multiple scatterer cases
(M = 4, 16, 32), however, we can see sudden
changes of the energy transmittance and stop-
bands which are known in periodic problems [4].
The cases M = 16 and M = 32 behave sim-
ilarly, but the change of the energy transmit-
tance for M = 32 seems to be sharper. From
this example, we can say that more scatterers
give rise to clearer stopbands, but we also see
that even a few scatterers produce stopbands.
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Domain Optimization for a Junction of Closed Acoustic Waveguides
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Abstract

We study a problem modelling the scattering
of a time-harmonic acoustic wave at the junc-
tion of two closed waveguides. Our focus lies in
an optimal control problem for the domain: We
aim to design a junction which optimally trans-
mits an incident wave from one waveguide into
the other.

Keywords: scattering problem, Helmholtz equa-
tion, optimal control, free boundary problem

1 The Scattering Problem

Let us start by specifying the geometry: We
consider two closed acoustic waveguides parallel
to each other, having the form Ω− = (−∞,−b]×
S−, Ω+ = [+b,+∞) × S+, where S−, S+ ⊂
RN−1 are the bounded intersections of the waveg-
uides. Furthermore, let Ω be some domain that
connects Ω− and Ω+ in a suitable sense (see
Figure 3). We then denote the whole waveg-
uide junction by D = Ω ∪ Ω+ ∪ Ω−.
For a real wavenumber k ∈ R and a given inci-
dent field ui : Ω− ∪ Ω+ → C, we are interested
in the problem of finding u : D → C such that

(P)

{
∆u + k2u = 0 in D, u = 0 on ∂D

u− ui fulfills a MRC on Ω+ ∪ Ω−.

Here MRC denotes a modal radiation condition
well known for this type of waveguide scattering
problems.
In an appropriate weak formulation this prob-
lem is Fredholm. Using Rellich-type integral
relations, we derive a bound for the H1 norm
of our solution, which holds under a certain ge-
ometric condition for sufficiently smooth D; Of
particular importance for the next step is the
fact that the bound holds uniformly for all do-
mains fulfilling those conditions.

2 On Existence of Optimal Domains

If we fix the two waveguides Ω+,Ω−, can we
change the junction Ω such that an incident
field on Ω− is perfectly transmitted to the other
waveguide Ω+?

Figure 1: Basic geometrical situation: A wave is
incident in the left hand waveguide Ω− and will
in general produce scattered outgoing waves in
left and right hand waveguides.

To get an existence result for optimal domains,
we show that the solution u depends continu-
ously on Ω within a certain class of domains:
This is done by extending the uniform bound
to a (suitably defined) Hausdorff compact class
of junction domains. The proof of continuity is
then done with standard tools of optimal shape
design for elliptic problems.
This immediately yields the existence of optimal
junctions for H1 continuous figures of merit,
since they can be considered as continuous func-
tion from the compact metric space of junction
domains into R.
However, for practical situations, the geometric
condition defining our class of junctions is too
restrictive.

3 Transmission Optimization

To construct explicit examples for this optimiza-
tion problem, we try to maximize the energy
transmitted into Ω+, which can be calculated
by

E(Ω) =

∫
Γ+

Im

(
∂uΩ

∂n
uΩ

)
do,

over a suitable class of domains (uΩ denotes the
solution on the variable domain Ω, while Γ+ is
an arbitrary intersection of Ω+).

We use the so called shape derivatives of the
scattering problem: The solution uΩ can be dif-
ferentiated with respect to some boundary vari-
ation a (see Figure 2). This derivative can be
represented as the solution v of the scattering
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Figure 2: A variation of a reference domain Ω
by a vector field a.

problem

(dPa)


∆v + k2v = 0 in D,

v = −(a · n)
∂u

∂n
on ∂D,

v fulfills MRC on Ω+ ∪ Ω−.

Here n denotes the outward normal on D. Thus,
by choosing a suitable finite set of boundary
variations S = span{a1, . . . , aM}, we can cal-
culate the gradient of E with respect to the
boundary variations, allowing us to apply stan-
dard nonlinear optimization methods to search
for optimal junctions numerically.

4 Numerical Examples

We calculate numerical examples for solutions
of P and dPa by a standard finite
element Galerkin’s method on the junction do-
main Ω, which has been extended by transpar-
ent (Dirichlet to Neumann) boundary conditions,
realizing the coupling with the two waveguides.
For the optimization procedure we employed a
conjugate gradient method with a line search
utilizing the second domain derivatives.
For “nice” situations, the optimization proce-
dure generated junction domains with a nearly
perfect energy transmission (see figure 3). For
such perfectly transmitting junctions, some in-
teresting scattering relation holds, which we will
also illustrate on our numerical examples.
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Figure 3: An example optimization history: In
all figures, we send in the same incident field
(the second guided mode on the left) towards
the junction. While the starting junction com-
pletely reflects the wave back to the left, we
can see that after 10 iterations a near optimal
transmission of 99% is obtained.
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Excitation of a Layered Sphere by an Arbitrarily Positioned Point Source:
Direct Problem
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Abstract

The excitation problem due to a point-source
arbitrarily located inside or outside a layered
sphere is investigated. A methodology for solv-
ing the direct scattering problem is developed.
Then, certain far-field approximations in the
low-frequency regime are derived which are ex-
pected to be effective in inverse scattering algo-
rithms.
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tering, low-frequency

1 Introduction

The simplicity of the layered spherical model
as well as the possibility of obtaining exact so-
lutions for the associated scattering problems
have constituted it a frequently and effectively
utilized model in a variety of applications, like
e.g. medical imaging.

The low-frequency realm offers an effective
environment for the development of inverse scat-
tering algorithms concerning the determination
of the sphere’s characteristics by using point-
source fields [1]. The interior direct and inverse
low-frequency excitation of a layered sphere was
investigated in [2]. Finding a source inside a
homogeneous sphere by using surface field data
was studied in [3].

In this work, we consider the excitation of a
layered sphere by a point-source lying at an ar-
bitrary position (rq,θq,φq) inside or outside the
sphere. A methodology for solving the direct
scattering problem is presented and then cer-
tain low-frequency far-field approximations are
derived. Previous investigations have consid-
ered the point-source lying on the z-axis [1, 2].
The present consideration of an arbitrarily lo-
cated source is more realistic, particularly with
respect to the development of inverse source al-
gorithms.

2 Mathematical Formulation

Consider a layered spherical scatterer V of R3

with radius a1. The interior of V is divided into

N layers Vj (j=1,...,N), defined by aj+1 < r <
aj (j=1,...,N−1) and having wavenumbers kj
and densities ρj . The core VN (0 ≤ r < aN ) is
soft; the exterior V0 has constants k0 and ρ0.

The scatterer V is excited by a primary spher-
ical acoustic wave, generated by a point-source
at rq ∈ Vq (q=0,...,N − 1), and expressed by

upr(r; rq) = A
exp(ikq|r− rq|)
|r− rq|

, r 6= rq . (1)

In Vq, the total field is

uq(r; rq) = upr(r; rq) + usec(r; rq), r ∈ Vq \ {rq};

in Vj (j 6= q) the total field is the secondary uj .
The fields uj satisfy the Helmholtz equa-

tions
∆uj(r; rq) + k2ju

j(r; rq) = 0,

for r ∈ Vj if j 6= q and r ∈ Vq\{rq} if j = q, as
well as the boundary conditions

uj−1(r; rq) = uj(r; rq), r = aj
(2)

1

ρj−1

∂uj−1(r; rq)

∂r
=

1

ρj

∂uj(r; rq)

∂r
, r = aj

The total field on the core’s surface satisfies

uN−1(r; rq) = 0, r = aN . (3)

The total field in V0 must satisfy, for r →∞,
the Sommerfeld radiation condition as well as

u0(r; rq) = g(r̂; rq)h0(k0r) +O(r−2) , (4)

where g is the far-field pattern.
Also, we define the total cross-section

σ =
1

k20

∫
S2

|g(r̂; rq)|2ds(r̂) , (5)

with r̂ ∈ S2 = {x ∈ R3, ||x|| = 1}.
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3 Solution of the Direct Problem

We select the spherical coordinate system (r,θ,φ)
with the origin O at the centre of V , so that the
point-source is at (rq,θq,φq).

For r > rq, primary field (1) is expressed as

upr(r; rq) = 4πikqA
∞∑
n=0

n∑
m=−n

(−1)mjn(kqrq)×

Y −mn (r̂q)hn(kqr)Y
m
n (r̂) ,

while, for r < rq, as

upr(r; rq) = 4πikqA
∞∑
n=0

n∑
m=−n

(−1)mhn(kqrq)×

Y m
n (r̂q)jn(kqr)Y

−m
n (r̂) ,

where jn and hn are the n-th order spherical
Bessel and first kind Hankel function and Y m

n (r̂) =
Y m
n (θ, φ) is a spherical harmonic [4].

The secondary field uj in Vj is expanded as

uj(r; rq) = 4πikqA
∞∑
n=0

n∑
m=−n

(−1)mhn(kqrq)×

Y −mn (r̂q)
(
αj
q,njn(kjr) + βjq,nhn(kjr)

)
Y m
n (r̂)

(αj
q,n and βjq,n under determination coefficients).
By imposing the boundary conditions (2) we

obtain the transformations[
αj
q,n

βjq,n

]
= Tj

n

[
αj−1
q,n

βj−1q,n

]
, (6)

where Tj
n is the 2×2 transition matrix from

Vj−1 to Vj , which is independent of the source’s
location, and whose expression is given in [2].

Now, the coefficients αj
q,n and βjq,n are deter-

mined by applying a similar procedure to that
of the successive algorithmic connection scheme
of the fields coefficients, described in [2].

Moreover, the far field pattern is given by

g(r̂; rq) = 4πikqA

∞∑
n=0

n∑
m=−n

(−1)m(−i)n×

hn(kqrq)β
0
q,nY

−m
n (r̂q)Y

m
n (r̂) , (7)

while, by combining (5) with (7), we get the
expression of the total cross-section

σ = 4π|A|2
k2q
k20

∞∑
n=0

n∑
m=−n

(2n+ 1)
(n−m)!

(n+m)!
×

|hn(kqrq)β
0
q,n|2|Pm

n (cos θq)|2 , (8)

where Pm
n is the Legendre function.

4 Low-Frequency Far-Field Results

We make the low-frequency assumption k0a1 �
1 for a 2-layered spherical scatterer. The (exter-
nal) point-source is located at (r0, θ0, φ0) with
r0 > a1; interior excitation can be treated simi-
larly. We define the parameters ξ = a1/a2, % =
ρ1/ρ0, η = k1/k0, κ = ik0a1, τ = a1/r0.

By using the asymptotic expressions of the
spherical Bessel and Hankel functions for small
arguments we obtain the expansions of β00,n and
then calculate the far-field functions of interest.
For example, the approximation of the far-field
pattern, as κ→ 0, is calculated to be

g(r̂; r0) =
A

r0
S0κ

+
A

r0

[
%η(S0)2 +

(
P1(cos θ0)P1(cos θ)

+ P 1
1 (cos θ0)P

1
1 (cos θ) cos(φ− φ0)

)
τS1

]
κ2

+O(κ3) , (9)

where

S0 =
1

(1− ξ)%− 1
, S1 =

ξ3(1− %) + 2 + %

ξ3(1 + 2%) + 2− 2%
.

In the special case θ0 = 0 (for a point source
on the z-axis), (9) reduces to (4.5) of [2].

A low-frequency approximation of the cross-
section can be calculated by similar techniques.

Such low-frequency approximations can be
utilized in inverse algorithms determining the
point-source as well as the sphere’s materials.
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An offline/online algorithm for scattering in half-plane stochastic configurations
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Abstract

We develop computational statistical tools to
facilitate quantification of stochastic acoustic mul-
tiple scattering in the half-plane. The plane
is bounded by a sound-soft wall along the x-
axis. Wave propagation in the half-plane is in-
duced by an incident wave impinging on mul-
tiple stochastic particles in the half-plane. We
develop an efficient algorithm to compute mo-
ments of certain quantities of interest (QoI).
Key ingredients of our algorithm include offline
computations, fast online realizations, image the-
ory, and high-order Monte Carlo realizations.

Keywords: Half-plane scattering, Helmholtz
equation, quasi-Monte Carlo, T-matrix

1 Introduction

Recently phase-stepping interferometric micro-
scopy has been used to measure a sample ma-
terial using light scattering by the material and
the surface beneath it [4]. Calibration requires
numerical scattering simulation in the upper half
plane bounded by the underlying surface.

The half plane model requires simulation of
reflections from the plane boundary as well as
reflections from the scatterers. The additional
boundary reflections make this problem more
complicated, and more computationally expen-
sive, than the free space model.

We present an efficient algorithm for simu-
lating wave scattering in an uncertain configu-
ration S(ω) = R2

+ \ D(ω). Here, R2
+ denotes

the upper half-plane bounded by a sound-soft
wall along the x-axis and the bounded stochas-
tic domain D(ω) comprises N distinct random
scatterers located in the upper half-plane. Ran-
domness in the scatterers with various mate-
rial properties arises because of uncertainties in
their location in R2

+ and how they are oriented.
We use the notation ω to denote an element

of the set of outcomes Ω in a probability space
(Ω,F , P ), where F is a σ-algebra of Ω with P
the associated probability measure. We denote
by u∞(·;ω) the far field induced by D(ω).

Our main focus is to compute the expected
value of the intensity of the random far field.
The offline part of the algorithm is independent
of the location and orientation of the particles
and hence tens of thousands of stochastic real-
izations of S(ω) and associated scattering sim-
ulations can be carried out efficiently.

We simulate the stochastic model problem
using high-order quasi-Monte Carlo (QMC) re-
alizations and compare its efficiency with the
industrial standard low-order MC approach.

2 Mathematical model

For each realization ω∗ of the half-plane, the
scattered field is induced by the incident field

uinc(x) = eikx·d − eikx·d
R

, (1)

impinging on the N particles in D(ω∗). Here,
k = 2π/λ where λ is the wavelength of the in-
cident field and the unit direction vector d =
(d1, d2)T is taken with d2 < 0. In (1) we have
used the notation

dR = (d1,−d2)T , d = (d1, d2)T ∈ R2.

That is, dR is the reflection of d in the line
∂H = {(x, 0) : x ∈ R}. The first term on
the right hand side of (1) represents a standard
plane wave (travelling downwards), and the sec-
ond term represents the reflection of the stan-
dard plane wave in the line ∂H.

Since the half-plane is bounded by the sound-
soft wall, the total field u+uinc vanishes on ∂H:

u(x) + uinc(x) = 0, x ∈ ∂H. (2)

The scattered field u is governed by the exterior
Helmholtz equation

4u(x) + k2u(x) = 0, x ∈ S(ω∗). (3)

Depending on the material properties of the par-
ticles D1(ω∗), . . . , DN (ω∗) we impose appropri-
ate conditions on the boundaries of these parti-
cles. Our method is readily applied with identi-
cal or different boundary conditions applied on
each scatterer.
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Our main focus is to compute the expected
value of the intensity of the far field

E[|u∞(x̂; ·)|2] =

∫
Ω
|u∞(x̂;ω)|2 dP (ω), x̂ ∈ ∂B,

where ∂B is the unit circle, comprising all our
observation direction vectors. The variance can
be represented similarly. For convenience, be-
low we drop the notation ω.

3 Brief Description of the algorithm

For each realization, obtained using MC or QMC
sampling, our algorithm is based on the fact
that if a field v satisfies the Helmholtz equa-
tion (3) then the field v + Rv, where Rv(x) =
−v(xR), also satisfies (3). We begin by writing
the scattered field as a sum of fields scattered
by each scatterer

u =
N∑
I=1

(
uI + RuI

)
, (4)

where uI ∈ C(R2) and uI + RuI is the field
scattered by DI .

For each I = 1, . . . , N , using techniques in-
troduced and analyzed in [2], we develop a ra-
diating wavefunction expansion of uI with a fi-
nite number of unknown coefficients. Here each
expansion is with respect to a fixed center xI ,
typically the center of DI .

Ergo, for each I = 1, . . . , N , we obtain an
expansion of RuI involving the same unknown
coefficients. Similar to the image theory [1], the
expansion for the reflected field RuI can be con-
sidered to be radiating from a theoretical scat-
terer DR

I in the lower half plane. The theoreti-
cal scatterer is the reflection of DI in the x-axis,
with local origin xR

I .
We use similar truncated expansions for the

incident field (1) with respect to various centers
xI , for I = 1, . . . , N and the coefficients of such
expansions are evaluated analytically [2].

Using the linearity of the Helmholtz equa-
tion, the T-matrices associated with the scatter-
ers D1, . . . , DN connect these coefficients. We
use the techniques in [2] to efficiently compute
the T-matrix for each distinctly shaped obstacle
in the configuration. The T-matrix is indepen-
dent of location, orientation and the incident
wave. Hence computation of each T-matrix is
an offline process and is independent of the tens
of thousands of stochastic realizations.

Figure 1: Visualization of the mean cross sec-
tion of three scatterers with random locations
simulated using more than 65 000 QMC real-
izations (shading indicates plus and minus one
standard deviation).

For each realization ω∗, we use the translation-
addition theorem and offline T-matrix to setup
an N -dimensional linear system for the coef-
ficients in the representation of the unknown
scattered field in the half-plane S(ω∗). We solve
this linear system iteratively using GMRES. We
develop an object-oriented framework, TMA-
TROM [3], for the efficient offline/online sim-
ulation.

Subsequently, we combine the QMC approach
with our efficient offline/online framework for
tens of thousands of parallel realizations of the
stochastic configurations. Figure 1 shows a vi-
sualisation of the mean cross section of a ran-
dom configuration of three scatterers computed
using our efficient computational framework.
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Abstract

Helmholtz scattering by heterogeneous penetra-
ble objects is solved by the local Multiple Traces
Formulation, i.e. transmission conditions are
weakly imposed and Calderón identities per sub-
domain are used. The resulting Fredholm first-
kind formulation possesses built-in precondition-
ers based on Calderón-type techniques. Fur-
thermore, the resulting block matrices possess
a structure that suggests other preconditioning
alternatives and/or hybridization. In this pre-
sentation, we focus on these aspects, presenting
numerical results for different alternatives over
a wide frequency range.

Keywords: boundary integral equations, wave
scattering, multiple traces formulations, precon-
ditioning techniques

1 Introduction

We consider so-called high frequency scattering
problems, i.e. whenever wavelengths are much
smaller than the scatterer’s size. Available so-
lution methods are based on: geometrical or
physical optics [1]; Nyström approach [2]; and,
hybrid numerical asymptotics [3]. Still, ques-
tions arise as to when and how these techniques
should be applied and what to do in situations
that require accommodating different ranges of
frequencies as in heterogeneous scatterers.

Previously, we showed that the local Multi-
ple Traces Formulations (MTFs) [4, 5], was ca-
pable of dealing with composite scatterers with
largely varying wavenumbers. All Neumann and
Dirichlet unknown traces are locally defined on
sub-domain boundaries and transmission condi-
tions are enforced weakly with also locally de-
fined test functions. The resulting first-kind
Fredholm formulation possesses a block struc-
ture hinting at its amenability to paralleliza-
tion. The formulation is discretized by h- or p-
element approximation, which seems well adapted
for high–frequen-cy regimes. However, the con-
vergence rate of iterative solvers, such that those
based on Krylov subspaces, is poor or never oc-

curs. Moreover, since the Helmholtz equation
becomes more indefinite when the wavenumber
increases, the use of preconditioning scheme is
required to tackle this difficulty. We will explore
and present robust and efficient preconditioning
techniques for MTF.

2 Local Multiple Traces Formulation

Following [4], we consider a bounded scatterer Ω
composed of two different materials with wave-
numbers κi and such that Ω := Ω1 ∪ Ω2 with
exterior domain Ω0 := R2 \ Ω. From the inte-
gral representation formulas, we retrieve weak
Calderón identities on each sub-domain bound-
ary,

〈
λi , ϕi

〉
× =

〈(
1

2
Id + Ai

)
λi , ϕi

〉
×

(1)

where we have condensed the standard bound-
ary integral operators,

Ai :=

(
−Ki Vi

Wi K′i

)
. (2)

Transmission conditions are weakly enforced across
each interface Γij . This is done via local re-

striction and normal orientation operators X̃ij .
Finally, the system takes the form,

〈Mλ , ϕ〉 = 〈g , ϕ〉× (3)

where λ = (λ0,λ1,λ2) belongs to p.w.-interface
Cauchy functions, ϕ = (ϕ0,ϕ1,ϕ2) in p.w.-
interface dual spaces, and the MTF operator
reads,

M :=

 A0 −1
2 X̃01 −1

2 X̃02

−1
2 X̃10 A1 −1

2 X̃12

−1
2 X̃20 −1

2 X̃21 A2

 . (4)

3 Preconditioning techniques

Instead of solving the linear system Mu = b,
the preconditioned linear system MPv = b with
u = Pv is solved. The MTF matrix is rewritten
as

M = A− X (5)
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Figure 1: Normalized Residual Error in 2-norm
against the number of iteration for GMRes(40).
The size of the linear system is 644. The pre-
conditioner is applied by left scheme.

where A is the block diagonal matrix and X con-
tains the discretization of the local restriction
operators X̃ij . The Calderón identity 4A2

i = Idi

leads to built-in preconditioners. In [5], the Ja-
cobi block diagonal preconditioner is proposed,

PJ = M−1
massA (6)

with Mmass is a mass-like matrix. Since the
mass-like matrix owns a well-adapted structure,
the numerical extra cost of its inverted matrix
vector product is negligible compared to the
dense matrix vector product by A.

We propose the Gauss-Seidel preconditioner
(A− U)−1 where U is the upper triangular part
of X. This inverted matrix vector product is ap-
proximated by the first Neumann series order,

PGS =
(
I + M−1

massAM−1
massU

)
M−1

massA (7)

Other methods such that SOR, SSOR schemes
and specialized schemes using the properties of
the matrix A and X are considered.

4 Numerical Results

The geometry considered three domains such
that, Ω0 = {x ∈ R2, ‖x‖2 > 1} , Ω1 = {x ∈
R2, ‖x‖2 < 1, x1 < 0} , Ω2 = {x ∈ R2, ‖x‖2 <
1, x1 > 0}. This geometry contains all the diffi-
culties portraying Lipschitz domains with sharp
corners.

Fig. 1 shows the convergence history for the
case κ0 = 10, κ1 = 30 and κ2 = 1, discretized by
spectral elements. The Krylov method is GM-
Res with a restart of 40. One can observe the

no convergence of the unpreconditioned system
and the improvements by the preconditioning
techniques.

5 Conclusions and Future Prospects

Numerical analysis is done to evaluate the ro-
bustness and the efficiency of the proposed pre-
conditioning techniques, and the influence of
the parameters is discussed.
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Boundary integral algorithms for Laplace eigenvalue problems
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Abstract

We present numerical methods based on inte-
gral equation formulations that produce solu-
tions of Laplace eigenvalue problems with mixed
Dirichlet/ Neumann boundary conditions in ar-
bitrary domains with possible corners. We char-
acterize the solution singularities which arise at
points where Dirichlet and Neumann boundary
conditions meet, and employ the novel Fourier
Continuation technique to approximate the in-
tegral densities. The resulting methods exhibit
high-order convergence in spite of the solution
singularities.

Our eigensolver searches for frequencies for
which the integral equations of the problem ad-
mit non-trivial kernels. The ”minimum-singular-
value” objective function gives rise to a chal-
lenging nonlinear optimization problem; we put
forth an improved objective functional which
can be optimized by means of standard root-
finding methods.

Applications and generalizations of our meth-
ods can solve variety of problems including modal
analysis problem in electromagnetics, transmis-
sion eigenvalue problems, eigenproblems in mul-
tiply connected domains, time-dependent PDEs,
Steklov eigenproblems, 3-dimensional eigenval-
ues and spectral optimization problems.
Keywords: Mixed boundary conditions, Laplace
eigenvalues, integral equations

1 Introduction

The use of boundary methods for the solution of
Laplace eigenproblems appears in a number of
contributions, including the recent works based
on boundary element method [1], method of
particular solutions [2] as well as Nystrom ap-
proximation of the Fredholm determinant [3].
The presented eigenvalue solver [4] approximates
solution of the Laplace eigenvalue problem

−∆u = λu, x ∈ Ω

u = 0, x ∈ ΓD

∂u

∂ν
= 0, x ∈ ΓN .

(1)

Introducing the Helmholtz Green function

Gk(x, y) :=
i

4
H1

0 (k|x− y|) with k2 = λ and the

associated single-layer potential

u(x) =

∫
Γ
Gk(x, y)ψ(y)dsy, x ∈ Ω (2)

with surface density ψ the eigenvalue problem (1)
is transformed into the integral equation system∫

Γ
Gk(x, y)ψ(y)dsy = 0 x ∈ ΓD,

−ψ(x)

2
+

∫
Γ

∂

∂nx
Gk(x, y)ψ(y)dsy = 0 x ∈ ΓN .

(3)
.

The system (3) is discretized using Nystrom
method. For the approximation of the bound-
ary integrals we developed high-order quadra-
tures: in the case boundary Γ is smooth these
quadratures rely on the novel Fourier Contin-
uation method to account for the singular be-
haviour of the integral density ψ, for domains
with Lipschitz boundary Γ, on the other hand,
we employ graded meshes near corners and tran-
sition points.

Discretization of the integral equation sys-
tem (3) leads to an approximate boundary op-
erator in the form of the matrix Ak. The eigen-
value problem (1) is then reduced to a search for
value of k for which matrix Ak is singular. To
obtain these values of k, we examine the small-
est singular value of Ak and solve a nonlinear
optimization problem

σmin(k) = 0.

Direct evaluation of the zeroes of σmin(k) is
highly challenging. Use of a descent-based ap-
proach such as the Newton method is not appro-
priate in this context since the function σmin(k)
is essentially constant away from its roots. A
modified integral equation formulation approach
and associated smallest singular values σ̃min(k)
that successfully tackle this difficulty (see Fig-
ure 1). This modified approach inspired by [2]
is based on use of interior points and a stabi-
lization method based on QR-decomposition.
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Figure 1: Comparison between σmin(k) and
σ̃min(k)

2 Numerical Results

The resulting eigensolvers demonstrate high-
order convergence. Figure 2 compares the con-
vergence history for both FC-based and graded-
mesh eigensolvers as they are used to obtain
the Zaremba eigenvalue λ18 = 73.1661817902
for the unit disc.

Figure 2: Convergence for FC-based and
graded-mesh eigensolvers

The high-order nature of the eigensolvers
enables evaluation of eigenfunctions for very high
frequencies. Figure 3 shows eigenfunction for
a trapezoid (that also corresponds to symmet-
ric Laplace-Dirichlet eigenfunction for L-shaped
domain corresponding to the eigenvalue λ =
40013.2312203 (left) and an eigenfunction for a
unit disc corresponding to the eigenvalue λ=10005.
97294969 (right).

Figure 3: High frequency Zaremba eigenfunc-
tions
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Finite Elements for linear wave propagation in polygonal domains
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Abstract

Error estimates for the space-semidiscrete Fi-
nite Element approximation of solutions to ini-
tial boundary value problems for linear, second-
order hyperbolic systems in bounded polygons
G ⊂ R2 with straight sides are presented. Using
recent results on corner asymptotics of solutions
of linear wave equations with time-independent
coefficients in conical domains, it is shown that
continuous, simplicial Lagrangian Finite Elements
of uniform polynomial degree p ≥ 1 with either
suitably graded mesh refinement or with bisec-
tion tree mesh refinement towards the corners
of G, achieve the (maximal) asymptotic rate of
convergence O(N−p/2), where N denotes the
number of degrees of freedom spent for the Fi-
nite Element space semi-discretization.
This research was supported by the Swiss Na-
tional Science Foundation under grant no. SNF
200021 149819/1.

Keywords: Linear second-order Wave Equa-
tions, Method of lines, Finite Element Meth-
ods, Polygonal domains, Transmission problem,
Corner singularities, Locally refined meshes, Con-
vergence rates.

1 Polygonal domains

Let G ⊆ R2 be an open, bounded two-dimensional
domain. Throughout, we assume G to be a
polygonal domain, i. e. its boundary consists of
a finite union of M ∈ N straight line segments
ei, i = 1, . . . ,M ∈ N of positive one-dimensional
measure. The vertices of the polygon are de-
noted by ci := ēi ∩ ēi+1, i = 1, . . .M where
the indices i are taken modulo M . For all i,
the interior opening angle of the domain at ci
is measured in positive orientation. We denote
it by ϕi ∈ (0, 2π], i = 1, . . . ,M .
The set of edges on the boundary are split into
two sets ED and EN where Dirichlet and Neu-
mann conditions will be applied, respectively.
Let ΓD,N :=

⋃
e∈ED,N ē.

We introduce local conical domains Gi, i = 1, . . . ,M
defined by

Gi := {x ∈ G | |x− ci| < Ri} , (1)

where 0 < Ri <
1
2 minj=1,...M |ci − cj |. Hence

the Gi are mutually disjoint and ∂Gi ∩ ∂G ⊂
ēi ∪ ēi+1.
We also define ri(x) = |x−ci| for all i = 1, . . . ,M .

2 Wave equations

Let m ∈ {1, 2} be the system size. We define
H := L2(G)m, V := {v ∈ H1(G)m : v|ΓD ≡ 0}.
There are material properties aklij ∈ C∞(Ḡ;R>0)
(i = 1, . . . ,m) s. t. for all i, j, k, l = 1, . . . ,m:

aklij ≡ a
ij
kl ≡ a

kl
ji . (2)

Moreover, we assume that there is a c > 0, s. t.
for all 0 6= ξ = (ξij)1≤i,j≤m = (ξji)1≤i,j≤m

essinfx∈G

∑
i,j,k,l a

kl
ij (x)ξijξkl∑

i,j (ξij)
2 ≥ c . (3)

Given initial conditions u0 ∈ V, u1 ∈ H and
f ∈ L2(I;H), the continuous problem reads

Find u ∈ H1(I;V ) ∩H2(I;V ∗), s. t. ∀ t ∈ I :

∂2
t (u(·, t), v) + a(u(·, t), v) = (f(·, t), v)H

(u(·, 0), v) = (u0, v) ,

∂t(u(·, 0), v) = (u1, v) ,

(4)

for all v ∈ V , where

a(w, v) :=

∫
G

m∑
i,j,k,l=1

aklij (x)∂jwi(x) ∂lvk(x) dx

(5)
and where by (·, ·) we denote the H inner prod-
uct extended to the pair of spaces V × V ∗ with
duality taken with respect to the “pivot” space
H by continuity. A standard result implies that
the problem is well-posed and that

u ∈ C0(Ī;V ), ut ∈ C0(Ī;H), utt ∈ C0(Ī;V ∗) .
(6)

3 Regularity of solutions

We assume that u0, u1 ∈ Hp+1(G). The effect of
polygonal corners on the regularity of u(·, t) has
been established by Plamenevskĭı and collabo-
rators. The following Theorem can be deduced
from their results, see [1] and [2]:
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Theorem 1 For each s, s′ ∈ N, the solution
u(x, t) of (4) admits the following decomposition
into a regular and a singular part:

u(x, t) = ureg(x, t)+

M∑
i=1

χi(x)

ni,max∑
j=1

c(t)u
(i)
sing,j(x) Ψ

(i)
j (θi) , (7)

where ureg ∈ Hs(I;Hs′(G))m and

1. χi ∈ C∞(Ḡ) are smooth cut-offs such that
supp(χi) ∈ Ḡi and χi|{ri(x)<

Ri
2
} ≡ 1 ,

2. u
(i)
sing,j ∈ Hσ(Gi)

m for any σ < <λ(i)
j , but

‖u(i)
sing,j‖

2
H2,p+1
δi

(Gi)
:= ‖u(i)

sing,j‖
2
H1(Gi)

+

p+1∑
k=2

∫
Gi

ri(x)2(δi+k−2) |Dku
(i)
sing,j |

2 dx (8)

is finite for certain δi ∈ [0, 1) and all i.

3. θi ∈ [0, φi] is the angular coordinate in Gi,

4. (λ
(i)
j ,Ψ

(i)
j ) are solutions of a Sturm-Liouville

eigenvalue problem associated to a(·, ·) s. t.

<λ(i)
j > 0 and Ψi ∈ C∞([0, φi])

m.

4 Locally refined meshes

Hence, u(x, t) is the sum of a regular function
and of finitely many superpositions of functions
which satisfy (8). To approximate such func-
tions with optimal convergence order using the
h-version of FEM on regular triangulations T ,
it is well-known that T needs to be graded to-
wards the vertices ci. This means that there
exist grading parameters βi > 0, i = 1, . . . ,M
and a constant L > 0 such that for all elements
K ∈ T s. t. K ⊆ Gi,
h(T )L−1rβii ≤ h(K) ≤ Lh(T )rβii if ci 6∈ K ,

h(T )L−1 supx∈K ri(x)βi ≤ h(K)

≤ Lh(T ) supx∈K ri(x)βi if ci ∈ K .

5 Optimal rates for the semi-discretization

Let T be a regular triangulation and let VN
be the finite-dimensional subspace of V ∩C0(Ḡ)
consisting of piecewise polynomials w. r. to T of
degree ≤ p ∈ N. We define N := dim(VN ). It is
by now a standard result that for all δi ∈ [0, 1)

there is a choice of βi ∈ (0, 1] such that the FEM
interpolant Ip on a β-graded mesh satisfies

‖v − Ipv‖H1(Gi) ≤ c(u)N−p/2 , (9)

for all v ∈ V such that v|
(
⋃
i Gi)

{ ∈ Hp+1((
⋃
i Gi)

{)

and v|Gi ∈ H
p+1,2
δi

(Gi).
Using standard techniques in semi-discretization
of the Wave equation, we obtained the following
Theorem, see [1] and [2]:

Theorem 2 Let uN be the solution of the (in
space) finite-dimensional semi-discrete problem
(4) posed on VN instead of V , which is con-
structed upon a triangulation T with “suitable”
grading βi towards all vertices ci. Moreover, let
the semi-discrete problem be posed with initial
conditions u0,h, u1,h.
Then,

‖u(·, t)−uN (·, t)‖V + ‖∂tu(·, t)− ∂tuN (·, t)‖H
≤ C(u,G,β)N−p/2 . (10)
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Kersten Schmidt1,∗, Julien Diaz2, Christian Heier1

1Research Center Matheon & Department of Mathematics, TU Berlin, Berlin, Germany
2Magique3D, INRIA Bordeaux Sud Ouest & IRA-LMA, U Pau et des Pays de l’Adour, Pau, France

∗Email: kersten.schmidt@math.tu-berlin.de

Abstract

We propose a new solution methodology to in-
corporate symmetric local absorbing boundary
conditions involving higher tangential deriva-
tives into C0 continuous finite element methods.
For this we use discontinuous Galerkin-like bi-
linear forms for the discretization of differential
operators of order four or higher, in which fur-
ther auxilliary variables are not needed. We will
present well-posedness results and a-priori h-
convergence error estimates for uniform polyno-
mial degrees. Numerical results show that the
method does not hamper the order of conver-
gence of the finite element method, if the poly-
nomial degree on the boundary is sufficiently
high.

Keywords: Nonconforming Galerkin methods,
Local boundary conditions.

1 Introduction

Local boundary conditions are used to mimick
the solution in presence of an infinite exterior in
diffusion problems or time-harmonic scattering
problems, in highly conducting bodies or thin
layers. We consider symmetric local boundary
conditions in R2, which take the following form
of Dirichlet-to-Neumann maps [1, Eq. 3.14]

∂νu(x) +
J∑
j=0

(−1)j∂jΓ(αj ∂
j
Γu)(x) = 0, (1)

where ∂ν and ∂Γ are the normal and tangential
derivatives on the boundary Γ of the computa-
tional domain, respectively, and αj are smooth
functions on Γ. The parameter J corresponds to
the order of the derivatives. If J < 0 then (1) is
known as the (homogeneous) Neumann bound-
ary conditon, for J = 0 and J = 1 as Robin
or Wentzell boundary condition, respectively.
Prominent examples of symmetric local bound-
ary conditions are the Bayliss-Turkel-Gunzber-
ger conditions (BGT) up to order 2 and Feng’s
conditions at any order for time-harmonic scat-
tering problems.

n

Γ

ν

Figure 1: Triangulation Mh of the domain Ω
with boundary Γ and unit normal vector ν. The
interior penalty formulation is with additional
terms on boundary nodes n.

If only second derivatives are present, i.e.,
for the Neumann, Robin and Wentzel condi-
tions, and the boundary is smooth enough, we
can incorporate the condition in usual piece-
wise continuous finite element methods. After
J-times integration by parts the variational for-
mulation contains terms like∫

Γ
αj∂

j
Γu ∂

j
Γv dσ(x), (2)

and the natural space is

VJ := H1(Ω) ∩HJ(Γ).

Then, positivity of Re(αJ) or nonvanishing Im(αJ)
implies well-posedness for the Helmholtz equa-
tion by the Fredholm-Riesz-Schauder theory, ex-
cept for a countable set of frequencies [2]. For
J ≥ 2, the usual C0 continuous finite element
spaces Vh are not any more contained in VJ . In
this case, trial and test functions with C(J−1)-
continuity (at least) along Γ [1] or auxilliary un-
knowns [3] may be used.

2 Interior penalty formulation

Following [4] we propose a variational formula-
tion for the broken Sobolev space

VJ,h := H1(Ω) ∩H1(Γ) ∩HJ(Γh)
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where Γh is the boundary Γ without the bound-
ary nodes n of a finite element meshMh, which
contain as a subspace the usual C0 continuous
finite element spaces Vh. Then, for each j > 1
each term in (2) is replaced by∫

Γh

αj∂
j
Γu ∂

j
Γv dσ(x)

+
∑

n∈N (Mh,Γ)

( j−1∑
i=1

(−1)i+j
{
∂j−i−1

Γ αj∂
j
Γu
}
n

[
∂iΓv
]
n

+
βj

h
2(J−j)+1
n

[∂j−1
Γ u]n[∂j−1

Γ v]n

)
,

where {·}n and [·]n are mean and jump oper-
ators on the boundary nodes n. The coeffi-
cients βj are penalty terms and hn is the min-
imum of the lengthes of the two neighbouring
edges of n. To obtain the symmetry or non-
symmetric formulation we may add or substract
the term [∂iΓu]n{∂j−i−1

Γ αj∂
j
Γv}n on each bound-

ary node n.
If βj are large enough the so introduced in-

terior penalty formulation is stable in VJ,h, if
the original formulation in VJ is stable, and is
stable in Vh, if in addition the mesh-width is
small enough. In this case we can bound the
discretisation error ‖uJ,h − uJ‖VJ,h by

CJ,h

(
inf

vh∈Vh
‖vh − uJ‖H1(Ω) + hpΓ−J+1‖fJ‖V ′

J

)
,

where pΓ is the minimum polynomial order on
the boundary Γh. This means that the discreti-
sation error is bounded by the best-approximation
error in the computational domain plus a power
of the mesh-width, where the polynomial degree
on the boundary has to be increased to compen-
sate increasing derivatives J .

3 Numerical experiments

As an example we study the scattering of a
plane wave with wave number k by a bounded
object in a homogeneous infinite space, which
is modelled by Feng-4 conditions

∂νu =
(
ik − 1

2R + i
8kR2 + 1

8k2R3 − 25i
128k3R4

)
u

+
(

i
2k −

1
2k2R

− 13i
16k3R2

)
∂2

Γu− i
k3∂

4
Γu.

on the circular boundary of the computational
domain of radius R. For this we have imple-
mented the proposed method within the C++
library Concepts. Choosing R = 3 and k = 1
we observe optimal convergence of the discreti-
sation error for polynomial orders p = 1, 2, 3.
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Figure 2: Convergence of the relative discretisa-
tion error for polynomial orders p = 1 to p = 3.
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Abstract

We are concerned with the numerical simulation
of electromagnetic wave propagation in disper-
sive media i.e. when the electromagnetic mate-
rial characteristics depend of the frequency. In
the time-domain, this translates in a time de-
pendency of these parameters that can be taken
into account through and additional differen-
tial equation for, e.g, the electric polarization,
which is coupled to the system of Maxwell’s
equations.

More precisely we consider Maxwell’s equa-
tions in a Debye dispersive medium, the mag-
netic field ~H, the electric field ~E and the elec-
tric polarization ~P satisfy the following system
of equations in [0, T ]

µ0
∂ ~H

∂t
= −curl

(
~E
)
,

ε0ε∞
∂ ~E

∂t
= curl

(
~H
)
− ε0 (εs − ε∞)

τ
~E

−σ ~E +
1

τ
~P ,

∂ ~P

∂t
=

ε0 (εs − ε∞)

τ
~E − 1

τ
~P .

(1)
µ0 denoting the magnetic permittivity in vac-
uum, ε0 the electric permittivity in vacuum, ε∞
the infinite frequency relative permittivity, εs,
the static relative permittivity, the permittivity
at zero frequency (εs > ε∞) and τ the Debye
relaxation time constant, characteristic of the
material. The boundary conditions are of the
following type: we introduce the decomposition
∂Ω = Γm ∪ Γa of the boundary of Ω on which
we impose

~n× ~E = 0 on Γm,

~n× ~E −
√
µ

ε
~n×

(
~H × ~n

)
=

~n× ~Einc −
√

µ
ε~n×

(
~H inc × ~n

)
on Γa,

where ~n denotes the unit outward normal to ∂Ω
and

(
~Einc, ~H inc

)
is a given incident field.

As in [2] we propose and study a locally im-
plicit discontinuous Galerkin time-domain me-
thod formulated on an unstructured tetrahedral
mesh coupled with an efficient time integration
method introduced in [1] for dealing with grid
induced stiffness when using non-uniform (lo-
cally refined) meshes for solving the resulting
system of differential equations in the case of
Debye-type media. The time integration method
is a blend of the second order leap-frog scheme
and the second order Crank-Nicolson scheme.
We wonder whether the method retains its se-
cond-order ODE convergence under stable si-
multaneous space-time grid refinement ∆t v h,
h→ 0 towards the exact PDE solution. This is
not a priori clear due to the splitting between
two different time integration methods which
can introduce order reduction but it is possible
to prove that splitting is not detrimental to the
second-order ODE convergence of the method
under stable simultaneous space-time grid re-
finement towards the exact underlying PDE so-
lution.

Three-dimensional numerical simulations are
presented concerning the exposure of head tis-
sues to a localized source radiation showing the
efficiency of this method.

Keywords: Maxwell’s equations, discontinu-
ous Galerkin time-domain method
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Abstract

In this paper, we compare the performance of
the wave-based discontinuous Galerkin method
against the polynomial high-order finite
element method (FEM) for Helmholtz
problems. Previous studies demonstrate that
both methods lead to a control of the
dispersion error associated with low-order
FEM at high frequency. Common belief is that
compared to polynomial methods,
physics-based methods can provide a
significant improvement in performance, at the
expense of a deterioration of the conditioning.
However, the results presented in this paper
indicate that the differences in accuracy,
efficiency and conditioning between the two
approaches are more nuanced than generally
assumed.

Keywords: Helmholtz Problem, Wave-based
Discontinuous Galerkin Method, High-order
Finite Element Method.

1 Introduction

We compare the performance of the
wave-based discontinuous Galerkin method
against the polynomial high-order finite
element method (p-FEM). The methods were
both devised to tackle the so-called pollution
effect (accumulation of dispersion error)
encountered by standard Finite Element
Method when solving short wave problems.
Another common characteristic between these
two methods is that they easily allow local
order refinement, which makes them suited for
p-adaptive and hp-adaptive strategies.

The studied p-FEM replaces the low-order
Lagrange polynomials with Lobatto shape
functions [5], taking advantage of the improved
interpolation properties of this family of
functions. As the polynomial order P is
increased, different types of shape functions
appear: vertex, edge and bubble functions
(and also face functions in 3D). Bubble
functions have no connectivity with the

(a) Plane wave. (b) Prop. spinning waves.

Figure 1: Example of solutions.

neighbouring elements and can therefore be
removed from the global system using static
condensation which improves the conditioning
and reduces the memory requirements.

Wave-based discontinuous Galerkin
method (DGM) [1] uses plane waves to
interpolate the solution in each element and
the continuity between elements is weakly
imposed using numerical fluxes.

Both numerical models have been
identified as effective methods to address the
pollution effect [2, 4] but, to the authors’
knowledge, they have not been compared.

2 Description of the test cases

To assess the performance of the methods, we
use four types of solutions of the Helmholtz
equation. The propagating plane wave
problem in figure 1(a) involves a single
direction of propagation and therefore allows a
detailed study of the anisotropy of the
numerical models. The spinning wave problem
in figure 1(b) consists of spiral-shaped waves
radiating from a cylinder. All the wave
directions are equally present in the domain,
which is closer to a realistic problem compared
to the first test case. Propagating and
evanescent waves are investigated. Finally, a
singular corner solution is considered. The
gradient of the solution exhibits a singularity
at the origin. The objective with this last test
case is to investigate how the two methods
behave when confronted with such solutions.
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The computational domains are discretised
using uniform triangular unstructured
elements. To generate the solutions, an
inhomogeneous Robin boundary condition is
used for p-FEM and ghost cells are used for
wave-based DGM [1].

3 Main results

Figure 2: Propagating spinning wave problem
(ka=28); factorisation memory (MB) against
condition number to achieve 1% of accuracy;
circles: wave-based DGM, squares: p-FEM
without condensation, diamonds: p-FEM with
condensation. The numbers of plane wave or
polynomial order is shown next to each point.

A first part of the study is dedicated to the
interpolation properties of the bases. The rest
of the study focuses on the numerical models
for which the following conclusions have been
drawn. For the propagating wave problems,
wave-based DGM and p-FEM are able to
achieve the same level of accuracy and similar
levels of performance. To reach the required
accuracy (1% of the relative L2-error), the
wave-based systems are not ill-conditioned
contrary to what is commonly assumed (figure
2). However, the studied physics-based
method does not provide a step change in
computational performance, even at high
frequency. When dealing with evanescent
waves, wave-based DGM becomes expensive
compared to p-FEM which costs remained
similar to that of the propagating waves. The
exponential convergence of both methods for
regular problems is lost when representing
singular solutions. However, p-FEM is more
robust and for a given mesh, the levels of
accuracy reached are higher than those
reached by the physics-based method.

Compared to wave-based DGM, p-FEM

has a more consistent behaviour for the
different types of problems. Moreover, p-FEM
can directly be used on problems with
non-uniform coefficients, whereas wave-based
DGM would require some non-trivial
developments to generalise the plane-wave
basis to non-uniform media [3].
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Abstract

We consider the time-harmonic acoustic wave
scattering by a bounded layered anisotropic in-
homogeneity embedded in an unbounded anisot-
ropic homogeneous medium. The material pa-
rameters and the refractive index are assumed
to be discontinuous across the interfaces betwe-
en inhomogeneous interior and homogeneous ex-
terior regions. The corresponding mathematical
problems are formulated as boundary-transmis-
sion problems for a second order elliptic partial
differential equation of Helmholtz type with dis-
continuous variable coefficients.
We show that with the help of localized poten-
tials the boundary-transmission problems can
be reformulated as a localized boundary-domain
integral equations (LBDIE) systems and prove
that the corresponding localized boundary-doma-
in integral operators (LBDIO) are invertible.

Keywords: acoustic scattering, inhomo-
geneous anisotropic obstacle, transmissi-
on problems, boundary-domain integral
equations.

1 Uniqueness and existence results

The physical time-harmonic acoustic wave scat-
tering problem under consideration mathemati-
cally is formulated as a transmission problem
for a second order elliptic partial differential
equation with variable coefficients

A2(x, ∂x)u(x) ≡ ∂xk
(
a
(2)
kj (x) ∂xju(x)

)
+ ω2 κ(x)u(x) = f2

in the inhomogeneous anisotropic bounded re-
gion Ω2 and for the anisotropic Helmoltz type
equation with constant coefficients

A1(∂x)u(x) ≡ ∂xk
(
a
(1)
kj ∂xju(x)

)
+ ω2κu(x)= f1

in unbounded homogeneous region Ω1 = R3 \
Ω2.
Since the material parameters a

(q)
kj and the re-

fractive index κ are assumed to be discontinuous
across the interface S = ∂Ω1 = ∂Ω2 between

the inhomogeneous interior and homogeneous
exterior regions, on S there are given standard
transmission conditions relating the interior and
exterior limiting values of the sought for wave
functions and their co-normal derivatives.
The similar transmission problems when A1(∂x)
is the Helmholtz operator ∆+ω2 andA2(x, ∂x)=
∆ +ω2κ(x) is well investigated in the literature
(see [2] and the references therein).
The acoustic scattering problem in the whole
space corresponding to an isotropic inhomogene-

ity, i.e., when a
(2)
kj (x) = a(2)(x) δkj with Kro-

necker’s delta and A1(∂x) = ∆+ω2, by the indi-
rect boundary-domain integral equation method
is investigated by P.Werner [6], [7]. Applying
the potential method based on the Helmholtz
fundamental solution, he reduces the problem
to the Fredholm-Riesz integral equations system
and proves its unique solvability. Applying these
results the same problem by the direct method
is studied by P.Martin [4].
Werner’s approach is not applicable in anisotro-
pic case.
Our goal here is to show that the above men-
tioned transmission problem for a general aniso-
tropic case with the help of localized potentials
associated with the Laplace operator can be re-
formulated as a localized boundary-domain inte-
gral equations system and prove that the cor-
responding localized boundary-domain integral
operators are invertible. Beside a pure mathe-
matical interest these results seem to be impor-
tant from the point of view of numerical analy-
sis, since LBDIE system can be applied in con-
structing very convenient numerical schemes in
applications.
In our analysis, we apply the localized paramet-
rix Pχ(x − y) associated with the Laplace op-
erator which is represented as the product of
the fundamental solution −[ 4π |x−y| ]−1 of the
Laplace operator and an appropriately chosen
localizing cut-off function χ(x−y) supported on
some neighbourhood of the origin. Evidently,
the kernels of the corresponding localized po-
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tentials are supported in some neighbourhood of
the reference point y (assuming that x is an inte-
gration variable) and they do not solve the orig-
inal differential equation. Moreover, note that
the harmonic localized parametrix Pχ(x− y) is
not a Levi function for the operator A2(x, ∂x),
in general.
By means of the standard and localized layer
and volume potentials we reduce the transmi-
ssion problem under consideration to the locali-
zed boundary-domain integral equations system.
This system contains standard and localized bo-
undary integral operators on S and a localized
pseudodifferential operator of zero order (a Cau-
chy singular integral operator) defined on a bo-
unded domain Ω2. Consequently, the correspon-
ding system does not belong to the Fredholm-
Riesz class of integral operators.
Our analysis consists of several steps and is bas-
ed on the results obtained in [1], [3], [5].
First we establish the equivalence between the
original transmission problems and the corre-
sponding LBDIE system which plays a crucial
role in our analysis.
Afterwards, we establish that the localized bo-
undary domain integral operator obtained be-
longs to the Boutet de Monvel algebra of pseudo-
differential operators.
And finally, applying the Vishik-Eskin theory
based on the factorization method (the Wiener-
Hopf method) we investigate Fredholm prop-
erties of the LBDIO and prove its invertibil-
ity in appropriate function spaces. This invert-
ibility property implies then, in particular, ex-
istence and uniqueness results for the LBDIE
system and the corresponding original transmis-
sion problem.
The same approach is applicable when the inho-
mogeneous region Ω2 contains holes (empty in-
clusions) with appropriate Dirichlet, Neumann
or mixed type boundary conditions.

This is a joint work with Sergey Mikhailov (Bru-
nel University of London, UK) and Otar Chka-
dua (Tbilisi State University, Georgia).
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Abstract

Time-harmonic acoustic wave propagation in an
ocean with depth-dependent background sound
speed can be described by the Helmholtz equa-
tion. Lechleiter and Nguyen introduce in [1]
a spectral volumetric integral equation method
for ocean acoustics for constant background
sound speed. For computations of acoustic scat-
tering in a depth ocean and computations over
large distances, however, it is necessary to have
depth-depended background sound speed. We
apply the idea of [1] to present fundamental in-
gredients for the numerical analysis for a spec-
tral volumetric integral equation method for in-
homogeneous ocean acoustics.

Keywords: Lippmann-Schwinger Equation,
spectral method, ocean acoustics

1 Sound Waves in an Ocean

We consider a waveguide Ω = Rm×[0, h], where
h > 0 is the constant depth of the ocean and
m = 2, 3 is the dimension of the ocean. For sim-
plicity, we assume in this work only m = 3. The
time harmonic sound propagation for an ocean
with depth-dependent background sound speed
is formally governed by the Helmholtz equation

∆u+
ω2

c2(x3)
n2u = 0 in Ω, (1)

where ω is the frequency and c is the speed
of sound depending on the depth of the ocean.
Moreover, the sound speed c is bounded by 0 <
c− ≤ c ≤ c+. Furthermore, n is the refractive
index and we suppose n = 1 outside a bounded
and open set D. Since D ⊂ Ω is a local pertur-
bation in the inhomogeneous ocean character-
ized by refractive index n, we denote the con-
trast by

q(x) := n2(x)− 1 for x ∈ Ω.

Next, the free surface of the ocean is modeled
by sound soft boundary conditions (BCs)

u = 0 on Γ0 := {x ∈ R3 : x3 = 0},

and the seabed of the ocean by sound hard BCs

∂u

∂x3
= 0 on Γh := {x ∈ R3 : x3 = h}.

Further, writing x = (x̃, x3)T , for |x̃| large enough
we expand u by separation of variables as

u(x̃, x3) =
∑
j∈N

wj(x̃)uj(x3). (2)

Exploiting the Helmholtz equation (1) we have

∂2uj
∂x2

3

− ω2

c2(x3)
uj = λ2

juj , in (0, h), j ∈ N, (3)

and

∂2wj
∂x2

1

+
∂2wj
∂x2

2

+ λ2
jwj = 0 in R2, (4)

for some constant λj . We investigate (3) with
BCs uj(0) = 0 and ∂uj/∂x3(h) = 0 correspond-
ing to the waveguide BCs. Since this eigen-
value problem is self-adjoint, it is well known
that for c ∈ L∞(0, h) the eigenvalues λ2

j ∈ R
form a discrete set and corresponding eigenvec-
tors uj ∈ H2(0, h).

To obtain a radiating solution u in (2), the
functions wj need to satisfy a radiation condi-
tion for λj(= i

√
|λj |2, for λ2

j ≤ 0). By the fact

that λ2
j → −∞ (j →∞), only finitely many λj

are real, and for those j we prescribe the radia-
tion condition

lim
|x̃|→∞

√
x̃
(∂wj
∂|x̃|
−i|λj |wj

)
= 0, uniformly in

x̃

|x̃|
.

If λj < 0, we prescribe that wj must be a bounded
solution to (4), yielding an evanescent mode.
Note that, for a certain choice of ω, h, c we might
have λj = 0 for some j. For simplicity, we ex-
clude these eigenvalues in this work, however,
the analysis will be influenced. For a homoge-
neous ocean this is discussed in [2]. Assuming
λj 6= 0, then the Green’s function can be ex-
panded as

G(x, y) =
i

4

∞∑
j=1

φj(x3)φj(y3)H
(1)
0 (λj |x̃− ỹ|),
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where x̃ 6= ỹ and φj denotes the normalized
eigenfunctions. Note that for an inhomogeneous
ocean, computing λj and φj requires substantial
numerical efforts, since no explicit representa-
tion is available.

2 Volumetric Integral Equation

We would like to introduce a volumetric inte-
gral equation of second kind, called Lippmann-
Schwinger equation (LSE), that corresponds to
solving the scattering problem (1) with BCs and
radiation condition. Furthermore, we show that
the volumetric integral equation Vf , formally
defined for a function f : D → C by

Vf =

∫
D
G(·, y)f(y)dy for f ∈ L2(Ω),

is a bounded operator from L2(D) into H2
loc(Ω).

Let us point out here that for analytic as-
pects we work later in the domain Λρ := {x ∈
Ω : |x̃| < ρ}, where ρ > 0 and Λ̃ρ := {x̃ ∈ R2 :
|x̃| < ρ}.

Lemma 2.1 The operator Vj, defined by

Vj :L2(Λ̃ρ)→ L2(Λ̃ρ)

f 7→
∫

Λ̃ρ

H
(1)
0 (λj |x̃− ỹ|)f(ỹ)dỹ, j ∈ N,

is bounded from L2(Λ̃ρ) into H1(Λ̃ρ), and

‖Vjf‖2H1(Λ̃ρ)
≤ Cj−1‖f‖2

L2(Λ̃ρ)
. (5)

The boundedness of Vj follows for fixed j di-
rectly from the weak singularity of the kernel,
however, estimate (5) requires more carefully
arguments to obtain an explicit dependency on
j.

Fourier theory gives

L2(Λρ) = {f : Λρ → C, f(x) =
∑
j∈N

f̂(j, x̃)φj(x3),

∑
j∈N

∫
Λ̃ρ
|f̂(j, x̃)|2 dx̃ = ‖f‖2L2(Λρ) <∞}.

Then we have the corresponding separation in
horizontal and vertical components

L2(Λρ) = L2([0, h], L2(Λ̃ρ)).

In particular, we get

‖Vf‖2L2(Λρ) =
∑
j∈N+

‖Vj f̂(j, y1)‖2
L2(Λ̃ρ)

≤ C‖f‖2L2(Λρ).

To get boundedness of V from L2(Λρ) intoH1(Λρ)
we use the same representation idea for H1(Λρ).

Moreover, for every f ∈ L2(Ω), with com-
pact support, function Vf ∈ H2

loc(Ω) solves ∆Vf+
ω2/c2(x3)Vf = −f . For an incident wave solv-
ing (1) for n2 ≡ 1, with scattered field us is the
field that satisfies the BCs and such that the
total field

u(x) = ui(x) + us(x), x ∈ Ω,

solves Helmholtz equation (1) and BCs. With
these ingredients the scattering problem can be
equivalently described by the LSE

us−V
( ω2

c2(x3)
qus
)∣∣∣
D

= V
( ω2

c2(x3)
qui
)∣∣∣
D

in L2(D).

In order to do numerically approximation to
this equation, we establish a periodized LSE,
then use a spectral method. Further, we present
an optimization technique for this spec-
tral method, when the height of the obstacle is
small compared to the height of the inhomoge-
neous ocean.
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Abstract

We present a high-order Nyström method for
scattering of acoustic waves by inhomogeneous
penetrable media in three dimensions where re-
fractive index is allowed to jump across the ma-
terial interface. This integral equation based
approach adopts the framework of overlapping
local parameterizations for describing general
scattering geometries and employees a partition
of unity to simplify the design of quadratures for
approximation of the integral operator. A high-
order convergence is achieved through analytic
resolution of singularities via suitable changes
of parametric variables. Accelerated evaluation
of the non-singular integrals is accomplished by
a method of equivalent source representations
on a Cartesian grids and employing three di-
mensional FFTs.

Keywords: Acoustic scattering, Lippmann-
Schwinger integral equation, FFTs.

1 Introduction

We present a high-order integral equation solver
for acoustic scattering by three dimensional
bounded penetrable inhomogeneous media with
refractive index n which is assumed to be one
outside the scatterer Ω. Existing fast techniques
for this problem at best achieves second order
convergence for discontinuous scattering config-
urations, e.g., [2, 5]. Although, high-order na-
ture of the algorithm introduced in [1] is not
constrained by smoothness of n across mate-
rial interface, it is computationally efficient only
for “thin” scatterers. Our present approach, in
fact, is a nontrivial extension of the the ideas
introduced in [1] to obtain a solver for general
scattering configurations while retaining high-
order accuracy even in the presence of material
discontinuity.

2 Numerical Scheme

An equivalent integral equation formulation for
scattering problem is given by the Lippmann-
Schwinger Integral Equation [3], u(x)+κ2K[u](x)

= ui(x) whereK[u](x) =
∫

ΩG(x,x′)m(x′)u(x′)dx′.
Here G(x,x′) = exp(iκ|x− x′|)/(4π|x − x′|)
and m(x) = 1− n2(x).
The proposed high-order Nyström scheme
is based on approximation of K[u](x) by means
of a high-order quadrature rule. We begin by
covering the scatterer Ω by overlapping coordi-
nate patches {Ωp}Pp=1, where each patch Ωp is
parametrized by a smooth invertible map xp =
xp(s, t), (s, t) = (s1, s2, t) ∈ (0, 1)3. Further,
with the help of a partition of unity {wp(x)}Pp=1

subordinate to this covering, we rewriteK[u](x)
as sum of P integrals K[u](x) =

∑P
p=1Kp[u](x)

whereKp[u](x) =
∫

[0,1]3 G(x,xp)φ
u
p(s′, t′)ds′dt′,

φup(s, t) = m(xp(s, t))u(xp(s, t))wp(xp(s, t))
Jp(s, t) and Jp is the Jacobian of the paramet-
ric change of variable xp. Note that, wp van-
ishes to high-order on the sides of those patches
(referred to as “interior patches”) whose closure
have an empty intersection with the boundary
of Ω, while this, of course, does not happen
on remaining patches, (referred to as “bound-
ary patches”). This difference, in turn, alters
the behavior of integrands on the boundary of
respective patches, and therefore demands spe-
cialized treatment for accurate evaluation
ofKp[u](x) corresponding to both groups, bound-
ary and interior, patches – that we describe in
what follows.
Integration Over Boundary Patches: We
employ the strategy of splitting the kernel into
two; a smooth kernel and a singular but local-
ized kernel. The respective integrals with non-
singular and singular kernels are then approxi-
mated to high-order by means of two different
strategies explained below.

Non-Singular Integration: In this case the
integrand is smooth in all variable and vanishes
to high-order at end-points of the integration
intervals in parallel coordinates s′. Therefore,
high-order can be attained by simply employing
spectrally accurate trapezoidal rule for planar
integration with respect to s′ and a high-order
composite Newton-Cotes quadrature in trans-
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verse variable t′.

Singular Integration: More careful treatment
is required for obtaining accurate approxima-
tion when kernel is singular. A change to polar
coordinates (ρ, θ) centered around s, the pro-
jection of x−1

p (x) on to the integration plane
(s′, t′), followed by a polynomial change of vari-
able in ρ provides an effective resolution of ker-
nel singularity. A high-order approximation can
then be obtained by employing quadratures sim-
ilar to the ones employed in the non-singular
integration case. We refer the readers to [1] for
a more detailed discussion on this approach.
Integration Over Interior Patches: Follow-
ing an approach similar to the one adopted for
integration over boundary patches, we again use
two different approximation strategies for inte-
grals with smooth and singular kernels.

Non-Singular Integration: In this case, φup(s, t)
vanishes to high order on the boundary of inte-
rior patches while the kernel is smooth. Conse-
quently, the integrand for evaluation ofKp[u](x)
is smooth and compactly supported in the do-
main of integration and is approximated to high-
order accuracy by means of Trapezoidal rule.

Singular Integration: In order to resolve the
kernel singularity, a change of variables to spher-
ical coordinates around target point x(s, t) is
employed. This procedure yields smooth and
compactly supported integrand that again con-
verges to high-order when Trapezoidal rule is
employed for approximation.

Finally, the computation of non-singular in-
tegrals over boundary and interior patches is
accelerated by a suitable use of two face equiva-
lent source approximations on Cartesian grids,
introduced in [4].

3 Numerical Result

We begin by comparing our approximate in-
tegral operator against the continuous opera-

Grid Error Order

3× 4× 4× 4 5.25× 10−1 −
3× 8× 8× 8 1.70× 10−1 1.62

3× 16× 16× 16 3.72× 10−2 2.20

3× 32× 32× 32 7.31× 10−4 5.67

3× 64× 64× 64 2.17× 10−5 5.07

Table 1: Convergence for a penetrable sphere of
size ka = 10 with n =

√
2.

(a) Computational grid (b) Total field

Figure 1: Scattering of a plane wave by a pen-
etrable sphere of size ka = 20 with

√
2 as its

refractive index.

tor for a spherical shaped scatterer of the size
ka = 10 with a constant refractive index of√

2. The convergence study shown in Table
1 clearly shows that our approximate opera-
tors converge to the continuous integral with
expected high-order convergence. In Fig 1, we
present a scattering computation for the same
spherical shaped scatterer with a computational
grid of 64 × 64 × 64 on each patch (see Fig.1
(a)) and computed solution has a relative error
of order 10−4 when compared to the analytic
solution.

Acknowledgments
AA gratefully acknowledges support from DST.

References

[1] A. Anand and F. Reitich , An efficient high-
order algorithm for acoustic scattering from
penetrable thin structures in three dimensions,
Journal of Acoustical Society of America, 121
(2007), pp. 2503–2514.

[2] E. M. Hyde and O. P. Bruno, A fast, higher-
order solver for scattering by penetrable bodies
in three dimensions, Journal of Computational
Physics, 202 (2005), pp. 236–261.

[3] P. Martin, Acoustic scattering by inhomoge-
neous obstacles, SIAM Journal on Applied
Mathematics’ 64 (2003), pp. 297-308.

[4] O. P. Bruno and L. A. Kunyansky, A Fast,
High-Order Algorithm for the Solution of Sur-
face Scattering Problems: Basic Implementa-
tion, Tests, and Applications, Journal of Com-
putational Physics, 169 (2001), pp. 80–110.

[5] Zhu, Aiming and Gedney, Stephen D A
quadrature-sampled precorrected FFT method
for the electromagnetic scattering from in-
homogeneous objects, Antennas and Wireless
Propagation Letters, IEEE, 2 (2003), pp. 50–
53.



Contributed Session: Wednesday 10:30–12:30 Room 0.014 343

Sensitivity analysis for shape optimization
of a focusing acoustic lens in lithotripsy
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Abstract

We are interested in shape sensitivity analy-
sis for an optimization problem arising in medi-
cal applications of high intensity focused ultra-
sound. The goal is to find the optimal shape
of a focusing acoustic lens so that the desired
acoustic pressure at a kidney stone is achieved.
We follow the variational approach to calculat-
ing the shape derivative of the cost functional,
introduced in [2], which does not require com-
puting the shape derivative of the state variable.

Keywords: nonlinear acoustics, Westervelt’s
equation, shape derivative

1 Introduction

In lithotripsy, the aim of obtaining a sharp
focus of the acoustic pressure exactly at the de-
sired location of a kidney stone leads to the task
of optimizing the shape of the acoustic lens.

Let Ω ⊂ Rd, d ∈ {1, 2, 3}, be a fixed bounded
domain with Lipschitz boundary ∂Ω, and Ω+

a subdomain, representing the lens, such that
Ω̄+ ⊂ Ω and Ω+ has Lipschitz regular bound-
ary ∂Ω+ = Γ (see fig. 1). Ω− = Ω \ Ω+ repre-
sents the fluid region. Coupling of the acoustic
lens and nonlinearly acoustic fluid region can be
modeled by the Westevelt equation with nonlin-
ear damping and piecewise constant coefficients,
first introduced in [1]:

1
λ(x)(1− 2k(x)u)ü− div( 1

%(x)∇u
−b(x)((1− δ(x)) + δ(x)|∇u̇|q−1)∇u̇)

= 2k(x)
λ(x) (u̇)2 in Ω+ ∪ Ω−,

JuK = 0 on Γ,
r

1
%(x)

∂u
∂n+

+ b(x)(1− δ(x)) ∂u̇
∂n+

+b(x)δ(x)|∇u̇|q−1 ∂u̇
∂n+

z
= 0 on Γ,

u = 0 on ∂Ω,

(u, u̇)|t=0 = (u0, u1).

(1)

Here u stands for the acoustic pressure, b is re-
lated to the diffusivity, c denotes the speed of

sound, k = βa/λ, λ = %c2 is the bulk modulus,
% is the mass density, βa = 1 + B/(2A), and
B/A represents the parameter of nonlinearity.
n+ and n− stand for the unit outer normals to
the lens Ω+ and the fluid region Ω− and J·K de-
notes the jump across the interface Γ.

For brevity, we emphasize the space depen-
dence of coefficients in (1), while omitting space
and time dependence of u in the notation. We
make the following assumptions on coefficients:

bi := b|Ωi , %i := %|Ωi , λi := λ|Ωi , δi := δ|Ωi ,

ki := k|Ωi are constants,

bi, %i, λi > 0, δi ∈ (0, 1), ki ∈ R, i ∈ {+,−}.

An important feature of the Westervelt equa-
tion is possible degeneracy due to the factor
1 − 2ku. This means that any analysis of the
Westervelt equation has to include bounding
away from zero this term or, in other words, ob-
taining a bound on ‖u‖L∞(0,T ;L∞(Ω)). In [1], this
issue was resolved by employing the Sobolev
embedding W 1,q+1(Ω) ↪→ L∞(Ω), q > d− 1.

2 Shape optimization problem

We consider the following optimization problem

min
Ω+∈Oad

u∈L2(Ω×[0,T ])

J(u,Ω+)

≡ min
Ω+∈Oad

u∈L2(Ω×[0,T ])

∫ T

0

∫
Ω

(u− ud)2 dx ds

subject to the constraint∫ T

0

∫
Ω

{ 1

λ(x)
(1− 2k(x)u)üφ+

1

%(x)
∇u · ∇φ

+ b(x)(1− δ(x))∇u̇ · ∇φ− 2k(x)

λ(x)
(u̇)2φ

+ b(x)δ(x)|∇u̇|q−1∇u̇ · ∇φ
}
dx ds = 0,

for all φ ∈ X̃ = L2(0, T ;W 1,q+1
0 (Ω)), with ini-

tial conditions (u0, u1).
ud ∈ L2(0, T ;H1

0 (Ω)) denotes the desired acous-
tic pressure. The set of admissible shapes is
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fig. 1: Schematic of a power source in lithotripsy
based on the electromagnetic principle

defined as follows:

Oad = {Ω+ : Ω+ ⊂ Ω, Ω+ is open and Lipschitz

with uniform Lipschitz constant LO}.

The shape derivative will be obtained under the
assumption that q > 2.

3 Challenges related to the model (1)

The present task of optimizing the shape of
the acoustic lens provides us with several chal-
lenges. Not only a part of the domain bound-
ary is optimized, but a subdomain which lies in
the interior of the domain; this implies provid-
ing shape sensitivity analysis for the acoustic-
acoustic interface problem (1).

Working with the state equation also implies
handling the nonlinear damping term of the q-
Laplace type, which is in itself a nontrivial task.

Insufficient spatial regularity of the primal
(at most W 1,q+1 in space) and the adjoint state
(H1 in space) on the whole domain at first does
not allow for the shape derivative to be expressed
in terms of the boundary integrals. However, it
turns out that the state variable exhibits H2-
regularity on each of the subdomains, provided
that it is Lipschitz continuous in time and space
on the whole domain. This result, together with
an assumption of a slightly higher regularity of
the adjoint state will allow us to obtain the de-
sired expression in terms of the integrals over
the boundary of the lens.

4 The main result

We denote by τ ∈ R an artificial time vari-
able which will indicate varying subdomains. If
Ω+ is the initial shape of the lens, then Ω+,τ

will denote the perturbed lens obtained by mov-
ing points into the direction of some vector field

h ∈ C1,1(Ω̄,Rd) by some steplength τ .
The Eulerian derivative of J at Ω+ in the

direction of the vector field h is defined as

dJ(u,Ω+)h = lim
τ→0

1

τ
(J(uτ ,Ω+,τ )− J(u,Ω+)),

where uτ satisfies the state equation on the per-
turbed domain Ωτ .

For obtaining the shape derivative, we fol-
low the general framework introduced by Ito,
Kunisch and Peichl in [2]. We employ the vari-
ational form of the state and the adjoint prob-
lem and the method of mappings. The differ-
ence quotient of the cost functional is then re-
arranged in an efficient manner before passing
to the limit with respect to the admissible class
of domain perturbations.

In our talk we will show that, under suit-
able and realistic assumptions on regularity of
the subdomains, the primary state u and the
adjoint state p on the whole domain, the strong
shape derivative of J at Ω+ in the direction of
a vector field h ∈ C1,1(Ω̄,Rd) is given by

dJ(u,Ω+)h

=

∫ T

0

∫
Γ

r
− 1

λ
(1− 2ku)üp− 1

%
∇u · ∇p

− b((1− δ) + δ|∇u̇|q−1)∇u̇ · ∇p

+
2k

λ
(u̇)2p+

2

%

∂u

∂n+

∂p

∂n+

+ 2b((1− δ) + δ |∇u̇|q−1)
∂u̇

∂n+

∂p

∂n+

+ bδ(q − 1)|∇u̇|q−3(∇u̇ · ∇p)
∣∣∣ ∂u̇
∂n+

∣∣∣2 z
hTn+ dx ds.

Developing and implementing an efficient steep-
est descent algorithm based on the obtained
derivative will be the subject of future research.
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Abstract

We study the bifurcation of small nonlinear so-
lutions, so called nonlinear Bloch waves, of the
periodic Gross-Pitaevskii equation in Rd. The
bifurcation takes place in the frequency parame-
ter from points in the linear spectrum. Asymp-
totically, the nonlinear Bloch waves are a lin-
ear combination of N linear Bloch waves and
they retain the quasi-periodicity of these lin-
ear Bloch waves. Our method of proof requires
periodic Bloch waves, i.e. those with rational
wave-vectors, such that the nonlinearity gen-
erates only finitely many types of periodicity
and the Lyapunov-Schmidt reduction can be di-
rectly applied. We derive an algebraic system
for the amplitudes of the linear combination
and prove that certain solutions of the algebraic
system imply the existence of nonlinear Bloch
waves. We illustrate the results with numer-
ics and show that nonlinear Bloch waves play a
central role in the delocalization of families of
gap solitons entering a spectral interval from a
spectral gap.

Keywords: Gross-Pitaevskii equation, nonlin-
ear Bloch wave, bifurcation, Lyapunov-Schmidt
reduction

1 Introduction

The stationary Gross-Pitaevskii equation

ωφ+ ∆φ− V (x)φ− σ|φ|2φ = 0, (1)

for x ∈ Rd with V periodic and ω, σ ∈ R, mod-
els standing waves in Bose-Einstein condensates
(d = 1, 2, 3) loaded on an optical lattice but
also standing waves in one and two dimensional
photonic crystals (d = 1, 2). For simplicity we
assume V (x + 2πem) = V (x),m = 1, . . . , d.
The corresponding linear problem (σ = 0) is
fully described by the Bloch waves ξn(x, k) =
pn(x, k)eik·x with k ∈ B := (−1/2, 1/2]d, n ∈ N.
The functions pn(·, k) are 2π-periodic in each
xm-variable and are given as solutions of the
eigenvalue problem

ωn(k)pn(x, k) = −(∇+ik)2pn(x, k)+V (x)pn(x, k)

for x ∈ (−π, π]d. The spectrum σ(−∆ + V ) is
continuous and it is a union of possibly disjoint
intervals given by the band structure (ωn(k))n∈N,k∈B.

For a given spectral point ω∗ ∈ σ(−∆ + V )
the linear problem has typically more (quasi-
periodic) Bloch wave solutions ξn(x, k). The
question arises about the nature of nonlinear
quasi-periodic solutions (for σ 6= 0) bifurcating
from the trivial solution.

2 Description of the analytical result

We prove the bifurcation in ω of solutions with
the asymptotic form

φ(x) ∼
N∑
j=1

φj(x)

for ω → ω∗ with φj(x+2πem) = eik
(j)·xφj(x),m =

1, . . . , d and with a selected bifurcation point
ω∗ ∈ σ(−∆ + V ). The quasi-periodicity vectors
k(j) ∈ B are those belonging to a subset of the
linear Bloch waves at ω = ω∗, i.e. to a subset
of the ω∗-level set of the band structure.

Our approach needs several assumptions on
ω∗ and the vectors k(j) including the rationality
of all components of k(j), j = 1, . . . , N . This ra-
tionality implies that the exact solution φ is, in
fact, a sum of finitely many periodic functions.

We show in [1] that asymptotically (for ω
close to ω∗) there are small solutions with the
components φj approximated by small multi-
ples of the Bloch waves at ω∗ with the wave-
vectors k(j). In detail, we show that for V ∈
Hs

loc(Rd), s > d/2, ω = ω∗+sign(σ)ε2 and 0 < ε
small enough there is a solution φ such that∥∥∥∥∥∥φ− ε

N∑
j=1

Ajξnj (·, k(j))

∥∥∥∥∥∥
Hs((−π,π)d)

≤ Cε3

provided the vector of the amplitudes (A1, . . . , AN )
is a symmetric solution of a simple algebraic
system of equations (with constant coefficients).
Moreover, the exact solution has the form φ =
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∑M
j=1 φj with N ≤ M < ∞ and with each φj

periodic.
The algebraic equations for the asymptotic

envelopes are obtained by the Lyapunov-Schmidt
reduction and constitute an effective system de-
scribing the bifurcation.

3 Numerical examples

We illustrate the results by numerics in 2D (d =
2) using the continuation package pde2path [2]
for elliptic systems. In Figure 1 the continua-
tion diagram is plotted for a solution with two
components N = 2 and k(1) = (1/2, 0), k(2) =
(0, 1/2) for a bifurcation point ω∗ ∈ ∂σ(−∆+V )
and for the potential

V (x1, x2) = 1 + 4.35W (x1)W (x2), x ∈ [−π, π]2,

W (s) =
1

2

[
tanh

(
7

(
s+

3π

5

))
+ tanh

(
7

(
3π

5
− s
))]

.

(2)

Figure 1: Continuation diagram of one nonlin-
ear Bloch wave family with N = 2 for the case
d = 2 and V in (2).

We also numerically show that nonlinear Bloch
waves play a central role in the delocalization of
families of gap solitons [3,4] entering a spectral
interval from a spectral gap. Upon entry into
the spectrum such gap solitons develop oscilla-
tory tails, where the oscillations perfectly match
the nonlinear Bloch waves bifurcating from the
entry edge of the spectrum.
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A variational approach of soliton interaction with localized PT -symmetric potential
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Abstract

Interaction of soliton in nonlinear Schrödinger
equation (NLS) model with parity-time sym-
metric potential is investigated. An analyti-
cal approach is implemented through the vari-
ational formulation of the model equation. A
basic characteristic of the scattering of the soli-
tons is a critical velocity separating their reflec-
tion and transmission. These critical velocities
are calculated numerically. An initial finding
suggests that there is a good qualitative agree-
ment between the theoretical approach and the
numerical calculation.

Keywords: soliton, NLS equation, parity-time
symmetry, variational formulation

1 Introduction

We employ variational approximation explained
in [5], where the authors investigated the dy-
namics of a dark soliton in a Bose-Einstein con-
densate with an external magnetic trap. The
method also adopts other works in coupled Bose-
Einstein condensates [6, 7]. By considering the
NLS equation

i
∂u

∂t
+

1

2

∂2u

∂z2
− a|u|2u− [U1(z) + U2(z)]u = 0,

an Ansatz is chosen as follows:

u(z, t) = φ1(z)φ2(z)e
−iatv(z, t),

where φ1 ∈ R, φ2, v ∈ C and they satisfy

aφ1 +
1

2
∂2zφ1 − aφ31 − U1φ1 = 0

aφ2 +
1

2
∂2zφ2 − a|φ2|2φ2 − U2φ2 = 0.

Substituting the Ansatz to the NLS equation
and employing the conditions above, taking ei-
ther φ1 = φ, φ2 = 1 or φ1 = 1, φ2 = φ, our
derived equation should resemble the one in [5],
except for the final term, which has been incor-
porated to the earlier condition. Furthermore,
we are interested to study the NLS equation

where the terms are re-arranged as follows, af-
ter taking a = 1:

i
∂v

∂t
+

1

2

∂2v

∂z2
− (|v|2 − 1)v = R(v)

where the right-hand side term R(v) reads

R(v) =
[
(φ21|φ2|2 − 1)|v|2 − φ21 − |φ2|2 + 2

]
v

−∂ lnφ1
∂z

∂ lnφ2
∂z

v − ∂ ln(φ1φ2)

∂z

∂v

∂z
.

2 Soliton interaction

In particular, we are interested in the interac-
tion of bright and dark NLS solitons with a
strongly localized parity-time symmetric poten-
tial. Let U1(z) = 1

2Ω2z2, 0 < Ω2 � 1 and
U2(z) = εδ(z)+iγδ′(z), ε, γ > 0. Here, δ′ stands
for the derivative of the Dirac delta function
and ε and γ are real, positive or negative, con-
stants. The reason to adopt parity-time symme-
try is motivated by the seminal works of Carl
Bender and other scientists [1–3]. Now let also
φ1 ∼=

√
1− U1(z) and φ2 reads

φ2 =


√
µ(cos θ + i sign(z) sin θ) tanh(

√
µ(|z|+ ζ)),

for ε > 0√
µ(cos θ + i sign(z) sin θ) coth(

√
µ(|z|+ ζ)),

for ε < 0.

After taking µ = 1 and for |ζ| � 1 so that
tanh(|z|+ζ) ≈ 1−2e−2(|z|+ζ) and coth(|z|+ζ) ≈
1 + 2e−2(|z|+ζ), we can write φ2 as follows

φ2 =


(cos θ + i sign(z) sin θ)(1− 2e−2(|z|+ζ)),
for ε > 0

(cos θ + i sign(z) sin θ)(1 + 2e−2(|z|+ζ)),
for ε < 0.

Applying natural logarithm to φ1 and φ2 and
implement further approximation, we obtain

lnφ1 = −1

2
U1(z)−

1

4
U2
1 (z)− . . .

= −1

4
Ω2z2 − . . .

lnφ2 = ln(cos θ + i sign(z) sin θ)

−2 sign(ε)e−2(|z|+ζ) + . . .
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We adopt Ansatz for v from [4]:

v(z, t) = B tanhD(z − z0) + iA

where A2 +B2 = 1.

3 Remark

We are interested in the corresponding Euler–
Lagrange equation. For simplification of ana-
lytical computation, for some terms, we take
D = 1, and for the rest, D = B is taken. A sec-
ond order differential equation for z0 depending
on t obtained from the Euler-Langrange equa-
tion is studied and investigated. Furthermore,
we are interested to find critical velocities that
separate the reflection and transmission of the
corresponding NLS solitons. Both the varia-
tional formulation approach and numerical sim-
ulation will be compared quantitatively. An ini-
tial finding suggests that there is a good qual-
itative agreement between the theoretical ap-
proach and the numerical calculation.
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Abstract

For a periodic array of circular dielectric cylin-
ders surrounded by air, where the cylinders are
made of a linear medium, it is well known that
standing waves that are periodic along the array
and decay exponentially away from the array
could exist at a discrete set of frequencies, cor-
responding to the non-uniqueness of a related
diffraction problem. We consider a periodic ar-
ray of nonlinear cylinders with a Kerr nonlinear-
ity, and show numerically that standing waves
exist continuously with the frequency.

Keywords: periodic structures, standing waves,
nonlinear effects, Kerr media

1 Introduction

Consider a periodic array of circular dielectric
cylinders surrounded by air, where the period
of the array is L and the radius of the cylinders
is a < L/2. In the Cartesian coordinate system
(x, y, z), we assume the cylinders are parallel to
the z axis and their centers (in the xy plane)
are located on the y axis at y = mL for integers
m. For the E polarization, the z component of
the electric field, denoted by u here, satisfies the
two-dimensional (2D) Helmholtz equation

∂2xu+ ∂2yu+ k20(n2 + γ|u|2)u = 0, (1)

where k0 is the wavenumber, n is the refrac-
tive index function satisfying n = n1 > 1 and
n = 1 for (x, y) inside and outside the cylinders,
respectively, γ is the nonlinear coefficient (for
the nonlinear Kerr effect) satisfying γ = γ1 and
γ = 0 for the cylinders and air, respectively. If
the cylinders are linear, i.e., γ1 = 0, it is known
that there could be standing waves on the peri-
odic array which are periodic in y with period
L, and decay exponentially as |x| → ∞. These
standing waves are non-zero solutions of the ho-
mogeneous Eq. (1) without any incident wave.
They only exist at a possibly discrete sequence
of frequencies, and they correspond to the non-
uniqueness of a diffraction problem associated
with the periodic array.

Based on an efficient computational method,
we numerically show that Eq. (1) has nonlinear
standing waves (when γ1 > 0) that continuously
depend on the frequency (or wavenumber k0).
These standing waves are periodic in y with the
minimum period L, and localized around the ar-
ray, i.e., they decay exponentially as |x| → ∞.
Their amplitudes depend on the frequency. As
the frequency approaches the frequencies where
linear standing waves exist, the amplitude ap-
proaches zero.

2 Computation method

Due to the periodicity of the array and the solu-
tion, the problem can be considered in the strip
given by |y| < L/2, with a periodic boundary
condition in the y direction. If we use trans-
parent boundary conditions at x = ±L/2, the
problem can be further reduced to the square
S = {(x, y) : |x| < L/2, |y| < L/2}. These
boundary conditions can be written as ∂xu =
±Λu at x = ±L/2, where Λ is an operator de-
pending on k0. The cross section of the cylinder
in S is the disk D given by r < a, where r is
the radial variable. In the domain outside the
disk and inside the square, i.e. Q = S\D, the
Helmholtz equation is linear and its solution can
be expanded in cylindrical waves. This allows
us to find a Dirichlet-to-Neumann (DtN) map
N (it depends on k0) for Eq. (1) in Q, and
it satisfies Nu = ∂νu on ∂Q, where ∂νu is the
normal derivative of u, ∂Q is the boundary of Q
and it consists of the circle r = a and the four
sides of the square S. Combining these condi-
tions, we can find an operator B such that

∂ru = B(k0)u, r = a. (2)

Notice that B depends on the wavenumber k0.
With this condition, it is only necessary to solve
the nonlinear Helmholtz equation on a disk. We
have used similar techniques for analyzing opti-
cal bistability [2] and symmetry breaking [3] in
structures with nonlinear circular cylinders.

Therefore, the nonlinear standing waves are
non-trivial solutions of Eq. (1) in the disk D
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with boundary condition (2). It is a nonlin-
ear eigenvalue problem, where k0 can be re-
garded as the eigenvalue, and u is the eigen-
function. To solve this problem, we discretize
Eq. (1) by a mixed Fourier-Chebyshev pseu-
dospectral method [4], with Fourier and Cheby-
shev methods for θ and r respectively, where θ
is the polar angle, and use an iterative method.

3 Results

We consider an array of circular cylinders with
radius a = 0.3L, refractive index n1 = 2.5 and
nonlinear coefficient γ1 = 2×10−12. For the cor-
responding linear problem, standing waves ex-
ist at k0L/(2π) ≈ 0.5502 and 0.7800. In Fig. 1,
we show the amplitudes of the standing waves

Figure 1: Amplitude-frequency relations of non-
linear standing waves on a periodic array.

as functions of the frequency. It is clear that
as the frequency decreases away from those for
linear standing waves, the amplitudes increases.
In Fig. 2, we show the electric field patterns of
the nonlinear standing waves corresponding to
points A, B and C in Fig. 1.
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Figure 2: Electric field patterns of three nonlin-
ear standing waves.

4 Conclusion

A periodic array of nonlinear circular cylinders
with a Kerr nonlinearity is studied in the E po-
larization. Nontrivial solutions that are local-
ized and periodic along the array are found nu-
merically. These nonlinear standing waves exist
continuously with the frequency, leading to the
continuous non-uniqueness of a related diffrac-
tion problem of the array.
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Abstract

An important issue in the simulation of electro-
magnetic effects is the ability to truncate un-
bounded domains into regions of interest that
can be simulated efficiently and accurately for
long times. In order to do this, accurate arti-
ficial boundary conditions are required. In the
context of finite difference time domain (FDTD)
solvers, this typically takes the form of a per-
fectly matched layer (PML). While PMLs have
proven to be effective, their performance is clo-
sely tied to the selection of parameters that can
often only be found through experimentation.
Instead, we use a Double Absorbing Boundary
(DAB) constructed by forming a thin non-re-
flecting layer on which we apply the complete
radiation boundary conditions (CRBC) on two
parallel boundaries. A primary advantage of
this DAB formulation is that there is an a pri-
ori error estimate and method for selecting op-
timized parameters. The performance of the
method is demonstrated with numerical exper-
iments.

Keywords: double absorbing boundary, ab-
sorbing boundary condition, electromagnetics,
finite difference, time domain, waves

1 Introduction

Following from [2], we illustrate the (DAB) for-
mulation for the scalar wave equation in the
semi-infinite wave guide:

Wu ≡ ∂2u

∂t2
− c2∇2u = f,

u(xL, y, t) = u(x, yL, t) = u(x, yR, t) = 0,

u(x, y, 0) = g(x, y),
∂u

∂t
(x, y, 0) = ġ(x, y).

We further suppose that if x > xI > xL, the
medium is homogeneous and free of sources.
Additionally, we require that the initial condi-
tions vanish so g = ġ = 0 for x > xI .

We now truncate the domain at some x =
xR > xI . We can view the entire truncated
domain as being divided into two sub-domains:
the interior domain ΩI ≡ [xL, xI ]× [yL, yR] and

a thin layer ΩL ≡ [xI , xR] × [yL, yR]. The goal
is to use ΩL as an absorbing layer. To do this,
we introduce auxiliary variables u0, ..., uP+1 in
ΩL and require uj to satisfy that same wave
equation as u:

Wuj ≡
∂2uj
∂t2

− c2∇2uj = 0, in ΩL. (1)

The auxiliary variables are defined to satisfy
zero initial conditions and boundary conditions

uj(x, y, 0) =
∂uj
∂t

= 0,

uj(x, y, t) = 0, y = yL, yR,

To define the additional boundary conditions
on ΩL, we utilize the CRBC boundary recur-
sions [1]:

āj
∂uj+1

∂t
− ∂uj+1

∂x
+ σ̄juj+1

= aj
∂uj
∂t

+
∂uj
∂x

+ σjuj , (2)

and require them to hold at x = xI , xR. Note
that the parameters aj , āj , σj and σ̄j can be op-
timally chosen a priori. On x = xI , we require
the u and u0 to agree in value and slope:

u0 = u,
∂u0
∂x

=
∂u

∂x
, x = xI . (3)

Since u and u0 satisfy the same wave equation
in ΩL,

u0 ≡ u, in ΩL.

Finally, at x = xR, we require the termination
condition

āP+1
∂uP+1

∂t
− ∂uP+1

∂x
+ σ̄P+1uP+1 = 0. (4)

2 Application to Maxwell’s Equations

In a homogeneous, isotropic, dielectric material
free from charges or currents, Maxwell’s equa-
tions are

∂E

∂t
=

1

ε
∇×H,

∂H

∂t
= − 1

µ
∇×E,

∇ ·E = 0, ∇ ·H = 0.
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We discretize using Yee’s well known algorithm
[4]. Noting that Yee’s that the E field compo-
nents in Yee’s algorithm can be shown to satisfy
the standard second order, centered difference
approximation to the wave scalar wave equa-
tion, we introduce a three point wide DAB
layer for E alone. Discretizing the layer using
second order centered differences in space and
time, we use (1) to update the center points
of the layer, (3) and (2) to update the auxil-
iary variables on the interior side, and finally
we use (4) and (2) to update the auxiliary vari-
ables on the exterior side. We apply these up-
dates to the E field components required to pro-
vide a boundary condition. Edges and corners
are handled similarly by introducing doubly or
triply indexed auxiliary variables, respectively.

3 Numerical Results

To illustrate the effectiveness of the DAB bound-
aries, Fig. 1 shows a comparison between a
PML with some suggested parameters from lit-
erature [3]. Although it is possible to obtain
better results from the PML by modifying the
parameters, we note that the DAB used here
have been automatically generated.

Figure 1: Comparison of relative error for a 2D
waveguide simulation on a 6000× 3000 grid.

In 3D, we show the results from a paral-
lel plate simulation in Fig. 2. In particular,
we want to point out that on a sufficiently re-
fined grid, we meet our expected error tolerance
from the DAB and no longer improve signifi-
cantly with refinement which indicates that the
boundary error dominates.

Figure 2: Relative error for a parallel plate sim-
ulation with 3 recursions.
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Abstract

The Double Absorbing Boundary (DAB) is a
recently-invented, high-order method for trun-
cating unbounded domains of wave problems
expressed in second-order form. It is a thin
layer with a coefficient of reflection that can
be made arbitrarily small. For discretization of
the DAB, we use a recently-invented discontin-
uous Galerkin (DG) method. Unstable modes
are suppressed by directly damping high-order
basis functions. We test on the Klein-Gordon
equation in one dimension.

Keywords: absorbing boundary, high-order,
discontinuous Galerkin, artificial dissipation

1 Introduction

Simulating waves in an unbounded domain is a
problem with, as yet, no completely satisfactory
solution. Even the premier methods for artifi-
cially truncating the domain, such as a Perfectly
Matched Layer (PML) or high-order Absorbing
Boundary Condition (ABC), produce spurious
reflections of outgoing waves. The Double Ab-
sorbing Boundary is a relatively new alterna-
tive that aims to be easier to implement than
ABCs, and have better a priori error bounds
than PMLs. [1]

For this paper, we examine a DAB in one di-
mension only, in the (small) interval xI < x <
xΓ, but make radiation of waves non-trivial by
simulating the Klein-Gordon equation. We use
a non-standard DG discretization; success val-
idates both the chosen discretization and the
DAB itself.

2 The DAB method

The DAB comprises u0, a continuation of the
volume solution u in (x < xI), and P auxiliary
solutions uj . The boundary condition on u0 at
xI is to match u, and the final auxiliary solution
is terminated by uP,t + cuP,x = 0 at xΓ.

In between, all the solutions satisfy uj,tt =
c2uj,xx − k2uj , and each is coupled to the one

before and after on both endpoints via

ajuj−1,t + cuj−1,x + σjuj−1

= ājuj,t − cuj,x + σ̄juj (1)

If relationship (1) holds true throughout the
DAB at time t = 0, enforcing it at the endpoints
is sufficient for it to remain true throughout the
DAB for all subsequent times. The parameters
aj , σj , āj and σ̄j are all positive, and can be op-
timized based on the duration of the simulation
and distance of the DAB from any sources.

3 The new DG discretization

o

We discretize according to the method of [2].
We impose for j = 0, . . . , P∫ xΓ

xI

(
k2ψuj + c2∂ψuj

∂x

∂

∂x

)(
∂uj
∂t

− vj

)
dx

+

∫ xΓ

xI

(
ψvj

∂vj
∂t

+ c2∂ψvj
∂x

∂uj
∂x

+ k2ψvjuj

)
dx

= c2

[
∂ψuj
∂x

(v∗j − vj)

]xΓ
xI

+ c2
[
ψvjw

∗
j

]xΓ
xI

Both the test and trial functions uj and ψuj are
polynomials of degree q, and vj and ψvj are of
degree q−1. As the two basis sets have different
degree it is simplest to use a modal basis of
Legendre polynomials.

To compactly express the fluxes and bound-
ary conditions, is convenient to re-write our P+
1 equations in matrix-vector notation with, e.g.,
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U = (u0, . . . , uP )T .∫ xΓ

xI

(
k2Ψu + c2∂Ψu

∂x

∂

∂x

)T (∂U
∂t

− V

)
dx

+

∫ xΓ

xI

(
ΨT
v

∂V

∂t
+ c2∂ΨT

v

∂x

∂U

∂x
+ k2ΨT

v U

)
dx

= c2

[
∂ΨT

u

∂x
(V ∗ − V )

]xΓ
xI

+ c2
[
ΨT
vW

∗]xΓ
xI

The boundary conditions at xΓ become AUt +
cDUx + ΣU = 0. Inspired by the half-space en-
ergy proven in [3], we choose the fluxes at xΓ to
be V ∗ = V and cW ∗ = −D−1(AV +ΣU). Anal-
ogously, at the driven boundary xI , we write the
boundary conditions as ÃUt − cD̃Ux + Σ̃U =
(ut − cux) (1, 0, . . . , 0)T , where ut and ux come
from the boundary of the volume solution. We
use fluxes V ∗ = V and cW ∗ = D̃−1(ÃV +
Σ̃U − (ut − cux) (1, 0, . . . , 0)T ). Unfortunately,
the matrices in the boundary condition are not
the same as on the terminal side, being now
lower bidiagonal instead of upper bidiagonal.
We are therefore unable to extend the half-space
energy to the full layer xI < x < xΓ, which
makes artificial dissipation necessary.

4 Artificial dissipation

We follow Chapter 5, Section 3 of [4] in reduc-
ing the magnitude of the coefficients of the ba-
sis elements of U and V after each time step.
The most damping is applied to the highest-
frequency basis elements, much less to lower
frequencies, and none at all to the constant ba-
sis element. More precisely, each coefficient is
damped by

e−α(∆t)(j/q)s ,

where ∆t is the size of the time step, j is the
degree of the basis function being damped, s
is the order of the damping, and α is a free
parameter expressing the amount of damping.

We naturally wish to apply as little artifi-
cial dissipation as possible to stabilize the dis-
cretization, because excessive dissipation reduces
accuracy. Unfortunately, there is no theory as
to how much dissipation should suffice. In prac-
tice we have settled on fixing α = P 2/q and
choosing the order small enough. We start with
s = 16, calculate the eigenvalues of the timestep-
ping scheme, and decrement s if any eigenvalue
has significant positive real part.

Experiments so far indicate that choosing a
larger number q of basis functions allows the

order s of the artificial dissipation to be higher
as well, for much better overall accuracy.

5 Numerical Results

As the number of auxiliary functions P increases,
the reflection coefficient decreases exponentially.
As q increases, the polynomial approximation of
u converges to u spectrally. The discretization
is order q+1 accurate in space, although we typ-
ically would not refine the DAB in space, since
it does not need to be any particular width. We
would instead use a single cell across the width
and choose q large enough for sufficient accu-
racy.

Future research will investigate the compu-
tational efficiency relative to alternative meth-
ods. Preliminary results suggest that in order to
allow the artificial dissipation to be sufficiently
high order to not interfere with accuracy, the
discretization order must be higher than other-
wise necessary, and this relationship limits com-
putational efficiency.
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Perfectly Matched Layers for dispersive Maxwell’s equations
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Abstract

We propose and analyse new Perfectly Matched
Layers (PMLs) in time domain for a large class
of dispersive electromagnetic media, particularly
for Negative Index Metamaterials (NIMs). In
such materials, “classical” PMLs lead to insta-
bilities due to the presence of backward waves,
that we overcome with the new PMLs.

Keywords: PMLs, dispersive media, stability

1 Introduction

We consider the two dimensional Maxwell’s equa-
tions in the free space

∂tDx = ∂yH

∂tDy = −∂xH
∂tB = ∂yEx − ∂xEy

(1)

completed by the following constitutive laws, in
the frequency domain

D̂x(ω) = ε(ω)Êx(ω)

D̂y(ω) = ε(ω)Êy(ω)

B̂(ω) = µ(ω)Ĥ(ω)

(2)

where the permittivity ε(ω) and the permeabil-
ity µ(ω) are real valued functions which express
the dispersion properties of the medium. A
large class of representative models are given
by generalized Lorentz models [4], where

ε(ω) = ε0

(
1−

Me∑
`=1

ω2
e,`

ω2 − Ω2
e,`

)
,

µ(ω) = µ0

(
1−

Mm∑
`=1

ω2
m,`

ω2 − Ω2
m,`

)
.

(3)

The simplest of these models is the Drude’s
model, that corresponds to Me = Mm = 1 and
Ωe,1 = Ωm,1 = 0. Writing (1, 2) in time domain
leads to a coupling between standard Maxwell’s
equations in the vacuum with ordinary differen-
tial equations involving extra unknowns vector
fields (omitted here). The well-posedness of the
associated evolution problem is easily shown by

means of energy conservation, which illustrates
the non dissipativity of such media.

When looking at the propagation of time har-
monic plane waves ei(k·x−ωt) (with frequency ω
and wave vector k), defining the function

D(ω) :=
1

ω

∂

∂ω

(
ω2ε(ω)µ(ω)

)
. (4)

as well as the set

S := {ω ∈ R / ε(ω)µ(ω) > 0}, (5)

one has, for each ω, the following alternative

• ω /∈ S : one is in a band gap and waves
do not propagate (k is not real);

• ω ∈ S : waves propagate (k is real) and

1. if D(ω) > 0, group and phase veloc-
ity point in the same direction : the
wave is propagating forward,

2. if D(ω) < 0, group and phase veloc-
ity point in opposite directions : the
wave is propagating backward.

If case 2. occurs for a range of frequencies, the
interesting case, one says that we have a nega-
tive index material (NIM).

In this work, we consider the construction of
PML’s for such media, for their use as an ar-
tificial way to bound a computational domain,
typically a rectangle whose exterior is supposed
to be homogeneous since the classical PMLs are
known to be unstable for these media [2, 5].

This is an extension of the results of our previ-
ous work [5], which deals with Drude’s model, to
general dispersive models, especially to Lorentz
models (3).

2 Construction and analysis of PML’s

Considering a PML in the x-direction, we use
the ideas of complex change of variable [3]

x −→ x+
χ(ω)

iω

∫ x

0
σ(s) ds (6)
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where the damping function σ(x) is non nega-
tive and the novelty lies in the introduction of
the real valued function χ. The choice χ(ω) = 1
corresponds to the classical Bérenger’s PML.
More precisely, we consider χ(ω) of the form:

χ(ω) = 1 +
N∑
k=1

bk
a2k − ω2

, (7)

with (ak, bk) ∈ R2, bk 6= 0, so that, in time
domain, the corresponding PML system can be
written as the coupling of the original PDE sys-
tem with additional ODEs through the intro-
duction of new auxiliary unknowns.

A critical issue is the stability of the correspond-
ing evolution system that can be studied, when
σ is constant, via a modal analysis : the stabil-
ity (see [1] for a definition) is related to the lo-
cation in the complex plane of the solutions ω of
the corresponding dispersion relation F (ω,k) =
0 when k describes R2.

A first necessary condition is obtained by look-
ing at the modes which are perturbations, for
σ 6= 0, of the physical modes of the original
problem. This leads to the following theorem,
which is the counterpart, for dispersive systems,
of the main result of [1] for non dispersive ones.

Theorem 1 A necessary condition for stability
of the PML model associated to (6, 7) is

∀ ω ∈ S, χ(ω)D(ω) ≥ 0. (8)

Note that this implies in particular the insta-
bility of the standard PMLs for NIM’s. To ob-
tain a necessary and sufficient condition, one
also has to look at the other (artificial) modes
linked to the additional unknowns. This leads
to the following result:

Theorem 2 A necessary and sufficient condi-
tion for stability of the PML model associated
to (6, 7) is that :

1. (8) holds;

2. for all 1 ≤ k ≤ N , bk < 0, ak /∈ S and
zk /∈ S where the zk are the real zeros of χ
(if need be, we exclude the ak and zk that
are poles of εµ) ;

3. χ(0) ≥ 0.

To be complete, it remains to show that it is al-
ways possible to build a function of the form (7)
that fulfills the three conditions of the Theorem
2. Here is the answer in the case where D(ω)
has an even number of sign changes inside S (a
similar result holds when this number is odd).

Theorem 3 Assume that there exists 2M num-
bers 0 < ω2

1 < · · · < ω2
2M such that (with ω2

0 = 0
and ω2

2M+1 = +∞ by convention)

(−1)` D(ω) > 0 in (ω2
` , ω

2
`+1) ∩ S,

then an appropriate choice for χ(ω) is :

χ(ω) =
M∏
`=1

(
1−

ω2
2`−1

ω2

) M∏
`=1

(
1−

ω2
2`

ω2

)−1
. (9)

3 Numerical application

We shall illustrate numerically our theoretical
results in the case of the Drude’s model (see
(3) and below), a case already considered in [2]
(with no analysis) and in our previous work [5].
We shall show the instability of the classical
PMLs and the stability of the new ones with

χ(ω) =

(
1− ω2

∗
ω2

)−1

(10)

with ω2
∗ chosen between ω2

e,1 and ω2
m,1.
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Abstract

Helical multi-wire cables are widely used in bridge
construction and can be degraded due to corro-
sion and fatigue. To reveal defects inside cable
structures, elastic guided waves are of interest
owing to their ability to propagate over long dis-
tances. In practice, cables are often buried into
a solid matrix and can be considered as open
waveguides. Waves can be leaky and strongly
attenuate along the guide axis, which reduces
the propagating distance. Maximizing this dis-
tance is necessary for non-destructive testing.
The goal of this work is to propose a numeri-
cal method for computing modes in embedded
helical structures, combining the so-called semi-
analytical finite element (SAFE) method and
a radial perfectly matched layer (PML) tech-
nique.

Keywords: waveguide, helical, leaky modes,
finite element, perfectly matched layer

1 Introduction

The numerical modeling of cable waveguides en-
counters three difficulties : the helical nature
of the geometry, the unbounded cross-section
and the exponential transverse growth of leaky
modes. The helical geometry can be represented
in the twisting coordinate system proposed in [1].
In order to overcome the last two difficulties, a
simple method consists in using absorbing lay-
ers of artificial growing viscoelasticity [2]. An
alternative approach is to use a PML technique.
Such a technique has already been developed for
open straight waveguides [3]. The present work
consists in extending the SAFE-PML method
for embedded helical structures.

2 SAFE-PML formulation

The time harmonic dependence is chosen as e−iωt.
Acoustic sources and external forces are dis-
carded for computing eigenmodes. The 3D elas-
todynamic equations satisfied by the displace-
ment vector U are represented in Cartesian co-

ordinates (X,Y, Z) as:

∇ · σ(U) + ω2ρU = 0 (1)

where ρ is the material density, σ is the stress
tensor related to the strain tensor ε = (∇U +
(∇U)T )/2 by the relation σ = C : ε, C is the
stiffness tensor and T is the matrix transpose.
The tilde notation will be explained later.

For modeling of helical waveguides, Eq. (1)
is rewritten in the twisting coordinate system
(x, y, z) defined as x = X cos(τZ) + Y sin(τZ),
y = −X sin(τZ)+Y cos(τZ), z = Z where τ de-
notes the torsion of the (x, y) plane around the z
axis. One considers a linearly elastic embedded
helical waveguide S × R whose cross-section S
and material properties in the transverse (x, y)
plane are invariant along the z axis.

The SAFE method is applied, which consists
in assuming the solutions of the form U(x, y, z) =
u(x, y)eikz, where k is the axial wavenumber.
The axial derivative ∂/∂z is replaced with prod-
uct by ik. We are led to a bidimensional prob-
lem satisfied by u in the transverse directions
(x, y) with the following variational formulation:∫

S
δεTσdxdy − ω2

∫
S
ρδuTudxdy = 0 (2)

where σ and ε denote the stress and train vec-
tors respectively.

In addition to the SAFE technique, the ra-
dial PML method will be implemented.

The formulation (2) is now transformed in
cylindrical coordinates (r, θ, z) defined from twist-
ing coordinates (x, y, z) as x = xO′ + r cos θ,
y = yO′ + r sin θ. In the (x, y) plane, the point
O′ = (xO′ , yO′) is the center of this cylindrical
system. xO′ and yO′ are independent of the ax-
ial coordinate z.

The radial PML defines a complex radial
coordinate rc =

∫ r
0 γ(ξ)dξ where γ(r) = 1 for

r ≤ d, Im(γ) > 0 for r > d. d is the radius of
the PML interface. The twisted radial PML is
called centered if xO′ = yO′ = 0 and off-centered
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if not. The change of variable rc 7→ r yields for
any function f :

∂f

∂rc
=

1

γ

∂f

∂r
, drc = γdr (3)

The variational formulation (2) must be then
transformed back to the coordinates (x, y).

Finally, the FE discretization of the varia-
tion formulation (2) along the transverse direc-
tions (x, y) yields a matrix eigensystem of the
following form:

{K1−ω2M+ ik(K2−KT
2 )+k2K3}U = 0 (4)

where the column vector U contains nodal dis-
placements. Given ω and finding k, this eigen-
problem is quadratic. The linearization of this
eigensystem is detailed in [3] and yields non
hermitian matrices, which makes the numerical
treatment of the eigensystem complicated.

3 Results

A Dirichlet condition is chosen at the exterior
boundary of truncated domain. Finite elements
are triangles with six nodes. Following [3], the
PML layer is close to the core in order to re-
duce the effects of the transverse growth of leaky
modes on numerical results. The PML func-
tion γ should be chosen as smooth as possi-
ble to minimize numerical reflection [3]. γ is
a parabolic function in this work.

Figure 1: Energy velocity for an embedded
cylindrical bar obtained by untwisted (circles)
and twisted SAFE-PML (crosses) methods.

The twisted SAFE-PML method is validated
with a cylinder test case owing to the fact that
any arbitrary twist can be applied (a twisted

cylinder remains a cylinder). The centered PML
is used. Figure 1 compares the numerical results
computed in twisting and untwisting coordinate
systems and yields the same physical modes.
However, their axial wavenumbers are trans-
lated by ±τm in the twisting system, where m
denotes their circumferential order.

A first application consists of a steel heli-
cal wire buried in concrete. Since the compu-
tational domain with a centered PML is quite
large, an off-centered PML should be preferred.
The off-centered PML is validated by compar-
ing the numerical results with those computed
with the centered PML method, which has been
checked in the previous test case. Results show
that the twist of the helical geometry enhances
the modal axial attenuation.

A second numerical example is given by a
steel seven-wire buried in concrete. Compared
with the results of a free strand, the modal be-
havior is strongly modified due to the introduc-
tion of the surrounding medium. Modes of low-
est attenuation are identified, which may be of
interest for inspecting cable structures.
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Abstract

An inverse problem of estimating the pipeline
location from ground-penetrating radar data is
studied in the context of Bayesian full-wave in-
version. Numerical reconstructions are presented
for a 2D case.

Keywords: Maxwell’s equations, discontinu-
ous Galerkin method, Bayesian inversion meth-
ods

1 Introduction

Let Ω be a bounded Lipschitz domain in R2

with boundary ∂Ω. Let x = (x, y) ∈ Ω be the
spatial variables and t ∈ [0, T ] be the time. The
transverse magnetic mode Maxwell’s equations
can be written as

ε∂tE
z − ∂xHy + ∂yH

x + σEz = JE ,
µ∂tH

x + ∂yE
z = 0,

µ∂tH
y − ∂xEz = 0,

(1)

where ε(x) is the dielectric permittivity, Ez(x, t)
is the electric field, (Hx(x, t), Hy(x, t)) are the
magnetic field components, µ(x) is the mag-
netic permeability, σ(x) is the electrical conduc-
tivity, and JE(x, t) is the volume current source
term. Zero initial and perfect electric conductor
(PEC) conditions are assumed throughout this
paper.

Here, the numerical results are computed
using the discontinuous Galerkin (DG) and low-
storage Runge-Kutta methods. For a detailed
discussion of these methods, see [1,4] and refer-
ences therein.

The results shown in this study are based
on the work [3].

2 Statistical Inverse Problem

We consider the following observation model

z = Ka(χ) + e, e ∼ N (0,Γe) , (2)

where z is a measurement vector containing the
recorded signals, Ka is the forward mapping re-
lated to (1), χ are the unknown variables, and
e is the measurement noise.

In the Bayesian framework all the variables
related to the model are modelled as random
variables. The randomness reflects the uncer-
tainty of the variables’ true values. The solu-
tion to the inverse problem is given as summary
statistics over the posterior probability distribu-
tion π(χ | z) which is given by Bayes’ formula:

π(χ | z) ≈ π(z |χ)π(χ). (3)

In (3), π(z |χ) is the likelihood function which
measures the relative probability of observing
the measurements z given χ, while π(χ) is the
priori density describing the knowledge that is
known prior to the measurements.

In the Bayesian approximation error method
(BAE) [2], the main idea is to replace the com-
putationally accurate forward mapping Ka by a
less accurate but computationally feasible one
Kr. Furthermore, the BAE may also allow for
the reduction of the unknowns in the model by
carrying out approximative pre-marginalization
over the uninteresting unknowns. To this end,
we write χ = (χ1, χ2) where χ1 and χ2 denote
the uninteresting and interesting unknowns, re-
spectively. In this paper, we set χ1 = (ε, µ, σ)
and χ2 = θ, where θ ∈ R2 are the parameters
indicating the location of the pipeline.

For the BAE, we fix the nominal values χ1 =
χ̃1 and rewrite (2) as follows

z = Kr(χ̃1, θ) + ξ + e, (4)

where ξ = Ka(χ1, θ) −Kr(χ̃1, θ) is an additive
approximation error term. The approximation
error ξ is the discrepancy between Ka and Kr.

For the sampling of the posterior models in
this paper, we employ the standard Metropolis-
Hastings algorithm.

3 Numerical Experiments

The studied problem geometry is shown in Fig-
ure 1. The domain consists of four main sub-
domains, which are highlighted with different
colors.
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Figure 1: Problem geometry. The crosses de-
note the array of antennas. The shaded area
denotes the perfectly matched layer.

The variables (ε, µ, σ) in Ω2,3 are modelled
as Gaussian Markov random fields (MRF). The
non-homogeneous MRF’s are generated using
an anisotropic smoothness prior.

The prior distribution was also used to gen-
erate samples for the computation of the ap-
proximation error model. The statistics of the
approximation error were estimated with 200
draws from the prior model π(ε, µ, σ, θ).

Figure 2 shows the posterior probability dis-
tributions π (θ | z) with 10% noise level.

4 Conclusions

In this work, we studied the application of radar
data to the estimation of pipeline location with
material parameter uncertainties. As a conclu-
sion of the results, the application of BAE al-
lows accurate reconstructions of the pipeline lo-
cation with reduced computational burden.
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Figure 2: The posterior probability distribu-
tions π (θ | z) for the BAE model and for the
model omitting ξ (see Eq. (4)), i.e. without
BAE. The actual pipeline location is marked by
a cross.
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Abstract

In this paper we present a numerical algorithm
for simulation of seismic wave propagation in
models with complex upper part and free sur-
face topography. The approach is based on the
combination of the discontinuous Galerkin method
with finite differences. The discontinuous Galer-

kin is used in the upper part of the model pro-
viding accurate description of wave interaction
with harp interfaces with complex topography,
whereas finite differences are applied elsewhere
to preserve computational efficiency of the al-
gorithm.

Keywords: seismic wave propagation, finite
differences, discontinuous Galerkin

1 Introduction

Numerical simulation of seismic wave propaga-
tion is widely used nowadays in seismic process-
ing, acquisition design etc. Among numerical
method utilized for seismic modeling finite dif-
ferences (FD) are the most wide spread, as they
combine high computational efficiency, robust-
ness, applicability to models of almost arbitrary
complexity with sufficient (for seismic process-
ing) accuracy [1]. However, in presence of sharp
interfaces, in particular free surface, with com-
plex topography use of FD on regular rectan-
gular mesh leads to stair-step approximation of
the interface, thus multiple artificial diffractions
appear in the simulated wavefield. On the con-
trary, variational methods, in particular discon-
tinuous Galerkin (DG), can be used on poly-
hedral, including curvilinear, meshes which ac-
curately follow the interfaces, significantly im-
proving quality of numerical solution. However,
use of DG require a mesh of a high quality,
which can be a troublesome task for problems of
a realistic size. Moreover, computational com-
plexity of the DG is much higher, than that of
FD.

In this paper we present combination of the
two methods, so that centered-flux DG [2] is
used in the upper part of the model ensuring
high accuracy of the solution in the vicinity of
free surface, whereas a standard staggered grid
scheme (SSGS) [3] is applied in the main part
of the modem, to preserve computational effi-
ciency of the algorithm.

2 The algorithm

To couple the standard staggered grid scheme
with the discontinuous Galerkin method we sug-
gest introducing a transition zone combining
properties of the two methods 1. Such an ap-
proach is a conventional non-staggered grid
scheme (NSGS) which is equivalent to finite vol-
ume technique on a rectangular grid thus equiv-
alent to P0 DG formulation on regular rectan-
gular grid. Thus the problem of the combina-
tion of SSGS and DG decouples into two: com-
bination of the P0 DG on rectangular grid with
P1-P3 DG on triangular mesh, and combina-
tion of the standard staggered grid scheme with
non-staggered grid scheme. The first problem is
easy to solve within the frame of hp-adaptivity,
which is naturally applicable in to DG. In order
to solve the second problem one needs to sup-
press the artificial reflections, especially those
connected with high-frequency (plus-minus)
modes. This problem may be reduced to the
coupling of the SSGS with the Lebedev scheme,
presented in [4], because the conventional non-
staggered grid is a combination of two partially
staggered Lebedev grids. As the result the arti-
ficial reflections, caused by the combination of
different numerical techniques do not exceed 0.1
for standardly used discretizations and they de-
cay with the second order as a grid step tends
to zero.

3 Numerical experiment

To illustrate applicability of the approach we
simulated wave propagation in a model provided
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Figure 1: A sketch of the domain decomposition
for the combination of the FD with DG. The
DG is used in the green subdomain, the NSGS
is applied in grey subdomain, and the SSGS is
applied the in the white subdomain.

in fig. 2. The source and the receivers were
burred by 0.5 m below surface. Ricker pulse
with central frequency of 20 Hz, was used as
the source wavelet. The grid step was chosen 5
m, size of the grid cell for DG was about one
half of that for FD.

x (m)

z
 (

m
)

V
p
 model

 

 

0 5000 10000 15000

−1000

−500

0

500

1000

1500

2000

2500

3000
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Figure 2: A model (Vp) with realistic topogra-
phy.

Results of simulation, seismogramms recorded
0.5 below free surface, are presented in fig. 3.
One can see that the wavefield computed by
the hybrid approach is free from the artificial
diffractions of the surface wave, where as FD
simulated data are full of nose. If compared
with the FD simulation the hybrid modeling
took about twice as long (with 10 % of the
model discretized by DG mesh), however pure
DG simulation for the same model took about
20 times longer than the hybrid approach.

4 Conclusions

We presented the hybrid algorithm to simulate
seismic wave propagation in presence of sharp
interfaces with complex topography. To account
for the topography DG is used in the upper part
of the model. To make the algorithm computa-
tionally cheap the FD are used in the major part

Figure 3: Seismogramms computed by hybrid
approach (left) and purely by the FD (right).

of the model.
The research was supported by RFBR grants

13-05-00076, 13-05-12051, 14-05-00049, 14-05-
93090, 15-05-01310, 15-35-20022.
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A lumped nodal DGTD-PIC method to ensure charge conservation for the 3D
Vlasov-Maxwell system on nonconforming cartesian grids
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Abstract

A critical issue in numerical computing related
to plasma physics is to satisfy charge conser-
vation. We present here a new high order ap-
proach, based on a upwind biased lumped nodal
RKDG scheme combined with a PIC scheme
dealing with Dirac shape functions for macro-
particles, which ensures charge conservation on
nonconforming grids without having to use ei-
ther a correction method as in [4], [2] or curl-
conforming basis functions as in [5].

Keywords: Discontinuous Galerkin, Particle
in Cell, Vlasov-Maxwell system, numerical charge
conservation, Dirac shape function

1 Introduction

The Vlasov-Maxwell system is used to describe
collisionless plasmas. Discontinuous Galerkin
Methods in Time Domain (DGTD) are promis-
ing high order methods for the efficient numeri-
cal simulation of the Maxwell system while Par-
ticle In Cell (PIC) is a powerful tool to account
for the charged particles arising from Vlasov
equation. We expose a new method yielding
charge conservation in this framework.

2 Charge conservation and operator con-
forming spaces

The divergence of Maxwell-Ampère in vacuum
reads: ∂t(ε0∇.E) +∇.J = ∇.(∇×H).
Defining ρ as ε0∇.E (Maxwell-Gauss equation),
the charge conservation can be written as:
∇.(∇ × H) = 0. The numerical satisfaction of
these laws is a complex problem depending both
of operator and data discretizations. It is the
key point to check in order for a DGTD-PIC
method to be suitable for practical use.

Using a Galerkin method, the fields are ap-
proximated by polynomials, the coefficients of
which are called degrees of freedom (dofs). For
Continuous Galerkin (CG) approximations (Fi-
nite Elements: FE) the dofs are defined globally
over the mesh. If the approximated space is the
Sobolev space H1, continuity is then strongly

imposed over the faces of the mesh whereas only
tangential continuity holds. Using instead an
adapted Galerkin approximation of H1(curl)
spaces (see [3] ), only the physically relevant
continuity is enforced. CG approaches based
on a differential geometry approach (like in [5])
lead to methods preserving charge conservation
without any need of divergence cleaning. For
Discontinuous Galerkin Methods (DGM), the
dofs are defined locally and tangential continu-
ity (viewed as a transmission condition between
mesh elements) is weakly inforced via the nu-
merical fluxes. DGM are of two kinds : the one
with centered fluxes for which a work similar to
continuous Galerkin methods (choice of Kernel-
friendly spaces) has to be conducted, and the
one with upwind flux for which we will show
that a well-chosen H1 approximation (like the
ones used in divergence-cleaning correction meth-
ods) works just fine in the DGTD-PIC frame-
work. We chose the second kind of approach
which is unique to Discontinuous Galerkin
(not inherited from FE).

3 Description of the method

We will describe here the set of all not strictly
standard choices characterizing our DGTD-PIC
method. We use a weak DGTD formulation
with lumped Gauss-Lobatto basis functions (Q2

and Q3) and full upwind fluxes. Since Gauss-
Lobatto quadrature points cover the boundary,
they are used to perform both volumic and sur-
face integration to estimate the scheme stiffness
and fluxes matrices. The resulting mass ma-
trix is diagonal. We also observed that lumping
had a positive effect on the time constraint re-
striction (CFL condition since we perform an
explicit time integration using a RK4 scheme).
Moreover the approximation of any data in this
basis can be performed in a quadrature-free man-
ner. As in [1], the current source is deduced
from macroparticles viewed as Dirac measures
directly sampled as a consequence of the vari-
ational formulation, denoting by J the current
resulting fromN particules travelling in the con-
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sidered mesh element ΩK during the time step
and by ϕK a basis function:∫

ΩK

JϕKi =
N∑
α=1

1

∆t

∫ τα+∆τα

τα

qwαv(t)ϕKi (xα(t)) dt.

Macroparticle α of charge qwα spans ΩK for
t ∈ [τα, τα + ∆τα) ⊂ [tn, tn+1). The proposed
method is genuinely discontinuous since no con-
tinuous quantities have to be reconstructed in
order to make it work.

4 High order convergence

While considering numerical convergence for the
Vlasov-Maxwell system, both mesh convergence
and statistical convergence have to be consid-
ered. Given a fine enough statistical conver-
gence, the table below shows, for different meth-
ods, the coarsest uniform cartesian meshes for
which spatial convergence occurs.

Method FDTD-PIC Q2-PIC Q3-PIC

Mesh 4003 553 303

5 Numerical illustration of charge con-
servation

A sensitive case with respect to charge conser-
vation (3D version of the 2D-diode tested in
[4]) has been tested Figure 1. Electrons travel
from y− to y+ in a stable manner, an equilib-
rium state is reached during the first nanosec-
onds. We validated persistance of this state for
one microsecond. Silver-Müller boundary con-
ditions are used to approximate free space.

Figure 1: Diode 3D on a nonconforming mesh

6 Conclusion and outlook

Upwind flux are known to delay spurious be-
havior. Combined with other suitable choices
involving basis functions, projector and shape
functions, they are at the core of a new high or-
der method ensuring long time charge conserva-
tion as checked on a stringent test case. Future
steps to take would be to improve the compu-
tational efficiency of the method and test its
flexibility to more general meshes.
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A posteriori error estimates for discontinuous Galerkin method to the elasticity
problem
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Abstract

In this work, we derive an a posteriori error
bounds for the discontinuous Galerkin method
for the time-dependent linear elasticity prob-
lem, by making use of the stationary reconstruc-
tion technique which allows to estimate the er-
ror for time-dependent problem through the er-
ror estimation of the associated stationary elas-
ticity problem. We apply the backward-Euler
scheme for fully discrete scheme, and then il-
lustrate the theory with a series of numerical
experiments.

Keywords: elasticity equations, discontinuous
Galerkin, a posteriori.

1 Introduction

A posteriori error estimation and adaptivity re-
cently have become successful tools for efficient
numerical computations. They have already been
widely considered for solving elliptic, parabolic
and first order hyperbolic problems. Howerver,
there are few results for a posteriori error anal-
ysis of the second order evolution problems; we
mention, in particular, [1] and [2] derive rig-
orous a posteriori bounds for conforming finite
element methods in case of fully discretization
for wave equation.

Recently, discontinuous Galerkin (DG) meth-
ods have been developped for elasticity prob-
lem. There are several approaches have been
developed for stationary problem: residual type
error estimators, method based on dual vari-
ables. In case of time-dependent problem, to
our knowledge there is still no work for a poste-
riori error control for elasticity equation with
DG method, so this is the first study about
this. We here propose an a posteriori bound in
the L∞(L2) norm of the error for the elasticity
equation, and in case of DG method. This study
is inspired from the work of [2] concerning with
the wave equation in case of conforming finite
element method.

2 Notations

Denote by Lp, 1 ≤ p ≤ ∞ the space of inte-
grable functions, and by Hs the Sobolev space
and ‖ · ‖s,Ω for the Hs-norm.

Denote by Ω a bounded polygonal domain
in Rd, d = 2, 3, let Th be a subdivision of Ω into
disjoint open sets {K} such that Ω = ∪K∈ThK,
and denote by hK := diam(K) and by h :=
maxK∈Th hK .

Consider the DG finite element space

Vh := {v ∈ L2(Ω)d : v|K ∈ Pr(K)d, K ∈ Th},
(1)

here Pr(K) denotes the set of polynomials of
total degree at most r on K. Let Eh = EIh ∪ EBh
with EIh the union of all interior faces (edges)
of the triangulation Th, and EBh being the set
of all boundary faces. Let K+ and K− be two
adjacent elements of Th, then the average and
jump at x ∈ e = ∂K+ ∩ ∂K− are defined as
follows:

{{q}} =
1

2
(q+ + q−); JqK = (q+ − q−).

Introducing the function h defined on e ∈ Eh by

h|e =

{
min{hK , hK′}, e ∈ EIh, e = ∂K ∩ ∂K ′,
hK , e ∈ EBh , e = ∂K ∩ ∂Ω.

3 Model problem

Consider the equations of linear elasticity prob-
lem of finding the displacement vector u = (ui(x, t))

d
i=1

such that
ρ∂2

ttui −
∑d

j=1

∂σij(u)

∂xj
= fi in (0, T )× Ω,

i = 1, d,
u = 0 on ∂Ω× (0, T ],

(2)
with initial conditions u0 ∈ H1

0 (Ω)d, and u1 ∈
L2(Ω)d:{

u(·, 0) = u0 on Ω× {0},
∂tu(·, 0) = u1 on Ω× {0}. (3)
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Here σ(u) = (σij(u))1≤i,j≤d is the stress ten-
sor which satisfies the constitutive relationship:
σ(u) = Cε(u), or equivalently

∀1 ≤ i, j ≤ d, σij(u) =

d∑
k,l=1

Cijklεkl(u),

where C = (Cijkl)ijkl is a fourth order tensor,
independent of t and satisfying some symmetry
properties: Cijkl = Cjikl = Cijlk = Cklij . We
assume that the stiffness tensor C is positive
definite and piecewise constant in Ω.

4 Fully discrete error estimates

We consider a subdivision of the time interval
(0, T ] into subintervals (tn−1, tn], n = 1, . . . , N ,
with t0 = 0 and tN = T , with the uniform time
step τ := tn − tn−1. Associated with the time
subdivision, let T n

h , n = 0, . . . , N be a sequence
of meshes, by Vn

h a DG finite element space of
fixed degree r built on the partition T n

h , by Enh
the union of all edges (or faces) of the triangula-
tion T n

h , and denote by un
h the discrete solution

at tn.
By using the stationary reconstruction tech-

nique to obtain an error relation, then apply-
ing the special testing function as used in [3],
in combination with the error estimation from
the corresponding stationary problem obtained
by the method of duality or via energy norm,
we finally obain the following a posteriori error
bound:

Theorem 1 The following bound holds

‖u− uN‖L∞(0,tN ;L2(Ω)d) ≤ ζsp + ζtp + ζIC,

where ζsp mainly accounts for the spatial error,
ζtp mainly accounts for the temporal error and
ζIC represents the initial conditions of the prob-
lem. They are given as follows:

ζsp = ζsp,1 + ζsp,2 + ζsp,3,

ζtp = 2
(
ζMC + ζevo + ζosc + ζT.Rec

)
,

ζIC =
√

2‖u0 − u0
h‖0,Ω + 2CFΩc

−1/2
∗ ‖u1 − ∂u0

h‖0,Ω,

where the spatial indicators are given by

ζsp,1 =
√

2E0
IP ,

ζsp,2 = 3 max
0≤n≤N

(
En

IP + 2C2
FΩc

−1
∗ ‖f̃n − fn‖0,Ω

)
,

ζsp,3 =
N∑

n=1

2(En
IP + En−1

IP ) +
N∑

n=1

4τC2
FΩc

−1
∗ ‖∂fn − ∂f̃n‖0,Ω .

and the temporal indicators are defined by

ζMC =
N∑

n=1

∫ tn

tn−1

‖(I− Πn
h)∂tuN‖0,Ωdt

+
N−1∑
n=1

(tN − tn)‖(Πn+1
h − Πn

h)∂un
h‖0,Ω ,

ζevo =

∫ tN

0
‖G‖0,Ωdt ,

ζosc =
1

2π

N∑
n=1

(∫ tn

tn−1

τ3‖f̃n − f‖20,Ωdt

)1/2

,

ζT.Rec =
1

2π

N∑
n=1

(∫ tn

tn−1

τ3‖µn∂2un
h‖20,Ωdt

)1/2

.

where En
IP := EIP (un

h,B
nun

h−Πn
hf

n+fn, T n
h ),

for all 0 ≤ n ≤ N , with EIP is given by

EIP (zh, r, Th) := C

{ ∑
K∈Th

h4
K‖r +∇ · (σ(zh))‖20,K

+
∑
e∈EIh

h3‖Jσ(zh)νeK‖20,e +
∑
e∈Eh

h‖JzhK‖20,e
}1/2

,

where C is a positive constant independent of
zh, r, h and Th.

5 Numerical tests

This numerical part will be presented at the
conference.
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Non-scattering wavenumbers and far field invisibility

for a finite set of incident/scattering directions
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2Poems team, unité de mathématiques appliquées, Ensta ParisTech, Palaiseau, France

3Lab. of Mathematical Methods in Mechanics of Materials, IPME RAS, St. Petersburg, Russia
∗Email: Lucas.Chesnel@cmap.polytechnique.fr

Abstract

We investigate a time harmonic acoustic scat-
tering problem by a penetrable inclusion with
compact support embedded in the free space.
We consider cases where an observer can pro-
duce incident plane waves and measure the far
field pattern of the resulting scattered field only
in a finite set of directions. In this context,
we say that a wavenumber is a non-scattering
wavenumber if the associated relative scatter-
ing matrix has a non trivial kernel. Under cer-
tain assumptions on the physical coefficients of
the inclusion, we show that the non-scattering
wavenumbers form a (possibly empty) discrete
set. Then, in a second step, for a given real
wavenumber, we present a constructive tech-
nique (which provides a numerical algorithm)
to prove that there exist inclusions for which
the corresponding relative scattering matrix is
null. These inclusions have the important prop-
erty to be impossible to detect from far field
measurements.

Keywords: non-scattering wavenumbers, in-
visibility.

1 Setting

Consider an inclusion supported in D, where
D ⊂ Rd, d = 2, 3, is a bounded domain with
Lipschitz boundary. We assume that the scat-
tering of the incident plane wave ui := eikθi·x,
of direction of propagation θi ∈ Sd−1, by D, is
described by the problem

Find u ∈ H1
loc(Rd) such that

−∆u = k2ρ u in Rd,
u = ui + us in Rd,

lim
r→+∞

r
d−1
2

(
∂us
∂r
− ikus

)
= 0.

(1)

In (1), the real valued function ρ models the
properties of the inclusion and is such that ρ−1

is supported inD. It is known that the scattered
field us(·,θi) admits the expansion

us(x,θi) = eikrr−
d−1
2

(
u∞s (θs,θi) +O(1/r)

)
,

as r → +∞, uniformly in θs ∈ Sd−1. Here
θs is the direction of observation. We shall as-
sume we have a finite set of emitters and re-
ceivers located at the same positions so that we
can produce incident plane waves in some given
directions θ1, . . . ,θN ∈ Sd−1 and measure the
far field pattern of the resulting scattered field
only in the directions −θ1, . . . ,−θN (backscat-
tering directions). This corresponds to know-
ing all elements of the relative scattering matrix
A (k) ∈ CN×N such that

Amn(k) = u∞s (−θm,θn). (2)

2 Discreteness of non-scattering wavenum-
bers

We say that k > 0 is a non-scattering wavenum-
ber if Amn(k) has a non trivial kernel. In this
case, there is an incident field, combination of
the plane waves of directions θ1, . . . ,θN whose
scattered field vanishes at infinity in the direc-
tions−θ1, . . . ,−θN . To prove that non-scattering
wavenumbers form an empty or discrete set, we
use the following strategy.

i) We show that k 7→ A (k) can be meromorphi-
cally continued to the complex plane.

ii) For k = iκ, with κ > 0, we establish energy
identities allowing to infer that A (k) is injec-
tive under certain assumptions on ρ.

iii) We conclude using the principle of isolated
zeros.

3 Construction of invisible inclusions

Now, assume that k > 0, D and θ1, . . . ,θN
are given. We develop a technique (introduced
in [1, 3]) to build real valued functions ρ sup-
ported in D such that A (k) is the null ma-
trix. For such inclusions, for all incident fields
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combinations of the plane waves of directions
θ1, . . . ,θN , the scattered field vanishes at in-
finity in the directions −θ1, . . . ,−θN . Below,
we explain the general procedure (for details,
see [2]).
Because of the reciprocity relation

u∞s (−θm,θn) = u∞s (−θn,θm),

the matrix A (k) is symmetric. Let us look for
ρ under the form ρ = 1 + εµ with ε > 0, µ ∈
L∞R (D) (the set of real valued L∞ functions).
Define the map F : L∞R (D)→ RN(N+1) by

F (εµ) =
(
<e(u∞s (−θm,θn)),

=m(u∞s (−θm,θn))
)
1≤m≤n≤N

.

Our goal is to find εµ 6≡ 0 such that F (εµ) = 0.
Since F (0) = 0, for ε small enough, we obtain
the following Taylor expansion

F (εµ) = εdF (0)(µ) + ε2F̃ (ε, µ).

Assume that there are µ1, . . . , µN(N+1) ∈ L∞R (D)
such that dF (0)(µ1), . . . , dF (0)(µN(N+1)) is a

basis of RN(N+1). Decompose µ as

µ = µ0 +

N(N+1)∑
i=1

τi µi, (3)

where the τi are real parameters to tune and
µ0 ∈ ker dF (0). There holds F (εµ) = 0 iff ~τ =
(τ1, . . . , τN(N+1))

> ∈ RN(N+1) verifies

D~τ = F̂ ε(~τ), (4)

where D is an invertible matrix and where F̂ ε(~τ) =
−εF̃ (ε, µ). For any γ > 0, we can show that F̂ ε

is a contraction of Bγ := {~τ ∈ RN(N+1) | |~τ | ≤
γ} for ε small enough. Therefore, the Banach
fixed-point theorem guarantees the existence of
some ε0 > 0 such that for all ε ∈ (0; ε0], (4) has
a unique solution ~τ sol in Bγ . Define ρ = 1 + εµ
with µ as in (3) and ~τ = ~τ sol. Then, for this
inclusion there holds A (k) = 0.
?When the vectors of the family {θm+θn}1≤m≤n≤N
are all non null and all different, we can prove
that the functions µ1, . . . , µN(N+1) mentioned
above exist. This allows to construct invisible
inclusions in this situation.
? When there holds θm + θn = 0 for some in-
cident directions θm, θn, the previous proce-
dure fails. Actually, for any given θi, we can

show that imposing u∞s (−θi,θi) = 0 requires
to impose u∞s (θ,θi) = 0 for all θ. As a con-
sequence of the Rellich lemma, this means that
our task consists in finding an inclusion such
that the incident plane wave eikθi·x produces no
scattered field outside D. This is a much more
constrained problem and we do not know if it
has a solution.

Figure 1: The fixed point problem (4) can be
solved numerically. Here, we have constructed
an inclusion which is invisible at infinity in the
three directions indicated by the dotted lines
(the solid curve represents the far field pattern
at the end of the fixed point procedure).
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Inverse wave scattering via moment relaxation
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Abstract

This note studies the application of moment re-
laxation to the acoustic inverse scattering prob-
lem. The original problem is lifted into a rank-1
matrix recovery formulation, then relaxed into
a convex program by a semidefinite constraint.
We introduce a low-rank-plus-sparse iteration
and a rounding scheme to cope with the size
of the lifted problem. The new formulation is
shown to increase the basin of attraction of the
nonlinear least-squares objective on a simple ex-
ample.

Keywords: imaging, lifting, rounding.

1 Introduction

We aim to recover a medium m = 1/c2 from
the field u(x, ω) measured at receivers and gen-
erated by a source f(x). We let m(x) = m +
W (x)µ(x), where m is a known constant, W (x)
is an indicator of the interior of the domain, and
µ(x) is unknown. The imaging problem can be
written

find µ(x)

s.t ∆u+ ω2(m+Wµ)u = f

Su = d

(1)

We let S for sampling at the receivers, d for the
vector of measurements, and u for the concate-
nation of the fields arising from different sources
f . Following recent developments in convex al-
gebraic geometry [1] and interferometric inver-
sion [2], we propose to consider the following
relaxation by lifting of (1):

find X =

 X11 X12 X13

X21 X22 X23

X31 X32 X33


s.t ∆X31 + ω2(mX31 +Wdiag(X32)) = f

SX31 = d, X11 = 1, X � 0.

(2)

This convex program has many feasible points
besides the expected X0 = ((1 µT uT )T )⊗2

(where v⊗2 denotes vvT ). To restore unique-
ness, but breaking convexity, we further impose
rank(X) = 1. Nonetheless, we now demonstrate
that an appropriate algorithm can have a larger
basin of attraction for (2) than for (1).

2 Low rank plus sparse algorithm

To solve (2), we propose an alternating scheme
combining a sparse projection onto the intersec-
tion of the linear subspaces V1, V2, V3, with

V1 =
{
X | ∆X31 + ω2mX31 + ω2Wdiag(X32) = f

}
V2 = {X | SX31 = d} and V3 = {X | X11 = 1}

and a low-rank-plus-sparse projection onto the
manifold of rank-1 positive semidefinite matri-
ces. We let V := V1 ∩V2 ∩V3 and let X = RRT

with R = (RT1 RT2 RT3 )T .

Algorithm 1 Low-rank-plus-sparse backward-
backward splitting

Require: Rank 1 matrix X(0) = RRT ∈ Rn×n
1: Repeat
2: Get Y11, Y31 and Y diag

32 components via

(Y11, Y31, Y
diag
32 )← (R1R

T
1 , R3R

T
1 ,diag(R3R

T
2 ))

3: Update Y11, Y31 and Y diag
32 components

through a projection onto V (see 2.1).

(R;Y11, Y31, Y
diag
32 )← PV(R;Y11, Y31, Y

diag
32 )

4: Project onto the rank-1 manifold via
Arnoldi iterations.
R← PMk

(R;Y11, Y31, Y
diag
32 )

5: Get µ through rounding from X = RRT

(see 2.2) .

2.1 Projection onto V

We will only detail the projection onto V1 ∩ V2
since the projection onto V3 is trivial and can
be carried out independently.

Let A and b help represent the intersection
V1 ∩ V2 as

A =

(
D ω2W
S 0

)
b =

(
f
d

)
,
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where D = (∆ + ω2B), and B = diag(m). If
we define x := (XT

31 diag(X32)
T )T , then X ∈

V1 ∩ V2 iff Ax = b. The projector PV1∩V2 onto
Ax = b only requires to invert the matrix AA∗.
The update
(R;Y11, Y31, Y

diag
32 )← PV(R;Y11, Y31, Y

diag
32 )

is defined through R← R, Y11 ← 1− Y11,

(
Y31
Y diag
32

)
← (PV1∩V2 − I)

(
Y31
Y diag
32

)

2.2 Rounding

Since the optimization problem (2) doesn’t nec-
essarily have a unique solution, and following
the work of Barak, Kelner and Steurer [3], we
also propose to round the output of (2) as fol-
lows: We extract the reflectivity from the X31

and X32 components by computing the least
squares solution µ to the overdetermined system
of equations diag(X31)µ = diag(X32). This idea
comes from the observation that the rank-1 al-
gorithm converges to the solution through iter-
ates Xα defined as Xα = ((α αµT uT /α)T )⊗2,
for which the X31 and X32 components of the
matrix X turn out to be unaffected by
the weight α.

3 Numerical Results

We propose to benchmark algorithm 1 on a sim-
ple 7 × 7 domain including a PML of 3 grid
points, with background reflectivity m = 1 and
constant perturbation µ = µ. We consider 4
frequencies and 4 sources, and we measure the
field at 12 receivers located all around the do-
main. The frequencies ωi are taken equispaced
between 4.5 and 6. X is thus of size n×n where
n = 2874. For such a framework, FWI (full
waveform inversion, i.e., gradient descent on the
nonlinear least-squares objective ‖Su−d‖) con-
verges to a wrong local minimizer for pertur-
bations µ > 4.5. Results are shown in Fig. 1
for µ = 4.7. In practice, we observe that (2)
in combination with algorithm 1, and possibly
FWI as a refinement step to reduce the compu-
tation time towards the end, leads to an increase
of 30% in the basin of attraction over FWI.

We anticipate that more powerful relaxations,
still based on (2) but using some other closure
condition than rank(X) = 1, would help further
enlarge this basin of attraction.
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Figure 1: Top to bot-
tom: relative model er-
ror ‖µk−µ0‖/‖µ0‖, data
misfit ‖Suk − d‖/‖d‖, or
‖S(X31)k − d‖/‖d‖, and
recovered perturbation µ
obtained by FWI (left)
and lifting (right). The
last figure shows the un-
known µ.

perturbation 7
0

1

2

3
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An Efficient FEM Model for Wave Propagation in Heterogeneous Media
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Abstract

Propagation of acoustic waves in media containing
obstacles with spatially varying interior material
properties that are different to that of the exterior
media can be modeled using the Helmholtz equa-
tion with non-constant refractive index coefficient,
and the model is described in the unbounded media.
Appropriate truncation of the exterior domain (in-
cluding the heterogeneity) leads to the model prob-
lem with mixed interfaces. It is efficient to consider
the artificial truncated boundary to be smooth and
hence require finite element discretizations of do-
mains with curved boundaries and in general non-
smooth and non-convex interfaces. We describe and
demonstrate a high-order approach to simulate such
a mixed boundary heterogeneous media problem.

Keywords: Wave Propagation, Heterogeneity, In-
terfaces, FEM

1 Introduction
In this work we consider an efficient approach for
simulation of scattered and absorbed time-harmonic
acoustic waves in non-convex heterogeneous media
with curved absorbing boundaries and non-smooth
obstacles. Time-harmonic acoustic wave propaga-
tion, induced by a plane-wave (or a point-source)
impinging on an obstacle, can be modeled using
the non-constant coefficient Helmholtz partial dif-
ferential equation (PDE) in an unbounded domain,
see [1–3] and references therein.

The unbounded domain comprises the exterior
to and also the interior of the obstacle, in case it has
a penetrable boundary. The PDE is supplemented
with a transmission condition at the interface in the
penetrable case or the Dirichlet/Neumann condition
on the boundary of the sound–soft/hard obstacle.
The unbounded domain nature of the model prob-
lem requires that the unknown scattered field satis-
fies a radiation condition [1–3, 5].

In the case of homogeneous media, the radiation
condition can be exactly satisfied using a boundary
integral equation (BIE) reformulation of the con-
stant coefficient Helmholtz PDE [3]. This is ob-
tained by representing the scattered field using the
fundamental solution and an unknown density that

needs to be computed only on the bounded bound-
ary.

Computer modeling of the inhomogeneous me-
dia problem requires truncation of the unbounded
domain, using an absorbing boundary condition on
the artificial truncated boundary. The absorb-
ing boundary conditions are typically a first-order
approximation of the radiation condition or its high-
order variant. We refer to the recent work [1, 2, 5]
and extensive references therein for further details.

For the heterogeneous obstacle media model,
the literature is dominated by considering the Helm-
holtz PDE in a bounded domain Ω with an absorb-
ing boundary condition and a standard (low-order)
finite element method (FEM) to design a discrete
computer model of the problem. For implementa-
tion of the FEM model, it is also standard to avoid
mixed (comprising curved, non-smooth, and non-
convex) boundaries, and simulations are based on
low-order continuous (C 0) piecewise linear FEM
approximations applied to model problems with con-
vex polygonal domains.

Further, to avoid the pollution effect in the stan-
dard FEM model, to obtain even low-order (1%) ac-
curacy, at least 10 discretization points in each di-
mension per wavelength are required. This leads to
large linear systems for high frequency problems,
especially for the low-order FEM. Large linear sys-
tems require iterative solvers, and hence develop-
ment of preconditioners is necessary. Such a devel-
opment is complicated further by the fact that the
standard FEM formulations of the Helmholtz prob-
lems are sign-indefinite [1, 2, 5].

The recent work [5] proposes a variational for-
mulation to avoid the celebrated sign-indefinite is-
sue by incorporating additional operators in the stan-
dard models. The yet to be explored FEM approxi-
mations and implementation need to be sought in fi-
nite dimensional subspaces spanned by C 1 splines.
In a future work, we shall consider computational
validation of the formulation in [5] and compare
with the standard sign-indefinite FEM formulation.



Contributed Session: Thursday 10:30–12:30 Room 0.014 373

2 A high-order computer model

In this work, we consider the Helmholtz model prob-
lem in a bounded domain Ω that comprises mixed
(curved, non-smooth, and non-convex) boundaries
such as that visualized in Fig. 1. The outer curved
boundary in the figure represents the artificial trun-
cation of the unbounded domain on which we im-
pose an absorbing boundary condition [1].

The non-smooth and non-convex boundary in
the figure represents the boundary of an elongated
penetrable object that induces the inhomogeneity in
the media. For the general model problem, we
choose the artificial boundary to be a close fit to a
general non-convex and non-smooth scattering ob-
ject, surrounding the inhomogeneity so that the un-
bounded media exterior to the curved boundary is
homogeneous [2].

We develop a high-order accurate com-
puter model of the Helmholtz problem on such do-
mains for wide range of frequencies using spline ba-
sis functions with various smoothness properties C `

with `= 0,1,2, · · · . In a future work, we shall com-
bine the advantage of using the BIE reformation in
the exterior homogeneous media with that proposed
in this work for the heterogeneous media, to develop
a FEM–BEM computer model that satisfies the ra-
diation condition exactly.

Figure 1: The real part of the FEM approximation
total field u with 15 wavelengths per diameter of Ω

with an absorbing condition on the exterior curved
boundary and an interface condition on the interior
non-convex boundary of a penetrable object. The
direction of the incident wave is shown by the arrow

Construction of standard basis spline (B-spline)
functions on a triangular mesh with various
C ` smoothness properties on domains such as those
in Fig. 1 is difficult. Consequently, standard FEM
formulations with C 0 smoothness are used for typ-
ical implementations that avoid mixed boundaries
such as that in Fig. 1.

The meshless weight extended B-splines (WEB-
splines) [4] approach provides a remedy to this sit-
uation, including construction of splines with high
degree and smoothness without substantial increase
in degrees of freedom (DoF).

We describe and demonstrate a WEB-spline
based high-order FEM for the heterogeneous wave
propagation model and show that the high-order ap-
proximations facilitate simulation of a wide range
of frequencies with few DoF.

For our implementation, instead of achieving
high-order accuracy by increasing the degrees of
freedom in the FEM model, we increase the de-
gree p of the WEB-spline functions to achieve high-
order accuracy with relative few DoF. This allows
for the DoF to be kept small enough to use a di-
rect solve and avoids the need for iterative meth-
ods and preconditioners for the poorly conditioned
Helmholtz systems which additionally have larger
condition numbers when the aspect ratio of the do-
main and/or the frequency is large.
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A nonconforming substructuring method for first-order systems
of time-dependent PDEs in space-time
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Abstract

We introduce a novel substructuring discretiza-
tion scheme for first order systems in space-
time. It is based on a skeleton reduction proce-
dure related to the recently introduced discon-
tinuous Petrov-Galerkin (DPG) methods. While
being applicable to a variety of problems, the
substructuring approach is flexible with respect
to the selection of trial and test spaces allowing
for problem-specific nonconforming choices with
desired approximation and conservation proper-
ties. The scheme yields a discrete equation that
can be solved in two steps, where first a repre-
sentation of the solution restricted to the skele-
ton is obtained by solving a symmetric positive
definite linear system. In a second step the ap-
proximate solution on each cell is reconstructed
from the skeleton values. As a model problem,
we consider the linear acoustic wave equation
on a bounded interval in one dimension formu-
lated as a first order system. We compare the
performance of various discretization schemes,
e.g., leap-frog finite differences, space-time LS-
FEM of different orders, to the new substruc-
turing approach.

Keywords: Nonconforming finite elements, space-
time methods, acoustic wave equation

1 Introduction

We consider the linear acoustic wave equation
described by the first-order differential operator

L(p, q) = (∂tp+∇ · q, ∂tq +∇p)

on Q = Ω× (0, T ) ⊂ RD × R with domain

D(L) ⊂ L2

(
(0, T ), H

)
∩H1

(
(0, T ),L2(Ω)D+1

)
with H ⊂ H1

(
Ω)×H(div,Ω

)
.

Let V be the closure of D(L) with respect
to the graph norm ‖u‖L =

√
‖u‖Q + ‖Lu‖Q,

where ‖ · ‖Q denotes the norm in L2(Q)D+1.
Based on a decomposition of Q into space-time
cells R ∈ R, we define local discrete ansatz
spaces VR and local trace operators γR, γ

ad
R with

(Lu, v)R − (u, Ladv)R = 〈γRu, γadR v〉 ,

where Lad = −L is the adjoint operator with
domain D(Lad). For acoustic waves we have on
a space-time cell R = K × (tn−1, tn)

〈γR(p, q), γadR (φ, ψ)〉 =(
(p, q), (φ, ψ)

)
K×{tn} −

(
(p, q), (φ, ψ)

)
K×{tn−1}

+
〈
(p, q · n), (ψ · n, φ)

〉
∂K×(tn−1,tn)

.

We introduce a discretization with degrees of
freedom on the skeleton Γ =

⋃
∂R, where the

local approximation in R is reconstructed by
minimal residuals. The method is very flexible
with respect to the choice of the minimal resid-
uals functional, the local discrete ansatz spaces
and the skeleton degrees of freedom. Our aim
is to find a nonconforming finite element set-
ting which is reliable and efficient also in case
of weak solutions with jumps.

2 The substructuring method

Depending on a conforming approximation space
Wh ⊂ D(Lad) we define the nonconforming space

Vh =
{
vh ∈

∏
VR : 〈γvh, γadw〉 = 0 , w ∈Wh

}
with 〈γvh, γadwh〉 =

∑
R

〈γRvh|R, γadR wh|R〉. We

set VR =
∏
VR, WR =

∏
WR with WR = Wh|R,

and we define the trace γR ∈ L(VR,W
′
R) by

〈γRvh, wh〉 =
(
〈γRvh|R, γadR wh|R〉

)
R∈R

,

and the trace space as V̂h = γR(Vh), respec-
tively. For given trace data v̂h ∈ V̂h we define

VR(ûh) =
{
vR ∈ VR :

〈γRvR − ûh|R, γadR wR〉 , wR ∈WR

}
.

The nonconforming approximation on the skele-
ton is the minimizer ûh = (ûR)R ∈ V̂h of

Jh(v̂h) =
∑
R

inf
vR∈VR(v̂h)

JR(vR) (1)

with, e.g., JR(uR) = 1
2‖LuR − f‖

2
R.
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For the solution of this problem we derive
an equivalent saddle point problem. Let AR,
BR and CR be linear operators and `R a linear
functional with

JR(vR) =
1

2
〈ARvR, vR〉 − 〈`R, vR〉 ,

〈BRwR, vR〉 = 〈γRvR, γadR wR〉 ,
〈CRv̂h, wR〉 = 〈v̂R, γadR wR〉 .

Then, the minimizer of (1) is characterized by

ARuR − `R +BRµR = 0 ,

B′RuR − CRûh = 0

for all R and ∑
R

C ′RµR = 0 .

This yields locally (uR, µR) ∈ VR ×WR solving(
AR BR

B′R 0

)(
uR
µR

)
=

(
`R

CRûh

)
and the skeleton solution ûh ∈ V̂h of the global
Schur complement problem Ŝhûh = ˆ̀

h with

Ŝh =
∑
R

(
0
CR

)′(
AR BR

B′R 0

)−1(
0
CR

)
,

ˆ̀
h =

∑
R

(
0
CR

)′(
AR BR

B′R 0

)−1(
`R
0

)
.

Provided inf-sup stability for the saddle point
discretization, the Schur complement reduction
is well defined.

3 Numerical results

We consider Q = (0, 1) × (0, T ), homogeneous
boundary conditions p(0, t) = p(1, t) = 0, t > 0,
and initial conditions p(x, 0) = 1 and q(x, 0) = 0
for x ∈ (0, 1). The exact solution is given by

p(x, t) =
1

2

(
p0(x+ t) + p0(x− t)

)
with p0(x) =


1 x ∈ (0, 1) + 2Z
0 x ∈ Z
−1 x ∈ (−1, 0) + 2Z

cf. [4]. Observe that p is piecewise constant and
that p ∈ BV(Q). For this model problem, we
compare standard discretization methods to the
new substructuring method, see Fig. 2–4. We
choose T ≈ 8 and wave speed c = 1 so that
the jumps are not aligned with the mesh. All
discretizations shown in the figures use approx-
imately 83500 global DoFs.

Figure 1: A simple explicit leap-frog method
generates oscillations which grow in time.

Figure 2: Simple Q1-space-time least-squares
produces a strongly diffusive approximation.

Figure 3: The Q2-least-squares approach shows
Gibbs phenomenon at the jump while being dif-
fusive.

Figure 4: Using VR = (P3⊗P3)× (P3⊗P3) and
WR = (P3×P2)×(P3×P2) in the substructuring
method improves the above approximations.
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Material derivatives of the boundary integral operators arising from time-harmonic
electromagnetic potential theory and applications
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Abstract

We present new results on the differentiability
analysis of boundary integral operators with res-
pect to the shape of the boundary in electro-
magnetism. Our approach simplifies previous
investigations based on either projection opera-
tors [7] or the Hodge decomposition of the space
of tangential vector fields of mixed regularity

H
− 1

2
div (Γ) [2].

Keywords: Maxwell equation, boundary inte-
gral operators, Piola transform, material deriva-
tives

1 Introduction

Consider the scattering of time-harmonic elec-
tromagnetic waves by a perfect conductor (PC)
Ω in R3 with a smooth closed boundary Γ which
is diffeomorphic to a sphere. Let Ωc denote
the exterior domain R3\Ω and n denote the
outer unit normal vector to the boundary Γ.
Let κ > 0 denote the exterior wavenumber.
The PC problem is formulated as follows [1, 6]
: Given an incident electric wave Einc, find the
scattered field Es satisfying the second order
Maxwell equation rotrotEs − κ2Es = 0 in Ωc,
the boundary condition n × (Es + Einc) = 0
on Γ and the Silver-Müller radiation condition:∣∣rotEs(x)×x−iκ|x|Es(x)

∣∣ |x|→+∞−→ 0. This pro-
blem can be reduced in several different ways
to a uniquely solvable modified combined field
boundary integral equation (M-CFIE) [1].

The radiation condition implies that the scat-
tered field Es has an asymptotic behavior of

the form Es(x) = eiκ|x|

|x| E
∞(x̂) + O

(
1
|x|

)
when

|x| → ∞, uniformly in all directions x̂ = x
|x| .

We denote by F the boundary to far-field
operator that maps the boundary Γ onto the
far-field pattern E∞. The inverse PC problem
is formulated as follows: Given noisy far field
measurements E∞δ , solve

(IP) F (Γ) = E∞δ .

Here, the index δ denotes the noise level and is
assumed to be known.

In the scientific litterature, one can distin-
guish two different approaches relying on do-
main derivatives to solve such an inverse prob-
lem in acoustic scattering. The first one consists
in reformulating (IP) as a nonlinear equation
posed on an open set of parametrized bound-
aries. Then, we apply an iteratively regularized
Newton-type method to the nonlinear equation
via first order linearization e.g. [3]. The algo-
rithm requires the numerical solution of CFIEs
at each iteration step to obtain the Fréchet deri-
vative of F in any direction. The second one
consists in reformulating (IP) as a pair of non-
linear and ill-posed integral equations for the
unknown boundary representing the incoming
wave and the far-field pattern e.g. [5]. Then,
we follow the previous procedure to recover si-
multaneously the unknown parametrization of
the boundary and the density. The algorithm
requires the computation of the material deriva-
tives of some boundary integral operators. The
first approach has been recently applied to elec-
tromagnetism by Hohage and Le Louër [4]. The
second approach has the advantage to avoid the
numerical solution of CFIEs at each iteration
step. Its extension to the inverse PC problem
requires, before all, the differentiability analysis
of the standard electromagnetic boundary inte-
gral operators with respect to the parametriza-
tion of the boundary. In Section 2 we recall
the mapping properties of these operators and
discuss the difficulty of the whole analysis. In
Section 3, we show how to tackle the problem
using the Piola transform of the parametriza-
tions.

2 The boundary integral operators

We introduce the following Hilbert space :
H
− 1

2
div (Γ) = {j ∈ H

− 1
2

div (Γ); j · n = 0, divΓ j ∈ H−
1
2 (Γ)}.

Let Φ(κ, z) = eiκ|z|

4π|z| . The single layer potential

operator is defined for j ∈ H
− 1

2
div (Γ) and x ∈ Γ
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by

Cκj(x) =
1

κ

∫
Γ

n(x)× curl curlx{Φ(κ,x− y)j(y)}ds(y).

The double layer potential operator is defined
by

Mκj(x) =

∫
Γ

n(x)× curlx{Φ(κ,x− y)j(y)}ds(y).

The operator Mκ : H
− 1

2
div (Γ) → H

− 1
2

div (Γ) is com-
pact and the operator Cκ has a hypersingular

kernel but is bounded on H
− 1

2
div (Γ).

We define an open set of admissible varia-
tions X ⊂{q ∈ C 1(Γref ,R3); Γq = q(Γref) is dif-
feomorphic to Γref}, where Γref is a fixed refer-
ence boundary, e.g. a sphere. The operators
Cκ and Mκ are now considered as operators
acting from X to the space of linear operators

L (H
− 1

2
div (Γq),H

− 1
2

div (Γq)). Their differentiability
analysis poses non trivial problems because the
operators Cκ(q) and Mκ(q) are both defined on

the q-dependent space H
− 1

2
div (Γq).

3 The Piola transform

The (3 × 3) matrix [DΓref
q(x)] = T[∇Γref

q(x)]
maps the tangent plane to Γref at the point
x onto the tangent plane to Γq at the point
q(x). We set [DΓref

q]−1 = [DΓqq
−1] ◦ q. To

remove the q-dependence of the operators do-
main, we transport these boundary integral op-
erators on the reference boundary Γref by means
of the Piola transform of q. It is an invertible
and bi-continuous operator defined as follows [4,
Lemma 3.1]:

Pq : H
− 1

2
div (Γq) −→ H

− 1
2

div (Γref)
jq 7→ j = Jq[DΓref

q]−1(jq ◦ q) ,

where Jq is the determinant of the jacobian ma-
trix of the change of variable x 7→ q(x).
This allows us to use the following identities
stated in [4]: Pq(curlΓq u) = curlΓref

(u◦q) and

Jq(divΓq v)◦q = divΓref

(
Pqv

)
. The parametrized

boundary integral operatorsMκ := PqMκ(q)P−1
q

and Cκ := PqCκ(q)P−1
q take the form

Mκj(x) = n(x)×
∫

Γref

TDq(x){∇Φ(κ, q(x)− q(y))×Dq(y)j(y)}ds(y),

Cκj(x) = κn(x)×
∫

Γref

TDq(x)Φ(κ, q(x)− q(y))Dq(y)j(y)ds(y)

− 1

κ
curlΓref

∫
Γref

Φ(κ, q(x)− q(y)) divΓref j(y)ds(y),

where j ∈ H
− 1

2
div (Γref), n is the outer unit nor-

mal vector to Γref and Dq(x) = [DΓref
q(x)] for

any x ∈ Γref . We are led to compute the mate-
rial derivatives of some integral operators with
a weakly singular kernel.

4 Conclusion and future work

Contrary to the previous investigations in [2],
we do not have to compute the Fréchet deriva-
tives of the surface differential operators [6, pp.
68-75]. Moreover, the use of the Piola transform
allows us to consider regularizing operators in
the M-CFIE which do not depend on the bound-
ary Γq. It considerably reduces the expression
of the material derivatives of the integral equa-
tion operator by comparison to [7].

The application of the whole analysis to de-
velop a nonlinear integral equation method for
solving electromagnetic inverse obstacle scatter-
ing problems is a joint project in progress with
O. Ivanyshyn Yaman from Izmir Institute of
Technology.
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2Inria, MΞDISIM, Alan Turing, 1 rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France
3Inria, POems - CNRS:UMR7231 - ENSTA ParisTech

∗Email: geoffrey.beck@ensta-paristech.fr

Abstract

We consider electromagnetic wave propagation
in domains constituted by thin coaxial cables
(made of a dielectric material which surrounds
a metallic inner-wire) and a small junction. The
goal is to trim down 3D Maxwell’s equations in
this complicated geometry to a quantum graph
(see [3]) in which, along each edge, one is re-
duced to compute the electrical potential and
current a by solving wave equations (the tele-
grapher’s model) coupled by vertex conditions.
In this work, using the method of matched asymp-
totics, we propose improved Kirchhoff condi-
tions and we give a rigorous justification of such
a model reduction.

Keywords: Maxwell’s equations, telegrapher’s
equation, matched asymptotics, quantum graph.

1 The geometry

⌦`
l

D`

S`

G

J1

Figure 1: The refernce domain Ω1 (center) the
limit graph G (right) and a cross-section S`
(left)

We consider a domain Ωδ, with δ > 0, which
is homothetic to a (unbounded) reference do-

main namely
Ωδ = δ Ω1 (1)

as described in Figure 1 where Ω1 is the con-
nected union of (L + 1) semi-infinite cables Ω1

`

(` = 0...L) and a bounded junction J1 as illus-
trated by Figure 1. More precisely, each Ω` is
isomorphic to S` × R+, where S` is a non sim-
ply connected bounded domain of R2 with one
single hole. The ”small” parameter δ refers to
the thinness of the propagation domain. When
δ → 0, Ωδ converges to a graph G, union of L
half-lines D`. In the following, we denote x`3 ≥ 0
the abscissa along D` and x`T = (x`1, x

`
T ) associ-

ated transverse coordinates.

Ωδ
` =

{
(δ x`T , x

`
3) | (x`T , x`3) ∈ Ω1

`

}
We are interested in the solution (Eδ, Hδ) of
lossy 3D-Maxwell’s equations in this domain,
with constant coefficients for simplicity, and per-
fectly conducting boundary conditions along ∂Ωδ.
More precisely we wish to describe the behavior
of this solution for small δ from the solution of
a 1D ”effective model” on the limit graph.

2 The reduced model

We describe below only the behavior of the elec-
tromagnetic fields in the (L+ 1) cables:

Eδ(x`T , x
`
3, t) ∼ V δ

` (x`3, t) ∇ϕ`
(xT
δ

)
Hδ(x`T , x

`
3, t) ∼ Iδ` (x`3, t) ∇ψ`

(xT
δ

) (2)

where the harmonic potentials ϕ` and ψ` are
defined by elliptic problems in S` (see [1]). The
electrical potential V ` and current I` are solu-
tions of the telegrapher’s equation (∂` ≡ ∂/∂x`3):

(
C` ∂t +G`

)
Vδ
` + ∂` Iδ` = 0,(

L` ∂t +R`
)
Iδl + ∂` Vδ

` = 0,
on D` (3)
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where C` > 0, G` ≥ 0 are explicity given in
term of ϕ`, the permittivity ε and the electric
conductivity σe while L` > 0, R` ≥ 0 are explic-
ity given in terms of ψ`, the permeability µ and
the magnetic conductivity σm. The system has
to be completed by vertex conditions.

At first order, these are the Kirchoff’s laws

V δ
` (0, t)− V δ

0 (0, t) = 0,
L∑
`=0

Iδ` (0, t) = 0. (4)

A better accuracy is obtained with second order
conditions, namely improved Kirchhoff laws

V δ
` (0, t)− V δ

0 (0, t) = δ
L∑

`′=1

Z`,`
′
Iδ`′(0, t),

L∑
`=1

Iδ` (0, t) + δ Y V δ
0 (0, t) = 0.

(5)

where the coefficient Y and the L × L matrix
Z =

(
Z`,`

′)
are defined from the material prop-

erties of the medium and from 3D potentials Φ
and {Ψ`, 1 ≤ ` ≤ L} defined in the reference
domain Ω1. These potentials are the solutions
of elliptic equations in Ω1 that are constrained
to satisfy a specific non homogeneous behavior
at infinity inside each cable Ω1 (and, concern-
ing the Ψ`’s, non homogeneous jump conditions
across L artificial cuts).

Note that the condition (4) only sees the struc-
ture of the limit graph while (5) also takes into
account (partly) the geometry of the junction.

3 The method of analysis

The derivation of (3) and (4) or (5) relies on
a preliminary asymptotic expansion of the solu-
tion. Since the problem is of multi-scale nature,
a uniform asymptotic expansion in the whole
domain is not possible. We use the method
of matched asymptotics, as in [2] for a sim-
pler scalar case, which consists in looking for
the electric field as follows:

• Far from the origin, for x`3 > 0, we use the
ansatz

Eδ(x`T , x
`
3) =

∞∑
p=0

δpEp`

(xT
δ
, x`3

)
(6)

where the fields Ep` are defined in S`×R+.

• Close to the origin, we use the ansatz

Eδ(x) =

∞∑
p=0

δpEp
(x

δ

)
(7)

where the fields Ep are defined in Ω1.

Our models are obtained only by looking at
p = 0, 1. Using (6) leads to the construction
of equation (3) (see [1]). To obtain (4) and (5),
we need to express the fact that the two expan-
sions (6) and (7) must match.

In addition, it is possible to obtain error esti-
mates. More precisely, denoting (Eδapp, H

δ
app)

the right hand side of (2) with (V δ, Iδ) defined
as the solution of (3, 4) or (3, 5), one can show
that, in appropriate energy norms

‖Eδapp − Eδ‖ ≤ C δk ‖Eδ‖ (8)

where k = 1 for (3, 4) and k = 2 for (3, 5), mod-
ulo, in this second case, a post-treatment which
consists in adding a O(δ) longitudinal compo-
nent to the transverse electromanetic field de-
fines by the right hand side of (2).
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Plasmonic waveguides: T-coercivity approach for Maxwell’s equations
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Abstract

We look for the electromagnetic guided modes
in a closed waveguide made of layers of mate-
rials characterized by real permittivities of op-
posite signs: we will consider a dielectric and a
metal at optical frequencies. Due to this sign-
changing permittivity, self-adjointness can be
compromised. However, under some conditions,
it can be recovered thanks to the T-coercivity
approach.
The T-coercivity theory has been extensively de-
veloped for scalar problems with sign-changing
coefficients, then extended to Maxwell 2D (no
dependence in one direction) and Maxwell 3D.
We extend these results to our case, referred to
as the 2.5D case. When self-adjointness is en-
sured, with the adapted functional framework,
and for a chosen wavenumber, we can prove re-
solvent compactness. Then we can derive error
estimates for the approximation of eigenvalues
and the guided modes using edge elements.

Keywords: Maxwell’s equations, sign-changing
permittivity, waveguide, T-coercivity, eigenvalue
approximation

1 Problem setting

Let a domain D := {(x, y, z) := (x, z) ∈ Ω×R}
of section Ω ⊂ R2, such that Ω := Ωd ∪ Ωm:
Ωd × R is a homogeneous domain of permittiv-
ity εd > 0, permeability µd > 0, and Ωm × R
a metal inclusion characterized by εm < 0, and
µm > 0. Assume that Ω is simply connected
with Lipschitz connected boundary, and define
the interface Σ := Ωd ∩ Ωm.
We look for the guided modes for the electro-
magnetic field (E,H), that is solutions of Maxwell’s
equations of the form:

(E,H)(x, z, t) =(E,H)(x)ei(βz−ωt),

ω, β ∈ R,
(1)

where ω 6= 0 is the frequency, and β the axial
wavenumber. It is well-known that, in particu-
lar for the unknown H, using (1), we can reduce
the system into a 2D problem parametrized by

β that involves the three components of H. We
define new operators indexed by β (rotβ and
divβ) which are simply a rewriting of the classi-
cal operators taking into account (1). Then we
get:

∣∣∣∣∣∣∣∣∣∣

Find H ∈W(Ω) such that:

rotβ

(
1

ε
rotβH

)
− ω2µH = 0 in Ω

1

ε
rotβH× n = 0 on ∂Ω

(2)

with n the unit outward normal of Ω, ε and
µ two piece-wise constant functions gathering
the permittivity and the permeability of the two

materials. Finally for all F := (
−→
F⊥, Fz)

t define

W(Ω) = {F/
−→
F⊥ ∈

−→
H (rot; Ω), Fz ∈ H1(Ω)}

where
−→
H (rot; Ω) :={

−→
F⊥ := (Fx, Fy)

t ∈ L2(Ω)2/

rot
−→
F⊥ := ∂xFy − ∂yFx ∈ L2(Ω)}.

One can show that a solution H of (2) also sat-
isfies the conditions

µH · n = 0 on ∂Ω, divβ(µH) = 0 in Ω. (3)

To look for the guided modes, we interpret
Problem (2) as an eigenvalue problem: for a
chosen β ∈ R, find (H, ω2) ∈ W(Ω) \ {0} × C
satisfying (2). Since ε is sign-changing, well-
posedness for the forward problem (that is (2)
with some data at the right-hand side) is not
automatically guaranteed. First we need to en-
sure existence and uniqueness of this forward
problem then, when it is satisfied, we can study
the eigenproblem, and tackle the approximation
of the eigenvalues.

2 Self-adjointness

As W(Ω) is not compactly embedded in L2(Ω),
we will work in a subspace that takes into ac-
count the divergence free condition (3):

VT (β;µ; Ω) = {F ∈W(Ω)/

µF · n = 0 ∂Ω, divβ(µF) = 0 Ω},
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and which is compactly embedded in L2(Ω). We
can prove that solving (2) is equivalent to:∣∣∣∣∣∣∣
Find H = (

−→
H⊥, Hz)

t ∈ VT (β;µ; Ω) such that:

a(H,H′) + c(β;H,H′) = ω2(µH,H′)

∀H′ ∈ VT (β;µ; Ω),
(4)

with

a(H,H′) := a⊥(
−→
H⊥,
−→
H⊥
′) + az(Hz, H

′
z)

=

∫
Ω

1

ε
rot
−→
H⊥rot

−→
H ′⊥ +

∫
Ω

1

ε
∇Hz · ∇H ′z,

c(β;H,H′) := iβ

∫
Ω

1

ε

(
∇Hz ·

−→
H ′⊥ −

−→
H⊥ · ∇H ′z

)
+ β2

∫
Ω

1

ε

−→
H⊥ ·

−→
H ′⊥.

Note that for β 6= 0, the functional frame-
work and the compact part c(β; ·, ·) depend on

β, then we cannot decouple
−→
H⊥ from Hz and

rewrite (4) into two problems. Due to the sign-
changing permittivity, the form a is not coer-
cive. Besides, coercivity can be recovered un-
der some conditions on the ratio εd/εm and the
geometry of Σ, via the T-coercivity approach.
Particularly it tells us that (4) (with some data
at the right-hand side) is of Fredholm type if
and only if there exists an isomorphism T of
VT (β;µ; Ω) such that a(·, T·) is coercive, and
c(β; ·, ·) is compact. As mentioned above, this
theory has been developed for instance in [1, 2]
providing ad hoc operators T (explicit for scalar
problems, abstract for Maxwell’s). In that case,
it has been proved that the form a⊥ is in fact co-
ercive for any value of ε < 0, while we recover
coercivity for the form az under some condi-
tions.
For the 2.5D case, we extend the results cou-
pling those from scalar and Maxwell’s problems.
As we cannot decouple the components of H,
the construction of the operator T now involves
an operator Tz from the scalar problem, an op-
erator T⊥ from Maxwell 2D problems, and we
add to T⊥ a potential solution of an elliptic
problem whose right-hand side depends on Tz
and β.
With the Riesz representation we introduce the
operator A(β) ∈ L(VT (β;µ; Ω)) associated to
the form a(·, ·) + c(β; ·, ·). Once we have proved
that the forward problem is of Fredholm type,
we can prove that A(β) is self-adjoint and has

compact resolvent, so that its spectrum is com-
posed of a sequence of positive and negative
eigenvalues.

3 Approximation of the guided modes

Finally, following [5], and in the spirit of [4]
we can provide error estimates for the approxi-
mation of the eigenvalues using edge elements.
To do so, we first have to state compactness of
the discrete operators and norm convergence to-
wardsA(β): this requires to transpose T-coercivity
to the discrete problem and some conditions on
the mesh [3].
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Abstract

In this talk we will give a detailed description
of the complete low-frequency asymptotics for
time-harmonic Maxwell equations in exterior do-
mains.

Keywords: Low-Frequency Asymptotics, Time-
Harmonic Maxwell Equations, Exterior Domains,
Electro-Magnetic Scattering, Weighted Sobolev
Spaces

1 Results

We will prove the complete low-frequency asymp-
totics for time-harmonic Maxwell equations in
exterior domains. We start with introducing
the solution theory for time-harmonic electro-
magnetic scattering problems via a generalized
Fredholm alternative using the limiting absorp-
tion principle and continue with proving an ad-
equate corresponding electro-magneto static so-
lution theory providing also special so-called tow-
ers of static solutions. In both cases we will
work in polynomially weighted Sobolev spaces.
Then a comparison with the whole space solu-
tion shows that a generalized asymptotic Neu-
mann series gives the desired asymptotics for
low frequencies up to a finite sum of degener-
ate operators, which can be described explicitly
by strongly growing towers. Finally we com-
pare these time-harmonic Maxwell radiation so-
lutions with the corresponding solutions pro-
vided by the eddy-current model for low fre-
quencies.
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Abstract

The diffraction of plane waves from simple hard-
edged apertures constitutes a class of boundary-
value problem that is well understood in optics,
at least within the scalar approximation. Simi-
larly, the diffraction of such waves from fractal
apertures (amplitude or phase masks possess-
ing structure across decades of spatial scale) has
also received much attention in the literature.
But the diffraction of fractal waves by simple
apertures constitutes an entirely new paradigm
(in optics particularly, and wave physics more
generally) that remains largely unexplored.

Here, we consider the diffraction of fractal
waves by a hard-edged circular aperture using
a range of analytical and semi-analytical meth-
ods. Fast computational techniques are used to
obtain Fresnel (near field) diffraction patterns,
and specialist software assists with the investi-
gation of their properties. Key issues to be ad-
dressed include the fractal dimension of diffrac-
tion patterns, and the asymptotic emergence of
Fraunhofer (far field) predictions in an appro-
priate limit.

Keywords: Fresnel diffraction, fractal waves,
Weierstrass function.

1 Fractal Diffraction

We have recently proposed fractal diffraction as
a context of fundamental physical importance
with enormous scope for potential applications
[1]. Preliminary analyses investigated a Weier-
strass function [2] for modelling fractal illumi-
nation of the most elementary aperture imag-
inable: the infinite single slit. The Weierstrass
function has an intuitive interpretation, com-
prising a set of periodic patterns whose ampli-
tudes and spatial frequencies are connected in a
very particular way. Moreover, each constituent
pattern scale can be constructed from a super-
position of two interfering plane waves.

The diffraction of a uniform wavefront by a
circular aperture is another classic wave-based
problem that has well-known solutions, both in

Fresnel and Fraunhofer regimes [3]. While we
consider the optical analogue with fractal illu-
mination, our results are expected to be readily
applicable to other fields, such as acoustics [4].

2 Diffraction Integral

The diffraction of a scalar optical field U(r) by
a circular aperture of radius a is routinely de-
scribed by the paraxial wave equation. For a
hard-edged circular aperture, and where the in-
cident wave Uin is azimuthally invariant, the
diffracted wave at a distance L beyond the aper-
ture is given by the formal solution,

U(r) =
2πNF

i
exp

(
iπNFr

2
)

×
∫ +1

0
dρ ρJ0(2πNFrρ) exp

(
iπNFρ

2
)
Uin(ρ),

(1)

where the radial coordinate r is measured in
units of a. In this representation, the diffrac-
tion pattern is uniquely parametrized by the
aperture Fresnel number NF ≡ a2/λL.

3 Weierstrass Illumination

Here, we consider an illuminating field that has
the form of an azimuthally invariant Weierstrass
wave such that

Uin(r)

U0
= 1 + ε

N∑
n=0

1

γ(2−D0)n
cos(κnr+φn), (2)

where U0 is a uniform plane-wave amplitude
and ε controls the strength of the fractal modu-
lation. The spatial frequencies in Eq. (2) form a
Weierstrass spectrum given by κn ≡ 2π(a/Λ)γn,
where γ > 0 is a free parameter, and the set of
phases φn may be either deterministic or ran-
dom. When N → ∞, the number 1 < D0 ≤ 2
corresponds to the Hausdorff-Besicovich dimen-
sion of Uin with values approaching 2 giving an
increasingly complex fractal curve.

The illuminating field is bandwidth-limited
with a cut-off at n = N ; the spatial scalelengths
in Eq. (2) then range from the largest, Λ, to the
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smallest, Λγ−N . Placing a restriction on the
number of spatial scales in Uin is important for
two principal reasons. Firstly, no physical ob-
ject can possess structure down to arbitrarily-
small scales (since finite-size effects will even-
tually come into play). Secondly, there tends
to exist a high-frequency cut-off beyond which
spatial scales cannot contribute to the diffracted
intensity pattern [5] (so the basis on which one
introduces finite-bandwidth considerations, and
selects a value for N , are rooted in diffraction
theory).

4 Diffraction of Fractal Waves

Earlier analyses focusing on infinite-slit geome-
tries have tended to use Young’s edge waves
as convenient spatial structures for understand-
ing and quantifying fractal diffraction phenom-
ena [1]. While edge waves can be used for cir-
cular apertures and uniform illumination [3],
such a formalism is not quite so readily de-
ployed for fractal illumination (despite the one-
dimensional nature of the system) and one must
instead consider the diffraction integral more di-
rectly. Substitution of Eq. (2) into Eq. (1) yields
a formal expression for U(r) as a linear super-
position of patterns with different scalelengths,

U(r)

U0
=

2πNF

i
exp

(
iπNFr

2
) [
P (r; 0, 0)

+ ε

N∑
n=0

1

γ(2−D0)n
P (r;κn, φn)

]
, (3a)

where P is given by the integral

P (r;A,B) ≡
∫ +1

0
dρ ρJ0(2πNFrρ)

× exp
(
iπNFρ

2
)

cos(Aρ+B)
(3b)

and P (r; 0, 0) fully describes the diffraction pat-
tern in the classic plane-wave problem [3].

A selection of new results will be discussed,
with a combination of analytical methods and
specialist fractal analysis software [6] identify-
ing trends in the Fresnel patterns (see Fig. 1).
Attention is paid to the role played by NF in
characterizing these patterns, and we consider
different self-affine measures of dimension (such
as roughness-length, variogram, and rescaled-
range). Asymptotic emergence of classic Fraun-
hofer results will also be demonstrated, and a
wide range of potential applications highlighted.

Figure 1: (a) Illumination across a circular aper-
ture corresponding to a plane wave (blue) and a
Weierstrass function with fractal dimension D0 =
1.6 and γ = 3 (green). (b) Diffracted intensity
patterns when NF = 1000.
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Abstract

We will report on our latest research into mod-
elling fractal lasers (linear systems that involve
geometrically-unstable resonators with inherent
magnification), and propose two new classes of
cavity configuration. These devices are of fun-
damental theoretical interest as table-top gener-
ators of tunable fractal light that can be used in
a wide range of applications. Moreover, we ex-
pect them to play a pivotal role in new Nature-
inspired optical architectures and designs.

The virtual source theory of classic kaleido-
scope lasers will be reviewed, and we show how
that semi-analytical method can be applied to
novel cavity designs which incorporate a feed-
back mirror whose outer boundary corresponds
to iterations of the von Koch snowflake (an it-
erated function system involving self-similar se-
quences of equilateral triangles) and its isosceles
counterpart, the von Koch pentaflake . A range
of new numerical results will be given, including
calculations of mode patterns, eigenvalue spec-
tra, and detailed computations of fractal dimen-
sion measures.

Keywords: Unstable resonators, virtual source
theory, snowflake, pentaflake.

1 Fractal Lasers

Unstable cavity lasers involve linear resonators
with inherent magnification whose eigenmodes
possess fractal characteristics (that is, propor-
tional level of details spanning decades of spatial
scale). The physical origin of such multi-scale
patterns in strip resonators (systems compris-
ing a single transverse dimension) has been ex-
plained by considering repeated diffraction of
the circulating cavity field at the feedback mir-
ror (which subsequently plays a key role in de-
termining mode properties) [1].

The term kaleidoscope laser has been coined
to describe similar systems with two transverse
dimensions where the feedback mirror has the

shape of a regular polygon (e.g., an equilat-
eral triangle) [2]. This complicated boundary-
value problem (which involves non-orthogonal
edges in the aperturing element) gives rise to
mode patterns that have a remarkable beauty
and complexity [3]. Here, we propose two new
classes of unstable resonator that involve frac-
tal (rather than regular) boundary conditions:
snowflake and pentaflake systems.

2 Virtual Source Modelling

A confocal unstable resonator is fully described
by two parameters: the equivalent Fresnel num-
ber Neq and the round-trip magnification M .
Southwell’s virtual source (VS) method unfolds
the cavity into a plane wave diffracting through
a sequence of NS = log(250Neq)/ logM aper-
tures, each of which has a characteristic size [4].
The modes of the cavity correspond to a linear
superposition of the edge waves from each of
these fictitious apertures.

Previously, we have applied a two dimen-
sional (2D) VS approach to find the empty-
cavity eigenmodes V (X) of kaleidoscope lasers
across the feedback mirror, where

V (X) = ε

[
ENS+1(XC)

αNS (α− 1)
−

NS∑
m=1

α−mEm(X)

]
,

(1a)
Em(X) is the edge-wave pattern from virtual
aperture m, XC is an arbitrary point on the
boundary of the feedback mirror (typically a
vertex), and ε is a Heaviside function (equal to
1 in the domain of the feedback mirror, and 0
otherwise). The mode eigenvalue α, obtained
by solving the high-order polynomial equation

αNS+1 +

NS∑
m=0

[Em(XC)

−Em+1(XC)]αNS−m = 0, (1b)

plays the role of a formal expansion parameter.
Each individual root of Eq. (1b) thus describes
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Figure 1: Snowflake laser modes (top row) and corresponding magnification of the central portion (bottom
row). For iteration number n = 0, 1, 2, 3 and 4 (left to right), there are N = 3× 4n = 3, 12, 48, 192, and 768
edges to the feedback mirror (a computationally-intensive problem).

an eigenmode of the unstable resonator. In this
way, the virtual source formalism provides a hi-
erarchy of solutions whose round-trip losses are
related to |α| (and where the lowest-loss mode
corresponds to the largest value of |α|). In con-
trast, ABCD (paraxial) matrix modelling in
combination with fast Fourier transforms com-
putes only a single mode per application.

In this presentation, we show how our 2D-
VS theory can also be applied to find the modes
of snowflake (see Fig. 1) and pentaflake res-
onators. The approach requires detailed knowl-
edge of the constituent edge waves, which are
typically found using a line-integral method [5].

3 Modes & Fractal Dimension

A key issue to be addressed in detail is the frac-
tal dimension of unstable-resonator modes for
cavities with arbitrary Neq and M parameters.
Previously, Berry [6] has made similar consid-
erations but only for the lowest-loss modes of
kaleidoscope cavities, and in the limit Neq →
∞ (where asymptotic approximations may be
deployed). We will conclude with a summary
of results from the first detailed exploration of
fractal dimension in kaleidoscope systems. Spe-
cialist software [7] has been deployed in parallel
with our suite of 2D-VS codes to investigate po-
tential anisotropy in the dimension using vari-
ous different measures. Cross-sections through
the lowest-loss (and a set of higher-order) mode
patterns are computed, and direct comparisons
with a strip resonator for the same cavity pa-
rameters [1] uncover some intriguing results.
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Boundary Conditions for Hyperbolic Systems of Equations on Curved Erroneous
Domains
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Abstract

In this paper, we discuss the potential conse-
quences of having an erroneous computational
domain for hyperbolic problems. We validate
our findings by solving the linearized Euler equa-
tions using a high order finite difference method
in space and time.

Keywords: hyperbolic problem, initial bound-
ary value problems, erroneous computational do-
mains

1 Introdcution

A non-perfect mesh generator often results in an
inaccurate geometry description. The errors by
the inaccurate geometry will affect the global
accuracy of all discretization techniques used.
In this paper, we quantify that effect by consid-
ering the error induced by applying boundary
conditions at the wrong position and/or with
an incorrect normal, see Figure 1.
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Figure 1: A schematic of the erroneous and cor-
rect (nc = correct normal, ne = erroneous nor-
mal) boundary definitions.

2 Correct geometries

Consider the following constant coefficient sym-
metric system of size M ,

Vt+(ÂV )x+(B̂V )y = 0, (x, y) ∈ Ω, t ∈ [0, T ]
LV = g, (x, y) ∈ δΩ, t ∈ (0, T ]
V = f, (x, y) ∈ Ω, t = 0,

(1)
in which V = V (x, y, t) is the solution, Ω is
the spatial domain with the boundary δΩ, L is
the boundary operator and f(x, y) and g(x, y, t)
are data to the problem. Â and B̂ are constant
symmetric matrices.

By imposing boundary conditions of the form

LV = (XT
−−RXT

+)V = g, (x, y) ∈ δΩ, (2)

where the matrix R is of appropriate size, and

Λ+ +RTΛ−RT ≥ 0 (3)

it can be shown that the energy is bounded.
We consider the transformation

x(ξ, η)↔ ξ(x, y), y(ξ, η)↔ η(x, y)

which takes (1) to

JVt+(ÂV )ξ+(B̂V )η = 0, (ξ, η) ∈ Φ, t ∈ [0, T ]
LV = g, (ξ, η) ∈ δΦ, t ∈ (0, T ]
V = f, (ξ, η) ∈ Φ, t = 0.

(4)
In (4), A = JξxÂ+JξyB̂ and B = JηxÂ+JηyB̂.

The energy method together with the use
of Geometric Conservation Law (GCL), see [1],
and also Green’s theorem lead to

d

dt
||V ||2J = −

∮
δΦ
V T (A, B) · n︸ ︷︷ ︸

Ã

V ds, (5)

in which n = (n1, n2), Ã = n1A+n2B and the
norm is defined by ||V ||2J =

∫∫
Φ V

TJ V dξ dη. By
the use of (2) we can show that (5) leads to a
bounded energy and well-posedness, see more
details in [1].
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3 Erroneous geometries

Consider two hyperbolic problems

Ut + ÂUx + B̂Uy = 0, (x, y) ∈ Ωc (6)

Vt + ÂVx + B̂Vy = 0, (x, y) ∈ Ωe (7)

posed on two nearby domains (c and e denote
correct and erroneous respectively). The two
domains are both transformed to the unit square,
see Figure 2.
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Figure 2: A schematic of correct and erroneous
geometries both mapped to the unit square.

We apply energy method on the transformed
version of (6) and (7) and we get

d

dt
||W ||2Ji = −

∮
δΦ
W T (Ai, Bi) · ni︸ ︷︷ ︸

Ãi

W dsi, (8)

for W ∈ {U, V } and i ∈ {c, e}.
The relations (6), (7) and (8) lead directly

to the conclusion that i) the wave speeds given
by the eigenvalues of the matrices will differ.
Moreover, ii) wrong normals may lead to ei-
ther wrong number of boundary conditions or
imposition of the wrong data at the boundary.
Finally, iii) boundary conditions with data for
δΩc may be imposed at δΩe. Consequently, the
erroneous boundary description can lead to an
ill-posed problem and inaccurate results. The
errors induced by the wrong position and form
of the boundary might be more important than
the order of accuracy and specific discretization
technique one is using.

4 Numerical experiments

We consider the two-dimensional constant coef-
ficient symmetrized Euler equations. The cor-
rect and erroneous computational domains are
chosen as shown in Figures 3 and 4 (Note that
the erroneous computational domain here is ex-
aggerated).

We solve the fully discrete problem and ex-
pect third order accuracy in the space. The con-
vergence rates for the correct and erroneous ge-
ometries are shown in Figures 5 and 6. As seen

x
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3: The cor-
rect computational
domain, Ωc.
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Figure 4: The erro-
neous computational
domain, Ωe.

in Figure 6, the erroneous geometry affects the
global accuracy of the discretization technique
used (only first order accuracy is obtained).
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Figure 5: 3rd or-
der accurate, conver-
gence rate, Ωc.
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gence rate, Ωe.

5 Summary and conclusions

We discussed the effect of erroneous boundary
description. We showed that the errors caused
by an erroneous geometry description affects the
solution more than the accuracy of the discretiza-
tion technique using Euler’s equation and 3rd
order SBP operators. In the presentation we
will discuss these issues more in detail.
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Verification of a Variational Source Condition for Inverse Medium Scattering Problems
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Abstract

In this talk, see [5], we consider the inverse scat-
tering problem to recover the contrast f of a
medium given either near or far field measure-
ments of acoustic waves. Using geometrical op-
tics solution we show that the contrast satisfies
a logarithmic source condition if it belongs to a
Sobolev ball. This yields the first rigorous proof
of logarithmic convergence rates of Tikhonov
regularization applied to inverse medium scat-
tering.

Keywords: inverse medium scattering, conver-
gence rates, variational source condition

1 Statement of the inverse problem

We consider scattering of time-harmonic acous-
tic waves by a medium characterized by its con-
trast f ∈ L∞(R3), assuming that Re f ≤ 1,
Im f ≤ 0, supp f ⊂ B(π) := {x ∈ R3 : |x| ≤ π},
and κ > 0. The forward problem is then given
by finding the total field u = ui +us solving the
differential equation

∆u+ κ2u = κ2fu in R3 (1)

where the incident field ui solves the Helmholtz
equation ∆ui + κ2ui = 0 and the scattered field
us fulfills the Sommerfeld radiation condition
(RC).

We will consider two inverse problems cor-
responding to two kinds of incident fields ui.
Incident point source waves are of the form

ui
y(x) =

1

4π

eiκ|x−y|

|x− y|
.

For a fixed radius R > π we want to reconstruct
f using near field data w(x, y) = uy(x)||x|=R for
all y with |y| = R, which is the Green function
of the problem. Here uy is the total field for the
incident point source wave ui

y.

Another inverse problem occurs if we use in-
cident plane waves ui

d,∞(x) = eiκd·x traveling in
direction d with |d| = 1 and the asymptotic be-

havior of solutions to (1) and (RC)

u(x) = ui(x) +
eiκ|x|

|x|
u∞(x̂) +O

(
1

|x|2

)
uniformly for all directions x̂ := x/ |x| where
u∞ is the far field pattern of u. The inverse
problems is to reconstruct f from measurements
u∞(x̂, d) for all directions x̂ and d with u∞(·, d)
given by the far field pattern corresponding to
ui
d,∞.

2 Regularization and convergence rates

The problems above can be formulated as op-
erator equation F (f) = g where F is either the
near field operator

Fn : D → L2(∂B(R)× ∂B(R)), f 7→ w

for R > 1 or the far field operator

Ff : D → L2(∂B(1)× ∂B(1)), f 7→ u∞

with domain D := {f ∈ L∞(R3) : supp(f) ⊂
B(π),Re f ≤ 1, Im f ≤ 0}. Both operators are
injective but their inverses are not continuous
(see [6]). To obtain a stable reconstruction we
use nonlinear Tikhonov regularization

f δα ∈ argminf

[∥∥∥F (f)− gδ
∥∥∥2

Y
+
α

2
‖f‖2X

]
(2)

where F is either Fn or Ff , X ⊂ D is a Hilbert
space and Y the corresponding image space con-
taining the data gδ, which is assumed to satisfy
‖gδ − F (f †)‖Y ≤ δ. If the operator is weakly
closed (2) is a regularization method that is the
worst case error tends to 0 as δ → 0 if the regu-
larization parameter α is chosen appropriately
though the convergence is in general arbitrarily
slow (see [1]).

One way to obtain convergence rate is by re-
quiring that a variational source condition (VSC)

β

2

∥∥∥f − f †∥∥∥2

X
≤ 1

2
‖f‖2X −

1

2
‖f †‖2X

+ ψ

(∥∥∥F (f †)− gδ
∥∥∥2

Y

)
(3)
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holds true for f † and all f ∈ X with β ∈ (0, 1]
and a concave index function ψ, that is ψ :
[0,∞) → [0,∞) is continuous, monotonically
increasing and ψ(0) = 0. Then (2) converges
with rate

β

2

∥∥∥f † − f δᾱ∥∥∥2

X
≤ 4ψ(δ2) (4)

for the optimal choice ᾱ of the regularization
parameter, which is given by 1/(2ᾱ) = ψ′(4δ2).
VSCs, proposed in [4] and further developed
in [2], have become popular in regularization
theory due to several advantages over classi-
cal spectral source conditions. They simplify
proofs, allow generalizations to Banach spaces
and do not require further conditions on F ′. In
the case of linear operators they are also nec-
essary for certain convergence rates. However
only a few results on the verification of such con-
ditions exists so far, except via spectral source
conditions. Note that if (3) holds true for all
f † ∈ K ⊂ X, then the conditional stability es-
timate

‖f1 − f2‖2X ≤ ψ
(
‖F (f1)− F (f2)‖2Y

)
for all f1, f2 ∈ K is satisfied whereas the reverse
implication is not obvious. For the described
problems such stability estimates have been es-
tablished with

ψ(t) = C
(
ln(t−1)

)−p
(5)

for some p > 0 starting with [7]. In [3] K was
chosen as a ball in a Sobolev space and an ex-
plicit exponent p depending on the order of the
Sobolev space was derived. The key tool in the
stability proofs are geometrical optics solutions.

3 Results

We choose X as the Sobolev space Hm
0 (B(π)).

For m > 3/2 we have that Hm ⊂ L∞ with
continuous embedding, so Hm ∩ D ⊂ Hm is a
closed subset.

Theorem 1 Let 3/2 < m < s, s 6= 2m + 3/2
and π < R. Assume that the true contrast f † ⊂
D fulfills and ‖f †‖Hs

0(B(π)) ≤ Cs for some Cs >
0. Then for all f ∈ Hm

0 (B(π))∩D a VSC (3) is
fulfilled with F = Fn, β = 1/2 and ψ as in (5)
with p = 2µ and µ := min(1, (s−m)/(m+3/2)).

Hence using (4) one obtains:

Corollary 2 Under the assumptions of Theo-
rem 1 the convergence rate∥∥∥f † − f δᾱ∥∥∥2

X
≤ c

(
ln(δ−2)

)−2µ
.

for (2) holds true.

To extend the result to far field data we use
a technique proposed in [3].

Theorem 3 Under the assumptions of Theo-
rem 1 for all 0 < θ < 1 a VSC (3) is fulfilled
with F = Ff , β = 1/2 and ψ being of the form
(5) and p = 2µθ.
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Regularization Techniques for Inverse Scattering Problems with Sparsity Constraints
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Abstract

Considering time-harmonic inverse scattering of
either electromagnetic waves or of acoustic waves
from an inhomogeneous (anisotropic) medium,
it is sometimes reasonable to assume that the
contrast of the scatterer can be described by few
non-zero coefficients for a chosen basis. Such
contrasts are called sparse. Although regular-
ization techniques involving sparsity constraints
are widely accepted in e.g. image processing,
they are rarely used in inverse scattering the-
ory. Because of that we generalize first results
from [1] on some iterated soft-shrinkage regu-
larization methods.

Keywords: inverse medium scattering, regu-
larization, sparsity

1 The scattering problem

An incident time-harmonic wave ui with time-
dependence e−iωt solving the Helmholtz equa-
tion ∆ui + k2ui = 0 illuminates the scattering
object D ⊂ Rd, d = 2, 3, so that the total field
u solves

∆u+ k2n2u = 0 in Rd, (1)

and so that the scattered wave us = u− ui sat-
isfies Sommerfeld’s radiation condition

lim
|x|→∞

|x|
d−1
2

(
d

d|x|
− ik

)
us(x) = 0 (2)

uniformly in all directions x̂ = x/|x|. Here we
suppose the wave number k to be positiv and
the refractive index n to equal one outside the
open and bounded set D while it differs from
one from the inside. By that a contrast function
q : Rd → C, with supp(q) = D, defines through
q := n2 − 1 in Rd.

Denoting by Φ the radiating fundamental
solution of the Helmholtz equation, it is well
known that us is a solution to the Lippmann-
Schwinger integral equation

us − k2V (qus) = k2V (qui) in D, (3)

where we defined the radiating volume potential
by

V (f)(x) :=

∫
D

Φ(x, y)f(y) dy, x ∈ Rd.

Both the classical inverse scattering solution the-
ory for (3) and the extension to the Banach
space setting seen in [1], provides an unique so-
lution of the scattering problem (1, 2).

2 The inverse problem

Representing either near- or far-field measure-
ments due to a contrast q by F(q) with a non-
linear operator F gives rise to the inverse prob-
lem to determine q from measurements F(q):

F(q) = Fq† . (4)

Thus, F maps the contrast to a linear integral
operator F with a kernel given by measurements
depending on q and the incident fields. Here q
is locally ill-posed about the searched-for exact
contrast q†, so that the inversion has to be reg-
ularized for noisy measurements Fεmeas, i.e.

‖F(q†)− Fεmeas ‖ 6 ε.

By the aid of variational methods one derives
the Tikhonov functional

J εα(q) :=
1

t
‖F(q)− Fεmeas ‖t + αR(q), t > 1,

with some appropriate discrepancy-norm, a con-
vex functional R and regularization parameter
α > 0.
Now instead of considering q ∈ L∞(D) penalty
terms in Lp-norm for small p coincide quite bet-
ter with given a-priori information, stating the
contrast is supported only in a small region.

Therefore Lechleiter et al. [1] presented con-
vergence of such non-linear Tikhonov regular-
ization for pointwise near-field measurements of
scattered fields. We show that it is also possible
to extend the analysis to the far-field setting or
to a different kind of penalty terms, e.g. BV-
norms.
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3 Further generalizations

To prove convergence results for variational reg-
ularization methods one has to ensure that the
solution q† to (4) is unique. Since in [1] unique-
ness in dimension d = 3 was only shown for
q ∈ Lp with p > d, we show that the classical
uniqueness proof generalizes to p > d/2.

The techniques from [1] can partly be ex-
tended to scattering problems for penetrable an-
isotropic media, where the contrast Q of the
scatterer is matrix-valued, so that the Helmholtz
equation for the total field u = ui +us becomes

div(A∇u) + k2u = 0 in Rd, (5)

for a material parameter A = Id + Q. To this
end, we transfer several of the results from [2]
to the scattering problem (5).
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Higher-order expansion of misfit functional for defect identification in elastic solids
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Abstract. In this work, least-squares func-
tionals commonly used for defect identification
are expanded in powers of the small radius of a
trial inclusion, in the context of time-harmonic
elastodynamics, generalizing to higher orders
the concept of topological derivative. Such ex-
pansion, whose derivation and evaluation are
facilitated by using an adjoint state, provides
a basis for the quantitative estimation of flaws
whereby a region of interest may be exhaus-
tively probed at reasonable computational cost.

Keywords: Topological derivative, identifica-
tion, elastodynamics, asymptotic analysis

Problem statement. We consider a refer-
ence (i.e defect-free) 3D elastic solid Ω charac-
terized by Hooke’s tensor C and mass density ρ.
The time-harmonic background displacement u
then solves

〈u,w〉CΩ − ω2(u,w)ρΩ = F(w) ∀w ∈ W, (1)

where 〈., .〉CD and (., .)ρD denote the stiffness and
mass bilinear forms associated to a given do-
main D characterized by (C, ρ), W ⊂ H1(Ω) is
the function space incorporating the relevant es-
sential boundary conditions (if any), the linear
form F ∈ W ′ defines the applied time-harmonic
loading and ω is the angular frequency.

Assuming the presence of a defect inside Ω,
and that we can measure the resulting displace-
ment uex on a surface Γ, we define the least-
squares cost functional J(w), with the elastody-
namic displacement w associated to the given
excitation and a known trial defect, by:

J(w) =
1

2

∫
Γ
|w(x)− uex(x)|2 dSx (2)

We now consider a specific trial defect Ba =
z+aB (Fig 1), centered at z ∈Ω, of small size a
and reference shape B. It is a perfectly bonded
inclusion filled with a material characterized by
its Hooke tensor C? = C+∆C and mass density
ρ? = ρ + ∆ρ. We denote ua the displacement
in the perturbed domain, and va = ua − u the
displacement perturbation. J(ua) admits the

b

Ω : (C, ρ)

b

(C⋆, ρ⋆)

zBa(z)

Ba(z) = z + aB

a

Γ

Figure 1: Computational domain and inclusion.

exact expansion about u:

J(ua) = J(u) + J ′(u;va) + J ′′(u;va,va)

= J(u) + <
∫

Γ
(u−uex)·va +

1

2

∫
Γ
|va|2 (3)

The goal is now to expand J(ua) in powers of a.
Similar expansions have been studied in e.g. [2]
for rigid obstacles in 3D acoustic media and [5]
for holes in 2D elastic bodies.

Define the adjoint field p as the solution of

〈p,w〉CΩ − ω2(p,w)ρΩ = J ′(u;w) ∀w ∈W. (4)

We can then compute J ′(u;va) as

J ′(u;va) = −〈p,ua〉∆CBa
+ ω2(p,ua)

∆ρ
Ba

(5)

Expanding va in powers of a is now needed. As
we will see, J ′′(u;va,va) requires only the lead-
ing contribution of va|Γ whereas a higher-order
expansion of va|Ba is needed for evaluating (5).

Expansion of the solution perturbation.
Following e.g. [3], va solves the integro-differential
Lippmann-Schwinger equation:

La[va](x) = −〈u,G〉∆CBa
+ ω2(u,G)∆ρ

Ba
(6)

with La[v](x) := v(x) + 〈v,G〉∆CBa
−ω2(v,G)∆ρ

Ba

and G = G(·,x) is the elastodynamic Green’s
tensor for a unit point force applied at x and
satisfying homogeneous boundary conditions con-
sistent with problem (1) on ∂Ω. Substituting
the ansatz

va(x) = aV 1(x̄) + a2V 2(x̄) + 1
2a

3V 3(x̄)

+ 1
6a

4V 4(x̄) + δa(x), x∈Ba (7)
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(with x̄ := (x−z)/a ∈ B) into (6) and expanding
the resulting equation in powers of a (in partic-
ular using that G(ξ,x) = a−1G∞(ξ̄−x̄)+O(1),
with G∞ denoting the static full-space Kelvin
fundamental solution) yields a sequence of in-
tegral equations for the V j . These equations
correspond to elastostatic problems for the nor-
malized inclusion B embedded in an unbounded
reference medium, and are solved with the help
of Eshelby’s equivalent inclusion method [4].

The remainder δa in (7) solves an integro-
differential equation of the form La[δa] = γa.
The operator La : H1(Ba) → H1(Ba) is shown
to be invertible with bounded inverse, while γa
can be estimated as ‖γa‖H1(Ba) = O(a11/2).
Consequently, there exists a constant C > 0
independent of a such that

‖δa‖H1(Ba) ≤ Ca11/2. (8)

For x /∈ Ba, plugging (7) in the form va(x) ≈
aV 1(x̄) into (6) yields the outer expansion

va(x) = −a3
[
∇u(z) :A :∇G(z,x)

− ω2∆ρ|B|u(z)·G(z,x)
]

+ o(a3), (9)

A being the elastic moment tensor associated
to B, C and ∆C [1, 3].

Cost functional expansion. Substituting (7)
into (5) and (9) into (3), J(ua) is finally found
to have an expansion of the form:

J(ua) = J6(a, z) + o(a6) (10)

with J6(a, z) = J(u) + a3T3(z) + a4T4(z)

+ a5T5(z) + a6T6(z),

the o(a6) estimate resulting from (8) and (9).
The Tj(z) are found to be given in terms

of (i) the background field u and its deriva-
tives at z, (ii) the adjoint field p and its deriva-
tives at z, (iii) A and other elastic moment ten-
sors that involve the material parameters, the
shape B and the angular frequency ω, and (iv)
the complementary part of G, i.e. G −G∞ =
(G∞,ω−G∞)+GC , whereG∞,ω is the elastody-
namic full-space fundamental solution and GC

accounts for the boundedness of Ω. In particu-
lar, T3(z) is the well-known topological deriva-
tive:

T3(z) = −
[
∇u :A :∇p− ω2∆ρ|B|u·p

]
(z).

Moreover, T4(z) = 0 for any centrally-symmetric
shape B. The complementary part G∞,ω−G∞
(known analytically) is involved in T5(z) and

Figure 2: T3(z) and J6(aest, z) plotted in the
(XZ) plane around the obstacle (in white).

T6(z), while GC appears in T6(z) only. Since
the exact computation ofGC would require solv-
ing an elastodynamic problem on Ω for each
trial location z, we plan to use an approxima-
tion method to save computational time.

Closed-form formulae for the Tj can be ob-
tained when B is spherical (for which case we
provide explicit expressions) or ellipsoidal.

Identification. Following [2], estimates of the
location zest and size aest of the real defect can
then be sought as minimizers of J6(a, z), with
z spanning a predefined sampling grid. This
entails computing the Tj(z) over the sampling
grid and minimizing a 7→ J6(a, z) for each z, the
latter step being very fast and straightforward

A preliminary example is set in free space
(so that GC = 0) for a spherical scatterer of ra-
dius 0.1λS illuminated by a plane P-wave trav-
elling along the positive x-direction, with a dis-
crete array of displacement sensors lying behind
the scatterer. The above procedure yields the
size estimate aest ≈ 0.105λS ; moreover, the es-
timated location zest is found to be very close
to the true center of the scatterer. The contour
plot of J6(aest, z) (Fig 2) shows improved lo-
calisation (relative to the topological derivative
T3(z)) for this partial-aperture configuration.
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Abstract

The present work deals with the resolution of
the Poisson equation in a bounded domain made
of a thin and periodic layer of finite length placed
into an homogeneous medium. We provide a
high order asymptotic expansion which takes
into account the boundary layer effect occurring
in the vicinity of the periodic layer as well as
the corner singularities appearing in the neigh-
borhood of the extremities of the layer. Our
approach mixes the method of matched asymp-
totic expansions and the method of surface ho-
mogenization for periodic layers.

Keywords: asymptotic analysis, surface pe-
riodic homogenization, singular asymptotic ex-
pansions.

1 Introduction

We consider a bounded domain Ωδ (see Fig. 1)
that consists of the union of two rectangular
domains Ω± minus the set Ωδ

hole made of sim-
ilar small holes equi-spaced along the interface
Γ = ∂Ω+ ∩ ∂Ω−. The distance between two
consecutive holes and the diameter of the holes
are supposed to be of the same order of magni-
tude δ, which is supposed to be small. We are
interested in the solution uδ ∈ H1(Ωδ) of the
Poisson equation

−∆uδ = f in Ωδ, f ∈ L2(Ωδ), (1)

homogenous Neumann boundary conditions on
the small holes,

∂nu
δ = 0 on ∂Ωδ

hole, (2)

together with homogeneous Dirichlet boundary
conditions on the remaining part of the bound-
ary:

uδ = 0 on ∂Ωδ \ ∂Ωδ
hole. (3)

It is well known that Problem (1-2-3) is well
posed.
Our aim is to understand the behavior of uδ

as δ tends to 0. The layer of small holes gen-
erates two different kinds of singular behaviors.

Figure 1: The domain Ωδ.

First, there is an exponentially decaying bound-
ary layer effect in the vicinity of the periodic
layer (see e.g. [1], [2] and references therein).
In addition, as mentioned (and investigated) in
the case of an homogeneous thin layer in [3],
corner singularities appear in the neighborhood
of the vertices 0± = (±L, 0) (see Fig. 1) of the
two reentrant corners of angle 3π

2 , i.e., at the
extremities of the periodic layer.

2 Asymptotic expansion

In this part, for the sake of simplicity, we as-
sume that f is compactly supported in Ω+. Based
on the previous remark, we construct an asymp-
totic expansion of uδ using the method of matched
asymptotic expansion. In the present context,
following [3] and [4], we distinguish a far field
area, located far from the reentrant corners (light
grey on Fig. 1) from two near field areas located
in the vicinity of them (dark grey on Fig. 1).

2.1 Far field area

For |x1| < L, the solution uδ takes the form∑
(n,q)∈N2

δ
2
3
n+q

(
uδn,q(x)χ(

x2
δ

) + Πδ
n,q(x1,

x

δ
)
)
,

(4)
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where x = (x1, x2) ∈ R2. For |x1| > L, the
solution uδ takes the form∑

(n,q)∈N2

δ
2
3
n+quδn,q(x). (5)

The macroscopic terms uδn,q are defined in the
limit domain Ω+∪Ω−. They might jump across Γ.
The periodic correctors Πδ

n,q(x1, X1, X2) are de-
fined in the periodicity cell B (see Fig. 2 (left)).
They are 1-periodic with respect to X1 and ex-
ponentially decaying as |X2| tends to +∞. The
function χ(t) is a smooth cut-off function equal
to 1 for |t| > 2 and 0 for |t| < 1. Both macro-
scopic and boundary layer correctors might have
a polynomial dependance on ln δ.

The appearance of the terms δ
2
3
n in the asymp-

totic expansion is strongly linked to the exis-
tence of a set of functions sn = r

2
3
n sin(2n3 θ),

n ∈ Z \ {0}, satisfying ∆sn = 0 in the angular
sector of angle 3π

2 and vanishing on its boundary
(homogeneous Dirichlet boundary conditions).

2.2 Near field areas

In the vicinity of the two reentrant corners, we
construct an expansion of the form∑

(n,q)∈N2

δ
2
3
n+q U δn,q(x). (6)

The near field terms U δn,q are defined in the

normalized unbounded domain Ω̂ represented
in Figure 2 (right). Here again, the near field
terms might have a polynomial dependance on
ln δ. Near field terms satisfy Laplace problems
in Ω̂. These problems require a careful analysis
(cf. [5]).

Figure 2: The periodicity cell B (left) and the
normalized domain Ω̂ (right).

2.3 Matching procedure

As usual for the matched asymptotic method,
we assume that near field expansion and far
field expansion coincide in an intermediate zone,
which is called matching area. The matching
procedure plays a crucial role in the definition
of the terms of the far and near field expansions.
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Abstract

This paper is dedicated to the analysis of the
time-harmonic wave equation in a perforated
polygonal domain. We construct and justify an
asymptotic expansion that extends the results
obtained for the Poisson problem (presented in
another talk by the authors) to the Helmholtz
equation. We pay particular attention to the
resolution of near field problems and we prove
error estimates. In addition, we present some
numerical results.

Keywords: surface homogenization, matched
asymptotic expansions, corner singularities

1 Setting of the problem

In this paper, we are interested in the resolu-
tion of the Helmholtz equation in the polygo-
nal bounded domain Ωδ represented on Fig. 1,
which consists of the union of two rectangular
domains Ω± minus the set Ωδ

hole made of sim-
ilar small holes equi-spaced along the interface
Γ = ∂Ω+ ∩ ∂Ω−. The distance between two
consecutive holes and the diameter of the holes
are supposed to be of the same order of small
magnitude δ. We are interested in the solution
uδ ∈ H1(Ωδ) of the Helmholtz equation

−∆uδ − k2uδ = f in Ωδ, f ∈ L2(Ωδ), (1)

where the wavenumber k differs from a constant
value k0 on the domain (−L,L) × (−δ, δ) by
a function k̂(·/δ), which is 1-periodic with re-
spect to X1. We complete problem (1) with
homogenous Neumann boundary conditions on
the small holes

∂nu
δ = 0 on ∂Ωδ

hole, (2)

first order absorbing boundary conditions on
the left and right boundaries Γ− and Γ+, and
homogeneous Neumann boundary conditions on
the remaining part of the boundary:

∂nu
δ − ik0u

δ = 0 on Γ±,

∂nu
δ = 0 on ∂Ωδ \ {∂Ωδ

hole ∪ Γ±}.
(3)

Figure 1: The domain Ωδ.

The objective of this work is to construct
an asymptotic expansion of the solution uδ as
δ tends to 0. To do so, we use the method of
matched asymptotic expansion, which yields in
the present case to consider two distincts areas
where the asymptotics expansion are different.
Far from the two corners, we use an ’ansatz’
based on the method of periodic surface homo-
genization (see e.g [2] and references therein):
uδ is given by∑
(n,q)∈N2

δ
2n
3
+q
(
uδn,q(x)χ

(x2
δ

)
+ Πδ

n,q

(
x1,

x

δ

))
,

(4)
where χ is a cut-off function, Πn,q are periodic
with respect to X1 = x1

δ and exponentially de-
caying functions with respect to x2/δ. In the
vicinity of the two reentrant corners, we make
the local variable change X = (x− 0−)/δ (and,
similarly for the right corner), and we construct
an expansion of the form

uδ(x) =
∑

(n,q)∈N2

δ
2n
3
+qU δn,q(X), (5)

where the functions U δn,q are defined on the un-

bounded domain Ω̂− (see Fig. 2).

2 Embedded Laplace equations

The near field functions U δn,q satisfy the follow-
ing collection of Laplace equations posed in the
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Figure 2: The normalized domain Ω̂−.

unbounded domain Ω̂− (similar for Ω̂+):
−∆Uδn,q = k̂2U δn,q−2 in Ω̂−,

∂nU
δ
n,q = 0 on ∂Ω̂−,

U δn,0 ∼ R
2n
3 cos

(
2n

3

(
θ +

π

2

))
for largeR,

(6)

where (R, θ) are polar coordinates centered at
0−. If k̂ = k0 and there were no holes, the terms
Un,q can be explicitly determined. Indeed, the
first terms are given by

Uδn,0 = R
2n
3 cos

(
2n

3

(
θ +

π

2

))
, Uδn,1 = 0,

Uδn,2 =
3k2

0

4(2n+ 3)
R

2n
3 +2 cos

(
2n

3

(
θ +

π

2

))
,

(7)

and hence the sum

∞∑
q=0

δqUδn,q = Γ

(
5

3

)
2

2
3 cos

(
2n

3

(
θ +

π

2

))
J 2n

3
(δk0R)

satisfies (∆ + δ2k20)U = 0. The natural spaces
to describe the behaviour of the functions U δn,q
are the Kondratiev spaces V`

β(Ω−) (see e.g [1]),
for which the norm

‖v‖2V`β(Ω−) =
∑̀
m=0

∥∥(1 +R)β−`+m∇mXv
∥∥2

L2(Ω)

is finite.
If now k̂ 6= k0 and if there were still no holes,

then the function U δn,2 in (7) is now given by

U δn,2 =
3k2

0

4(2n+ 3)
R

2n
3 +2 cos

(
2n

3

(
θ +

π

2

))
+X

2n
3 +2

1 Ψ(X1, X2) +O(R
2n
3 +1)

where Ψ(X1, X2) is a 1-periodic function in X1

and exponentially decaying in X2. If k̂ is con-
stant in the layer, then Ψ does not depend onX1

and Un,2 can still be described using the Kon-
dratiev spaces as done in [1] for the case of a
thin layer surrounding a polygonal domain.

However, if k̂ depends on X1, then Ψ de-
pends on X1 as well. Then, when differentiating
U δn,2, the exponents in R decrease by 1 for each
derivative far away from the layer, where inside

and close to the layer the exponents remain the
same. Then, the description of Un,2 and the
solution theory of (6) requires the introduction

on the weighted spaces V`
β,γ(Ω̂−) (see [3]) for

which the norm

‖v‖2V`
β,γ(Ω̂−) =

∑̀
m=0

∥∥(1 +R)β−`+mργ−`+m∇mXv
∥∥2

L2(Ω̂−)

is finite, and the weight ρ is given by

ρ(R, θ) =
√

(1 +R2)−1 + θ2.

3 Error estimates

Let N be a real number such that 3N ∈ N.
The existence of the terms of the expansion be-
ing proved, we can build a global approximation
uδ,N of the solution by taking a finite number
of terms in (4, 5) corresponding to the indices
(n, k) such that 2n

3 + q 6 N . We prove the
following result:

Theorem 1 For δ sufficiently small, the error
between uδ and uδ,N in H1-norm is bounded by
δN+ 1

3 .

References

[1] G. Caloz, M. Costabel, M. Dauge and
G. Vial, Asymptotic expansion of the solu-
tion of an interface problem in a polygonal
domain with thin layer, Asymptot. Anal.,
50 (2006), pp. 121–173.

[2] X. Claeys and B. Delourme, High order
asymptotics for wave propagation across
thin periodic interfaces, Asymptot. Anal.,
83 (2013), pp. 35–82.

[3] S.A. Nazarov, The Neumann problem
in angular domains with periodic and
parabolic perturbations of the boundary,
Tr. Mosk. Mat. Obs., 69 (2008), pp. 182–
241.



400 Contributed Session: Thursday 15:30–17:00 Room 0.014

Study of spoof plasmons in an array of sound hard to sound soft inclusions

Jean-Francois Mercier1,∗, Agnès Maurel2

1POEMS, CNRS-INRIA-ENSTA, Palaiseau, France
2Institut Langevin, CNRS, ESPCI ParisTech, Paris, France

∗Email: jean-francois.mercier@ensta.fr

Abstract

It is nowadays possible to design materials with
tunable acoustic properties. While classical plas-
mon have been proposed for periodic arrays of
sound hard inclusions, we show that penetra-
ble inclusions allows to produce plasmon with
wavelengths tuned by the relative densities be-
tween the inclusion material and the surround-
ing medium. Plasmons are solutions of an eigen-
value problem in which the plasmons frequen-
cies are the eigenvalues. Thanks to the Min-
Max principle, general estimates on the eigen-
values are found. Moreover it is demonstrated
that sound soft materials are able to increase
the efficiency in the generation of sub-wavelength
plasmons, with much lower values of the wave-
length than with sound hard materials.

Keywords: plasmon, homogenization, Min-Max

1 Geometry and equation

We consider the acoustic propagation through
an array of inclusions of width `, of filling frac-
tion ϕ, of constant density ρ1 and sound celer-
ity c1 (B1 = ρ1c

2
1) (Fig. 1 (a)). The outside

(a) (b)

Figure 1: (a) Geometry of the array (b) equiv-
alent birefringent layer.

medium is the air indexed by 0. At low frequen-
cies (kd� 1 where k = ω/c0 is the wavenumber
in the air), the homogenization theory enables
us to approximate the layered medium by an
homogeneous but anisotropic medium (Fig. 1
(b)). In time harmonic regime e−iωt, it leads to

the wave equation for the pressure P (x, y):

∂

∂x

(
ã
∂P

∂x

)
+ b̃

∂2P

∂y2
+ k2c̃P = 0.

ã(x), b̃(x) and c̃(x) are equal to 1 outside [0, `]
(the air is the reference medium) and are de-
fined for x ∈ [0, `] by ã = a = (ϕα/q) + 1 − ϕ,
b̃ = b = 1/[(ϕq/α) + 1 − ϕ] and c̃ = c =
(ϕ/αq) + 1 − ϕ. q = αρ1/ρ0 is the ratio of
impedances with α = c1/c0 the ratio of celeri-
ties. In the following, our aim is to determine
the spoof plasmons (or guided waves) propagat-
ing at low frequencies in this anisotropic homog-
enized medium for a fixed value of α and for q
going from infinity (hard or heavy material) to
zero (soft or light material).

2 The eigenvalue problem

We look for a solution of the form P (x, y) =
p(x)eiβy with p(x) ∈ L2(R). For a fixed value
of β, we introduce the unbounded operator A

A : p → 1

c̃

[
− d

dx

(
ã
dp

dx

)
+ β2b̃p

]
,

of L2(R) with domain

D(A) =

{
p ∈ L2(R);

d

dx

(
ã
dp

dx

)
∈ L2(R)

}
.

We are lead to solve the eigenvalue problem:
For β ∈ R+, find (p, λ) ∈ D(A) × R+ such

that Ap = λp. To each eigenvalue λn corre-
sponds the plasmon frequency kn =

√
λn.

3 General results

The spectrum ofA satisfies σ(A) ⊂ [(β/n)2 ,∞[,
where n2 = c/b is the slab index. The essential
spectrum is σess(A) = [β2,∞[. We take α <
1 (slow inclusions) which ensures that n > 1
for all q and ϕ ∈ [0, 1] values. Therefore, if
the discrete spectrum σd exists, it is located in
[(β/n)2, β2[.

Let us characterize the discrete spectrum of
A. We note γm, m ≥ 1, the Min-Max values of
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A [1]. The Min-Max principle indicates that if
γm < β2, then γm is an eigenvalue, noted λm,
m = 1, · · · ,N with N the number of eigenval-
ues. Using the usual Dirichlet and Neumann
comparison principles [1], we get the eigenval-
ues control: min[λNm, β

2] ≤ γm ≤ λDm, where

λDm =
a

c

(mπ
`

)2
+

(
β

n

)2

and λNm = λDm−1.

λDm and λNm are simply the eigenvalues of A re-
stricted to ]0, `[ with respectively Dirichlet or
Neumann boundary conditions at x = 0, `.

4 Some limit cases

• If q → ∞ (sound hard inclusions): then n →
∞ and a/c ∼ 1. Thus λDm = (mπ/`)2 and N ∼
β`/π. It is possible to prove that λ1 ∼ λD1 when
β → ∞ [1]. This means that a plasmon with a
small wavelength (large β) for a small frequency
k is not possible (k ∼ π/` for β →∞).

• If q → 0 (sound soft inclusions): then n→∞
and a/c ∼ α2 which leads to λDm = (αmπ/`)2

and to the estimation N ∼ β`/απ.

Figure 2: For q = 10−1 and for m = 1, 2, 3,
λm(β2) in red, λDm in dashed lines, k2 = β2 and
k2 = β2/n2 in solid lines.

Eigenvalues and upper and lower bounds of the
eigenvalues are plotted in Fig. 2 for the small
value q = 10−1. λ1(β

2) is found close to the
slab light line k2 = β2/n2 (bottom line).

5 Behavior of λ1 when q → 0

Here we prove that for any β > 0, the first eigen-
value tends to zero when the inclusions become
soft. This is achieved by using the Min-Max
principle: γ1 ≤ R(p) for any p ∈ H1(R) where

R(p) =

∫
R
a

∣∣∣∣dpdx
∣∣∣∣2 + β2b|p|2/

∫
R
c|p|2,

is the Rayleigh quotient. We consider the test
field p0(x) = eβx for x ≤ 0, p0(x) = 1 for 0 ≤
x ≤ `, p0(x) = e−β(x−`) for ` ≤ x. A simple
calculation leads for small values of q to

λN1 =
αqβ2

ϕ(1− ϕ)
≤ λ1

≤ αq

ϕ(1− ϕ)

[
β2 +

2β(1− ϕ)

`

]
.

Therefore, λ1(q) tends to zero for a soft ma-
terial. This result is confirmed numerically in
Fig. 3 (λ1 is the lowest red curve).

Figure 3: For β = 7, m = 1, 2, λm(q) in red,
λDm(q) in dashed lines, λN1 (q) = β2/n(q)2 in
solid line.

This leads to an interesting consequence for the
lowest plasmon frequency given by k2 = λ1(β, q).
For practical applications in imaging, it is im-
portant to have k small and β large, which cor-
responds to produce a small wavelength plas-
mon λpl (of the size of the defect to image) with
a large external wavelength λ. This is possible:
for ϕ = 0.7, we have found λ/λpl = 2.6 → 18
when q = 104 → 10−3. These analytical results
have been compared to direct calculations to
check the validity of the homogenized approach.
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Numerical Approximation of Solitary waves in Some Internal Wave Systems
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Abstract

We consider the Benjamin-Ono and the Inter-
mediate Long Wave systems of [1] that model
two-way propagation of long internal waves of
small amplitude along the interface of two fluid
layers under the effects of gravity. After re-
viewing some theoretical properties of the mod-
els at hand, we present numerical evidence of
the existence of solitary waves. Some proper-
ties of the waves, suggested by the numerical
experiments, are discussed including the speed-
amplitude relation and their asymptotic decay
rate. We also present some numerical studies
concerning the dynamics of the waves which in-
volve experiments about their interactions, sta-
bility properties along with comparisons with
their unidirectional counterparts.

Keywords: Benjamin-Ono system, Intermedi-
ate Long wave system, Internal solitary waves

1 Introduction

The idealized model in [1] consists of two invis-
cid, homogeneous fluids of depths dj , j = 1, 2
and densities ρj , j = 1, 2 with ρ2 > ρ1. The up-
per layer is bounded above by a horizontal rigid
lid while the lower layer is bounded below by
an impermeable, horizontal, flat bottom. The
deviation of the interface, denoted by ζ, is as-
sumed to be a graph over the bottom and sur-
face tension effects are not considered.

The approach in [1] is based on the refor-
mulation of the Euler system with two nonlocal
operators. Then, different asymptotic models,
consistent with the Euler system, are derived.
The systems considered here correspond to the
assumptions for which the interfacial wave is of
small amplitude with respect to the upper fluid
layer, which is shallow. In the ILW regime, the
amplitude of the interface is also small com-
pared to the lower layer, while in the BO regime
the lower layer is of infinite depth (i.e. d2 =
∞). We will consider the corresponding one-
dimensional versions of the systems, which have

the form[
1 +
√
µ
α

γ
H
]
ζt +

1

γ
((1− εζ)u)x

−(1− α)

√
µ

γ2
Hux = 0,

ut + (1− γ)ζx −
ε

2γ
(u2)x = 0,

where u is the horizontal velocity, a is a typical
wave amplitude and λ is a typical wavelength,
ε = a/d1 and µ = d21/λ

2 denote, respectively,
the amplitude and long-wavelength parameters
for the upper fluid, γ = ρ1/ρ2 < 1 is the den-
sity ratio and α is a positive parameter. The
Benjamin-Ono regime assumes µ ∼ ε2 � 1.
Finally, H is a nonlocal operator with Fourier
symbol Ĥf(k) = |k| coth(

√
µ2|k|)f̂(k), k ∈ R in

the ILW case and Ĥf(k) = |k|f̂(k), k ∈ R in
the BO case.

2 Main Goals

Our purpose is to study, by numerical means,
the existence and dynamics of solitary wave so-
lutions for these systems. The existence of soli-
tary wave profiles is analyzed by different com-
putational techniques and some properties of
the waves are suggested. From these computed
profiles, a numerical study of the dynamics of
the solitary waves is carried out. This involves
comparisons with related unidirectional models,
interactions and stability under small perturba-
tions.

3 References
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Application of the Entropy Viscosity Method to Hermite Methods for Shock Problems
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Abstract

Hermite methods are polynomial based meth-
ods of arbitrary order whose degrees of freedom
are the solution and its m first derivatives at
each vertex. The convergence and stability the-
ory of the methods were developed in [1] for
smooth solutions to hyperbolic partial differen-
tial equations. The methods work well for linear
advection of discontinuities, as decribed in [2],
but does not have sufficient built-in dissipation
to handle solutions with shocks. Moreover, they
are not in flux conservative form.
In this paper, we show how the entropy viscos-
ity method [3], which constructs a local arti-
ficial nonlinear viscosity based on the entropy
residual, can be adopted to the Hermite frame-
work. We also extend the methods to be con-
servative. We discuss implementational details
and present numerical experiments illustrating
the effectiveness and accuracy of the resulting
methods.

Keywords: Shock, Hermite method, Entropy
Viscosity, artificial viscosity, high order method

1 Introduction

In computational fluid dynamics, we typically
have to compute the solution to conservation
laws

∂tu(x, t) +∇ · f(u(x, t)) = 0,x ∈ D, t ≥ 0, (1)

where D denotes the spatial domain. We are
interested in solutions to Eq. (1) that involve
shocks and also small amplitude smooth waves.
While high order methods work well for the lat-
ter, they generally do not have enough natural
dissipation to break the shocks. To accommo-
date the lack of viscosity, we add an artificial
viscosity term on the right hand side of Eq. (1),
so the PDE becomes

∂tu(x, t) +∇ · f(u(x, t)) = ν∆u(x, t), (2)

where the viscosity coefficient, ν, is found using
the entropy viscosity method as outlined in [3].
In this paper, we use Hermite methods as a

building block to solve the PDE, and then inte-
grate the entropy viscosity method into Hermite
methods for shock capturing capability.

2 Description of Methods

We will describe Hermite methods only in 1-
dimension as the extension to higher dimension
is straightforward. We then introduce a number
of significant concepts in the entropy viscosity
method.

2.1 Hermite Methods

Hermite methods are polynomial based meth-
ods of arbitrary degree whose Degrees of Free-
dom (DoF) are the solution and itsm first deriva-
tives at each vertex. For a domainD = [xL, xR],
we generate a mesh with a primal and a dual
grid. Let Gp be the primal grid and Gd be the
dual grid defined by

Gp = {xj} = xL + jhx, j = 0, ..., N, (3)

Gd = {xj+1/2} = xL+

(
j +

1

2

)
hx, j = 0, ..., N−1,

(4)
where hx = xR−xL

N is the distance between two
adjacent nodes and N is the number of cells.
Time is discretized by tn = t0 + n∆t, where t0
denotes the initial time.
The structure of the methods primarily consists
of two steps:

• Interpolation, compute a degree (2m +
1) Hermite interpolant at each cell, us-
ing (m+ 1) DoF from two adjacent ver-
tices. The resulting polynomial is piece-
wise Cm, and can be expressed locally as
a (truncated) Taylor series approximation
centered at the midpoint of the cell,

u(x, tn) ≈ pj+1/2(x, tn)

=
2m+1∑
k=0

ck(tn)
(
x− xj+1/2

)k
,

(5)

x ∈ [xj , xj+1], j = 0, ..., N − 1.
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• Evolution, evolve the coefficients ck(t),
k = 0, ..., 2m+ 1 which represents the dis-
crete solution and its derivatives, accord-
ing to the PDE, using an ODE solver.

The original Hermite methods, as in [1], are
not flux conservative. Here, we discuss a conser-
vative way of computing flux, which guarantees
that the numerical solution does not converge
to the wrong solutions.

2.2 The Entropy Viscosity Method

The entropy viscosity method introduces a non-
linear dissipation function based on the residual
of the entropy inequality associated with the
PDE. This entropy residual is large near shocks
and practically zero everywhere else so it serves
as a great shock detector. Now consider again
Eq. (2) with ν = S[min(νE , νmax)], where νE is
proportional to the entropy residual and νmax
is a linear viscosity aimed at limiting viscosity
near shocks, and S is a smoothing operator.
We discuss different scalings α for νE ∝ hαx and
its impact on convergence.

3 Experiment

As an illustration of the results1 obtained with
the Hermite-EV method, we solve the Euler equa-
tions in one dimension with the initial data

(ρ, u, p)T =

{
(1, 0, 1)T x ∈ [−5, 0),

(0.125, 0, 0.1)T x ∈ [0, 5],

corresponding to Sod’s problem.
We obtained a numerical solution at time

T = 2, as shown in Fig. 1. The wave structures
(rarefaction, contact discontinuity, and shock)
are preserved by the Hermite-Entropy Viscos-
ity method. Particularly, the shock and contact
discontinuity have been replaced by sharp gra-
dient regions. Moreover, oscillations near the
jump have been eliminated.
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Figure 1: Solution to Sod’s shock tube problem
with nx = 100, m = 5. The numerical solution
is shown in circles while the exact solution is
plotted in solid lines.
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Uncertainty Quantification for High Frequency Waves
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Abstract

We present a stochastic spectral asymptotic method
for the uncertainty quantification of high fre-
quency waves subject to stochastic uncertainty.
The method consists of Gaussian beam super-
position in the deterministic space and colloca-
tion on sparse grids in the stochastic space. In
the presence of stochastic regularity, the method
exhibits a faster rate of convergence compared
to the current Monte Carlo techniques.

Keywords: uncertainty quantification, high fre-
quency waves, Gaussian beams

1 Introduction

We consider the scalar wave equation with highly
oscillatory initial conditions where the wave speed
and/or the initial data are stochastic:

uεtt(t,x,y) = c(x,y)2 ∆uε(t,x,y), (1a)

(t,x,y) ∈ R+ × Rn × Γ,

uε(0,x,y) = A0(x,y)eiΦ(x,y)/ε, (1b)

uεt (0,x,y) =
1

ε
B0(x,y)eiΦ(x,y)/ε. (1c)

Here, ε � 1 is the wavelength, c is the wave
speed, Φ is the initial phase, and A0, B0 are
amplitude parameters. The uncertainty is de-
scribed by a random vector y ∈ Γ ⊂ RN , con-
sisting of N independent random variables. The
functions A0, B0 and Φ are real-valued, com-
pactly supported and smooth, with |∇Φ| bounded
away from zero, ∀y ∈ Γ.

The goal is to predict the statistics of some
quantities of interest (QoI), such as

Qε(y) =

∫
Rn

|uε(T,x,y)|2 ψ(x) dx, ψ ∈ Cc(Rn).

(2)
The problem (1) is a stochastic multiscale

problem with uncertain and highly oscillatory
solutions. Two major difficulties have to be ad-
dressed. First, for high frequencies the com-
putational cost to solve (1) grows rapidly, and
when ε→ 0 the numerical solution becomes too

expensive [5]. Second, for computing the statis-
tics of (2), Monte Carlo and classical quadra-
ture methods for large N , suffer from slow rate
of convergence in the number of collocation points.
We remedy this by employing Gaussian beam
summation for propagating high frequency waves,
and sparse stochastic collocation for approxi-
mating the statistics of (2). The proposed method
requires a systematic coupling of the two com-
ponents.

2 Gaussian beam approximation

The Gaussian beam method describes high fre-
quency waves in a way closely related to geomet-
rical optics and ray tracing, where the solution
of (1) is assumed to be of the form

uε(t,x,y) = a(t,x,y)eiφ(t,x,y)/ε. (3)

In the limit ε → 0, φ and a satisfy the eikonal
and transport equations, respectively. The geo-
metrical optics rays are bicharacteristics of the
eikonal equation and satisfy the ODEs

dq

dt
= c(q,y)

p

|p|
,

dp

dt
= −∇c(q,y) |p| .

The main drawback of geometrical optics is that
the approximation breaks down at caustics.

The Gaussian beam method is another type
of high frequency approximation [4]. Unlike ge-
ometrical optics, it is locally defined everywhere
and performs well even at caustics. A Gaussian
beam vε has the same form as (3):

vε(t,x,y) = A(t,x,y)eiΦ(t,x,y)/ε,

but the phase Φ and amplitude A are centered
around the geometrical optics ray q(t,y):

A(t,x,y) = a(t,x− q(t,y),y),

Φ(t,x,y) = φ(t,x− q(t,y),y).

For the first order Gaussian beams, a and φ read

a(t,x,y) = a0(t,y),

φ(t,x,y) = φ0(t,y) + x · p(t,y) +
1

2
x ·M(t,y)x.
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Like q and p, the coefficients φ0,M, a0 also obey
ODEs; see [4]. In this setting, Im(Φ) > 0 away
from the ray, and therefore the shape of vε is
Gaussian. To obtain more general solutions, we
use superpositions of Gaussian beams [1, 2],

uε(t,x,y) =
1

(2πε)n/2

∫
K0

vε(t,x,y; z)dz,

where vε(t,x,y; z) is a beam starting at x = z
and K0 ⊂ Rn is the compact support of the ini-
tial data. The superposition integral is numeri-
cally approximated by quadrature. The compu-
tational cost of Gaussian beam method is much
less than that of a direct solver.

3 Stochastic collocation

Current non-intrusive techniques for the uncer-
tainty propagation of stochastic high frequency
waves are based on Monte Carlo sampling, which
feature a slow rate of convergence. We show
that under certain conditions, sparse stochastic
collocation can be employed to speed up con-
vergence.

In stochastic collocation, the semi-discrete
asymptotic solution is collocated on a sparse
grid {y(k)}Mk=1 ∈ Γ, see [3]. From the solu-
tions at the collocation points, one can build
a quadrature formula to compute e.g. the mean
of (2):

E[Qε(y)] =

∫
Γ
Qε(y)dy ≈

M∑
k=1

αkQ
ε(y(k)), (5)

where αk are the weights associated with the
interpolation points used. The number of col-
location points M grows slowly with respect to
the dimension N . The computational cost for
sparse grids is therefore lower than for classical
quadrature methods on full tensor grids.

In order to obtain fast convergence rates at
high frequencies, a high stochastic regularity of
the QoI is required, independent of the wave
length. In other words, we need to have bounds
of the derivatives

∣∣dmy Qε(y)
∣∣, which are uniform

in ε, for all multi-indices m ∈ NN and |m| ≤
m0, with m0 large. This property has been ver-
ified numerically, under proper assumptions on
the data. Moreover, for simplified model prob-
lems, we can derive theoretical bounds.

4 Numerical example

We consider two wave packets, which are ini-
tially separated but overlap at time T > 0.

The initial position of one packet and the wave
speed are stochastic, described by N = 3 uni-
form random variables. Figure 1 shows the er-
ror in the expected value of (2), computed by
the proposed method, versus the number of col-
location points M , for four different ε. While
Monte Carlo shows a slow convergence, the con-
vergence of the proposed method is exponential,
uniformly in ε.
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Figure 1: Error in the approximation (5) versus
the number of collocation points.
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Abstract

We estimate the reflection coefficient generated
by a fractional singularity of order α > 0 in
the acoustic wave velocity across a planar in-
terface. The leading order term of this reflec-
tion coefficient for a velocity model of the form
c−2(z) = c−20 (1+λ(z+)α) is given by cαλ( ωc0 )−α

(cos θ0)
−α−2 where θ0 is the angle of incidence.

Keywords: fractional reflector, wave reflection

1 Introduction and main result

Let c(z) as in the abstract. The propagation
of acoustic waves in a layered medium with z-
dependent wave speed c(z), at fixed frequency
ω, is governed by the ordinary differential equa-
tion

d2u

dz2
+ ω2(c−2(z)− η2c−20 )u = 0, (1)

where η = sin θ0 is the sine of the wave’s angle of
incidence in z < 0. The general solution in z <

0 is u(z) = Ae−iωc
−1
0 (1−η2)

1
2 z +B eiωc

−1
0 (1−η2)

1
2 z.

From c−2 ∈ C0(R), one deduces u ∈ C2(R) and
u(0+) = u(0−) = A + B, u′(0+) = u′(0−) =

iωc−10 (1 − η2)
1
2 (B − A), hence the solution in

z > 0 is entirely determined from A and B.

In the next section, we will see that there is
a one-parameter family, called U>, of solutions
that obey an outgoing condition at z = +∞.

For any such solution we view Ae−iωc
−1
0 (1−η2)

1
2 z

as the incident wave (incoming from z = −∞),

B eiωc
−1
0 (1−η2)

1
2 z as the reflected wave (outgo-

ing to z = −∞), and the corresponding u(z)
for z > 0 as the transmitted wave (outgoing
to z = +∞). The reflection coefficient is then
(uniquely) defined as R = B/A for any such
nonzero solution.

When η2 < 1 (nongrazing waves), we further
change variables to nondimensionalize the ODE

as
d2u

dx2
+ (1 + θ(x+)α)u = 0, (2)

where
θ = λω−αcα0 (1− η2)−

α+2
2 .

The reflection coefficient is unchanged by this
operation. We respectively define the WKB
right-going and left-going solutions as v>(x) =
b(x)e−iφ(x) and v<(x) = b(x)eiφ(x), where φ′(x) =

(1+θxα)
1
2 , φ(0) = 0, and b2(x)φ′(x) = 1. These

WKB solutions solve the modified equation

d2v

dx2
+ (1 + θxα)v = M(x)v, x > 0,

where M(x) = b(x)b′′(x). For α > 1, M ∈
L1([0,+∞[) andM∞ :=

∫ +∞
0 |M(x)|dx = O(θ

1
α ).

Our main result is as follows.

Theorem 1 Under the assumption M∞ < 2,
the reflection coefficient R obeys, when θ → 0
(or equivalently when M∞ → 0)

R− θcα = o(θ),

where cα is an explicit constant in terms of α.

2 Outgoing solutions

Outgoing and incoming solutions are defined
from a limiting absorbtion principle. Consider

d2u

dx2
+ (1 + iσ)2(1 + θxα)u = 0, x > 0. (3)

One defines the limiting absorption WKB solu-
tions as v>σ (x) = b(x)e−i(1+iσ)φ(x) and v<σ (x) =
b(x)ei(1+iσ)φ(x)

Definition 2 A nonzero solution u of (2) is
said to be

• outgoing to +∞ (∈ U>), if there exists a
sequence of solutions u(x;σ) of (3) with
σ < 0 such that1

limσ→0− u(x;σ) = u(x), limx→+∞ u(x;σ) =

0.

1The σ → 0 limits are all understood to converge
uniformly over compact sets of x ∈ R.
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• incoming from +∞ (∈ U<), if there exists
a sequence of solutions u(x;σ) of (3) with
σ > 0 such that
limσ→0+ u(x;σ) = u(x), limx→+∞ u(x;σ) =

0.

Theorem 3 Any solution of (2) can be written
uniquely as the sum of an element of U< and of
U>, each being of dimension 1.

A first step of the proof relies on Theorem
8.1 of Chapter 3 of Coddington-Levinson and
the change of variable y = φ(x). Equation (3)
is equivalent, with W (y) = (U(y), U ′(y))T , and
U(y) = u

b (x(y)), to

W ′ =

(
0 1

(σ − i)2 + ε(y) 0

)
W,

with ε(y) an L1 function linked to M and y′(x).
The two eigenvalues of the above matrix tend

to ±(σ−i) as y →∞. Since σ 6= 0, one deduces
that there exists a unique W σ

±(y) solving the
above equation and such that W σ

±(y)e±(σ−i)y →
(1,±(σ − i))T . Undo the transformation from
u to W to obtain u>σ (x) in the minus case, and
u<σ (x) in the plus case. Any solution of (3) is
decomposed uniquely as a linear combination
of u>σ and u<σ . In the case σ < 0, the limit as
σ → 0 of u>σ (x) is an element u> of U>. In the
case σ > 0, the limit as σ → 0 of u<σ (x) is an
element u< of U<.

3 Expression for the outgoing solution

Let us set σ < 0 and further characterize u>σ (x).
Using Duhamel’s principle, i.e.,

u>σ (x) = Aσ(x)v>σ (x) +Bσ(x)v<σ (x),

one finds an integral equation for S>σ (x) such
that u>σ (x) = S>σ (x)v<σ (x). This is not an error,
one expresses the outgoing solution in terms of
the incoming WKB solution. Calculations show
that

(I −K)S>σ (x) = Aσ(0)e−2i(1+iσ)φ(x)

where, for f ∈ L∞([0,+∞[),

K(f)(x) =
1

2i(1 + iσ)

∫ +∞

0
R(x, y)M(y)f(y)dy,

R(x, y) = e−2i(1+iσ)(φ(x)−φ(y) for y ≥ x, and
R(x, y) = 1 for y ≤ x. Under the assump-
tion M∞ < 2, the Volterra series of general

term Kn(e−2i(1+iσ)φ(x)) converges uniformly in
x ∈ R+, for all σ < 0 towards a quantity S>σ
(the one associated with Aσ(0) = 1). Its limit
is not 0 as x → ∞, as we saw in the previous
section when dealing with W σ

−(x).

4 Reflection coefficient

Consider a solution u of the equation on R that
belongs to U>. Since the coefficients of the
equation are continuous on R, and u(x) = e−ix+
Reix, x < 0, one obtains u(x) = A(x)v>(x) +
B(x)v<(x), with A(0) = 1 and B(0) = R. As
u ∈ U>, there exists u(x;σ) such that u(x;σ)
goes to 0 when x → +∞ and u(x, σ) → u(x)
when σ → 0−. One can prove that u′(x;σ) →
u′(x), and Aσ, Bσ converge to a limit when σ →
0−. Finally,

Bσ(0)+
1

2i(1 + iσ)
Aσ(0)

∫ +∞

0
M(y)S>σ (y)dy = 0,

which allows to pass to the limit. One thus
deduces that

R = − 1

2i

∫ +∞

0
M(y)S>0 (y)dy.

To obtain Theorem 1, we show successively that∫ +∞
0

M(y)[S0
+(y)−(Id+K+...+K [α]−1)(e−2iφ(y))]dy =

o(θ),∫ +∞
0 M(y)e−2iφ(y)dy = cαθ + o(θ),∫ +∞
0 M(y)(K+ ...+K [α]−1)(e−2iφ(y))dy = o(θ).

This completes the proof of Theorem 1.
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Abstract

Wave diffraction by sharp edges has been re-
duced to the calculus of special functions such
as Whittaker function and Kobayashi’s gener-
alized gamma function, which are essentially
equivalent to the confluent hypergeometric func-
tion 1F1. In this paper, we examine the expan-
sions of the generalized gamma function occur-
ring in diffraction theory. By deriving an ex-
act and closed-form formula of the generalized
gamma function, we show that the generalized
gamma function consists of polynomial, expo-
nential function and incomplete gamma func-
tion. By comparing the present formula with
the existing 1F1 formula, we discuss the com-
putational availability of the formulas for the
practical applications to acoustics and electro-
magnetism. Finally, we emphasize the role of
the incomplete gamma function in mathemtical
theory of wave diffraction.

Keywords: confluent hypergeometric function,
wave diffraction, singular integral equation

1 Introduction

After the diffraction by a semi-infinite strip hav-
ing a single edge was approximately solved by
Poincaré [1], Sommerfeld [2] obtained an exact
solution expressed by Fresnel integral [3] which
is an important special function in mathemat-
ical theory of diffraction. As studied in recent
articles [4, 5], the Fresnel integral also played
an important role in finite diffraction as well
as in semi-infinite diffraction. The scattering
of wave impinging on sharp edges has been re-
duced to the calculus of special functions such
as Whittaker function [7] and Kobayashi’s gen-
eralized gamma function [8], which are substan-
tially equivalent to the confluent hypergeomet-
ric function [9]. In this paper, the author revis-
its the generalized gamma function for a specific
argument occurring in finite diffraction theory.

2 An exact and closed-form formula of
generalized gamma function

The generalized gamma function in Eq.(1) was
formally introduced in 1991 by Kobayashi who
emphasized the role of this special function in
mathematical theory of diffraction.

Γm(u, v) =

∫ ∞
0

tu−1e−t

(t+ v)m
dt. (1)

As shown in the previous paper [5], the argu-
ment u have a specific form of u=non-negative
integer+1/2 in the solution procedure by using
Taylor series expansion of the unknown func-
tion in singular integral equation [4]. Now, we
introduce an exact and closed-form formula of
Eq.(1) for arbitrary interger m and u=n+1/2
where n is a non-negative integer [6].

Theorem 1 For arbitrary integers n ≥ m ≥ 1,
an exact and closed-form formula of the gener-
alized gamma function is derived by Eq.(2). For
m > n, the first summation symbol in Eq.(2) is
set to be zero. For m=1,

∑0
i=1( ) is set to be

zero.

Γm(n+ 1/2, v) =

n−m∑
k=0

(−1)n+m−k
Γ(n− k)Γ(k + 1/2)

Γ(m)Γ(n−m− k + 1)
vn−m−k

+

m−1∑
j=0

(−1)n+m−1πΓ
(
n+ 1

2

)
Γ(m− j)Γ(j + 1)Γ

(
n− j + 1

2

)
(
vn−j−1/2

Γ
(
j + 1

2

)evΓ(j +
1

2
, v

)
−
m−1∑
i=1

vn−i

Γ
(
j − i+ 3

2

))
(2)

where

Γ(a, x) =

∫ ∞
x

ta−1e−tdt

which is an upper incomplete gamma function.

3 Discussion

3.1 Comparison of Three Formulas

Now, we have at least three different formulas of
the generalized gamma function. The first one
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is the Kobayashi’s asymptotic formula which is
adequate to large values of argument v.

Γ(u, v) ∼
∞∑
j=0

(−m, j)Γ(u+ j)

vm+1
(3)

where

(m, j) =
m(m− 1)× · · ·(m− j + 1)

j!

The second one is Srivastava’s formula expressed
by the confluent hypergeometric series 1F1.

Γm(u, v) =Γ(u)
[Γ(u−m)

Γ(u)
1F1(m, 1− u+m; v)

+ vu−m
Γ(m− u)

Γ(m)
1F1(u, u−m+ 1; v)

]
(4)

where

1F1(a, c; z) =

∞∑
n=0

(a)n
(c)n

zn

n!

and

(a)n = a(a+ 1)(a+ 2)...(a+ n− 1).

And, the third one is the author’s formula
Eq.(2). As compared in the previous article [5]
for m=1, the asymptotic formula Eq.(3) was
only valid for large value of argument v. In
Fig.(1), the Srivastava’s exact formula Eq.(4)
is compared to the author’s formula Eq.(2) for
m=1 and u=7/2. Srivastava’s formula expressed
by two confluent hypergeometric series shows
large computational error due to the finite num-
ber of significant figure.

3.2 Role of Incomplete Gamma Func-
tion in Finite Diffraction Theory

Equation (5) shows the relation between the
Fresnel integral and the error function.

erfc(e−iπ/4x) =
√

2e−iπ/4F (
√

2/πx) (5)

where

F (x) =

∫ ∞
x

ei
π
2
q2dq

And, Eq.(6) shows that the error function is a
special case of the incomplete gamma function.

erfc(
√
v) =

1√
π

Γ

(
1

2
, v

)
(6)

Figure 1: Comparison of Srivastava’s formula
(line) with the present formula (circle) for m=1
and u=7/2.

where

Γ(a, x) =

∫ ∞
x

ta−1e−tdt

As a concluding remark, we emphasize the
role of incomplete gamma function in multiple-
edge diffraction by summarizing the previous
[5, 7, 10] and the present works as written be-
low.
(i) In our previous work [5], Fresnel integral
played an important role in finite diffraction as
well as in semi-infinite diffraction.
(ii) Noble [7] and Kobayashi [10] showed that
their zeroth-order solutions were sufficiently ac-
curate for high-frequency diffraction.
(iii) Their asymptotic solutions [7, 10] were de-
scribed by the Fresnel integral.
(iv) From the Eqs.(5,6), the Fresnel integral is a
special case of the incomplete gamma function,
Γ(j + 1/2, v), for j=0.
(v) Accurate series solution for low-frequency
diffraction can be obtained in the form of in-
complete gamma functions, Γ(j + 1/2, v), for
j ≥ 0.

From (i) to (iv), the sentence (i) can be
rewritten such that the incomplete gamma func-
tion, Γ(j + 1/2, v), for j=0 plays an important
role in finite diffraction theory, only for high-
frequency waves. By including (v), we conclude
that the incomplete gamma functions, Γ(j +
1/2, v) for j ≥ 0, plays a significant role in finite
diffraction theory, especially for low-frequency
ranges.
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A robust inversion method for quantitative 3D shape reconstruction from coaxial
eddy-current measurements
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Abstract

This work [3] is motivated by the monitoring of
conductive clogging deposits in steam generator
at the level of support plates of steam genera-
tor in nuclear power plant. One would like to
use monoaxial coils measurements to obtain es-
timates on the clogging volume. We propose a
3D shape optimization technique based on sim-
plified parametrization of the geometry adapted
to the impedance measurements and resolution.

Keywords: Inverse problem, Shape identifica-
tion, Eddy current approximation of Maxwell’s
equations.

1 Industrial problem

In eddy current testing (ECT), we introduce in
the stream generator (SG) tube a probe com-
posed of two coils {k, l}. The generator coil
creates an electromagnetic field which in turn
induces a current flow in the conductive mate-
rial nearby. The default distorts the flow and
change the current in the receiver coil, which is
measured as ECT signals, from which we will
estimate the shape of deposits with known elec-
tromagnetic parameters.

Figure 1: Prob-
ing the TSP in
steam generator.

2 The direct eddy
current problem

The eddy current ap-
proximation of the har-
monic Maxwell’s equa-
tions reads: curlH −
σE = J in Ω and curlE−
iωµH = 0 in Ω, where H
and E are the magnetic
and the electric field respectively. J is the the
source term representing the current density
(located on the probe). In order to solve the
eddy current problem we use the mixed formu-

lation on (A,Vc), where A represents the mag-
netic vector potential and Vc the scalar elec-
tric potential only defined on Ωc ⊂ Ω where
σ 6= 0. The region where σ = 0 is called
ΩI ⊂ Ω. We have E = iωA + ∇Vc in Ω and
µH = curlA on Ω (see the complet monograph
[1]). We are thus concerned with the strong for-
mulation:

curl
( 1

µ
curlA

)
−

1

µ̃
∇divA− σiωA− σ∇Vc = J on Ω,

div
(
iωσA + σ∇Vc

)
= divJ = 0 on Ωc,(

σiωA + σ∇Vc
)
. ν = J . ν on ∂ΩI ∩ ∂Ωc,

A . ν = 0 on ∂Ω,( 1

µ
curlA

)
× ν = 0 on ∂Ω,

(1)

The ECT is based on the analysis and pro-
cessing of impedance signal Z(ΩD) measured
during a scan procedure of SG tube. Numer-
ically the impedance measured for the coil k in
the electromagnetic field induced by the coil l is
computed as follows (see [2] for more details):

∆Zkl =
1

|J|

(
µ0 − µd

iωµdµ0

∫
Ωd

(
curlEk . curlE

0
l

)
δv

+ (σ0 − σd)

∫
Ωd

Ek .E
0
l δv

)
.

(2)

where Ωd ⊂ Ωc defining the support of the de-
posit in term of conductivity. The notation of
the electric field E0

l means a solution to (1)
with a source term located on the coil l and
the calculation correspond to the case of deposit
free. Industrial applications, consider different
combinations of ∆Zkl with a given frequency
ω = 100kHz. We give in Figure 2 a validation
of the direct 3D vs 2D solvers (in the axisym-
metric case) by comparing two frequently used
combinations ZFA and ZF3.

3 The inverse problem

The inverse problem aims at minimizing the
misfit cost function

J (Ωd) =

∫ zmax

zmin

|Z(Ωd; ζ)− Zmes(ζ)|2dζ,
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Figure 2: Complex-plan 3D-vs-2D comparison of the
Impedance Z-F3 and Z-FA.

where Z is either ZFA or ZF3. The algorithm
is based on steepest gradient descent, where the
shape gradient is J ′(Ωd)(θ) = − ω

I2

∫
Γ0

(νtθ)g δs
where the computation of the the function g in-
volves the solution of the direct and the adjoint
problem. In the shape gradient formulae, θ rep-
resents the transformation field and ν is stands
for the outward normal.

4 Numerical tests

We consider deposits with conductivity (σ =
1.e+4S/m) and constant permeability (µr = 1).
We present a series of impedance signal mea-
surements, with respect to the iteration of the
inversion algorithm, in Figure 3 and we give cor-
responding snapshots of the reconstruction of
the noisy shaped deposit in Figure 4.

,

Figure 3: History of the impedances in the case of
noisy shaped deposit: |FA| measurement (left) and |F3|
measurement (right).
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Reflection Full Waveform Inversion in MBTT formulation
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Abstract

We present Reflection FWI algorithm in Mi-
gration Based Travel Time (MBTT). This ap-
proach is based on decomposition of the velocity
model for two constituents: smooth propagator
and rough depth reflector. Subsequent reformu-
lation of the data misfit function leads to a new
FWI statement. Numerical experiments prove
the feasibility of reflection FWI in MBTT for-
mulation for macro velocity model reconstruc-
tion in case of absence low frequencies in the
input data.

Keywords: Macro velocity reconstruction, FWI,
inverse problems

1 Introduction

Macro velocity reconstruction is the main chal-
lenge of the seismic data processing. Full wave-
form inversion (FWI) of reflection seismic data
is characterized by extremely poor behaviour of
the least- squares data misfit with respect to
the slow varying in space components of the ve-
locity model. There are a lot of approaches to
overcome this hardship and among them the re-
flection FWI in Migration Based Travel-Time
Formulation (MBTT).

2 Method

Seismic inverse problem can be treated as a non-
linear operator equation:

F (m) = d,

where F : M → D is a nonlinear forward
map, which transforms model spaceM into data
space D. In order to simplify the mathematics
in what follows we deal with Helmholtz equa-
tion:

4u+
ω2

c(x)2
u = f(ω)δ(x− xs),

with data d being its solution computed at
receivers position.

In the contrast to the standard non-linear
least-squares FWI formulation (Tarantola, 1984;

Virieux and Operto, 2009 ), when unknown ve-
locity model m(x) is searched as

m∗ = argmin‖F (m)− d‖2D,

reflection FWI in MBTT formulation uses
decomposition of the model m (Chavent et. al,
2001 ) for two constituents:

m = p+ r = m+M(p) < s > .

Here p –propagator, which describes smooth
macro velocity, r-depth reflector describing
rough perturbations of the model. The key mo-
ment in this decomposition is propagator-reflector
interrelation r = M(p) < s >, where s - un-
known time reflectivity (preimage of depth
reflector in data space D for a given propagator
p), M(p) - a true amplitude prestack migra-
tion operator with linear reweighting W (true-
amplitude imaging):

M(p) < s >= W ◦Re
{(

δF

δm
(p)

)∗
< s >

}
,

where ∗ denotes adjoint operator in application
to Frechet derivative of nonlinear forward map
F .

Such decomposition of the model leads to
the following modified non-linear least squares
FWI formulation:

(p∗, s∗) = argmin‖F (p+M(p) < s >)− d‖2D.

The minimization with respect to the new vari-
ables (p and s) is performed independently and
is implemented by the standard local optimiza-
tion techniques, such as the modified Newton
method.

3 Numerical experiments

As a demonstrative example we consider the 2D
velocity model presented in Figure 1.
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Figure 1: True velocity model for inversion

Input data are synthesized for the set of uni-
form 18 frequencies [5:0.88:20] Hz. Vertically
inhomogeneous model (see Fig. 2) were used as
an initial model to start iterations for inversion.

Figure 2: Start model for inversion

The results of conventional simultaneous in-
version for 18 frequencies can be seen in Figure
3. As it can be clear observed, the standard
non-linear FWI fails to reconstruct smooth ve-
locity model for chosen frequency range in in-
put data. Recovered model contains mainly the
reflectivity component of the solution, but lo-
cation of target horizons is reconstructed with
a sizeable error. Alternatively, we present the
results of reflection FWI in MBTT formulation
in Figure 4. As an initial guess for the time re-
flectivity variable s were used the observed data
itself, starting propagator model p was the same
as for conventional inversion (see Fig. 2). 2D B-
Splines functions of order 3 were used as the ba-
sis of the smooth propagator space.During the
minimization process are simultaneously updated
both the smooth model and depth reflector. As
a result, if propagator is close to the true macro

velocity model, then reflectors appears at the
correct positions. The final velocity model, ob-
tained by MBTT formulation of FWI is pre-
sented on Figure 4.

Figure 3: Conventional FWI results

Figure 4: MBTT FWI results
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Abstract

Quantum graph is a pair consisting of a met-
ric graph and a second order self-adjoint differ-
ential operator on it, which is determined by
differential operations on the edges and inter-
face conditions at the vertices. Quantum graphs
have been studied intensively during last years
due to a number of applications in nanotech-
nology, optics and other areas. The paper deals
with some spectral properties of a class of pe-
riodic quantum graphs. The main peculiarity
of the graphs under investigation is that their
spectral gaps can be nicely controlled via a suit-
able choice of the graph geometry and of cou-
pling constants involved in interface conditions
at its vertices.

Keywords: periodic quantum graphs, spectral
gaps, δ′-type conditions

1 Introduction

The name “quantum graph” is usually used
for a pair (Γ,A), where Γ is a network-shaped
structure of vertices connected by edges (“met-
ric graph”) and A is a second order self-
adjoint differential operator (“Hamiltonian”) on
it, which is determined by differential opera-
tions on the edges and certain interface con-
ditions at the vertices. Quantum graphs arise
naturally in mathematics, physics, chemistry
and engineering as models of wave propagation
in quasi-one-dimensional systems looking like a
narrow neighbourhood of a graph. We refer to
recent book [3] containing a comprehensive bib-
liography on this topic.

In many applications (for example, to
graphen and carbon nano-structures) periodic
infinite graphs are studied. The metric graph
Γ is called periodic (Zn-periodic) if there is a
groupG ' Zn acting isometrically, properly dis-
continuously and co-compactly on Γ. Roughly
speaking, it means that Γ is glued from count-
ably many copies of a certain compact graph
Y (“period cell”) and each g ∈ G maps Y to

one of these copies. In what follows, in order to
simplify the presentation, we will assume that
Γ is embedded into Rd (with some d ∈ N). Its
Zn-periodicity means that Γ is invariant under
translations through linearly independent vec-
tors e1, . . . , en, i.e.

Γ = Γ + ej , j = 1, . . . , n. (1)

These vectors produce an action of Zn on Γ.
The Hamiltonian A on a metric graph Γ sat-

isfying (1) is said to be periodic if it commutes
with the shifts on the vectors e1, . . . , en. It is
well-known (see, e.g., [3, Chapter 4]) that the
spectrum of such operators has a band struc-
ture, i.e. it is a locally finite union of compact
intervals called bands. In general the neighbour-
ing bands may overlap. A bounded open inter-
val is called a gap if it has an empty intersection
with the spectrum, but its edges belong to it.

In general the presence of gaps in the spec-
trum is not guaranteed – for example if Γ is
a rectangular lattice and A is defined by the
operation −d2/dx2 on its edges and the Kirch-
hoff conditions at the vertices then the spectrum
σ(A) of the operator A has no gaps, namely
σ(A) = [0,∞). Existence of spectral gaps is
important because of various applications, for
example in physics of photonic crystals.

Various mechanisms leading to the creation
of gaps in the spectra of periodic quantum
graphs are described, for example, in [4, 8, 9].

2 Outline of the results

The goal of the current work is to study some
specific class of periodic quantum graphs whose
spectral gaps can be nicely controlled – via a
suitable choice of the graph geometry and of
coupling constants involved in interface condi-
tions at its vertices.

Our main result is as follows.

Theorem 1 For arbitrary finite intervals
(αj , βj) ⊂ [0,∞) (j = 1, . . . ,m) whose closures
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are pairwise disjoint and for arbitrary n ∈ N
we construct a family of Zn-periodic quantum
graphs {(Γ,Aε)}ε>0 such that the spectrum of
Aε has at least m gaps when ε is small enough,
moreover the first m gaps tend to the intervals
(αj , βj) as ε→ 0.

The family {(Γ,Aε)}ε>0 is constructed in
the following way. We take an arbitrary Zn-
periodic graph Γ0 ⊂ Rd with vectors e1, . . . , en
producing an action of Zn on it and attach
to Γ0 a family of compact graphs Yij , i =
(i1, . . . , in) ∈ Zn, j = 1, . . . ,m satisfying Y0j +
n∑

k=1

ikek = Yij . We denote by Γ the obtained

graph and consider on it the Hamiltonian Aε

defined by the operation

−ε−1 d
2

dx2

on its edges and the Kirchhoff conditions in all
its vertices except the points of attachment of
Yij to Γ0. In these points we pose δ′-type con-
ditions (in the case of vertex with two incoming
edges they coincide with the usual δ′ conditions
on the line – see [1, Sec. I.4]). The required
structure for the spectrum of Aε is achieved via
a suitable choice of coupling constants involved
in δ′-type conditions and of ”sizes” of attached
graphs.

The example of Γ for the case m = 2 is
presented on the figure. Here the initial graph
Γ0 is highlighted in bold lines and two fam-
ilies of compact graphs {Yi1}i∈Zn (triangular
graphs) and {Yi2}i∈Zn (”flower”-like graphs) are
attached.

The result are published in [2]. Close results
for other periodic differential operators were ob-
tained in [5–7].

The work was supported by the Czech
Science Foundation (GACR), the project 14-
02476S “Variations, geometry and physics”,
by the project “Support of Research in the
Moravian-Silesian Region 2013” and by the Uni-
versity of Ostrava.
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Guided modes in ladder-like open periodic waveguides
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Abstract

We consider the theoretical and numerical as-
pects of the wave propagation in ladder-like pe-
riodic structures. We exhibit situations where
the introduction of a lineic defect into the ge-
ometry of the domain leads to the appearance
of guided modes and we provide numerical sim-
ulations to illustrate the results.

Keywords: open waveguides, periodic media,
quantum graphs, asymptotic analysis

1 Introduction

We consider the propagation of acoustic waves
in a particular periodic medium that consists
of the plane R2 minus an infinite set of equi-
spaced perfect conductor rectangular obstacles
with Neumann boundary conditions. The pa-
rameter ε represents the distance between the
obstacles. We introduce a lineic defect in this
perfectly periodic domain by changing the dis-
tance between two consecutive columns of ob-
stacles from ε to µε, where µ > 0 (cf. fig. 1 for
µ ∈ (0, 1)).

Figure 1: Periodic and perturbed domains

Our aim is to find guided modes, that is to
say solutions of the homogeneous wave equation
propagating along the defect. It is well-known
that this problem can be reformulated as an
eigenvalue problem for the Laplacian in the pe-
riodicity band Ωµ

ε with β-quasi-periodic bound-
ary conditions in the y−direction (cf. fig. 2).
More precisely, we seek the couples (uε, λ

ε) ∈
H1(Ωµ

ε )× R+ satisfying

−∆uε = λ2
ε u

ε in Ωµ
ε , (1)

together with β-quasi-periodicity boundary con-

ditions on Σ± = ∂Ωµ
ε∩{y = ±L/2} (β ∈ [0, 2π]),

v|Σ+ = eiβ v|Σ− , ∂yv|Σ+ = eiβ ∂yv|Σ− , (2)

and homogeneous Neumann boundary condi-
tions on the remaining part of the boundary:

∂nu
ε = 0 on ∂Ωµ

ε \ (Σ+ ∪ Σ−). (3)

Figure 2: The periodicity band Ωµ
ε

Problem (1-2-3) turns out to be an eigenvalue
problem for a selfadjoint operatorAµε (β) in L2(Ωµ

ε ).
For µ = 1, there is no eigenvalue. We investi-
gate the possibility of creating eigenvalues by
playing with the parameter µ.

2 Limit problem

The investigation of the spectral problem (1-2-
3) is based on its asymptotic analysis as ε tends
to zero. First, we identify the limit spectral
problem. This problem is posed on the graph
G obtained by taking the geometrical limit of
the domain Ωµ

ε when its thickness tends to zero
(cf. fig. 3). More precisely, we look for the
eigenpairs (u, λ), where, for any edge e of G,
the restriction ue of u to e is solution of

−u′′e = λ ue,

u is β-quasi periodic in the y−direction, and,
at each ”interior” vertex M of the graph, u is
continuous and satisfies the so-called Kirchhoff
transmission conditions∑

e∈E(M)

wµ(e) u′e(M) = 0, (4)

u′e(M) being defined outward. In (4), E(M)
denotes the set of the edges sharing M as a
common vertex, wµ(e) = 1 for any unperturbed
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edge and wµ(e) = µ for the two perturbed edges.

The spectrum of the operator Aµ(β) associated
with this limit spectral problem can be charac-
terized explicitly and we have in particular the
following result:

Theorem 1 For any β ∈ [0, 2π), the spectrum
of Aµ(β) has infinitely many gaps of the form
(an0 , b

n
0 ), n ∈ N, where, an0 and bn0 go to +∞ as

n tends to +∞, and bn−1
0 < an0 . Moreover, if

µ ≥ 1, the discrete spectrum of Aµ(β) is empty,
while if µ < 1 it contains one or two eigen-
value(s) in each gap.

Figure 3: Limit graph

3 Asymptotic analysis

In this section, we restrict ourselves to the case
µ ∈ (0, 1). It is known that the spectrum of the
operator Aµε (β) approaches in some sense the
spectrum of the operator Aµ(β) as ε is small
enough (see [2,3] for more details). Using matched
asymptotics expansions (cf. [1]), we can obtain
a more precise result:

Theorem 2 Let (a0, b0) (i.e (an0 , b
n
0 ) for some

n, see Theorem 1) be a gap of the limit operator
Aµ(β) for some β ∈ [0, 2π). Then, for ε small
enough, there is a gap (aε, bε) in the spectrum
of Aµε (β) with

aε = a0 +O(ε), bε = b0 +O(ε), ε→ 0.

Moreover, if λ0 ∈ (a0, b0) is an eigenvalue of the
limit operator (see Theorem 1), then, for ε small
enough, the operator Aµε (β) has an eigenvalue
λε inside the gap (aε, bε) having the following
asymptotic expansion:

∀n ∈ N, λε = λ0 +
n∑
k=1

λk ε
k +O

(
εn+1

)
.

The coefficients {λk}k∈N can be computed by an
explicit recurrence procedure which involves the
computation of profile functions defined in two
reference junctions (see Figure 4)
We illustrate the theoretical results described
above by numerical simulations obtained using

Figure 4: The two reference junctions

a numerical method dedicated to periodic media
(see [4]). This method relies on the reduction
of the initial (linear) eigenvalue problem (posed
on the unbounded domain), to a non-linear one
posed on a bounded domain, by means of an
exact Dirichlet-to-Neumann operator.
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Recovering the initial state of the wave equation in unbounded domain using observers
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Abstract

We consider the problem of recovering compactly
supported initial data of a scalar wave equation
set in the whole space, when the time derivative
of the solution is known on a domain surround-
ing the data. We prove the exponential con-
vergence of an iterative back and forth nudg-
ing strategy and proposes a numerical frame-
work that reduces computations in a bounded
domain.

Keywords: Initial state recovery, Observers,
Open domains

1 An open domain configuration

In this work we consider the problem of recov-
ering the initial data of

∂2
t u−∆u = 0 [0, T ]× Rd,

with unknown initial data u(0) = u0 and ∂tu(0) =
u1 supported in a bounded domain B compactly
included in Ω. The only available informations
is ∂tu, up to a given time T , on a non degen-
erating subdomain ω such that ∂Ω ⊂ ∂ω (see
Figure 1 or Figure 2). In [1] is introduced an
iterative back and forth observer that uses the
data at hand to reconstruct the initial condi-
tion. The exponential convergence is ensure for
bounded domain in [1] and an extension is en-
visioned for unbounded domain in [2] but with
only a polynomial convergence. Our objective
here is to justify the exponential convergence
and proposed a strategy to restrict the formu-
lation and computation around the initial con-
dition.

!

Rd

⌦

B

Figure 1: B is the support of the initial data, ω
is the observation domain.

2 Iterative reconstruction strategy

Following [1] and [2] an iterative strategy is pre-
sented. A sequence {ûn, û [,n}, n ≥ 0, of so-
lutions of wave equations is constructed recur-
sively. At iteration n the forward observer ûn
is defined as the solution over [0, T ]× Rd of

∂2
t ûn −∆û+ γ 1ω ∂t

(
ûn − u(t)

)
= 0, (1)

with γ is a positive scalar. We also define the
backward observer û [ as the solution over [0, T ]×
Rd of a backward wave equation using again the
available observations

∂2
t û [,n−∆û [,n+γ 1ω ∂t

(
û [,n−u(T−t)

)
= 0, (2)

The initial conditions for (1) and (2) are chosen
as follows: û0(0) and ∂tû0(0) are initial guess
compactly supported in Ω. The initial condi-
tions for the backward observer are given using
the forward observer at final time of propaga-
tion

ûn,[(0) = ûn(T ), ∂tûn,[(0) = −∂tûn(T ), n ≥ 0.

The initial conditions for the forward observer,
for n ≥ 1, are computed using the backward
observer at final time of propagation but ade-
quately truncated:{

ûn(0) = ∆−1
Ω (∇ · χ∇)û [,n−1(T ),

∂tûn(0) = −χ∂tû [,n−1(T ),
(3)

where χ is a smooth positive cut-off function
that equals 1 over B and 0 outside Ω, ∆−1

Ω is
the inverse Laplace operator in H1

0 (Ω). We em-
phasize that the truncation, not present in [2],
is necessary to ensure the exponential conver-
gence.

Theorem 1 For T sufficiently large and for all
(u0, u1) ∈ H1

0 (B)×L2(B) there exists 0 < δ < 1
such that for all n ≥ 1

|ûn(0)− u0|2H1(Ω) + ‖∂tûn(0)− u1‖2L2(Ω)

≤ δn
(
|u0 − û0(0)|2H1(Ω) + ‖u1 − ∂tû0(0)‖2L2(Ω)

)
.
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For the proof we use, at each forth and back
stages, stabilization results for the wave equa-
tion with localized initial data and standard
energy analysis. Between each stage we have
to show that the truncation procedure defined
by (3), does not deteriorate the approximation.
This is obvious for the approximation of u1 and
for u0 one can show

|ûn+1(0)− u0|H1(Ω) ≤ |û [,n(T )− u0|H1(Rd).

3 Restriction to a bounded domain

A natural idea to restrict the computation in a
bounded is to use a large enough computation
domain so that we can impose homogeneous
Dirichlet condition at its boundary. In order to
restrict the computational cost we want here to
use transparent boundary condition. Denoting
Γ = ∂ω \ ∂Ω, we introduce the DtN operator

Tt : C1
(
[0, t];H1/2(Γ)

)
→ H−1/2(Γ),

such that ûn solution (1) over [0, T ]×Rd satisfies

∇ûn · n + Tt(ûn) = 0, [0, T ]× Γ.

We recall that in a one-dimensional setting we
have Tt ≡ ∂t. With such DtN operator at hand,
solving problem (2) is equivalent to solve the
same equations in Ω ∪ ω with the following bound-
ary condition on [0, T ]× Γ,

∇û [,n · n+Tt(û [,n)

= Tt(ûn(T − t))− Tt(ûn)(T − t).

We point out that an inhomogeneous boundary
condition is used on Γ which depends only on
the forward observer and not the observations.

The quality of the discretization process in
space and time, in particular of the DtN con-
dition, is of fundamental importance to ensure
– using well-developed strategies in bounded do-
main such as [3] – that the exponential conver-
gence can hold at the discretized level. How-
ever, low order approximation of DtN condition
or adapted perfectly match layers may intro-
duce some spurious phenomena. In this respect,
we propose an adapted semi-discretization in
time of the DtN condition in 1D with possible
extension to higher dimension and anisotropic
media.

4 Instructive 1D numerical results

Preliminary numerical results (see Figure 2) are
computed using, in space, first order finite ele-
ment, in time, a second order implicit theta-
schemes. The imposed approximate DtN con-
dition is exact for the semi-discrete problem in
time. Finally classical numerical vanishing vis-
cosity are added to damped the classical high
frequencies spurious modes associated with the
observer discretization (see [3]), convergence re-
sults are given figure 3 .

Figure 2: Parameters of the simulation: T = 1,
γ = 1, u1 = ∂tû0(0) ≡ 0,∆t = 10−2,∆x =
10−3.
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Figure 3: Convergence of the algorithm in the
H1(Ω) semi-norm.
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Abstract

We are interested in determining the positions
and the velocities of small rigid disks moving in
a bounded cavity filled with a perfect fluid. Us-
ing an integral formulation, we first derive the
asymptotic expansion of the DtN map of the
problem as the diameters of the disks tend to
zero. Then, combining a suitable choice of ex-
ponential type data and the DORT1 technique,
we propose a reconstruction method for the un-
known positions and velocities.

Keywords: Inverse problems, perfect fluid, in-
tegral equations, asymptotic analysis, DtN op-
erator, time reversal, DORT Method

Geometric inverse problems of detecting mov-
ing solids in a fluid appear in many applications.
However, the associated literature is quite lim-
ited, as most contributions deal with motionless
solids. For moving obstacles, Conca et al. show
in [3] that the position and the velocity for a
single disk moving in a perfect fluid can be re-
covered from one measurement of the velocity
on part of the boundary. In Conca et al. [4], the
authors consider a moving rigid solid immersed
in a potential fluid and provide examples of de-
tectable (ellipses for instance) and undetectable
shapes. Finally, Conca et al. obtained in [5] an
identifiability result in the case of a rigid solid
immersed in a viscous fluid.

1 Statement of the problem

In this paper, we investigate the inverse prob-
lem of determining the positions and the ve-
locities of small rigid solids slowly moving in a
cavity filled with a perfect fluid by using actu-
ators and sensors located on the outer bound-
ary of the cavity. More precisely, let Ω be an
open and simply connected bounded domain of
R
2 with smooth boundary Γ := ∂Ω. The do-

main Ω, which is supposed to be filled with a

1DORT is the French acronym for Decomposition of

the Time-Reversal Operator.

Ω

Fε

rm

Vm

Figure 1: The cavity Ω containingM small rigid
disks and filled with a perfect fluid in Fε.

perfect fluid, contains M rigid solids Dε
m, m =

1, . . . ,M , where Dε
m ⊂ Ω is a closed disk with

boundary γεm (see Figure 1). We assume that
Dε

m is the disk centered at rm and of radius
εRm, where the parameter ε tends to 0. The do-
main occupied by the fluid is denoted by Fε :=

Ω \
(

∑M
m=1D

ε
m

)

. We denote by n the unit

normal to ∂Fε directed towards the exterior of
the fluid and by τ the unit tangent vector to
∂Fε such that τ = n⊥ (where x⊥ := (−x2, x1)
for all x = (x1, x2) ∈ R

2). Let Uε(x) denote
the Eulerian velocity field of the fluid and let
ψε : Fε → R be the corresponding stream func-
tion (i.e. Uε = −∇⊥ψε in Fε).

Assuming that the flow is irrotational and
circulation free and that we can impose the nor-
mal velocity of the fluid on Γ, we can show that
the stream function ψε satisfies

−∆ψε = 0 in Fε,

ψε = V ⊥
m · x+ cεm on γεm,

ψε = f on Γ,
(1)

where Vm ∈ R
2 denotes the velocity of them−th

disk and where the constants cεm ∈ R are such
that

∫

γε
m

∂nψ
ε(s) ds = 0, m = 1, . . . ,M. (2)

Considering that the available measurement
is ∂nψ

ε, our detection problem reads: Knowing
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the DtN map

Λε : f ∈ H1/2(Γ) 7−→ ∂nψ
ε ∈ H−1/2(Γ),

where ψε solves (1)-(2), is it possible, and if so
how, to recover the positions rm (m = 1, . . . ,M),
the radii Rm and the velocities Vm of the moving
disks?

2 Results

In this contribution, we answer this question
in two steps. First, using a boundary integral
formulation, we obtain the following asymptotic
expansion of the DtN operator Λε as ε→ 0+.

Theorem 1 For every f ∈ H1/2(Γ), we denote
by Uf ∈ H1(Ω) the solution of the boundary
value problem

{

−∆Uf = 0, in Ω,
Uf = f, on Γ.

Let Λ0 ∈ L(H1/2(Γ),H−1/2(Γ)) denote the DtN
map Λ0 : f 7−→ ∂nU

f . Then, as ε → 0+, the
DtN map Λε ∈ L(H1/2(Γ),H−1/2(Γ)) admits
the asymptotic expansion:

Λε = Λ0 + ε2Λ2 +O(ε3),

where for every f, g ∈ H1/2(Γ):

〈Λ2f, g〉H−1/2(Γ),H1/2(Γ) =

2π

M
∑

m=1

R2
m

{

∇Uf (rm) · ∇Ug(rm)

−∇Ug(rm) · V ⊥

m

}

.

Next, we combine this expansion with the
DORT method to recover the number of disks
and their positions (provided they are distant
enough). Initially introduced by Fink and Prada
[6], this method has been justified mathemati-
cally and used in the framework of wave systems
for the detection of distant point-like scatterers
in acoustics [1,7]. Here, following an idea intro-
duced by Calderón [2], we apply this approach
after a suitable choice of excitations f and test
functions g of exponential type. More precisely,
we choose for every given η ∈ R

2 :

f(x) = ei(η+iη⊥)·x, g(x) = ei(η−iη⊥)·x.

This allows us to recover the unknown positions
rm using the eigenfunctions of a suitably chosen
(non physical) time reversal operator. Once the
positions have been determined, the velocities
and rescaled radii can be easily recovered using
suitably chosen data.
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A dispersion minimizing finite difference scheme and Multifrontal Hierarchically Solver

for the 3D Helmholtz equation
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Abstract

In this paper we present algorithm of solving
3D Helmholtz problem. It based on two fea-
tures: 1) construction of 27-point approxima-
tion scheme to minimize the dispersion error;
2) using low-rank approximation technique and
hierarchically semiseparable (HSS) structure in
the multifrontal direct solvers to decrease com-
putational resources. Quality of low-rank com-
pression is improved by using cross approxima-
tion (CA) approach. Numerical experiments
show that current implementation of algorithm
requires less than 3 times computational resources
compared with sparse direct solvers.

Keywords: 27-point finite-difference scheme,
numerical dispersion, Low-rank approximation,
hierarchically semi-separable (HSS) structure,
Cross Approximation (CA)

1 Introduction

The dispersion error of the Helmholtz solution
leads to the using huge computational grid and
increasing computational time. There are dif-
ferent approachs for decreasing this error, like
increasing the approximation order or develop-
ing various rotation schemes [3].

In this paper we present the optimal 27-
point scheme which is easier than proposed ones
and provides the same quality. To decrease mem-
ory and performance issues we develop supern-
odal multifrontal method based on direct solver
and low-rank/HSS technique.

2 Methods

The Helmholtz equation has a form:

∆u+
(2πν)2

V 2
u = δ(r − rs)f (1)

where ν – frequency, V – velocity, rs – source co-
ordinates, f – source. Using the 7-point stencil
is the standard way of finite difference 2-nd or-
der approximation on the parallelepipedal grid.

This approach gives the dispersion solution
error demonstrated in Fig.1. Dispersion analy-

sis shows that should to be at least 15 points
per wavelength to have suitable error (less than
1%).

To handle with this issue we propose the
27-point 2-nd order scheme. To approximate
Laplace operator we use combination of the three
schemes (Fig. 3) with coefficients γ1, γ2, γ3.

Figure 1: The dispersion curves of the 2-nd or-
der approximation for the 7-point scheme. Nu-
merical phase velocity Vph are normalized with
respect to the true velocity V and plotted ver-
sus 1/G, where G is the number of grid points
per wavelength.

Figure 2: The dispersion curves of the 2-nd or-
der approximation for the optimized 27-point
scheme.

To approximate wave number we use combi-
nation of four schemes with coefficients (w1, w2,-
w3, w4). The first scheme uses the center point
of parallelepiped, the second – center of faces (6
points), the third – center of edges (12 points)
and the fouth scheme uses the corner points (8
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Figure 3: Three stencils of approximation the
second order derivation along X axis.

ones). After dispersion analysis, minimization
the functional J(γw) (2) gives the scheme with
optimal parameters γw = (γ1, γ2, γ3, w1, w2, w3, w4)
in terms of phase velocity Vph.

J(γw) =

∫∫∫

G=[Gmin,Gmax];ϕ=[0,π/2];θ=[0,π/4]

(

Vph(γw)/V − 1
)2

dGdϕdθ (2)

Analyse of dispersion curves (Fig.2) shows that
4 points per wavelength are enough to achieve
0.5% dispersion error in wave propagation ve-
locity.

The proposed scheme, jointly with the Per-
fect Matching Layer (PML), gives the complex
sparse symmetric (not Hermitian) 27-diagonal
matrix. Solving such system of linear algebraic
equations (SLAE) is based on the direct ap-
proach (LDLt decomposition of the matrix A),
Nested Dissection algorithm and low-rank/HSS
technique. The large off-diagonal blocks effi-
ciently approximated by low-rank matrices [1]
while diagonal blocks effectively represented in
hierarchically semiseparable (HSS) format [4].
To compress dense blocks into low-rank or HSS
structures, we use the panel modification of cross
approximation (CA) approach [2]. To addition-
ally increasing the accuracy, the LDLt inversion
step uses the iterative refinement process.

3 Numerical experiments

To validate the algorithm we compare numerical
solution both with analytic one (homogenous
medium) and with solution, computed in time
domain on realistic model. Frequency is varied
from 1Hz to 8Hz. Computational grid contains
about 24 × 106 points. Results of testing show
that using standard 7-point scheme with 10 grid
points per wavelength produces large dispersion
error, while optimized 27-point scheme shows
better results, i.e. relative error less than 1% in
analytic tests and 5% for realistic model).

Memory measurements show that: 1) mem-
ory usage of L-factors are the similar despite

of number of nonzero elements in matrix A for
7-point stencil is more than 3 times than for 7-
point one; 2) HSS compressing allows us to use
3-4x times memory less than for exact arith-
metic.

Moreover, using 27-point scheme insignifi-
cantly (less than 10%) increases the factoriza-
tion time in compare with 7-point scheme.

The research was supported by CRDF grant
RUE1-30034-NO-13 and by RFBR grants 14-
01-31340, 14-05-31222, 14-05-93090, 14-05-00049,
15-35-20022.
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Abstract

We propose a new finite element method for
Helmholtz equation in the situation where an
acoustically permeable interface is embedded in
the computational domain. A variant of Nitsche’s
method enforces weakly the impedance condi-
tions on the interface. As opposed to a standard
finite-element discretization of the problem, the
proposed method can stably handle a vanishing
acoustic impedance.

Keywords: Helmholtz equation, Nitsche-type
method, interface problem, acoustic impedance

1 Problem Formulation

Let Ω0 be the union of two disjoint, open, and
connected regions Ω1 and Ω2 (Ω0 = Ω1∪Ω2) such
that the closures of Ω1 and Ω2 intersect at an
interface ΓI (ΓI = Ω

1 ∩ Ω
2
) of codimension one

with positive measure. We consider Helmholtz
equation for the acoustic pressure in Ω0,

∆p+ κ2p = 0 in Ωl, l = 1, 2 (1a)

iκp+
∂p

∂n
= 2iκg on Γio, (1b)

∂p

∂n
= 0 on Γs, (1c)

where κ is the wavenumber, Γio is inlet and out-
let boundaries, and Γs is sound hard boundaries
of Ω0.

Moreover, we assume that the flux across
the interface is continuous and related to the
pressure jump JpK = p1− p2 through a complex
acoustic impedance ζ,

−∂p
1

∂n1
=
∂p2

∂n2
=

iκ

ζ
JpK on ΓI. (2)

Here pl is the trace on ΓI of the acoustic pressure
in Ωl, and nl is the normal vector on ΓI, directed
outward from Ωl. The impedance ζ = 0 stands

for no interface, the limit |ζ| → ∞ represents
sound-hard (rigid) material, and intermediate
values model acoustically permeable materials.
We assume that the interface is acoustically pas-
sive, that is, Re(ζ) ≥ 0. The acoustic properties
of, for instance, a perforated plate can be mod-
eled by condition (2) [1].

2 Formulation of the method

We will consider weak solutions to problem (1),
(2) inH1(Ω0); p ∈ H1(Ω0) means p|Ωl ∈ H1(Ωl),
for l = 1, 2. Note that elements in H1(Ω0) may
be discontinuous across the interface ΓI. A vari-
ational problem associated with equation (1) is

find p ∈ H1(Ω0) such that

a(p, q) = `(q) ∀q ∈ H1(Ω0),
(3)

where

`(q) = 2iκ

∫
Γio

gq (4)

and

a(p, q) = a0(p, q) + iκ

∫
Γ

1

ζ
JpKJqK, (5)

with

a0(p, q) =

∫
Ω0

∇p · ∇q − κ2

∫
Ω0

pq + iκ

∫
Γio

pq. (6)

Sesquilinear form (5) satisfies the following unique-
ness property.

Lemma 1. For each κ ∈ R, if p ∈ H1(Ω0) such
that a(p, q) = 0, ∀q ∈ H1(Ω0) then p ≡ 0.

In addition, the real part of a(·, ·) satisfies
a G̊arding inequality. Variational problem (3)
thus has a unique solution for each κ [2, Theo-
rem 6.5.15].

A finite element discretisation of sesquilin-
ear form (5) leads to an ill-conditioned system
matrix as ζ → 0. To incorporate the limit case
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without a blowup of the interface condition, we
propose a new variational form based on a ver-
sion of Nitsche’s method first proposed for com-
pliant interfaces in solid mechanics [3].

We introduce the finite element space Vh,
where for l = 1, 2, Vh|Ωl ⊂H1(Ωl) is the space
of continuous functions that are piecewise poly-
nomials on a triangulation of Ωl. The method
does not require that the mesh nodes associated
with Vh|Ω1 and Vh|Ω2 match at the interface.

The proposed method is defined by the fol-
lowing variational problem:

find ph ∈ Vh such that

aλ(ph, qh) = `(qh) ∀qh ∈ Vh,
(7)

where

aλ(ph, qh) = a0(ph, qh)−
∫

Γ
(1− λ ζ

iκ
)JqhK

{
∂ph
∂n

}
−
∫

Γ

(
1− λ ζ

iκ

)
JphK

{
∂qh
∂n

}
−
∫

Γ

ζ

iκ

(
1− λ ζ

iκ

){∂ph
∂n

}{
∂qh
∂n

}
+

∫
Γ
λJphKJqhK.

Here, 2{∂ph/∂n} = ∂p1
h/∂n1 − ∂p2

h/∂n2, and
parameter λ is a function of the acoustical im-
pedance ζ, the wavenumber κ, the mesh size h,
and a sufficiently large real penalty parameter
γ (see Theorem 3 below).

For ζ = 0, our method reduces to the stan-
dard symmetric interior penalty method for im-
posing continuity across the interface [4]. Con-
sistency of our method follows from Lemma 2.

Lemma 2. If p ∈ H1(Ω0)∩H2(Ω0) solves prob-
lem (3), then

aλ(p, qh) = `(qh) ∀qh ∈ Vh.

Following theorem ensures stability of the
method.

Theorem 3. If Im(ζ) ≥ 0, then aλ satisfies the
G̊arding inequality

Re aλ(ph, ph)+α‖ph‖2L2 ≥ C|||ph|||2k,h ∀ph ∈ Vh

for λ =
(
h/γ+ζ/(iκ)

)−1
, for some α > 0, some

C > 0, and for

|||ph|||2κ,h =

∫
Ω0

|∇ph|2 + κ2

∫
Ω0

|ph|2

+
1

γ

∫
Γ
h
∣∣∣ {∂ph

∂n

} ∣∣∣2 +

∫
Γ

∣∣∣λJphK
∣∣∣2.

3 Numerical Experiments

We solve boundary value problem (1) in a wave-
guide of length 2 and height 0.1. The interface
is placed vertically at the middle of the wave-
guide. We use κ = 1.83 and study two acoustic
impedances ζ = 1+0.37i and ζ = 0. Bilinear el-
ements on separate square meshes on each side
of the interface are used for the finite element
discretization.

Figure 1 shows the convergence rates. The
lines with square and asterisk marks show sec-
ond order L2-convergence of the standard finite
element method based on variational form (3)
and our method for ζ = 1 + 0.37i, respectively,
while lines with diamond and dot marks illus-
trate first-order H1-convergence. Thus the pro-
posed method behaves as the standard finite el-
ement method for ζ not close to zero. The lines
with triangle marks show L2 andH1-convergence
of the new method for ζ = 0, which verifies op-
timal convergence of the proposed method also
in the limit case.
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Figure 1: Convergence rates of the standard fi-
nite element and the proposed method for the
interface problem; ζ 6= 0 stands for ζ = 1+0.37i.
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Abstract

A sound-hard scatterer can be modeled in a fic-
titious-domain manner by an almost vanishing
coefficient in the governing Helmholtz equation.
We observe that this approach results in spuri-
ous resonances at certain frequencies inside the
scatterer and generates ill-conditioned system
matrices after discretization. We present a sta-
bilization strategy to remove these resonances,
and we prove that the solution to the stabilized
problem converges linearly in the vanishing co-
efficient to the solution to the problem with an
exactly modeled scatterer.

Keywords: Helmholtz equation, hard scatter-
ers, fictitious domain method

1 Introduction

A sound-hard scatterer of acoustic waves is char-
acterized, in frequency domain, by a homoge-
neous Neumann condition for the acoustic pres-
sure at the boundary of the scatterer. In the
context of design optimization, it may be ad-
vantageous to avoid tracking of boundaries by
using a fictitious-domain approach and approx-
imately represent the scatterer through a vary-
ing coefficient α in the Helmholtz equation

∇ · α∇p+ k2αp = 0, (1)

where α = 1 in the wave medium and α = ε
inside the scatterer, where ε is a small positive
number. This fictitious domain approach is par-
ticularly well established for so-called topology
optimization of static load-bearing elastic struc-
tures, but the approach is also increasingly used
for wave propagation problems [1]. We have re-
cently observed an issue with this approach in
the context of the Helmholtz equation, namely
that spurious resonances occur inside the sound-
hard region at certain frequencies, and that the
system matrix after discretization becomes ill-
conditioned around these frequencies. This phe-
nomenon is analogous to the non uniqueness
problem for certain formulations of the boundary-
element method for the exterior Helmholtz prob-

lem [2] and occurs when k2 is in the vicinity
of the eigenvalues for the Dirichlet problem as-
sociated with the Laplacian in the sound hard
region.

2 Preventing the Spurious Resonances

We propose to replace problem statement (1)
with

∇ · α∇p+ k2η(α)αp = 0, (2)

where η is a continuous function on the [0, 1]
interval such that η(0) = 0 and η(1) = 1; in the
numerical experiments, we typically use η(α) =
α. In regions of approximate sound-hard ma-
terial, that is, when α = ε for some small pos-
itive ε, the effective wavenumber will then be
decreased to k

√
η(ε). The effective wavenum-

ber in the scatterer will therefore, at least with
a reasonable choice of function η, be way below
values that can generate resonances.

3 Stability and convergence results

We consider a setup with a single scatterer Ω
surrounded by a bounded domain D. The exact
solution pD solves the boundary-value problem

∆pD + k2pD = 0 in D,

ikpD +
∂pD

∂n
= 2ikg on Γio,

∂pD

∂n
= 0 on ∂D \ Γio.

(3)

The radiation boundary condition on Γio spec-
ifies an incoming wave of amplitude g and ab-
sorbs outgoing waves.

In the fictitious domain approach, scattering
problem (3) is approximated by solving equa-
tion (2) in D̂ = D ∪ Ω where α equals 1 in D
and ε in Ω. The associated bilinear form will
then take the form

aε(q, p) =

∫
D
∇q · ∇p− k2

∫
D
qp+ ik

∫
Γio

qp

+ ε

(∫
Ω
∇q · ∇p− η(ε)k2

∫
Ω
qp

) (4)
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We show that no resonances can occur within
Ω if

η(ε) < 2/(k2(diam Ω)2). (5)

In addition, the following stability condition
holds for bilinear form (4).

Theorem 1 There is an α > 0 such that, for
each ε ∈ (0, 1/2] and each p ∈ H1(D̂),

α‖p‖ε ≤ sup
q∈H1(D̂)\{0}

Re aε(q, p)

‖q‖ε
, (6)

where ‖p‖2ε = ‖p‖2H1(D) + ε‖p‖2H1(Ω).

Note that inf–sup condition (6) holds uniformly
in ε.

Let pε ∈ H1(D̂) such that pε
∣∣
D

= pD and

pε
∣∣
Ω

= pΩ
ε , where pΩ

ε is the continuous exten-

sion of pD into Ω such that ∆pΩ
ε +η(ε)k2pΩ

ε = 0.
This extension is uniquely defined under condi-
tion (5).

With the help of pε, we can formulate the
following inconsistency estimate between the fic-
titious domain solution using bilinear form (4)
and the weak solution to problem (3),

Lemma 2 Let p̂ε be the fictitious domain solu-
tion using bilinear form (4), and pε the extended
weak solution to problem (3). Then,

aε(q, p̂ε−pε) = ε
〈
∂np

Ω
ε , γq

〉
∀q ∈ H1(D̂), (7)

where γ : H1(Ω)→ H1/2(∂Ω) is the trace opera-
tor and 〈·, ·〉 the duality pairing on H−1/2(∂Ω)×
H1/2(∂Ω).

Stability property (6) and estimate (7) yield the
following bound of the error invoked by the ap-
proximate handling of the scatterer,

‖pε − pD‖H1(D) ≤ εC‖pD‖H1(D). (8)

The above analysis is carried out in the infi-
nite-dimensional case. However, numerical ex-
perience suggests an analogous behavior also in
the discrete case, after finite-element discretiza-
tion.

Figure 1 shows a numerical example in 2D.
The scatterer is a disk with radius 0.2, ε = 10−8,
and k = 12. This wavenumber corresponds to
the first eigenmode of the Dirichlet problem for
the Laplacian inside the scatterer.

The unstabilized case (η = 1) is illustrated
in the upper picture. We notice a resonance

Figure 1: Re(p) without and with stabilization

in the scatterer that completely dominates the
solution. However, when using η = ε, the reso-
nance goes away as we see in the lower picture.
The stabilized problem is free from resonances
up to about k = 12× 104 (ε−1/2 times the first
unstable mode) for the choice η = ε.
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Abstract

A method for the approximate computation of
the time-dependent magnetic and electric ma-
trix Green’s functions in a parallelepiped with
the perfect conducting boundary is suggested.
The method consists of the following. The equa-
tions for the magnetic Green’s function are writ-
ten in the form of the initial boundary value
problem for a vector wave equation. Apply-
ing the Fourier series expansion approach, an
explicit formula for an approximate solution of
this problem is constructed. Using this formula
the elements of an approximate electric Green’s
function are found explicitly.

Keywords: Maxwell’s equations, perfect con-
ducting boundary, Green’s function, analytical
method, simulation

1 Introduction

In [1] the frequency dependent dyadic electric
and magnetic Green’s functions corresponding
to the elementary electric and magnetic current
point sources have been presented inside the
cavity with the perfect conducting boundary by
the eigenvalues and eigenmodes. The computa-
tion of the frequency dependent Green’s func-
tions in the rectangular parallelepiped with the
perfect conducting boundary by the Fourier se-
ries meta-approach has been worked out in [2].
Several approaches for the computation of the
time-dependent electric and magnetic Green’s
functions have been developed in [3] (see also
the references of [3]) for unbounded three di-
mensional electrically and magnetically anisotro-
pic media by the Fourier transform with re-
spect to space variables and matrix transfor-
mations. But the computation of the time de-
pendent electric and magnetic Green’s functions
has not been achieved so far for the bounded do-
main with perfect conducting conditions. We
note that there exists a connection between the
time dependent Green’s functions and frequency
dependent Green’s functions which can be ex-

pressed by the Fourier transform with respect to
the time variable. Moreover the time-dependent
Green’s function, for example, of the wave equa-
tion in a whole space can be derived explic-
itly by the application of the Fourier transform
to the Green’s function of the Helmholtz equa-
tion. The Fourier transform and inverse Fourier
transform are defined here in the class of the
generalized functions (tempered distributions )
and for some scalar hyperbolic differential equa-
tions the application of the Fourier transform
can be done explicitly. Unfortunately the ex-
plicit or approximate computation of the inverse
Fourier transform, applied to the frequency de-
pendent electric and magnetic Green’s functions
in a bounded domain of the three dimensional
space, is unknown. This computation requires
knowledge of the frequency dependent Green’s
functions for all frequencies that is difficult to
realize in practice. Moreover the time depen-
dent electric and magnetic Green’s functions are
singular generalized functions and numerical me-
thods in the space of generalized functions are
not developed yet. To overcome these difficul-
ties we suggest the adaptation of the Fourier se-
ries approach for the direct computation of the
approximate (regularized) time dependent elec-
tric and magnetic Green’s functions in a rectan-
gular parallelepiped with the perfect conducting
boundary which does not use the frequency de-
pendent Green’s functions.

2 The time-dependent magnetic and elec-
tric Green’s functions

Let b1, b2, b3 be given positive numbers, x =
(x1, x2, x3) be a 3D variable from R3; V be
a rectangular parallelepiped defined as the set
of points x = (x1, x2, x3) from R3 satisfying
0 < x1 < b1, 0 < x2 < b2, 0 < x3 < b3; Γ
be the boundary of V ; t be the time variable; ~es

be the basis vectors of R3 (~e1 = (1, 0, 0)T , ~e2 =
(0, 1, 0)T , ~e3 = (0, 0, 1))T (the superscript “T”
means “transpose”). The 3 × 3 matrices GH ,
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GE whose s-column (s = 1, 2, 3)

Hs =

 Hs
1

Hs
2

Hs
3

 , Es =

 Es
1

Es
2

Es
3

 ,

satisfy for x ∈ V, t ∈ R

curlxH
s = ε

∂Es

∂t
+ ~esδ(x− x0, t),

curlxE
s = −µ∂H

s

∂t
,

Es
∣∣
t≤0

= 0, Hs
∣∣
t≤0

= 0,

(Es × ~n)
∣∣
Γ

= 0, (Hs · ~n)
∣∣
Γ

= 0, s = 1, 2, 3,

are called the magnetic Green’s function (ma-
trix) and the electric Green’s function (matrix),
respectively. Here the positive constants ε and µ
are the electric permittivity and magnetic per-
meability, respectively; ~n is the unit normal to
the boundary Γ of the parallelepiped V ;
x0 = (x0

1, x
0
2, x

0
3) is a 3D parameter from V ;

δ(x−x0, t) = δ(x1−x0
1)δ(x2−x0

2)δ(x3−x0
3)δ(t),

δ(xj−x0
j ) is the Dirac delta function considered

at xj = x0
j , j = 1, 2, 3; δ(t) is the Dirac delta

function at t = 0.
The suggested method for the approximate

computation of the magnetic and electric ma-
trix Green’s functions GH(x, t, x0), GE(x, t, x0)
consists of the following. The equations for the
magnetic Green’s function are written in a spe-
cial form which does not contain elements of
the electric Green’s function. These equations
are partial differential equations of the hyper-
bolic type and our method is based on the stan-
dard Fourier series expansion approach for solv-
ing the initial boundary value problem for the
hyperbolic partial differential equations in the
bounded region. The elements of the approx-
imate Green’s function for the magnetic field
are found by explicit formulae. These formulae
have the form of the partial sums of the Fourier
series with a finite number of terms. This fi-
nite number (denoted as N) is a parameter of
regularization (approximation). Using these ex-
plicit formulae we derive explicitly the approx-
imate elements of the electric Green’s matrix
by integration with respect to time variable.
The simple implementation of our method for
computing the Green’s functions in a rectan-
gular parallelepiped is based on the obtained
presentations and does not contain any type of
discretization. Numerical computation of the

time-dependent magnetic and electric Green’s
functions has been implemented in MATLAB.
The computational experiments confirm robust-
ness of the method. To obtain the reasonable
accuracy and time for the computation of ap-
proximate Green’s functions for electric and mag-
netic fields in MATLAB by a personal com-
puter it is necessary to find a parameter of the
regularization N. The elements of the regular-
ized (approximate) matrix Green’s function for
the magnetic field (computed by our method)
are classical differentiable and integrable func-
tions over V with the values at the fixed points.
These classical functions define the regular dis-
tributions. The comparison of the distributions
can be made by the comparison of their inte-
gral characteristics. Some integral characteris-
tics of the elements of the matrix Green’s func-
tion of the magnetic field can be found explic-
itly. These characteristics have been compared
with integral characteristics of the approximate
Green’s function for different parameter of the
approximation N to select reasonable one. The
results of the computational experiments can be
found in [4].
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Abstract

A new numerical method for wave propagation,
inspired by Huygens’ principle and deploying a
zero-search method, accounts for diffraction and
refraction in slowly varying and discontinuous
2D isotropic media, but can be extended to 3D
anisotropic media by means of anisotropically
expanding ellipsoidal wavelets.

Keywords: Huygens-Fresnel principle, wa-
vefront tracing

1 Introduction

Huygens’ model of the wavefront as an array of
wavelet emitters [1], combined with Huygens’
principle that wavelets interfere [2] is an impor-
tant principle in the theory of diffraction [3].
Not surprisingly, it was used in pedagogical wid-
gets illustrating diffraction [4] and refraction [5],
and was recently invoked in the design of new
metamaterials [6]. Numerical applications to
wave propagation, however, are relatively lim-
ited. This is surprising, considering that Huy-
gens’ original drawings basically outlined an it-
erative graphical solver, suggestive of a modern
iterative solver on a computer.

Wavefront tracing are cited in seismic mod-
eling, but rarely include diffraction [7]. An in-
teresting and elegant exception [8, 9] manipu-
lates the eikonal equation into an expression de-
scribing a small expanding sphere centered in a
generic point on the wavefront. The analogy
with Huygens’ construction is evident. Diffrac-
tion is also partly included: differentiation of
that expression leads to an explicit finite-diffe-
rence scheme in which each point on the new
wavefront is constructed by three or five points
on the previous one, respectively in 2D and 3D.
However, all point-sources are assumed of equal
strength. Also, despite high numerical stabil-
ity [8, 9], small phase-increments might be re-
quired for the restriction to three or five neigh-
boring points to be a good approximation.

The simple technique presented here retains
diffraction effects. It was originally intended
for electromagnetic and electrostatic waves in

plasmas, but has much broader applicability.
Cpu-time and physics content are intermedi-
ate between ray-tracing [10, 11] and full-wave
solvers [12].

2 Numerical Method

Huygens-Fresnel formula for the field amplitude
E in a point x′ can be written as follows [13]:

E(x′) =
1

4π

∫ [
cos θ

r
− ik(1 + cos θ)

]
eikr

r
E(x)dS

This form is valid also in the near-field, thanks
to the cos θ/r dipole term that makes it consis-
tent with Kirchhoff theorem [14]. Here θ is the
angle between the local wavefront-normal and
vector x′ − x, of norm r. In 2D, the surface
integral is replaced by a line integral, and the
denominator by

√
r.

Our objective is to compute the integral to
identify a set of points x′ab where E has equal
phase, or, without losing generality, <(E)=0.
This is easily generalized by shifting all sources
in the integrand by a phase φ.

The points found form the new wavefront.
The same integral should be recalculated in those
points again, but with all sources phase-shifted
so that E 6=0. This permits to attribute proper
amplitudes and treat the points x′ab as emitters
in the following iteration.

Equivalently, one could search for the locus
of points where arctan[=(E)/<(E)]=φ.

To fix the ideas, consider now a 2D prob-
lem in Cartesian coordinates x and y, and let
us search the new points in the x direction. The
existence of multiple solutions is prevented by
restricting the search to intervals of length λ/2,
where λ is the wavelength in the medium. We
avoid placing such intervals too closely (� λ)
to the original wavefront. This is to discard the
dipole correction, for simplicity. Let us call x′Ac

the generic point on the search interval, where
A is a specific a and c denotes an iteration in-
dex in the zero-search, conducted in our case by
bisection. The electric field amplitude in x′Ac is
obtained by interference of point-sources, each
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Figure 1: Traced
initially planar
wavefront, diffract-
ing around obstacle
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Figure 2: Wavefronts refracting in a medium of
refractive index N (a) varying over ten wave-
lengths or (b) discontinuous.

one of amplitude Ea, distance rAc,a from the
target and inclination θAc,a. Repeated evalua-
tion of

EAc = −
m∑
a=1

ik

4π
(1 + cos θAc,a)

eikrAc,a

√
rAc,a

Ea

in various x′ac suggested by bisection (or other
search method) eventually localizes the point
x′A (or actually its x component, as y is fixed)
where <(E)=0.

The 2D algorithm is easily generalized to 3D
by adding a subscript b and summing over it,
and replacing the denominator

√
rac with rabc.

3 Numerical examples

The results for plane waves (not shown), diffrac-
tion around an obstacle (Fig.1) and refraction in
a medium whose refractive index varies slowly
with space (Fig.2a) are all as expected.

The wavefront bends as expected from Snell’s
law even in the case of discontinuity (Fig.2b),
which, however, requires special care: if E is
being evaluated in medium 2, the contributions
from points in medium 1 will travel at differ-
ent inclinations in the two media. Therefore,
instead of a single Green’s function, two propa-
gators are actually needed, from the emitter to
a proper point on the boundary (uniquely de-
fined by Snell’s law), and then to the observer.

Moderately focused Gaussian beams (Fig.
3a) agree with theory [15]. The geometrical op-
tics solution is also shown and, as expected, is
a good approximation away from the waist.

The zero-search can be subject to errors whe-
re the electric field is very small, comparable
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Figure 3: Wavefronts for (a) moderately and
(b) strongly focused Gaussian beam, colored ac-
cording to intensity normalized to on-axis value.

with machine precision, or if the search interval
is chosen incorrectly, which can occur in regions
of strong refraction or diffraction. In the latter
case, the zero can be mistakenly located on the
“next” wavefront, as if the corresponding wave-
front portion “jumps” too far ahead. This is
sometimes observed for strongly focused beams
(Fig.3b) and could be solved by an adaptive def-
inition of the zero-search interval.
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Abstract

The use of integral representations as an exact
boundary condition for the finite elements reso-
lution of wave propagation problems in exterior
domain induces algorithm difficulties. We focus
on the resolution of 3D Maxwell equations by
a coupling of finite elements and integral repre-
sentation (CEFRI). The justification of an algo-
rithm described in literature, using an interpre-
tation as a Schwarz method, reveals the finite
element term of Schwarz method as a precon-
ditioner for Krylov iterative solvers. An ana-
lytical study of the case of a spherical perfect
conductor indicates the efficiency of such ap-
proach. The application of the preconditioner
leads to a superlinear convergence of the GM-
RES predicted by the analytical study and ver-
ified numerically.

Keywords: Maxwell equations, finite elements,
integral representation, Schwarz preconditioner

1 Introduction to CEFRI

We focus on the resolution of the regularized
Maxwell equations in exterior domain by a cou-
pling of finite elements and an integral represen-
tation as derived by Hazard and Lenoir (see [3]).
To this aim, we consider a bounded domain Ωi

of boundary Γ. The exterior domain is delim-
ited by an artificial boundary Σ on which the
integral representation is applied as an exact
boundary condition. In the case of a perfect
conductor, the problem reduces equivalently to
the one defined as follows on the bounded do-
main Ω delimited by Γ and Σ:

(curl curl− t−1∇div − k2
s)E = 0 in Ω,

E × nγ = 0, divE = 0 on Γ,
Tν1(E) = Tν1(Einc − IRΓ (E)) on Σ,
Nν2(E) = Nν2(Einc − IRΓ (E)) on Σ,

(1)

where ks is the wavenumber, t−1 is the regular-
ization parameter, t ∈ R∗+, and nγ is the exte-
rior unit normal of the domain Ωi on Γ. ν1 and

ν2 are complex numbers which have a negative
imaginary part to ensure well-posedness. The
two differential operators Tν1 and Nν2 are de-
fined by Tν1E = curlE × nσ + ν1 nσ × (E × nσ)
and Nν2E = divE + ν2E · nσ with nσ the ex-
terior unit normal of the domain Ω on Σ. The
integral operator is identified by: for x ∈ Σ,

IRΓ (E)(x) =

−k2
s

∫
Ω
(RGt(x, .)E+curlRGt(x, .)curlE)dΩ

+t−1

∫
Ω
divRGt(x, .)TdivE dΩ

−t−1

∫
Γ
div Gt(x, .)T(E · nγ)dγ ,

where Gt = GksI +
1

k2
s

Hess(Gks − Gkp) is the

outgoing Green tensor associated with the dif-
ferential operator curl curl− t−1∇(div)− k2

sI of
the regularized Maxwell equation; I is the iden-
tity matrix in R3; Hess stands for Hessian oper-
ator; kp =

√
tks; Gk is the fundamental solution

of Helmholtz equation. The linear operator R
maps every regular function ϕ defined on Γ into
a regular functionRϕ defined on Ω that satisfies
Rϕ = ϕ on Γ and Rϕ = 0 on Σ.

Let us introduce the Hilbert functional space

Ht =
{
E ∈ H(curl,Ω)/divE ∈ L2(Ω), E×nγ =0,

E × nσ ∈ L2(Σ)3, E · nσ ∈ L2(Σ)
}
,

and (., .)t the scalar product associated to Ht,
The variational formulation of Problem (1) is:

Find E ∈ Ht such that

(At + Ct)E = Ft, (2)
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where At and Ct : Ht → Ht are defined by

(AtE,E′)t = t−1

∫
Ω

divE divE′dΩ

+

∫
Ω
(curlE · curlE′ − k2

sE · E′)dΩ

+ ν1

∫
Σ

(nσ × E) · (nσ × E′)dσ

+ t−1 ν2

∫
Σ

(nσ · E)(nσ · E′))dσ,

(3)

and (CtE,E′)t =

∫
Σ
Tν1(IRΓ (E)) · E′dσ

+t−1

∫
Σ
Nν2(IRΓ (E))(nσ · E′)dσ.

(4)

2 Resolution of the system

To solve System (2), Jin and Liu [4] suggested
to consider Ct, the term containing the integral
representation, in the right hand side. An ap-
plication of the fixed point algorithm leads to
finding En+1 such that AtEn+1 = −CtEn + Ft.
The invertibility of At is ensured by the well-
posedness of Maxwell equations, on the bounded
domain Ω, together with the corresponding bound-
ary conditions. Such an algorithm as been justi-
fied and analyzed as a total overlapping Schwarz
method (see [1]). The study leads to the fol-
lowing statements (see [2]): the convergence is
linear but conditioned by the distance between
Γ and Σ; the scheme shows At as a natural pre-
conditioning of Schwarz method and motivate
the name of Schwarz’ preconditioner.

An interesting alternative to Jin and Liu al-
gorithm consists then in solving System (2) with
a Krylov subspace solver preconditioned by the
operator At, equivalently solving

(I + (At)−1Ct)E = (At)−1Ft

by a Krylov solver. An analysis of the conver-
gence in the spherical case indicates a superlin-
ear convergence for the GMRES.

3 Numerical illustration

The numerical results illustrate the superlinear
convergence of Krylov solvers in the spherical
configuration. The theoretical convergence esti-
mation is numerically observed for the GMRES
(Figure 1). The results were obtained consider-
ing an incident plane wave with the direction
(0,0,1) and the polarization (1,0,0), choosing
ν1 = ν2 = −iks, and the regularization param-
eter t = 1. The essential condition is penal-
ized with a penalty parameter εp = 10−4. The

meshes were built such that the average mesh
length and the distance between the boundaries
are proportional to the wavelength. In Fig-
ure 1, we show the residuals of GMRES at every
restart. The study is done for the wavenumbers
ks = 1.25, 2.5, 5.
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Figure 1: GMRES residuals
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Abstract

In this paper, we apply high-quality meshes and
exact time integration for simulating time-har-
monic electromagnetic scattering. We follow
the exact controllability concept, and solve the
time-harmonic scattering problem by using the
model presented in time domain. Essentially,
the approach is a controlled variation of the
asymptotic approach with periodic constraints,
in which the time-dependent equation is simu-
lated in time until the time-harmonic solution
is reached.

Keywords: computational electromagnetics,
discrete exterior calculus, exact controllability

1 Introduction

We consider the Maxwell system,

ε
∂E

∂t
−∇×H = −J, (1)

µ
∂H

∂t
+∇×E = −J∗, (2)

where E and H are the electric and magnetic
fields, ε is the electric permittivity, µ is the
magnetic permeability, and J and J∗ are the
source functions. The properties of the dis-
cretization mesh play a fundamental role in the
quality of the coupling between the electric and
magnetic fields. The efficiency of the computa-
tional method can not be improved by simply
developing the discretization of one field vari-
able corresponding to, e.g., the primal formula-
tion. Instead, high-quality meshes both at the
primal and the dual level are needed to obtain
accurate results.

2 Discretization

The traditional way of solving electromagnetic
scattering problems is to use the finite differ-
ence time domain method (FDTD) introduced
by Yee [1]. Originally, the method is restricted
to cubic elements. Since the simple cubic mesh
is a relatively rare construction in the natural
crystals, we concentrate on the structures based

on more natural space lattices. In particular,
we consider the constructions of computational
meshes based on the natural crystal structures,
i.e., the mesh structures imitating the geome-
try of the close packing in crystal lattices which
is a typical structure for elemental metals and
inter-metallic compounds.

The discrete exterior calculus (DEC) pro-
vides the properties and calculus of differen-
tial forms in a natural way at the discretiza-
tion stage. With this framework, developed by
Bossavit and Kettunen [2], we associate the de-
grees of freedom of the electric and magnetic
fields to the primal and dual mesh structures,
respectively. The diagonal Hodge operators, map-
ping between the primal and dual mesh, are ob-
tained by constructing the dual elements that
are orthogonal to the corresponding primal el-
ements. The orthogonality of the primal and
dual elements implies diagonal Hodge opera-
tors providing a significant saving in computing
time. The formulation works on unstructured
grids, and it covers both the classical Yee’s FDTD
scheme and the Bossavit-Kettunen approach.

3 Time-harmonic simulations

In principle, the time-harmonic solution can be
reached by simple time integration (asymptotic
approach), but we accelerate the convergence
rate by using the exact controllability technique
pioneered by Bristeau, Glowinski, and Périaux,
see, e.g., [3]. Essentially, the approach is a con-
trolled variation of the asymptotic approach with
periodic constraints, in which the time-dependent
equation is simulated in time until the time-
harmonic solution is reached. A natural quadrat-
ic error functional is the squared energy norm
of the system, allowing the minimization by the
conjugate gradient (CG) method operating in
Hilbert spaces. Combining the exact control-
lability method with the DEC gives a reason-
able method for solving electromagnetic prob-
lems. The early stage numerical results are pre-
sented in [4]. Thereafter, we have improved the
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approach by, e.g., applying a wave frequency -
based correction term to the time-stepping.

4 Numerical experiments

We consider electromagnetic scattering by a spher-
ical obstacle of radius 2.5, discretized by simple
cubic, face-centered cubic (FCC), body-centered
cubic (BCC), A15, C15, or Z elements (see, [5]),
and centered in a spherical computational do-
main of radius 2.7. Inside the scatterer, the
material parameters are ε = 2.5599+0.032i and
µ = 1, whereas ε = 1 and µ = 1 in the rest of
the computational domain. The source func-
tions are J = (0, 2π(ε− 1) sin (2π(x− t)) , 0)T

and J∗ = (0, 2π(µ− 1) sin (2π(x− t)) , 0)T , pre-
senting a wave of angular frequency ω = 2π and
time period T = 1 propagating in the direction
of the positive x-axis.

The boundary of the scatterer is discretized
by triangles, and the space between the bound-
ary and the interior grid is constructed by the
Voronoi tessellation. Then, the boundary ele-
ments are optimized by the HOT method [6].
The boundary surface is stretched in radial di-
rection, such that a 1.7 thick layer is generated
outside the scatterer. The domain is truncated
by a 1.5 thick perfectly matched layer [7].

The algorithm is implemented in C++ pro-
gramming language. The simulations are ini-
tialized by E = H = (0, 0, 0)T , carried out on
an 16 Intel Xeon E5-2670 processors at 2.6 GHz,
and stopped after 100 CG iterations. By follow-
ing [8], the near-field solution is used to form
the Mueller matrix [9] including the scattering
intensities and polarization in all scattering di-
rections. The relative error, compared to the
exact solution computed by the Mie scattering
code [10], is presented in Figure 1.

Figure 1: Relative error of the Mueller matrix.
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Abstract

Based on an asymptotic expansion we present
local absorbing boundary conditions for the ra-
diative field in 2d open waveguides with a de-
fect. While the boundary conditions in the sur-
rounding material are equivalent to Feng’s bound-
ary conditions for homogeneous media, the bound-
ary conditions in the waveguide respect the lar-
ger decay rate in the guide.

Keywords: open waveguide, absorbing bound-
ary conditions, asymptotic expansions, Helm-
holtz equation

1 Introduction

The scattering of waves by a defect in 2d open
waveguides can be studied using, e.g., the modal
radiation condition [1]. We shall consider the
radiative field in this work, i.e., the scattered
field without guided modes. The asymptotic
behaviour of the radiative field in 3d open wave-
guides was discussed in [3] and it can be shown
that the radiative field in 2d behaves likeO(r−3/2)
in the waveguide while it shows a Sommerfeld
behaviour of O(r−1/2) in the surrounding mate-
rial. This can also be seen from numerical re-
sults obtained by using perfectly matched layers
(PML), see Figure 1. In this work we present
an asymptotic expansion of the radiative field.
This expansion has the expected decay behav-
iour and allows for the derivation of local ab-
sorbing boundary conditions.

Let us consider a waveguide Ω1 = {x ∈ R2 :

Figure 1: Radiative field of a 2d open waveguide
with defect computed by J. Chabassier (INRIA
Bordeaux Sud Ouest) using PML.

|x2| < h
2} of height h centered at the x1-axis.

The waveguide is characterized by constant ma-
terial coefficients a1, b1 ∈ R and surrounded by
homogeneous media Ω± = {x ∈ R2 : ±x2 >

h
2}

with coefficients a0, b0 ∈ R. Implicitly taking
the defect of the waveguide into account, the
scattered field and in particular the radiative
field satisfy the inhomogeneous Helmholtz equa-
tion

−∇ · a∇u− ω2 b u = f in R2 (1)

with angular frequency ω and source term f ,
that is assumed to have compact support in Ω1.
Considering that the coefficient functions a and
b are piecewise constant and introducing k2

i =
ω2 bi

ai
, i = 0, 1, and f1 ≡ 1

a1
f |Ω1 , we may rewrite

Eq. (1) in the form

−∆u± − k2
0u± = 0 in Ω±, (2a)

−∆u1 − k2
1u1 = f1 in Ω1, (2b)

with continuity conditions

u±(±h
2 )− u1(±h

2 ) = 0, (2c)

a0
∂
∂x2

u±(±h
2 )− a1

∂
∂x2

u1(±h
2 ) = 0. (2d)

2 Asymptotic expansion

We introduce a new coordinate system with po-
lar coordinates (r, ϕ) ∈ R+

0 ×]− π, 0[ in Ω− and
(r, ϕ) ∈ R+

0 ×]0, π[ in Ω+, that satisfy x1 =
r cosϕ and x2 ∓ h

2 = r sinϕ, and Cartesian co-

ordinates (x1, x2) ∈ R×]− h
2 ,

h
2 [ in Ω1.

For simplicity of notation let us focus on the
right half plane {x ∈ R2 : x1 > 0}. The com-
pact support of f implies that for large |x| the
solution u1 in the waveguide Ω1 also satisfies a
homogeneous Helmholtz equation. This moti-
vates the ansatz for the radiative field

u±(r, θ) =
∑

j∈N0

Θ
(j)
± (θ)r−

1/2−jeik0r, (3a)

u1(x1, x2) =
∑

j∈N0

Θ
(j)
1 (x2)x

−1/2−j
1 eik0x1 ,

(3b)

where u
(m)
± (r, θ) =

∑m
j=0 Θ

(j)
± (θ)r−1/2−jeik0r and

u
(m)
1 (x1, x2) =

∑m
j=0 Θ

(j)
1 (x2)x

−1/2−j
1 eik0x1 sat-
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isfy

−∆u
(m)
± − k2

0u
(m)
± = O(r−

3/2−m) in Ω±, (4a)

−∆u
(m)
1 − k2

1u
(m)
1 = O(x

−3/2−m
1 ) in Ω1, (4b)

with continuity conditions

u
(m)
± (±h

2 )− u(m)
1 (±h

2 ) = 0, (4c)

a0
∂
∂x2

u
(m)
± (±h

2 )− a1
∂
∂x2

u
(m)
1 (±h

2 ) = 0, (4d)

for all m ∈ N0 := N ∪ {0}, N := {1, 2, . . .}.
We can easily verify that the zeroth order

solutions u
(0)
± in Ω± satisfy (4a). However, using

the ansatz (3b) for the zeroth order solution u
(0)
1

in Ω1 shows that (4b) can only be satisfied if

Θ
(0)′′
1 +

(
k2

1 − k2
0

)
Θ

(0)
1 = 0.

Due to our special coordinate system, the con-
tinuity conditions (4d) of the Neumann traces

yield Θ
(0)′
1 (±h

2 ) = 0. Assuming k2
1 > k2

0, which
is a necessary condition for guided modes to
exist [3], and

√
k2

1 − k2
0
h
4π 6∈ N, we find that

Θ
(0)
1 ≡ 0, i.e., there do not exist any radiative

modes behaving like x
−1/2
1 in the waveguide Ω1,

which corresponds to the 2d analogon of the re-
sults in [3].

Now let us consider the expansions of arbi-
trary order m ∈ N. Neglecting terms of order
O(r−3/2−m) or smaller, we conclude that (4a)
can only be satisfied if

Θ
(j+1)
± =

−i

2(j + 1)k0

(
Θ

(j)′′
± + (1

2 + j)2Θ
(j)
±

)
for all j = 0, . . . ,m− 2. And in Ω1 we require

Θ
(1)′′
1 +

(
k2

1 − k2
0

)
Θ

(1)
1 = 0,

Θ
(2)′′
1 +

(
k2

1 − k2
0

)
Θ

(2)
1 = 3ik0Θ

(1)
1 ,

Θ
(j)′′
1 +

(
k2

1 − k2
0

)
Θ

(j)
1 = (2j − 1)ik0Θ

(j−1)
1

− (j − 3
2)(j − 1

2)Θ
(j−2)
1

for all j = 3, . . . ,m, such that (4b) is satisfied.

3 Absorbing boundary conditions

With these expansions and the equations for

Θ
(j)
± and Θ

(j)
1 , j ∈ N0, we can derive local ab-

sorbing boundary conditions at artificial bound-
aries Σ±(R) = {x ∈ Ω± : |x| = R} and Σ1(R) =
{x ∈ Ω1 : x1 = R}.

Due to the standard expansion (3a) in the
top and bottom half-planes Ω±, we find that

the boundary conditions on Σ±(R) are equiv-
alent to Feng’s absorbing boundary conditions
for homogeneous media [2], i.e., we have ( ∂∂r −
A(m)

0 )u± = O(R−3/2−m) on Σ±(R) for all m ∈
N0 with, e.g.,

A(1)
0 = ik0 − 1

2R ,

A(2)
0 = A(1)

0 + i
2k0R2

(
1
4 + ∂2

∂θ2

)
,

A(3)
0 = A(2)

0 + 1
2k20R

3

(
1
4 + ∂2

∂θ2

)
.

In the waveguide, however, the expansion (3b)

is non-standard and we obtain ( ∂
∂x1
−A(m)

1 )u1 =

O(R−3/2−m) on Σ1(R) for all m ∈ N0 with, e.g.,

A(1)
1 = ik0,

A(2)
1 = ik0 − 3

2R ,

A(3)
1 = ik0 + i

2k0

((
k2

1 − k2
0

)
+ 15

4R2 + ∂2

∂x22

)
.

These conditions for the radiative field can be
used to derive boundary conditions for the scat-
tered field by explicitly taking the guided modes
into account.
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Abstract

In this work we construct a local absorbing bound-
ary condition (ABCs) for multiple scattering of time-
harmonic waves. Inspired in a recent work of Grote
and Sim [1] for the time-dependent multiple scatter-
ing, the scattered field is decomposed as the super-
position of purely outgoing wave fields in the exte-
rior of appropriate artificial boundaries. Then, we
employ a truncated Atkinson-Wilcox expansion as
an evaluation formula for the scattered field in the
exterior region to the artificial boundaries. Finally
by matching the exterior scattered field with the in-
terior one at the artificial boundaries, we obtain our
local absorbing boundary condition (ABC) for mul-
tiple scattering. Several computational advantages
by applying this technique have already been dis-
cussed in previous works cited below. An additional
advantage of our approach is its simplicity. For in-
stance, there is no need of deriving an exterior eval-
uation formula. Also, no new auxiliary functions
other than the terms in the Atkinson-Wilcox expan-
sion are required.

Keywords: Multiple scattering, Local absorbing bound-
ary condition, Helmholtz equation

1 Introduction

There are major challenges when numerically solv-
ing multiple scattering problems defined in unbounded
regions using volume discretization methods. One
of this consists of the use of appropriate ABCs on
artificial boundaries that reduce the original unbounded
problem to an equivalent boundary value problem
in a bounded computational domain. Normally, the
scatterer is formed by several obstacles that may be
distant from each other. A common practice con-
sists of choosing an artificial boundary large enough
to enclose all the obstacles. This practice leads to a
large computational domain that may require huge
amount of storage and computer time. In this paper,
we derive a new high-order local absorbing bound-
ary condition for multiple scattering of time-harmonic
waves. As our first step in the derivation process, we
adopt a technique, first introduced by Grote-Kirsch
[3]. This consists of defining artificial boundaries

that only enclose the immediate vicinity of each ob-
stacle. Then, ABCs are imposed at each artificial
boundary which leads to a dramatic reduction of the
discretization region. As a consequence, the com-
putational cost is greatly reduced. In [2] Acosta and
Villamizar used this approach for scattering from
multiple obstacles of arbitrary shape. As in [3], they
imposed a nonlocal Dirichlet-to-Neumann (DtN) ABC
for each artificial boundary enclosing each obstacle.
A disadvantage of this approach is that the matrix
that results from the discretization is partially dense
at boundary points due to the nonlocal nature of the
DtN condition.

The main objective of this work is to derive a
high-order computationally efficient local ABC for
multiple-scattering problems of time-harmonic waves.
Our procedure is similar to recent work by Grote
and Sim [1] for time-dependent multiple scattering
which is based on an exact local ABC first intro-
duced by Hagstrom and Hariharan [4]. We main-
tain the definition of the computational domain used
in [2]. Then, the novel local ABC is obtained by de-
composing the scattered field in the exterior of the
artificial boundaries as the superposition of purely-
outgoing fields which are approximated by truncated
Atkinson-Wilcox expansions [5]. This is followed
by matching the scattered fields inside the artificial
boundary with the one outside, at the interface. As a
result, a new local ABC, which effectively accounts
for the outgoing behavior of the scattered field, as
well as its interaction with the obstacles, is obtained.
Some of the advantages of this approach are that
the matrix that results applying volume discretiza-
tion methods to the scattering problem is sparse,
contrary to the partially dense matrices obtained us-
ing the DtN approach. Also, improving the order
of approximation of the local ABC is simple. It
only requires to incorporate as many terms of the
Atkinson-Wilcox expansion as needed to reach the
desired order.

2 Statement of the problem

We consider J disjoint obstacles each occupying a
simply connected and bounded domain whose bound-
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ary is denoted by Γj for j = 1, 2, ..., J . The open
unbounded region in the exterior of Γj is denoted
by Ωj . Now, we assume that the obstacles are suffi-
ciently separated from each other as to enclose each
one with disjoint artificial boundaries Sj for j =
1, ..., J . These artificial boundaries are assumed to
be spheres. We define Ω−j as the open region bounded
internally by the obstacle boundary Γj and exter-
nally by the artificial boundary Sj . It will become
clear in the following sections, that Ω−j is the com-
putational region to be discretized. The open un-
bounded region in the exterior of Sj is denoted by
Ω+
j so that Sj is precisely the interface between Ω−j

and Ω+
j . Also consider the following definitions,

Ω =
⋂J
j=1 Ωj , Ω− =

⋃J
j=1 Ω−j ,

Ω+ =
⋂J
j=1 Ω+

j and Γ =
⋃J
j=1 Γj .

An incident wave uinc impinges upon the J ob-
stacles. This incident field is assumed to satisfy the
governing Helmholtz equation in Ω with wavenum-
ber k > 0. The total field ut is decomposed as
ut = uinc+usc in Ω+ where usc represents the wave
field scattered by the obstacles. For sake of simplic-
ity, we assume a Dirichlet condition ut = 0 on Γ
but a Neumann condition or Robin-type condition
can also be considered without any obstruction. For
clarity in the presentation, we replace the usual ex-
terior boundary value problem of the scattered field
usc by an equivalent interface problem where the ar-
tificial surfaces Sj become the interface boundaries.
By defining u−sc = usc|Ω− and u+

sc = usc|Ω+ , we
arrive to the following interface problem,

∆u−sc + k2u−sc = 0 in Ω−, (1)

∆u+
sc + k2u+

sc = 0 in Ω+, (2)

u−sc = −uinc on Γ, (3)

lim
r→∞

r
(
∂ru

+
sc − iku+

sc

)
= 0, r = |x|, x ∈ R3.(4)

with the interface conditions, u−sc = u+
sc, and

∂νu
−
sc = ∂νu

+
sc on

⋃J
j=1 Sj , where ∂ν denotes the

derivative in the outer normal direction on each arti-
ficial boundary Sj . The usual unbounded scattering
problem for usc and the above interface problem are
equivalent as shown in [2, Thm 1] .

3 The local ABC for multiple scattering

Our derivation of the multiple absorbing condition
rests upon the following fundamental decomposi-
tion theorem of usc for multiple scattering problems.
Proofs and application of this theorem are found in
various recent works.

Theorem 1. Let u+
sc solve the above interface BVP.

Then, u+
sc can be uniquely decomposed in Ω+ into

purely-outgoing wave fields uj for j = 1, 2, ..., J
such that

u+
sc =

J∑
j=1

uj , in Ω+, (5)

where uj radiates purely from Sj , that is,

∆uj + k2uj = 0 in Ω+
j , (6)

lim
r→∞

r (∂ruj − ikuj) = 0. (7)

First of all, notice from (7) that by purely-outgoing
field uj , we mean a radiating solution to the Helmholtz
equation on all of Ω+

j , including the interior of all
the other obstacles. This suggests a representation
of usc in the exterior region Ω+ by means of a well-
known infinite series described in the next theorem.

Theorem 2 (Atkinson-Wilcox [5]). Let uj for j =
1, 2, ..., J be the purely-outgoing wave fields defined
in Theorem 1. Then,

uj(x) =
eik|xj |

|xj |

∞∑
n=0

Fj,n(x̂j)

|xj |n
, xj = x− cj (8)

where cj is the center of the sphere Sj , and x̂j =
xj/|xj |. If we assume that Sj and Γj are disjoint,
(implying that they are separated by a positive dis-
tance) then the series converges for all x in the re-
gion Ω+

j . The series may be differentiated (any num-
ber of times) term-by-term with respect to x in this
region, and the resulting series all converge abso-
lutely and uniformly.

Moreover, the coefficients Fj,n satisfy the fol-
lowing recursive relation,

2iknFj,n = n(n− 1)Fj,n−1 + ∆SFj,n−1, n ≥ 1, (9)

where ∆S is the Laplace-Beltrami operator on the
unit-sphere S.

The numerical computation requires to use only
a finite number of N terms of the Atkinson-Wilcox
series. By replacing this truncated infinite series in
our interface problem (1)-(4) and its corresponding
interface conditions, we are lead to the following
BVP in the bounded region Ω−,

∆uNsc + k2uNsc = 0 in Ω−, (10)

uNsc = −uinc on Γ, (11)
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along with the local ABC,

uNsc =

J∑
j=1

N∑
n=0

Pnij [Fjn], and (12)

∂νu
N
sc =

J∑
j=1

N∑
n=0

Tnij [Fjn], on Si, (13)

for i = 1, 2, ..., J , which also includes the recursive
formulas

2iknFj,n = n(n− 1)Fj,n−1 + ∆SFj,n−1, (14)

The propagation Pnij and transfer Tnij operators
are defined as follows

Pnij [Fjn](x) =
eik|xj |

|xj |
Fjn(x̂j)

|xj |n
,

Tnij [Fjn](x) = gradx

(
eik|xj |

|xj |
Fjn(x̂j)

|xj |n

)
· νi(x),

for each n = 0, 1, ..., N where cj is the center of the
sphere Sj , xj = x − cj for x ∈ Si, x̂j = xj/|xj |,
and νi(x) is the outer normal vector on the artificial
boundary Si. Due to the spherical separability of
each term in the Atkinson-Wilcox expansion, it is
convenient in practice to express the gradient in the
above formula in spherical coordinates centered at
cj . Hence, if we let (r, θ, φ) be the spherical coor-
dinates centered at cj , we obtain

Tnij [Fjn](r, θ, φ) =
eikr

r

1

rn

[(
ik − n+ 1

r

)
Fjn(θ, φ) (νi · r̂)

+
1

r

∂Fjn(θ, φ)

∂θ
(νi · θ̂) +

1

r sin θ

∂Fjn(θ, φ)

∂φ
(νi · φ̂)

]
, (r, θ, φ) ∈ Si.

Notice that when i = j, the above formula reduces
to

Tnjj [Fjn](r, θ, φ) =
eikr

r

1

rn

(
ik − n+ 1

r

)
Fjn(θ, φ), (r, θ, φ) ∈ Sj .

4 Final Remarks

By truncating the Atkinson-Wilcox expansion at N
terms, an error is introduced. This truncation error
can be easily controlled by including more terms in
the series (8). This is a more convenient procedure
than using the computationally expensive one of en-
larging the radius of the artificial boundary. The
new unknowns introduced also satisfy the recursive
formula (9) which leads to a well-determined sys-
tem of equations.

In the presentation, we will discuss our numer-
ical results for various shapes and configuration of
multiple obstacles.
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PML for Time-Dependent Wave Equation with Highly Oscillating Coefficients
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Abstract

We consider a perfectly matched layers (PML)
method for the wave equation with highly oscil-
lating coefficients in unbounded domain. The
PML approach has proved a flexible and ac-
curate method for the simulation of waves in
unbounded media. We propose a finite element
heterogeneous multiscale method (HMM), which
can be efficiently combined with PML formula-
tion. HMM is based on a finite element dis-
cretization of an effective wave equation at the
macro scale, whose a priori unknown effective
coefficients are computed on sampling domains
at the micro scale within each macro finite el-
ement. The computational work is indepen-
dent of the highly heterogeneous nature of the
medium at the smallest scale. Various numeri-
cal examples illustrate the accuracy and robust-
ness of our method.

Keywords:perfectly matched layers, het-
erogeneous multiscale method, finite ele-
ment

1 Model Problem

We consider a time dependent wave field pε prop-
agating through unbounded space and assume
that all sources and initial disturbances are con-
fined to the rectangular domain Ω = [−`1, `1]×
[−`2, `2], `1, `2 > 0. The waves are purely out-
going in the unbounded exterior R2\Ω. Inside
Ω, the wave field pε(x, t) satisfies

pεtt −∇ · ( aε(x)∇pε) = f in Ω×]0, T [,

pε(x, 0) = p0(x) in Ω,

pεt (x, 0) = p1(x) in Ω,

where aε ∈ L∞(Ω)d×d is symmetric and uni-
formly elliptic and bounded, i.e., ∃λ,Λ > 0 such
that

λ|ξ|2 ≤ aε(x)ξ · ξ ≤ Λ|ξ|2, ∀ξ ∈ Rd and ∀ε > 0.

Here ε represents a small scale, which character-
izes the multiscale nature of aε(x). We assume
that the source term f lies in L2(]0, T [;L2(Ω)),
while p0 ∈ H1

0 (Ω) and p1 ∈ L2(Ω) are pre-
scribed initial conditions.

2 Finite element HMM with PML

Our PML formulation for wave equation with
highly oscillating coefficients is constructed as
follows:

ptt + (ζ1 + ζ2) pt + ζ1 ζ2 p = ∇ · ( aε∇p) +∇ · φ
+ f,

φt + Γ1φ = aε Γ2∇p,
(1)

where the damping matrices, for ζ1, ζ2 ≥ 0,

Γ1 = diag (ζ1, ζ2) , Γ2 = diag (ζ2 − ζ1, ζ1 − ζ2) .

We turn to the finite element heterogeneous mul-
tiscale method [1]. Let TH be a (macro) parti-
tion of Ω in simplicial or quadrilateral elements
K of diameter HK with H = maxK∈TH HK . In
each macro partition, the mesh size H could be
much bigger than the scaling factor ε. For this
partition we define a macro FE space S`0(Ω, TH) =
{vH ∈ H1

0 (Ω); vH |K ∈ R`(K), ∀K ∈ TH}, where
R`(K) is the space P`(K) of polynomials on
K of total degree at most `, if K is a sim-
plex, or the space Q`(K) of polynomials on K
of degree at most ` in each variable, if K a
rectangle. Next we consider a (micro) parti-
tion Th of each sampling domain Kδj in sim-
plicial or quadrilateral elements Q of diameter
hQ and let h = maxQ∈Th hQ. For this parti-
tion we define a micro FE space Sq(Kδ, Th) =
{zh ∈ W (Kδj ); zh|Q ∈ Rr(Q), Q ∈ Th}, where
W (Kδj ) is a Sobolev space whose choice sets
the boundary conditions for the micro problems
and thus determines the type of coupling be-
tween micro and macro problems. Furthermore,
we introduce the following variables inside each
macro element K ∈ TH , that each number are
given by number of quadrature points J : quadra-
ture points xj,K ∈ K, quadrature weights wj,K ,
and sampling domains Kδj = xj,K + δ I, where

I = (−0.5, 0.5)d and δ ≥ ε.
The heterogeneous multiscale Galerkin form for
solving the equation (1) is constructed as fol-
lows:
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Find pH ∈ C0([0, T ];S`0(Ω, TH)) such that, for
vH ∈ S`0(Ω, TH),(

pHtt , v
H
)

+
(
(ζ1 + ζ2) p

H
t , v

H
)

+ (ζ1 ζ2 p
H , vH)

=−BH(pH , vH) + (∇ · φH , vH).

Here we define the discrete bilinear form as

BH
(
pH , vH

)
=
∑
K∈TH

J∑
j=1

wj,K
|Kδj |

∫
Kδj

aε(x)∇phKj · ∇v
h
Kj dx,

(2)

where phKj , v
h
Kj

are micro functions defined on

sampling domainsKδj as in the reference [1] and
|Kδj | is the measure of the sampling domains
Kδj .

We now need to compute the microfunctions
phKj on each sampling domain Kδj for complet-

ing the discretization (2) on every macro ele-
ment K ∈ Th. The discrete micro problem is to
find phKj such that phKj − p

H
lin,Kj

∈ Sqh(Kδj , Th)
and∫
Kδj

aε(x)∇phKj · ∇z
h dx = 0, zh ∈ Sqh(Kδj , Th),

where Sqh(Kδj , Th) is the micro FE space defined
above and

pHlin,Kj (x) = pH(xj,K) + (x− xj,K) · ∇pH(xj,K)

is a piecewise linearization of the macro function
pH ∈ S`0(Ω, TH) at the quadrature point xj,K .
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Abstract

We present high order absorbing boundary con-
ditions (ABC) for the 2D Helmholtz equation
that can adapt to any regular shaped surface.
The new ABCs are derived by using the tech-
nique of micro-diagonalisation to approximate
the Dirichlet-to-Neumann map. Numerical re-
sults on different shapes illustrate the behavior
of the new ABCs along with high-order finite
elements.

Keywords: absorbing boundary conditions,
Helmholtz equation, high-order approximation.

1 Introduction

Local boundary conditions called “absorbing
boundary conditions” (ABC) are often used to
simulate outgoing waves in a artificially trun-
cated numerical domain. The aim of the present
work is to develop high order ABCs for the
Helmholtz equation that can adapt to regular
shaped surfaces.

To obtain efficient conditions, Taylor’s micro-
diagonalisation method (see [1]) can be used for
hyperbolic systems (see [2]). The use of this
technique is followed by an asymptotic trunca-
tion to make the ABC local. During the pro-
cess, while increasing the degree of the pseudo
differential operator decomposition along with
the order of asymptotic truncation, we retrieve
classical ABCs that have been found with other
techniques by other authors (see [3]).

2 General Approach

The Helmholtz equation in local coordinates sys-
tem near the artificial boundary Σ reads:

∂rU = LU (1)

where U = (u, v)t is the vectorial unknown, and
the symbol of the pseudo-differential operator L
is given by

L = σ(L) =

 0 −iω

− iω
c2
− ∂sh

h3
ξ

ω
− ξ2

iωh2
−κr

 (2)

where ξ is the dual variables associated to the
tangent coordinate s, κ(s) is the curvature of
Σ, h = 1 + r κ(s) and κr = κ(s)/h, r being the
radial coordinate.

For a given m ∈ N, our aim is to find a di-
agonal pseudo-differential operator Λ such that

Λ = Λ1 + Λ0 + Λ−1 + . . .+ Λ−m

where σ(Λj) = Dj is homogeneous of degree
exactly j, and a pseudo-differential operator P
such that

P = P0 + P−1 + P−2 + . . .+ P−m−1

where σ(Pj) = Pj is homogeneous of degree j,
so that {

V = PU
(1)⇐⇒ ∂rV = ΛV

When all the operators have an explicit ex-
pression, we end up with a diagonal system. As
the first component of V corresponds to the in-
going wave, and the second component stands
for the outgoing wave, we state that the first
component of V must vanish on the bound-
ary. To obtain a local ABC, we take a Tay-
lor expansion up to an order n with two pos-
sible asymptotics: small “angle of incidence”
(δ = ξ/ω → 0) or “high frequency” (ω →∞).

3 Obtained ABCs

The non-local ABC for m = 1 writes[
1 +

γ

λ1

](
λ1
iω
û+

∂rû

iω

)
+

κω

4iλ21c
2

(
∂rû

λ1
− û
)

= 0

(3)

where λ1 = i
√
k2 − ξ2/h2, k = ω/c and γ is a

parameter that can be arbitrarily fixed.
– Taking the Taylor expansion of order n =

1 in δ, we obtain the following local ABC

(∂rû+ ik û) +
(
γ +

κ

4

)
û+

(
γ − κ

4

) ∂rû

ik
= 0 (4)

We notice that for the specific value γ = κ/4,
we retrieve the classical C-ABC.
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Figure 1: Mesh and reference solution for the star-shaped case (left) and the ellipse case (right)

– Taking the Taylor expansion of order n =
1 in 1/ω, we obtain the following local ABC[

1 +
γ − κ

4

ik

]
∂rû+

[
ik + γ +

κ

4

]
û+

ξ2

2 ik
û = 0 (5)

We notice that only the specific value γ(s) =
κ(s)/4 leads to a symmetric ABC that can be
used in a variational context.

More generally, all the obtained ABCs for
m = 1, 2 and n = 0, 1, 2 can be written under
the following form:[

a0(ik) + a1(ik) iξ + a2(ik) ξ2
]
∂ru

+
[
b0(ik) + b1(ik) iξ + b2(ik) ξ2

]
u = 0

(6)

where the coefficients aj and bj contains param-
eters that have to be fixed. When need is and
when it is possible, specific parameters are used
so that the ABC can be used in a variational
context. A particular choice of the other pa-
rameters may optimize the ABC in terms of L2

error, but a thorough study of their impact has
to be done.

4 Numerical Illustrations

We consider an obstacle in a convex domain
with different ABCs placed on the boundary.
In Fig. 1, two geometries tested are displayed:
a star-shaped obstacle in a circular domain and
an elliptic obstacle placed in an elliptic domain.
Frequency is taken equal to 1Hz. Solutions are
computed with with Galerkin finite elements
Q8. The reference solution displayed on Fig. 1 is
computed with Galerkin finite elements Q8 and
with an artificial boundary carrying a transpar-
ent condition far from the obstacle. Only vari-
ational ABCs are tested and the remaining pa-
rameters are all set equal to κ(s)

4 . Tab. 1 sum-
marizes the relative L2 error of the Dirichlet
trace between the reference solution and each
solution obtained with different ABCs placed
on the boundary.

Table 1: Relative L2-error of the Dirichlet trace
for the ellipse and the star-shaped obstacle

(m,n) asymptotic Ellipse Star

(1, 1) δ 12,70% 8,55%
(1, 1) ω 5,56% 3,03%
(2, 1) δ 12,69% 8,49 %
(2, 1) ω 7,15% 3,31 %
(2, 2) ω 7,31% 1,62 %

References

[1] M.E. Taylor, Reflection of Singularities of
Solutions to Systems of Differential Equa-
tions, Comm. Pure and Appl. Math., vol
28(4), pp 457–478, 1975.

[2] B. Engquist and A. Majda, Absorbing
Boundary Conditions for the Numerical
Simulation of Waves, Math. Comp. ,vol 31,
pp 629–651, 1977.

[3] H. Barucq, M. Bergot, J. Chabassier and
E. Estecahandy, Derivation of high or-
der absorbing boundary conditions for the
Helmholtz equation in 2D, Research Report
RR-8632 Inria Bordeaux, hal-01085180,
2014.



Index of Authors

Acosta, Sebastian, 444
Akagi, Sho, 228
Akhmetgaliyev, Eldar, 326
Almquist, Martin, 268
Alouges, François, 286
Anand, Akash, 184, 296, 341
Antoine, Tonnoir, 282
Appelo, Daniel, 60, 403
Araujo-Cabarcas, Juan C., 304
Arens, Tilo, 298
Arjmand, Doghonay, 194
Arridge, Simon, 77, 206
Assous, Franck, 292
Audibert, Lorenzo, 210
Aussal, Matthieu, 286

Bürgel, Florian, 392
Back, Aurore, 164
Baffet, Daniel, 57
Bakry, Marc, 79
Banjai, Lehel, 142
Banjai, Leherl, 27
Banks, Jeffrey, 49
Barbato, Lucio, 99
Baronian, Vahan, 282
Barseghyan, Diana, 418
Barucq, Hélène, 449
Baskin, Dean, 182
Becache, Eliane, 158, 355
Beck, Geoffrey, 378
Begleris, Ioannis, 385
Belle, Lucas Van, 138
Bellis, Cedric, 103
Bendali, Abderrahmane, 260
Bennetts, Luke, 145
Berggren, Martin, 430, 432
Bergot, Morgane, 449
Beriot, Hadrien, 335
Bertrand, Pierre, 164
Betcke, Timo, 77, 206, 288
Bielak, Jacobo, 57
Bohlen, Thomas, 122
Bonnet, Marc, 230, 394
Bonnet-Ben Dhia, Anne-Sophie, 180, 190, 282,

368, 380

Bruno, Oscar, 186, 326
Buchholz, Simone, 310

Cakoni, Fioralba, 248, 272
Calandra, Henri, 82
Carvalho, Camille, 190, 380
Cassier, Maxence, 240
Chabassier, Juliette, 116, 264, 449
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