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Abstract

We formulate a local absorbing boundary con-
dition (ABC) for multiple scattering of time–
harmonic waves in two dimensions. We start
from the framework used in Grote–Kirsch [2] to
decompose the scattered field as the superposi-
tion of purely outgoing wave fields in the exte-
rior of appropriate artificial boundaries. Then
following our approach from [1], we employ a
truncated Karp’s expansion (with its recursive
equations) as an evaluation formula for the scat-
tered field in the exterior region to the artifi-
cial boundaries. By matching the Cauchy data
of the exterior scattered field with the interior
field at the artificial boundaries, we obtain a lo-
cal ABC for multiple scattering. Including more
terms from Karp’s expansion increases the or-
der of approximation of the proposed ABC. The
formulation is completely local, requiring only
second order tangential derivatives on the arti-
ficial boundary.

Keywords: Multiple scattering, nonreflecting
boundary conditions, Helmholtz equation.

1 Introduction

This work is concerned with the formulation
of appropriate ABCs on artificial boundaries
needed to truncate unbounded domains and ap-
ply numerical methods for wave scattering prob-
lems. Sometimes the scatterer may be formed
by several obstacles that could be distant from
each other. Choosing an artificial boundary,
large enough to enclose all the scatterers, leads
to an unnecessarily large computational domain
and non–optimal use of computational resources.

In this work, we derive a new local ABC
for multiple scattering of time–harmonic waves
in two dimensions. As our first step in the
derivation process, we adopt a technique, first
introduced by Grote–Kirsch [2]. This consists of
defining artificial boundaries that only enclose
the immediate vicinity of each obstacle. Then,
ABCs are imposed at each artificial boundary

which leads to a dramatic reduction of the dis-
cretization region. As a consequence, the com-
putational cost is greatly reduced. In [2], they
imposed a nonlocal DtN–type condition on each
artificial boundary. The DtN approach provides
an exact analytical formula to evaluate fields
outside of the computational domain in order
to propagate the waves from one sub–domain
to another. However, a disadvantage of this
approach is that the matrix that results from
the discretization is partially dense at bound-
ary points due to the nonlocal nature of the
DtN–map.

Our local ABC is obtained by representing
the purely–outgoing fields in terms of the Karp’s
expansion [3] which avoids the nonlocal eigen-
function representation from [2]. Using Karp’s
representation, we can evaluate wave fields semi–
analytically at a distance in order to match the
Cauchy data of the scattered field across the
artificial boundaries. As a result, we obtain
a new local ABC, which e↵ectively accounts
for the outgoing behavior of the scattered field,
as well as its interaction between the obsta-
cles. The matrix that results from applying dis-
cretizations to the scattering problem is sparse,
contrary to the partially dense matrix obtained
using the DtN approach. Also, improving the
order of approximation of the local ABC is sim-
ple. It only requires to incorporate as many
terms of the Karp’s expansion as needed to reach
the desired order.

2 Statement of the problem

We consider J disjoint obstacles each occupying
a bounded domain with boundary �j . The un-
bounded region in the exterior of �j is denoted
by ⌦j . Now, we assume that the obstacles are
su�ciently separated from each other as to en-
close each one with disjoint artificial boundaries
Bj for j = 1...J . These artificial boundaries are
assumed to be circles. We define the computa-
tional sub-domains ⌦�

j as the region bounded
internally by the obstacle boundary �j and ex-
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ternally by the artificial boundary Bj . The un-
bounded region in the exterior of Bj is denoted
by ⌦+

j so that Bj is precisely the interface be-

tween ⌦�
j and ⌦+

j . Also consider the following
definitions,

⌦ =
TJ

j=1⌦j , ⌦� =
SJ

j=1⌦
�
j ,

⌦+ =
TJ

j=1⌦
+
j and � =

SJ
j=1 �j .

For sake of simplicity, we assume a Dirich-
let condition usc = �uinc on �, where uinc is an
incident field, and usc is a radiating solution to
the Helmholtz equation in ⌦. For clarity, we
replace the BVP for usc by an equivalent in-
terface problem where the artificial surfaces Bj

become the interfaces. By defining u�sc = usc|⌦�

and u+sc = |⌦+ , we arrive to the following inter-
face problem,

�u�sc + k2u�sc = 0 in ⌦�, (1)

�u+sc + k2u+sc = 0 in ⌦+, (2)

u�sc = �uinc on �, (3)

lim
r!1

r1/2
�
@ru

+
sc � iku+sc

�
= 0, (4)

with the interface conditions,

u�sc = u+sc, and @⌫u
�
sc = @⌫u

+
sc (5)

on
SJ

j=1Bj .

3 The local ABC for multiple scattering

Our derivation of the multiple absorbing con-
dition rests upon the following fundamental de-
composition theorem of u+sc for multiple scatter-
ing problems.

Theorem 1 Let u+sc solve the above interface
BVP. Then, u+sc can be uniquely decomposed in
⌦+ into purely–outgoing wave fields uj for j =

1, 2, ..., J such that u+sc =
PJ

j=1 uj in ⌦+, where

uj is a wave field in ⌦+
j radiating from Bj.

We note that by purely–outgoing field uj , we
mean a radiating solution to Helmholtz equa-
tion in all of ⌦+

j , including the interior of all the
other obstacles. This suggests a representation
of uj in ⌦+

j as described in the next theorem.

Theorem 2 (Karp [3]) Let uj for j = 1, 2, ..., J
be the purely–outgoing wave fields defined in The-
orem 1. Then,

uj(x) = H0(k|xj |)
1X

n=0

Fj,n(x̂j)

|xj |n

+H1(k|xj |)
1X

n=0

Gj,n(x̂j)

|xj |n
,

where xj = x�cj and cj is the center of Bj, and
x̂j = xj/|xj |. Here H0 and H1 are the Hankel
functions of the first kind of order zero and one,
resp. Moreover, the coe�cients Fj,n and Gj,n

satisfy the following recursive relations ,

2nGj,n = (n� 1)2Fj,n�1 + d2✓Fj,n�1,

2nFj,n = �n2Gj,n�1 � d2✓Gj,n�1,

for n � 1. Also Fj,0(x̂j) = Fj,0(�x̂j) (podal)
and Gj,0(x̂j) = �Gj,0(�x̂j) (antipodal).

The numerical computation requires to use
only a finite number N of terms from Karp’s
series. We obtain the proposed local ABC by
replacing this truncated series in our interface
problem (1)–(5) along with the recursive formu-
las from Theorem 2 and the fact that Fj,0/Gj,0

is podal/antipodal.
We note that by truncating Karp’s expan-

sion at N terms, an error is introduced. This
truncation error can be easily controlled by in-
cluding more terms in the series. The new un-
knowns introduced also satisfy the recursive for-
mula from Theorem 2 which leads to a well–
determined system of equations. In other words,
this extended BVP provides enough equations
to fully determine the unknowns: u�sc, Fj,n, Gj,n

for j = 1, ..., J and n = 0, 1, ...N�1. In the pre-
sentation, we will discuss our numerical results
for various shapes and configurations of multi-
ple obstacles.
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Abstract

It is well-known that generalized Haar wavelets
can precondition the single layer operator. This
means that these functions are suitable for regu-
larizing the scalar potential part of the electric
field integral equation (EFIE). Unfortunately,
however, a dual Haar basis is not regular enough
to regularize the vector potential part of the
EFIE if used in a naive way. In this work, we
address this issue by leveraging on an explicit
inverse of the dual Haar wavelet transformation
matrix and on the scalar Calderón identity. We
can prove that this strategy gives rise to a quasi-
optimal preconditioner, i.e., the condition num-
ber grows polylogarithmically in the number of
unknowns. Numerical results demonstrate the
e↵ectiveness of our approach.

Keywords: Integral equations, Haar wavelets,
preconditioning

1 Introduction

Integral operators such as the single layer, the
hypersingular operator, or the electric field inte-
gral equation (EFIE) operator used for the for-
mulation of acoustic and electromagnetic prob-
lems give rise to ill-conditioned systems when
discretized with a singlescale basis, that is, the
condition number of the system matrix grows
when the average mesh size h is decreased.

Multiscale bases are a well-known remedy
for the ill-conditioning that have been success-
fully applied in the past [1–4]. When piecewise
constant basis functions are admissable as sin-
glescale basis (e.g., for the single layer oper-
ator), multiscale bases can be constructed for
any mesh (a typical example are Haar wavelets
shown in [5]). When a minimum of piecewise
linear regularity is required for the singlescale
basis, multiscale bases have only been shown for
structured meshes, that is, meshes that are ob-
tained by refining an initial mesh structuredly
[2] (e.g., a structured refinement is obtained by
connecting the midpoints of the edges of the tri-

angles of a mesh). Disadvantages of this strat-
egy are that the condition number is at least
as large as the condition number obtained from
a discretization of the operator on the initial
mesh, which can still be prohibitively large, and
that a structured refinement does not allow to
reduce the geometrical modelling error.

In this work, we show that Haar wavelets
can be applied to the hypersingular operator,
which requires at least piecewise linear basis
functions for its discretization. To this end,
we construct dual Haar wavelets using black-
box graph partitioning schemes (such as METIS
[6]), which di↵erently from primal Haar wavelets
are constructed on the dual mesh. For the hy-
persingular operator, the preconditioner is ob-
tained by using an explicit inverse Haar wavelet
transformation matrix and the Calderón iden-
tities. We can show that in the case of the hy-
persingular operator the condition number has
a O �

log2 (1/h)
�
behavior. Using a combination

of primal and dual Haar wavelets, we can obtain
a preconditioner for the EFIE [7].

2 Formulation

Let � describe the surface of a closed domain
⌦. We define the single layer operator

V� =

Z

�

1

4⇡|r � r0|�(r
0)dS(r0) (1)

and the hypersingular operator

W� = n̂r·r⇥
Z

�

1

4⇡|r � r0|r
0⇥n̂r0�(r0)dS(r0) ,

(2)
where n̂r denotes the surface normal at r. For
simplification, we consider the modified hyper-
singular operator Ŵ : H1/2 ! H�1/2 defined
by the bilinear form

⇣
v, Ŵw

⌘

L2
:= (v,Ww)L2 + (1, w)L2 (1, v)L2

(3)
for all w, v 2 H1/2(� ).
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Let epi 2 Xp denote the dual piecewise con-
stant functions (i.e., these functions are defined
on the cells of the dual mesh) and �i 2 X� de-
note primal piecewise linear functions. Using a
Galerkin approach we obtain the system matrixh
eV
i

ij
= (epi,Vepj)L2 and

⇥
Ŵ

⇤
ij
=

⇣
�i, Ŵ�j

⌘

L2
.

Let H be the transformation matrix that
maps the expansion coe�cients of a function
represented by Haar wavelets to the expansion
coe�cients of a function represented by epi func-
tions, and we define the diagonal rescaling ma-
trix

⇥
D
⇤
ii
= 2�l(i)/2, where l(i) returns the level

on which the associated Haar function is de-
fined. Then following [5], we have

cond
�
DHTV HD

�
. log2 (1/h) , (4)

where a . b means that there is a constant C
independent from h such that a . Cb holds.

We define the mixed Gram matrix
⇥
G�ep

⇤
ij
=

(�i, epj)L2 . Then we can show the following pro-
position.

Proposition 1 We find that

cond
⇣
D�1H�1G�1

�ep ŴG
�T
�ep H

�TD�1
⌘

. log2 (1/h) (5)

holds.

This statement can be proven after some ma-
nipulation starting from the discretized scalar
Calderón identity [8]

xTeV x ⇣ xTGT
�epŴ

�1G�epx , 8x 2 RNVertices .
(6)

We notice that H�1 is a sparse matrix that can
be computed as

H�1 =
�
HTGepepH

��1
HTGepep (7)

in quasilinear complexity, with the Gram ma-
trix

⇥
Gepep

⇤
ij
= (epi, epj)L2 since the Haar wavelets

are compactly supported and wavelets from dif-
ferent levels are orthogonal so that HTGepepH is
block diagonal. For the EFIE, one would rather
preconditionW than Ŵ . In this case, one would
eliminate the constant Haar wavelet, which sp-
ans the entire geometry, so that H becomes a
rectangular matrix. Still, the right hand side
in (7) can be used to obtain a pseudo-inverse.

Using a combination of primal Haar wavelets
and the proposed dual inverse Haar wavelet tr-
ansformation, we can also obtain a precondi-
tioner for the EFIE as it will be shown during
the talk [7].

References

[1] P. Oswald, Multilevel Finite Element Ap-

proximation. Teubner, 1994.

[2] R. Stevenson, “Piecewise Linear (pre-)
Wavelets on Non-Uniform Meshes,” Multi-

grid Methods V, pp. 306–319, 1997.

[3] H. Harbrecht, U. Kähler, and R. Schneider,
“Wavelet Galerkin BEM on Unstructured
Meshes,” Computing and Visualization in

Science, vol. 8, no. 3-4, pp. 189–199, 2005.

[4] F. P. Andriulli, A. Tabacco, and G. Vec-
chi, “Solving the EFIE at Low Frequencies
with a Conditioning That Grows Only Loga-
rithmically with the Number of Unknowns,”
IEEE Transactions on Antennas and Prop-

agation, vol. 58, no. 5, pp. 1614–1624, May
2010.

[5] P. Oswald, “Multilevel Norms for H�1/2,”
Computing, vol. 61, no. 3, pp. 235–255, Sep.
1998.

[6] G. Karypis and V. Kumar, “A Fast and
High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs,” SIAM Journal

on Scientific Computing, vol. 20, no. 1, pp.
359–392, 1998.

[7] S. Adrian, F. Andriulli, and T. Eibert, “A
Hierarchical Preconditioner for the Electric
Field Integral Equation on Unstructured
Meshes Based on Primal and Dual Haar
Bases,” Journal of Computational Physics,
vol. 330, pp. 365–379, Feb. 2017.

[8] O. Steinbach and W. L. Wendland, “The
Construction of Some E�cient Precondi-
tioners in the Boundary Element Method,”
Advances in Computational Mathematics,
vol. 9, no. 1-2, pp. 191–216, 1998.



WAVES 2017, Minneapolis

Solving the Homogeneous Isotropic Linear Elastodynamics Equations Using Potentials.
The Case of the Free Surface Boundary Condition
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Abstract

We consider the numerical solution of 2D elasto-
dynamics isotropic equations using the decom-
position of the displacement fields into poten-
tials. This appears as a challenge for finite ele-
ment methods. We address here the particular
question of free boundary conditions. A stable
(mixed) variational formulation of the evolution
problem is proposed based on a clever choice of
Lagrange multipliers.

Keywords: Elastic waves, Numerical schemes.

1 Motivation and model problem

Two types of waves propagate in an isotropic
elastic material: pressure waves, with velocity
VP and shear waves, with velocity VS < VP . We
wish to solve numerically elastodynamics equa-
tions using scalar potentials: this is expected to
be e�cient when VS << VP since one can adapt
the discretization to each type of waves.

The case of rigid boundary conditions was treated
in [1] but surprisingly, the naive extension of the
method led to severe time instabilities. We pro-
pose below a solution to this problem.

Let ⌦ ⇢ R2 with @⌦ = �D [ �N with �N is
parametrized by a curvilinear abscissa ⌧ . De-
fine

V = {v 2 H1(⌦)2,v|�D = 0}.
LetA be the elasticity operator (curl (resp. curl)
is the scalar (resp. vector) rotational)

Au = �V 2
P r divu+ V 2

S curl curlu.

We search u 2 C1(R+;V )\C0(R+;D(A)) with

D(A) = {u 2 V, Au 2 L2(⌦)2,�(u)n|�N = 0}

with �(u)n := (V 2
P � 2V 2

S ) divun+ 2V 2
S "(u)n

and "(u) the strain tensor.
The evolution problem reads

@2t u+Au = 0, (1)

completed with initial data (u0,u1).

2 Potential Formulation

We define � = ('P ,'S)t such that

@t'P := V 2
P divu and @t'S := �V 2

S curlu,

so that it results from (1) that

@tu = r'P + curl'S in ⌦⇥ R+. (2)

Taking the div and curl of (2), we get

@2t 'P � V 2
P �'P = 0 in ⌦⇥ R+, (3)

@2t 'S � V 2
S �'S = 0 in ⌦⇥ R+. (4)

Moreover from equation (2) we see that

�(t) =
�
'P (t),'S(t)

�t
,

should be looked for in (below  = ( P , S)t)

W =
�

2 L2(⌦)2,r P + curl S 2 L2(⌦)2

i.e. W = H(div;⌦) \ H(curl;⌦), which is a
Hilbert space equipped with its natural norm.

Theorem 1 The field � 2 C1(R+;W 0), where

W 0 =
�

2 W,

Z

�N

⇥ n d⌧ =

Z

�N

· n d⌧ = 0
 
,

is a closed subspace of W and � satisfies,

d2

dt2
m(�(t), )+a(�(t), ) = 0, 8 2 W 0, (5)

with a(�, ) the symmetric positive bilinear form

a(�, ) =

Z

⌦
[r'P + curl'S ] · [r P + curl S ]

and m(�, ) the symmetric bilinear form

m(�, ) = m⌦(�, ) + mN (�, )

with m⌦(�, ) = V �2
P

Z

⌦
'P  P+V �2

S

Z

⌦
'S  S ,

and mN (�, ) =
1

2V 2
S

h
h�, iN+h ,�iN

i
where

h�, iN :=

Z

�N

⇣Z ⌧

0
� · n

⌘
⇥ n d⌧.



WAVES 2017, Minneapolis

The major problem with the variational prob-
lem (5) is that m(·, ·) has indefinite sign in W 0.
This explains why natural Galerkin discretiza-
tions lead to the instabilities observed in [1].

3 A well-posed variational formulation

In order to get a stabilized version of (5), it ap-
pears su�cient to restrict the space in which the
solution � is sought to an adequate subspace of
W 0. To characterize this subspace we introduce
the operator

T : W 0 �! W 0

('P ,'S)t 7!
�
V 2
P divv,�V 2

S curlv
�t

with v 2 D(A) the unique solution of the elas-
tostatic problem �Av = r'P + curl'S .

Lemma 2 T is a bounded linear projector, i.e.

T 2 = T and one has the decomposition

W 0 = W 0
N � Ker T , W 0

N = Ker(I � T ).

Note that in the result below the decomposition
is not orthogonal for the natural scalar product
in W 0 (see however lemma 6). The space W 0

N
plays a special role because of the following re-
sults.

Lemma 3 The potentials satisfy @t� 2 W 0
N .

This lemma allows us to prove that

Theorem 4 The problem (5) is equivalent to

Find � 2 C1(R+;W 0
N ) / 8  2 W 0

N ,

d2

dt2
m(�(t), ) + a(�(t), ) = 0.

(6)

Fnally, the fact that (6) is now a nice well-posed
variational problem results from the

Lemma 5 There exists c > 0 such that

c k k2L2(⌦)2  m( , ), 8 2 W 0
N .

4 Numerical approximation

Lemma 5 guarantees the stability of any Galer-
kin approximation of (6). The problem from a
numerical point is that it is di�cult to build
a good Galerkin approximation space (such as
a finite element space) of W 0

N . Therefore the
approach we suggest is to look for � in W 0,
which admits nice approximation finite element
spaces, and to enforce that the solution belongs

to W 0
N by introducing an appropriate Lagrange

multiplier. This strategy is based on the follow-
ing result which says that the decomposition of
lemma 6 is “orthogonal”with respect to the bi-
linear form m(·, ·):

Lemma 6 If (�, ) 2 W 0
N ⇥Ker T , m(�, ) =

0. Furthermore, if � 2 W 0
is such that

8  2 Ker T , m(�, ) = 0,

then � 2 W 0
N .

As a consequence, the variational problem (6)
is equivalent to the mixed variational problem :
find (�(t),�(t) ) : R+ ! W 0 ⇥Ker T such that
for any ( , µ) 2 W 0 ⇥Ker T

8
>>>><

>>>>:

d2

dt2
m(�(t), ) + a(�(t), )

+ m(�(t), ) = 0,

m(�(t), µ) = 0.

(7)

One is thus reduced to find a good approxima-
tion space for Ker T , which is easier than for
W 0

N thanks to the following

Lemma 7 The space Ker T is isomorphic to

H�1/2(@⌦). Moreover the isomorphism is known

explicitly and easy to approximate with finite el-

ements.

As a consequence, one constructs a basis for a
Galerkin subspace of Ker T from the basis of a
standard finite element approximation space for
H�1/2(@⌦).

The implementation of the corresponding nu-
merical method is in progress. Numerical re-
sults will be presented at the conference.
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asymptotiques pour la traversée de couches
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Abstract

We introduce a metric-based anisotropic mesh
adaptation strategy for the fast multipole accel-
erated boundary element method (FM-BEM)
applied to exterior boundary value problems of
the three-dimensional Helmholtz equation. The
present methodology is independent of discretiz-
ation technique and iteratively constructs mesh-
es refined in size, shape and orientation accord-
ing to an “optimal” metric reliant on a recon-
structed Hessian of the boundary solution. The
resulting adaptation is anisotropic in nature and
numerical examples demonstrate optimal con-
vergence rates for domains that include geomet-
ric singularities such as corners and ridges.

Keywords: acoustic scattering, boundary el-
ement methods, anisotropic mesh adaptation,
fast multipole method

1 Introduction

We consider the scattering of an incident acous-
tic field ui(x) (characterized by the wavenumber
k) by a bounded domain ⌦ ⇢ R3 with boundary
� = @⌦ and unit normal n outward to ⌦. The
corresponding scattered field us(x) exterior to
the obstacle is a solution to the time-harmonic
scalar wave equation

r2us + k2us = 0 x 2 R3\⌦ (1)

satisfying either Dirichlet (i.e. us = �ui) or
Neumann (i.e. @us/@n = �@ui/@n) boundary
conditions on �, as well as the Sommerfeld radi-
ation condition at infinity. Problems can be for-
mulated as boundary integral equations (BIEs)
whose corresponding numerical solutions are con-
structed by boundary element methods (BEMs).
The main advantages of BEMs is that their for-
mulations exactly account for the radiation con-
ditions and restrict the discretization of the do-
main to that of the boundary alone. Standard
BEMs, however, lead to dense and (possibly)
nonsymmetric linear systems whose solutions
become prohibitively expensive for large-scale

problems. Fast multipole methods (FMM) over-
come this drawback by enabling drastic reduc-
tion in solution time and memory requirements.

Further improvements of accuracy and com-
putation time can be made by employing adapt-
ed meshes. Such strategies optimize the place-
ment of the degrees of freedom to better capture
solutions with anisotropic features as well as
discontinuities in the acoustic field near geomet-
ric singularities such as corners or ridges. Fewer
studies on these strategies have been made for
BEMs, and most current BEM adaptation strate-
gies, like those relying on Dörfler marking, have
been confined to isotropic techniques. These
methods are unable to recover optimal orders of
accuracy and have been restrictive to Galerkin
discretization techniques as well as the partic-
ular underlying equations. The focus of this
work is to introduce and extend an anisoptropic
mesh adaptivity strategy [3] in the context of
FM-BEM that addresses these issues by using
a metric-based error estimator whose e↵ective-
ness has been demonstrated for volumetric (fi-
nite element) methods but not for BEMs.

2 Metric-based mesh adaptation

To find an optimal mesh that achieves a desired
level of accuracy and convergence we use the
following iterative procedure:

Coarse initialization step. Generate an initial
uniform mesh Ti = T0 with Ni = N0 vertices for
the surface �. The parameter N0 can be cho-
sen, for example, by requiring elements to have
widths of approximately �/2 (where � = 2⇡/k).

Step 1. Compute a BEM approximation usNi
on

the mesh with boundary element basis functions
{ j}Ni

j=1.

Step 2. Associate with Ti a Riemannian metric
space M = (M(x))

x2�, where M is the met-
ric tensor whose value at each vertex dictates
the size and orientation of adjacent elements
upon adaptation. Defining ûs to be the second-



WAVES 2017, Minneapolis

order Taylor expansion of the exact solution us

around a mesh vertex, ⇧Nus the linear inter-
polant of us on the mesh Ti with elements K,
we extend to the use of boundary solutions the
results of [3] so that the total interpolation error

X

K2Ti

||ûs �⇧Nus||L2(K)  2

Z

�

trace
⇣
M� 1

2HM� 1
2

⌘
d�

(2)
is minimized by a mesh generated by the metric

ML2 = N

✓Z

�
det(|H|) 1

3

◆�1

det(|H|)� 1
6 |H|. (3)

Here, H is a symmetric matrix representing the
Hessian of us and is computed at a vertex from
the approximate solution usN by the expression

(H)ij = � 3

|K|
X

K2Ti

✓
@us

N

@xi

◆

K

Z

K

@ k2K

@xj
dx. (4)

Step 3. Construct a new mesh Ti+1 with ver-
tices Ni+1 = 2Ni that is quasi-unit with respect
to the optimal metric computed from (3), i.e.
seek triangles K with edges {ei}3i=1 such that
1p
2
 ||ei||M  p

2, i = 1, 2, 3 and |K|M '
p
3
4 .

Step 4. Iterate over Steps 1-4 until a specified
maximum number of vertices N is surpassed.

3 Validation of the adaptive mesh strat-

egy with numerical examples

The proposed strategy constructs adapted me-
shes that can recover optimal convergence rates
for domains with corners and ridges. Figure 1
shows a mesh after four adapting iterations–
with clear refinement at the edges–for the ex-
terior Dirichlet problem of the scattering of an
incident plane-wave (k = 5) by a cube with a
cavity. The Hessian and metric tensor of Step
2 are computed by METRIX [3] and the mesh
construction of Step 3 by the AMG library [4].
The approximate solution in Step 1 employs a
P1-element discretization for a BEM whose ef-
ficient solution is facilitated by the fast multi-
pole method [5]. The relative L2-errors for the
scattered field with varying degrees of freedom,
depicted in Figure 2, indicate a reduced con-
vergence order for a uniform refinement due to
edge singularities of the obstacle. On the other
hand, the anisotropic refinement is shown to re-
cover the optimal convergence rate of O �

n�1
�
.

Figure 1: Adapted mesh at the fourth step of
adaptation for the cube with cavity.
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Figure 2: Relative L2-errors for uniform and
anisotropic refinement of the example.
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Abstract

We present a spectral numerical algorithm for
the fast solution of elastodynamics problems in
general 3D domains based on a FFT-speed Four-
ier Continuation (FC) approximation for accu-
rate Fourier expansion of non-periodic functions.
The high-order methodology yields physically
correct solutions including those with traction
conditions on curved boundaries. The approach
is essentially without dispersion errors; entails
mild CFL constraints; runs at a cost scaling lin-
early with discretization size; and can be e�-
ciently parallelized for computing clusters.

Keywords: Fourier Continuation, elastic wave
equation, high-performance numerical methods

1 Introduction

This work considers the propagation of elastic
waves in a linear, isotropic, possibly heteroge-
neous medium contained in a general domain
⌦ 2 R3 and governed by the Navier equation

⇢(x)utt(x, t) = r ·
h
µ(x)

⇣
ru(x, t) +ru

T
(x, t)

⌘

+ �(x) (r · u(x, t)) I
i
+ f(x, t)

(1)

for position and displacement vectors x and u;
Lamé parameters µ(x), �(x); density ⇢(x); and
a given vector of body forces f(x, t). Initial con-
ditions u(x, t0), ut(x, t0) are prescribed at ini-
tial time t = t0, and the boundary @⌦ is parti-
tioned as a union @⌦ = �D [�T of two surfaces
�D and �T upon which boundary displacements
and boundary tractions,

u = c(x, t) on �D and

� · n = d(x, t) on �T ,

are prescribed, where n is the inward unit nor-
mal and � is the (symmetric) stress tensor for
an isotropic medium.

2 Methodology

Accelerated FC(Gram). The FC method [1, 2]
enables high-order convergence of Fourier series

approximations of non-periodic functions by re-
solving the Gibbs “ringing” e↵ect, extending
the applicability of classical Fourier-based PDE
solvers (together with their inherent qualities,
e.g. limited dispersion, high-order accuracy and
mild CFL conditions) to problems with general
domains and boundary conditions. Given point
values f(xi) of a function f : [0, 1] ! R on a
uniform grid xi = i/(N � 1), i = 0, . . . , N � 1,
the FC method produces a rapidly-convergent
interpolating Fourier series representation f

c :
[0, b] ! R on a region [0, b] larger than the phys-
ical domain [0, 1] as

f

c(x) =
MX

k=�M

ake
2⇡ikx

b s.t. f c(xi) = f(xi), (2)

for suitably chosen FC-parameters M (band-
width) and b > 1 (interval length). The b-
periodic continuation function f

c is an approx-
imate periodic extension of f that closely ap-
proximates f in [0, 1]. Derivatives for a PDE
solver can be then produced with high-order
accuracy by term-wise di↵erentiation. We base
the construction of (2) on a “biased-order” tech-
nique [1] that uses numbers d` and dr of function
values near the left and right endpoints 0 and 1,
together with projections of the corresponding
vectors of function values onto a Gram poly-
nomial basis—whose continuations are precom-
puted by means of high-precision linear algebra
methods. This is then extended to a form suit-
able for use in traction conditions [2].

Geometry and parallelization. Physically real-
istic configurations with curved geometries are
treated by an overset method [3] that decom-
poses ⌦ into a union ⌦ =

S
j ⌦j of a finite num-

ber of overlapping, boundary-conforming curvi-
linear patches–endowed with uniform Cartesian-
like discretizations–within each one of which a
curvilinear formulation of (1) is evolved. In-
formation is exchanged via interpolation, and
sharp corners and edges are approximated by
rounded patches. Further decomposition of each
patch ⌦j into mutually disjoint sub-patches, to-



WAVES 2017, Minneapolis

gether with the use of certain “line-segmented”
FC operators (which produce very e�cient cal-
culation of the corresponding optimally-sized dis-
crete Fourier transforms), enables a paralleliza-
tion for distributed-memory computing environ-
ments that achieves excellent scalability [2].

3 Numerical experiments

These examples utilize an explicit fourth-order
Adams-Bashforth scheme (AB4) in time and a
fixed number of 25 discrete points in the pe-
riodic extension to construct continuations for
fourth-order Gram polynomials (d`, dr = 5). Fur-
ther parameters and studies are detailed in [2].

A convergence study. A solid cylinder composed
of two patches is prescribed with body forces
and traction boundary conditions correspond-
ing to a known solution (see [2]). The table be-
low reports the max errors in displacement over
all time and space, where fifth-order accuracy
can be appreciated.

N (patch ⌦1) N (patch ⌦2) L1
err O(L1

err)

27,000 72,000 2.82e-03 —

216,000 576,000 8.29e-05 5.09

729,000 1,944,000 9.37e-06 5.38

1,728,000 4,608,000 2.00e-06 5.37

A parallel performance study. The table below
reports errors and CPU-seconds per million un-
knowns (denoted S) for propagation in a 3D
aluminum plate with a circular hole modeled by
six di↵erent curvilinear patches. Nearly perfect
scalability is achieved as the number of cores is
increased for a fixed number of grid points.

# grid pts # cores L1
err S

3,033,360 240 7.89e-3 1.51 sec

— 360 7.98e-3 1.55 sec

— 480 8.32e-3 1.45 sec

A dispersion study. Plane-waves of various num-
bers W of wavelengths are advanced through
a 3D aluminum plate with traction boundary
conditions. Figure 1 shows the max errors over
all space and over one full temporal cycle (de-
fined as the time required for any one crest to
travel the length of the plate) of the solution for
increasing W . For each fixed number of points-
per-wavelength (PPW), the accuracy of the FC
solver remains essentially constant, suggesting
that the use of large numbers of sub-domains
and sub-patches does not give rise to significant
dispersion (up to 512 cores are employed for the
highest values of W ).

101 102
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100

# of wavelengths

L�
 e

rro
r
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Figure 1: Errors over a cycle for varying W .
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Figure 2: Simulated response of an earthquake.

A classical seismology problem. Wave amplifi-
cation by a 180m hill in a 3D region impacted
by an incident shear (S-)wave is depicted in
the seismogram of Figure 2 using the FC-based
elasticity solver and a traction-free boundary
condition at the surface. The high-definition
solutions are constructed in 58 seconds on 96
cores of a high-performance cluster using just
shy of 150,000 volumetric discretization points–
significantly coarser than a high-order spectral
element method (4,935,953 points) and a stable
di↵erence method (109,808,412 points) [2].
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Abstract

A two-dimensional COMSOL model was devel-
oped to simulate the optoelectronic properties
of amorphous silicon, thin-film, p-i-n junction,
solar cells. The i-layers were periodically non-
homogeneous in the thickness direction, while
the p-layer was backed by a periodically corru-
gated metallic back reflector. The charge car-
rier generation rate was calculated using the
frequency-domain Maxwell postulates. Steady-
state drift-diffusion equations were solved to cal-
culate the current density-voltage curve. Use of
a periodically corrugated back reflector and the
inclusion of a periodic bandgap profile increased
total efficiency by up to 17% compared to solar
cell without these features.

Keywords: COMSOL modelling, Hydro-

genated Amorphous Silicon, Nonhomoge-

neous, Optoelectronic, Periodic Grating,

p-i-n Junction, Solar Cell, Surface Plas-

mon-Polariton, Thin Film, Simulation

1 Background

A periodic back reflector (PBR) [1] can cou-
ple incident light to surface-plasmon-polariton
(SPP) waves [2] and waveguide modes [3] in so-
lar cells. If the solar cell has periodically varying
dielectric properties in the thickness direction,
multiple SPP waves and waveguide modes can
be excited at a multitude of free-space wave-
lengths [4]. This phenomenon can increase pho-
tonic absorption and, therefore, electron-hole-
pair generation.

By changing the amount of carbon or germa-
nium included, hydrogenated amorphous silicon
(a-Si:H) alloys with a bandgap Eg ∈ (1.3, 1.95)
can be produced. The bandgap can be related
to a complex-valued optical permittivity spec-
trum via function that is Kramers-Kronig con-
sistent [5]. A bandgap that is periodically non-

homogeneous may also facilitate charge-carrier
extraction and reduce electron-hole recombina-
tion [6].

A two-dimensional optoelectronic model [7]
was developed in COMSOL [8] to simulate the
total efficiency of these a-Si:H, p-i-n junction,
solar cells. First, the optical charge-carrier gen-
eration profile is calculated by employing the
frequency-domain Maxwell postulates. Next,
steady-state drift-diffusion equations are solved
to calculate the current density-voltage charac-
teristics.

2 Model Design

The solar cell design presented in this paper-
comprises a nonhomogeneous a-Si:H p-i-n junc-
tion between an aluminium zinc oxide (AZO)
window and a PBR made from silver and AZO.
The PBR is periodic along the x axis, while
the z axis is aligned with the thickness direc-
tion of the solar cell. The thicknesses of the n-
and p-layers were fixed at Ln = Lp = 15 nm,
while several different configurations for i layer
of thickness Li were investigated. The AZO
window thickness Lw = 100 nm was chosen to
reduce optical reflection, while the PBR param-
eters were chosen to maximize total efficiency.
A PBR with a duty cycle of 0.5, a maximum
thickness of 120 nm, a minimum thickness of
100 nm, a period of 400 nm, and a grating relief
of 80 nm, is known to improve photonic absorp-
tion in the solar spectrum [1].

Wide bandgaps of 1.95 eV were chosen for
the n- and p-layers to aid photonic absorption [6].
The bandgap profile in the i-layer was given by

Eg(z)=Eg0+A

{

1

2

[

sin

(

2πK
z−Lp

Li
−2πψ

)

+1

]}α

,

whereEg0 is the minimum bandgap in the i layer,
A is the amplitude of the perturbation from the
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homogeneous case, ψ ∈ [0, 1) is a phase shift,
K is the number of periods of the perturbation,
and α > 0 is a shaping parameter.

3 Results

From a series of studies [7], we concluded that
α = 5, Eg0 = 1.6 eV, K = 2, and ψ = 0.75
enhance total efficiency. The most efficient a-
Si:H p-i-n junction solar cell studied, with total
efficiency η ≈ 12.1%, has Li = 200 nm and
A = 0.35 eV. This is 17% higher than an analo-
gous solar cell without these features. The rela-
tive total efficiency increases monotonically for
Li ∈ {500, 80} nm. For thinner solar cells, total
efficiency is initially seen to decrease as A in-
creases, before ultimately improving efficiency
in all cases for sufficiently large A.

As demonstrated through our model, the
coupled optical and electronic performance of
the solar cell must be rigorously considered. Fur-
thermore, the facility to accommodate periodic
nonhomogeneity in the i-layer allows for poten-
tial efficiency gains associated with increased
electron-hole pair generation due to excitation
of multiple guided-wave modes. Although a
substantial increase in efficiency was found to
be attributable to the presence of a PBR and
a nonhomogeneous i layer, the solar-cell design
studied and the materials used were not opti-
mized for efficiency. Higher efficiencies may be
anticipated for optimized solar-cell designs, but
this remains a matter for future investigation.
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Daniel Appelö1,∗, Thomas Hagstrom2, Anastassiya Semenova1

1Department of Mathematics and Statistics, University of New Mexico, Albuquerque, USA
2Department of Mathematics, Southern Methodist University, Dallas, USA

∗Email: appelo@math.unm.edu

Abstract

We present a new energy based discontinuous
Galerkin method for Hamiltonian systems. Nu-
merical experiments illustrating the properties
of the method when applied to Korteveg de
Vries equation are also presented.

Keywords: Discontinuous Galerkin, Hamilto-
nian systems.

1 Introduction

Fundamental to many models in physics is the
Hamiltonian H[u] =

∫

H[u]dx, where the solu-
tion u is governed by the equation:

∂u

∂t
= J

δH

δu
.

Here J is a skew-adjoint Poisson operator, for
example i, the imaginary number in Schrödinger’s
equation, or simply the spatial derivative ∂

∂x
in

the case of the scalar transport equation ut = ux.
The notation δH

δu
denotes the functional deriva-

tive of the Hamiltonian.
Perhaps the most prominent characteristics

of a Hamiltonian system is the conservation of
H in time. Assuming homogenous boundary
conditions we find

d

dt

∫

H[u]dx =

∫

δH

δu

∂u

∂t
dx =

∫

δH

δu
J
δH

δu
dx = 0.

Inspired by our formulation of energy based
discontinuous Galerkin (dG) methods for wave
equations in second order form, [1], we propose
the dG discretization defined by the variational
equations (3)-(5) on an element.

In (3)-(5) lowercase letters denote approx-
imations to the solution u and the auxiliary
variables u̇, r. Upper case letters denote test
functions: U, U̇ ,R from the same space (typi-
cally piecewise polynomials) . The variational
equations are constructed so that if one replaces
the test functions with the solution and auxil-
iary variables the following energy identity is
obtained after canceling cross terms

∫

Ωj

∂H

∂ux

∂ux
∂t

+
∂H

∂u

∂u

∂t
− rJr dx =

[

∂H

∂ux
(u̇∗ − u̇) + u̇

∂H∗

∂ux
+ rF (r∗)

]

∂Ωj

(1)

To obtain an energy conserving method the
numerical fluxes must be chosen. The specific
choice depends on the Hamiltonian and the Pois-
son operator but are typically either of central
or alternating type, similar to those used for
second order systems in [1].

2 Application to Korteweg de Vries

As an example we consider the Korteweg-de
Vries (KdV) equation

ut + uux + ε2uxxx = 0. (2)

There is no unique choice for the Hamilto-
nian and Poisson operator for KdV but one pos-
sible option is the Hamiltonian

H[u] =

∫

Ω

u3

6
−

(εux)2

2
dx,

and the simple Poisson operator J = − ∂
∂x
.

∫

Ωj

(

−
∂

∂x

∂H[U ]

∂Ux
+
∂H[U ]

∂U

)(

∂u

∂t
− u̇

)

dx =

[

∂H[U ]

∂Ux

(

u̇∗ −
∂u

∂t

)]

∂Ωj

, (3)

∫

Ωj

U̇r − U̇x
∂H[u]

∂ux
− U̇

∂H[u]

∂u
=

[

U̇

(

∂H[u]

∂ux

)∗ ]

∂Ωj

, (4)

∫

Ωj

R(u̇− Jr) = [RF (r∗)]∂Ωj
. (5)
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Figure 1: Left: Snapshots of the formation of a dispersive shock in KdV. Each snapshot is 2 units
wide and are taken at times t = 0, 0.1, 0.2, . . .. As the initial cosine wave breaks a dispersive shock
forms. Right: Conservation of the the Hamiltonian H (in black) and ∥u∥2

2
(in red). The results to

the left / right are for ε = 0.033 / 0.011 and for 6 (dashed) and 7 (dotted) elements and 60 time steps
and for 6 elements and 120 time steps (solid).

With this choice we can take the numerical
fluxes for equations (3) and (4) as the average
between the inside and outside state, and the
numerical flux in (5) as the outside state

(

∂H[u]

∂ux

)∗

= {{ux}}, u̇∗ = {{u̇}}, r∗ = r+.

With these numerical fluxes and upon an inte-
gration by parts for half of the term rJr the
contribution to the right hand side in (1) van-
ishes. At first the sequence of approximations
ut ≈ u̇ ≈ Jr ≈ J δH

δu
may appear overly complex

but it is necesarry to make the volume cross
terms cancel, ensuring that equality (1) holds.

3 A Numerical Example

To illustrate the method we consider eq. (2) on
x ∈ [0, 2] with periodic boundary conditions and
with the initial data u(x, 0) = cos(π(x− 1/2)).

The quadratic nonlinear term causes the co-
sine wave to steepen but before the wave breaks
the dispersive term regularizes the shock by cre-
ating multiple narrower waves that carries en-
ergy away from the shock front, see for example
the thesis of Baldwin [3]. A smaller ε results
in more and narrower waves running away from
the shock. We consider two values for ε, 0.011
and 0.033.

To approximate the solution on each ele-
ment we project it into in a sum of Chebyshev
polynomials Tn(z) = cos(n arccos(x)). For the
computations here we take n = 0, . . . , 75.

To evolve the solution in time we use a sixth
order diagonally implicit symmetric symplectic
Runge-Kutta method [2]. In Figure 1 we dis-
play snapshots of the ε = 0.011 solution (dis-
placed by multiples of 2 along the x-axis) at

times t = 0, 0.1, . . . , 1.0. We also display the
conservation of the Hamiltonian and the square
of the L2 norm of the solution for two time steps
sizes, ∆t = 0.01 and 0.005 and for 6 and 7 ele-
ments.

4 Extensions

Extensions to the non-linear Schrödinger equa-
tion in one and two dimensions will be presented
in the talk.
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Abstract

We present a novel definition of chirality for
electromagnetic wave scattering problems. We
show that this definition captures both geomet-
ric aspects of chirality as well as those caused
by optical activity. The definition also makes it
possible to define a measure of chirality. Scat-
terers of relative maximal measure of chirality
are those invisible to fields of one helicity.
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1 Introduction

An optically active material will produce a re-
sponse to an electromagnetic wave propagat-
ing through it that depends on the circular po-
larization state of the wave, i.e. on its helic-
ity. On the other hand, chirality may also be
caused simply by the geometry of an individ-
ual scatterer. Recently, a novel definition of
chirality was proposed in the Physics literature
[1] for scattering of electromagnetic waves that
includes both aspects and moreover allows to
measure how chiral a given scatterer is. We
will discuss this definition and some of its conse-
quences in the mathematical framework of time-
harmonic wave propagation and incident Her-
glotz wave pairs.

2 Electromagnetic Chirality

A Herglotz wave pair

(E,H) =

Z

S2
(A(d), d⇥A(d)) ei k d·x ds(d)

is characterized by its amplitude density A 2
L2
t

(S2). Circularly polarized Herglotz wave
functions (i.e. fields of one helicity) can be char-
acterized as eigenfunctions for the eigenvalues
±1 of the operator C : A 7! i d⇥A(d) in L2

t

(S2).
This space is hence seen to be the direct sum of
the corresponding orthogonal eigenspaces

L2
t

(S2) = V + � V � .

A scattering problem in this framework is fully
described by the far field operator F : L2

t

(S2) !

L2
t

(S2) mapping the amplitude function to the
far field pattern of the scattered electric field.
Using the orthogonal projections P± onto V ±,
contributions due to di↵erent helicities can be
identified by setting

Fpq = PpFPq , p, q 2 {+,�} .

Hence F =
P

p,q2{+,�}Fpq. Translating the
definition in [1] into this framework yields the
following definition.

Definition 1 The scatterer D is called electro-
magnetically achiral (em-achiral) if there exist
unitary operators U (j) in L2

t

(S2) with U (j)C =
�CU (j), j = 1, . . . , 4, such that

F++ = U (1)F��U (2) , F�+ = U (3)F+�U (4) .

If this is not the case, we call the scatterer D
em-chiral.

We first relate this new notion of chirality to
geometric chirality of the scatterer. Consider
a bounded Lipschitz domain in D ✓ R3 with
connected exterior. We assume that there exists
x0 2 R3 and an orthogonal matrix J 2 R3⇥3

with det J = �1 such that D = x0 + JD. We
call such a D geometrically chiral.

As a typical example of a scattering prob-
lem, consider a perfect conductor boundary con-
dition. In the magnetic field formulation, the
problem is

curl curlH � k2H = 0 in R3 \D ,

(curlH)⇥ ⌫ = 0 on @D .

Additionally, we assume the scattered field

Hs = H �H i[A]

to satisfy the Silver-Müller radiation condition.
The fieldH i is assumed to be the magnetic com-
ponent of the Herglotz wave function with den-
sity A 2 L2

t

(S2). For this case we prove the
following theorem:

Theorem 2 If the perfect conductor D is geo-
metrically achiral then it is also em-achiral.

A similar theorem also holds for scattering
by an inhomogeneous medium.
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3 A Measure of Chirality

Following the idea in [1], a measure of chiral-
ity can be defined via singular systems for the
operators Fpq. Denoting by (�pq

j

, Gpq

j

, Hpq

j

) a
singular system of Fpq for a scatterer D, we set

�(F) =
�
k(�++

j

)� (���
j

)k2
`

2

+ k(�+�
j

)� (��+
j

)k2
`

2

�1/2
.

Also using a singular system (�
j

, G
j

, H
j

) for F ,
define the total interaction cross section of D
by

Cint(F) =
X

j

�2
j

.

Theorem 3 For any scatterer

�(F)2  Cint(F) .

If the scatterer does not scatterer fields of one
helicity, then �(F)2 = Cint(F).

This result means that scatterers invisible to
fields of one helicity always have maximal mea-
sure of chirality among all scatterers with the
same total interaction cross section. The reverse
of this statement also holds true, if a reciprocity
relation holds for the scattering problem under
consideration.

Theorem 4 If the scatterer is reciprocal and
�(F)2 = Cint(F) holds, then the scatterer is in-
visible to incident fields of one helicity.

4 Relations to Models for Chiral Media

A frequently used model for chiral materials
is the Drude-Born-Fedorov model, introducing
the chirality � of the material as an additional
parameter. The equations governing propaga-
tion of the magnetic field inside a region B filled
with chiral material then take the form

curl curlH � 22 �

1� 2 �2
curlH

� 2

1� 2 �2
H = 0 in B .

Consider the scattering of a Herglotz wave func-
tion at B in the case where B is a ball. The field

equations need to be supplemented by transmis-
sion boundary conditions

H ⇥ ⌫|+ = H ⇥ ⌫|�

(curlH)⇥ ⌫|+ =
1

✏
r

 �
1� 2 �2

�
(curlH)⇥ ⌫

� 2 �H ⇥ ⌫

�����
�

Using results from [2] on analytic representa-
tions of solutions to this problem, the singular
values of the far field operator for this problem
can be worked out in detail. The results shows,
as expected, that the chiral material model gives
rise to an electromagnetic chiral scatterer in the
sense of the definition above. Hence this defini-
tion indeed captures the complete range of chi-
rality for electromagnetic wave scattering prob-
lems.

Future research will be aimed at getting an
improved understanding of this notion of chi-
rality. In particular, the proposed measure of
chirality is to be used to obtain scatterers close
to invisible to one helicity by using shape opti-
mization techniques.
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Abstract

We present new results on the existence of low-
rank separable expansions for the Helmholtz fun-
damental solution when absorption is added to
the wavenumber. Part of the motivation for
these new results is to rigorously justify the
choice of absorption added into sweeping-type
preconditioners. (Recall that this idea of ab-
sorption comes from the so-called “Shifted- Lapla-
cian” preconditioner.)
Keywords: Helmholtz, low-rank expansion, ab-
sorption, sweeping preconditioner, Shifted- Lapla-
cian preconditioner

1 Low-Rank Properties of Fundamental
Solutions of Linear Elliptic PDEs

Low-rank properties of fundamental solutions
of linear-elliptic PDEs have important implica-
tions for the numerical solution of linear sys-
tems arising from discretising these PDEs. Re-
call that the fundamental solution of the Laplace
equation admits a separable expansion on do-
mains that satisfy an admissibility condition.
This result is given by the theory of asymp-
totically smooth functions; in essence this the-
ory states that if a function’s derivatives satisfy
certain bounds, then the function is well ap-
proximated by polynomial interpolants, which
provide the separable expansion [2]. However,
when we apply the same theory to the funda-
mental solution of the Helmholtz equation, (∆+
k2)u = 0, the constants in the definition of
asymptotically smooth grow with k (since tak-
ing a derivative incurs a power of k) and thus
the quality of the approximation deteriorates as
k increases. However, if certain directionality
assumptions are imposed, in addition to the ad-
missibility condition, the fundamental solution
can have a low-rank separable expansion with
rank that’s independent of k or only weakly de-
pendent upon k [3, 10]. An example of such a
theorem is given in [10]:

Theorem 1 ( [4, Theorem 2.4] due to Rokhlin
and Martinsson [10]) Let d > 0. There exists

C(d) such that, for all b > 0, for all ε > 0
and a such that ka > C(d)|log ε| there exists
a constant p such that p ! log(2kb)|log ε|2 and
functions {φj ,χj}p

j=1 such that

∣∣∣∣∣∣
H0(k∥x − y∥) −

p∑

j=1

φj(x)χj(y)

∣∣∣∣∣∣
! ε (1)

for all x ∈ [a, b]×[−d/2, d/2] and y ∈ [−b,−a]×
[−d/2, d/2]. [Note that it is implicitly assumed
that d < b−a so that the domains are relatively
long and thin.]

In general, however, Helmholtz fundamental
solutions can’t be expected to have such a low-
rank separable expansion independent of k or
weakly dependent upon k [6].

2 Sweeping-Style Preconditioners

An important application of this theory is in
motivating sweeping-style preconditioners. The
first of these was Engquist and Ying’s Sweep-
ing Preconditioner [4]. This is based on an
LDLT -factorisation of the system matrix and
depends on off-diagonal blocks of Schur comple-
ments that arise in the factorisation admitting a
good low-rank separable expansion. These off-
diagonal blocks correspond to evaluating a dis-
crete half-space Green’s function on a grid, with
source and target in collinear slender boxes like
those in Theorem 1. Many other precondition-
ers have been introduced since then that have
all recently been put into a common framework
with Engquist and Ying’s Sweeping Precondi-
tioner by Gander and Zhang [9].

3 Adding Absorption

The idea of adding absorption has become pop-
ular following the introduction of the so-called
“Shifted-Laplacian” preconditioner in [7] and
Engquist and Ying state “it is more effective to
generate the factorization for the matrix ... as-
sociated with the modified Helmholtz equation”(
∆ + k2(x)

)
u(x) = f(x) where k(x) = (ω +
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Figure 1: Domains of our new low-rank result

iα)/c(x) “where... α is an O(1) positive con-
stant” [5, p694]. In particular, the iterative
counts for Engquist and Ying’s Sweeping Pre-
conditioner grow more slowly with k when a
small amount of absorption is added, even in
the homogeneous case (although it might seem
counterintuitive), see [11, Tables 5.1-2, 5.7-8,
5.10]. The more absorption we add, the more we
expect the Helmholtz fundamental solution to
behave like that of ∆−k2, the Yukawa/modified
Helmholtz operator. In particular, k %→ k + ik
means both fundamental solutions decay at the
same rate and this level of absorption is suf-
ficient to gain near-linear (i.e. near-optimal)
complexity in a classical H-matrix approxima-
tion [1, Remark 5.7].

4 Contribution of the Talk

We present several new results explaining how
adding absorption affects the Rokhlin and Mar-
tinsson low-rank result above. One such result
is the following theorem, showing how the qual-
ity of the approximation increases with absorp-
tion.

Theorem 2 New Low-Rank Result for the
Hankel Function Let k = kR + ikI with 0 ≤
kI ≤ kR. For domains as in Figure 1 with d ≤
b − a, assume that for some constant η > 0,
ηa > b − a, and h ∼ k−µ

R for 1 ≤ µ ≤ 2, and
d ∼ h and a ∼ hν with 0 ≤ ν ≤ 1. If ν <
2−1/µ, then for kR sufficiently large there exist
functions {φj ,χj}p

j=1 where

p = C2(η)max
{

1, log2

(
C3(η)

ε

)}

and where C2 and C3 depend only on η, such
that
∣∣∣∣∣∣
H0(k∥x − y∥) −

p∑

j=1

φj(x)χj(y)

∣∣∣∣∣∣
≤ ε exp(−kIa)

for all x ∈ D1, y ∈ D2.
Another result we will present describes how

the domains can get “fatter” (i.e. d can be
larger) when absorption is added; we expect

this will ultimately be able to justify the vari-
ant on the sweeping preconditioner of sweep-
ing several lines at once. We will also discuss
using these low-rank results in the hierarchical
matrix framework. The end goal of these re-
sults is to use them in conjunction with [8] and
prove a theorem that rigorously establishes (at
least in the case of constant wavenumber) the
low iteration counts of the Engquist and Ying
sweeping preconditioner seen in practice (with
the next step then to extend these results to
other sweeping-style preconditioners).
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Abstract

Guided waves are widely utilized for estimat-
ing the medium properties through inversion of
the dispersion curves. This paper presents im-
proved methodologies for computing both dis-
persion curves and their derivatives, the two
main ingredients of guided wave inversion. Specif-
ically, a novel discretization approach, named
complex-length finite element method (CFEM),
is developed for the computation of dispersion
curves, which requires much fewer elements than
existing methods. Similarly, a new formula-
tion is developed to compute the derivatives of
the dispersion curves without resorting to fi-
nite di↵erence approximation, leading to bet-
ter accuracy and e�ciency. As confirmed by
synthetic and real-life inversion examples, these
algorithms result in more accurate estimates of
the medium characteristics than the traditional
methods, at a small fraction of computational
e↵ort.

Keywords: optimal grids, dispersion analysis,
near-surface imaging

1 Introduction

Propagation characteristics of guided waves in
stratified media can be exploited for obtaining
the structure information in a wide range of
applications. Rayleigh and Love waves in lay-
ered half-spaces are widely employed in the ar-
eas of near surface geophysical imaging as well
as pavement and geotechnical site characteriza-
tion. Lamb waves are utilized for nondestruc-
tive evaluation of beams, slabs, composite lam-
inates and pipelines.

Guided wave inversion requires computation
of (a) dispersion curves and (b) their gradients.
In this work, we introduce improvements for
in both venues, and illustrate that the result-
ing approach estimates the medium properties
more accurately, and at a fraction of the cost of
existing methods.

2 Forward problem: dispersion curves

Consider a two-dimensional layered elastic waveg-
uide in Fig. 1. Each layer is homogeneous and
horizontally infinite. The equation represent-
ing in-plane wave propagation for the harmonic
waves can be written as,

where u is the in-plane displacement vector, and
� is the stress vector. Applying Fourier trans-
form on (1) in x direction and using finite ele-
ment discretization along the z direction results
in frequency-wavenumber representation of sys-
tem sti↵ness:

where ! is the temporal frequency and k is the
horizontal wavenumber. The dispersion rela-
tion is defined as the nontrivial solutions of the
eigenvalue problem K(!, k)� = 0. This can
equivalently be viewed as the phase velocities
cp = !/k plotted as a function of frequency.
This would result in multiple theoretical disper-
sion curves shown in Fig. 2.

For discretization of finite depth layers, in-
stead of using conventional finite or spectral
elements, we introduce a novel discretization
called Complex-length FEM (CFEM) leading to
large reduction in computational cost [1]. This
discretization involves midpoint-integrated lin-

ear finite elements with specially chosen complex-

valued lengths. CFEM has several key ingredi-
ents that lead to exponential convergence: (a)
impedance preserving property associated with

Figure 1: Proposed methods
for forward modeling:
(1) CFEM discretization of
finite layers with complex
conjugate depths.
(2) PMDL discretization of
half-space with drastically
graded mesh.

�rs
T� � ⇢!2

u = 0, (1)

K(!, k) = k2A+ ikB+C (!) , (2)
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midpoint integration, which is linked to (b) ra-
tional approximation of the propagator matrix,
and (c) Padé approximants that guide the choice
of special (complex) element lengths required
for exponential convergence. The resulting mesh
is schematically shown in Fig. 1.

The unbounded half-space at the bottom
is simulated by the Perfectly Matched Discrete
Layer (PMDL), which uses midpoint integrated
linear elements to preserve the impedance even
after discretization. Due to this, PMDL has the
ability to represent the half-space with drasti-
cally graded mesh with just 2-4 finite elements
(again, see Fig. 1).

3 Inverse Problem

The objective of guided wave inversion is to es-
timate the unknown layer properties from ob-
served dispersion curves computed from mea-
sured surface displacements. Due to limited
signal-to-noise ratio, not all the modes com-
puted from Eq. 2 are recovered from experi-
ments. Instead the so-called e↵ective dispersion
curve is recovered from experiments, which re-
sults from superposition of various modes in the
surface displacement; example e↵ective disper-
sion curve is shown in Fig. 2. Inversion of the
e↵ective dispersion curve requires computing its
gradients with respect to layer properties. As
illustrated in Fig. 2, the e↵ective curve jumps
across the theoretical curves making it di�cult
to perform analytical di↵erentiation. On the
other hand, finite di↵erence approach is expen-
sive and tends to be unstable due to the jumps
between various theoretical dispersion curves.
To overcome these limitations, we have devel-
oped an approximate analytical di↵erentiation
formula that is shown to be highly e↵ective, and
takes the form [2]:

where k

e↵. is the e↵ective wavenumber and mj

is the j-th model parameter and P is an arbi-
trary non-zero load vector. The gradients com-
puted from our approach match with the finite
di↵erence gradients, but without the large os-
cillations present in the finite di↵erence deriva-
tives.

4 Validation with real experiment

We have verified the proposed methods by in-
verting the synthetic data, and validated with
real experimental data. Here we provide a vali-
dation example of inverting geophysical data for
the borehole profile shown in Fig. 3. A 14-layer
subsurface structure is used for inversion of the
experimental dispersion curve, by considering
the layers’ shear wave velocities and thicknesses
as the model parameters. Fig. 3 shows that pro-
posed gradient results in a better match with
borehole data in comparison with the FDM ap-
proach.

The associated computational cost is com-
pared in Table 1 which shows a significant im-
provement by using CFEM and PMDL (almost
400 fold increase in e�ciency).
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Figure 2: Theoretical
(multimodal) disper-
sion curves, and the
e↵ective dispersion
curve observed by using
12 transducers.
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Figure 3: Inverted and borehole profiles using (a) the
proposed gradient and (b) FDM gradient.
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Abstract

A new and e�cient two-level, non-overlapping
domain decomposition (DD) method is devel-
oped for the Helmholtz equation in the two La-
grange multiplier (2LM) framework. To accel-
erate the convergence, the transmission condi-
tions are designed by utilizing perfectly matched
discrete layers (PMDLs), which are more accu-
rate than the polynomial approximations used
in the optimized Schwarz method (OSM). An-
other important ingredient a↵ecting the con-
vergence of a DD method, namely the coarse
space augmentation, is also revisited. Specifi-
cally, the widely successful approach based on
plane waves is modified to that based on inter-
face waves, defined directly on the subdomain
boundaries, hence ensuring linear independence
and facilitating the estimation of the optimal
size for the coarse problem. The e↵ectiveness
of both PMDL-based transmission conditions
and interface-wave based coarse space augmen-
tation is illustrated with an array of numerical
experiments that include comprehensive scala-
bility studies with respect to frequency, mesh
size and the number of subdomains.

Keywords: preconditioning, non-overlapping,
absorbing interface condition, coarse spaces

1 Introduction

Domain decomposition methods (DDM) have
attracted significant interest for numerical so-
lution of partial di↵erential equations; however,
there are still open challenges for Helmholtz-
type equations.

Designing an accurate interface conditions
has significant influence on the convergence and
scalability of non-overlapping DDMs. In this
work we focus on two Lagrange multiplier fields
(2LM) methods that facilitate imposition of more
advanced interface (transmission) conditions be-
tween the subdomains.

We propose a new 2LM method [1] which
is based on utilizing perfectly matched discrete
layers (PMDL) to approximate the nonlocal trans-

mission operator using rational approximations,
rather than the polynomial approximation used
in the Optimized Schwarz Method (OSM) [2].
The resulting PMDL-2LM method is shown to
have superior convergence properties compared
to OSM.

Separate from this, we introduce a new way
of forming the coarse space, based on the in-
terface waves. The new approach automatically
guarantees linearly independent bases, thus elim-
inates the need to filter the redundant bases, a
necessary process for building plane-wave based
coarse spaces.

2 Two Lagrange multiplier fields (2LM)
framework

Consider the exterior Helmholtz problem,

where u is the pressure, c is the wave veloc-
ity and ! is the temporal frequency. We par-
tition the computational domain into arbitrary
non-overlapping subdomains. Then the original
problem is reduced to a problem involving only
the interface nodes, solving the smaller inter-
face problem first, followed by solving on each
subdomain. The resulting interface system of
equations that will be solved iteratively (and in
parallel) takes the form:

where � is vector of Lagrange multipliers over
the interfaces and M, G are the jump and av-
erage matrix operator. The block diagonal ma-
trix S

in

is the assembly of subdomain sti↵ness
matrices in terms of intrface variables (inner
Schur complement) and g is the correspond-
ing right hand side. Similarly the block diag-
onal matrix S

out

is the assembly of subdomains
exterior sti↵ness matrices (outer Schur comple-
ment), which essentially is the Dirichlet to Neu-
mann (DtN) map of the rest of the domain for

�r2

u� (!/c)2u = f (1)

F

2LM

� = d,

(2)
⇢
F

2LM

= (S
out

M�GS

out

)(S
in

+ S

out

)�1 +G,

d = �(S
out

M�GS

out

)(S
in

+ S

out

)�1

g,
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each subdomain.
Iterative solution of (2) has optimal con-

vergence if the exact outer Schur complement
S
out

is substituted. Thus, approximation of the
DtN map (interface condition) significantly af-
fects the number of iterations.

3 PMDL-based 2LM method

In the context of wave propagation problems,
the e↵ect of the rest of the domain reflecting in
S
out

, is in some sense wave absorption. Thus,
Robin boundary conditions representing viscous
damper has been first used and later refined by
using second order absorbing boundary condi-
tions in OSM. However, adopting higher order
rational approximations, a more accurate trans-
mission condition can be obtained. Thus, we
propose to utilize the rational approximation in-
troduced in a recent absorbing boundary using
PMDL layers, which are midpoint integrated
linear elements that preserve the impedance even
after discretization.

Due to impedenace presering propoety, it
can be shown that using only two PMDLs (one
with real and one with imaginary length), gives
a convergence factor square that of OSM. Fig.
1 (a) shows the two PMDL layers arround the
subdomain. Note that there is only one line
of auxiliary variables that introduces minimal
computational overhead compared to OSM.

Figure 1 (a) Exterior sti↵ness using PMDLs
and (b) sine component of an interface wave.

4 Coarse space using interface waves

Using plane wave bases for constructing the coarse
space for DDMs is a widely used approach given
that it captures the oscillating nature of the so-
lution. Unfortunately, the traces of the plane
waves on the interface do not form linearly in-
dependent bases, necessitating an intermediate
step of filtering the redundant bases. To avoid
the additional step, we suggest defining the coarse
space directly on the interface, ensuring linear

independence while capturing the oscillating na-
ture of the solution. Such a space can in fact
be built with the help of Fourier series directly
defined on the subdomain boundaries; the basis
functions can be chosen as {cos(!jx) sin(!jx)},
with !j = 2j⇡/L where x is the distance along
the subdomain boundary and L is the total length
of the subdomain boundary (see Fig. 1(b)).
Given that they are Fourier bases, interface waves
are naturally orthogonal. Therefore, unlike the
case of plane waves, no further orthogonaliza-
tion is necessary.

5 Numerical example: heterogeneous sub-
surface problem

We have investigated the performance of PMDL-
2LM and OSM methods in various examples.
Here we only present a single example with the
heterogonous half-space with a scatterer inside
as shown in Fig. 2 (a).

Figure 2 (a) Partitioning of the subsurface (b)
real part of the solution.

Results of the frequency scalability study
are reported in Table 1 and the converged solu-
tion for ! = 30⇡ is shown in Fig. 2 (b). It can
be seen that PMDL-2LM converges in roughly
half the number of iterations required for OSM
and shows a better scalability with respect to
frequency.
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Table 1. Frequency scalability study. 
1/h Z OSM PMDL 
100 10π 37 21 
200 20π 41 22 
300 30π 44 22 
400 40π 45 22 
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Abstract

Qualitative methods are a class of methods that
try to retrieve the geometrical support of an
obstacle from multistatic data. Recently intro-
duced the Generalized Linear Sampling Method
(GLSM) is the extension of the well known Lin-
ear Sampling Method (LSM). This extension
provides a theoretical justification for the LSM
and exhibit better numerical results. The GLSM
was introduced for both perfect and noisy data
but in the latter case an important ingredient
was missing. The proper set up of the weight
of regularization with respect to the noise level
and ultimately an a priori rules such as Morozov
principles. This papers aims at filling this gap
under certain constraint on the type of obstacle.

Keywords: Qualitative Method, Sampling Method,
Inverse Scattering

1 Introduction

Sampling methods arise in the late nineties in
the field of inverse scattering. They aim at re-
constructing the support of an obstacle of any
type (i.e. penetrable, sound soft, sound hard
...). One of them is the Linear Sampling Method
[2] which has a large range of applicability but
lack theoretical justification. In order to fill
this gap the Factorization Method (FM) and
more recently the Generalized Linear Sampling
Method (GLSM) [1] have been introduced. These
methods use multi static data (multi source and
multi measurement data) to form the scattering
operator. In the well known case of plane wave
source and farfield measurement the operator is
the farfield operator. The analysis of sampling
methods is based on factorization and range
property of this operator. There is a large liter-
ature on the properties of the farfield operator
depending of the type of obstacle and on the ap-
plicability of either the GLSM or the FM. When
it is applicable the GLSM relies on regulariza-
tion theory to invert the compact farfield oper-
ator. In the theory associated to this method
the noisy case is treated in a non constructive
way in the sense that the regularization param-

eter is not link to the noise level. In this paper
we focus on setting an explicit link between the
regularization parameter of the GLSM and the
noise level and derive a priori rules inspired by
the Morozov discrepancy principle. We do so
in the case of a normal farfield operator. We
will discuss potential extension to the non nor-
mal case and illustrate our results by numerical
simulation.

2 Generalized Linear Sampling Method

We consider the case of penetrable obstacle with
index of refraction n and D is the support of n�
1. For an incident plane wave ui(x, ✓) = eikx·✓

we measure the farfield, u1(·, ✓) associated to
the scattered field us(·, ✓) that solves:

�us + k2nus = k2(1� n)ui

and the sommerfeld radiation condition. The
farfield operator is defined from L2(Sd�1) to L2(Sd�1)
by

Fg =

Z

Sd�1
u1(·, ✓)g(✓).

The GLSM method relies on the factorization,
F = GH [2] and the fact that the range of G
characterize the support of D. H is the well
known Herglotz operator de fined by

Hg =

Z

Sd�1
ui(·, ✓)g(✓).

When n is real and either stricly less or greater
than 1, one could choose to introduce the fol-
lowing cost functional:

J
↵

(g,�) = ↵
���(F ⇤F )1/4g

���
2
+ kFg � �k2

in order to apply the abstract framework of the
GLSM to characterize the range of G. The hy-
pothesis on n also implies that F is normal [2],
we introduce its singular value decomposition

Fg =
X

i

�
i

<  
i

, g >  
i

.

Under this setting one can prove the following
theorem
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Theorem 1 We introduce :

g
↵

=
X

i

�̄
i

|�
i

|2 + ↵�
i

<  
i

,�1
z

>  
i

We have the following range characterization,

�1
z

2 R(G) i↵ lim
↵!0

��(F ⇤F )1/4g
↵

�� < 1. More-

over Hg
↵

converges strongly in L2(D) to the

solution v of the interior trasmission problem.

Where the interior transmission problem (ITP)
is defined by (for �

z

the fundamental solution)
8
>><

>>:

�u+ k2nu = 0 in D,
�v + k2v = 0 in D,
(u� v) = �

z

on @D,
@

@⌫

(u� v) = @

@⌫

�
z

on @D,

(1)

3 A regularized version with explicit choice

of the parameter

Even in the noise free case the cost functional J
is not easy to handle as it only involves compact
operator. In order to avoid this complication
we can add a regularization term to ensure the
existence of a minimizer:

J�

↵

(g,�) = ↵
���(F ⇤F )1/4g

���
2
+� kgk2+kFg � �k2 .

The di�culty is now to obtain a proper balance
between ↵ and � in order to keep the range
characterization given in theorem 1.

Using this singular value decomposition we
are able to prove the following theorem

Theorem 2 The minimizer of J�

↵

is

g�
↵

=
X

i

�̄
i

|�
i

|2 + ↵�
i

+ �
<  

i

,� >  
i

.

We have that if � 2 R(G),
���(F ⇤F )1/4(g�

↵

� g
↵

)
���

is bounded and therefore g
↵

can be substitute

by g�
↵

in the range characterization of theorem

1. Moreover if �/↵2 ! 0 we have that Hg�
↵

strongly converges to the solution of the ITP.

4 Application to noisy data

In the case of noisy measurement we consider
F
�

instead of F with kF
�

� Fk  � and we have

J�

↵,�

(g,�) = ↵
���(F ⇤

�

F
�

)1/4g
���
2
+� kgk2+kF

�

g � �k2 .

We have the following inequality that relates the
noisy case and the noise free regularized case :

J�

↵,�

(g�
↵,�

,�)  J�

↵,�

(g�
↵

,�)  J�

↵

(g�
↵

,�)+(↵�+�2)
���g�

↵

���
2

Theorem 3 If �2/� and ↵�/� remains bounded

we have that � 2 R(G) i↵ lim
↵,�,�!0

���(F ⇤
�

F
�

)1/4g�
↵,�

���
2
+

�/↵
���g�

↵,�

���
2
 1. Moreover if �/↵2 ! 0 and

�↵/� ! 0 we have that Hg�
↵,�

converges to the

solution of the ITP.

Moreover if we assume that it is possible for
� small enough to ensure

(↵�+�2)
���g�

↵,�

���
2
= ↵

���(F ⇤
�

F
�

)1/4g�
↵,�

���
2
+
���F

�

g�
↵,�

� �
���
2

then the range characterization of theorem 3 is
verified.
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Abstract
For many applications in numerical physics,

fast convolutions with a Green kernel on un-
structured grids are needed to compute in a
reasonable time the matrix-vector products. To
this aim, many methods have been developed in
the last decades. They are divided in two major
classes, those which use analytical approxima-
tion of the Green kernel [1,2,4] and those based
on algebraic compression [3, 5]. Associated to
this paper, we provide a new open-source Mat-
lab toolbox named OpenHmX [6] for the second
class of compression.
Keywords : H-Matrix, open source, green ker-
nel convolution, hierarchical tree, ACA, SVD

1 Context
As a generic example, the case of boundary

element formulations for tri-dimensional acous-
tics is considered, associated to the single layer
potential expression :

S⁄(x) =
⁄

�
G(x, y)⁄(y)d�y, ’x œ R3,

where G(x, y) is the Green kernel :

G(x, y) = eik|x≠y|

4fi|x ≠ y| , (1)

and � the boundary. Using a discrete quadra-
ture of �, this convolution product needs a fast
computation of discrete sums as :

G ı f(x) ≥
Nÿ

n=1
G(x, yn)fn, (2)

where the potential (fn)1ÆnÆN is known for all yn.
Since each particle x interacts with each particle
y, numerical implementation of equation (2) na-
turally leads to the computation of a dense matrix-
vector product. However, thanks to local rank
defaults, algebraic compression with divide and
conquer process can be used to approximate ac-
curately many parts of the full matrix with low
rank pieces (H-Matrix based methods [3, 5]).

2 Overview of OpenHmX
OpenHmX [6] is an open-source toolbox for

H-Matrix computations, natively written in Mat-
lab language. This library builds the compres-
sed matrix representation of equation (2) in three
steps.

Firstly, two independent binary trees are com-
puted for the tri-dimensional clustering of the
particles x and y respectively. These trees try
to keep a well balanced spatial distribution with
any spatial configuration. To do so, it uses both
geometric and median cutting, dealing with the
best way for all particle groups encountered at
each depth of the tree. The cutting of the par-
ticles is carried on until the number of particles
in the leaf reaches the value :

Nleaf ¥ log(N)
3
2 . (3)

Secondly, from the binary trees associated
to particles x and y, the allowed block inter-
actions for algebraic compression is constructed
hierarchically (fig. 2, left). In order to proceed,
for each block defined by the sets of particles
(xi)iœI indexed by I and (yj)jœJ indexed by J ,
we use the admissibility condition :

D(xI , yJ) > max (d(xI), d(yI)) , (4)

where D(xI , yJ) is the distance between the
centres of the two boxes surrounding each set
of particles, and d(xI) and d(yJ) are respecti-
vely the diameters of theses boxes.

Finally, an Adaptive Cross Approximation
[3] is done for admissible interactions, comple-
ted by the standard full computation for close
interactions, both with Matlab parallel compu-
tation. To do, we use a new criterion in order to
evaluate the convergence of the ACA algorithm,
instead of the classic one. We evaluate the dis-
tances between each set of particles (xi)iœI and
(yj)jœJ , from their projections on the axis defi-
ned by the two centres of each dataset. We then
compute exactly the Green kernel for some re-
presentative interactions, indexed by I0 µ I and
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N Cores · k Direct (s) H-Matrix (s) Memory (Mo) L2 error for 103 values
103 1 10≠3 0 0.52 0.71 6.9 7.6 10≠5

104 1 10≠3 0 5.4 7.5 130 1.1 10≠4

105 1 10≠3 0 - 74 2.2 103 1.2 10≠4

106 1 10≠3 0 - 783 4.2 104 1.2 10≠4

103 8 10≠3 0 0.18 0.31 7.1 7.1 10≠5

104 8 10≠3 0 1.1 1.5 130 1.1 10≠4

105 8 10≠3 0 - 11 2.2 103 1.0 10≠4

106 8 10≠3 0 - 120 4.1 104 1.1 10≠4

104 8 10≠6 0 1.1 2.4 243 7.1 10≠8

104 8 10≠9 0 1.1 3.4 379 2.7 10≠11

104 8 10≠12 0 1.1 4.4 520 2.2 10≠14

103 8 10≠3 5 0.19 0.41 8.4 1.8 10≠4

104 8 10≠3 10 1.6 1.8 183 5.5 10≠4

105 8 10≠3 20 - 22 3.3 103 5.1 10≠4

106 8 10≠3 30 - 260 6.2 104 5.2 10≠4

Figure 1 – Numerical results for a random spherical distribution

J0 µ J . With an user fixed threshold · , the
stopping criterion can now be driven numeri-
cally by the condition :

||G(xI0 , yJ0) ≠ AI0BJ0 || < ·. (5)

3 Numericals results and conclusion
In this last section, we present few numerical

results from OpenHmX, computed with Matlab
R2013 on a 8 cores CPU at 2.7 GHz with 128 Go
memory. To do, we simply consider a random
spherical repartition of N particles both for x
and y (fig. 2, right). We use the standard Helm-
holtz Green kernel (1), with various wave num-
bers k and thresholds · . All results are given in
figure 1.

To conclude, we propose in this paper a new
open source Matlab library for H-Matrix com-
putation. Some noticeable details enrich stan-
dard approaches proposed in the state of the
art, and numerical test provide good perfor-
mances, accuracies and paralelization speed-up
factors. In the future, we plan to focus on the
memory cost and the high frequency problem.
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Abstract

The goal is to retrieve the shape of an elas-
tic scatterer along with its material parameters
from the knowledge of some far field pattern
measurements. To this end, we employ a multi-
stage strategy based on Tikhonov iterative-like
method. Numerical reconstructions for various
two-dimensional scatterers will be presented.

Keywords: Elasto-acoustic Scattering prob-
lem, Fréchet derivative, Far-Field Pattern

1 Introduction

The main goal of this work is the development
of an e�cient computational procedure for de-
termining the shape of the surface along with
its characteristics of an elastic obstacle from
the knowledge of some elasto-acoustic far-field
patterns (FFP). To the best of our knowledge,
this is the first time where the problem of si-
multaneously determining the shape and the
material properties is considered. This class
of inverse problems is very important to many
applications, including earthquake engineering,
geophysical exploration, medical imaging, non-
destructive testing, underwater acoustics, and
electromagnetics. Due to the di↵erent nature
and scales of the shape and material parame-
ters, we propose a multi-stage solution method-
ology based on a regularized Newton-type me-
thod. Numerical results will be presented to
illustrate the salient features of this computa-
tional methodology and highlight its performan-
ce characteristics. We also suggest practical
guidelines to achieve both convergence and ac-
ceptable accuracy level.

2 Forward problem

The scattering of a time-harmonic acoustic wave
by an elastic obstacle ⌦s embedded in a homo-
geneous medium ⌦f can be formulated as the
following boundary value problem (BVP) :

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

r · �(u) + !

2
⇢

s

u = 0 in ⌦s (a)

�p+ k

2
p = 0 in ⌦f (b)

�(u) · ⌫ = �p⌫ � p

inc

⌫ on � (c)

!

2
⇢

f

u · ⌫ = @p

@⌫

+ @p

inc

@⌫

on � (d)

lim
r!+1

p
r

⇣
@p

@r

� ikp

⌘
= 0 (e)

where the pair (u, p) represents the elasto-acous-
tic scattered field vector. p is the scalar-valued
fluid pressure in ⌦f , whereas u is the vector-
valued displacement field in ⌦s. pinc = e

i!/cfx·d

corresponds to the given incident plane wave. !
is the circular frequency and c

f

is the speed of
sound in the fluid ⌦f . ! and c

f

are associated
with the wavenumber k by k = !/c

f

. ⇢
f

(resp.
⇢

s

) is a positive real number denoting the den-
sity of the fluid ⌦

f

(resp. the scatterer ⌦
s

). �

is the stress tensor related to the strain tensor
✏ by Hooke’s law: � = C · ✏; C being the elas-
tic tensor [1]. We consider here the case of an
isotropic medium, and assume � to be invariant
under rotations and reflections [1]. We recall
that the scattering amplitude p1 of the acous-
tic scattered field p that is the solution of BVP
is defined on the unit sphere S1 and is obtained
from the asymptotic behavior of p [2]:

p(x) =
e

ikr

p
r

⇣
p1

⇣
x

r

⌘
+O

⇣
x

r

⌘⌘
, r = kxk2 �! +1

Observe that the direct problem BVP contains
the standard exterior Helmholtz problem given
by Eqs. (b) and (e), and the Navier’s equation
given by Eq. (a) governing the equilibrium of an
elastic scatterer. These equations are coupled
via the transmission conditions given by Eqs.
(c) and (d). The first one is a dynamic interface
condition whereas the second one is a kinematic
interface condition [1].

3 Inverse Problem

BVP defines an operator F : (⇢
s

, C,�) ! p1
which maps the solid density ⇢

s

, the elastic ten-
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sor C, and the boundary � of the scatterer ⌦s

onto p1. Therefore, the simultaneous determi-
nation of the shape and the material proper-
ties of a given elastic scatterer from some FFPs
measurements can be formulated as the follow-
ing inverse problem:

Given a set of measured FFP for one or sev-
eral incident plane waves, that di↵er from the
incident direction and/or the frequency regime,
find the parameters ⇢

s

and C, and the shape �
such that

F (⇢
s

, C,�) (x̂) = p1(x̂); x̂ 2 S ✓ S

1

As stated earlier, the shape and the material
parameters are of di↵erent nature and scales,
and therefore their variations have di↵erent ef-
fects on the scattered field. For this reason, we
propose to employ in a multi-stage fashion a
Tikhonov iterative-type method. More specifi-
cally, we propose to use a prediction/correction
type approach in which, at each stage, a set of
parameters remains “frozen” while the set of the
“free” parameters is updated.

4 Sensitivity Analysis

We have investigated the dependence of the FFP
response with respect to the scatterer charac-
teristics. Due to space limitations, we present
here the results of two experiments illustrating
the e↵ect of only the shape and the Lamé coef-
ficients. To this end, we consider a disk-shaped
scatterer made of steel surrounded by water.
We set r

s

= 5mm, k = 100m�1, � = 76GPa,
µ = 97GPa, ⇢

s

= 2700kg/m3, ⇢
f

= 1000kg/m3.
In the first experiment, we compare the point-
wise values of the FFP intensity by doubling
the radius of the scatterer while the Lamé co-
e�cients values remain fixed (see Figure 1(a)),
whereas in the second experiment, the radius
value is fixed and we double the values of the
Lamé coe�cients (see Figure 1(b)). The results
reported in Figure 1 reveal that the e↵ect of
the shape on the FFP is about two order of
magnitude higher than the e↵ect of the Lamé
coe�cients.

5 Numerical Recovery

The results depicted in Figure 2 correspond to
the determination of the shape parameters and
the Lamé coe�cients in the case of an elliptical-
shaped obstacle made of steel surrounded by
water. Its characteristics are: r1 = 10mm, r2 =
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Figure 1: Sensitivity of the FFP to the shape and
material parameters. Case of a disk shaped scatterer
with r = 5mm, � = 76GPa, µ = 97GPa, ⇢s =
2700kg/m3, ⇢f = 1000kg/m3, and k = 100m�1.

5mm,� = 76GPa, µ = 97GPa, k = 267m�1,
⇢

s

= 2700kg/m3, ⇢
f

= 1000kg/m3. The given
data are noise free full aperture measurements.
Figure 2 indicates that the proposed compu-
tational procedure is applied outside the pre-
asymptotic convergence region (the relative resid-
ual is over 100%) and converges after 9 steps to
a relative residual of about 0.02%. Note that
each step requires at most 4 iterations. At con-
vergence, the relative error on the reconstructed
Lamé parameters is 3% whereas the exact val-
ues of the shape parameters are delivered.

2 4 6 8 10 12 14 16
0

50

100

Iterations

R
e
la
ti
v
e
R
e
si
d
u
a
l

Figure 2: Convergence history
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Abstract

Extending the new field of gravitational wave
(GW) astronomy into the millihertz band with
a space-based GW observatory is a high-priority
objective of international astronomy community.
This paper summarizes the astrophysical promise
and the technological groundwork for such an
observatory, concretely focusing on the prospects
for the proposed Laser Interferometer Space An-
tenna (LISA) mission concept.

Keywords: Gravitational Waves, Time-domain
Astronomy, Astrophysics

1 Introduction

Just over a century ago Einstein first described
our current theory of gravity, general relativity,
and quickly recognized that his theory might
imply the existence of gravitational waves. It
wasn’t until decades later that scientists began
to realize that observing GWs could be a prac-
tical possibility and may provide especially de-
tailed information about strong-gravity systems
inaccessible to electromagnetic astronomy.

Last year the Laser Interferometric Gravi-
tational wave Observatory (LIGO) opened this
new field of GW astronomy by announcing the
first direct GW observations, simultaneously pro-
viding direct observations of a binary black hole
systems and revealing a number of relatively
large stellar black holes. This should be just
the beginning of many years of exciting astro-
nomical observations in the roughly 10-1000 Hz
band.

An important upcoming step for the nascent
field of GW astronomy is extending the GW
window into the promising millihertz band, from
roughly 0.01 to 1000 mHz, via a space-based ob-
servatory. These observations should expose a
great and distinct wealth of astronomical infor-
mation.

2 Gravitational waves: a new probe of

the universe

Gravitational dynamics are described in general
relativity by Einstein’s equations, which relate

the spacetime curvature tensor to the stress en-
ergy tensor describing forces, motion and distri-
bution of matter. Energy and momentum con-
servation prevents monopole and dipole varia-
tion so GWs can only be generated by the time
variation of quadropole or higher moments. Where
the motion of objects is small compared to the
speed of light, GW emissions are tiny, typically
scaling with (v/c)5.

Spacetime geometry is mathematically en-
coded in the metric tensor field g, which may
be treated by linear perturbations for the prop-
agation of GWs far from sources. In this limit
with suitable (gauge) choice of coordinates x =
{t, x, y, z}, metric perturbations are governed
by a simple linear wave equation, a solution
for waves propagating in the z direction can be
written as

g =

2

664

�1 0 0 0
0 1 + h+(x) h⇥(x) 0
0 h⇥(x) 1� h+(x) 0
0 0 0 1

3

775 . (1)

Here h+,⇥(x) are the two GW polarization modes.
A great distance r from a the source, the solu-
tion is can be written h+,⇥(x) = ĥ+,⇥(t� z)/r,

where the functions ĥ+,⇥(tret) encode infoma-
tion about the source and its motion.

The special features of GWs as a new mes-
senger of astronomical information include:

• Clean strong-gravity sources. Where
GWs are measurable, gravity often dom-
inates other forces. Assuming we under-
stand gravity, the simple parameters de-
scribing the emission physics may be in-
ferred from observation with unusual pre-
cision. To achieve the required velocities,
significant GWs can only be emitted by
the highest density astronomical objects
such as black holes, neutron stars, and
white dwarfs.

• Clean propagation. Because of their
weak coupling to matter, the universe should
be mainly transparent to GWs, this en-
ables observation of otherwise obscure sources.
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• Coherent emission and detection. Un-
like light, GW wavelenghts are larger than
the size of the source yielding a mono-
lithic coherent signal with an amplitude
falling o↵ as 1/r. The signals must also
measured by amplitude, not power, with
the same scaling. This makes it relatively
easy to observe signals from great cosmo-
logical scale distances by GWs.

3 Millihertz GW astronomy

At a given mass, GW emissions are strongest
and most likely to be detectable higher frequen-
cies (higher v/c). Then they carry vast energies
away from their sources, implying a short life-
time that scales with mass. There is an exact
time scaling of GW signals with overall source
mass. LIGO band GW astronomy is limited to
the rare and short-lived last moments of stellar
scale systems ranging up to a few hunderd solar
masses. The millihertz band provides a sweet
spot between rare events with the strongest grav-
ity and more numerous slightly weaker-gravity
systems.

Opening the millihertz band [1], exposes the
giant signals from mergers of massive black holes
up to from ⇠ 104 to ⇠ 108 solar masses. The
signals are so loud that we are likely limited by
rate not signal strength even for distant events
occurring at the earliest likely cosmological times.
These observations will show how these massive
black holes at galactic centers form and merge
over the epoch of galactic formation and assem-
bly into the large galaxies we see today. Over
several years we might expect hundreds of these
events.

At the other extreme, millihertz GW obser-
vations should also reveal a much larger popu-
lation of nearby lower velocity binaries. These
would include the LIGO binaries, years before
merger, as well as somewhat lower density sources
including white dwarf binaries in the Milkyway.
Such an observatory might individually pick out
more than 10,000 of these objects, while a mil-
lions more would aggregate into a stochastic
foreground signal.

Another expected class of millihertz sources
bridges these regimes involving stellar scale ob-
jects falling into massive black holes in the rel-
atively recent history of the universe. These
events can reveal presently obscurred details about
stellar remnant populations in the deep hearts

of galaxies while also providing precision infor-
mation about the the spacetime geometry near
massive black holes.

4 The LISA concept

Astrophysically plausible GWs yield extremely
small relative motion (. 10�21 fractional dis-
placement) in free-falling objects. Observing
them requires overcoming two main technical
challenges: 1) isolating the objects from any
other forces which may cause motion at this
level, and 2) measuring the motion. Terrestrial
motion seems to preclude surmounting the for-
mer of these challenges on the ground. Fortu-
nately they are each facilitated by a space-based
instrument where large empty space is easy to
come by and ambient forces are much quieter.

The LISA concept includes three spacecraft
each following internally isolated free-floating
test masses on elliptical solar orbits forming nearly
rigid triangle a few million kilometers across.
Changes in separation between the testmasses
is measured by laser interferometry.

The international science community has honed
this concept though many years of science stud-
ies and technology development, with a key acheive-
ment being the successful demonstration, last
year, of key novel technologies in space by the
European Space Agency’s LISA Pathfinder mis-
sion. Building on this success, ESA, with NASA
as a junior partner, now plans to launch a millihertz-
band gravitational-wave observatory in the early
2030s.
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Abstract

Shear wave elastography measures shear wave
speed in soft tissues for diagnostic purposes.
In [1], shear wave speed was shown to depend
on prestrain, but not necessarily prestress, in
a perfused canine liver. We model this phe-
nomenon by examining incremental waves in
a pressurized poroelastic medium with incom-
pressible phases. The analysis suggests novel
restrictions on the strain energy functions for
soft tissues.

Keywords: incremental waves, poroelasticity,
elastography, strain energy function

1 Introduction

Elastic shear wave propagation in soft tissues
is of current interest in the field of elastogra-
phy. Shear wave speed serves as a surrogate
for tissue modulus, and is used for diagnosis of
various pathologies. Therefore, understanding
those parameters which can lead to variations
in shear wave speed in vivo is necessary. Here
the focus is on dependence of shear wave speed
on pore pressure, when modeling the soft tissue
as a poroelastic solid.

We present a mathematical model for the
experimental observations of [1]. In that exper-
iment, a canine liver was re-perfused and sub-
merged in a bath. Pore pressure within the liver
was controlled by maintaining pressure in the
portal vein. The bath was maintained in two
conditions: a constrained condition in which
the container was completely sealed; an uncon-
strained condition in which the container was
open to the atmosphere. In each condition, the
pressure in the portal vein was controlled, and
the shear wave speed was measured as a func-
tion of portal vein pressure.

Below we model the liver as a nonlinear poroe-
lastic continuum. We derive a quasistatic solu-
tion for the pressurized equilibrium configura-
tion of the medium in both the constrained and
unconstrained cases. Then we consider small
amplitude shear waves superimposed on the pres-

surized configuration, and derive a formula for
the shear wave speed.

2 Nonlinear poroelasticity model

We use equations governing a poroelastic con-
tinuum with incompressible phases, following
the beautiful paper [2]. We assume the intrinsic
mass density of the fluid and solid phases to be
equal:

⇢ = ⇢
f

= ⇢
s

= const (1)

The constitutive assumptions on stress are as
follows:

� = �

s + �

f (2)

�

f = ��fp
f

I (3)

�

s = �

elastic � �sp
f

I (4)

Equation (4) assumes that the intrinsic pressure
in the solid phase is equal to the intrinsic pres-
sure in the fluid phase. This is consistent with
the incompressibility assumption. The elastic
stress in the solid matrix, �

elastic, is given in
terms of the derivative of a strain energy func-
tion.

2.1 Problem formulation

We consider a poroelastic material submerged
in a fluid bath. The fluid-solid interface between
the poroelastic solid and fluid bath is denoted
�
fs

. On an interior boundary of the poroelas-
tic solid, �

p

, the pore fluid is assumed to be in
contact with a second reservoir, in which the
pressure can be controlled. Thus the boundary
conditions are assumed to be:

t

s = �p
bath

n on �
fs

(5)

q · n = 0 on �
fs

\ �
p

(6)

p
f

= p0 on �
p

(7)

Here we consider p0 to be a given constant.
Conservation of fluid volume in the incom-

pressible fluid bath and equation (6) give:
Z

⌦s
J dV = �V

f

. (8)



WAVES 2017, Minneapolis

Here, J = �3 is the relative volume change of
the poroelastic solid.

We consider two di↵erent conditions on the
fluid bath. In one case, the fluid bath surround-
ing the poroelastic solid is in a sealed container.
In this, the constrained case, �V

f

= 0. In a sec-
ond case, the unconstrained case, the container
is unsealed and open to the atmosphere, and
hence p

b

= 0 in this case.

2.2 Solution for quasistatic expansion

For a given (positive) p0, the quasistatic fields
for both the constrained and unconstrained cases
are given as follows.

Deformation:

x = �X (9)

Mixture stress:

� = �
o

(�)I � p
f

I (10)

Boundary conditions:
�
p

: p
f

= p0 (11)

�
fs

: �
o

(�)� p
f

= �p
bath

(12)

� Volume : (�3 � 1)V0 = �V
f

(13)

Now we consider the two cases. For the con-
strained case, �V

f

= 0 =) � = 1. Hence:

p
f

= p
bath

= p0. (14)

For the unconstrained case, p
bath

= 0, thus we
find:

�0(�) = +p
f

= +p0. (15)

We emphasize the point that in the unconstrained
case, the elastic matrix is in isotropic tension,
which counteracts the isotropic pressure in the
pore fluid. The stretch of the solid matrix, � >
1, is determined by the solution of equation
(15), for any given strain energy function W .

3 Incremental waves superposed on di-

latation

To consider incremental waves superposed on
the quasistatic deformation, we now consider
(ru ⌧ 1):

x = �X + u(x, t) (16)

Then, using the results of [3] leads to the
following expression for the shear wave speed:

c2

c20
=

(W1(�) +W2(�)�2)

�(W1(1) +W2(1))
(17)

Here, W
↵

= @W

@I↵
, where W is the strain energy

function, and I
↵

is an invariant of the Cauchy-
Green strain tensor [3].

4 Discussion

Equation (17) is our main result, and has sev-
eral implications regarding the behavior of the
shear wave speed and its dependence on the
strain energy function.

• The shear wave speed depends on �, inde-
pendent of the pore pressure p

f

. In this

case, the wave speed is independent of the

applied pressure.

• For the constrained case, � ⌘ 1. In this
case, the shear wave speed is unchanged
by a changing pore pressure.

• For the unconstrained case, � > 1, and
hence the shear wave speed changes with
increasing pore pressure.

• For W1,W2 positive constants, then shear
wave speed increases with increasing � at
most as

p
�. For the further special case

W2 = 0, the shear wave speed decreases

with increasing �.
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Abstract

Shear wave motion of a soft, electrically-conducting
solid in the presence of a strong magnetic field
excites eddy currents in the solid. These, in
turn, give rise to Lorentz forces that resist the
wave motion. We derive a mathematical model
for linear elastic wave propagation in a soft elec-
trically conducting solid in the presence of a
strong magnetic field. The model reduces to
an e↵ective anisotropic dissipation term resem-
bling an anisotropic viscous foundation. The
application to magnetic resonance elastography,
which uses strong magnetic fields to measure
shear wave speed in soft tissues for diagnostic
purposes, is considered.

Keywords: magnetoelasticity, eddy current,
magnetic resonance elastography

1 Introduction

Elastic shear wave propagation in soft tissues
is of current interest in the field of elastogra-
phy. Shear wave speed serves as a surrogate
for tissue modulus, and is used for diagnosis of
various pathologies. Therefore, understanding
those parameters which can lead to variations
in shear wave speed in vivo is necessary. Here
the focus is on dependence of shear wave speed
and attenuation in the presence of a strong mag-
netic field. We note that Lorentz force has been
used to generate shear waves in soft tissues [1].

Equations of motion for stressed and un-
stressed magnetoelastic solids have been stud-
ied extensively, c.f. [2]. Equations for incremen-
tal waves are presented in [3], though the focus
there is largely on materials that are magneto-
elastic and non-electrically conducting. Electri-
cally conducting materials are considered in [4].
The focus of the present work is on small am-
plitude waves in a non-magnetoelastic but elec-
trically conducting solid.

2 Electromagnetic modeling

We begin by recalling Maxwell’s equations [5]:

r ·E =
qf
"0

(1)

r ·B = 0 (2)

r⇥E = �@B

@t
(3)

r⇥B = µ0J (4)

Here E is the electric field, B is the magnetic
field, J is the current density (current per unit
area), qf is the free charge density, µ0 is the
permeability of free space and "0 is the permi-
attivity of free space. In Ampere’s law, (4), we
neglect the term µ0"0

@E
@t ⇡ 0, consistent with

an electromagnetic quasistatic approximation.
Assuming Ohm’s law holds within the ma-

terial gives us

J = �
F

q
= �(E+ v ⇥B). (5)

Here, � is the conductivity. Taking the curl of
both sides of (5) and using Maxwell’s Equations
yields

r2
B� �µ0

✓
@B

@t
�r⇥ (v ⇥B)

◆
= 0. (6)

Equation (6) is our main field equation for the
magnetic field within the conducting solid.

3 Magneto-elasticity model

We start with the linear momentum equation in
a continuum:

r · ⌧ � ⇢ü+ f = 0. (7)

Here ⌧ is the stress, u is the displacement, and
f is the body force per unit volume. We take f
to be the Lorentz body force, given by

f = J⇥B (8)

by (4): =
1

µ0
(r⇥B)⇥B (9)

Substituting (9) into (7) gives:

r · (C : ru)�⇢ü+(
1

µ0
(r⇥B)⇥B) = 0 (10)
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4 Linearization and scaling

We consider shear wave propagation at frequency
!0, which determines our time scale. We choose
to nondimensionalize space with respect to Lmech =
cmech
!0

. Two non-dimensional ratios arise in the
analysis. These are:

� =
Lmech

Lmag
= cmech

r
�µ0

!0
⌧ 1 (11)

� =
B2

0

µ0⇢c2mech

� 1 (12)

We now assume that the magnetic field is a
small perturbation of a strong static field, B0 =
B0m:

B = B0(m+ �2
h), �2

h ⌧ 1. (13)

We thus obtain to leading order:

r2
h+r⇥ (

@u

@t
⇥m) = 0 (14)

r · (C̃ : ru)� @2
u

@t2
+

��2((r⇥ h)⇥m) = 0 (15)

Here, C̃ = 1
⇢c2mech

C is the nondimensional elas-

ticity tensor.

5 Time-harmonic waves

We assume traveling wave solutions for displace-
ment and magnetic field:

u = A exp(in̂ · x� it), (16)

h = d exp(in̂ · x� it). (17)

Substituting into (14) and (15), and eliminat-
ing d leads to the following e↵ective disper-
sion equation for the mechanical wavefield am-
plitude, A:

⇣
n · [(2C̃+ i��2

D] · n� I

⌘
A = 0. (18)

Here, D(m) is the non-dimensional tensor:

Dijkl = miml�jk �mjml�ik �mimk�jl + �ij�kl.
(19)

This tensor, ��2
D(m), may be interpreted as

a non-dimensional damping tensor.

6 Discussion

Equations (18) and (19) are our main results,
and have several implications regarding the be-
havior of elastic waves in the presence of a strong
magnetic field.

• The dominant e↵ect of the strong mag-
netic field and the medium conductivity
is wave damping through eddy currents.

• The magnitude of the eddy current damp-
ing e↵ect is proportional to

��2 =
�B2

0

⇢!0
. (20)

• The magnitude of the e↵ect is the same
for both P-Waves and S-Waves.

• For soft tissues [6,7] the e↵ect is negligible
at all practical frequencies.
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Abstract

We consider the generation of incompressible
waves in a rapidly-rotating, electrically conduct-
ing, Boussinesq fluid stirred by buoyant anoma-
lies, a situation thought to arise in many plan-
etary cores. In the absence of a magnetic field,
the dispersion of energy from a localised source
is known to be dominated by low-frequency in-
ertial waves, which have wavevectors approx-
imately orthogonal to the rotation axis. We
study the modification to this process by a large-
scale ambient magnetic field consistent with that
found in the outer core of the Earth. We find
that the response is again dominated by wavevec-
tors normal to the rotation axis, but these now
take the form of hybrid “inertial-Alfvén waves”.
These propagate along the rotation axis at half
the speed of conventional low-frequency inertial
waves, but also dispatch energy along magnetic
field lines at the Alfvén velocity. We demon-
strate their significance via a simple model prob-
lem.

Keywords: Rapidly-rotating flows, magneto-
hydrodynamics, planetary interiors

1 Introduction - inertial waves

A rapidly rotating fluid can support inertial waves
through the action of the Coriolis force. These
have a group velocity which is perpendicular to
their wavevector, so all wavevectors k in the
plane normal to the rotation vector ⌦ carry
energy along the axis. Such waves are low-
frequency, since the relevant dispersion relation
is $ = ±2⌦ · k/k, and automatically focussing
since the energy from a large area of k-space
(the horizontal plane) is distributed over a nar-
row region of real space (the rotation axis) [1].
This means, in the non-magnetic case, that the
dispersion of energy from a localised source is
dominated by waves which have k horizontal
and $ ⇡ 0. Motivated by short-timescale dy-
namics in planetary cores, we wish to explore
how this paradigm is a↵ected by the addition
of a mean magnetic field.

2 Rapidly-rotating MHD waves

We consider the ideal linearised momentum and
induction equations for the solenoidal velocity
and perturbed magnetic fields, u and b:

@u

@t
= (B0 ·r) b+ (2⌦ ·r) c, (1)

@b

@t
= (B0 ·r)u. (2)

Here, B0 is the constant ambient magnetic field,
taken to be horizontal, ⌦ is the background ro-
tation, taken vertical, and c is the solenoidal
vector potential for u. The density and mag-
netic permeability are taken to be unity, giving
the magnetic field units of an Alfvén velocity.
A search for plane wave solutions of frequency
$ yields the quartic dispersion relation

$2 ⌥$⌦$ �$2
B = 0, (3)

where $⌦ = 2⌦ · k/k and $B = B0·k are
the inertial-wave and Alfvén frequencies respec-
tively. It is common in the geophysical litera-
ture to then exploit the fact that rotation is
dominant over the magnetic field, as measured
by the Lehnert number Le = 2B0/⌦` for some
lengthscale `. (Le ⇠ 0.1 is thought typical of
small scales in the Earth.) For small Le, one
might expect |$⌦| � |$B|, giving (3) two pairs
of well-separated roots,

$I ⇡ ±$⌦, $M ⇡ ⌥$2
B/$⌦, (4)

identified as weakly-modified inertial waves and
the much slower magnetostrophic waves. How-
ever, this ansatz ignores the significance of self-
focussing $⌦ ⇡ 0 solutions in the non-magnetic
case. Making the converse assumption |$⌦| ⌧
|$B| gives roots

$ ⇡ (±)$B ±$⌦/2 ⇡ (±)$B (5)

with a group velocity

cg ⇡ (±)B0 ±⌦/k, (6)

demonstrating dispersion along both the rota-
tion axis and magnetic field lines; these are our
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“inertial-Alfvén waves”. We now show by ex-
ample that, contrary to common wisdom, this
second regime probably best describes the radi-
ation of waves from localised sources in plane-
tary cores.

3 A model problem

We present the model problem considered in
[2] more fully. A buoyant anomaly of Gaus-
sian structure, with a density perturbation ⇢0 /
exp{�2x2/`2}, is introduced spontaneously into
a quiescent, boussinesq, conducting fluid. The
background rotation, ambient magnetic field,
and gravitational acceleration are taken to be
mutually orthogonal; this might resemble con-
ditions in the equatorial regions of a planet.
We do not solve for the evolution of the buoy-
ancy field, but concern ourselves instead with
the rather more rapid waves it emits. This ini-
tial value problem is solved by taking the spatial
Fourier transform, solving in k-space, then eval-
uating the inverse numerically. An example dis-
persion pattern, for the case Le = 0.1, is shown
in Figure 1. We observe significant radiation
vertically on the fast inertial-wave timescale,
with a more gradual spreading along field lines
at the Alfvén velocity.

It is possible to perform diagnostic tests on
the dispersion of energy to show that the dom-
inant structures do indeed propagate according
to the group velocity expression (6). These re-
sults are by no means unique to the specific case
studied here, which suggests that small scale
dynamics in planetary cores may be governed
by inertial-Alfvén waves, rather than the more
commonly proposed combination of inertial and
magnetostrophic waves.
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Figure 1: Radiation from a buoyant blob at
⌦t = 50 for Le = 0.1. Rotation is vertical, mag-
netic field horizontal, and gravity acts into the
page. Colouring shows axial velocity (red pos-
itive, blue negative) and field lines are overlaid
in black.
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Abstract

The numerical simulation of acoustic waves prop-
agating from the near surface of the Sun can
be performed by solving a Helmholtz equation
whose main feature is having a coe�cient that
is exponentially decaying into the atmosphere of
the Sun. Using high-order finite element meth-
ods, there is a need in truncating the computa-
tional domain by introducing a boundary sur-
rounding the Sun. We propose a family of Ra-
diation Boundary Conditions that are derived
first from the factorization of the Helmholtz equa-
tion. When the Sun is approximated by a sphere,
the corresponding mixed problem is well-posed
and a series of numerical experiments allows to
identify a second-order condition that gives ac-
curate simulations at any frequency. The con-
dition can be used for regular boundaries in-
cluding the sphere but not only which makes it
useful for any application involving a Helmholtz
equation set into a heterogeneous medium.

Keywords: Helmholtz equation; heterogeneous
medium

1 General setting

Acoustic waves are propagating in the near sur-
face of the Sun. They can be represented as the
solution to the Helmholtz problem:

� !2

⇢ c2
u� div

✓
1

⇢
ru

◆
= f in ⌦. (1)

where ! denotes the pulsation, ⇢ is the den-
sity of the propagation medium and c stands
for the wave velocity. The propagation medium
is infinite defined a priori as the whole space
including the Sun. The pulsation is a complex
number incorporating a damping parameter �:

! =

r
1 +

2i�

!0
!0

The real pulsation !0 is given as !0 = 2⇡f0,
where f0 is the frequency. The density ⇢ and

the velocity c behave di↵erently regarding they
represent the Sun or its exterior [2]. In the near
surface of the Sun, the parameters are collaps-
ing to define a region which is called the atmo-
sphere of the Sun. In general, they are repre-
sented as radial functions:

8
><

>:

⇢(r) = ⇢�(r), c(r) = c�(r) if r  RS

⇢(r) = ⇢�(RS) e�↵(r�RS)

,c(r) = c�(RS) if r > RS

The volume source f is compactly supported.
In the following, we derive conditions that are
used to truncate the atmosphere.

2 Radiation conditions

We consider the homogeneous equation set in
the atmosphere (r � RS). Using separation of
variables in spherical coordinates, we seek the
solution u under the form

u(r, ✓,�) =
LX

`=0

X̀

m=�`

um`, (r)Y
m
` (✓,�)

where Y m
` are the spherical harmonics and Pm

`
are the associated Legendre polynomials. L is
the maximal degree of spherical harmonics used
in the expression of u. The equation satisfied by
u`,m is then

�!2r2

⇢c2
um` � @

@r

✓
r2

⇢

@um`
@r

◆
+

`(`+ 1)

⇢
um` = 0

Supposing that the density ⇢ is smooth enough

and introducing ↵ is given by : ↵(r) = �⇢0(r)
⇢(r) ,

we end up with

✓
@

@r
+

✓
1

r
+

↵

2

◆◆2

um` = � !2

c2
�

!2
c,l

c2

!
um`

where !c,`(r) is a cut-o↵ frequency given by

!2
c,`(r)

c2
= � 1

r2
+

✓
1

r
+

↵

2

◆2

+
`(`+ 1)

r2
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We then have, since ↵ is constant, Expression
(2)makes it possible to extract the principal part
of the Dirichlet-to-Neumann operator governing
outgoing and ingoing waves for a given surface.
For that purpose, we see that to select propa-
gating waves, we have to consider pulsations !
that are larger than the cut-o↵ frequency. Then
we get:

✓
@

@r
+

✓
1

r
+

↵

2

◆◆
um` = ±i

vuut !2

c2
�

!2
c,l

c2

!
um`

where the sign = means equals modulo a zero-

order operator. Actually the factorization may
not be exact because the factoring acts on a
noncommutative ring. To select the relation
which represents outgoing waves, we consider
the equation which ensures the real part of the
symbol of i @r to be negative ( [3]). We then
have: for r and ` fixed, if ! � !c,`(r) out-going
waves um` are formally represented as the waves
that satisfy

✓
@

@r
+

✓
1

r
+

↵

2

◆◆
um` = i

s
!2

c2
�

!2
c,`(r)

c2
um`

(2)
From a practical point of view, this condition
is not well-suited for axisymmetrical cases since
its dependency in ` is involved inside the square-
root. Nevertheless, the squareroot can be re-
placed by a Taylor approximation using `(`+1)

!2

as variable. We then get a second radiation con-
dition given by:

@um`
@r

= �
⇣
+

↵

2

⌘
um` +

i!

c

s

1� c2

!2

✓
↵+

↵2

4

◆
um`

+

c

2i!

`(`+ 1)

R2r
1� c2

!2

⇣
↵+ ↵2

4

⌘u
m
` (3)

3 Performance assessments

We have performed a large series of numeri-
cal experiments along with di↵erent boundary
conditions. We have considered both toy prob-
lems for which we have reference solutions and
a more realistic case based upon the so-called
Model S (see [1]). We have studied how the dif-
ferent parameters may impact on the simulation
accuracy. They are the value of the frequency
f0, the value of ↵, the distance of truncation. It

turns out that in each case, condition (2) out-
performs the other ones, followed very closely
by (3). Figure 1 provides an illustration of the
performance of the conditions. We see that for
two very di↵erent values of ↵, the two condi-
tions perform very well for any frequency, as
compared to the standard Sommerfeld condi-
tion and to Dirichlet condition.

101 102
10�18

10�14

10�10

10�6

10�2

Frequency (Hz)

e
rr
o
r

Dirichlet BC

Sommerfeld

Condition (3)

Condition (2)

Figure 1: Relative L2 error. Solid line : ↵ = 50,
Dashed line : ↵ = 5⇥ 103.

Figure 2: Power Spectrum obtained with Model S
data and condition (2) compared with experimental
data of the Sun (+).
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Abstract

We study the propagation of small time-harmonic
acoustic perturbations of a stationary fluid flow.
We use the Goldstein equations, coupling the
acoustic phenomena to the vorticies transport.
On a simple toy geometry, allowing explicit cal-
culations, we show the existence of resonant fre-
quencies for recirculating flows, corresponding
to an ill-posed problem for the transport of vor-
ticies. We prove that far enough from these
resonances, the Goldstein model is well-posed
under a coercivity condition. We determine nu-
merically the frequency validity domain of this
condition.

Keywords: aeroacoustics, harmonic transport
equation, resonance, Fredholm alternative

1 Introduction

We consider an air flow of density and veloc-
ity ⇢0 and v0, which satisfy the stationary Eu-
ler equations. We are interested in the time-
harmonic acoustic perturbations ⇢(x)e�i!t and
v(x)e�i!t of this carrier flow, at given frequency
! > 0. They are solutions of the linearized
Euler equations and we choose an equivalent
model, Goldstein’s equations [1], because lower
computational cost is expected.

When the base flow is potential, meaning
that !0 := curl(v0) = 0, the Goldstein equa-
tions reduce to a scalar convected Helmholtz
equation, governing the acoustic potential ' de-
fined by r' = v. In a general flow, !0 6= 0,
acoustic perturbations are no longer potential
and the Goldstein equations of unknowns ' and
⇠ = v �r' are, for an acoustic source term f :

8
><

>:

D
!

⇣ 1

c20
D

!

'
⌘
� 1

⇢0
r ·

�
⇢0(r' + ⇠)

�
= f,

D
!

⇠ +
�
⇠ ·r

�
v0 �r' ⇥ !0 = 0,

(1a)

(1b)

where D
!

:= �i! + v0 ·r is the harmonic con-
vective derivative, c0 the speed of sound.

A great interest of Goldstein’s model is that
it can be seen as a perturbation of the scalar

convected Helmholtz equation. Following this
remark, our general strategy to study the well-
posedness of the Goldstein equations is to first
show that the transport equation (1b) is well-
posed, to express ⇠ as a function of ' and to
control its L2 norm with a positive constant C:

k⇠k
L

2  C kr' ⇥ !0k
L

2 . (2)

With the estimation (2), we show that Gold-
stein’s equations, with suitable boundary con-
ditions, are well-posed in the H1 framework if

1 � kv0/c0k21 � Ck!0k1 > 0. (3)

Therefore the key point is to establish the
estimation (2). We have shown that it is always
possible in the case of unclosed streamlines with
no stopping point. In presence of closed stream-
lines, the Goldstein equations may be ill-posed
because of possible resonances. To clarify this
last case, we focus here on a simple geometry,
adapted to cartesian coordinates, for which we
are able to fully determine the resonant frequen-
cies of the transport equation. Moreover we are
able to study the impact of these resonances on
the full coupled Goldstein model.

2 A toy model in a simple geometry

We consider a rectangle ⌦ = (0, L)⇥ (0, h) and
the shear flow v0(x, y) = v0(y)e

x

, v0 > 0, as
shown on Fig. 1. To mimic a recirculating flow,
we suppose that ⌦ is periodic in the x-direction.

v0

h

L

⌦

e

x

e

y

Figure 1: Domain ⌦ periodic in x-direction
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3 Transport equation and its resonances

In ⌦, the transport equation (1b) simplifies:
noting g = r' ⇥ !0, ⇠ 2 L2(⌦)2 satisfies

D
!

⇠ +

✓
0 v00
0 0

◆
⇠ = g, ⇠(·, y) L-per. (4)

We have proved that Eq. (4) is well-posed if and
only if the frequency ! is not in the resonant set

W
res

:=
[

n2Z

2⇡n

L

h
min v0, max v0

i
,

and outside this set we have the estimation

k⇠k
L

2  eC
q

2(1 + eC2)
| {z }

C0

kgk
L

2 , (5)

with, eC := sup
y2(0,h)

�����
L/v0(y)

2 sin
�
!L/v0(y)

�
����� .

In other words, to each streamline {y = y?} cor-
responds a discrete family of resonant frequen-
cies, 2⇡/Lv0(y?)Z, to avoid to be well-posedness.

4 Fredholm alternative outside W
res

Outside the resonant set i.e. ! /2 W
res

, the a

priori estimation (5) enables us to prove that
the Goldstein problem is of Fredholm type if

C(!) := 1 � kv0/c0k21 � kv00k1C0 > 0. (6)

We represent on Fig. 2, for a linear velocity
profile v0(y) = ay + b, the set W

res

in red and
the constant C versus !. If the blue curve is
above the dashed red line, (6) holds. This fig-
ure illustrates that ! has not only to be out-
side W

res

but has to be far enough, as shows
in particular the part of the blue curve around
! = 30, remaining below 0. Moreover, there
is no resonance at low frequencies, at least in
(0, 2⇡ min v0/L) and the spectrum becomes con-
tinuous above a threshold, here ! ⇡ 31.

Figure 2: In red: resonant set; in blue: C(!),
Goldstein’s equations are well-posed i↵ C(!) > 0

5 Unicity : Fourier analysis

Applying Fredholm theory, we deduce well-posedness
by proving the unicity of solution. Given the
following Fourier decompositions

' =
X

n2Z
'
n

(y)ei�nx, ⇠ =
X

n2Z
⇠

n

(y)ei�nx,

where �
n

= 2n⇡/L, Goldstein’s equations and
associated boundary conditions reduce to a fam-
ily of scalar boundary value problems on '

n

:
8
>>>>>>><

>>>>>>>:

� d2'
n

dy2
+ p

n

'
n

= 0,

d'
n

dy
(h) =

✓
i! � ↵0

n

↵
n

◆
'
n

(h)

d'
n

dy
(0) = �↵0

n

↵
n

'
n

(0)

(7a)

(7b)

(7c)

where p
n

:= �2
n

� ↵2
n

� ↵

00
n

↵n
+ 2

⇣
↵

0
n

↵n

⌘2
, and

↵
n

:= �! + �
n

v0. ⇠

n

are then deduced from

⇠
x,n

=
i

�
n

↵0
n

↵
n

✓
↵0

n

↵
n

+
d

dy

◆
'

n

, ⇠
y,n

=
↵0

n

↵
n

'
n

. (8)

The study of the variational formulation asso-
ciated with (7) shows that only 0 is solution.

6 Going further: with resonant lines

When ! is a resonant frequency, the transport
equation is ill-posed in the sense that it has
no solution in L2(⌦)2. To look for solutions
in larger spaces, let us notice that resonant fre-
quencies correspond to the vanishing of the coef-
ficient ↵

n

, making p
n

a singular function. More-
over, given '

n

, Eq. (8) shows that the compo-
nents of ⇠

n

are singular at the resonant lines lo-
cated at {y? : ↵

n

(y?) = 0}. Therefore solutions
at resonance frequencies should be looked for in
more singular spaces. Similar results have been
obtained in plasma [2] and we have started to
adapt the approach to aeroacoustics. The idea
is to introduce absorption and to look how the
solutions degenerate as it goes to 0.
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Abstract

In previous papers [1, 2], a method has been
proposed to prove the existence of invisible per-
turbations in waveguides. The method is con-
structive and has been validated numerically.
But the drawback is that it is limited to small
perturbations. In the present work, we show
that the previous idea can be combined with
a continuation method, in order to get larger
invisible perturbations.

Keywords: waveguides, invisibility, continua-
tion method

1 The model problem

We consider a 2D acoustic waveguide occupying
the domain ⌦ = {(x, y);x 2 R and 0 < y < 1}.
In presence of a bounded penetrable obstacle O
and in harmonic regime of angular frequency !,
the acoustic pressure p satisfies the equations

8
<

:

�p+ k

2(1 + �O⇢)p = 0 in ⌦
@p

@y

= 0 on @⌦
(1)

where k = !/c (c is the acoustic waves velocity),
�O is the characteristic function of O and ⇢ 2
L

1(O).

We suppose that k < ⇡, so that there is only
one propagative mode in the waveguide, which
is the piston mode e±ikx. The scattering of this
mode, coming from the left, by the perturbation
O leads to a solution p of (1) such that:

p =

⇢
e

ikx +Re

�ikx + p̃(x, y) x < 0
Te

ikx + p̃(x, y) x > 0
(2)

where p̃ is a superposition of evanescent modes
which decay exponentially at infinity. Due to
conservation of energy, the complex reflection
and transmission coe�cients R and T are such
that

|R|2 + |T |2 = 1. (3)

We say that the obstacle (O, ⇢) is invisible if
T = 1 (which implies R = 0 by (3)). An ob-
stacle such that R = 0 is called non-reflective.
By (3), it satisfies |T | = 1, but not necessar-
ily T = 1: there may be a phase shift of the
transmitted wave. In the sequel, we focus our
attention to build non-reflective obstacles. One
can proceed similarly to get invisible perturba-
tions.

2 Building small non-reflective obstacles

Let us first show how to build small non-reflective
obstacles. We fix the support of the heterogene-
ity O. Giving some small parameter ", we look
for a function µ 2 L

1(O) satisfying

R("µ) = 0. (4)

Since R(0) = 0 (no obstacle produces no reflec-
tion), the Taylor expansion of R("µ) takes the
form:

R("µ) = "dR(0)µ+ "

2
R̃(", µ)

where dR(0), the di↵erential of R at 0, has the
following expression:

dR(0)µ =
ik

2

Z

O
µ(x, y)e2ikxdxdy.

The idea is then to choose some real valued
functions µ0, µ1 and µ2 such that

dR(0)µ0 = 0, dR(0)µ1 = 1 and dR(0)µ2 = i

and to look for a solution µ of (4) of the form

µ = µ0 + ⌧1µ1 + ⌧2µ2 (5)

where the ⌧

j

are real parameters to determine.
Inserting (5) in the Taylor expansion of R("µ),
we get the following fixed-point equation for ⌧ =
⌧1 + i⌧2 2 C:

⌧ = �"R̃(", µ0 + ⌧1µ1 + ⌧2µ2). (6)
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We can prove that, for " small enough, the func-
tion (of the variable ⌧) on the right hand side
of (6) is a contraction on any given closed ball
of C. This yields the following result.

Theorem 1 For " small enough, there is a unique

solution µ of the form (5) to equation (4).

3 The continuation method

To build non-reflective obstacles of larger am-
plitude, the idea (given in section 3 of [3]) is
to iterate the previous technique. More pre-
cisely, at iteration n, we denote by ⇢

(n) a so-
lution of R(⇢(n)) = 0. To build the next it-

erate, we introduce µ

(n)
0 , µ

(n)
1 and µ

(n)
2 such

that dR(⇢(n))µ
(n)
0 = 0, dR(⇢(n))µ

(n)
1 = 1 and

dR(⇢(n))µ
(n)
2 = i. Then we prove that, for "

(n)

small enough, there exists a unique solution

⇢

(n+1) = ⇢

(n) + "

(n)(µ
(n)
0 + ⌧

(n)
1 µ

(n)
1 + ⌧

(n)
2 µ

(n)
2 )

of R(⇢(n+1)) = 0 with (⌧
(n)
1 , ⌧

(n)
2 ) in R2. One

di�culty is that the existence of µ
(n)
1 and µ

(n)
2

is ensured if and only if the di↵erential dR(⇢(n))
is onto, which cannot be easily proved from its
expression:

dR(⇢(n))µ =
ik

2

Z

O
µ(x, y)p(n)(x, y)eikxdxdy

where p

(n) denotes the solution of (1) of the
form (2) for ⇢ = ⇢

(n). Concerning the choice

of the µ

(n)
j

, we explore two strategies.

First strategy: we choose the µ

(n)
j

for all
n in the same 3D space V = span(µ0, µ1, µ2).
The advantage is that this leads to a large non-
reflective perturbation described by only three
real parameters. For instance, using piecewise
constant µ

j

, we obtain the following curve in
the space V (note the very small scale of the
vertical coordinate).

µ0 µ1

µ2

Figure 1: Solutions of R(⇢) = 0 in V . Each dot
corresponds to a non-reflective ⇢.

The non-reflective obstacle at the end of the
curve (depicted on Figure 2 top) has an ampli-
tude which is 4 times larger than the one ob-
tained at the first iteration. The algorithm is
almost blocked at this point because of the pres-
ence of a very small radius of curvature of the
curve, which imposes to " to be less than 10�5

to ensure the convergence of the fixed-point al-
gorithm.

Figure 2: From top to bottom: non-reflective
obstacle, incident field, total field and scattered
field at the end of the curve of Figure 1.

Second strategy: we choose the µ

(n)
j

in a

space V of dimension N >> 3. µ

(n)
0 is build

by an extrapolation of the previous points, µ
(n)
1

and µ

(n)
2 are obtained by using a pseudo-inverse

of dR(⇢(n)). Compared to the first one, this
strategy is supposed to give access to larger ob-
stacles. The counterpart is that the contrast
function ⇢ is described by a large number of pa-
rameters, so that it could be di�cult to realize
in practice.
Acknowledgement: we thank the DGA for its
financial support.
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Abstract

Rocks and concrete have a strong nonlinear be-
havior. Moreover, the speed of sound dimin-
ishes slowly under a dynamic loading. To repro-
duce this behavior, an internal-variable model
of continuum is proposed. It is composed of a
constitutive law for the stress and an evolution
equation for the internal variable. Qualitatively,
the model reproduces the experiments.

Keywords: acoustoelasticity, softening, con-
tinuum mechanics

1 Introduction

In dynamic acoustoelastic testing, the speed of
sound measured locally decreases in time. This
softening occurs over a time scale larger than
the period of the dynamic loading, which high-
lights the phenomenon of slow dynamics. More-
over, the evolution of this speed with respect to
the strain presents an hysteresis curve. All these
phenomena are accentuated when the strain am-
plitude is increased [1].

Several models, such as Preisach-Mayergoyz,
have been designed to mimic the hysteresis. The
soft-ratchet model [2] by Vakhnenko et al. re-
sults from a di↵erent approach. A variable g,
interpreted as a concentration of activated de-
fects, is introduced in order to modify the elas-
tic modulus. Also, an evolution equation for g

is provided. The soft-ratchet model was devel-
oped in one space dimension and does not gen-
eralize straightforwardly to higher dimensions.

We propose a new model based on thermo-
dynamics with internal variables. Here too, a
variable g is introduced to describe the soft-
ening, as well as an evolution equation for g.
The model satisfies the principles of thermody-
namics by construction, which is not the case
of the soft-ratchet model. For the sake of sim-
plicity, only the 1D case is presented here. In
a particular case, the equations are solved ana-
lytically. Qualitatively, the three expected phe-
nomena are reproduced. The general 3D case is

detailed in a future publication [3].

2 Governing equations

We consider an elastic solid, which is vibrating
longitudinally. In classical Green elasticity, the
internal energy per unit volume is ⇢0 e = W ("),
where e is the internal energy per unit mass and
⇢0 is the mass density in the reference (unde-
formed) configuration. The strain energy den-
sity W is a function of the axial strain " =
@u/@x, where u denotes the axial displacement.
In the Lagrangian representation of motion, elas-
todynamics write [2]

8
>><

>>:

@"

@t

=
@v

@x

,

⇢0
@v

@t

=
@�

@x

,

(1)

where v denotes the particle velocity. The Cauchy
stress is deduced from the strain energy density
according to � = W

0("), where the 0 denotes the
derivative.

Now, an internal variable g is introduced to
describe the softening of the material. We de-
fine the internal energy per unit volume of ma-
terial as follows:

⇢0 e = �1(g)W (") + �2(g) . (2)

The functions �1 and �2 are smooth functions
of the internal variable g, typically

�1(g) = 1� g , (3)

�2(g) =
1

2
�g

2
, (4)

where � > 0 is an energy per unit volume. An
evolution equation for g and a constitutive law
for � are added to the equations of elastody-
namics (1):

8
><

>:

� = �1(g) �̄(") ,

@g

@t

= ��

0
1(g)W (") + �

0
2(g)

⌧1
,

(5)
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Figure 1: (a) Softening of the material for several strain amplitudes (7). (b) Hysteresis curves in
steady state (t � ⌧� in (7)).

where ⌧1 > 0 is a given parameter. The stress
�̄(") = W

0(") is derived from the strain energy
density function, as in classical Green elastic-
ity. By construction, the constitutive laws (5)
satisfy the principles of thermodynamics.

3 Example

With the functions �1 and �2 from (3)-(4), the
evolution equation in (5) becomes

@g

@t

+
g

⌧�
=

W (")

⌧1
, (6)

where ⌧� = ⌧1/�. In the case of Hooke’s law, the
strain energy density is W (") = 1

2E"

2, where E
is the Young’s modulus. If the strain is im-
posed, equation (6) can be solved analytically.
For instance, the solution of (6) with the initial
condition g(0) = 0 is

g(t) =
EV

2

4�

✓
1� (2!c⌧�)2

1 + (2!c⌧�)2
e�t/⌧�

� cos(2!ct) + 2!c⌧� sin(2!ct)

1 + (2!c⌧�)2

◆
,

(7)

in the case of a sinusoidal strain " = V sin(!ct).
According to the expression of the stress in (5),
the relative variation in elastic modulus with
respect to a linear-elastic solid is

�M

M

=
@�/@"� E

E

= �g . (8)

On figure 1, we represent the variation in elas-
tic modulus (8) deduced from (7). The param-
eters are issued from table 1 and the angular
frequency is !c = 2⇡⇥104 rad/s.

Table 1: Physical parameters.

E (GPa) � (J.m�3) ⌧1 (J.m�3.s)

10 20 7⇥ 10�3

4 Conclusion

A thermodynamically admissible 1D model of
solid with slow dynamics has been developed.
In a simplified case, the model is shown to re-
produce qualitatively the experimental observa-
tions. Furthermore, the model adds only one
scalar evolution equation to the classical equa-
tions of elastodynamics, with a reduced number
of new parameters. Extension to 3D geometries
is described in a future publication [3].
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Abstract

Accelerated beams (Airy and Airy-related) cor-
respond to curved caustics of the underlying
geometrical rays. The connections will be ex-
plained in detail, concentrating on beams as-
sociated with the stable caustics classified by
catastrophe theory. Some such beams, includ-
ing the simplest Airy beam in three-dimensional
space, are unstable in the mathematical sense:
under a symmetry-breaking perturbation, they
break up into caustics that are stable. In the
Airy case, this is a hyperbolic umbilic catastro-
phe. Associated with the stable caustics are a
variety of exact solutions of the paraxial wave
equations.

Stable and unstable Airy-related caustics and beams
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Abstract

A major challenge in materials design is to en-
gineer matter that has the ability to change its
mechanical properties in a predetermined man-
ner within a practical time frame. Most of these
mechanical properties are inscribed in materi-
als’ frequency dispersion spectrum, ranging form
material sti↵ness at zero frequency to its ther-
mal conductivity at much higher frequencies.
In this work, we harness geometric and mag-
netic nonlinearities to tune the dispersion char-
acteristics of matter in real-time. As a demon-
stration of principle, we program our nonlinear
metamaterials to change the frequency range of
its subwavelength band gap, where mechanical
waves don’t propagate, in real-time. Using nu-
merical modeling and experiments, we realize a
meta-plate that can be re/programmed at the
unit cell level (i.e., element wise) to guide elas-
tic energy in arbitrary directions in space within
fractions of a second. The realized concept can
inspire the design of advanced functioning ma-
terials.

Keywords: metamaterial, geometric & mag-
netic nonlinearity , shape changing materials

Phononic metamaterials are material systems
with the ability to manipulate mechanical (i.e.,
phononic) waves in desired fashions as they can
present peculiar properties, for example, neg-
ative e↵ective density and sti↵ness [1]. These
properties can be engineered to guide, focus and
cloak elastic waves. Moreover, they have the
potential to shield objects, ranging from nano
& micro-scale devices to buildings from thermal
and seismic energy (for a complete list of appli-
cations consult the recent reviews in [1] and the
references within).

The basic principle of operation in phononic
metamaterials is local resonance at the unit cell
(the basic building block that tessellates in space)
level. These resonances hybridize with the ma-
terial transmission bands creating narrow fre-
quency ranges where mechanical waves can’t

propagate (band gaps). Such resonance hybridiza-
tion is shown to break the mass-density law
of sound transmission by more than an order
of magnitude at subwavelength frequencies [2].
However, these resonance-induced band gaps are
typically narrow, which impose a hard limit on
the material functionality in practical applica-
tions such as seismic shielding. A logical step
to overcome this hurdle is to utilize materials
with tunable properties. Such tunability can
be achieved by means of piezo shunting, cell
symmetry relaxation, static loading, granular
contacts and acoustic trapping [3]. However,
most of the methods reported in the literature
are not tunable in real-time, require continuous
consumption of energy or need direct contact
with the material.

Here, we present a new avenue to material
tunability by means of geometrically nonlinear
metamaterial [4], which can change its shape
from flat “two dimensional” to extruded “three
dimensional” form as in figure 1a. The realized
metamaterial retains a subwavelength band gap
in its flat configuration, which can be system-
atically reduced by extruding the unitcell ver-
tically until the band gap closes, as shown in
the numerically obtained dispersion diagrams of
both flat and extruded unit cells in figure 1b.

In order to engineer a shape change in our
material in real-time, we exploit magnetic non-
linearities by embedding a permanent magnet
at the center of the metamaterial unit cell. By
changing the intensity of an external magnetic
field underneath the metamaterial, we are able
to “program” it in real-time to change shape,
therefore changing its phononic properties at
a given frequency from propagation to atten-
uation and vice-versa. To verify our numeri-
cal prediction, we excite the system harmoni-
cally using a mechanical shaker and measure the
transmitted wave signal, using a laser Doppler
vibrometer, before and after the programming
(figure 2).
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Figure 1: (a) The geometric evolution of the metamaterial unit cell during programming; as the inten-
sity of the external magnetic field increases, the metamaterial transforms from two to three-dimensions.
(b) Dispersion curves for a unit cell made of polycarbonate by means of additive manufacturing with
in-plane Floquet boundary conditions. The lattice constant is 12.5 mm and the thickness is 2 mm.
When the unit cell is flat “2D” there exist a complete band gap between 89 and 126 Hz. The band gap
closes completely in the extruded case “3D” (right). The inset in figure b left highlights the irreducible
Brillouin zone of the unit cell.

Figure 2: Experimentally acquired time signal
at ! = 96 Hz in the center of a meta-plate com-
posed of (28x20) unit cells with fixed corners.
The time periods spanned in programming from
2D to 3D and vice-versa are highlighted in gray.

This work presents a realization of a pro-
grammable phononic metamaterial with band
gap tunability. We harness nonlinearities of both
geometry and magnets providing a non-invasive
element-wise control methodology. Our meta-
material can have impact in the design of ad-

vanced functional materials, programmable mat-
ter and transducers for acoustic imaging.
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Abstract

In this talk, we consider a nonlinear, dispersive,
Maxwell model in its first order form, where the
nonlinearity comes from the instantaneous elec-
tronic Kerr response together with the single

resonance linear Lorentz dispersion. We design
high order Discontinuous Galerkin (DG) dis-
cretizations in space for this model, and prove
that the resulting semi-discrete and fully-discrete
methods, based on leap-frog and implicit trape-
zoidal temporal schemes, are energy stable.

Keywords: Maxwell’s equations, Kerr nonlin-
earity, linear Lorentz dispersion.

1 Introduction

In this talk, we consider the numerical simula-
tion of electromagnetic (EM) pulse propagation
in nonlinear optical materials. The model is
Maxwell’s equations along with ordinary di↵er-
ential equations (ODE) for the electric polar-
ization that comprises of a linear material re-
sponse, modeled by a Lorentz dispersion, while
the nonlinear response has an instantaneous part
governed by the Kerr e↵ect [1].

We construct DG methods for the nonlin-
ear Maxwell model in one spatial dimension.
When the numerical fluxes are chosen to be cen-
tral or alternating, the solutions to the semi-
discrete DG methods satisfy an energy decay
just as the exact solutions do, hence the meth-
ods are stable, even in the presence of the Kerr
e↵ect. We propose a novel strategy to discretize
the nonlinear terms within the commonly used
leap-frog and implicit trapezoidal temporal dis-
cretization. The resulting fully discrete meth-
ods are proved to be stable. More specifically,
the leap-frog DG method is conditional stable
under an expected CFL condition, while the
fully implicit method with the trapezoidal dis-
cretization in time is unconditionally stable. In
both cases, the ODE part of the model system is
discretized implicitly. In this talk, the methods

and numerical verification will be presented for

the model in one dimensions, and extensions to

two spatial dimensions as well as the inclusion

of a nonlinear retarded response (stimulated Ra-

man scattering) will be presented.

2 Nonlinear Maxwell Model in 1D

We consider Maxwell’s equations in a non mag-
netic, non-conductive, linear dispersive medium
with a Kerr type nonlinearity. In one spatial di-
mension, the model is given as

µ0
@H

@t
=

@E

@x
,

@D

@t
=

@H

@x
, (1)

@P

@t
= J,

@J

@t
= �1

⌧
J � !2

0P + !2
pE, (2)

along with the constitutive law

D = ✏0(✏1E + P + aE3). (3)

In the above, the variables E andD are the elec-
tric field and electric displacement, respectively.
The variable H is the magnetic field. The vari-
ables P and J are the electric polarization, and
its current density, respectively, that describe
the linear Lorentz dispersion model. The pa-
rameters !0, !p and 1

⌧ are the resonance and
plasma frequencies, and damping constant, re-
spectively, of the linear Lorentz model. The pa-
rameters ✏1, ✏0, µ0 are the infinite frequency
relative permittivity, free space permittivity and
permeability, respectively, while a is a third or-
der coupling constant associated to the cubic
Kerr term. Model (1)-(3) admits the following
energy decay.
Theorem 1 Under the assumption of periodic

boundary conditions, the energy E = E(t) of the
system (1)-(3), defined as

E(t) =
Z

⌦

✓
µ0

2
H2(t) +

✏0✏1
2

E2(t) +
✏0
2!2

p
J2(t)

+
✏0!

2
0

2!2
p
P 2(t) +

3✏0a

4
E4(t)

◆
dx,

satisfies

d
dtE(t) = � ✏0

!2
p⌧

R
⌦ J2(t)dx  0.
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3 Semi-discrete Discontinuous Galerkin

Method

We assume periodic boundary conditions in the
x direction. We define finite dimensional dis-
crete spaces which consist of piecewise polyno-
mials of degree up to k with respect to a given
mesh, and formulate semi-discrete DG methods
for the system (1) - (3). The constitutive law
(3) is imposed via the L2 projection. Numerical
fluxes for the electric and magnetic fields are in-
troduced that are either central fluxes (CF), or
a pair of two di↵erent types of alternating fluxes
(AFI, AF II). Finally, we establish stability of
the semi-discrete DG schemes which are consis-
tent with the energy stability of the PDE-ODE
system (1)-(3) given in Theorem 1.

4 Fully discrete DG schemes

Common temporal discretizations such as the
second order leap frog (LF) or implicit trape-
zoidal (IT) method cannot yield provable sta-
bility results unlike in the case of linear mod-
els [2]. We design novel modifications of LF
and the IT methods to design fully discrete DG
schemes for (1)-(3). The schemes are second or-
der accurate and with the special treatment for
the Kerr terms, fully discrete energy stability
can be proved. We show that the LF scheme
satisfies a corresponding energy decay under a
CFL condition, while the IT method is uncon-
ditionally stable.

5 Kink and Anti-Kink Solutions

As shown in [3] with no damping (1/⌧ = 0),
we can find a traveling wave solution E(x, t) =
E(⇠), where ⇠ = x� vt, and similarly for other
variables. Here, we consider the problem on
x 2 [0, 6] with periodic boundary condition. A
traveling kink and anti-kink wave can be ob-
tained numerically. Here, the approximate so-
lution with 160000 grid points is used as the
initial condition (Figure 1). And it can be ex-
tended periodically on R with period 6. Numer-
ical results are tested at t = 6/v, at which time
the wave moves back to the same position as
the initial condition. To obtain the high order
accuracy, we choose �t = CFL⇥h(k+1)/2, with
appropriate Courant numbers.

With alternating fluxes, the schemes achieve
the optimal (k + 1)-th order. However, when
using the central flux and leap-frog scheme, the
order of accuracy will be sub-optimal for odd

Figure 1: A traveling kink and anti-kink wave:

the electric field E(x, t). (Left) Initial Condi-

tion (Right) Reference Solution

k [4]. We list the errors and orders of accuracy
of E for leap-frog in Table 1 with k = 3.

Table 1: A traveling kink and anti-kink wave:

errors and orders of accuracy of E. k = 3.

N
x

Leap-frog scheme
L2 errors order L1 error order

CF

100 5.68E-06 – 2.59E-05 –
200 3.62E-07 3.97 1.73E-06 3.91
400 2.27E-08 4.00 1.09E-07 3.98
800 1.55E-09 3.87 9.04E-09 3.60

AF I

100 5.60E-06 – 2.30E-05 –
200 3.53E-07 3.99 1.44E-06 4.00
400 2.19E-08 4.01 8.97E-08 4.00
800 1.37E-09 4.00 5.61E-09 4.00
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Abstract

In time domain geophysics context, Discontinu-
ous Galerkin (DG) methods are widely studied
and used for the simulation of waves propaga-
tion. They can be applied to harmonic problems
too but their main drawback is that the linear
system to solve becomes very huge. Indeed, the
number of degrees of freedom is really large as
compared to classical finite element methods.
We address this issue by considering a new class
of DG methods, the hybridizable discontinu-
ous Galerkin (HDG) method. We have formu-
lated and studied the HDG method applied to
2D and 3D elastic waves propagation equations.
Then, to be able with realistic 3D geophysical
problems, we compare di↵erent solvers, a direct
one (Mumps) and an hybrid one (Maphys) that
combines direct and iterative solvers by using
an algebric domain decomposition method.

Keywords: seismic imaging, elastic waves equa-
tions, harmonic domain, discontinuous Galerkin
methods, hybridizable discontinuous Galerkin
methods, direct solvers, hybrid solvers

Introduction

As the drilling is expensive, the petroleum in-
dustry is interested by methods able to produce
accurate images of the intern structures of the
Earth before the drilling. One of the most pop-
ular seismic imaging methods is the full wave in-
version (FWI) method which is an iterative pro-
cedure based on an inversion process. The main
steps of the FWI method are, starting from an
initial velocity model, a) to compute the solu-
tion of the wave equation for the N sources of
the seismic acquisition campaign; b) to eval-
uate, for each source, a residual defined as the
di↵erence between the wavefields recorded at re-
ceivers on the top of the subsurface during the
acquisition campaign and the numerical wave-
fields; c) to compute the solution of the wave
equation using the residuals as sources; d) to

update the velocity model by cross correlation
of images produced at steps a) and c). Finally,
the di↵erent steps a) to d) are repeated until
convergence of the velocity model is achieved.
We then have to solve 2N wave equations at
each iteration. The number of sources, N , is
usually large (about 1000) and the e�ciency of
the inverse solver is thus directly related to the
e�ciency of the numerical method used to solve
the wave equation.

Seismic imaging can be performed in the
time domain or in the frequency domain regime.
We focus here on the second setting. The draw-
back of time domain is that it requires to store
the solution at each time step of the forward
simulation. The di�culties related to frequency
domain inversion lie in the solution of huge lin-
ear systems, which cannot be achieved today
when considering realistic 3D elastic media, even
with the progress of high-performance comput-
ing. In this context, the goal is to develop new
forward solvers that reduce the number of de-
grees of freedom without hampering the accu-
racy of the numerical solution.

Hybridizable Discontinuous Galerkin me-
thod

We consider discontinuous Galerkin (DG) meth-
ods formulated on fully unstructured meshes,
which are more convenient than finite di↵erence
methods on Cartesian grids to handle the topog-
raphy of the subsurface. Moreover, DG meth-
ods are more adapted than continuous Galerkin
(CG) methods to deal with hp-adaptivity. This
last characteristics is crucial to adapt the mesh
to the di↵erent regions of the subsurface which
is generally highly heterogeneous. Nevertheless,
the main drawback of classical DG methods is
that they are expensive because they require a
large number of degrees of freedom as compared
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to CG methods on a given mesh (see figs. 1-2).

We have chosen to consider a new class of
DGmethod, the hybridizable DG (HDG) method
(see [1] for more details). They have been intro-
duced by B.Cockburn, J. Gopalakrishnan and
R. Lazarov in 2009 for the resolution of second
order elliptic problems (see [2] ).
Instead of solving a linear system involving the
degrees of freedom of all volumic cells of the
mesh, the principle of HDG consists in intro-
ducing a Lagrange multiplier representing the
trace of the numerical solution on each face of
the mesh. Hence, it reduces the number of un-
knowns of the global linear systems and the
volumic solution is recovered thanks to a local
computation on each element (see fig. 3).

Figure 1: Distribution of the global degrees of
freedom (dof) for the FEM with an interpola-
tion order of 3

Figure 2: Distribution of the global dof for the
DG method with an interpolation order of 3

Figure 3: Distribution of the global dof for the
HDG method with an interpolation order of 3

HDG methods have been considered in some
recent works, for example, for the solution of the
elastodynamic equations the time domain [3]
and for Maxwell’s equations [4]. We have com-
pared the performances of the HDG method
with those of classical nodal DG methods like
the Internal Penalty Discontinuous Galerkin (IPDG)
method. Using a direct solver (Mumps), we

have shown that the memory comsumption, which
is the main bottleneck of harmonic problems, is,
for example, divided by 4 using HDG methods,
and that the computational time is divided by
9 for a same interpolation order p = 3. We have
been also able to reduce the memory consump-
tion by designing a symmetric HDG formulation
for the elastic waves equations obtained by us-
ing the compliance tensor which can be viewed
as the inverse of the elasticity tensor.
In order to be able to tackle realistic 3D geo-
physical media we have also focused on the solver
part. We have coupled our method with an hy-
brid solver (Maphys) that combines direct and
iterative solver using an algebraic domain de-
composition method. We have shown that Ma-
phys allows for a division of the memory con-
sumption by 0.8 when compared to Mumps, with-
out hampering neither the computational time
nor the accuracy of the solution. The next step
is the implementation of a multi-right hand side
features in Maphys, in order to handle the thou-
sands of sources required by an inverse problem
solver.
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Abstract We establish the well-posedness of vol-

ume integral equations (VIEs) for elastodynamic scat-

tering. Such VIEs are known to be compact pertur-

bations of elastostatic VIEs. We derive a modified

version of the latter, which is shown to be uncondi-

tionally solvable by Neumann series. The modified

VIE is also found to extend the range of applicability

of fixed-point (iterated Born) methods.

Keywords: volume integral equation, elastodynamic

scattering, fixed point, Born approximation.

1. Scattering problem. We consider the

scattering of time-harmonic elastic waves by an

elastic inhomogeneity (with compact support

D1 ⇢ R3
) embedded in an unbounded back-

ground elastic medium D0 := R3\D1. The (pos-

sibly anisotropic) elastic properties in D0 and

D1 are respectively characterized by the fourth-

order real-valued elasticity tensors C0,C1
, while

the corresponding mass densities are ⇢0, ⇢1.
The (strongly elliptic) time-harmonic elas-

todynamic partial di↵erential operator B` as-

sociated to medium ` (` = 0, 1) is defined by

B`w = �div

�
C`

:"[w]

�
�⇢`!2w, where "[w] :=

1
2(rw + rwT

) is the linearized strain tensor

associated with a displacement w. Besides, let

t`[w] :=

�
C`

:"[w]

�
·n denotes the traction vec-

tor (i.e. elastic conormal derivative) operator

relative to medium `. For a given incident dis-

placement field uI satisfying B0uI = 0 in R3
,

the total displacement fields u0,u1 in D0, D1

satisfy (a) the field equations

B0(u0) = 0 in D0, B1(u1) = 0 in D1,

(b) the transmission conditions

u1 = u0, t1[u1] = t0[u0] on �,

(c) a radiation condition at infinity on u0�uI

(see [1] for the case of anisotropic background).

2. Volume integral equation. Define the

volume vector potential V! with density g 2
L2

(D1;C3
) and the volume vector potential

W! with density h2L2
(D1;C3⇥3

) by

V![g](x) =

Z

D1

G!(x�y)·g(y) dy, (1)

W![h](x) =

Z

D1

rG!(x�y) :h(y) dy, (2)

where G! denotes the full-space elastodynamic

fundamental tensor (i.e. the radiating solution

of �B0G! = �I in R3
), and then the volume

integral operator L! : H1
(D1) ! H1

(D1) by

L![w](x) = W!
⇥
�C :"(w)

⇤
(x)

+ !2V!
⇥
�⇢w

⇤
(x), x2D1,

having set �C := C1 � C0
and �⇢ := ⇢1 � ⇢0.

The total field u1 solving in D1 the scattering

problem defined by requirements (a), (b), (c)

satisfies the volume integral equation (VIE)

(I �L!)u1(x) = uI(x) (x 2 D1), (3)

with I denoting the identity operator. Then,

u0 is given explicitly in terms of u1 by the in-

tegral representation formula

u0(x) = uI(x) +W!
⇥
�C :"(u1)

⇤
(x)

+ !2V![�⇢u1 ](x) (x 2 D0). (4)

We address here the solvability of the VIE (3),

which has received scant attention so far.

3. Solvability of VIE (3). Consider the cor-

responding zero-frequency (elastostatic) VIE

(I �L)v(x) = uI(x) (x 2 D1), (5)

where L[w] := W
⇥
�C : "(w)

⇤
and the po-

tential W is defined by (2) with G! replaced

by the full-space elastostatic fundamental ten-

sor G. Since the kernels x 7! G!(x) and x 7!
r(G!�G)(x) are weakly singular and bounded,

respectively, at x= 0, the operator

�
I�L!

�
��

I�L
�
= L�L! : H1

(D1;R3
) ! H1

(D1;R3
)

is compact.

Elastostatic VIE. The background elastic-

ity tensor admits the decomposition C0
=B :B,

where the fourth-order tensor B is positive defi-

nite and has the same major and minor symme-

tries as C0
. Applying the operator B�1

:�C :"
recasts the VIE (5) as a second-kind singular

VIE for the new unknown h?
:= B�1

:�C :"[v]:

A[h?
] = �C :"[uI] in D1, (6)
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with A : L2
(D1;R3⇥3

sym) ! L2
(D1;R3⇥3

sym) defined

by

A[h] =
�
I ��C :"[W ]

�
[B :h],

The following factorization of A is then found

by inspection to hold:

A =

1
2B :

� eC1
+ I

�
:

�
I �Q1 :Q2

�

where

eC1
:= B�1

: C1
: B�1

and the operators

Q1,Q2 : L2
(R3

;R3⇥3
sym) ! L2

(R3
;R3⇥3

sym) are de-

fined by

Q1 =
� eC1

+ I
��1

:

� eC1 � I
�
,

Q2 = I + 2B :"[W ] :B.

This yields a modified form of the singular VIE (6):

�
I�Q

�
h?

= 2

� eC1
+I

��1
:B�1

:�C :"[u]. (7)

Lemma 1 The operators Q1,Q2 are bounded

and satisfy kQ1k< 1, kQ2k=1. Consequently,

Q=Q1 :Q2 is a contraction: kQk< 1.

Unlike (6), the modified singular VIE (7) is there-

fore solvable by Neumann series for any inhomo-

geneity configuration (D1,�C), which in turn

gives:

Proposition 1 Assume that both elasticity ten-

sors C and C1
are strongly elliptic and bounded.

Then, the integral operator I�L : H1
(D1;R3

) !
H1

(D1;R3
) is invertible with bounded inverse.

Elastodynamic VIE. Proposition 1 and

compactness of L!�L imply that the operator

I�L! is Fredholm with index 0. Its bounded

invertibility follows from known uniqueness re-

sults for scattering problems (see [1] if C0
is ani-

sotropic) and the Fredholm alternative.

Theorem 1 Assume that both elasticity tensors

C and C1
are strongly elliptic and bounded. Then,

the integral operator I �L! : H1
(D1;R3

) !
H1

(D1;R3
) is invertible with bounded inverse.

The solution (u0,u1) to the original scattering

problem is found by solving (3) for u1 and in-

voking the representation formula (4).

4. Consequences on fixed-point methods.

In the elastodynamic case (! > 0) with �C 6=
0,�⇢= 0, using the modified singular VIE (7)

(with W replaced by W!) has useful implica-

tions on fixed-point methods, due to the follow-

ing lemmas verified by "[W!] as a (bounded)

L2
(D1;R3⇥3

sym) ! L2
(D1;R3⇥3

sym) operator:

Lemma 2 There exists a constant C1 > 0, in-

dependent of ! and D1, such that

kB :"[W!] :Bk � C1.

Lemma 3 Assume that D1 ⇢ BR, where BR

is the ball of radius R. There exists a constant

C2 > 0, independent of ! and R, such that

kB :"[W! �W ] :Bk  C2(kR)

2,

where k = !/c with c a characteristic wave ve-

locity for the background medium.

Then, let �1, . . . ,�6 be the (strictly positive,

non-dimensional) eigenvalues of

eC1
treated as a

R3⇥3
sym ! R3⇥3

sym linear operator, and define �m :=

arg min |�i�1| and �M := arg max |�i�1|.
Proposition 2

(a) Fixed-point iterations applied to the singular

VIE (6) diverge if |�m�1|C1 > 1;

(b) Fixed-point iterations applied to the singular

VIE (7) converge if C2(kR)

2 < 1
2

� �M+1
|�M�1| �1

�
.

For any inhomogeneity contrast

eC1 � I large

enough to verify |�m � 1|C1 > 1 (and hence

to cause divergence of fixed-point iterations ap-

plied to the classical VIE (6)), we see that there

exist values of kR such that fixed-point itera-

tions applied to the modified VIE (7) converge.

In other words, the latter equation extends the

range of applicability (in terms of frequency and

scatterer characteristics) of fixed-point (iterated

Born) methods (while any elastostatic inhomo-

geneity problem can be solved by fixed-point

iterations by virtue of Prop. 1).

5. Remarks. Similar results are obtained for

the VIE governing acoustic scattering problems

and the associated zero-frequency problems in-

volving conducting inhomogeneities [3].

The well-posedness of VIEs such as (3) is

for instance useful for the justification of small-

inhomogeneity solution asymptotics.
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Abstract

A scatterer placed in an infinite waveguide may
be invisible at particular discrete frequencies
(that are called here invisibility frequencies).
We consider two di↵erent definitions of invisi-
bility: no reflection (but possible conversion or
phase shift in transmission) or perfect invisibil-
ity (the scattered field is exponentially decaying
at infinity). Our objective is to show that the
invisibility frequencies can be characterized as
eigenvalues of some spectral problems. Two dif-
ferent approaches will be used for the two dif-
ferent definitions of invisibility, leading to non-
selfadjoint eigenvalue problems. Concerning the
non-reflection case, our approach based on an
original use of PMLs allows to extend to higher
dimension the results obtained in [1] on a 1D
model problem.

Keywords: waveguides, invisibility, trapped
modes, perfectly matched layers, PT -symmetry

1 Introduction

We consider for simplicity a 2D acoustic waveg-
uide occupying the domain ⌦ = {(x, y);x 2
R and 0 < y < 1}. In presence of a bounded
penetrable obstacle O and in harmonic regime,
the acoustic pressure p satisfies the equations

�p+ k2(1 + �O⇢)p = 0 (⌦)
@p

@y
= 0 (@⌦)

(1)

where k = !/c (c is the acoustic waves velocity
and ! the angular frequency), �O is the charac-
teristic function of O and ⇢ 2 L1(O). Taking
as incident field a linear combination of prop-
agative modes

p
i

=
X

n<k/⇡

a
n

cos(n⇡y)ei�nx,

with �
n

=
p
k2 � n2⇡2, we consider the scatter-

ing problem where the total field p = p
i

+ p
s

is a solution of (1) and the scattered field p
s

is
outgoing. It is well-known that this problem is
well-posed, except when there exists a trapped
mode, that is a non trivial solution p 2 L2(⌦)
of (1). We say that the obstacle (O, ⇢) is non-

reflective at the frequency k if there exists an
incidnet wave p

i

such that p
s

is exponentially
decaying when x ! �1. And we say that the
obstacle is invisible to this incident wave p

i

if
the corresponding scattered field p

s

is exponen-
tially decaying both at ±1.
In the sequel, we denote by K

TM

(resp. K
NR

)
the set of all values of k 2 R+ corresponding to
trapped modes (resp. the set of all frequencies
k 2 R+ where the obstacle is non-reflective).

2 The case of no reflection

Suppose that the obstacle O is located in |x| <
L. If there are no reflections, the total field p is
ingoing for x < �L and outgoing for x > L. As
a consequence, it can be extended analytically
to complex values of x. More precisely, we de-
fine for (x, y) 2 ⌦ and 0 < ✓ < ⇡/2:

p
✓

(x, y) =
⇢

p(x, y) for |x| < L
p(±(L+ (|x|� L)e±i✓), y) for ± x > L

Note that there is a main di↵erence with the
classical complex scaling (or PMLs [2]): here we
must use conjugate PMLs on both sides of the
perturbation because p is ingoing and not out-
going at the left of the perturbation. As usual,
the interest of the analytic dilation is that con-
trary to p, p

✓

belongs to L2(⌦). Moreover p
✓

satisfies the following equation in ⌦:

↵
✓

(x)
@

@x

✓
↵
✓

(x)
@p

✓

@x

◆
+
@2p

✓

@y2
+k2(1+�O⇢)p✓ = 0
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with ↵
✓

(x) = 1 for |x| < L and e±i✓ for ±x > L.
Defining the unbounded operator of L2(⌦):

A
✓

p
✓

=
�1

1 + �O⇢

✓
↵
✓

@

@x

✓
↵
✓

@p
✓

@x

◆
+

@2p
✓

@y2

◆

with domain

{p
✓

2 H1(⌦);A
✓

p
✓

2 L2(⌦),
@p

✓

@y
= 0 on @⌦},

we can prove the

Theorem 1 1. k2 is a real eigenvalue of A
✓

i↵

k 2 K
TM

[K
NR

.

2. The essential spectrum of A
✓

is given by

�
ess

(A
✓

) = [
n2N{n2⇡2 + te±i✓; t 2 R+}

3. If the obstacle is symmetric with respect to

x = 0, A
✓

is PT -symmetric and its spectrum is

stable by complex conjugation.

We have represented on the figure the square
root of the spectrum of A

✓

obtained by a finite
element discretization. The continuous spec-
trum is discretized and deformed, far from the
real axis. Concerning the discrete spectrum, in
addition to real eigenvalues corresponding to
trapped modes and to non-reflective frequen-
cies, we obtain some complex eigenvalues, simi-
lar to leaky modes, have to be investigated fur-
ther.

3 The case of invisibility

Suppose now that the obstacle is invisible to
some incident wave p

i

at the frequency k. Then
p
s

is exponentially decaying at infinity, so that
p
s

2 H1(⌦) and satisfies in ⌦ the equation

�p
s

+ k2(1 + �O⇢)ps = �k2�O⇢ pi

A priori, this does not look like an eigenvalue
problem, due to the presence of the non-homoge-
neous right-hand side. However, if we choose ⇢
and p

i

satisfying the following normalization:
Z

O
⇢|p

i

|2 = 1,

we prove after several simple integrations by
parts that p

s

2 H1(⌦) satisfies the following
homogeneous variational formulation:
Z

⌦
rp

s

·rq̄
s

= k2b(k; p
s

, q
s

) 8q
s

2 H1(⌦) (2)

with

b(k; p
s

, q
s

) =

Z

⌦
(1+�O⇢)psq̄s�

Z

O
⇢p

s

p̄
i

Z

O
⇢q

s

p̄
i

Note that contrary to the previous one, it is a
non-linear eigenvalue problem since the bilinear
form b(k; p

s

, q
s

) depends on k through p
i

.

Theorem 2 For k 2 R, problem (2) admits so-

lutions p
s

6= 0 i↵ either k 2 K
TM

or the obstacle

is invisible to the incident wave p
i

.

An additional di�culty is that eigenvalues are
embedded in the continuous spectrum which cov-
ers R+. Again PMLs can be used to rotate
this continuous spectrum and reveal the discrete
eigenvalues. Note finally that, if p

i

is chosen
as one propagative mode, the problem can be
rewritten as a quadratic eigenvalue problem in
k by the change of unknown p̃

s

= p
s

p̄
i

. For in-

stance, if we choose p
i

=
�R

O ⇢
��1/2

eikx, we get
the following problem: 8q̃

s

2 H1(⌦)
Z

⌦
rp̃

s

·rq̃
s

+ik

✓
p̃
s

@q̃
s

@x
� @p̃

s

@x
q̃
s

◆
= k2b(p̃

s

, q̃
s

)

with

b(p̃
s

, q̃
s

) =

Z

⌦
(1 + �O⇢)psq̄s �

Z

O
⇢p̃

s

Z

O
⇢q̃

s
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Abstract

We study the spectrum of the Neumann-Poincaré
operator K⇤

"

of a periodic collection of smooth
inhomogeneities, as the period " ! 0. Under
the assumption that the pattern of inhomogene-
ity is strictly included in the periodicity cell,
we show that the limit set lim

"!0 �(K⇤
"

) is the
union of a Bloch spectrum and of a boundary
spectrum, associated with eigenfunctions which
are not too small (as functions in H1) near the
boundary.
Keywords: Potential theory, homogenization,
Bloch waves.

1 Introduction

The Neumann Poincaré operator has been re-
cently a subject of great interest, as it natu-
rally appears in questions involving metama-
terials, such as cloaking and plasmonic reso-
nances, since it allows the representation of so-
lutions to transmission problems in media with
piecewise constant coe�cients. In this work,
⌦ denotes a smooth bounded domain in Rd,
Y = (0, 1)d, and we let ! ⇢⇢ Y be a proper
subset of Y with C2 boundary. We consider "-
periodic collections

!
"

=
[

⇠2⌅"

Y ⇠

"

, Y ⇠

"

:= "(⇠ + Y ),

⌅
"

= {⇠ 2 Z2, Y ⇠

"

⇢ ⌦},

of smooth metallic inclusions distributed in ⌦.
The associated Neumann-Poincaré operator K⇤

"

:
L2(@!

"

) �! L2(@!
"

) is defined by

K⇤
"

'(x) =
Z

@!"

@P

@⌫
x

(x, y)'(y) d�(y),

where P is the Poisson Kernel associated to ⌦,
i.e., the unique solution to

⇢
�

y

P (x, y) = �
x

, y 2 ⌦,
P (x, y) = 0, y 2 @⌦,

and where ⌫
x

denotes the outward normal.
For a given ", K⇤

"

is compact and self-adjoint
on the space of single-layer potentials [4]. Its

spectrum consists of a sequence of eigenvalues,
with � = 0 as unique accumulation point. If
the set !

"

is regarded as a collection of par-
ticles with complex conductivity, the eigenval-
ues of K⇤

"

would correspond to the plasmonic
resonances of these particles in the quasistatic
limit [3]. We are interested in studying the limit
of the spectrum of �(K⇤

"

) as "! 0.
Since K⇤

"

is an integral operator supported
on the boundary of the components of !

"

, which
changes as " varies, we study instead the opera-
tor T

"

associated to the so-called Poincaré vari-
ational problem: For u 2 H1

0 (⌦), T
"

u is defined
by

8 v 2 H1
0 (⌦),

Z

⌦
(rT

"

u) ·rv =
Z

!"

ru ·rv,

for which one can show that �(K⇤
"

) = 1/2 �
�(T

"

).

2 The limit spectrum lim
"!0 �(T

"

)

The operators T
"

only converges weakly as "!
0, so that it is not possible to infer anything con-
cerning the spectra �(T

"

) from this convergence.
To capture the microscopic behavior of the T

"

’s
and what it induces on their spectrum, we in-
troduce a 2-scale formulation of the Poincaré
variational problem over the periodicity cell Y .
We construct a 2-scale limiting operator T0 de-
fined on L2(⌦, H1

#(Y )/C), so that T
"

! T0

strongly in the sense of the 2-scale convergence
(H1

#(Y ) is the closure of the space of periodic
C1 functions for the H1 norm). As noted in [1],
whose analysis we closely follow, we may in-
fer from this strong convergence that �(T0) ⇢
lim

"!0 �(T
"

). We can repeat this process, by
considering 2-scale convergence with respect to
blocks of Kd periodic cells and define associated
limiting operators TK

0 . Using a discrete Bloch
transform, the spectrum of each TK

0 splits as

�(TK

0 ) =
[

j=(j1,...,jK),0jiK�1

�(T
⌘j )

where ⌘
j

= j/K 2 Y and where T
⌘j is a quasi-

periodic operator defined on the periodicity cell
Y . It follows that
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Theorem 1 The set lim
"!0 �(T

"

) contains the

Bloch spectrum �
Bloch

defined as

�
Bloch

=
1[

j=1

[min
⌘2Y

�
j

(⌘),max
⌘2Y

�
j

(⌘)],

where �
j

(⌘) denotes the jth

eigenvalue of the

operator T
⌘

.

As for the remainder of lim
"!0 �(T

"

) we show
the following

Theorem 2 The limit spectrum decomposes as

lim
"!0

�(T
"

) = {0, 1} [ �
Bloch

[ �
@⌦,

where the boundary layer spectrum �
@⌦ is de-

fined as the set of �’s for which there exists a

sequence of eigenvalues �
"

, and a sequence of

associated eigenvectors u
"

, such that �
"

! �,

and such that for all s > 0

lim
"!0

"�1�1/d+s||ru
"

||
L

2(U") = +1,

where U
"

is the tubular neighborhood of @⌦ of

width ".

3 Consequences for the homogenization
of certain composites made with meta-
materials

Here, we assume that the set !
"

represents in-
clusions made of a metamaterial with complex
conductivity a, while ⌦ \ !

"

is filled with a di-
electric medium of conductivity 1. We denote
A

"

the associated conductivity map. Given a
source term f 2 H�1(⌦), we seek the voltage
potential ua

"

solution to
⇢
�div(A

"

rua

"

) = f in ⌦
ua

"

= 0 on @⌦.
(1)

It is well known that when the conductivity a
is real and strictly positive, the solutions u

"

of
the above PDE converge weakly in H1

0 (⌦) to
the solution of the homogenized problem, whose
e↵ective conductivity A⇤ is given in terms of the
solutions �a

j

(j = 1, . . . , d) of the following cell
problems: for any v 2 H1

#(Y )
Z

Y

A1(y)r(�a

j

(y) + y
j

) ·rv dy = 0.

When a takes complex values, we introduce the
Poincaré variational operator T#

0 : H1
#(Y )/C !

H1
#(Y )/C. The cell problems are solvable pro-

vided 1
1�a

/2 �(T#
0 ) \ {0, 1}. We show the fol-

lowing (see also [2])

Theorem 3 Assume that ! is smooth and that

! ⇢⇢ Y . There exists constants ↵ > 0, such

that, if the conductivity a inside the inclusion

lies in (�1,�1/↵) [ (�↵, 0), then

(i) For " > 0, the PDE (1) has a unique solu-

tion ua

"

, which depends continuously on f .

(ii) The homogenized tensor A⇤ is elliptic (i.e.

positive definite) and the homogenized equa-

tion is well-posed.

(iii) For any f 2 H�1(⌦) the solutions ua

"

to (1)

converge weakly in H1(⌦) to the solution

of the homogenized equation, with source f .

(iv) For large contrast, the convergence of ua

"

to the homogenized solution u⇤ is uniform:

lim
"!0

sup
a2(�1,↵)[(↵,1)

||ua

"

� u⇤|| = 0.
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Abstract

Confined internal gravity wave systems in asym-
metric domains can lead to the evolution of a
spatial singularity called a wave attractor. The
existence of this singularity is the result of wave
energy focusing, that is wave energy becomes
localised on small spatial scales. It has been
observed that ocean ridges, such as the Luzon
strait, can support such energy localisation and
a study of this mechanism will lead to a better
understanding of ocean mixing in these areas.
Simulations of wave attractors have been shown
to match laboratory observations, despite being
derived from an inviscid, ideal fluid model. We
utilise a non-dissipative discontinuous finite el-
ement method that preserves the Hamiltonian
structure of internal wave systems. By conserv-
ing discrete energy our numerical method al-
lows for accurate long time modelling of wave
attractors. We extend previous work by con-
sidering body forces in our numerical model to
allow closer comparison to experimental results.

Keywords: Internal gravity waves, wave at-
tractors, discontinuous Galerkin method

1 Introduction

Internal gravity waves have their maximum dis-
placement in the interior of the fluid. They play
an important role in the transport of energy and
momentum in the ocean, as they allow for the
vertically transport of such quantities. Inter-
nal waves can only exist in a stably stratified
fluid. In nature fluids are frequently stratified
by depth variations in their salt or temperature
concentration.

Internal gravity waves propagate at a fixed
angle with respect to gravity. Waves of a given
frequency will preserve this propagation angle
upon reflection from any boundary. If wave
beams are enclosed by sloping boundaries, then
this results in focusing onto a limit orbit, called
a wave attractor [5]. As many wave beams are
focused onto the same wave attractor, there is

a fine localisation of energy at this structure.
In the vicinity of the wave attractor we expect
large shearing motion. Wave attractors have
been observed in experiments [6] and in numeri-
cal simulations [1]. Van Oers et al. [1] developed
a numerical method that preserved the Hamil-
tonian structure of the mathematical model for
internal waves. By discretising the Hamiltonian
structure, the resulting numerical method has
discrete analogues to all conserved variables in
the continuous case.

In this paper we expand the work of Van
Oers et al. by including external body forcing in
the numerical model. This changes the nature
of the wave attractors we can model. Forced
wave attractors are a closer approximation to
what is generated in experiments, and in nature.
This body forcing can, for example, be used to
model tidal forcing.

Previous work on internal wave attractors
has only considered the incompressible Euler-
Boussinesq model in their simulations. How-
ever by observing the dispersion relation of the
compressible model we know that these inter-
nal gravity waves also exist when we relax these
assumptions. This enables our computational
model to be closer to reality as the ocean is
weakly compressible. In the compressible model
we can see internal gravity, Lamb and acoustic
modes. The acoustic modes are high frequency,
and could act as su�cient noise that would dis-
rupt the formation of an internal wave attrac-
tor. Thus we filter out these acoustic modes
numerically.

2 Stratified Fluids

Linear compressible fluids in a stratified back-
ground can be modeled by the scaled Euler equa-
tions:
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@(⇢0u)

@t

= �rp� ⇢gẑ + F (x, t), (1)

@⇢

@t

= �r · (⇢0u), (2)

Ma

2@p

@t

= Ma

2
⇢0gw � c

2
0⇢0r · u, (3)

where c20 is the scaled linearised speed of sound,
Ma is the Mach number, F is the body force,
and ⇢0 = ⇢0(z) a hydrostatic background.

Internal gravity waves are frequently mod-
eled by applying two approximations to this model.
The first is an incompressible constraint that fil-
ters out acoustic waves by taking Ma ! 0. The
second simplification is the Boussinesq approx-
imation where we assume that the background
density can be split into a constant mean and a
small perturbation.

We discretise in space using a discontinu-
ous Galerkin finite element method with a non-
dissipative flux. By considering the Hamilto-
nian structure of our governing equations while
deriving our numerical method, we ensure that
the Hamiltonian structure is preserved discretely.
This leads to discrete conservation of any con-
served variable of the continuous system. We
use a symplectic time integrator, the implicit
midpoint rule [4], to preserve the conserved vari-
ables in time. Our numerical method was im-
plemented using the finite element package Fire-
drake [2].

3 Results

In experiments, internal wave attractors are gen-
erated by applying periodic forcing to the wave
tank. Our domain is a unit square that is ro-
tated 20� to produce a slope with respect to
gravity. We consider a divergence free body
force [3]

F = r⇥ a = F0 cos(!0t).

Internal wave beam angles can be controlled
by varying the stratification and the forcing fre-
quency. Acoustic modes are filtered by con-
sidering a numerical dispersion relation �t �
2⇡/N2

, where N

2 is the buoyancy frequency.
We can choose a timestep that would then under-
resolve the acoustic modes. We note here that
numerical stability will be preserved as we have
used an implicit time integrator. In figure 1 we

Figure 1: Density field of a normal mode so-
lution of incompressible stratified Euler equa-
tions. 128 quadratic elements were taken in
each direction. dt = 1/NxNz.

show a normal mode solution at a half wave pe-
riod. The solution showed no long term drift in
energy.
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Abstract

We consider an inverse obstacle problem in an
acoustic waveguide using a single incident wave,
which we solve with the help of an “exterior ap-
proach” coupling a mixed formulation of quasi-
reversibility and a simple level set method.

Keywords: acoustic waveguide, inverse obsta-
cle problem, quasi-reversibility, level set

1 Introduction

We consider a smooth 2D/3D waveguide W =
⌃ ⇥ R, where ⌃ is a 1D/2D bounded domain
and x

3

is the coordinate in the infinite direc-
tion. Let us consider a smooth domain D such
that D ⇢ W , referred to as the obstacle. For
some wavenumber k > 0, a distribution g 2
H�1/2(@W ) of compact support in the bounded
domain � ⇢ @W and f 2 H1/2(�), the inverse
obstacle problem consists in finding a domain
D and a function u 2 H1

loc

(W \D) such that

8
>><

>>:

(�+ k2)u = 0 in W \D
(u, @

⌫

u) = (f, g) on �
u = 0 on @D
(RC),

(1)

where ⌫ is the outward unit normal and (RC) is
a radiation condition. Can we identify the de-
fect D from a single pair of Cauchy data (f, g)?
Uniqueness for this problem is unknown in gen-
eral, only a local uniqueness result is known.
When so few data are available, a Linear Sam-
pling type method, inspired by [1] and adapted
to the acoustic waveguide in [2], cannot be ap-
plied. In order to solve the problem, we pro-
pose an “exterior approach” coupling a quasi-
reversibility method and a level set method, in-
troduced in [3] in the case of the Laplacian.
In such iterative approach, for a given defect
D̃ we update the solution ũ with the help of
a mixed formulation of quasi-reversibility while
for a given solution ũ we update the defect D̃
with the help of a level set method based on a
Poisson problem.

2 A new formulation of quasi-reversibility

We first consider an abstract framework. Let
us consider three Hilbert spaces V , M and H,
A : V ! H a continuous onto operator. For
some f 2 H, we consider the a�ne space V

f

=
{u 2 V, Au = f}. For a continuous sesquilinear
form b on V ⇥ M and an antilinear form ` on
M , let us consider the weak formulation: find
u 2 V

f

such that for all µ 2 M ,

b(u, µ) = `(µ). (2)

We assume that the sesquilinear form b does
not satisfy the inf � sup condition on V

0

⇥ M ,
which from the Brezzi-Necas-Babuska theorem
implies that the problem (2) is in general ill-
posed for a given `. However, b satisfies the
following uniqueness property: if u 2 V

0

and
b(u, µ) = 0, for all µ 2 M , then u = 0. A regu-
larized formulation of problem (2) is the follow-
ing: for " > 0, find (u

"

,�
"

) 2 V
f

⇥M such that
for all (v, µ) 2 V

0

⇥M ,
⇢

"(u
"

, v)
V

+ b(v,�
"

) = 0
b(u

"

, µ)� (�
"

, µ)
M

= `(µ).
(3)

We have the following theorem.

Theorem 1 For any f 2 H and ` 2 M 0
, the

problem (3) is well-posed. For some f 2 H and

` 2 M 0
such that (2) has a (unique) solution

u 2 V
f

, then the solution (u
"

,�
"

) 2 V
f

⇥ M
satisfies (u

"

,�
"

) ! (u, 0) in V ⇥M when " ! 0.

Let us denote by B the subpart of W delimited
by some transverses sections ⌃± that surround
�. Now let us consider, for a known obstacle D,
the following ill-posed problem in the bounded
domain ⌦ = B \ D: for (f, g) 2 H1/2(�) ⇥
(H1/2(�))0, find u 2 H1(⌦) such that

8
<

:

(�+ k2)u = 0 in ⌦
(u, @

⌫

u) = (f, g) on �
±@

x3u = T±u on ⌃±,
(4)

where the last equation is equivalent to the ra-
diation condition and involves the Dirichlet-to-
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Neumann operators T± on the transverse sec-
tions ⌃±. We can directly apply the above ab-
stract framework to the regularization of prob-
lem (4), which is equivalent to problem (2) with
V = H1(⌦), M = {µ 2 H1(⌦), µ|

@D

= 0},
H = H1/2(�), while A is the trace operator on
� and for (v, µ) 2 V ⇥M ,

b(v, µ) =

Z

⌦

�
rv ·rµ� k2 vµ

�
dx

�
Z

⌃±

(T±v)µ ds, `(µ) =

Z

�

gµ ds,

where the surface integrals have the meaning of
pairing between H1/2 and its dual space.

3 A simple level set method

For a defect D and a solution u satisfying the
inverse obstacle problem (1) for Cauchy data
(f, g), let us consider a function V 2 H1(B)
such that V = |u| in ⌦ and V  0 in D and a
distribution f 2 H�1(B) such that f��V � 0.
For some open domain ! ⇢ B and g 2 H�1(B),
let us define by v

g,!

the solution v 2 H1

0

(!) of
the Poisson problem �v = g in !. We now de-
fine a sequence of open domainsD

n

by following
induction. We first consider an open domain D

0

such that D ⇢ D
0

b B. The domain D
n

being
given, we define

D
n+1

= D
n

\ supp(sup(�
n

, 0)),

where (supp denotes the support of a function)

�
n

= V + v
g,Dn , g = f ��V. (5)

Since the open domains D
n

form a decreasing
sequence, it converges in the sense of Hausdor↵
distance to some open domain D1. Further-
more we prove thatD ⇢ D1. Lastly, the follow-
ing convergence theorem justifies the method.

Theorem 2 If we assume that the sequence of

functions v
g,Dn converge in H1

0

(B) to the func-

tion v
g,D1 and if k2 is not a Dirichlet eigen-

value of operator �� in D1\D, then D1 = D.

4 The “exterior approach”

We propose the following algorithm inspired by
theorems 1 and 2:

1. Choose an initial guess D
0

such that D ⇢
D

0

b B.

2. Step 1: for a givenD
n

, compute the quasi-
reversibility solution u

n

of system (3) as-
sociated with problem (4) in ⌦

n

for su�-
ciently small ", where ⌦

n

:= B \D
n

.

3. Step 2: for a given u
n

in ⌦
n

, compute
V
n

(x) = |u
n

| in ⌦
n

and the solution �
n

to
problem (5) for su�ciently large f , which
simply reads for smooth D

n

:

⇢
��

n

= f in D
n

�
n

= V
n

on @D
n

.

Compute D
n+1

= {x 2 D
n

, �
n

(x) < 0}.

4. Go back to step 1 until some stopping cri-
terion is satisfied.

We show on the figure a numerical test of the
above algorithm (with the intermediate steps
D

n

starting from an elliptic initial guess D
0

)
when D is the union of two spheres, from un-
corrupted Cauchy data (f, g) coming from a for-
ward scattering simulation, d = 1 and k = 5.
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Abstract

High order numerical methods exhibit dramatic
gains in e�ciency over low order methods by
providing better accuracy on coarse grids, and
therefore the computation time needed to ob-
tain a desired level of accuracy in simulations
is greatly reduced. In addition to the increased
convergence rate, it has been shown that high
order methods result in smaller dispersion er-
rors than low order methods. In order to fit the
needs of physical problems, high order methods
must exhibit several capabilities, such as han-
dling variable coe�cient operators, realistic ge-
ometries, and di↵erent types of boundary condi-
tions. We demonstrate a flexible approach that
e�ciently solves second order hyperbolic PDEs
with high order accuracy through the combined
methodology of compact high order finite dif-
ferences and di↵erence potentials.

Keywords: high order accuracy, non-
conforming boundaries, time-dependent waves,
variable wave speed

1 Introduction

Consider the wave equation

utt = c

2�u+ F (x, y, t), (1)

where F is an inhomogeneous term and the
wave-speed c may vary in space but not in
time. Time discretization by the ✓-method with
✓ = 1

12 yields a temporally fourth order implicit
scheme. At each time step, one must solve an
elliptic spatial equation in the form of the mod-
ified Helmholtz equation,

�u�Ku = G, (2)

where G depends on the inhomogeneous term
F as well as the solution at two previous time
steps, and K = 1

✓c2h2
t
where ht is the time step.

When ✓ = 1
12 , the scheme is conditionally sta-

ble and fourth order accurate in time, while

choosing ✓ � 1
4 yields an unconditionally stable

scheme which is only second order in time. At
each time step, equation (2) can be interpreted
as a steady-state equation. We propose to solve
it by compact high order finite di↵erences and
the method of di↵erence potentials [4]. This is
a distinctly di↵erent approach than that of [3],
where the method of di↵erence potentials is ap-
plied directly to the unsteady wave equation in
3+1 dimensional space-time.

2 Compact finite di↵erences

Finite di↵erence schemes on regular structured
grids are a straightforward and e�cient way to
achieve high order accuracy for variable coe�-
cient equations such as (2). Compact schemes
enable high order accuracy without increasing
the stencil size, and this simplifies the treat-
ment of boundary conditions since the stencil
will not extend beyond the boundary at the
near-boundary nodes, see Figure 1. Compact

Figure 1: 2D
compact (left)
and five-point
(right) stencils.

schemes also yield matrices with lower band-
widths than those resulting from wider stencils,
and this reduced bandwidth improves the e�-
ciency of solving the resulting linear system. A
major limitation of conventional or compact fi-
nite di↵erences is that they lose accuracy on do-
mains which do not coincide with the discretiza-
tion grid, and we address this by the method of
di↵erence potentials [4].

A compact 4th order Cartesian scheme for
the Helmholtz equation (2) with variable K can
be found in [5], and its e�ciency in solving the
wave equation (1) on conforming domains is ex-
amined in [1].
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3 Di↵erence potentials

The method of di↵erence potentials incorpo-
rates a given finite di↵erence scheme to solve
problems e�ciently on nonconforming geome-
tries while maintaining the design convergence
rate. For a general domain ⌦, we embed the
problem within an auxiliary domain ⌦0 which
is a simple shape (e.g., a square, as in Figure 2).
The shape of ⌦0 along with its boundary condi-

Figure 2: Domain
for the method of
di↵erence poten-
tials.

tions should be chosen so that the PDE on ⌦0

is well-posed, but otherwise can be chosen for
convenience. The key feature of the method of
di↵erence potentials is that the original prob-
lem on ⌦ is reformulated as an equivalent set of
problems on the auxilary domain ⌦0 with dif-
ferent right-hand sides.

4 Time marching with di↵erence poten-
tials on each step

After discretizing the wave equation (1) in time,
at time tn we solve the modified Helmholtz
equation (2) with K = 1

✓c2h2
t

on ⌦ by dif-

ference potentials, where the right-hand side
G = G(x, y, tn) on ⌦ is given. In 2D, the auxil-
iary problem is given by the modified Helmholtz
equation (2) on the auxiliary domain ⌦0 which
is a square with homogeneous Dirichlet bound-
ary conditions.

Three finite di↵erence solves on the auxil-
iary domain ⌦0 are required at each time step
to produce the solution on the nonconforming
domain ⌦ with high order accuracy, with the
right-hand sides determined by the method of
di↵erence potentials. The solutions of the re-
sulting finite di↵erence problems on ⌦0 can be
computed e�ciently by iterative methods.

Fourth order convergence in both space and
time for Dirichlet and Neumann problems has
been demonstrated using ✓ = 1

12 for variable
wave speeds on a nonconforming disk centered
at the origin in 2D (Figure 3).
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Abstract

We consider a model problem of the propaga-
tion of elastic waves which are coupled with an
electric field inside a piezoelectic solid as well as
the discretization of this problem in space. The
stress tensor in the solid combines the e↵ect of
a linear dependence of strains with the influ-
ence of an existing electric field. The system is
closed using Gauss’s law for the associated elec-
tric displacement. We use a first order in time
and space di↵erential system to study the well-
posedness of both problems. This requires the
use of an elliptic lifting operator. In the semidis-
crete case we formulate the problem correspond-
ing to an abstract Finite Element discretization
in the electric and elastic fields.

Keywords: Piezoelectricity, finite elements, elas-
tic wave propagation

1 Introduction

We consider a solid occupying a bounded re-
gion of space ⌦ ⇢ R3. At positive time an elas-
tic wave is triggered in the solid. Formally the
equations we consider are the following

⇢utt = div � + f ⌦⇥ [0,1),

divD = 0 ⌦⇥ [0,1),

where u represents the elastic displacement, �
the stress, D the electric displacement, ⇢ the
mass density, and f any source terms. Express-
ing the electric field through an electric poten-
tial,  , the piezoelectric behavior of the solid is
expressed in two ways. The first is through the
definition of stress as the combination of an in-
stantaneous linear operator, C, acting on strain
(Hooke’s Law) and the e↵ect of electric fields in
the solid:

� := C"(u) + er , (1)

where "(u) is the symmetric strain tensor and e
is the third-order piezoelectric tensor. We can
also see the piezoelectricity through definition of
the electric displacement for which we imposed

Gauss’ Law above,

D := e>"(u)� r , (2)

where  is the dielectric tensor. We consider
two partitions of the boundary � = @⌦ into
relatively open sets such that

�ds \ �tr = �pt \ �fl = ;,

and
� = �ds [ �tr = �pt [ �fl.

The partitions are independent of one another.
We consider the following boundary conditions
as part of our model problem:

�u = g �ds ⇥ [0,1),

�⌫ = h �tr ⇥ [0,1),

� = µ �pt ⇥ [0,1),

D · ⌫ = ⌘ �fl ⇥ [0,1).

Here � represents the trace operator and ⌫ the
outward pointing unit normal vector on �. Fi-
nally we require the initial conditions

u = ut = 0 t = 0,

which signifies that at the initial time the solid
is at rest. We will treat this system in the way
of abstract evolution equations where our un-
knowns are mappings in the time variable to
the appropriate Hilbert space, which is where
we deal with the space di↵erentiation. In this
way we can consider our unknowns u(t) and
 (t) to be elements of subsets of H1(⌦)3 and
H1(⌦) respectively, for each t � 0.

2 Semidiscrete formulation

The semidiscrete version of the problem will
be formulated with the intention of using finite
elements to solve for the elastic displacement
and electric potential. To this end we set fi-
nite dimensional subspaces Vh ⇢ H1(⌦)3 and
Wh ⇢ H1(⌦) to be our generic finite element
spaces. We also consider the spaces

V0
h := {uh 2 Vh : �uh = 0 on �ds},

W 0
h := { h 2 Wh : � h = 0 on �pt},
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and interpolation operators

Ih : H1/2(�ds)
d �! �Vh

��
�ds

,

Ih : H1/2(�pt) �! �Wh

��
�pt

.

Using parentheses to represent the L2(⌦)3 and
L2(⌦)3⇥3 inner products and angle brackets to
represent the duality pairings ofH�1/2 andH1/2

on appropriate parts of the boundary � we state
the semidiscrete problem in variational form as
looking for (Vh⇥Wh)-valued (uh, h) which for
all t � 0 satisfy

(⇢uh
tt,w) + (�h, "(w)) =(f ,w) + hh, �wi�tr

8w 2 V0
h,

(Dh,r�) =h⌘, ��i�fl 8� 2 W 0
h ,

�uh =Ihg on �ds,

� h =Ihµ on �pt,

where for brevity we have used the symbols �h

andDh which are defined in terms of the semidis-
crete unknowns uh and  h exactly as in (1) and
(2).

3 First Order Form

The mathematical analysis of both the continu-
ous and semidiscrete problems is undertaken by
rewriting them into a first order system of the
form

U̇(t) = A?U(t) + F (t),

BU(t) = ⇠(t),

U(0) = 0,

for a certain operator A? that involves first or-
der in space di↵erential operator and the inverse
of an elliptic operator and boundary operator
B. The unknowns collected in U are related to
displacement, purely elastic stress and electric
field, while the terms collected in F correspond
to source terms and Neumann boundary con-
ditions and ⇠ to Dirichlet boundary conditions.
In this form, we follow the template of [2] to ar-
rive at stability bounds and error estimates in
the time domain. This technique yields sharper
estimates than the Laplace domain technique
found in [4] for a similar problem, which also
includes acoustic coupling across �.

4 Extensions

With the introduction of an incident acoustic
wave in ⌦c, we can extend the problem out-
lined above into the a wave-structure interac-
tion problem, where in addition to solving for

the elastic displacement and electric potential,
we look for a scattered acoustic field outside the
solid. In this case, the problem is formulated as
in [1]. When solving for the acoustic unknowns,
we use a retarded potential representation and
discretize using boundary elements. Another
easy extension of this problem arises when we
note that in ⌦, the tensor e serves to couple the
quantities u and  . If we take e ⌘ 0, the sys-
tem is reduced to a wave-structure interaction
problem (if we include acoustics) with a purely
elastic solid. The stability and error analysis we
obtain for the piezoelectric problem also apply
to this problem and can be compared to their
Laplace domain counterparts in [3].
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Abstract

Gravitational waves were predicted in 1916 by
Einstein when he discovered wave solutions to
the linearized field equations of General Rela-
tivity. The first direct gravitational-wave detec-
tion was made by the Advanced Laser Interfer-
ometer Gravitational Wave Observatory (LIGO)
on September 14, 2015. This discovery marked
the culmination of a century-long quest to un-
derstand the physical nature of these waves and
to build instruments sensitive enough to detect
them. LIGO’s detections mark the beginning
of an entirely new form of observational astron-
omy. Gravitational waves will allow us to ex-
plore the nature of gravity and to observe astro-
physical processes that are inaccessible to elec-
tromagnetic wave observations. I will review
the science of gravitational waves and LIGO’s
discoveries, the key results from LIGO’s first
observing run, which was conducted September
2015–January 2016, and discuss future direc-
tions for the field of gravitational-wave astron-
omy.

Keywords: Gravitational Waves, Black Holes,
General Relativity.

Gravitational Waves and LIGO

The direct detection of gravitational waves by
the Advanced Laser Interferometer Gravitation-
al-wave Observatory (LIGO) [1] has established
the new field of gravitational-wave astronomy.
Advanced LIGO has confirmed a one-hundred-
year-old prediction of Einstein [2] by directly
detecting gravitational waves for the first time.
Gravitational waves are transverse waves of spa-
tial strain that travel at the speed of light, gen-
erated by time variations of the mass quadrupole
moment of the source [2,3]. LIGO uses laser in-
terferometery to measure the relative length of
two L = 4 km long arms and measure the inci-
dent strain. The physical e↵ect of these wave is
to induce a strain h = �L/L, where h is the
gravitational-wave strain amplitude projected
onto the detector. Fundamental noise sources
in the detectors (seismic motion, thermal noise,

and quantum-mechanical noise) limit LIGO’s
sensitivity to astrophysical sources. The first
observing run of the Advanced LIGO detectors
took place from September 12, 2015, to January
19, 2016. On September 14, 2015 at 09:50:45
UTC the LIGO Hanford, WA, and Livingston,
LA, observatories detected a signal from the bi-
nary black hole merger GW150914 [4]. A second
binary black hole merger signal, GW151226, was
observed on December 26, 2015 at 03:38:53 UTC
[5]. Both of these signals were observed with
a significance greater than 5�. A third candi-
date event, LVT151012, was observed on Octo-
ber 12, 2015 at 09:54:43 UTC with a significance
of . 2� [6]. The emitted signals depend upon
the strong field dynamics of general relativity
and have been used to constrain deviations from
General Relativity [7].

Observed Black Hole Mergers

The GW150914 signal was strong enough to be
apparent without using any waveform model in
minimally filtered detector strain data. Dig-
ital matched filtering [8] was required to de-
tect GW151226 since the signal has a smaller
strain amplitude and the detectable signal en-
ergy is spread over a longer time interval than
GW150914. The candidate LVT151226 is con-
sistent with a binary black hole merger [7] but
is not significant enough to claim as a detection.

GW150914 was observed in both LIGO de-
tectors with a time-of-arrival di↵erence of 7 ms,
which is less than the 10 ms inter-site propa-
gation time, and a combined matched-filter sig-
nal to noise ratio (SNR) of 24. At this SNR,
the false alarm rate of the is estimated to be
less than 1 event per 203 000 years, equivalent
to a significance greater than 5.1 �. The ba-
sic features of the GW150914 signal point to it
being produced by the coalescence of two black
holes. Over 0.2 s, the signal increases in fre-
quency and amplitude in about 8 cycles from
35 to 150 Hz, where the amplitude reaches a
maximum. For two objects of masses m1 and
m2, we can use Newton’s laws of motion, New-
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ton’s universal law of gravitation, and Einstein’s
quad-rupole formula for the gravitational-wave
luminosity of a system to derived a simple re-
lating the frequency f and frequency derivative
ḟ = df/dt of emitted gravitational waves to the
chirp mass M = (m1m2)3/5/(m1 +m2)1/5 [9],

M =
c3

G

"✓
5

96

◆3

⇡�8f�11 ḟ3

# 1
5

. (1)

It is possible to estimate f and ḟ by directly
from the LIGO data by counting the time be-
tween zero-crossings of the strain data h(t) (see
e.g. Fig. 1 of Ref. [4]) giving a chirp mass of
M ⇡ 30M�. We can therefore deduce that
the total mass of the system is M = m1 +
m2 & 70M� in the detector frame. This bounds
the sum of the Schwarzschild radii of the bi-
nary components to 2GM/c2 & 210 km. To
reach an orbital frequency of 75 Hz (half the
gravitational-wave frequency) the objects must
have been very close and very compact; equal
Newtonian point masses orbiting at this fre-
quency would be only ⇡ 50 km apart. A pair of
neutron stars, while compact, would not have
the required mass, while a black hole neutron
star binary with the deduced chirp mass would
have a very large total mass, and would thus
merge at much lower frequency. This leaves bi-
nary black holes as the only known objects com-
pact enough to reach an orbital frequency of 75
Hz without contact.

Bayesian parameter estimation using fully
general-relativistic waveform models has been
used to measure the source-frame masses of the
black holes. For GW150914 the masses arem1 =
36.2+5.2

�3.8 and m2 = 29.1+3.7
�4.4. For GW151226 the

masses are m1 = 14.2+8.3
�3.7 and 7.5+2.3

�2.3. The ob-
served events begin to reveal a population of
stellar-mass black hole mergers. Using these
signals to constrain the rates of binary black
hole mergers in the universe, we find that the
90% range of allowed merger rates has been
updated to is 9–240 Gpc�3 yr�1. All our ob-
servations are consistent with the predictions
of general relativity, and the final black holes
formed after merger are all predicted to have
high spin values with masses that are larger
than any black hole measured in x-ray bina-
ries. The measured rates give confidence that
current and future observing runs will observe
many more binary black holes.
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Abstract

We consider inverse medium scattering in two
or three dimensions modeled by the Helmholtz
equation. To this end, we set up an e�cient
minimization-based inversion scheme that fol-
lows on the one hand the paradigm to, roughly
speaking, minimize the discrepancy but on the
other hand takes into account various structural
a-priori information via suitable penalty terms.
This allows for instance to combine sparsity-
promoting with total variation-based regular-
ization, while at the same time respecting physi-
cal bounds for the inhomogeneous medium. The
flexibility of our approach is due to a primal-
dual algorithm that we employ to minimize the
corresponding Tikhonov functional. We show
feasibility and performance of the resulting in-
version scheme via reconstructions from syn-
thetic and measured data.

Keywords: Inverse scattering problem, Spar-
sity regularization, Total variation, Primal-dual
algorithm.

1 The Direct Scattering Problem

We consider time-harmonic inverse scattering
of incident electromagnetic or acoustic waves
u

i with time-dependence e�i!t from inhomoge-
neous media D ⇢ Rd, d = 2, 3, e.g. incident
point sources or plane waves. For a wave num-
ber k > 0 the incident wave ui solves the Helm-
holtz equation �u

i + k

2
u

i = 0. Let q : Rd ! C
be the contrast with supp(q) = D. Then the
total field u

t solves

�u

t + k

2(1 + q)ut = 0 in Rd

. (1)

Further the scattered wave

u

s = u

t � u

i (2)

satisfies Sommerfeld’s radiation condition

lim
|x|!1

|x|(d�1)/2

✓
@

@|x| � ik

◆
u

s(x) = 0, (3)

uniformly in all directions x̂ = x/|x|.

The direct scattering problem is to find a u

s

that solves (1)–(3), see [3]. Unique solvability
of the scattering problem holds for q 2 L

p(D),
p > d/2.

We denote by � the radiating fundamental
solution of the Helmholtz equation and define
the radiating volume potential

V (f)(x) :=

Z

D

�(x, y)f(y) dy, x 2 Rd

.

Then the direct scattering problem can be refor-
mulated as an integral equation: u

s solves the
Lippmann-Schwinger equation

u

s � k

2
V (qus) = k

2
V (qui) in D. (4)

2 The Inverse Scattering Problem

Taking into account (4) a non-linear operator F
maps the discretized contrast q 2 CN⇥N onto
near or far field measurements Fmeas 2 CNs⇥Ni ,
where Ns is the number of receivers and Ni the
number of transmitters. We seek q such that
F(q) matches the measured data Fmeas.

For noisy measurements F "

meas with relative
noise level " we have to regularize, e.g. by min-
imizing the Tikhonov functional

f(q) :=
1

2
kF(q)� F

"

meask2F + P(q) (5)

with a Frobenius norm k ·k
F

, and penalty terms
in the convex functional P.

3 Penalty Terms

To take into account several a-priori informa-
tion, P(q) is the sum of the following penalty
terms.

First, we assume that the contrast of the
scatterer is sparse, i.e. described by few non-
zero coe�cients, in pixel basis. This is taken
into account by a penalty term weighted by reg-
ularization parameter ↵ > 0,

↵ kqk1.
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Second, we suppose that the scattering ob-
ject has sharp edges. Therefore we add a penalty
term with total variation semi-norm weighted
by regularization parameter � > 0,

� krqk1.

Third, we respect physical bounds by adding
�(q), where � equals infinity if one entry of q is
outside a reasonable physical interval and zero
otherwise.

To sum up,

P(q) = ↵ kqk1 + � krqk1 + �(q).

4 Numerical Minimization Techniques

To apply the primal-dual algorithm, see [4], we
linearize F . Instead of the discrepancy

d(q
n

) := kF(q
n

)� F

"

measkF

we hence regard the corresponding discrepancy

d

qn(h) := kF 0(q
n

)[h] + F(q
n

)� F

"

measkF

to extend the Tikhonov functional (5) to

f

qn(h) :=
1

2
[d

qn(h)]
2 + P(q

n

+ h). (6)

Scheme to minimize f

qn(h): For a fixed con-
trast q

n

we minimize f

qn(h) with respect to h

with the primal-dual algorithm given in [4]. We
call this inner iteration. Afterwards our outer

iteration is the update q
n+1 := q

n

+h before we
minimize f

qn(h) with respect to h again. Modi-
fying the functional (6) enables us to deal with
complex-valued contrasts.

Stopping strategies: The outer iteration is
stopped by the discrepancy principle, i.e. if
d(q

n

)  ⌧" with ⌧ > 1. To stop the inner it-
eration, that minimizes (6) instead of (5), we
have two strategies:

(S1) After the inner iteration is finished we com-
pare d

qn(h) and d(q
n

+ h). If they are
similar, we increase the number of inner
iterations, otherwise we decrease it.

(S2) Inside the inner iteration we stop by com-
parison of d

qn(h) and d(q
n

). (We follow
an inexact stopping rule for a Newton-like
method, see [5].)

5 Numerical Results

To show feasibility and performance of our in-
version algorithm we reconstruct a tripod in 3D
(with di↵erent contrast values for each arm) as
well as two dielectrics from experimentally mea-
sured data in 2D using (S1) and discrepancy
principle, see Figure 1. In both cases the com-
putational domain is discretized by N = 256
points in every dimension.

0

0.5

1

1.5

2

Figure 1: Left: Real part of reconstruction of
tripod from synthetic data perturbed with 1%
Gaussian noise. Right: Real part of reconstruc-
tion of two dielectrics from data measured by
the Institute Fresnel at 5GHz, see [1]; we esti-
mate the noise to 25%. The number of trans-
mitters/receivers is 50/50 and 36/49. Run-time
and error are 4.4 h, 60.6% as well as 1.6min,
51.3%, see [2].
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Abstract

We consider the problem of detecting delami-
nation of interfaces in composite materials us-
ing acoustic waves or separation between in-
tegrated circuit components using electromag-
netic waves.

Keywords: Nondestructive testing, inverse prob-
lem, linear sampling method, asymptotic meth-
ods.

1 Introduction

For sake of presentation, in this report we dis-
cuss our problem for the case of acoustic waves
[1]. We consider two materials that should have
a coincident boundary (in the undamaged or
background state) and we wish to detect if there
is a part of the common boundary where the
two materials have separated. In particular we
want to determine the size and position of the
delamination. More precisely, we denote by ⌦ ⇢
Rm, m = 2, 3 the support of the inhomogene-
ity to be tested which in absence of delamina-
tion is composed of two di↵erent materials ad-
jacent to one another with constitutive mate-
rial properties µ

+

, n
+

and µ�, n�. We denote
their bounded support by ⌦� and ⌦

+

, respec-
tively, and the shared interface by � := @⌦�
(i.e. ⌦ = ⌦� [ ⌦

+

). Both the outer bound-
ary @⌦

+

of the domain ⌦
+

and the boundary
@⌦� of the simply connected domain ⌦� are
assumed to be piece-wise smooth, unless men-
tioned otherwise, and ⌫ denotes the unit normal
always oriented outwards to the region bounded
by the curve. Furthermore, we assume that
along a part of the interface, denoted here by
�
0

⇢ �, these two materials have detached (de-
laminated) and we model this fact with the ap-
pearance of an opening with support ⌦

0

and
material properties µ

0

, n
0

(see Fig. 1 left). Note
that �

0

= ⌦
0

\�. The material properties (pos-
sibly complex valued) in each of the domains are
assumed to be smooth, i.e. µ

+

, n
+

2 C1(⌦
+

),

µ�, n� 2 C1(⌦�) and µ
0

, n
0

2 C1(⌦
0

) (how-
ever note that across the interfaces there are
discontinuities in the material properties). As-

ui

us

-

+�
�+,n+

�

�
� -,n -

f+δ (s)

� 
�
(s)

-f- (s)�0

�+

�-
δ (s)�

(s)�

� 
�
(s)

-

+
� 

�
(s)

Figure 1: Layered media with a thin delamina-
tion at the interface of two layers ⌦� and ⌦

+

.

suming now time harmonic fields, the total field
uext = us+ui in ⌦

ext

, where us is the scattered
field, and the fields u+, u� and U inside ⌦

+

,
⌦� and ⌦

0

, respectively, satisfy

�uext + k2uext = 0 in ⌦
ext

(1)

r ·
⇣

1

µ+
ru+

⌘

+ k2n
+

u+ = 0 in ⌦
+

(2)

r ·
⇣

1

µ�
ru�

⌘

+ k2n�u
� = 0 in ⌦� (3)

r ·
⇣

1

µ0
rU

⌘

+ k2n
0

U = 0 in ⌦
0

. (4)

Across the interfaces the fields on either side
and their conormal derivatives are continuous

uext = u+, @u

ext

@⌫

= 1

µ+

@u

+

@⌫

on �
1

(5)

u+ = u�, 1

µ+

@u

+

@⌫

= 1

µ�
@u

�

@⌫

on �\�
0

(6)

U = u+, 1

µ0

@U

@⌫

= 1

µ+

@u

+

@⌫

on �
+

(7)

U = u�, 1

µ0

@U

@⌫

= 1

µ�
@u

�

@⌫

on ��. (8)

The scattered field us satisfies the Sommerfeld
radiation condition uniformly in x̂ = x/|x|

lim
r!1

r
m�1

2

✓

@us

@r
� ikus

◆

= 0. (9)

Here we consider plane waves as incident fields
which are given by ui := eikx·d where the unit
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vector d is the incident direction. The goal of
the this study is to propose an algorithm for
detecting the delaminated region using remote
measurements of acoustic waves scattered by
the structure. In practice, the thickness of the
opening is much smaller than both the interro-
gating wave length in free space � = 2⇡

k

and
the thickness of the layers of background mate-
rial. We take advantage of the small scale of the
thickness � and, using an asymptotic method
from [3], we derive an approximate model of the
delaminated structure where the opening ⌦

0

is
replaced by new jump relations for u+ and u�

across the delaminated part �
0

that account for
the presence of the opening (see Fig. 1 right).

2 An approximate asymptotic model

For simplicity of presentation assume that m =
2 and, focusing our attention on a neighborhood
of the opening ⌦

0

, we use formal asymptotic
analysis to derive an approximate model that
takes into account the thin opening ⌦

0

. In the
approximate model the equations (1-3) and the
transmission conditions (5) and (6) remain the
same, (4) disappears and (7)-(8) are replaced by

[u] = ↵

⌧

1

µ

@u

@⌫

�

on �
0



1

µ

@u

@⌫

�

= (�r
�

· h�fir
�

+ �) hui on �
0

where ↵ = 2� hf(µ
0

� µ)i, �± = 2�
⇣

1

µ0
� 1

µ

±

⌘

and � = 2�k2 hf (n� n
0

)i, recalling that [w] =
w+ � w� and hwi = (w+ + w�)/2. Next we
analyze the well-posedeness of the approximate
model. To this end, we introduce the space

H :=
n

u 2 H1(B
R

\�
0

),
p

f±r
�

hui 2 L2(�
0

)
o

equipped with the natural norm. Then we prove
that the direct approximate model has a unique

solution u 2 H, provided that <
⇣

1

µ

±

⌘

� ✏
1

>

0 and <
⇣

1

µ0
� 1

µ

±

⌘

� ✏
2

> 0, 0  =(n±) 
=(n

0

) and 0  =(µ±)  =(µ
0

), and finally f±

go to zero at the boundary of �
0

in � such that
1/ hf(µ

0

� µ)i 2 Lt(�
0

) for t = 1 + ✏ in R2 and
t = 7/4 + ✏ in R3 for arbitrary small ✏ > 0.

3 The inverse problem of reconstructing
the delaminated part �

0

Our reconstruction method is a modified Lin-
ear Sampling Method, adapted to our problem

where we already know the interface � and only
look for the delaminated part �

0

[1]. The in-

verse problem we consider here is to determine
the delaminated portion �

0

of the boundary �
from a knowledge of the far field pattern u1(x̂, d)
for x̂ and d on the unit sphere Sm�1. We remark
that our inversion algorithm can also be justi-
fied and implemented for limited aperture data
as well as for near field data. The inversion
method is based on the far field equation
Z

Sm�1
(u1(x̂, d)� u1

b

(x̂, d))g(d)ds
d

= �1
L

(x̂)

where u1(x̂, d) is the measured data and u1
b

(x̂, d)
is the computed far field pattern for the healthy
material, and for some ↵

L

,�
L

2 C1
0

(L),

�1
L

=

Z

L

↵
L

(y)G1
b

(·, y)+�
L

(y)
1

µ

@G1
b

(·, y)
@⌫(y)

ds(y)

with L ⇢ � and G1
b

(x, y) the far field pattern
of the radiating Green’s function of the back-
ground media (i.e. in the absence of delami-
nation). Then we show that roughly the reg-
ularized solution of the far field equation has
di↵erent behavior if L ⇢ �

0

as opposed to when
L 6⇢ �

0

. We refer to [1] for more details.
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Figure 2: Reconstruction of two delaminated
parts �1

0

[ �2

0

for four levels of noise ⇢.
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Abstract

This paper investigates the use of Steklo↵ eigen-
values for Maxwell’s equations to detect changes
in a scatterer using remote measurements of the
scattered wave. Because the Steklo↵ eigenvalue
problem for Maxwell’s equations is not a stan-
dard eigenvalue problem for a compact oper-
ator, we propose a modified Steklo↵ problem
that restores compactness. In order to mea-
sure the modified Steklo↵ eigenvalues of a do-
main from far field measurements we perturb
the usual far field equation of the Linear Sam-
pling Method by using the far field pattern of
an auxiliary impedance problem related to the
modified Steklo↵ problem. We show existence
of modified Steklo↵ eigenvalues, well-posedness
of the corresponding auxiliary exterior impedance
problem and provide theorems that support our
claim to be able to detect modified Steklo↵ eigen-
values from far field measurements. Prelimi-
nary numerical results are reported.

Keywords: Steklo↵ eigenvalues, inverse prob-
lem, non-destructive testing, Herglotz wave func-
tion.

1 Introduction

In a recent paper [1] it was suggested to use
Steklo↵ eigenvalues for the Helmholtz equation
as a novel “target signature” for non-destructive
testing via inverse scattering. In particular it
was shown that it is possible to measure Steklo↵
eigenvalues for a bounded inhomogeneous scat-
terer by solving a sequence of modified far field
equations. In this paper we shall continue this
research program by considering the determina-
tion of Steklo↵ eigenvalues from far field data
for Maxwell’s equations.

As is well known, the Steklo↵ eigenvalue
problem for the Helmholtz equation for a bounded
domain is equivalent to the determination of
eigenvalues of the corresponding Neumann-to-
Dirichlet map. For the Helmholtz equation the

compactness of this map allowed the authors
of [1] to verify the existence of Steklo↵ eigenval-
ues for the Helmholtz equation even in the case
of an absorbing medium where the problem is
not self adjoint. In our case, for Maxwell’s equa-
tions, compactness of the corresponding elec-
tric current to magnetic current map (still re-
ferred to as the Neumann-to-Dirichlet or NtD
map here) is unlikely as we shall show. How-
ever there is no need for us to use the “natural”
NtD map because it is only used as an auxiliary
problem for modifying the far field operator.
So we propose a new modified Steklo↵ eigen-
value problem that does give rise to a compact
and self adjoint eigenvalue problem in a dielec-
tric medium. We now describe the standard
forward scattering problem that is the basis of
our study. Suppose D is a bounded domain
containing the origin such that R3 \ D is con-
nected and such that the boundary of D de-
noted @D is smooth. The forward electromag-
netic scattering problem is to find the electric
field E 2 H

loc

(curl,R3 \D) and the magnetic
field H 2 H

loc

(curl,R3 \D) such that

curlE � iH = 0 , curlH + i✏rE = 0

(1)
in R3 where the wavenumber  is real, positive
and it is fixed so that the method is applicable
to data at a single frequency. The relative per-
mittivity ✏r is assumed to be piecewise smooth.
The total fields E and H are given by

E = E i + E s , H = H i + H s ,

where (E s,H s) is the scattered field satisfying
the Silver–Müller radiation condition

lim
r!1

(H s ⇥ x � rE s) = 0

uniformly in bx := x/|x | where r = |x |. The
incident field (E i,H i) is assumed to be a plane
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wave given by

E i(x ) =
i


curlcurlpe�ix ·d ,

H i(x ) = curlpe�ix ·d .

Here d is a unit vector giving the direction of
propagation of the plane wave and p is the po-
larization vector assumed real and non zero.
The scattered field has the following asymptotic
expansion in r [2]:

E s(x ) =
e�ir

r
E1(bx ,d ;p)+O

✓
1

r2

◆
, r ! 1 ,

H s(x ) =
e�ir

r
H1(bx ,d ;p)+O

✓
1

r2

◆
, r ! 1 ,

where E1 (respectively H1) is called the far
field pattern of the scattered wave E s (respec-
tively H s) depending, as indicated, on the mea-
surement direction x̂ , the incident direction d ,
and the polarization p.

Let S2 = {x 2 R3 | |x | = 1}. Now we
can state the inverse problem we wish to solve:
given the far field pattern for all x̂ 2 S2, d 2
S2 and p 2 R3, p 6= 0, we wish to compute
approximations of modified Steklo↵ eigenvalues
for a domain B such that either B = D (in
non-destructive testing we may know the shape
of the object and wish to monitor its interior for
changes in ✏r) or B is a ball containing D in its
interior (for example if the shape of D is not a
priori known).

2 The Standard Steklo↵ Boundary Con-

dition

Following the ideas in [1], we are interested in
studying the inverse problem by considering a
modified far field operator whose kernel is the
di↵erence between the measured far field pat-
tern due to the scattering object and the far
field pattern of an auxiliary scattering problem
involving a Steklo↵ boundary condition on the
boundary of a domain B containing D (possibly
B = D). After some analysis, we see that this
modified far field operator is injective if � is not
a Steklo↵ eigenvalue and � = �(k) is called a
Steklo↵ eigenvalue if the following problem:

curlcurlw � 2✏rw = 0 in B ,

⌫ ⇥ curlw � �wT = 0 on @B ,
(2)

has a nontrivial solution w . We consider the
NtD map for the analysis of this eigenvalue prob-

lem. A priori, we hope that the NtD opera-
tor is self-adjoint and compact. However, af-
ter some computations we observe that for the
sphere the NtD map cannot be compact which
defeats an easy proof of the existence of Steklo↵
eigenvalues in this case (and presumably in gen-
eral). Notice that we have arrived to the prob-
lem (2) from an auxiliary problem which was
introduced with the aim of studying the inverse
electromagnetic scattering problem. We are thus
free to choose a di↵erent auxiliary problem.

3 Modified Steklo↵ Boundary Condition

In this section we proceed as in Section 2 but
changing the auxiliary scattering problem for a
convenient one. Repeating the argument given
in the last section concerning injectivity of the
far field operator, we arrive to the following
modified Steklo↵ eigenvalue problem: Findw 6=
0 such that

curlcurlw � 2✏rw = 0 in B ,

⌫ ⇥ curlw � �SwT = 0 on @B ,
(3)

where the linear operator S is defined as follows:

S : H�1/2(curl @B, @B) �! H 1/2(div0@B, @B)
µ 7�! Sµ := curl@B q ,

where µ 2 H 1/2(div0@B, @B) if and only if µ 2
H

1/2
t (@B) and div@B µ = 0 and q 2 H1(@B)/C

is the solution of the problem�@B q = curl@B µ.
Finally, we prove that modified Steklo↵ eigen-
values exist.

Theorem 1 When ✏r is real, a countable dis-

crete set of modified Steklo↵ eigenvalues (eigen-

values of (3)) exist. They are real and accumu-

late at 1.
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Abstract

We compute near fields using boundary integral
equation methods for 2D acoustic scattering by
an obstacle with an analytic boundary. Accu-
rate computation of near fields is needed for op-
tical scattering by nanostructures and for other
related problems. A classical method to approx-
imate the solution everywhere consists of using
the same quadrature rule (Nyström method)
used to solve the underlying boundary integral
equation. It is established that this method in-
curs an O(1) error for a fixed number of quadra-
ture points. Our goal is, for a fixed number
of quadrature points and without using high-
order Nyström methods, to develop a method
to address this O(1) error. Similar to numerical
method for approximating singular integrals, we
subtract from the associated kernel the asymp-
totic expansion that captures the nearly singu-
lar behavior.

Keywords: boundary integral equation, close
evaluation, local analysis

1 Problem setting

We consider the following scattering problem by
a sound-soft obstacle D ⇢ R2 with @D an ana-
lytic, closed curve:

�u+ k2u = 0 in R2 \D, (1a)

u = f on @D, (1b)

@ru� iku = o(r�1/2), r ! 1, (1c)

where k denotes the wavenumber and f is an
analytic function that gives the field incident on
the obstacle. The solution of (1) may be rep-
resented as a single- and double-layer potential
(see [5]): for all x 2 R2\D̄,

u(x) =

Z

@D

⇥
@nyG(x, y)� ikG(x, y)

⇤
µ(y)d�y.

(2)
The fundamental solution of (1a) is

G(x, y) =
i

4
H(1)

0 (k|x� y|), (3)

where H(1)
0 is the Hankel function of first kind,

and the density µ satisfies the boundary integral
equation for all y0 2 @D,

1

2
µ(y0) +

Z

@D
@nyG(y0, y)µ(y)d�y

� ik

Z

@D
G(y0, y)µ(y)d�y = f(y0).

(4)

Since @D is a closed, analytic curve, and G ex-
hibits a log-singular behavior, (4) can be solved
numerically with spectral accuracy using Kress’
Nyström method [5, Chapter 12] (for Laplace
we consider the periodic trapezoid rule [1]). Us-
ing the same Nyström method to evaluate (2)
incurs an O(1) error for points in R2 \ D that
are close to @D. This is due to the fact that
the kernel K := @nyG � ikG is nearly singu-
lar, in the sense that K is sharply peaked when
|x � y| ! 0+, and will not be well resolved for
fixed quadrature points. In fact, the error made
in evaluating (2) exhibits a boundary layer with
thickness O(1/N) where N is the number of
quadrature points, leading to a O(1) error as x
approaches @D [1]. It is necessary to accurately
predict these near fields for optical scattering
by nanostructures, for instance in plasmonics.

2 Local analysis and numerical results

To address the O(1) error associated with the
near-field evaluation problem, we treat nearly
singular integrals in a similar fashion to meth-
ods developed for singular integrals [3]. We sub-
tract Kns the nearly singular behavior of the
kernel K appearing in (2) and write the solu-
tion, for all x 2 R2 \D, as

u(x) =

Z

@D
(K(x, y)�Kns(x, y))µ(y)d�y

+

Z

@D
Kns(x, y)µ(y)d�y.

(5)

In (5) the first integral is smooth, and therefore
easier to approximate, whereas the second one
is evaluated analytically. Kns is found as a lin-
ear combination of the asymptotic expansions
of the single- and double-layer potentials. Let
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� denote the separation distance between the
evaluation point x in R2 \D and the boundary
@D: then x = y⇤+�ny⇤ with y⇤ 2 @D. Defining

Y := y⇤�y
� , one can rewrite K as a non-uniform

expansionK(x, y) = K(�Y, �), thenKns is found
as the inner expansion of K(�Y, �) as Y ! 0+.
It is well-known that G has the same singu-
lar behavior as GL, the fundamental solution
of Laplace’s equation [5]:

G = GL + cst +O(�2 log �), (6)

with cst :=
i

4
� 1

2⇡

✓
log

k

2
+ C

◆
, and C denot-

ing Euler’s constant. Therefore, the leading or-
der of Kns can be found as the inner expansion
of KL := @nyG

L � ik(GL + cst), with

GL(�Y, �) = � 1

2⇡
log �

� 1

4⇡
log(1 + |Y|2 � 2nY⇤ · Y),

(7)

@nyG
L(�Y, �) = � 1

2⇡�

nY · Y+ nY · nY⇤
1 + |Y|2 � 2nY⇤ · Y

. (8)

Using the parametrization Y(t) =
y(t⇤)� y(t)

�
,

t, t⇤ 2 [0, 2⇡], one can express Kns as a rational
trigonometric function of the form

Kns(t, t⇤; �) =
A0 +A1 cos(t� t⇤)

1 +B1 cos(t� t⇤)

� ik (log(C0 + C1 cos(t� t⇤)) +D) ,

(9)

where A0, A1, B1, C0, C1, D are constants,
in particular depending on � and the curvature
of the boundary at y⇤. The integral operator
with Kns can be computed spectrally using its
Fourier series representation [4]. We can then
compute (5) e�ciently and accurately.
Results in Fig. 1 show a gain of at least 3 orders
of precision close to boundary. Electrostatic
cases (k = 0) have shown a gain of at least 6
orders. Since K ⇠ KL is valid for k|x� y| su�-
ciently small, we are performing a sub-wavelength
correction (i.e. k� ⌧ 1). A new scaling taking
into account k will be required to tackle high
frequency scattering problems [1].

3 Future works

These results show the advantage of incorporat-
ing asymptotic analysis into the numerical eval-
uation of near-fields. The asymptotic Nyström
method with sub-wavelength correction can be

Figure 1: Top left: real part of the solution of

(2) given by u(x) = i
4H

(1)
0 (k|x � x0|), with k = 5,

x0 = (�0.8, 0.2) 2 D, with N = 300. Top right: er-

ror (log-scale) with respect to � for t⇤ = 29
302⇡. Bot-

tom: contour errors (log-scale) for (2) at the rect-

angle indicated in the top left figure, using native

Nyström method (left), and the asymptotic Nyström

method with sub-wavelength correction (right).

improved further using the outer expansion of
K (i.e. Y ! 1) and using a subtraction method
applied to the density µ [3]. Further details will
be given in [2]. Extensions to 3D configura-
tions will be considered, and we will apply these
techniques for scattering problems in plasmonic
structures.
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Abstract

We consider the problem of imaging electric di–
poles in a homogeneous medium from measure-
ments of all three components of the electric
field at an array of receivers. We show that
an electromagnetic version of Kirchho↵ migra-
tion can be used to recover the position and
the orientation of the dipoles in the Fraunhofer
asymptotic regime. We prove that the reso-
lution estimates for the position are as in the
acoustic case and provide error estimates for the
dipole orientation. We extend these results to
the case where the dipoles behave as passive
sources, that is to say di↵racting obstacles. In
this setting, one wants to recover both the posi-
tion and the polarizability tensor of each dipole
in the medium.

Keywords: Electromagnetism, Imaging dipoles,
Kirchho↵ imaging, Fraunhofer asymptotic regime.

1 Introduction

Many chemical molecules (such as biomolecules
like proteins) are polarized, in other words, they
can be model as electric dipoles. Knowing both
the position and the polarization of this dipole
is very useful for chemists since it contains infor-
mation about the geometry and the properties
of the molecule. Toward this goal, we study the
inverse problem consisting in reconstructing the
positions and polarization vectors of a family of
electrical radiating dipoles from their emitted
electric field.

2 Formulation of the problem

We consider here a homogeneous dielectric medium
filling the whole space R3 of permittivity " and
permeability µ. We assume that this medium
contains N electric dipoles (or antennas) for
which one wants to recover both the polariza-
tion vectors p1, · · · ,pN

2 C3 and the positions
y

i

2 R3. These dipoles are assumed radiative,
that is to say able to emit an electric field (at

the frequency !) of the form:

E(x, k) =
NX

j=1

µ!2G(x,y
j

; k)p
j

where k = !/c = !/
p
"µ is the wave number

and G(x,y
j

; k) the dyadic Green tensor associ-
ated to the dielectric medium [2]. We assume
that one can measure this electrical field on an
array A (supposed to be continuous, bounded
and localized in the plane z = 0). Our goal is to
use these measurements (up to the factor µ!2):

⇧(x
r

; k) =
NX

j=1

G(x
r

,y
j

; k)p
j

collected on each point x
r

2 A to construct an
imaging function from which one can extract
the positions y

i

of the antennas, but also their
orientations p

i

.
In acoustic imaging, in the Fraunhofer regime,

the so-called Kirchho↵ imaging functional has
proved its e�ciency. Thus, we chose to look at
the properties of its electromagnetic analogous
I(y) : R3 ! C3 defined by:

I
k

(y) =

Z

A
G(x

r

,y; k) ⇧(x
r

, k) dx̃
r

, (1)

for x
r

= (x̃
r

, 0) 2 A.

3 Summary of results

We first establish the Fraunhofer asymptotics of
the dyadic Green function to derive the asymp-
totics of the imaging function (1). Secondly, we
used this asymptotic to study not only the res-
olution of our image to recover the position y

i

,
but also to find a linear system whose solution
would give a stable reconstruction of the polar-
ization vector p

i

2 C3.
Suppose that one wants to recover the posi-

tion y

i

= (ỹ
i

, z
i

) and polarization p

i

= (p̃
i

, p
z,i

)
of the i-th dipole. Like in acoustics, we decom-
pose this work in two steps: first, we study the
resolution of I

k

(y) in the cross-range, that is
the plane z = z

i

and then we integrate the im-
age I

k

(y) over a frequency band �B to derive
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its range resolution, that is its resolution on the
axis transverse to the array which contains y

i

.

Step one: cross-range resolution

In the plane z = z
i

, we establish, based on sta-
tionary phase arguments, that the infinity norm
of the image: kI

k

(y)k1 has, like in acoustic [1],
a resolution of order L/(ak). In other words,
the ratio kI

k

(y)k1 / kI
k

(y
i

)k1 becomes small
when the distance |ỹ � ỹ

i

| between y

i

and a
point y of its cross-range is large with regards
to L/(ak). Then using this result, we prove that
one obtains a good image of the two first com-
ponents p̃

i

of the polarization vector by solving
the following linear system:

⇥ Z

A
G(x

r

,y; k)G(x
r

,y; k) dx̃
r

⇤
p = I

k

(y), (2)

of unknown p = (p̃, p
z

) 2 C3 for points y in
the cross-range of y

i

. More precisely, the study
of the condition number of (2) shows that it is
ill-posed in the sense that one cannot recover in
the Fraunhofer regime the component p

z,i

of p
i

.
However, the 2 ⇥ 2 subsystem associated with
the components p̃ = (p

x

, p
y

) of p has a condi-
tion number close to 1. Furthermore, we prove
then that using the magnitude of the solution p̃

of this subsystem leads to a stable image of the
cross-range position ỹ

i

which has the same res-
olution L/(ak) as the Kirchho↵ imaging func-
tional. Moreover, we provide error estimates on
|p̃ � p̃

i

| at y = y

i

which involves the distances
between the dipoles and the Rayleigh number
L/(ak).

Step two: range resolution

We show, by integrating the imaging functional
I
k

(y) over a frequency band �B, that one gets
a depth resolution c/�B (identical to the one in
acoustic [1]) of the range position z

i

as soon as
the frequency band �B is su�ciently wide. In
addition, the integration of the system (2) over
this frequency band leads to a good image (up
to a phase term) of p

i

in depth.
Finally, we confirm all these results by a nu-

merical study. More numerical results will be
presented in the talk. In figures 2, the position
of the two dipoles are represented by a white
cross, the polarization vectors that one wants
to recover with white arrows, the reconstructed
vectors with blue arrows, the color scale indi-
cates the magnitude of p̃ and �0 stands for the

central wavelength of �B. Note that we recon-
struct the polarization vectors p̃

i

up to a phase,
which is fixed by imposing Im(p

x

) = 0.

Figure 1: Image of |p̃|, Re(p̃) (left) and Im(p̃)
(right) in the cross-range plane z = L.

Figure 2: Image of |p̃|, p
x

in the range of the
first dipole (left) and p

x

in the range of the sec-
ond dipole (right).

We have extended these results to the case
where the dipoles are not radiating but behave
as di↵racting obstacles. In this setting, the di↵rac-
tion of an electromagnetic wave by a dipole is
governed by a 3 ⇥ 3 matrix: the polarizability
tensor (see [2]). The objective is here to find
both the position and the polarizability tensor
of each dipole in the medium. We establish
that one recovers their position with a cross-
range resolution: L/(ka) and a range resolution
c/�B. Furthermore, we show that one can re-
construct only the first 2⇥ 2 block of the polar-
izability tensor since the information about the
other blocks is lost in the Fraunhofer regime.
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2University of Liège, Department of Electrical Engineering and Computer Science, Belgium

⇤Email: boris.caudron@univ-lorraine.fr

Abstract

A new weak coupling between the boundary el-
ement method and the finite element method
for solving harmonic electromagnetic scattering
problems is introduced. This method is inspired
by domain decomposition techniques. Using suit-
able approximations of Magnetic-to-Electric op-
erators to build proper transmission conditions
allows for good convergence properties.

Keywords: time-harmonic electromagnetic scat-
tering, BEM/FEM coupling, domain decompo-
sition methods, microlocal operators

1 Introduction

The aim of this ongoing work is to numerically
solve time-harmonic electromagnetic (EM) scat-
tering problems for which the scatterer is dielec-
tric and inhomogeneous. A standard approach
consists in combining integral equations for the
exterior domain and a weak formulation for the
interior domain resulting in a formulation cou-
pling the boundary element method (BEM) and
the finite element method (FEM). A drawback
of this strong coupling is that it is not possi-
ble to easily combine two pre-existing solvers,
one FEM solver for interior domains and one
BEM solver for exterior domains, to construct
a global solver for the original problem. We
present here a weak BEM/FEM coupling, based
on a domain decomposition approach, allowing
a simple construction of such a solver.

2 The EM scattering problem

We denote by ⌦� the scatterer, ⌦+ the exte-
rior domain, � the surface of the scatterer and
n the outward-pointing unit normal vector to
⌦�. The scattered field and the one within the
scatterer satisfy in ⌦±:

rotE± � ik±Z±H± = 0, (1)

rotH± + ik±Z
�1
± E± = 0, (2)

where k± and Z± are respectively the wave num-
bers and the impedances of the problem. Note

that the scattered field, as any exterior field,
should also satisfy the Silver-Müller radiation
condition. Finally, the interface conditions on
� are:

E� ^ n = E+ ^ n+Ei ^ n, (3)

H� ^ n = H+ ^ n+Hi ^ n, (4)

where (Ei;Hi) is an incident plane wave.

3 Reformulating the problem

Introducing two operators T±, refered to as the
transmission operators, problem (1)-(4) can be
equivalently recast as:

(Id� S⇡)

✓
g�
g+

◆
= B, (5)

where the right-hand side B is defined through
(Ei;Hi) and T±, and:

S⇡ =

✓
0 S+

S� 0

◆
,

S± = Id± (T+ +T�)R±,

The functions g± should be understood in terms
of traces on �:

g± = (H± ^ n)⌥T±(E± ^ n).

Finally, R± are resolution operators defined as:

R±g = Ẽ± ^ n,

where (Ẽ±; H̃±) are the solutions of the follow-
ing boundary-value problems:

rot Ẽ± � ik±Z±H̃± = 0 in ⌦±,

rot H̃± + ik±Z
�1
± Ẽ± = 0 in ⌦±,

(H̃± ^ n)⌥T±(Ẽ± ^ n) = g on �.

The resolution operators R± should be under-
stood as the pre-existing FEM solver for the in-
terior domain and BEM solver for the exterior
domain, as mentioned in the introduction.
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4 Solving the reformulation

To solve (5), the GMRES method is employed.
As a result, the solvers for the interior and exte-
rior domains are repeatedly and independently
called. For this reason, the weak coupling can
be interpreted in a domain decomposition me-
thod (DDM) framework. Moreover, solving (5)
using a fixed point method is equivalent to a
standard Jacobi-type DDM method:

rotEn+1
± � ik±Z±H

n+1
± = 0 in ⌦±,

rotHn+1
± + ik±Z

�1
± En+1

± = 0 in ⌦±,

the interface conditions on � being:

(Hn+1
± ^ n)⌥T±(E

n+1
± ^ n) = (Hn

⌥ ^ n)
⌥T±(En

⌥ ^ n)⌥Hi ^ n+T±Ei ^ n.

5 Choosing the transmission operators

The choices for T± impact the convergence of
the GMRES method. Choosing proper Magne-
tic-to-Electric (MtE) operators as transmission
operators ensures that S⇡ vanishes rendering
(5) trivial to solve. It is therefore natural to use
approximations of MtE operators as transmis-
sion operators. Accurate approximations typi-
cally involve the principal part of the MtE op-
erators:

1

Z±

✓
Id+

��

k̃2±

◆� 1
2
✓
Id� 1

k̃2±
rot�rot�

◆
(· ^ n),

where k̃± = k± + i✏±, ✏± > 0. Although nonlo-
cal, the above operators can be localized using
complex Padé approximants. Such transmission
operators have already been successfully used
for DDM, resulting in fast GMRES with a con-
vergence only slightly dependent on the mesh
refinement and wave number [1]. For the weak
coupling, some numerical/analytical tests have
been conducted in the case of the sphere, for
which the eigenvalues of all the involved op-
erators are known analytically, suggest that it
should also be the case for the GMRES conver-
gence of (5).

6 Numerical results

To test formulation (5), we consider a toy prob-
lem: a unit transparent sphere (meaning that
k� = k+ and Z� = Z+) solved by coupling two
BEM solutions, i.e. a BEM/BEM DDM. The
GMRES-convergence is promising as shown be-
low (the GMRES tolerance is fixed to 10�4).

In this case, high order transmission operators
refer to principal parts of MtE operators with
Padé approximation whereas low order trans-
mission operators refer to a simple impedance
operator (zeroth order Taylor expansion): 1

Z±
(·^

n). The mesh parameters h are defined as frac-
tions of the wave length �: h = �

l = 2⇡
kl . For

the first figure, l = 5. For the second one, the
wave number is equal to 5. In addition, we will
explain how to construct well-conditioned and
e�cient iterative BEM solvers for the interior
and exterior problems.
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Abstract

The propagation of torsional waves in a 1D gran-
ular chain made of self-hanged magnetic beads
is considered in this work. Due to the tor-
sional coupling between beads, the propagation
medium is purely nonlinear hysteretic, provid-
ing the opportunity to study the phenomenon
of nonlinear dynamic hysteresis in the absence
of other types of material nonlinearities. Specif-
ically, we consider the propagation of large am-
plitude signals, reaching a strongly nonlinear
regime, beyond the limits of the quadratic hys-
teretic approximation. In this regime, total tor-
sional sliding at the contacts may be observed
and strong saturation e↵ects are expected. These
results could be of fundamental interest but may
also find potential applications in nonlinear wave
control devices.

Keywords: Nonlinear torsional waves, hys-
teresis, torsional sliding, granular phononic crys-
tals.

Nonlinear hysteresis in micro-inhomogeneous
materials, i.e. complex or mesoscopic solids, is
inherently di↵erent from the classical nonlin-
earity which originates from the expansion of
smooth nonlinear stress-strain relationship and
geometric nonlinearity. Non-classical nonlinear-
ity is known to be responsible for phenomena
like nonlinear softening [1], nonlinear attenua-
tion [2], memory [3] and slow dynamics [4, 5].
The shear coupling between two elastic spheres
was one of the first observation of mechanical
hysteresis [6]. The first analytical approaches
to define the hysteretic behavior in a system
formed by two elastic spheres in contact rotat-
ing relative to each other where provided by
Lubkin [7] and Deresiecwicz [8] . A chain of
magnetic beads, where pure rotational waves
can propagate due to the torsional coupling at
bead contacts, is a physical system of funda-
mental interest as it constitutes a purely non-
linear hysteretic system, without the presence
of other types of nonlinearity. This feature al-

lows the observation of phenomena that have
been previously predicted such as pulse distor-
tion [9,10] or frequency mixing [11]. While some
of these phenomena have been already observed
experimentally [12], the experimental observa-
tion of several predicted e↵ects, such as fre-
quency mixing or total torsional sliding, remains
a challenge to be achieved. In Ref. [12], the first
results on the purely nonlinear hysteretic prop-
agation of rotational waves in a one-dimensional
granular chain were presented. The basis of
the theory describing the nonlinear pulse distor-
tion by quadratic hysteretic torsional coupling
at the contact was established. This description
is in agreement with the experimental results
obtained in a granular magnetic chain configu-
ration and provided a quantitative estimate of
the hysteretic nonlinear parameter. This model
configuration is fairly well characterized and al-
lows for the study of a wide variety of nonlinear
e↵ects in a purely hysteretic medium. In this
work we focus on the study of hysteretic nonlin-
earity for relatively larger amplitudes than pre-
viously, reaching a strongly nonlinear regime,
beyond the limits of the quadratic hysteretic
approximation. This large relative rotation be-
tween beads leads to total torsional sliding at
the contacts, and strong saturation e↵ects are
observed.

At first, we consider a system composed of
only two spherical beads where the contact force
between them is of a magnetic nature. Consid-
ering a torsional harmonic excitation of increas-
ing amplitude, the relation between the rela-
tive angle between beads and torque transmit-
ted to the second bead is measured, as shown in
Fig. 1(a). Setting a certain value for the hys-
teretic parameter, close to the one estimated in
Ref. [12], the experimentally measured torque-
angle relationship can be well fitted by the the-
oretical prediction from Ref. [7]. A similar be-
havior is then observed between the first two
beads of a 70 bead-lng chain using a sinusoidal
pulsed signal as the excitation. As a result of



WAVES 2017, Minneapolis

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
β1,2 (◦)

-1

-0.5

0

0.5

1

M
2
(N

m
)

×10-3

Kt

Mmax
2

(a)

Theory
Experiments

0 0.1 0.2 0.3 0.4
β1,2 (◦)

0

0.2

0.4

0.6

0.8

1

M
2
(N

m
)

×10-3

(b)

Experiments

Figure 1: Total torsional sliding experimental results for (a) two bead system, (b) granular chain
composed of 70 beads.

the sliding between the first two beads of the
system, the amplitude of the rotation along the
chain is strongly saturated despite a continu-
ously increasing driving amplitude. These re-
sults could be of fundamental interest but also
could help in the future design of wave devices
based on nonlinear elastic metamaterials.
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Abstract

E�cient implementations of high order discon-
tinuous Galerkin (DG) methods on hexahedral
meshes can incorporate both local variations in
heterogeneous media using mass lumping tech-
niques. However, because the extension of such
techniques to simplicial elements is less straight-
forward, high order DG methods on triangular
and tetrahedral meshes typically assume piece-
wise constant models of heterogeneous media.

We present an alternative to mass-lumping
techniques using weight-adjusted approximations
to weighted L2 inner products, resulting in an
energy stable, high order accurate, and low-
storage method for acoustic and elastic wave
propagation in arbitrary heterogeneous media
and curvilinear meshes.

Keywords: discontinuous Galerkin, tetrahe-
dral meshes, heterogeneous media, mass lump-
ing

1 Introduction

The inversion of weighted mass matrices in dis-
continuous Galerkin methods is required in the
presence of curvilinear meshes and heterogeneous
media with local variations. However, at high
orders of approximation, the pre-computation
of factorizations significantly increases storage
costs, while the on-the-fly construction and in-
version of such matrices is expensive and dif-
ficult to adapt to the fine grain parallelism of
modern many-core architectures.

These costs can be avoided through the use
of mass lumping techniques on hexahedral meshes;
however, extensions of mass-lumping techniques
to tetrahedral meshes are non-trivial to con-
struct for high orders of approximation. As
a result, most e�cient implementations of DG
on tetrahedral meshes assume piecewise con-
stant approximations of media and non-curved
meshes.

2 Weight-adjusted mass matrices

To avoid increasing storage costs associated with
weighted mass matrices on tetrahedral meshes,
we approximate weighted L2 inner products with
a weight-adjusted inner product. Let 0 < w

min


w(x)  w

max

< 1 be a positive weight which
varies over an element bD, and define T�1

w through
Z

bD
wT�1

w uv =

Z

bD
uv, u, v 2 PN ( bD).

By noting that T�1

w u approximates u/w, we can
approximate a weighted L2 inner product as fol-
lows Z

bD
wuv ⇡

Z

bD
T�1

1/wuv.

This approximation generates an L2 equivalent
norm on PN ( bD)

w
min

kuk2
L2( bD) 

Z

bD
(T�1

1/wu)u  w
max

kuk2
L2( bD)

with equivalence constants identical to those of
the weighted L2 norm [3]. Additionally, this
approximation is high order accurate as follows:

Theorem 1 (Theorem 5 in [3]) Let Dk
be quasi-

regular with representative size h = diam
�
Dk

�
.

For N � 0 and su�ciently regular u,w
���uw � T�1

1/wu
���
L2(Dk)

 Cwh
N+1 kukWN+1,2(Dk)

Cw = C kwkL1(Dk)

����
1

w

����
L1(Dk)

kwkWN+1,1(Dk) .

The use of a weight-adjusted inner prod-
uct results also approximates the weighted mass
matrix Mw by a weight-adjusted mass matrix

Mw ⇡ MM

�1

1/wM

M

�1

w ⇡ M

�1

M

1/wM
�1.

SinceM
1/w can be applied in a matrix-free fash-

ion (using, for example, quadrature) using only
matrix-vector multiplications, weighted mass ma-
trix inverses can be approximated in a low-storage
fashion suitable for fine-grain parallelism.
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3 Weight-adjusted DG methods

For appropriate boundary conditions, the acous-
tic wave equation with spatially varying wavespeed
c2(x)

1

c2(x)

@p

@t
= r·u, @u

@t
= rp

is energy stable such that

@

@t

X

k

✓Z

Dk

1

c2(x)
p2 +

Z

Dk
|u|2

◆
= 0.

Weight-adjusted DG (WADG) methods repro-
duce this stability at the discrete level. For ex-
ample, the formulation

X

k

Z

Dk
T�1

c2 pv + uq +

Z

Dk
r·uv +rpq

+
X

k

Z

Dk

1

2

Z

@Dk
(⌧pJpK � JuK · n) v

+
X

k

Z

Dk

1

2

Z

@Dk
(⌧uJuK · n� JpK) q · n = 0

results in a discrete energy stability

@

@t

X

k

✓Z

Dk
(T�1

c2 p)p+

Z

Dk
|u|2

◆

 �
X

k

Z

@Dk
⌧pJpK2 + ⌧u |JuK · n|2  0.

WADG methods also preserve high order ac-
curacy, admitting a-priori estimates which de-
pend on the regularity of c2(x). Figure 1 shows
a comparison of solutions obtained for heteroge-
neous media with both smooth local variations
and a discontinuity. The DG solution inverts a
weighted mass matrix over each element, while
the WADG solution uses a weight-adjusted ap-
proximation to this inverse. The solutions are
visually identical.

Finally, we will discuss the extension of weight-
adjusted DG methods both curvilinear meshes
[4] and matrix-valued weights, which appear in
linear elastic wave propagation in heterogeneous
media [5].
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Abstract

There are various formulations as BVPs or BIEs
(boundary integral equations) for screen scat-
tering problems in acoustics, all equivalent when
the screen occupies a bounded open Lipschitz
subset of the plane. Motivated by applications
in electromagnetics and ultrasonics we explore
what happens when the screen is less regular,
in particular fractal or with fractal boundary.
The standard formulations divide into an infi-
nite family of well-posed BVP and equivalent
BIE formulations, with infinitely many distinct
solutions. We use “limiting geometry” argu-
ments to select physically appropriate solutions,
and illustrate numerically the surprising new ef-
fects that arise.

Keywords: Fractal, Helmholtz Equation, scat-
tering

1 Introduction

We consider time-harmonic acoustic scattering
problems modelled by the Helmholtz equation

�u+ k2u = 0, (1)

where k > 0. Our focus is on scattering by thin
planar screens in Rn (n = 2 or 3), so that the
domain in which (1) holds is D := Rn

\�, where
�, the screen, is a bounded subset of the hyper-
plane �1 := {x = (x1, ..., xn) 2 Rn : xn =
0}, and the compact set � is its closure. As
usual, the complex-valued function u can be in-
terpreted physically as the (total) acoustic pres-
sure field, and we write u as u = ui + us, where
ui is the incident field chosen to be the plane
wave

ui(x) = exp(ikd · x)

where d is a unit vector, the direction of inci-
dence. The scattered field us := u � ui is as-
sumed to satisfy (1) and the standard Sommer-
feld radiation condition. For brevity we restrict
attention to sound-hard boundary conditions,
assuming that

@u

@n
= 0 (2)

on the screen in some appropriate sense, where
n is the unit normal pointing in the xn direction.
(For generalisations to other incident fields and
a treatment of sound soft scattering see [4].)

This is a long-standing scattering problem,
its mathematical study dating back at least to
[10], and it is well-known [4, 14] that, for ar-
bitrary bounded � ⇢ �1, this problem is well-
posed (and the solution depends only on the clo-
sure �) if the boundary condition is understood

in the standard weak sense that u 2 W 1,loc
2 (D)

and
Z

D
(v�u+rv ·ru) dx = 0, v 2 W 1,comp

2 (D).

(3)
In the standard case that � is a (relatively)

open subset of �1 that is Lipschitz or smoother,
the alternative, classical formulation, dating to
the late 40s [1], imposes the boundary condi-
tions (2) in a classical sense, and additionally
imposes “edge conditions” requiring locally fi-
nite energy, that u and ru are square inte-
grable in some neighbourhood of @�. Equiv-
alently, one can formulate a BVP for us in a
Sobolev space setting, seeking us 2 W 1,loc

2 (D)
satisfying (1) and the radiation condition, and
imposing the boundary condition (2) in a trace
sense, requiring that the Neumann traces on
�1, @±n u

s, satisfy (@±n u
s)|� = g 2 H�1/2(�),

where g := �(@±n u
i)|� (see, e.g., [11]). Finally,

it is well-known (e.g. [11]) that for Lipschitz �
one can reformulate this BVP as the BIE

T [u] = g. (4)

In this equation the unknown is the jump across
the screen in u, [u] 2 eH1/2(�), and the isomor-
phism T : eH1/2(�) ! H�1/2(�) is a hypersin-
gular boundary integral operator (BIO). Here
eHs(�) ⇢ Hs(�1), for s 2 R, denotes the clo-
sure inHs(�1) of C1

0 (�). As pointed out in [3],
(4) is well-posed for arbitrary open �. The total
field u is given in terms of [u] by

u(x) = ui(x) +D[u](x), x 2 D, (5)

Plenary Lecture
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where D : H
1/2

�
! C2(D) \ W 1,loc

2 (D) is the
standard double-layer potential operator, and

H
1/2

�
⇢ H1/2(�1) is the closed subspace of those

� 2 H1/2(�1) that are supported in �. We note

that H̃1/2(�) ⇢ H
1/2

�
, that these spaces coincide

if � is su�ciently regular, in particular if � is
a C0 open set, but that in general these spaces
are distinct.

In this paper we explore what happens when
the screen � is irregular, in particular fractal or
with fractal boundary, this motivated by the use
of planar screens with precisely these structures
as antennae in electromagnetics and ultrasonics
(e.g., [8,9,12]). We will see in §2 that the stan-
dard classical/Sobolev spaces formulations can
be ill-posed, or if well-posed have solution di↵er-
ent to the standard weak formulation. In §3 we
will see that there exists, when the screen is suf-
ficiently irregular, a whole family of well-posed
BVP and BIE formulations with infinitely many
distinct solutions. In §4 we discuss the selection
of a correct solution by taking limits with re-
spect to the geometry. In the last two sections
we explore theoretically, illustrated by numeri-
cal computations, wave penetration through a
zero-surface-area fractal “hole” in a sound hard
screen.

We use throughout the notation S� to de-
note the (relative) interior of S ⇢ �1. For Borel
S ⇢ �1 we will denote by m(S) the (n � 1)-
dimensional (surface) Lebesgue measure of S,
and by cap(S) the n-dimensional capacity of S
defined as in [4]. For s 2 R we will say that S is
s-null if the only � 2 Hs(�1) with supp(�) ⇢
S is � = 0. Importantly, it holds that S is
�1/2-null if and only if cap(S) = 0, and that
cap(S) > 0 if dimH(S) > n�2, while cap(S) = 0
if dimH(S) < n � 2, where dimH(S) denotes
the Hausdor↵ dimension of S. For proofs of
these statements and other characterisations of
s-nullity see [7].

2 Equivalence and well-posedness (or not)
of standard formulations

As we have observed above, the weak formula-
tion of the scattering problem, with the bound-
ary condition imposed in the sense (2), is well-
posed for every bounded � ⇢ �1. The (equiv-
alent) classical and Sobolev space formulations
above equation (4), however, are only well-posed
for su�ciently regular �. Precisely:

Theorem 1 [4] The classical and Sobolev space
problems formulations are well-posed if and only

if eH1/2(��) = H
1/2

�
and @� is �1/2-null. In

particular, these formulations are well-posed if
� is a Lipschitz open set, or if � is C0 ex-
cept at a countable set of points that has only
finitely many limit points, provided also @� ⇢

[

1
j=1@⌦j, with each ⌦j ⇢ �1 a Lipschitz open

set. But these formulations are not well-posed if
cap(@�) > 0, in particular if dimH(@�) > n�2.
If these formulations are well-posed then they
are equivalent to the weak formulation.

Figure 1 illustrates this theorem for n = 3
with a (non-Lipschitz, indeed non-C0) exam-
ple of a screen for which the classical/Sobolev
space formulations are well-posed, and an ex-
ample (the Koch snowflake) where these formu-
lations are not well-posed (because dimH(@�) =
log 4/ log 3 > 1).

Figure 1: Example sound hard screens for
which the classical/Sobolev space formulations
are well-posed (top) and not well-posed (bot-
tom).

The solution to the weak formulation always
satisfies the classical and Sobolev space formu-
lations, so that when well-posedness of these
latter formulations fails it is because the stan-
dard edge conditions are insu�cient to ensure
uniqueness if the screen is su�ciently irregular.
But these formulations become well-posed if the
standard edge conditions are supplemented by
the conditions in the following theorem.
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Theorem 2 [4] The classical and Sobolev space
problems formulations, supplemented by the ad-
ditional requirements that: a) [u] 2

eH1/2(�);
b) [@nu] = 0; are well-posed for every bounded
open � ⇢ �1.

If eH1/2(�) & H
1/2

�
, which holds in partic-

ular if dimH(�
�
\ ��) > n � 2 [2, 4], then the

equivalent classical/Sobolev space formulations
supplemented by the additional constraints a)
and b) are well-posed, but [4] their unique so-
lution is di↵erent from the solution to the weak
formulation, for almost all incident wave direc-
tions d. Indeed, we will see in the next section

that when eH1/2(�) & H
1/2

�
there exists an in-

finite family of well-posed BVPs, intermediate
between the weak and classical formulations.

3 An infinite family of BVP and BIE
formulations

Recall that H�1/2(�1) is (a unitary realisation
of) the dual space of H1/2(�1) through the du-
ality pairing h·, ·i on H�1/2(�1) ⇥ H1/2(�1)
that extends the L2(�1) inner product. Let V
be a closed subspace of H1/2(�1), in particular
we will be interested in subspaces satisfying

eH1/2(��) ⇢ V ⇢ H
1/2

�
. (6)

Let V a := {� 2 H�1/2(�1) : h�, i = 0 for all
 2 V } be the annihilator of V , and let V ⇤ :=
(V a)? ⇢ H�1/2(�1), so that V ⇤ is the natu-
ral unitary realisation of the dual space of V
through the duality pairing that is the restric-
tion of h·, ·i to V ⇤

⇥V [2]. Let P : H�1/2(�1) !
V ⇤ be orthogonal projection. Explicitly, V ⇤ =

( eH�1/2((�)c))? if V = H
1/2

�
, where c denotes

complement in �1. Similarly, V ⇤ = (H�1/2
(��)c)

?

if V = eH1/2(��).

We can associate to each V ⇢ H
1/2

�
a formu-

lation SN(V ) of the scattering problem, this a
physically sensible mathematical model if V is
constrained by (6), and interesting as a numeri-
cal approximation when V is finite-dimensional.
In this formulation D1 denotes the set of those
� 2 C1

0 (�1) that are = 1 in some neighbour-
hood of �

Scattering Problem SN(V): Find u 2 C2(D)

\W 1,loc
2 (D) such that: i) (1) holds in D; ii)

us := u � ui satisfies the Sommerfeld radiation
condition; iii) [u] 2 V ; iv) [@nu] = 0; v) the

boundary condition (2) holds on � in the sense
that P (�@±n u) = 0, for every � 2 D1.

The choice of V in SN(V ) plays two roles:
the larger V is the larger the space in which
we constrain [u] to lie, and simultaneously the
stronger the sense in which we impose the bound-
ary condition (2). In particular [4]: a) if V =

H
1/2

�
then SN(V ) is equivalent to the weak for-

mulation with the boundary condition under-
stood in the sense (3); and b), for every V sat-
isfying (6) the boundary condition in the sense
v) implies that (@±n u)|�� = 0, indeed is equiva-
lent to this condition if V = eH1/2(��).

Theorem 3 [4] SN(V ) has exactly one solu-
tion, and this solution is a solution to the clas-
sical/Sobolev space formulation above (4) if V
satisfies (6), indeed SN(V ) is equivalent to the
classical/Sobolev space formulation augmented
by the conditions iii) and iv) if V = eH1/2(��).

If V = H
1/2

�
then the solution to SN(V ) coin-

cides with the solution to the weak formulation
with boundary condition in the sense (3). If
eH1/2(��) = H

1/2

�
then there is only one formu-

lation SN(V ) satisfying (6), but if eH1/2(��) $
H

1/2

�
there are infinitely many (with cardinal-

ity that of the continuum) distinct formulations,
and for almost all incident wave directions these
formulations have infinitely many distinct solu-
tions.

To each V ⇢ H
1/2

�
we can also associate a

unique BIE formulation. To define the associ-
ated BIO, choose any bounded open set �† � �,

let T† : eH1/2(�†) ! H�1/2(�†) be the standard

hypersingular BIO on eH1/2(�†) � H
1/2

�
� V ,

and define the hypersingular operator TV : V !

V ⇤ by
TV � = PET†�, � 2 V,

where E : H�1/2(�†) ! H�1/2(�1) is the op-
erator of minimum norm extension.

Theorem 4 [4] For every V ⇢ H
1/2

�
the hy-

persingular operator TV : V ! V ⇤ is an isomor-
phism. Further, u satisfies SN(V ) if and only
if (5) holds and [u] 2 V and satisfies, for some
� 2 D1,

TV [u] = �P (�@±n u
i). (7)

Moreover, (7) can be written equivalently in vari-
ational form as

hTV [u], vi = �h�@±n u
i, vi, v 2 V.
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4 Limiting geometry principles

If eH1/2(��) = H
1/2

�
the formulations SN(V )

that satisfy (6) collapse to a single formula-
tion, equivalent to the standard weak formu-
lation with boundary condition (3). So there is
a single unique solution in this case. We note

that eH1/2(��) = H
1/2

�
if � is a C0 open set, and

also if � is C0 except at countably many points
on @�, as long as this set has only finitely many
limit points [2] (an example is the screen at the
top of Figure 1).

On the other hand, if eH1/2(��) $ H
1/2

�
,

there are infinitely many distinct solutions to
the formulations SN(V ) by Theorem 3. We
propose to select physically appropriate solu-
tions by thinking of the screen � as limj!1 �j ,
with convergence in some appropriate sense and
with each bounded �j ⇢ �1 satisfying eH1/2(��

j )

= H
1/2

�j
. If the (well-defined) solution uj , for

scattering by �j , converges to a limit u which
satisfies SN(V ) for some V satisfying (6), we
will say that SN(V ) is the correct formulation
for scattering by � in this limit. This approach
for selecting the correct formulation, which we
term a limiting geometry principle, seems nat-
ural for the many fractal scatterers defined as
the limit of a sequence of regular prefractals,
and dates back, in the context of potential the-
ory, to Wiener [13].

Given a bounded screen � ⇢ �1 there are
many di↵erent possible approximating sequences
�j , and many di↵erent senses in which �j may
converge to �, and correspondingly we expect
many di↵erent formulations SN(V ) to be ap-
propriate as particular limiting geometry solu-
tions (LGSs) [4]. We will focus here on the fol-
lowing particular cases:

Definition 5 (LGS for an Open Screen) If
� ⇢ �1 is bounded and open, we call the total
field u a LGS for the open screen � if there ex-
ists a sequence (�j)j2N of open subsets of �1
such that: (i) �1 ⇢ �2 ⇢ ... and � = [

1
j=1�j;

(ii) for j 2 N, eH1/2(�j) = H
1/2

�j
, so that the

formulations SN(V ) satisfying (6) collapse to
a single formulation with a well-defined unique
solution uj; (iii) for x 2 D = Rn

\ �, u(x) =
limj!1 uj(x).

Definition 6 (LGS for a Closed Screen) If
� ⇢ �1 is compact, call the total field u a LGS

for the closed screen � if there exists a sequence
(�j)j2N of compact subsets of �1 such that: (i)
�1 � �2 � ... and � = \

1
j=1�j; (ii) for j 2

N, eH1/2(��
j ) = H

1/2
�j

, so that the formulations

SN(V ) satisfying (6) collapse to a single for-
mulation with a well-defined unique solution uj;
(iii) for x 2 D = Rn

\ �, u(x) = limj!1 uj(x).

The following characterises these LGSs in
terms of the formulations SN(V ).

Theorem 7 [4] For every bounded open screen
� there exists a unique LGS u, and this is the
unique solution of SN(V ) with V = eH1/2(�).
Similarly, for every compact screen � there ex-
ists a unique LGS u, and this is the unique so-

lution of SN(V ) with V = H
1/2
� .

5 What di↵erences between formulations
are detectable in the scattered field?

Our first result is concerned with whether the
incident field “sees” the screen, i.e., for which �
and ui it holds that us 6= 0.

Theorem 8 [4] Suppose that u satisfies SN(V )

for some V ⇢ H
1/2

�
. Then u = ui (so that

us = 0) if � is 1/2-null. If � is not 1/2-null,

i.e., H
1/2

�
6= {0}, and {0} 6= V ⇢ H

1/2

�
, then

u 6= ui for almost all incident directions d.
� is 1/2-null if m(�) = 0, and clearly not

1/2-null if �� is non-empty. There exist screens
with �� = ; and m(�) > 0 with � not 1/2-
null [4, Example 9.3].

In the interesting case that �� = ; and �
is not 1/2-null, the above result implies that
SN(V1) and SN(V2) have distinct solutions for

almost all incident directions if V1 = H
1/2

�
and

V2 = eH1/2(��) = {0}. The following theorem
implies results of the same flavour for general
screens �.

Theorem 9 [4] Suppose that V1 and V2 are
subspaces satisfying (6) and that uj is the solu-
tion to SN(Vj), for j = 1, 2. Then u1 = u2 if
eH1/2(��) = H

1/2

�
, while u1 6= u2 for almost all

incident directions d if eH1/2(��) 6= H
1/2

�
and

V1 6= V2. Further, eH1/2(��) 6= H
1/2

�
if � \ �� is

1/2-null or if �
�
\�� is �1/2-null, in particular

if dimH(�
�
\ ��) > n� 2.



WAVES 2017, Minneapolis

Figure 2: The first five prefractal approxima-
tions to the standard two-dimensional middle-
third Cantor set (or Cantor dust).

6 Fractal apertures in a sound hard screen:
theory and numerical results

As an illustration of the above results (cf. [2,
Remark 4.6], [4, Example 9.5]) suppose that n =
2 or 3 and let

Cj :=
�
(x̃, 0) : x̃ 2 En�1

j�1 ⇢ �1,

with R � E0 � E1 � . . . the standard recursive
sequence generating the “middle-�” Cantor set,
for some 0 < � < 1 [5, Example 4.5]. Where
↵ = (1 � �)/2 2 (0, 1/2), explicitly E0 = [0, 1],
E1 = [0,↵][[1�↵, 1], E2 = [0,↵2][[↵�↵2,↵][
[1 � ↵, 1 � ↵ + ↵2] [ [1 � ↵2, 1], ..., so that
Ej ⇢ R is the closure of a Lipschitz open set
that is the union of 2j open intervals of length
↵j , while E2

j ⇢ R2 is the closure of a Lips-

chitz open set that is the union of 4j squares
of side-length ↵j . The limit C := \

1
j=1Cj is

the middle-� Cantor set for n = 2, the cor-
responding Cantor dust for n = 3, with [5]
dimH(C) = 2n�2 log(2)/ log(1/↵). Figure 2 vi-
sualises E2

0 , . . . , E
2
4 (i.e., C1, .., C5 for n = 3) in

the classical “middle third” case ↵ = � = 1/3.
Let �0 := C�

1 , and, for j 2 N, let �j :=
�0 \ Cj , so that �j is a Lipschitz open set. Let
� := [

1
j=1�j = �0 \ C. Let u0 denote the total

field for scattering by the screen �0 (just the
unit interval for n = 2, a unit square for n = 3)
which we compare with scattering by �, which
is �0 with the fractal “hole” C removed. Let uj
denote the solution for scattering by �j and u
the LGS for the open set � in the sense of Def-
inition 5 which, by Theorem 7, is the solution
to SN(V ) with V = eH1/2(�). Then uj ! u
as j ! 1 pointwise, and also [4] locally in W 1

2

norm on compact subsets of D.
Whether the “hole” C has an e↵ect, i.e.,

whether u 6= u0, depends on the dimension and
on �. The total fields u0 and u are the solutions
to the formulations SN(V1) and SN(V2), re-

spectively, with V1 = H
1/2

�
= H

1/2

�0
= eH1/2(�0)

and V2 = eH1/2(�). Thus, by Theorem 9, for

almost all incident wave directions, u 6= u0 if
dimH(�0 \ �) = dimH(C) > n � 2, which holds
if n = 2 or if n = 3 and ↵ > 1/4, so the hole
has an e↵ect in these cases. More detailed anal-
ysis [4] shows that u = u0, i.e., the hole has no
e↵ect, if n = 3 and ↵  1/4.

Figure 3: Reflection and transmission by a pre-
fractal Cantor set aperture Cj in a sound hard
screen: j = 2 (top); j = 5 (middle); j = 8
(bottom).

Figure 3 shows numerical results for n = 2
and ↵ = � = 1/3 for a slightly modified prob-
lem of scattering by the fractal “hole” or aper-
ture C in an infinite sound hard screen, which
can be reduced to a (sound soft) screen scatter-
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ing problem by a Babinet principle (e.g., [6]).
Shown is <uj , computed accurately by a BEM
for j = 2, 5, 8, where uj is the total field when
d = (1,�1)/

p

2 and the incident field has wave-
length 0.3, so that k = 20⇡/3 ⇡ 20.94, and with
the fractal hole C replaced by its prefractal ap-
proximation Cj . Our theoretical results predict
that uj approaches a limit that is di↵erent from
the solution for a screen with no hole, i.e., a
limit with a finite non-zero scattered field in the
lower half-plane. This indeed seems to be the
case, even though in this limit the hole has van-
ishing size: the total length of the components
of Cj is (2/3)j�1, which tends to zero as j ! 1

and is ⇡ 0.059 for j = 8.
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Abstract

We study a time-harmonic waves problem in a
2D waveguide. The geometry is symmetric with
respect to an axis orthogonal to the direction
of propagation of waves. Moreover, the waveg-
uide contains one branch of finite length L. We
analyse the behaviour of the complex scattering
coe�cients R, T as L goes to +1 and we ex-
hibit situations where non reflectivity (R = 0,
|T | = 1), perfect reflectivity (|R| = 1, T = 0)
or perfect invisibility (R = 0, T = 1) hold.

Keywords: waveguides, invisibility, scattering
matrix, asymptotic analysis

1 Introduction

In recent articles [1, 2], an approach has been
proposed to construct acoustic waveguides dif-
ferent from the reference (straight) geometry
where the incident waves produce only expo-
nentially decaying scattered fields. The idea is
to perturb the walls of the reference domain in
a clever way mimicking the proof of the implicit
function theorem. In this work, we wish to ob-
tain a similar result following a di↵erent path.

`

L

Figure 1: Geometry of ⌦
L

.

Consider some ` > 0. For L > 0, set

⌦
L

:= {(x, y) 2 R⇥(0; 1) [ (� `

2
;
`

2
)⇥[1; 1+L)}.

Propagation of acoustic waves in the waveguide
⌦
L

with sound hard walls leads to study the
problem

�v + k2v = 0 in ⌦
L

@
n

v = 0 on @⌦
L

.
(1)

We assume that k 2 (0;⇡) so that only two
waves w±(x, y) = e±ikx/

p
2k can propagate in

⌦
L

. The scattering of the wave w+ coming from
the left yields a solution of (1) such that

v =
w+ +Rw� + . . . , for x < �`

T w+ + . . . , for x > `.
(2)

Here the dots correspond to a superposition of
modes which are exponentially decaying at ±1.
In (2), the reflection coe�cient R 2 C and
transmission coe�cient T 2 C are uniquely de-
fined. Moreover, energy conservation writes

|R|2 + |T |2 = 1. (3)

In the following, we explain how to find `, L
such that R = 0, |T | = 1 (non reflectivity);
|R| = 1, T = 0 (perfect reflectivity); or R = 0,
T = 1 (perfect invisibility). To get such par-
ticular values, we will use the symmetry of the
geometry with respect to the (Oy) axis.

2 Half-waveguide problems

!L

L

`/2

⇧1

!1

Figure 2: Domains !
L

(left) and !1 (right).

Set !
L

:= {(x, y) 2 ⌦
L

|x < 0}. Introduce the
problem with Neumann boundary conditions

�u+ k2u = 0 in !
L

@
n

u = 0 on @!
L

(4)

and the one with mixed boundary conditions

�U + k2U = 0 in !
L

@
n

U = 0 on @!
L

\ @⌦
L

U = 0 on {0}⇥ (0;L).

(5)
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Problems (4) and (5) respectively admit the so-
lutions u = w+ + r w� + . . . and U = w+ +
Rw�+ . . . where r, R 2 C are uniquely defined
and where the dots stand for terms which are
exponentially decaying at �1. Due to conser-
vation of energy, one has

|r| = |R| = 1. (6)

Besides, a simple analysis shows that the coef-
ficients R, T appearing in (2) are such that

R =
r +R

2
and T =

r �R

2
. (7)

3 Non reflection and perfect reflection

Now, we study the asymptotic behaviour of R,
T as L ! +1. To proceed, we use (7) and work
with r, R. The behaviours of r, R as L ! +1
depend on the properties of the equivalents of
Problems (4), (5) set in the limit geometry !1
obtained from !

L

making formally L ! +1
(see Figure 2, right). In particular, the num-
ber of propagating waves existing in the vertical
branch ⇧1 of !1 plays a crucial role.

? Assume that ` 2 (0;⇡/k) (`/2 is the width
of ⇧1). Then for Problem (5) set in !1, prop-
agative modes in ⇧1 do not exist. Due to this
property, we can show that R = R1+. . . where
R1 2 S := {z 2 C | |z| = 1} is a constant. Here
the dots correspond to a remainder which is ex-
ponentially small as L ! +1. For Problem
(4) (with Neumann boundary condition) set in
!1, one propagative mode exists in ⇧1. And
because of the reflection of this mode on the wall
at y = L, the coe�cient r does not converge as
L ! +1. More precisely, we can prove that it
admits the expansion r = rasy(L) + . . . where
rasy(L) is a term whose dependence with respect
to L can be obtained explicitly and which runs
periodically on S as L ! +1. Again the dots
stand for an exponentially small remainder.

Imagine that we want to have R = 0 (non re-
flectivity). According to (7), we must impose
r = �R. Relations (6) guarantee that for all
L > 0, both r and R are located on the unit cir-
cle S. But R tends to a constant R1 2 S while
r runs continuously on S as L ! +1. This
proves the existence of L such that r = �R and
so R = 0. This also shows that there are some
L such that r = R and so T = 0 (perfect reflec-

tivity). Numerics of Figure 3 confirm these re-
sults. To obtain perfect invisibility, i.e. T = 1,
we must impose both r = 1 and R = �1. This
requires a bit more work but can be achieved.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: Numerical approximations of R (⇥)
and T ( ). We take k = 3, ` = 1 and L 2 (1; 9).
As predicted, we obtain circles of radius 1/2
passing through zero.

? When ` 2 (⇡/k; 2⇡/k), both for Problem (5)
and (4) set in !1, one propagative mode exists
in ⇧1. Then, we can prove that R = Rasy(L)+
. . . and r = rasy(L)+. . . where Rasy(L), rasy(L)
are explicitly known coe�cients which run pe-
riodically on S with di↵erent speeds V , v. This
is enough to conclude that R = 0 or T = 0 for
an infinite number of L. However, compared to
the case ` 2 (0;⇡/k), the behaviour of R and
T can be much more complex, especially when
v/V is not a rational number (see Figure 4).

Figure 4: Numerical approximation of R for
k = 3, ` = 1.7 and L 2 (1; 99).
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Abstract

We study elliptic boundary value problems where
coe�cients are piecewise constant with respect
to a partition of space into Lipschitz subdo-
mains, focusing on the case of jumping coe�-
cients arising in the principal part of the par-
tial di↵erential operator. We propose a bound-
ary integral equation of the second kind posed
on the interfaces of the partition, and involv-
ing only one unknown trace function at each
interface. We provide a detailed analysis of the
corresponding integral operator, proving well-
posedness. We also present numerical results
that exhibit a systematically stable condition
number for the associated Galerkin matrices, so
that GMRES seems to enjoy fast convergence
independent of the mesh resolution.
Keywords: integral equations, di↵usion prob-
lem, second kind, multi-domain

1 Introduction

In the context of second order elliptic boundary
value problems with coe�cients that are piece-
wise constant with respect to a Lipschitz par-
tition of the computational domain, boundary
element methods are now a well established nu-
merical approach that reduces the problem to
an equation posed only at interfaces between
subdomains.

In the case of geometrical configurations in-
volving junctions i.e. points adjacent to at least
three subdomains, all established boundary in-
tegral formulations such as Boundary Element
Tearing and Interconnecting (BETI) [1], or Multi-
Trace Formulations (MTF) [2] yield, after dis-
cretisation, fully populated ill conditionned ma-
trices that require a preconditionner. Only re-
cently in [3–6], integral equations of the sec-
ond kind that systematically lead to well con-
ditionned matrices have been proposed for ge-
ometries with junctions.

So far, such equations had been derived for
Helmholtz equations with heterogeneities com-

ing into play only in the e↵ective wave num-
ber i.e. the compact part of the partial di↵er-
ential operator. The present contribution de-
rives such an integral equation, focusing on a
di↵usion problem where heterogeneities come
into play in the principal part of the operator,
namely

8
>><

>>:

u 2 H1

loc

(R3) and

�div(µru) = f in R3

limsup|x|!1|xu(x)| < +1
(1)

where f 2 L2(R3) has bounded support. The
coe�cient µ : R3 ! (0,+1) is piecewise con-
stant, satisfying µ(x) = µj for x 2 ⌦j , where

R3 = [n
j=0

⌦j (2)

is a decomposition of the whole space into Lip-
schitz subdomains such that ⌦j \ ⌦k = ; for
j 6= k, and ⌦j is bounded for j 6= 0.

Compared to pre-existing works, an inte-
gral formulation of the second kind for Problem
(1) leads to more challenging analysis because
heterogeneities induce non-compact perturba-
tions of the corresponding integral operators.
In addition, although we deal with pure dif-
fusion problems, similar results and techniques
still apply for Helmholtz type equations shar-
ing the same principal part (e.g. acoustic me-
dia with piecewise-uniform mass density), since
such equations di↵er from (1) by a compact per-
turbation.

2 Reformulation as a system of coupled
boundary integral equations

Let us introduce I as the set of pairs of in-
tegers J = (j

+

, j�) such that j± 2 {0, . . . n},
j
+

> j� and the interface @⌦j+ \ @⌦j� consists
in a non-trivial Lipschitz manifold with bound-
ary. The elements of I are the edges of the
adjacency graph of the partition (2). Then for
J = (j

+

, j�) 2 I, denote

�
J

:= @⌦j+ \ @⌦j�
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and let n
J

refer to the vector field normal to �
J

pointing from ⌦j+ toward ⌦j� . Finally intro-
duce the double layer integral operator

K
J,Q(p)(x) :=

lim
✏!0

Z

�Q\B✏(x)

n

J

(x) · (y � x)

4⇡|y � x|3 p(y)d�(y)

for all J,Q 2 I, x 2 �
J

. The above formula
makes K

J,Q a continuous operator mapping Hs(�
J

)
to Hs(�

Q

) for all s 2 (�1/2,+1/2). In the
present talk we will show how Problem (1) can
be reformulated as an integral equation of the
form
8
><

>:

Find p
J

2 H�s(�
J

), J 2 I such that

p
J

�
X

Q2I

[µ
Q

]

{µ
Q

}KJ,Q(pQ) = g
J

8J 2 I (3)

where we set [µ
Q

] := µq+ � µq� and {µ
Q

} :=
(µq+ + µq�)/2 for Q = (q

+

, q�) 2 I. In these
integral equations the right hand sides g

J

ad-
mit explicit expressions in terms of the datum
f appearing in (1).

We prove that the integral operator of (3) is
an isomorphism. Besides, since |s| < 1/2 in this
formulation, it can be discretised by Galerkin
procedures based on discontinuous shape func-
tions. We shall also present numerical results
exhibiting systematic good conditionning of the
corresponding matrices. Further details can be
found in [7].

References

[1] U. Langer and O. Steinbach, Boundary El-
ement Tearing and Interconnecting meth-
ods, Computing, 71 (2003), no.3, 205-228.

[2] X. Claeys, R. Hiptmair and C. Jerez-
Hanckes, Multitrace boundary integral
equations. Direct and inverse problems in

wave propagation and applications, 51-100,
Radon Ser. Comput. Appl. Math., 14, De

Gruyter, Berlin, 2013.

[3] E. Spindler, Second Kind Single-Trace
Boundary Integral Formulations for Scat-
tering at Composite Objects, PhD thesis,
diss. no. 23620, Seminar of Applied Math-
ematics, ETH Zürich, 2016.

[4] X. Claeys, A single trace integral formu-
lation of the second kind for acoustic scat-
tering, technical report 2011-14, Seminar of
Applied Mathematics, ETH Zürich, 2011.
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Abstract We derive the topological derivatives
of the homogenized coe�cients associated to a pe-
riodic material, with respect of the small size of a
penetrable inhomogeneity introduced in the unit cell
that defines such material. In the context of an-
tiplane elasticity, this work extends existing results
to (i) time-harmonic wave equation and (ii) second-
order homogenized coe�cients, whose contribution
reflects the dispersive behavior of the material.

Keywords: homogenization, topological derivatives.

Introduction Consider an elastic material oc-
cupying a 2D domain and characterized by pe-
riodic shear modulus µ and density ⇢. The
unit cell Y has characteristic length `. Un-
der time-harmonic conditions, the antiplane dis-
placement u satisfies the wave equation:

r · (µru) + !2⇢u = 0

For long-wavelength configurations (i.e. ` ⌧ �),
two-scale periodic homogenization of this equa-
tion in terms of " = `/� [4] leads to the equation
satisfied by the mean field U :

µ0 : r2U + !2⇢0U

= �"2
⇥
µ2 :: r4U + !2⇢2 : r2U

⇤
+O("4),

where the leading-order and second-order ho-
mogenized coe�cients (µ0, ⇢0,µ2,⇢2) are con-
stant tensors and rkU stands for the k-th gra-
dient of U .

This study considers a periodic perturbation
of this material, whereby a penetrable inhomo-
geneity Ba, of size a and shape B, characterized
by contrasts (�µ,�⇢) is introduced at point
z 2 Y (Fig. 1). Then, the leading-order ex-
pansion coe�cients of (µ0, ⇢0,µ2,⇢2) w.r.t. a,
namely their topological derivatives, are com-
puted, as in [3] for in-plane elastostatics.

Leading-order coe�cients Let h·i = 1
|Y |

R
Y ·

denote an average on the unit cell. The homog-
enized density ⇢0 is defined by ⇢0 = h⇢i, so that

Figure 1: Perturbed periodic material

the perturbed coe�cient ⇢0a and the topological
derivative D⇢0 are exactly given by:

⇢0a = ⇢0 + a2|Y |�1D⇢0; D⇢0 = |B|�⇢.

The homogenized shear modulus µ0 is defined
by µ0 = hµ(I +rP )iS, where I is the identity
tensor, the first cell function P [4] is the Y -
periodic and zero-mean vector-valued solution
of:

r · (µ(I +rP )) = 0 (1)

and the superscript ·S means symmetrization
w.r.t. all index permutations. Consequently,
µ0
a is computed as:

µ0
a = µ0 + hµrpaiS + h�Ba�µ(I +rP a)iS

where pa := P a�P is the perturbation of P .
The analysis of this perturbation is done by re-
formulating problem (1) and its perturbed coun-
terpart using domain integral equations [2]. With
the help of the adjoint state method, it leads to
the following leading-order expansion:

µ0
a = µ0 + a2|Y |�1Dµ0(z) + o(a2|Y |�1), (2)

with the topological derivative Dµ0 given by:

Dµ0(z) =
⇥
(I +rP ) ·A · (I +rP )T

⇤
(z)

and A(z) = A(B, µ(z),�µ) is the polarization
tensor [1] associated to shape B and moduli
µ(z) and µ(z) +�µ. Under notational adjust-
ments, this result is similar to [3]. For homo-
geneous background materials, in which case
P = 0, it reduces to Dµ0 = A as shown by [1].
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Second-order coe�cients The second-order
homogenized density is defined by ⇢2 = h⇢QiS,
where the second cell function Q is the Y -perio-
dic, zero-mean, tensor-valued solution of:

r·(µ(P ⌦I+rQ))

= �µ(I+rP ) + (⇢/⇢0)µ0 (3)

Relying on the same integral equation frame-
work, and with careful analysis of the influence
of the source terms involving P a when adressing
the perturbed cell function Qa, we show that ⇢2

a

has an expansion of the same form as (2), with
its topological derivative D⇢2 given by:

D⇢2(z) =
h
(I +rP ) ·A ·

⇣
�I +rX̂[�]

⌘T

� (P ⌦ I +rQ) ·A ·r�

�
�
Dµ0 � (D⇢0/⇢0)µ0

� ⌦
⇢(�/⇢0)

↵

�D⇢0
�
(�/⇢0)µ0 �Q

� iS
(z). (4)

The above expression features (i) various com-
binations of the previously computed cell solu-
tions and topological derivatives and (ii) two
new adjoint fields � and X̂[�] defined as the
(Y -periodic, zero-mean) solutions of:

r·(µr�) = �(⇢� ⇢0)

and r·(µ(�I+rX̂[�])) = �µr�.

In particular, all the fields involved in (4) solve
problems posed on the unperturbed cell.

The second-order homogenized shear mod-
ulus is defined by µ2 = hµ(Q ⌦ I + rR)iS in
terms of Q and a third cell function R. Once
again, an analysis of the problems satisfied by
R and Ra is conducted. As a result, µ2

a is
found to have an expansion similar to (2), and
its topological derivative Dµ2 (not shown here
for brevity) is expressed in terms of the cell solu-
tions (P ,Q,R) and the previously determined
topological derivatives (D⇢0,Dµ0,D⇢2).

Perspectives. The obtained expansions of the
homogenized coe�cients are useful on their own
right, e.g. for computing quickly an approxima-
tion of the properties of a perturbed periodic
material for several trial inhomogeneity loca-
tions z without solving the new cell problems.
As an example, an approximation of µ0

a is ob-
tained by neglecting the remainder in (2), as
illustrated on Fig. 2 for a chessboard-like cell.

Figure 2: Relative error on shear modulus
µ0
a approximated by expansion (2) for an el-

lipsoidal inhomogeneity of semi-axes (a, 0.2a)
placed at z = (0.25, 0.25) in a chessboard-like
cell Y = [0, 1]2. In this case, since the medium
is locally homogeneous around z, the remainder
can be shown to be in O(a4) as observed.

However, as already intended in [3], the main
usefulness of such expansions occurs for opti-
mizing a periodic structure towards some de-
sirable property. Since they address the time-
harmonic case and the second-order homoge-
nized coe�cients, our results should notably al-
low to tune the dispersive properties of the ho-
mogenized material, in particular the so-called
band-gaps (forbidden frequencies for which no
wave propagates through the structure).
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High Order DG Overlapping Solution FEM for the Helmholtz Equation
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Abstract

The overlapping solution finite element method
[ , ] relies on an integral representation of the
scattered field [ ] as part of the boundary con-
ditions. In particular, the variational form and
modified integral representation of the scattered
field on the artificial boundary are given in the
context of a discontinuous Galerkin method. Nu-
merical evidence of convergence is presented for
uniform high order L2-conforming basis func-
tions.

Keywords: Helmholtz, Discontinuous Galerkin,
High Order

Scattering Problem

Consider a bounded scatterer D with smooth
boundary � and set ⌦ to be the unbounded

complement of D in R2. The scattering prob-
lem considered is to determine the total field u
satisfying

4u+ k2u = 0 in ⌦, (1)

u = 0 on �, (2)

lim
r!1

p
r

✓
@us

@r
� ikus

◆
= 0, (3)

u = ui + us, (4)

where( ) is the Sommerfeld radiation con-dition.
In ( ), us is the scattered field and ui = eikx·d is
the incident plane wave with di-rection d, |d| =
1.

DG Setup

Denote by ⌦b the part of ⌦ truncated by a piece-
wise Lipschitz curve, ⌃ and set F to be a curve

inside ⌦b where ⌃\F;. Given a triangular parti-
tion, P, of ⌦b , (Figure ??) identify the edges that
coincide with ⌃, F and the interior by E⌃, EF

and E0, respectively. Define

Vp(K) =
�
v 2 L2(K) : deg(v)  p .

In what follows, define the following usual aver-
ages

{{u}} =
1

2

�
u+ + u�

�
, {{�}} =

1

2

�
�

+ + �

��

and jumps

JuKN = u+n++u�n�, J�KN = �

+·n++�

�·n�

for u 2 Vp(P) and � 2 Vp(P)2 where

Vp(P) =
�
v 2 L2(⌦) : v|K 2 Vp(K) for all K 2 P .

Given x 2 ⌃ and n the unit outward normal
to F, the scattered field is represented by

I[u,�](x) =
X

�2EF

Z

�

✓
{{us}} @�

@n
y

�JrusKN�

◆
ds

y

where � is the appropriate fundamental solu-
tion. Define the boundary operator on ⌃ as

L (u) :=

✓
@u

@n
� i�u

◆����
⌃

, (5)

where � 6= 0 and define IL[u,�] to be L ap-
plied to I[u, �]. The first order system associ-
ated with ( ) - ( ) is

ik� = ru in ⌦ (6)

and
r · � = iknu in ⌦ (7)

with the condition on the boundary given by

ik� · n� i�u� IL[u,�] = L(ui) on ⌃. (8)

The fluxes on interior edges (see [ ]) are

�f =
1

ik
{{rhu}}� ↵JuKN

and

uf = {{u}}� �
1

ik
JrhuKN .

On ⌃, set

ik�f = i�un+ IRL [u,�]n+ L
�
ui
�
n

and uf = up. Finally, on � set

�f =
1

ik
rhu� ↵un

and to weakly enforce ( ), uf = 0.
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Variational Form

The variational form is to determine u 2 Vp(P)
such that

A(u, v) = l(v) (9)

for all v 2 Vp(P) where

A(u, v) =

Z

⌦
(rv ·ru � k2 uv) dA

�
X

�2E⌃

Z

�
(i�u+ IL[u,�]) vds+ ik

X

�2�

Z

�
↵uvds

+ik
X

�2E0

Z

�

✓
�JruKN JrvKN + ↵JuKN · JvKN

◆
ds

�
X

�2E0

Z

�

✓
{{ru}} · JvKN + JuKN{{rv}}

◆
ds

�
X

�2E�

Z

�

✓
u(rv · n)ds+ (ru · n)v

◆
ds

and

l(v) = �
X

�2E⌃

Z

�
L
�
ui
�
vds.

Numerical Results

Convergence is illustrated in the following ex-
ample where the boundary of the scatterer is
the unit circle, k = 2⇡, and ↵ = � = 1/4. The
error is measured with the norm given by

9u92 =
X

K2P

✓
kuk20,K + kruk20,K

◆

+
X

�2E0

✓
k�1k�1/2JruKNk20,� + kk↵1/2JuKNk20,�

◆

+
X

K2E⌃[E�

kuk20,� .

The plots showing the log of the number of de-
grees of f reedom versus the relative error f or
increasing values of p are given i n Figure .
Meshes M1 to M3 are each a refinement of the
previous one. Lagrangian basis functions [ ] are
used throughout.
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Abstract

The reflection of Lamb waves from a free edge
perpendicular to an elastodynamic plate is stud-
ied. It is known that extant methods for finding
the reflected field have poor convergence due to
irregular behaviour near corners. The form of
the irregularity for an elastodynamic corner is
derived asymptotically. A new method for in-
corporating this form of the corner behaviour is
then implemented. Results are presented show-
ing this new method improves convergence in
the reflection problem.
Keywords: Elasticity, Lamb Waves, Corner
Behaviour, Reflection

1 Introduction

We consider the reflection of an incoming linearly-
elastic wave in a semi-infinite elastic waveguide,
as shown in Figure 1. The waves associated
with two dimensional elastic wave guides were
first studied by Lamb almost one hundred years
ago [1], and are still an active area of research
due to their wide range of applications in nonde-
structive testing. In addition these waves have
interesting mathematical features such as the
structure of the dispersion relation [2].

It is well known that the corners present
in this model have irregular behaviour, this is
caused by having three boundary conditions at
the intersection of the free edges. The local
behaviour of corners at the intersection of two
traction free edges is known to be singular if the
angle is greater than ⇡ and bounded for angles
less than ⇡ [3]. In this problem with two cor-
ners of angle ⇡/2, we therefore know the local
behaviour is bounded, however this work may
also be applied to singular corners.

It has also been known for some time that
the solution to our test problem in terms of a
modal expansion of Lamb waves has extremely
poor convergence [4]. This is due to the irregu-
lar behaviour of the corners, similarly to how
approximating irregular behaviour by Fourier

Figure 1: The model we wish to study. There
are two corners with locally irregular behaviour
at the intersections of the traction free surfaces.
A propagating Lamb wave is incoming from the
right and we wish to determine the resulting
scattered field.

series results in Gibbs phenomena. In the same
way that the convergence of Fourier series can
be improved by removing the problematic be-
haviour, we seek to isolate the irregular corner
terms from our Lamb wave expansion. To do
this we will introduce new modes that accu-
rately represent the behaviour near the corners
and so free the Lamb modes to represent the
stress field in the rest of the plate where they
provide a useful description.

2 Corner Behaviours

We must first find the behaviour that we wish
to isolate in our corner modes. To do so we use
asymptotic expansions on the solutions of the
Navier-Lamé equations in potential form. This
enables us to write the corner behaviours as a
series of modes. Each mode is known up to a
multiplicative constant and has leading order
behaviour for all stresses as ⌧ ⇠ ⇢

�m � 1, where
⇢ is the distance from the corner, �

m

is a solu-
tion of the compatibility condition sin(�

m

⇠) ±
�

m

sin(⇠) = 0 and <[�
m

] > 0. We now wish
to introduce the irregular behaviour of these
modes into our expansion.

3 Virtual Plates

In the neighbourhood of the corner, ⇢ ⌧ 1, we
know that the solution will be accurately repre-
sented by the corner modes. We can use this in
our solution; however, we cannot directly add
the corner modes to a modal expansion as they

099
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automatically satisfy the boundary conditions.
We will instead use our knowledge that the be-
haviour near the corner in all directions will be
dominated by the corner modes, including in
an extended ‘virtual’ domain. As such we know
the forms of the behaviour of the stresses on
the ‘virtual’ boundaries y = ±1/2 for x < 0, as
shown in Figure 2. Here s, p, q and r are the

Figure 2: The problem we wish to use to imple-
ment corner modes. The shaded physical plate
has traction free conditions on top and bottom
but the condition on the surface x = 0 will be
applied later. The dashed lines denote the ex-
tended ‘virtual’ plate where we are imposing the
local form of the stresses resulting from the cor-
ners.

functions that describe the local behaviour of a
corner and are expressed as a series of corner
modes.

We can solve this problem by use of Fourier
transform methods. In doing so we find that
the Fourier transformed stress fields have de-
pendence on each of the corner modes in addi-
tion to having poles at the zeroes of the regular
dispersion relation for Lamb waves. When tak-
ing the inverse Fourier transform we will find
that the contribution from the poles yields the
well known forms of Lamb waves up to an un-
known constant. We will additionally find that
the contour, which must be chosen to be con-
sistent with the number of Lamb waves in the
expansion, will generate a series of modes that
represent the corner dependence. We may write
this as a modal expansion given by

⌧

xx

=
NX

n=1

⇣

n

t

n

x

(x, y) +
MX

m=1

⌘

m

s

m

x

(x, y), (1)

⌧

xy

=
NX

n=1

⇣

n

t

n

y

(x, y) +
MX

m=1

⌘

m

s

m

y

(x, y), (2)

where t

n is the stress field of the nth Lamb
mode and s

m is the stress field of the mth corner
mode. Here ⇣

n

and ⌘

m

are as yet undetermined
constants.

4 Results

We have found that in using the addition modes
we have implemented we have much improved

convergence, Figure 3 shows that the error in
the stress field is smaller when using a small
number of corner and Lamb modes when com-
pared to a large number of Lamb modes only.
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Figure 3: The absolute errors in the tractions
generated by various truncations. In generating
these plots the transverse free space wave num-
ber of the material was k

t

= 1 and the Poisson
ratio was ⌫ = 0.3.

References

[1] H. Lamb. On waves in an Elastic Plate.
Proceedings of the Royal Society of London,
1917.

[2] M. L. Williams. Surface singularities re-
sulting from various boundary conditions
in angular corners of plates in extension.
Journal of Applied Mechanics, ASME,
1952.

[3] J. B. Lawrie and J. Kaplunov. Edge waves
and resonance on elastic structures: An
overview. Mathematics and Mechanics of

Solids, 2012.

[4] R. D. Gregory and I. Gladwell. The reflec-
tion of a symmetric Rayleigh-Lamb wave
at the fixed or free edge of a plate. Journal

of Elasticity, 1983.

100

Text



WAVES 2017, Minneapolis
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Abstract
We consider the Cauchy problem for the Kuznetsov
equation (a model of non-linear acoustics) and
we prove local and global well-posedness results
both with and without viscosity. Using these
results, we also prove that the solutions of the
Kuznetsov equation are approximations of the
isentropic Navier-Stokes system solutions.
Keywords: Kuznetsov equation, Navier-Stokes
system, derivation, well-posedness, approxima-
tion.

Introduction
A usefull model of non-linear acoustics in termo-
viscous elastic media, is the Kuznetsov equa-
tion [5]. This equation describes the evolution
of the velocity potential. It can be derived from
a compressible isentropic Navier-Stokes system
using small perturbations of the density and of
the velocity caracterized by a small parameter
Á > 0. It reads

Y
___]

___[

utt ≠ c2�u ≠ ‹

fl0
Á�ut = “ ≠ 1

c2 Áututt

+ 2ÁÒuÒut,

u(0) = u0, ut(0) = u1,

(1)

where c, fl0, “, ‹ are the velocity of the sound,
the density, the ratio of the specific heats and
the viscosity of the medium respectively.

For ‹ > 0 and without non-linear terms,
Eq. (1) becomes the known strongly damped
wave equation, which has a global solution the
energy of which decreases in time [2]. However,
in the non-viscous case ‹ = 0, there is a blow-up
formation for a finite time [1].

Well-posedness for the non viscous case
We study the problem given by Eq. (1) with
‹ = 0. The local well-posedness of this equation
follows from [3]:

Theorem 1 Let s > n
2 + 1 and ‹ = 0. For

u0 œ Hs+1(Rn), u1 œ Hs(Rn), and Îu1ÎLŒ Æ
c2

2(“≠1)Á , there exists T > 0 such that there exists

a unique u solution of the problem (1) with

u œ X = Cr([0, T ], Hs+1≠r(Rn)) for 0 Æ r Æ s,

and (u0, u1) ‘æ (u(t, .), ˆtu(t, .)) is continuous

in the topology of Hs+1 ◊ Hs
uniformly on

t œ [0, T ].
In order to estimate the maximum existence
time T ú of such a solution, we use a priori esti-
mates leading to introduce the following energy:
Definition 2 We define for N œ N
EN [u](t) = ÎÒu(t)Î2

HN +
qN+1

i=1 Îˆi
tu(t)Î2

HN+1≠i.

Theorem 3 Let ‹ = 0. For N Ø N0 =
#

n
2 + 2

$

there exist constants Cn > 0 and CN0 > 0 such

that for any u0 œ HN+1(Rn) and u1 œ HN (Rn),
satisfying


EN [u](0) Æ Cnc2

(“≠1)Á , on an inter-

val [0, T ú[ with T ú Ø CN0
Á
Ô

EN0 [u](0) there exists a

unique solution u œ X fl CN+1([0, T ú[, L2(Rn))
of the problem (1) with EN [u](t) Æ C < +Œ.

For n Ø 4 the methods used in Ref. [4] allow us
to obtain T ú = +Œ for a new energy:
Definition 4 For µ = 1

2(n2+3n+2), let �1, . . . ,
�µ be the generalized derivatives (see [4]), which

are the generators of the group of linear trans-

formations preserving the homogeneous waves

equation. Then, with the notation

�A = (�0)A0 . . . (�µ)Aµ
for a multi-index

A = (A0, . . . , Aµ), we define for N œ N
E1,N [u](t) =

q
|A|ÆN (Î�AˆtuÎ2

L2+Î�AÒuÎ2
L2)(t).

Theorem 5 Let N Ø N1 = n + 9, and ‹ = 0.

For all u0 œ HN+1(Rn) and u1 œ HN (Rn),
such that by Theorem 1 there exists a unique

solution u œ X of the problem (1), the energy

E1,N [u](0) < Œ is well-defined. Then there ex-

ists flN > 0 such that if

Ò
E1,N [u](0) < ÁflN ,

then for n = 2 there exists C2 > 0 such that

T ú Ø C2
Á2 ; for n = 3 there exists C3 > 0 such

that T ú Ø C3 exp(Á≠1); for n Ø 4, T ú = Œ and

the global solution u is such that

’t œ R+, E1,N [u](t) Æ C < +Œ.

Actually, S. Alinhac in Ref. [1] proved the blow-
up of ÎuttÎLŒ at such T ú for n = 2 and n = 3.
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Well-posedness for the viscous case
Firstly, we show the local well-posedness in Rn.

Theorem 6 Let T > 0 and N Ø [n
2 + 3]. If

u0 œ HN (Rn) and u1 œ HN (Rn), then there ex-

ists fl > 0 such that if Îu0ÎHN + Îu1ÎHN < fl,

the problem (1) admits a unique solution

u œ YN = H2(0, T ; HN≠2(Rn))flH1(0, T ; HN (Rn)).

Now, we extend the local existence to a global
well-posedness.

Definition 7 For an even N œ N we define

E2,N [u](t) = ÎÒu(t)Î2
N +

q N
2 +1

i=1 Îˆi
tu(t)Î2

HN≠2(i≠1) .

Theorem 8 Let N œ N be even and N Ø
#

n
2 + 3

$
.

For u0 œ HN+1(Rn) and u1 œ HN (Rn), satis-

fying the condition of Theorem 6, there exists

a unique solution u œ YN of the problem (1)

and the energy E2,N [u](0) < Œ is well-defined.

Then there exists fl > 0 such that E2,N [u](0) Æ
fl implies that the solution u is global with

’t œ R+, E2,N [u](t) Æ C < +Œ.

Approximation of the solutions of the isen-
tropic Navier-Stokes system

Knowing that the Kuznetsov equation can be
derived from the following compressible isen-
tropic Navier-Stokes system [5]:

F (flÁ, vÁ) © ˆtflÁ+div(flÁvÁ) = Á
fl0
c2

Ë
ˆ2

t u≠c2�u

≠Áˆt

1
(Òu)2+“ ≠ 1

2c2 (ˆtu)2+ ‹

fl0
�u

2È
+Á3R1 = 0,

G(flÁ, vÁ) © flÁ[ˆtvÁ+(vÁ.Ò)vÁ]+Òp(flÁ)≠Á‹�vÁ

= ÁÒ
Ë
fl1≠ fl0

c2 ˆtu
È
+Á2Ò

Ë
c2fl2+ fl0(“ ≠ 2)

2c2 (ˆtu)2

+ fl0
2 (Òu)2 + ‹�u

È
+ Á3≠æ

R 2 = 0,

with p(flÁ) = p0 +c2(flÁ ≠fl0)+ (“≠1)c2

2fl0
(flÁ ≠fl0)2,

using the ansatz
I

flÁ(x, t) = fl0 + Áfl1(x, t) + Á2fl2(x, t),
vÁ(x, t) = ≠ÁÒu(x, t),

we calculate the remainder terms R1 and R̨2. If
u is a solution of Eq. (1), then all terms of the
order less than 3 on Á are equal to 0, and we ob-
tain the approximated system F (flÁ, vÁ) = Á3R1
and G(flÁ, vÁ) = Á3≠æ

R 2. Denoting respectively
by UÁ = (flÁ , flÁvÁ)t and U Á = (flÁ , flÁvÁ)t solu-
tions of the exact and the approximated Navier-
Stokes systems, we consider the case n = 3,

when the Navier-Stokes system is globally well-
posed [6]. Knowing the existence results for the
two problems, we validate the approximation of
UÁ by U Á following [7].

Theorem 9 Let n = 3. For u0 œ H5(R3), u1 œ
H4(R3), and U Á(0) = UÁ(0), there exists k > 0
such that Îu0ÎH5+Îu1ÎH4 < k implies the global

existence of UÁ and U Á . Moreover, there exists

C1 > 0, C2 > 0 such that for all t Æ C1
Á ln(1

Á )
Î(UÁ ≠ U Á)(t)ÎL2 Æ C2Á.
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1 H-matrices

We seek an e�cient approximation of a BEM
discretization matrix whose coe�cients are

M

ij

=

Z

�

Z

�
G(x, y)�t

i

(x)�
j

(y)d�(x)d�(y),

where G(x, y) is the Helmholtz kernel, �t

i

and
�
j

are test and basis functions. The H-matrix
method [1] is based on the low-rank approxima-
tion of a block representing far-field interactions
i.e. whenever x 2 B

s

and y 2 B

t

are su�ciently
separated. For the Laplace kernel, Hackbusch
has introduced the following admissibility con-
dition min(diam(B

t

), diam(B
s

)) 6 ⌘ dist(B
t

, B

s

).
Based on the geometric distance, the clus-

tering regroups the unknowns as a binary tree.
A matrix partition is obtained with the block-
clustering step which is the product of two clus-
ter trees for rows and columns. The admissibil-
ity condition acts then as a stopping criterion
in the block clustering recursion and produces
low-rank subblocks. Computing the low-rank
approximation is known as the compression step
and can be done either algebraically or analyti-
cally. The HCA-2 method from [2] is a reliable
and e�cient method to compress an admissible
block with a 3D-interpolation scheme.

2 Kernel expansion

Let S
X

and S
Y

be two spheres of diameter D

spaced apart from one another by a distance
of R. Let u3 be the unit vector defining the
direction of the spheres centers and (u1, u2, u3)
an orthonormal basis of R3. In this basis the
Helmholtz kernel reads as

G(x, y) =
e

ikR

|x� y|e
ik(x3�y3)

e

ik

[(x1�y1)
2+(x2�y2)

2]
2R

e

i�
,

with � = O(kD

3

R

2 ).

One remarks that this expression is com-
posed of three di↵erent parts. The first part
is a Laplace term that is well known from the
H-matrix literature and is associated with the
previous static condition D/R 6 cst. The sec-
ond part is the plane wave terms of unit rank
used to approximate the oscillating part of the
kernel through the Fraunhofer condition:

(kD)
D

R

6 cst. (1)

The condition (1) gives a frequency-independent
rank but is too restrictive for big radii. Our con-
tribution is to describe the oscillating part with
the second order term which is a tensor product
in the transverse directions u1 and u2 only. Os-
cillations in the u3 direction are caught thanks
to the plane waves and the Fresnel condition is:

p
kD

D

R

6 cst. (2)

Whenever (2) is satisfied the distanceR is smaller
than in the Fraunhofer case for a fixed diame-
ter D and the rank is still small. The dominant
term of the phase is the second order one which
is a product of two 1D Fourier operators (up to
conjugation). The rank of the Helmholtz kernel
in the Fresnel admissibility zone is bounded by
the product of the ranks of each 1D operator.

3 A rank estimate

We define the normalized Fresnel (or Fox-Li)
operator by:

F

c

: � 7! [F
c

�](x) =

Z 1

�1
e

icxt

�(t)dt, x 2 [�1, 1]

where c > 0 is called the bandwidth. This op-
erator has been studied extensively in several
scientific areas such as laser theory or signal
theory mostly by Slepian, Pollak and Landau
in the 1960’s (see for instance [3]).

The singular values of F
c

are the eigenval-
ues of F

?

c

F

c

so we define the self-adjoint and
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compact operator Q

c

= c

2⇡ [F
?

c

F

c

] and remark
that

[Q
c

�](x) =
1

⇡

Z 1

�1

sin(c(x� t))

(x� t)
�(t)dt.

This integral operator acts as a low-pass filter
and the normalization ensures that the eigenval-
ues are positive and smaller than one. The fol-
lowing result from Landau and Widom [4] links
the spectrum of Q

c

to the bandwidth c.

Theorem 1 (Landau-Widom) For all c > 0
and 0 < ↵ < 1, N(c,↵) is the number of eigen-

values of Q

c

larger than ↵. It holds,

N(c,↵) =
2c

⇡

+
1

⇡

2
log

✓
1� ↵

↵

◆
log(c)+o(log(c))

Applying this result to the approximation
of the Helmholtz kernel with ↵ = "

2 gives the
"-rank of F

c

:

"� rank(F
c

) ' 2c

⇡

+
2

⇡

2
|log(")| log(c), (3)

where c = kD

2
/4R. In the static admissibility

zone the bandwidth in each transverse direction
u1,u2 is c = O(kD) whereas c = O(

p
kD) in the

Fresnel zone. The rank of the Helmholtz kernel
is eventually at most linear with the frequency
in the Fresnel zone for a non-planar 3D geome-
try. Plus, the numerical rank estimate (3) gives
a good interpolation order in each transverse
direction for a HCA-2 scheme. The interpola-
tion order in the longitudinal direction is inde-
pendent of the frequency as oscillations are de-
scribed by the plane wave terms. That results
in a robust and reliable HCA-2 type algorithm
ensuring a compressed precision-controlled as-
sembly of a Fresnel-admissible block.

4 Numerical results

We test the interaction of two opposing plates
with a maximal and non-planar cross-section.
The memory needed for the H-matrix approx-
imation is represented for the static and Fres-
nel criteria according to the frequency. As pre-
dicted by (3) the Fresnel condition ensures a
linear growth whereas the Hackbusch static one
leads to a quadratic growth.
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Abstract

The objective of this work is to design an ef-

ficient and accurate time integration strategy

based on exponential integrators and explicit

time advancing schemes for the system of time-

domain Maxwell equations discretized in space

with a high order discontinuous Galerkin scheme

formulated on locally refined unstructured mesh-

es.

Keywords: Maxwell’s equations, discontinu-

ous Galerkin time-domain method, Lawson meth-

ods

1 Introduction

For electromagnetic problems with heterogene-

ous media or complex geometries, adaptive mesh

refinement is an attractive technique for the e�-

cient numerical solution of Maxwell’s equations.

Local mesh refinement however imposes a severe

stability constraint on explicit time integration

since the maximal time step is determined by

the smallest elements in the mesh. A first nat-

ural way to limit the impact of this problem

is to use a multi-level local time-stepping ap-

proach like the one proposed in [1] and a sec-

ond is to adopt an unconditional implicit time

integration. This last approach is very expen-

sive and even infeasible, especially in 3D, since

a large global matrix system needs to be solved

in each time step. To overcome this resource

consumption, various implicit-explicit (IMEX)

schemes have been proposed by Piperno [2] or

Descombes, Lanteri and Moya [3, 4] (based on

the work of Verwer [5]) where implicit schemes

are used only for the small refined elements and

e�cient explicit schemes are used for the re-

maining elements. These schemes combine un-

conditional stability properties with ability to

produce a very accurate solution even for rela-

tively large time step sizes but are limited so far

to order 2. In this work, a new family of IMEX

scheme based on exponential time integration

is designed for the 3D time-domain Maxwell’s

equations discretized by a high order discontin-

uous Galerkin (DG) scheme formulated on lo-

cally refined unstructured meshes.

We consider the system of 3D time-domain

Maxwell’s equations on a bounded polyhedral

domain ⌦ ⇢ R3

(
"@tE � curlH = 0, in ⌦⇥ [0, T ],

µ@tH+ curl E = 0, in ⌦⇥ [0, T ],
(1)

where T is the final time, E(x, t) and H(x, t)
are the electric and magnetic fields, " and µ
are the dielectric permittivity and the magnetic

permeability. The boundary of ⌦ is defined as

@⌦ = �m [ �a with �m \ �a = ;. Introducing

(E inc,Hinc
) a given incident field, the boundary

conditions are chosen as

8
><

>:

n⇥ E = 0, on �m ⇥ [0, T ],

n⇥ E +

r
µ

"
n⇥ (n⇥H) = ginc, on �a ⇥ [0, T ],

(2)

where n denotes the unit outward normal to @⌦
and

ginc
= n⇥ E inc

+

r
µ

"
n⇥ (n⇥Hinc

)

Finally, the system is supplemented with ini-

tial conditions: E0(x) = E(x, 0) and H0(x) =

H(x, 0). After a discretization in space by a

DG method the global semi-discrete system is

usually rewritten as

(
@tE = M�"KH,

@tH = �M�µKE.
(3)

Gathering electric and magnetic unknowns in a

single vector, we can rewrite the global semi-

discrete system (3) as follows

@tU = ABU, (4)

where

U =

✓
E
H

◆
, A =

✓
M�"

0

0 M�µ

◆
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and

B =

✓
0 K

�K 0

◆
.

Let C = AB, we have

@tU = CU,

we outline below the Lawson [6] procedure in

the particular context that we aim at consider-

ing in this study. We split the unknowns ac-

cording to the decomposition of the mesh

U = PU+ (I� P)U,

where P is a diagonal matrix with diagonal en-

tries equal to zero or one, to identify the un-

knowns associated with the locally refined re-

gion; I is the identity matrix. Introducing

Cf = CP, Cc = C(I� P),

we have

@tU = CfU+ CcU. (5)

Let

V(t) = e�tCfU(t),

we have

@tV = e�tCfCce
tCfV = f(t,V(t)). (6)

The transformed system (6) can be integrated

in time using an explicit Runge-Kutta scheme

or another high order accurate explicit time in-

tegration technique. The result is then back

transformed to provide an approximation in the

U variable. For example we obtain for the for-

ward Euler scheme

Un+1 =e�tCfUn +�t e�tCfCcUn

=e�tCf
[Un +�tCcUn] .

(7)

We use in this work other explicit schemes of

several orders and show how to compute quickly

the exponential of the matrix. Numerical sim-

ulations show the e�ciency of these methods

comparing to classical schemes.
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Abstract

Time harmonic waves in plasmas receive increas-
ing interests [16] due to their scientific impor-
tance for the heating of magnetic fusion plasma
[11]. Recent progresses are reported on the de-
velopment of a convenient mathematical theory
for time harmonic waves in plasmas near the
hybrid resonance. After presenting the cold-
plasma dielectric tensor, a basic analytic solu-
tion is constructed that captures the essential
singularity of the problem. This information is
used to construct manufactured solutions in the
context of the limit absorption principle. Ma-
nufactured solutions have the ability to capture
the singular limit in a non singular way. Nu-
merical applications are shown in the compan-
ion paper [12]. In dimension two, manufactured
solutions exhibit an additional highly oscillating
behavior. The modeling of non linear boundary
conditions is evoked.

Keywords: Maxwell equations, magnetic plas-
ma, cold plasma tensor.

1 Introduction

Let ⌦ ⇢ Rd be a bounded domain in dimension
1  d  3. The boundary � = @⌦ is smooth
with outgoing normal n = n(x) for x 2 �. The
generic model problem consists of the time har-
monic (@

t

= �i!, i2 = �1) Maxwell equations
with a non standard dielectric tensor

r⇥r⇥E� "E = 0, x 2 ⌦

plus a boundary condition which is supposed to
be a standard dissipative one. With an abuse of
notation B = r⇥E will be called the magnetic
field. The mathematical theory is comprehen-
sive for standard dielectric tensors [10, 13] and
for coercive equations [4]. Our interest is in non
standard di↵erentiable dielectric tensors coming
from the physics [15] " = "⇤ 2 [W q,1(⌦)]3⇥3

with q � 1. An example is the cold plasma ten-
sor [1, 3, 9] which models the coupling with a

density of electrons inside a bulk magnetic field
B

0

as in Tokamaks [11]

"(⌫) =

0

BB@

1� e!!2
p

!(e!2�!

2
c )

i
!c!

2
p

!(e!2�!

2
c )

0

�i
!c!

2
p

!(e!2�!

2
c )

1� e!!2
p

!(e!2�!

2
c )

0

0 0 1� !

2
p

!e!

1

CCA .

(1)
The parameters of the dielectric tensor are the
frequency shifted in the complex plane e! = !+
i⌫, the cyclotron frequency !

c

= e|B0|
me

and the

plasma frequency !
p

=
q

e

2
Ne

"0me
which depends

on the electronic density N
e

. The shift ⌫ > 0
is the friction of electrons over a bath of static
ions. It can be very small in fusion plasmas. So
it is justified to analyze the problem at the limit
⌫ ! 0+ in the context of the limit absorption
principle.

Convenient mathematical simplifications are
possible. For example the hybrid resonance may
be studied by considering only the 2 ⇥ 2 block
diagonal part of "(0), written (x = (x, y, z))

"(0) =

✓
↵(x) i�(x)
�i�(x) ↵(x)

◆
2 [C1(⌦)]2⇥2 .

At x = 0, we note that the extra-diagonal part
dominates the diagonal part. This is the X-
mode or T.E. equations. For plasma parame-
ters corresponding to ↵(x) = �x and �(x) =p

1� x/4 + x2, and with ⌫ = 0, an elemen-
tary analytic solution is obtained which explains
some of the main di�culties

8
<

:

B
3

�(E
2

)0 = 0,
xE

1

�i�E
2

= 0,
�B0

3

+i�E
1

+xE
2

= 0,

()
⇢

B
3

�E0
2

= 0,
�B0

3

+(1/4� 1/x)E
2

= 0,

() �E00
2

+ (1/4� 1/x)E
2

= 0. (2)

The last equation is the Whittaker equation.
The case with more general coe�cients can be

Plenary Lecture
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addressed with confluent hypergeometric func-
tions. But (2) has (miraculously) 2 simple ana-
lytical solutions. The first one is explicit

u(x) = xe�x/2.

The second one is obtained through the varia-
tion of the constant v(x) = u

R
dx

u

2

v(x) = ex/2 �
✓
log |x|+

Z
x

1

ey � 1

y
dy

◆
xe�x/2.

Therefore one can express the solution E
2

as a
linear combination of u and v, but separately
for x < 0 and for x > 0 because the equation
is singular at the origin. One obtains E

2

=
au + bv 2 C0, B

3

= au0 + bv0 = �blog |x| + . . .
which shows a mild logarithmic singularity and

E
1

= i

p
1� x/4 + x2

x
(au+ bv) = ib

1

x
+ . . .

(3)
which shows a strong singularity. Note that E

1

is even not integrable a priori (for b 6= 0).
In this context our strategy is to use the

limit absorption principle to obtain a correct
definition of the solution. On physical grounds,
one takes e! instead of !, as in (1). On math-
ematical grounds, it is su�cient to correct the
dielectric tensor "(0) with a term i⌫I (with I the
identity matrix). A recent progress in this di-
rection is [8] where singular integral techniques
show that E+

1

= lim
0

+ E⌫

1

is a Dirac mass plus
a principal value. A simpler method proposed
in [7] uses a stretching function and an eikonal
equation. But unfortunately these theoretical
techniques are restricted to dimension one, do
not o↵er possibilities to investigate higher di-
mensions and explain nothing about the numer-
ical approximation of such problems.

2 Manufactured solutions

An interesting question in view of the use of
standard numerical methods is to develop a L2

based approach which takes into account the
singularity. A recent answer is based on man-
ufactured solutions [6]. The idea of manufac-
tured solution consists to define quasi-solutions
which have the same singularity as the original
problem, but which are easier to handle. Con-
sider for example (r = ↵0(0) 6= 0)

F ⌫

1

= � 1

rx+ i⌫
, F ⌫

2

=
1

�(0)

and

C⌫

3

= �i
�(0)

r
log(rx+ i⌫)

where log denotes the principal value of the log-
arithm in the complex plane. Let us define
8
<

:

C⌫

3

� (F ⌫

2

)0 = q⌫
3

,
�(↵+ i⌫)F ⌫

1

� i�F ⌫

2

= g⌫
1

,
�(C⌫

3

)0 � i�F
1

+ (↵(x) + i⌫)F
2

= g⌫
2

.

One can check that q⌫
3

2 L2

loc

(R) and g⌫
2

2
L2

loc

(R) with bounds uniform with respect to
⌫. One has

g⌫
1

=
↵(x) + i⌫

rx+ i⌫
� �(x).

Define the spaces L2

1/x

(⌦) =
�
u | 1

x

u 2 L2(⌦)

and L2

x

(⌦) =
�
u | xu 2 L2(⌦)

 
. In view (3),

we should take E+

1

2 L2

x

(⌦). The function g⌫
1

admits a limit in L2

1/x

(⌦) as ⌫ tends to zero.
Indeed

g⌫
1

=

✓
↵+ i⌫

rx+ i⌫
� 1

◆
�
✓

�

�(0)
� 1

◆
.

Both terms are in L2

1/x

(⌦) with a uniform bound,

and they admit a limit in L2

1/x

(⌦).
There is a Poynting-like equality which is

(E⌫

2

C⌫

3

� F ⌫

2

B⌫

3

)0 = B⌫

3

q⌫
3

� E⌫

1

g⌫
1

� E⌫

2

g⌫
2

where all products are composed of terms which
are naturally in dual spaces. Therefore one can
pass to the limit and obtain formally the inte-
gral relation

Z

⌦

�
F+

2

B+

3

� E+

2

C+

3

�
'0dx (4)

=

Z

⌦

�
B+

3

q+
3

� E+

1

g+
1

� E+

2

g+
2

�
'dx.

The central term in the right hand side can
also written as

R
⌦

(xE+

1

)
�
1

x

g+
1

�
'dx where both

terms between parentheses are in L2(⌦). We de-
fine the spaceH1

0,0

(⌦) =
�
u 2 H1

0

(⌦), u(0) = 0
 

and consider the problem below.

Problem 1 Find (e
1

, e
2

, b
3

) 2 L2

x

(⌦)⇥L2(⌦)⇥
L2(⌦) which satisfy three conditions:

i) they satisfy the weak formulations

8
>><

>>:

R
⌦

(b
3

'
1

+ e
2

'0
1

)dx = 0, 8'
1

2 H1

0

(⌦),R
⌦

(↵e
1

+ i�e
2

)�dx = 0, 8� 2 L2(⌦),R
⌦

(b
3

'0
2

+ i�e
1

'
2

� ↵e
2

'
2

) dx = 0,
8'

2

2 H1

0,0

(⌦),
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ii) they satisfy dissipative boundary conditions

in the sense of distributions,

iii) they satisfy the integral relation (4) for one

test function ' 2 H1

0

(⌦) with '(0) 6= 0.

The fundamental result which explains the
interest of this formalization is the following.

Theorem 1 (Refer to [6]) There exists a uni-

que (e
1

, e
2

, b
3

) solution to Problem 1 and it co-

incides with the limit solution (E+

1

, E+

2

, B+

3

) ob-
tained with the limit absorption principle.

This result admits various variants and has
been used to design e�cient numerical methods.

3 Singularities in multi dimensions

It is possible to develop the theory of manufac-
tured solutions in higher dimension. The sin-
gularity appears to be in some cases ”more sin-
gular” than in the one-dimensional case. One
gets

F+

1

(x, y) =

✓
1

r(y)x

◆
(r(y)x+ i0+)i�

0
(y)

where ↵(0, y) = 0, r(y) = @
x

↵(0, y) 6= 0 and
�(y) = �(0, y). In case �0(y) 6= 0, it shows os-
cillations in the direction tangential to the line
of resonance. This is illustrated in Figure 1.

Figure 1: Logarithm of
��real F+

1

(x, y)
��, with

↵(x, y) = �x and �(x, y) = y2 + 1.

4 An open problem: sheath boundary

conditions

Usual boundary conditions at metallic wall are
modified in a plasma due to sheaths [5,14] and it
completely changes the mathematical structure.
A sheath is a boundary layer where a charge

imbalance arises and the models become non-
linear. This phenomenon is observed in stan-
dard plasmas. We refer to [2] for a recent study
at the microscopic scale. It is challenging to de-
rive an equivalent sheath condition for macro-
scopic modeling in electromagnetic numerical
codes. This topic is the subject of continuous
and recent research in the plasma physics com-
munity and has not received enough mathemat-
ical attention. A typical example is the follow-
ing. It writes with non dimensional variables

8
><

>:

±@
n

E +�
�

V = 0,
E = ⌥ V

V

3
4

0

,

V
0

= V
f

+ log I
0

(|V |).

where E is the normal part of the electric field
(aligned with the bulk magnetic field), �

�

V is
the Laplace-Beltrami operator applied to V , V

f

is the sheath potential (given in tables, see also
[2]), I

0

(z) = 1

⇡

R
⇡

0

ez cos ✓d✓  1 is the modified
Bessel function or zeroth order and log I

0

(|V |)
is the time harmonic rectification. This local
model corresponds to a local vanishing conduc-
tion current. In the limit where V is asymptot-
ically large, one has I

0

(z) ⇡ e

z
p
2⇡z

for z >> 1.

It yields a non linear boundary condition

@
n

E ��
�

|E|3E = 0, x 2 �.

The mathematical theory of time Maxwell equa-
tions with such non linear boundary conditions
is completely open.
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Abstract

The aim of this work is to introduce a novel
numerical strategy to study problems arising
in Spectral Geometry. We investigate a well-
known conjecture by Pólya-Szegö [3] by com-
bining numerical strategies to approximate the
eigenvalues and to find local optima of them.

Keywords: Dirichlet eigenvalue problem, Fi-
nite Element method, Bayesian optimization.

1 Introduction

Pólya-Szegö [3] stated the following conjecture
concerning the first eigenvalue of the Laplacian
with Dirichlet boundary conditions: Of all poly-
gons of n sides with fixed area, the regular poly-
gon of n sides has the smallest eigenvalue. They
also proved this conjecture for n 2 {3, 4} using
Steiner symmetrization. However, to the best of
our knowledge, no theoretical results have been
shown for n > 4. To investigate this optimiza-
tion problem, we combine the Finite element
method (FEM) to approximate the eigenvalue
of a given polygon and Bayesian optimization
(BO) to find the critical points of this problem.

2 Optimization of Eigenvalues

For fixed n 2 N, let ⌦ 2 Pn, with Pn the
collection of all polygons in R2. Consider the
Dirichlet eigenvalue problem: find � 2 R and
u 2 H1

0 (⌦), such that

��u = �u in ⌦, u = 0 on @⌦. (1)

Define the function F (⌦) := |⌦|�1(⌦), 8⌦ 2
Pn. |⌦| denotes the area of ⌦ and �1 = �1(⌦)
is the first eigenvalue of (1). We are interested
in the following problem:

argmin
⌦2Pn

F (⌦). (2)

The following result allows us to restrict do-
mains in Pn within a compact subset S of R2.

Lemma 1 Function F is invariant under rota-
tions, translations and scalar factors.

Although we can leverage these properties to
simplify (2), the facts that we do not know a
closed form for F and that F is expensive to
evaluate make the optimization problem chal-
lenging. We apply the BO framework, which is
designed to handle this type of problems.

3 Methods: FEM and BO

We use FEM to approximate the eigenvalues of
(1). Let Th be a triangulation of ⌦. A primal
formulation of (1) reads: find �h 2 R such that

(ruh,rvh)⌦ = �h(uh, vh)⌦ 8 vh 2 Hh.

Here Hh is a finite dimensional space. Due to
theoretical and computational restrictions within
the FEM, we need to avoid some domains in
Pn. Here An will denote the collection of do-
mains in Pn that are admissible (see Figure 1).
Alternatively, we introduce a strategy to find
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Figure 1: Non admissible domains laying in Pn

but not in An. The first figure (left) shows a
pentagon with a very small interior angle which
leads to an unstable FEM. The figure in the
middle shows a quadrilaterals with one small
edge with length smaller than the mesh size h
so that we cannot mesh the domain. The last
figure (right) shows a non-simple pentagon.

the critical points of F . Let ⌦ 2 An and let
(xi, yi) 2 R2 be the vertices of ⌦, i = 1, . . . , n.
We can represent ⌦ exactly by the vector x :=
(x1, y1, . . . , xn, yn)t 2 R2n so we can write F (x)
instead of F (⌦). We wish to find the global
minimizer

xmin 2 argmin
x2X

F (x),
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where X ✓ R2n is a compact set. For this task,
we use BO, which is a global optimization tech-
nique that is particularly suited for this objec-
tive because it only requires function evalua-
tions (no gradients) while being more e�cient
than grid search or random search (see [2,4] for
a more detailed description of BO). The two
basic ingredients of a BO framework are: (i) a
probabilistic model that smoothes the observa-
tions to predict evaluations at unobserved in-
puts along with uncertainty quantification; and
(ii) a search strategy that leverages the model
predictions and its uncertainty to select the next
input to evaluate. In our case we use a Gaussian
process as the model which is fully described by
a mean function a covariance function (kernel).
In particular, since a few properties of F are
known, we consider a zero mean and the kernel
as a square exponential. Finally, our strategy to
obtain the next input to evaluate is based on the
optimization of a utility function. We use the
Thompson sampling strategy introduced in [5]
to construct this function.

4 Results

We parametrize the elements in An to avoid
some elements in Pn. Let (r, ✓) be the polar
coordinates representation of ⌦ 2 An, ⌦ ✓ S.
Since F is invariant under scaling factors, we
can fix r 2 (0, 1]. Now let �✓i > 0 such that
✓i+1 = ✓i + �✓i, i = 1, . . . , n� 1. We fix ✓1 = 0
and r1 = r2 = 1, and obtain �✓n by imposing
the constraint: the sum of all �✓i equals 2⇡.

We use Lagrange elements and Crouzeix-
Raviart (CR) elements to approximate F . It
is known that conforming methods give upper
bounds for eigenvalues. In turn, it was proved in
[1] that the CR elements provide lower bounds
of eigenvalues. The conforming calculation is
passed to the BO framework to be used as ob-
served data. A run of our method for triangles,
quadrilaterals and pentagons gives the results
shown in Figure 2. Note that BO finds a mini-
mum within tolerance for triangles and quadri-
laterals. For pentagons, BO performs well but
it can be improved by adding more iterations.

Conclusion Based on the numerical results
we have seen for the Pólya-Szegö conjecture, we
believe our proposed framework - combining the
use of BO with FEM to compute each instance
of the objective function - is a promising ap-

Figure 2: Convergence history of the approxi-
mations of �1 with conforming and nonconform-
ing P1 elements for triangles, quadrilaterals,
and pentagons. The true values are 4p

3
⇡2 (equi-

lateral triangle), 2⇡2 (square) and 18.9191295
(regular pentagon). The latter was approxi-
mated with Lagrange elements with h = 10�4.

proach to other problems in spectral optimiza-
tion as well. While there is no current proof that
Thompson sampling converges in these settings,
the results we present demonstrate the e↵ective-
ness of the approach.
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Abstract

A three-parameter family of Boussinesq systems
for internal waves derived in [3] is considered.
The systems describe the propagation of inter-
nal waves in a two-layer interface problem with
rigid lid assumption and under the Boussinesq
regime for both fluids. After analyzing the well-
posedness and the existence of solitary wave so-
lutions, in one and two dimensions, numerical
studies concerning the generation and dynamics
of the waves will be presented.

Keywords: Boussinesq systems, internal soli-
tary waves

1 Introduction

The idealized model in [3] consists of two invis-
cid, homogeneous fluids of depths dj , j = 1, 2
and densities ρj , j = 1, 2 with ρ2 > ρ1. The up-
per layer is bounded above by a horizontal rigid
lid while the lower layer is bounded below by
an impermeable, horizontal, flat bottom. The
deviation of the interface, denoted by ζ, is as-
sumed to be a graph over the bottom and sur-
face tension effects are not considered.

The approach in [3] is based on the refor-
mulation of the Euler system with two nonlo-
cal operators. Then, different asymptotic mod-
els, consistent with the Euler system, are de-
rived. They are associated to different phys-
ical regimes for the layers. The one consid-
ered here is the so-called Boussinesq-Boussinesq
(B/B) regime, for which the interfacial deforma-
tions are assumed to be of small amplitude for
both the upper and lower fluid domains and, ad-
ditionally, the flow has a Boussinesq structure
with respect to the two layers, with the nonlin-
ear and dispersive effects of the same size for
both fluids.

The B/B regime is modeled by the following

three parameter family of differential systems

(1− b∆)ζt +
1

γ + δ
∇ · vβ (1)

+

(

δ2 − γ

(δ + γ)2

)

∇ · (ζvβ) + a∇ ·∆vβ = 0

(1− d∆)(vβ)t + (1− γ)∇ζ

+

(

δ2 − γ

2(δ + γ)2

)

∇|vβ|2 + (1− γ)c∆∇ζ = 0,

where ∇,∆ stand, respectively, for the gradient
and Laplace operator, γ = ρ1/ρ2 < 1, δ = d1/d2
are, respectively, the density and depth ratios,
and β is a nonnegative parameter. The variable
v is essentially the gradient of the trace of the
velocity potential of the upper fluid layer at the
interface and vβ = (I − β∆)−1v provides the
systems a nonlocal character. The constants
a, b, c, d can be made dependent on the param-
eters γ, δ or, alternatively, on three modeling
parameters α1 ≥ 0,β ≥ 0,α2 ≤ 1 in such a way
that, [3]

a =
(1− α1)(1 + γδ)− 3δβ(δ + γ)

3δ(γ + δ)2
,

b = α1

1 + γδ

3δ(γ + δ)
,

c = βα2, d = β(1− α2).

This leads to the relation

(δ + γ)a+ b+ c+ d =
1 + γδ

3δ(γ + δ)

When γ = 0, δ = 1, (1) reduces to the known
family of Boussinesq systems for surface water
waves, derived and analyzed in [1, 2].

2 Main goals

Our purpose is two-fold. First we study some
mathematical properties of the system in one
and two dimensions. The results are mainly
concerned with well-posedness and the existence
of solitary wave solutions. Then a computa-
tional study on the generation and dynamics of
these waves will be carried out.
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Abstract

The discontinuous Galerkin spectral element method
(DGSEM) [1] is now an established method for
computing approximate solutions of partial dif-
ferential equations in many applications. Unlike
continuous finite element methods, in DGSEM,
numerical fluxes [2] are used to enforce inter-
nal and external physical boundary conditions.
This has been successful for many problems.
However, for certain problems such as elastic
wave propagation in complex media, where sev-
eral wave types and wave speeds are simulta-
neously present, a standard numerical flux [2]
may not be compatible with physical bound-
ary conditions. For example if surface or in-
terface waves are present, this incompatibility
can lead to numerical instabilities. We present
a provably stable and arbitrary order accurate
DGSEM for elastic waves with physically mo-
tivated numerical fluxes. Our numerical flux is
compatible with all well-posed physical bound-
ary conditions, including linear and nonlinear
friction laws for modeling fracture and dynamic
earthquake rupture. By construction our choice
of penalty parameters yield an upwind scheme
and a discrete energy estimate analogous to the
continuous energy estimate.

Keywords: elastodynamics, discontinuous Galerkin,
spectral method, boundary conditions, stability

1 Model problem

Consider the 1D elastic wave equation, in

⇢(x)
@v

@t

=
@�

@x

,

1

µ(x)

@�

@t

=
@v

@x

, t > 0, x > 0,

(1)
with (v(x, 0),�(x, 0)) = (v0(x),�0(x)). Define the
left-going p, and the right-going q characteris-
tics p(v,�) = 1

2 (Zs

v + �), q(v,�) = 1
2 (Zs

v � �),
Z

s

= ⇢c

s

. At the boundary, x = 0, we impose
the general linear well-posed boundary condi-
tions: B(v,�) := q � rp = 0, having

B(v,�) :=
Z

s

2
(1� r) v � 1 + r

2
� = 0, x = 0, (2)

where r is real and |r|  1. At internal bound-
aries, we consider the linear coupling condition

�

� = �

+ = �, � = ↵[[v]], 0  ↵  1, (3)

with [[v]] := v

+ � v

�, and the superscripts -
/+ denote fields at the negative and positive
sides of the interface. The parameter ↵ � 0

models the frictional strength of the interface,
and captures some di�culties that could arise
for nonlinear friction laws. Note that there are
two limiting values, a locked interface: ↵ !
1 () [[v]] ! 0, and a frictionless interface:
↵ ! 0 () � ! 0. Introduce the mechanical
energy E(t) = 1

2

R
⌦

⇣
⇢|v|2 + 1

µ

|�|2
⌘
dx, we have

dE(t)
dt

= ��[[v]] � v(0, t)�(0, t). This energy loss
through the boundaries is what the numerical
method should mimic.

Our primary objective is to construct a prov-
ably stable inter-element procedure for the DGSEM
approximation of (1) using the physical inter-
face condition (3). The procedure is designed
in a unified manner such that numerical flux
functions are compatible with the general lin-
ear boundary condition (2). Furthermore, our
approach avoids numerical sti↵ness, for all 0 
↵  1.

We will now reformulate the boundary con-
dition (2) and interface condition (3) by intro-
ducing transformed (hat-) variables so that we
can simultaneously construct boundary/interface
data. The hat-variables preserve the amplitude
of the outgoing characteristics and satisfy the
physical boundary/interface conditions (2) and
(3) exactly. The hat-variables, bv0, b�0, for the
boundary at x = 0 have the exact solution bv0 =
(1+r)
Zs

p(v,�), b�0 = (1� r0)p(v,�). Next we con-
struct interface data bv�, b��, bv+, b�+: b�� = b�+ =

b� = ↵

⌘+↵

�, [[bv]] = 1
⌘+↵

�, bv� = 1
Z

+
s
(2p+ � b�+)�

[[bv]], bv+ = 1
Z

�
s
(2q� + b��) + [[bv]], where � =

⌘

⇣
2

Z

+
s
p

+ � 2
Z

�
s
q

�
⌘
, ⌘ = Z

�
s Z

+
s

Z

+
s +Z

�
s
. The data is

exact and consistent at the limit: ↵ ! 1 ()
[[bv]] ! 0, ↵ ! 0 () b� ! 0.
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2 The DGSEM

We now formulate the DGSEM for the IBVP
(1), (2). We discretize [0, L] with K elements. In
a reference element x 2 [x

k

, x

k+1] $ ⇠ 2 [�1, 1],
with�x

k

= x

k+1�x

k

and test functions (�
v

(⇠),�
�

(⇠))
2 L2(�1, 1), the elemental weak form reads

�x

k

2

Z 1

�1
⇢

k(⇠)�
v

(⇠)
@v

k(⇠, t)

@t

d⇠ =

Z 1

�1
�

v

(⇠)
@�

k(⇠, t)

@⇠

d⇠

� �

v

(�1)F k(�1, t)� �

v

(1)Gk(1, t), (4)

�x

k

2

Z 1

�1

1

µ

k(⇠)
�

�

(⇠)
@�

k(⇠, t)

@t

d⇠ =

Z 1

�1
�

�

(⇠)
@

k(⇠, t)

@⇠

d⇠

+
�

�

(�1)

Z

k

s

(�1)
F

k(�1, t)� �

�

(1)

Z

k

s

(1)
G

k(1, t). (5)

The superscript k denotes a polynomial ap-
proximation within the element, eg. v

k(⇠, t) =P
N+1
j=1 v

k

j

(t)L
j

(⇠) where L
j

(⇠), are the interpolat-
ing polynomials of degree N and v

k

j

(t) are the
degrees of freedom to be evolved. To couple
solutions across the element boundaries, we pe-
nalize data against incoming characteristics at
the boundary. That is F k(�1, t) := q(vk�bvk,�k�
b�k)

��
⇠=�1

, G

k(1, t) := p(vk � bvk,�k � b�k)
��
⇠=1

.

The integrals in (4)-(5) are evaluated using
Gauss quadrature rules,

P
N+1
i=1 f(⇠

i

)w
i

⇡
R 1
�1 f(⇠)d⇠,

that are exact for all polynomial integrand f(⇠)

of degree  2N � 1. We denote the elemental
semi-discrete energy:

Ek(t) = �xk
2

P
N+1
j=1

⇣
wj

2

⇣
⇢

k

j

|vk
j

(t)|2 + 1
µ

k
j
|�k

j

(t)|2
⌘⌘

.

The semi-discrete approximation satisfies the
energy equation,
d

dt

E(t) = �
P

K

k=1

⇣
ITk + b�k[[bvk]]

⌘
� 1�r

2

Zs
p

2(v1,�1)
⇠=�1,

with E(t) =
PK

k=1 Ek(t), and ITk = |F k(�1, t)|2+
|Gk(1, t)|2, and b�k[[bvk]]

⇠=±1 = ↵

k

(⌘k+↵

k)2 |�
k|2

⇠=±1.

Since ITk � 0, b�k[[bvk]] � 0, then d
dtE(t)  0.

We have have generated numerical data in
a manner that is consistent with physical laws
and enforced element boundary data using char-
acteristics. Note that b�[[bv]] = ↵

(⌘+↵)2 |�|
2 ! 0, for

↵ ! 1 or ↵ ! 0. This implies that the spec-
tral radius of the discrete operator has an up-
per bound which is independent of ↵ � 0. If we
had used characteristics to directly enforce the
physical condition (3), we will have �[[v]] = ↵[[v]]2.
The semi-discrete approximation yields an en-
ergy estimate, however, it will potentially in-
troduce artificial numerical sti↵ness, for ↵ � 1,
which will require implicit time integration.

3 Numerical tests

We present numerical experiments to demon-
strate stability and accuracy, and extensions to

high space dimension. All inter-element bound-
aries are locked, [[v]] ! 0, and we use nodal La-
grange basis, with Gauss-Legendre-Lobatto (GLL)

and Gauss-Legendre (GL) quadrature rules, sep-
arately. We have chosen initial and boundary
data to match the exact solution
v(x, t) = 1

2 (sin (2⇡ (x+ c

s

t)) + sin (2⇡ (x� c

s

t))) . We
propagate the solution for 10 s and record the
time-history of the numerical error in figure 1.
We have performed experiments for di↵erent
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Figure 1: Solutions at t = 10 s and time history of
the numerical error using N = 4 polynomial degree
and K = 10 number of elements

resolutions and polynomial degree N  12. The
errors converge spectrally to zero at the rate
N + 1. In figure 2 we demonstrate extensions
of our method to higher space dimensions and
make comparisons with the Rusanov flux.

a) Rusanov flux b) Physically motivated flux

Figure 2: A 2D example. a) The Rusanov flux
showing numerical instabilities from boundaries. b)
The physically motivated flux showing stable solu-
tions. The top panel are snapshots at t = 0.2 s and
lower panel are at t = 10 s.
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Abstract

In this paper we propose e�cient boundary ele-
ment schemes for the solution of high-frequency
convex scattering problems. Our approach is
based on frequency dependent changes of vari-
ables in forming Galerkin approximation spaces
and newly developed asymptotic expansions of
the normal derivative of the total field.

Keywords: high-frequency, asymptotic expan-
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1 Introduction

We consider numerical solution of the sound-
soft scattering problem

8
><

>:

�u+ k

2

u = 0, in R2\K
u = �u

inc

, on @K

lim
|x|!1

|x|1/2 �@|x| � ik

�
u(x) = 0

(1)

in the exterior of a smooth, compact, and strictly
convex obstacle K illuminated with a plane-
wave u

inc(x) = e

ik↵·x (|↵| = 1).
As is well known, the computational cost

associated with classical schemes for the solu-
tion of problem (1) increases at least linearly
with increasing k, and this limits their applica-
bility when k � 1 (see e.g. [2]). To overcome
this di�culty, current hybrid integral equation
methodologies 1) transform the problem to the
determination of the normal derivative of the
total field ⌘ = @n(u + u

inc) through the single-
layer representation of the scattered field u, 2)
utilize the factorization

⌘(x) = e

ik↵·x
⌘

slow(x), x 2 @K

to further reduce the problem to the computa-
tion of the slowly varying envelope ⌘slow, and 3)
use the Melrose-Taylor asymptotics [7]

⌘

slow(x) ⇠
X

p,q�0

a

p,q

(x) (2)

with a

p,q

= k

2/3�2p/3�q

b

p,q

(x) (p)(k1/3Z(x)) for
the e�cient discretization of integral equations

R
k

⌘ = f in L

2(@K). (3)

Earlier algorithms [1–5] based on the afore-
mentioned prescriptions have displayed the ca-
pability of producing solutions to equation (3)
in frequency independent computational times.
However, the only rigorous algorithms that re-
quire an increase of O(k✏) (for any ✏ > 0) in
the number of degrees of freedom to obtain fre-
quency independent accuracies and that provide
highly accurate solutions including the shadow
regions are Galerkin boundary element methods
we have recently developed [4]. Here we present
two improvements of our algorithms based on 1)
Galerkin boundary element methods that de-
pend on frequency dependent changes of vari-
ables around shadow boundaries, and 2) the al-
ternative form of the asymptotic expansion (2)
we have recently derived [6].

2 Galerkin boundary element methods

based on changes of variables

Let � be the arc length parametrization of @K
in counterclockwise direction with ↵ ·n(�(0)) =
1 so that if 0 < t

1

< t

2

< P = |@K| are the pre-
images of the shadow boundary points, that is
� ({t

1

, t

2

}) = @K

SB = {↵ · n(x) = 0}, then the
illuminated region @K

IL = {↵ · n(x) < 0} and
shadow region @K

SR = {↵ ·n(x) > 0} are given
respectively by � ((t

1

, t

2

)) and � ((t
2

, t

1

+ P )).

For j = 1, 2, chose ⇠

j

, ⇠

0
j

, ⇣

j

, ⇣

0
j

> 0 so that

t
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+ ⇠

1
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1

+ ⇠

0
1

= t

2

� ⇠

0
2

 t

2

� ⇠

2
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2

+ ⇣

2
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2

+ ⇣

0
2

= P + t

1

� ⇣

0
1

 P + t

1

� ⇣

1

,

and, for k > 1, define the illuminated transition
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and shadow transition intervals as

I

IT1 = [t
1

+ ⇠

1

k

�1/3

, t

1

+ ⇠

0
1

]

I

IT2 = [t
2

� ⇠

0
2

, t

2

� ⇠

2

k

�1/3]

I

ST1 = [t
1

� ⇣

0
1

, t

1

� ⇣

1

k

�1/3]

I

ST2 = [t
2

+ ⇣

2

k

�1/3

, t

2

+ ⇣

0
2

]

and the shadow boundary intervals as

I

SB1 = [t
1

� ⇣

1

k

�1/3

, t

1

+ ⇠

1

k

�1/3]

I

SB2 = [t
2

� ⇠

2

k

�1/3

, t

2

+ ⇣

2

k

�1/3].

Given d 2 Z
+

, the 6(d+1) dimensional Galerkin
approximation space based on algebraic polyno-
mials and frequency dependent changes of vari-
ables is then defined as [3]

AC
d

=
6M

j=1

1
[aj ,bj ]

e

ik↵·� P̂C
j

(4)

where, writing P
d

for the space of algebraic poly-
nomials of degree at most d, we have set P̂C

j

=

P
d

� �

�1 if [a
j

, b

j

] is a transition region, and

P̂C
j

= P
d

otherwise. Here � is the change of
variables specified on I

IT1 by

� (s) = t

1

+ ' (s) exp

✓
�1

3

b

1

� s

b

1

� a

1

log k

◆
,

with '(s) = ⇠

1

+ (⇠0
1

� ⇠

1

) s�a1
b1�a1

, and defined
similarly in the remaining transition intervals.

Theorem 1 [3] Suppose the sesquilinear form
B
k

(µ, ⌘) = hµ,R
k

⌘i associated with the operator
R

k

is continuous with a continuity constant C
k

and coercive with a coercivity constant c
k

for all
k > k

0

� 1. Then, for d 2 Z
+

& 0  n  d+1,

k⌘ � ⌘̂k
L2(@K)

k⌘k
L2(@K)

 C

n,k0

C

k

c

k

(log k)n+1/2

d

n

(5)

where ⌘̂ is the solution of the Galerkin equation

B

k

(µ̂, ⌘̂) = F

k

(µ̂), for all µ̂ 2 AC
d.

The estimate (5) can then be used to show
that [3] the number of degrees of freedom neces-
sary to obtain any given accuracy independent
of frequency needs to increase only as O(k✏) for
any " > 0. Furthermore, if the leading term
in the expansion (2) is incorporated into the
integral equations (3), then this dependency re-
duces to O(1) [2].

3 Galerkin boundary element methods

based on new asymptotic expansions

As we have recently shown [6], the factors b

p,q

of a
p,q

appearing in the asymptotic expansion
(2) can be replaced by

(1� ↵ · ⌫(x)) c
p,q

(x)�  (x)

2
d

p,q

(x) (6)

which give rise to an alternative asymptotic ex-
pansion of ⌘

slow. The benefit of this new ex-
pansion is its ability to incorporate the decay of
the solution in the deep shadow region. This,
in return, allows for the alternative definition
of Galerkin approximation spaces (4) simply by
weighting them with the terms in (6). Our pre-
liminary numerical tests show improvement in
the e�ciency of the numerical method in terms
of the number of degrees of freedom.
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Abstract

Friction is regarded as a source of energy dissipa-
tion. Crustal faults, however, leverage friction to
grow instabilities, and localize energy. Earthquakes
is the pinnacle of such phenomenon. The class of
friction laws of relevance here is that in which the
steady state friction force decreases with sliding ve-
locity. Such friction may be realized on corrugated
surfaces, due to flash melting of contact asperities,
or during fast shearing of saturated porous media.
We present a mechanical model of a chain of masses
connected with linear springs and sliding on a rate
weakening frictional interface. We show that the sys-
tem enables the propagation of solitary waves whose
characteristics are tunable by the level of the system
prestress. The system is also asymmetric with re-
spect to the direction of excitation. We discuss the
implications of these observations on designing new
materials that harness friction to generate unique
nonlinear wave propagation features.

Keywords: Friction, Slip pulses, Tunable nonlinear
waves

Introduction

Friction and fracture are fascinating nonlinear, and
often dynamic, phenomena that span multiple spa-
tial and temporal scales. An extreme example inte-
grating both phenomena is earthquake. Our current
understanding suggests that earthquakes nucleate as
frictional instabilities on pre-existing faults in the
crust under slow tectonic loading. Once they out-
grow their nucleation region, they generally propa-
gate as shear fractures with a rupture speed close
to the shear wave speed (known as subshear rup-
tures) but sometimes they even exceed the shear
wave speed (supershear ruptures) and propagate in
the intersonic regime (limited by the pressure wave
speed).

For earthquakes to grow spontaneously under the
slow tectonic loading, the steady state friction on
the fault must decrease with increasing slip or slip
rate [1]. Linear stability analysis show that steady
frictional sliding is unstable for long wave length
perturbations under these conditions [3]. Of special
interest, here, is what Heaton [2] suggested, based
on multiple seismological observations, that earth-
quake ruptures propagate as slip pulses. That is,
the slip duration at any given point on the fault
surface is small compared to the overall duration of

Figure 1: The spring block slider model. A chain of
N blocks of identical masses (m) interconnected by coil
springs of sti↵ness (kc) is driven by a loading plate mov-
ing at a very low velocity (v). The blocks feel the ef-
fect of the loading plate through a series of leaf springs
of sti↵ness (kl). Any block is stuck to the interface as
long as the total elastic force acting on it is less that
the static friction threshold. Once the static friction is
exceeded, a sliding block experiences a dynamic friction
force g that varies inversely with the block sliding veloc-
ity. The blocks are subjected to an initial stress distribu-
tion by stretching or compressing the coil springs relative
to their natural length. As a block moves, it transfers
stresses into neighboring blocks causing them to subse-
quently move if the static friction level is exceeded.

the earthquake event. Later, Zheng and Rice [1]
established that if the friction coe�cient decreases
with increasing slip rate and the crustal prestress
was small enough, then the compact slip pulse solu-
tion emerges as a possible candidate for the elasto-
dynamic equations.
In recent years, there has been a surge of interest in
nonlinear wave phenomena in mechanical systems.
Here, inspired by the above geophysical observa-
tions, we show that it is possible to leverage nonlin-
ear friction in an otherwise linear elastic system to
generate solitary waves. We demonstrate that these
solitary wave solutions are tunable by the level of
prestress, the system elasticity and the rate depen-
dence of strength of the sliding interface.

Model setup

We study a simple 1D spring-block-slider model [4]
with a setup shown in Fig.1. The equation of motion
of the ith block is given by:

m
i

ü
i

= k
c

(u
i+1 � 2u

i

+ u
i�1) + k

l

(vt� u
i

)

+�
oi

� f
i

g(u̇
i

)
(1)

Where �
oi

is the initial traction at the position of the
ith block, u

i

is the block displacement and all other
parameters are explained in Fig. 1. The dynamic
friction force g varies inversely with the block sliding
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velocity. We use a second order accurate predictor-
corrector scheme for time integration. The time step
is controlled by the ratio of leaf spring sti↵ness to coil
spring sti↵ness as well as the rate of frictional weak-
ening. We rewrite Eqn. 1 in non-dimensional form
by introducing the following dimensionless quanti-
ties:

r =
k
c

k
l

D =
f

k
l

!2 =
k
c

m
⌧ = !t U =

u

D
(2)

Then we have:

Ü
i

= r(U
i+1 � 2U

i

+ U
i�1) + (v̄⌧ � U

i

)

�g(U̇
i

, v
c

)
(3)

We are particularly interested in friction laws in
which the friction decreases with the slip rate. For
that purpose, we adopt the simplified Carlson-Langer
friction law:

g =
1

1 + (U̇/v
c

)
(4)

Results

We integrate Eqn. 1 for number of blocks = 100 and
di↵erent values of relative sti↵ness r, frictional weak-
ening parameter v, and prestress level. A snapshot
of the solution for r = 5 and v = 0.1 at t = 268 (non-
dimensional time) is shown in Fig. 2. After an ini-
tial transient, the slip (blocks displacement) evolves
into a constant value and the particle velocity dis-
tribution is compactly supported. The only source
of nonlinearity in the system is friction since the
springs are linear elastic. The compactness of the so-
lution may be explained as follows. As a block starts
to move, its frictional resistance drops due to the
rate weakening nature of the friction. This makes
the block accelerate even more causing the friction
to further decrease. However, if the block displace-
ment becomes large enough the resisting force from
the leaf (transverse) springs increase to the extent
that forces the block to decelerate. As the block
decelerates, its velocity decreases, and the frictional
resistance increases. Eventually the friction would
be high enough to arrest the block. Our extensive
parametric study suggests that the pulse width and
amplitude increase for high sti↵ness ratio (large r)
and strong rate weakening (small v

c

). We have also
found that sustained pulse solution exist if the pre-
stress level is higher than a critical value. However,
the pulse is arrested if the prestress drops below that
level.

Conclusion

In this paper, we showed that it is possible to lever-
age rate weakening friction to generate nonlinear
wave phenomena in an otherwise linear elastic sys-
tem. The rate weakening nature of friction leads
to growth of perturbations, focuses energy in local-
ized traveling waves and balances dispersive e↵ects
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Figure 2: Snapshot of the solution to Eq. 1 for a sys-
tem with N = 100, r = 5 and vc = 0.2. The velocity dis-
tribution is compactly supported and the displacement
solution assumes a kink-like form.
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Figure 3: Tunability of the slip pulse solution. [Left]
E↵ect of the sti↵ness ratio r. (a) low sti↵ness ratio, (b)
high sti↵ness ratio. [Right] E↵ect of the rate of weaken-
ing vc. (a) Strong rate weakening (small vc), (b) small
rate weakening (large vc)

leading to propagating kinks. The slip pulse ampli-
tude and width are tunable by the level of prestress
in the chain of springs, by varying the ratio of the
coil to leaf springs sti↵ness and by the strength of
the rate weakening friction. Future extension of this
work includes study of 2D and 3D systems in which
the interplay between friction and system elasticity
may lead to interesting localization and energy flow
phenomena.
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Abstract

In ideal compressible hydrodynamics there is an iso-
morphism between spatially one-dimensional unstea-
dy and two-dimensional steady supersonic flow called
piston analogy [7]. This notice shows that this is
also true for non-equilibrium magnetosonic flow un-
der alignment of undisturbed flow and magnetic field
in case of steady flow. An example for two generic
problems, i.e. the signal problem of radiation into
a half space and steady flow along a kinked wall
bounding a half space, is given.

Keywords:thermodynamic relaxation, magnetohydro-
dynamics, piston analogy

1 Basic Equations

The MHD equations of motion for a thermodynami-
cally relaxing fluid of infinite electrical conductivity
and a single non-equilibrium process comprise the
equation of mass, the momentum equation, the in-
duction equation, the energy balance equation, the
relaxation equation and the thermodynamic equa-
tions of state. They are written, in respective order,
see [5]:

%̇+r · (%~V ) = 0, (1)

%( ~̇V + (~V ·r)~V ) = �rp+
1

µ0
(r⇥ ~B)⇥ ~B,

~̇B = r⇥ (~V ⇥ ~B), (2)

%(ḣ+ ~V ·rh)� ṗ� ~V ·rp = 0, (3)

⇠̇ + ~V ·r⇠ = �⇠ � ⇠̃(p, %)

⌧(p, %, ⇠)
, (4)

h = ĥ(p, %, ⇠). (5)

The field variables are mass density %, flow velocity
~V , pressure p, magnetic field ~B,and specific enthalpy
h. The thermodynamic state function is ĥ, the re-
laxation time ⌧ is a stricltly positive function of state
[3]. The inner variable ⇠ with its equilibrium value
⇠̃ describes either the degree of reaction in a sin-
gle chemical reaction (ionization-recombination) or
a vibrational non-equilibrium process in the plasma
[4]. Plane magnetosonic relaxing flow is specified by

~V = u(x, y, t)~e
x

+ v(x, y, t)~e
y

, (6)

~b = a(x, y, t)~e
x

+ b(x, y, t)~e
y

, (7)

~B0 = A0~ex +B0~ey, (8)

with the background magnetic field in the x, y-plane
at an angle arctan(B0/A0) between ~B0 and the x-
axis, orthonormal unit vectors ~e

x

,~e
y

along the coor-
dinate axes are used.

2 Unsteady one-dimensional flow
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Figure 1: Partially dispersed wave in relaxing
MHD flow, unsteady velocity-wave moving from
left to right with decaying front discontinuity in-
vading thermodynamic equilibrium state to the
right of discontinuity; the front height decays
exponentially in time according to eq. (42) as
it moves to the right. Both, s-shape and front
discontinuity travel faster with increase of the
background magnetic field B0 regardless of up-
wards or downwards orientation. The flow is
realized in a shock tube with the piston at one
end suddenly put to constant speed u0 and the
magnetic field transverse to the tube axis.

For A0 = 0, v ⌘ 0, a ⌘ 0, b = b(x, t), u = u(x, t),
i.e. @/@y ⌘ 0 one derives from eq. (13),

T0(ü�A2
f0uxx

)˙+ ü�A2
e0uxx

= 0, (9)
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where definitions according to

A2
f0,e0

:=
B2

0

µ0%0
+ a2

f0,e0
, (10)

a2
f0 :=

ĥ
%0

%�1
0 � ĥ

p0

, a2
e0 :=

ĥ
%0 + ĥ

⇠0 ⇠̃%0

%�1
0 � ĥ

p0 � ĥ
⇠0 ⇠̃p0

,

T0 := ⌧(p0, %0, ⇠0)
ĥ
%0

ĥ
%0 + ĥ

⇠0 ⇠̃%0

,

are employed. The specification of initial and bound-
ary conditions completes the mathematical formula-
tion:

u(0, t) = u0H(t), u(x, 0) = 0, (11)

with H(t) denoting the Heaviside jump.

3 Steady two-dimensional flow for aligned

fields
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Figure 2: Distribution of v(x, y) in steady flow
of a relaxing fluid along kinked wall bounding
a half space with aligned magnetic background
field. Upstream of head wave there is undis-
turbed parallel flow, in the far field away from
the wall the flow approaches uniform flow with
v ! U0�, u ! U0.

For B0 = 0, u ! U0 + u(x, y), v = v(x, y), p =
p(x, y),
b = b(x, y), a ! A0 + a(x, y), @/@t = U0@/@x and
definitions for the constant coe�cients, i.e. the frozen
and equilibrium Mach numbers M

f,e

and the Alven-
Mach number M

a

, i.e.

↵2
f,e

:=
M2

a

� 1 +M2
f,e

(M2
a

� 1)(M2
f,e

� 1)
, (12)

M
f,e

:=
U0

a
f0,e0

, M
a

:=
U0

A0/
p
µ0%0

, (13)

one obtains the following governing equation for v(x, y)
from eq. (13):

T0U0

M2
f

� 1

M2
e

� 1

�
v
xx

� ↵2
f

v
yy

�
x

+ v
xx

� ↵2
e

v
yy

= 0. (14)

The boundary conditions to eq. (30) (with H(x)
Heaviside jump) are

v(x, 0) = H(x)U0�. (15)

For the case M
f

> 1, so that M
e

> 1 as well
and M

a

> 1 so that the flow velocity is supersonic
w.r.t. all three wave speeds a

f0,e0, A0/
p
%0µ0 there

is equivalence between the signal problem according
to eqs. (19,21) and the steady flow problem by eqs.
(30,32) with for instance u0=̂�U0, u=̂v; for the pis-
ton analogy to hold true the wall has to turn into
the stream so that the material is compressed rather
than expanded, i.e. 0 < �(<< 1). As a consequence
one can immediately describe the solution for the
kinked wall problem by reinterpretation of the par-
tially dispersed wave problem and vice versa.
A qualitative representation of the result is depicted

in Fig. 2 showing a jump in v
j

(x) = U0� e
�x

L(M
f,e,a

) ,
decaying away from the wall downstream of the wall
kink along the head wave. The s-shaped spreading
zone behind the discontinuity is governed by

v(x, y) ⇠ U0�

2

✓
1� �

✓
y � ↵

e

x

l(x)

◆◆
, (16)

with � denoting the error function as in the unsteady
case and

l(x) :=

s

2T0U0
M2

a

M2
a

� 1

M2
e

�M2
f

(M2
e

� 1)2
x. (17)

A full description of this contribution can be found
in ArXiv [9].
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Abstract

In this paper we present a two-step framework
for uncertainty quantification of estimated seis-
mic images and velocity models. First, we com-
bine the adaptive Metropolis-Hastings algorithm
with a fast Helmholtz solver to provide uncer-
tainty estimates of a velocity model based on
raw waveform data. Second, this error estimate
is propagated through an imaging operator to
ask meaningful questions about the error. We
demonstrate several methods for presenting this
uncertainty in a manageable and useful manner.

Keywords: Uncertainty Quantification, Seis-
mic Imaging, Markov Chain Monte Carlo

1 Introduction

Seismic inverse problems are highly ill-posed and
ill-conditioned. Current physics based meth-
ods, such as full waveform inversion, generally
employ expensive forward solvers that require
the use of gradient based techniques that pro-
vide only a single realization of the subsurface
and provide no error bounds. This conventional
work-flow makes it impossible to tell what fea-
tures in a seismic image are real or to bound
quantities of interest.

Uncertainty quantification of seismic images
is rarely preformed due to the computational
expense and the large dimensionality of seis-
mic velocity models. A modest 128x128 veloc-
ity model described by a Gaussian distribution,
would have a covariance matrix with 2.7 million
entries and be impossible to visualize. In addi-
tion, finite di↵erence solvers would likely be too
slow for the large number (100,000) of iterations
needed for non-parametric uncertainty quantifi-
cation techniques such as Markov Chain Monte
Carlo (MCMC). MCMC methods also require
relatively few degrees of freedom that are in-
compatible with a pixel by pixel description of
the distribution.
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Figure 1: True seismic velocity model with em-
bedded anticline reflector.

2 Model Uncertainty Quantification

To reduce the dimensionality of the seismic ve-
locity model we constrain the model to consist
of a series of perturbed layers as shown in Fig-
ure 1. This parametrization allows us to use
the field expansion method [1] to rapidly calcu-
late a predicted wavefield at given frequency in
a given velocity model. This fast forward solver
and the reduced degrees of freedom allow us to
run the tens of thousands of iterations needed to
calculate the uncertainty of the velocity model
with MCMC methods.

To determine the posterior velocity model
distribution given observed data, p(m|d

obs

), we
assume that the misfit between the observed
data d

obs

and the true data, f(m) is entirely due
to Gaussian measurement noise with covariance
matrix ⌃. Under this assumption the likelihood
function is given by,

p(d|m⇤) = e�
1
2r

t⌃�1r

r = f(m⇤)� d
obs

(1)

where m⇤ is a hypothetical velocity model. Cal-
culating Equation 1 requires a single forward
solve but does not directly yield an expression
for the posterior distribution of velocity mod-
els given data. In order to estimate the pos-
terior distribution we make use of the adap-
tive Metropolis-Hasting algorithm that allows
for the estimation of the posterior distribution
through numerous evaluations of the likelihood
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function for hypothetical velocity models m⇤ as
described in [2].
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Figure 2: Depth uncertainty of individual in-
terfaces and layer velocities. The strong corre-
lation between the uncertain interface depth is
captured but not visualized.

3 Migration Under Model Uncertainty

We ran the adaptive Metropolis-Hasting algo-
rithm on the velocity and reflector model shown
in Figure 1 for 100,000 iterations with the first
50,000 evaluations discarded for burn in. Fig-
ure 2 shows the standard deviation of the layer
boundaries and velocities within each layer for
the posterior distribution. This representation
of uncertainty does not fully convey the full er-
ror in the velocity model and does a particularly
poor job of showing correlated error. Instead
viewing a few representative samples from the
posterior distribution better illustrates this er-
ror as shown in Figure 3. From these six random
samples we see that the shape of the anticline
is well constrained, but its depth is not.

Instead of attempting to visualize the un-
certainty of the velocity model it is more useful
to observe how this uncertainty a↵ects quanti-
ties of interest that heavily depend on velocity
model uncertainty such as estimating the area
and depth of a migrated anticline. We apply
zero-o↵set migration with the velocity model
distribution to determine these quantities. More
sophisticated migration methods such as MAP
migration, described in [3] can also be used.
Figure 4 shows a histogram of anticline relative
height and absolute depth and demonstrates that
depth uncertainty is greater than relative height
uncertainty.

4 Conclusion

Calculating and conveying uncertainty of seis-
mic velocity models and subsequent migrated
images pose numerous computational and visu-

alization challenges. In this paper we demon-
strated a framework for both calculating and
presenting this uncertainty in a meaningful man-
ner.
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Figure 3: Six distinct samples from the poste-
rior distribution for the recovery of the model
shown in Figure 1 from noisy data.
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Figure 4: Relative depth uncertainty (170± 14
m) is much smaller than absolute depth uncer-
tainty (2300± 160 m).
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Abstract

We introduce a weakly conforming discontinu-
ous Petrov-Galerkin method in space and time
for the acoustic wave equation in heterogeneous
media. The fully implicit high-order discretiza-
tion is a minimal residual method for the first-
order system with discontinuous test spaces on
a decomposition of the space-time cylinder and
with trace degrees of freedom on the skeleton of
this decomposition.

This is applied to a problem in seismic in-
version, where the permeability is recovered ap-
proximately from measurements of the scattered
wave at sampling points. The ill-posed prob-
lem in seismic imaging is regularized by an in-
exact Newton method, where every increment is
evaluated by a conjugate gradient iteration. In
every iteration step, the residual is computed
solving the wave equation, and for the gradi-
ent the adjoint wave equation with a right-hand
side depending on the full space-time solution
is approximated. The e�ciency of the method
is demonstrated by numerical examples in two
space dimensions.

Keywords: Nonconforming finite elements in
space and time, acoustic wave equation, inexact
Newton methods, seismic imaging

1 The space-time discretization

We consider approximations of the linear acous-
tic wave equation

⇢@2
t p = r ·

�
rp)

in the space-time cylinder

Q = ⌦⇥ (0, T ) ⇢ RD ⇥ R

depending on a density distribution ⇢ > 0 and
permeability  > 0.

Therefore, we consider the first-order di↵er-
ential operator

L(p,v) =

✓
⇢@tp+r · v
�1@tv +rp

◆

in the Hilbert space

H(L,Q) =
�
(p,v) 2 L2(Q,R⇥ RD) :

L(p,v) 2 L2(Q,R⇥ RD)

with norm k(p,v)k2L,Q = k(p,v)k2Q+kL(p,v)k2Q.
For homogeneous initial and boundary condi-
tions in a subspace V ⇢ H(L,Q) and right-hand
side (f,g) 2 L2(Q,R ⇥ RD) a unique solution
(p,v) 2 V of L(p,v) = (f,g) exists and can
e�ciently be approximated with a space-time
discontinuous Petrov-Galerkin method [2].

Based on a decomposition of Q into space-
time cells Qh =

S
R, this is extended to a hy-

brid method by introducing skeleton variables
(p̂, v̂n) and the bilinear form

b
�
(p,v, p̂, v̂n), (�p, �v)

�

=
X

R

�
�
(p,v), L(�p, �v)

�
R

+ h(p̂, v̂n), (�p, �v · n)i@R

satisfying the identity

b
�
(p,v, p,v · n), (�p, �v)

�
=
�
L(p,v), (�p, �v)

�
Q
.

For given `(�p, �v) =
�
(f,g), (�p, �v)

�
Q
, an ap-

proximation (ph,vh, p̂h, v̂h
n) is computed by min-

imizing the residual

⇢(ph,vh, p̂h, v̂h
n) =

sup
(�p,�v)2

Q
Vh,R

b
�
(ph,vh, p̂h, v̂h

n)(�p, �v)
�
� `(�p, �v)

k(�p, �v)kL,Qh

with Vh,R ⇢ H(L,R), see [1]. This can be
reduced to a symmetric positive definite sys-
tem [7] and can be solved e�ciently in parallel
in time and space simultaneously, see Fig. 1 for
an example. Selecting variable polynomial de-
grees in Vh,R allows for adaptivity with respect
to the space-time cone for point sources and re-
ceivers.

Furthermore, the full solution in space and
time is required for the computation of the gra-
dient in inverse applications.
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Figure 1: Space-time solution of a single scat-
tered wave front initiated from a point source.

2 The inexact Newton method

The parameter-to-solution operator in seismic
tomography is locally ill-posed [3] and Fréchet-
di↵erentiable [4] in a suitable Banach space set-
ting. We select a parameter set

P ⇢ L1(⌦)⇥ L1(⌦)⇥ L2(⌦,R⇥ RD) ,

where (⇢,, f,g) 2 P are the unknown mate-
rial parameters and (f,g) is the unknown right-
hand side corresponding to a wave initiated by a
point source. The discrete parameter-to-solution
operator

Fh : P �! Vh

is defined by the space-time discretization ap-
proximating the forward problem for the mate-
rial parameters (⇢,). The observation operator

� : Vh �! RN

is determined by measurements of the pressure

�
p(⇠n, tn)

�
n=1,...,N

at sample points (⇠n, tn) 2 Q in the space-time
cylinder.

This defines the problem in seismic imaging
as follows: Given an observation w 2 RN and a
noise level " > 0, find parameters (⇢,, f,g) in
P such that

k� � F (⇢,, f,g)� wk  " .

The inverse problem is regularized by an inexact
Newton method, where every increment is ap-
proximated by conjugate gradient iterations up

to a relaxed accuracy depending on the residual
and the noise level [6]. Variants of this scheme
without introducing a noise level are frequently
used in seismic imaging [5].

In every step of the cg iteration, the resid-
ual is evaluated by solving the wave equation,
and for the evaluation of the conjugated gradi-
ent the adjoint wave equation with a right-hand
side depending on the full space-time solution is
approximated.

The full method combining high-order weak-
ly conforming space-time discontinuous Petrov-
Galerkin discretizations and the inexact New-
ton method is realized in parallel, and the con-
vergence of the overall scheme is demonstrated
by numerical examples in two space dimensions.
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Abstract

In this work, we present a new posterior dis-
tribution to quantify uncertainties in solutions
of wave-equation based inverse problems. By
introducing an auxiliary variable for the wave-
fields, we weaken the strict wave-equation con-
straint used by conventional Bayesian approaches.
With this weak constraint, the new posterior
distribution is a bi-Gaussian distribution with
respect to both model parameters and wave-
fields, which can be directly sampled by the
Gibbs sampling method.

Keywords: Uncertainty, wave-equation

1 Introduction
In wave-equation based inverse problems, the
goal is to infer the unknown model parame-
ters from the observed data using the wave-
equation as a constraint. Conventionally, the
wave-equation is treated as a strict constraint in
a Bayesian inverse problem. After eliminating
this constraint, the problem involves the follow-
ing forward modeling operator mapping model
to predicted data:

f(m) = PA(m)�1q, (1)

where the vectors m 2 Rngrid and q 2 Cngrid

represent the discretized ngrid-dimensional un-
known model parameters and known source term,
respectively. The matrix A 2 Cngrid⇥ngrid rep-
resents the discretized wave-equation operator
and the operator P 2 Rnrcv⇥ngrid projects the
solution of the wave-equation u = A(m)�1q
onto the nrcv receivers.

In the Bayesian framework, the solution of
an inverse problem given observed data d is
a posterior probability density function (PDF)
⇢(m|d) expressed as [1]:

⇢(m|d) / ⇢(d|m)⇢(m), (2)

where the likelihood PDF ⇢(d|m) describes the
probability of observing data d given model pa-
rameters m and the prior PDF ⇢(m) describes

one’s prior knowledge about the model param-
eters. Under the assumption that the noise in
the data is Gaussian with zero mean and co-
variance matrix �n, and the prior distribution
is also Gaussian with a mean model m̃ and co-
variance matrix �p, the posterior PDF can be
written as:

⇢(m|d) / exp(�1

2
(kf(m)�dk2

��1
n
+km�m̃k2

��1
p
)).

(3)
Due to the non-linear map f(m) and the high
dimensionality of the model parameters (ngrid �
105), applying Markov chain Monte Carlo (McMC)
methods to sample the posterior PDF (3) faces
a di�cult challenge of constructing a proposal
PDF that provides a reasonable approximation
of the target density with reasonable computa-
tional costs [1].

2 Posterior PDF with weak constraint
As the exact constraint A(m)u = q leads to the
di�culty of studying the corresponding poste-
rior PDF, we weaken the constraint and arrive
at a more generic posterior PDF with an auxil-
iary variable – wavefields u as follows:

⇢(m,u|d) / ⇢1(d|u)⇢2(u|m)⇢(m), with

⇢1(d|u) / exp(�1

2
kPu� dk2

��1
n
), and

⇢2(u|m) / exp(��2

2
kA(m)u� qk2).

(4)

Here the penalty parameter � controls the trade
o↵ between the wave-equation and the data-
fitting terms. As � grows, the wavefields are
more tightly constrained by the wave-equation.
It is readily observed that the posterior PDF (2)
is a special case of the posterior PDF (4) with
⇢2(u|m) = 1 and A(m)u = q.

The new posterior PDF (4) has two impor-
tant properties. First, the conditional PDF ⇢(u
|m,d) of u on m is Gaussian. Second, if the
matrix A(m) linearly depends on m, the con-
ditional PDF ⇢(m|u,d) of m on u is also Gaus-
sian. Therefore, the posterior PDF (4) is bi-
Gaussian with respect to u and m.
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3 Gibbs sampling
The bi-Gaussian property of the posterior PDF (4)
provides a straight-forward intuition of applying
Gibbs sampling method by alternatively draw-
ing samples u andm from the conditional PDFs
⇢(u|m,d) and ⇢(m|u,d). At the kth iteration of
the Gibbs sampling, starting from the pointmk,
the conditional PDF ⇢(u|mk,d) = N (u,H�1

u )
with the Hessian matrixHu and the mean wave-
fields u given by:

Hu = P>��1
p P+ �2A(mk)

>A(mk),

u = H�1
u (A(mk)

>q+P>��1
p d).

(5)

To draw a sample uk+1 ⇠ N (u,H�1
u ), we first

compute the Cholesky factorization of Hu =
L>
uLu, where Lu is an upper triangular matrix.

Then we apply Lu to compute u and uk+1 by:

u = L�1
u L�>

u (A(mk)
>q+P>��1

p d),

uk+1 = u+ L�1
u ru, ru ⇠ N (0, I).

(6)

With uk+1, the conditional PDF ⇢(m|uk+1,d)
= N (m,H�1

m ). The mean m = mk � H�1
m gm

with gradient and Hessian expressed as:

gm = G>(A(mk)uk+1 � q) + ��1
p (mk � m̃),

Hm = G>G+ ��1
p ,

(7)

where G = @A(m)uk+1

@m is the sparse Jacobian
matrix. The new sample mk+1 can be com-
puted by:

mk+1 = m+ L�1
m rm, rm ⇠ N (0, I), (8)

where Lm = H
1/2
m .

4 Numerical experiment
We apply our proposal method to an inverse
problem constrained by the 2D Helmholtz equa-
tion. We use single source, single frequency
data to invert a 1D gridded squared slowness
profile m(z) = 1/(v0 + ↵z)2 for values v0 =
2000m/s and ↵ = 0.75. We use frequency in-
crements of 1Hz, a grid spacing of 50m, a max-
imum o↵set of 10000m, and a maximum depth
of 5000m. Both source and receivers are lo-
cated at the surface of the model. Gaussian
noise with covariance matrix �n = I is added
to the data. The mean model of the prior dis-
tribution is selected to have v0 = 2000m/s
and ↵ = 0.65. The covariance matrix is set
to �p = 2 ⇥ 10�8I. We use the Gibbs sam-
pling method to generate 106 samples with � =
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Figure 1: (a) Comparison of true model (solid),
mean model of prior PDF (dotted) and poste-
rior PDF (dashed); (b) Comparison of STDs of
prior (dotted) and posterior (dashed) PDFs.

105. We compare the true model, the prior
mean model, and the posterior mean model in
Figure 1a, and the prior and posterior stan-
dard deviations (STD)in Figure 1b. The 90%
confidence interval of the posterior distribution
is also shown in Figure 1a (gray background).
Compared to the prior distribution, the poste-
rior mean model has a smaller error in the shal-
low part but a larger error in the deep part.
Meanwhile, the posterior STD in the shallow
part has a larger decrease from the prior STD
than that in the deep part. Both facts implies
that data has a larger influence on the squared
slowness in the shallow part than that in the
deep part.

5 Conclusion
By weakening the wave-equation constraint in a
controlled manner, we arrive at a novel formula-
tion of posterior PDF for wave-equation inver-
sion. This new posterior PDF is bi-Gaussian
with respect to model parameters and wave-
fields. Numerical experiment demonstrates that
this posterior PDF can be successfully and e�-
ciently sampled by the Gibbs sampling method.
The computational cost of drawing one sample
equals to evaluating one posterior PDF. This al-
lows us to apply the proposed approach to large
2D or 3D problems.
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Abstract

Using a multimodal formalism of the guided
wave propagation and a complex coordinate stretch-
ing (PML), we derive algebraic solutions for the
multimodal radiation impedance at the end of
a waveguide open on the free space. The basic
idea of the method is to turn the original un-
bounded problem into the problem of a cylin-
drical waveguide embedded in an infinite waveg-
uide with an annular PML on the inside of its
exterior wall. This method makes no assump-
tion on the frequency range and can be applied
to any cross-section geometry and wall thick-
ness.

Keywords: waveguide, radiation, impedance,
multimodal, PML

1 Introduction

Consider a semi-infinite cylindrical waveguide
(denoted WGA, with radius a and wall thick-
ness ea, see Fig. 1), open at its output end (say,
x = 0, x the axial coordinate) on the free space.
For the sake of clarity the cross-section is as-
sumed to be circular and a Neumann condition
is assumed at the wall (r = a and (1 + e)a),
though the same method would apply for other
geometries or boundary conditions. The aim of

this work is to write a discrete estimate, Z(e)
A

(k),
of the Neumann-to-Dirichlet operator, ⇣(k, r),
satisfying p(k, 0, r) = ⇣(k, r)@

x

p(k, 0, r), where
p(k, x, r) is the solution of the Helmholtz equa-
tion (�+ k

2)peiµ✓ = 0, µ 2 Z.1 The discretiza-
tion is made by projection on a basis of func-
tions, {u

An

(r)}. The choice of this set of func-
tions is naturally not unique, but, for the sake
of concisness, we will restrict to the orthonor-
mal basis of the classical transverse eigenmodes
in WGA, such that

Z(e)
Amn

= (u
Am

, ⇣u

An

)
A

(1)

1Owing to the symmetry of the problem, we can re-
strict to the particular solution with azimuthal depen-
dence exp(iµ✓), without loss of generality.

x

r
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Figure 1: Example of a cylindrical, open-
ended, waveguide, and equivalent problem with
the semi-infinite “PML-waveguides” WGB and
WGC.

with the scalar product (f, g)
A

=
R
a

0 fg rdr.

2 General formulation

The basic idea of the proposed method to calcu-
late Z

A

is to turn the original unbounded prob-
lem into the problem of a waveguide embed-
ded in an infinite cylindrical waveguide with an
annular PML on the inside of its exterior wall
(Fig. 1). The perfect matching and the wave
damping in the PML are achieved by means of
a complex stretching of the radial coordinate r

into

r̃(r) =

Z
r

0
↵(r0) dr0 (2)

with ↵ a complex function filling Re [↵] > 0 and
Im [↵] > 0.

The configuration shown in Fig. 1 actually
displays two semi-infinite PML-waveguides: a
circular one (WGB), for x > 0, and an annular
one (WGC), for x < 0. In both waveguides, the
wavefield satisfies the wave equation


@

2

@x

2
+

1

r̃

@

@r̃

✓
r̃

@

@r̃

◆
� µ

2

r̃

�
p = 0. (3)
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As in WGA, the problem is discretized by pro-
jection over bases of functions {u

⌘n

(r)}, ⌘ =
B,C. We choose the bases of the real, orthonor-
mal solutions of the transverse eigenproblems
in the absence of PML, but other choices can
be made (complex solutions of the transverse
eigenproblem with PML, finite elements, . . . ).

Then, by writing the exact condition of down-
ward (resp. backward) propagation in the semi-
infinite waveguide WGB (resp. WGC), and by
writing also the continuity relations, we get the
following algebraic solution for the radiation

impedance matrix Z(e)
A

:

Z

(e)
A

= FZ
B

(I+ GTY
C

GZ
B

)�1FT, (4)

where F and G are matrices of scalar products
between the basis functions u

⌘n

, ⌘ = A,B,C,
obtained from the continuity relations, and Z

B

(resp. Y
C

) is the characteristic impedance (resp.
admittance) matrix in WGB (resp. WGC).

The limit case of WGA ending in an infi-
nite flange (e ! 1) is of interest because it
is the only case that has been fully solved be-
yond the low frequency range [1]. The radiation
impedance matrix is then simply

Z

(1)
A

= FZ
B

FT. (5)

3 Results

In order to validate the proposed method, the
two limit cases, e ! 1 and e ! 0, are con-
sidered and the results are compared with ref-
erence solutions: Zorumski’s integral formula-
tion in the first case [1] (Fig. 2) and the low
frequency, 1D solution by Levine & Schwinger
in the second case [2] (Fig. 3). In each case,
four terms of the symmetric impedance matrix

Z

(e)
A

are plotted, showing a excellent agreement.
Note that, to allow for comparison with Levine
& Schwinger’s solution, rather than Z

A00, z0 =
(1 + R00)/(1 � R00)/ika is plotted, where R is
the reflexion matrix at x = 0, straightforwardly

deduced from Z(e)
A

.
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Figure 2: Variation with the frequency of
the terms 00, 01, 11 and 12 of the radiation

impedance matrix Z(1)
A

of a waveguide with an
infinite flange. Blue: real part, green: imagi-
nary part. Solid and dashed: algebraic solution
with PML-waveguides. Dots and circles: Zo-
rumski’s integral formulation [1].
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Figure 3: Variation with the frequency of
the terms 00, 01, 11 and 12 of the radiation

impedance matrix Z(e)
A

of an unflanged waveg-
uide (e ⌧ 1). Blue: real part, green: imaginary
part. Solid and dashed: algebraic solution with
PML-waveguides. Dots and circles: Levine &
Schwinger’s solution [2].
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Abstract

Through the application of layer potential tech-
niques and Gohberg-Sigal theory we derive an
original formula for the Minnaert resonance fre-
quencies of arbitrarily shaped bubbles along with
providing a mathematical justification for the
monopole approximation of scattering of acous-
tic waves by bubbles at their Minnaert resonant
frequency. Our results are complemented by
several numerical examples which serve to vali-
date our formula in two dimensions.

Keywords: Acoustic waves, layer potentials,
monopole approximation, Minnaert resonance

1 Research focus

Our overall research focus is on developing a
mathematical and computational framework for
the analysis of Minnaert bubbles. We are inter-
ested in characterizing and exploiting the Min-
naert resonance frequencies of bubbles in a va-
riety of situations which will allow us to con-
struct a unified theory of acoustic metamateri-
als [1], phononic crystals [2], and super-focusing
of acoustic waves [3].

2 Minnaert resonance for arbitrarily shaped
bubbles

A vast assortment of physical works have dealt
with systems involving acoustic bubbles and their
analysis has been based on the standard Min-
naert resonance formula. However, this formula
for the resonant frequency of bubbles is only ap-
propriate in the case of spherical bubbles. De-
termining a Minnaert resonance formula for ar-
bitrarily shaped bubbles has been a longstand-
ing problem. We use layer potential techniques
and asymptotic analysis of an operator valued
function to obtain a formula for the resonant
frequency of arbitrarily shaped bubbles [4].

Assume the bubble occupies a bounded do-
main D. We denote by ⇢

b

and 
b

the density
and bulk modulus of the air inside the bubble,

respectively. ⇢ and  are the corresponding pa-
rameters for the background media. The scat-
tering problem can be modelled by the following
equations:

8
>>>>>>>>><

>>>>>>>>>:

r · 1
⇢

ru+ !

2



u = 0 in R3\D,

r · 1
⇢b
ru+ !

2

b
u = 0 in D,

u+ � u� = 0 on @D,

1
⇢

@u

@⌫

����
+

� 1
⇢b

@u

@⌫

����
�
= 0 on @D,

us := u� uin satisfies the Sommerfeld
radiation condition,

(1)
where uin is the incident wave. The solution of
this problem has the representation

u(x) =

⇢
uin + Sk

D

[ ], x 2 R3\D̄
Skb
D

[ 
b

], x 2 D,

for some surface potentials  , 
b

2 L2(@D). Us-
ing the jump relations for the single layer poten-
tial it is straightforward to derive that  and
 
b

satisfy the following system of boundary in-
tegral equations:

A(!, �)[ ] = F, (2)

where

A(!, �) =
Skb
D

�Sk

D

�1
2Id+Kkb,⇤

D

��(12Id+Kk,⇤
D

)

!
,

=

✓
b

◆
, F =

✓
uin

� @u
in

@⌫

◆
,

where � = ⇢b
⇢

is the contrast parameter, S
D

is
the single layer potential, andK⇤

D

is the Neumann-
Poincaré operator. The resonance of the bubble
in the scattering problem (1) can be defined as
all the complex numbers ! with negative imag-
inary part such that there exists a nontrivial
solution to the following equation:

A(!, �)[ ] = 0.
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� Relative error

10�1 5.8203%
10�2 0.6727%
10�3 0.0652%
10�4 0.0062%
10�5 0.0030%

Table 1: The relative error between the Min-
naert resonance frequency !

f

obtained via the
formula and the resonance frequency !

num

ob-
tained by direct numerical solution of the sys-
tem of boundary integral equations in (2).

The Minnaert resonance corresponds to the quasi-
static resonance, the resonance frequency at which
the size of the bubble is much less than the size
of the wavelength of the incident wave outside
the bubble. This can be stated formally as fol-
lows:

Lemma 2.1 For any �, su�ciently small, there

exists a characteristic value !0 = !0(�) to the

operator-valued analytic function A(!, �) such

that !0(0) = 0 and !0 depends on � continu-

ously. This characteristic value is also the quasi-

static resonance (or Minnaert resonance).

We perform asymptotic analysis on the operator
A(!, �) in order to find an analytic expression
for the Minnaert resonance.

Lemma 2.2

A(!, �) := A0 + B(!, �) = A0 + !A1,0 + !2A2,0

+!3A3,0 + �A0,1 + �!2A2,1 +O(!4)
+O(�!3),

(3)

where the terms A1,0, A2,0, A3,0, A0,1, A2,1,
and K

D,2 can be calculated explicitly.
We show that when the contrast � is high

the Minnaert resonance for the bubble is given
by the formula:

!
f

(�) =
q

Cap(D)
⌧

2
v

2
V ol(D)�

1
2

�i Cap(D)2

8⇡⌧2vV ol(D)� +O(�
3
2 ),

where Cap(D) is the capacity of the bubble,

⌧ =
q

⇢b

⇢�b
and v =

q
⇢



. Table 1 shows that the

formula is highly accurate when we are in the
high contrast regime.

3 Monopole approximation

Assume that the bubble is excited by the in-
cident wave uin(x) = eikd·x. This corresponds
to the bubble being excited by sources in the
far field and we have the following result in the
regime !p

�

= O(1):

Theorem 3.1 In the far field, the solution to

the scattering problem (1) has the point-wise be-
haviour:

us(x) = g(!, �, D) (1 +O(!) +O(�) + o(1))
⇥uin(y0)G(x, y0, k),

(4)
where y0 is the center of the bubble and the scat-

tering coe�cient g is:

g(!, �, D) =
Cap(D)

1� (!M
!

)2 + i�
, (5)

where !
M

is the Minnaert resonance frequency

and � is a damping constant.
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Abstract

In this work, we propose a construction of trans-
parent boundary conditions which can be used
for quite general waveguide problems. Classical
Dirichlet-to-Neumann maps used for homoge-
neous acoustic waveguides can be constructed
using separation of variables and the orthogo-
nality of the modes on one transverse section.
These properties are also important for the math-
ematical and numerical analysis of problems in-
volving DtN maps. However this framework
does not extend directly to stratified, anisotropic
or periodic waveguides and for Maxwell’s or elas-
tic equations. The di�culties are that (1) the
separation of variables is not always possible
and (2) the modes of the waveguides are not
necessarily orthogonal on the transverse section.
We propose an alternative to the DtN maps
which uses two artificial boundaries and is con-
structed using a general orthogonality property.

Keywords: transparent boundary conditions,
waveguides, energy flux

1 The Poynting-to-Neumann map for ho-

mogeneous acoustic waveguides

Let us consider a di↵raction problem in an acous-
tic isotropic half-guide ⌦ = S⇥]�a,+1[ where
S ⇢ R2 denotes the bounded cross-section of the
guide. We look for the outgoing solution p of

�p+ !2p = f in ⌦,
@⌫p = 0 on @⌦,

(1)

where ! is the frequency, ⌫ is the exterior nor-
mal to @⌦ and the source term f is supposed
to be compactly supported in {z < 0}. We
denote by p` (resp. p1) the restriction of p
to the subdomain ⌦` = ⌦ \ {z < `} (resp.
⌦1 = ⌦ \ {z > 0}) and we want to derive
transparent boundary conditions for p` on ⌃`.
Looking for the outgoing solution, p1 admits
the following expression

p1(x, y, z) =
X

k�0

a1k wk(x, y, z) (2)

involving the right-going modes wk(x, y, z) =
'k(x, y)eı�kz. A finite number (N) of them are
propagative (Im(�j) = 0 and Re(�j) > 0) and
the rest are evanescent (Im(�j) > 0 and Re(�j) =
0). Here, the sequence {'k, k 2 N} forms an
orthonormal basis of L2(S). The a1k are the
unknown modal amplitudes.

Imposing the two following matching conditions
on the boundary ⌃`:

p`
��
⌃`

= p1|
⌃` and @zp`|⌃` = @zp1|

⌃` ; (3)

using the formula (2) and the orthogonality of
the 'k, one can derive a transparent condition
for p`, involving the classical Dirichlet-to-Neumann
operator T

DtN

:

T
DtN

p` = @zp`
��
⌃`

=
X

k�0

i�k(p`,'k)⌃`'k. (4)

However this method to obtain the modal am-
plitudes thanks to the trace of p1 requires the
orthogonality of the modes in L2(S), which does
not hold for instance in stratified, anisotropic or
periodic waveguides or in (even isotropic) elas-
tic waveguides. So let us explain how to derive
some of the modal amplitudes using a more gen-
eral framework.

Using the expression of wk, it is easy to see that

q(wj , wk) = 0 if j 6= k

q(wj , wj) =
0 for evanecent waves
2ı�j for propagative waves

where q is a (energy flux) sesquilinear form de-
fined by

8u, v 2 H2

loc

, q(u, v) =

Z

⌃`

@zuv � u@zv.

An important property of q is that, due to the
Green’s formula, q(u, v) is independant of ` if u
and v are solution of the homogeneous Helmholtz
equation let us say in S ⇥ (0,+1).
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We deduce that, except for the cut-o↵ frequen-
cies (the frequencies for which one �k vanishes),
p1 is given by

p1 =
X

kN

q(p1, wk)

2ı�k
wk + p

evan

. (5)

where p
evan

is exponentially decreasing at +1.

Imposing that only the propagative modal am-
plitudes of p1 and p` match as well as their
normal derivative on ⌃` leads to introduce the
so-called Poynting-to-Neumann operator TPtN

defined by

TPtN p` =
X

kN

q(p`, wk)

2ı�k
@zwk

��
⌃`
. (6)

Using the properties of q, we can show that

Theorem 1 The operator TPtN is compact from

V to H�1/2(⌃`) where

V = {p 2 H2(⌦` \ ⌦0

), �p+ !2p = 0}.

and

8p 2 V,

Z

⌃`

p TPtN p� p TPtN p 2 ıR+.

The first property gives that the problem

�p̃` + !2p̃` = f in ⌦`,
@⌫ p̃` = 0 on @⌦` \ ⌃`,
@z p̃` = TPtN p̃` on ⌃`

(7)

is coercif + compact. From the second property,
we can prove that this problem has at most one
solution except for a countable set of frequen-
cies. This problem is however not equivalent
to the initial one since we have neglected the
evanescent part in p` but by stability of (7), we
can show that

kp` � p̃`k = O(e�Im(�N+1)`).

To derive a variational formulation, one ques-
tion remains : how to understand the normal
derivative of p̃` in the definition of q? Because
p̃` is solution of the homogeneous Helmholtz
equation in ⌦` \⌦0

, q(p̃`, wk) can be written as
an integral on ⌃

0

and then the normal deriva-
tive of p̃` must be understood in the weak sense
and can be eliminated by integrating by parts
in small volumic domain.

2 The PtN map for more general waveg-

uides

Let us consider now the outgoing solution p of
a waveguide problem which is similar to (1) but
with Maxwell’s or elastic equations in a strati-
fied, anisotropic or periodic media. In this kind
of problems, it is impossible to justify the use
of a DtN map because the modes does not form
necessarily a complete set of L2(S) and/or they
are not necessarily orthogonal in L2(S).

Suppose that one is able to write that p1 (which
can be vectorial) is a linear combination of a fi-
nite set of the rightgoing modes up to an expo-
nentially decreasing function at +1

p1 =
X

kN

a+k wk + p
evan

. (8)

The rightgoing modes wk’s are solution of the
homogeneous equations far from the perturba-
tions and their energy fluxes are supposed to be
postive. More precisely, they verify

q(wj , wk) = 0 if j 6= k
q(wj , wj) = ı�j with �j � 0

where q is a (energy flux) sesquilinear form de-
rived from the Green’s formula associated to the
problem. To obtain (8), see for instance [1] for
scalar problems and [2] devoted to periodic elas-
tic waveguides. Then, except for the cut-o↵ fre-
quencies (the frequencies for which at least one
�j vanishes) the OtN operator can be derived
in the same way than for the isotropic acoustic
problem and the properties of the operator re-
mains the same.

In conclusion, to derive transparent boundary
conditions using this PtN operator for general
waveguide problems, no assumptions on the com-
pleteness or the orthogonality of the tranverse
modes are required.

References

[1] Nazarov, Sergey, and Boris A.
Plamenevsky. Elliptic problems in do-
mains with piecewise smooth boundaries.
Vol. 13. Walter de Gruyter, 1994.

[2] Nazarov, Sergey. ”Umov-Mandelshtam ra-
diation conditions in elastic periodic
waveguides.” Sbornik: Mathematics 205.7
(2014): 953.



WAVES 2017, Minneapolis

Domain Evolution Kinetics of Mechanical, Phase-transforming Structures

Michael J. Frazier

1

, Dennis M. Kochmann

1,⇤

1Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, USA
⇤Email: kochmann@caltech.edu

Abstract

Multi-welled energy landscapes are key to micro-
structural pattern formation observed in solids
that undergo, e.g., phase transformations, fer-
roic domain switching, or di↵usive phase sepa-
ration. These processes necessitate the forma-
tion and movement of domain walls which sepa-
rate homogeneous equilibrium states. Here, we
present a purely mechanical, size-independent
structure (or metamaterial) that exhibits simi-
lar domain evolution phenomena, and we demon-
strate that the system obeys qualitatively and
quantitatively analogous fundamental govern-
ing laws but with extreme tunability and ex-
perimental accessibility. We thus open a new
chapter in mimicking atomic-scale dynamic pro-
cesses at the observable metamaterial scale.

Keywords: switching, phase transformation,
domain evolution

1 Introduction

Nature has inspired the emulation of atomic-
scale architectures at the macroscopic, struc-
tural level, resulting in, e.g., acoustic metama-
terials [1], structural transitions [2], etc. At this
level, topological transformations and domain
patterning occur as a consequence of structural
instability and the associated nonconvex energy
landscape. Despite various examples that real-
ized static domain formation through pattern-
ing [3], no attempt has been made at exploiting
their nonlinear dynamic evolution.

Our mechanical analog translates the atomic-
scale polarization found, e.g., in ferroelectrics,
into a scalar polarization field that possesses one
or two stable equilibria depending on the am-
bient conditions. We consider a 2D isotropic,
centro-symmetric periodic array of elastically-
connected bistable elements (Figure 1a) which
drive the system towards domains of uniform
polarization, while the elastic connections local-
ize domain walls to interpolate between oppos-
ing phases. The transition wave results from
the stabilized competition between elastic en-
ergy release and intrinsic dissipation [4].

2 The Phase-transforming Structures

We consider a network of cylindrical masses of
radius R and a single (rotational) degree of free-
dom ', the polarization. Bistability, arises from
an on-site torsional spring and an elastic spring
attached eccentrically to the cylinder at one end
and to an elevated anchor point at the other.
The action of gravity on masses m eccentri-
cally placed on the cylinders creates a torque
when the rotation axis and gravity field are not
aligned. The energy landscape can be tuned
by (i) moving the elevated anchor points by a
distance f = {f

x

, f
y

, f
z

} and/or (ii) tilting the
entire system by angles ✓ = {↵,�}, respectively,
about the x- and y-axis.

For a typical cylinder at position x and con-
nected to n neighbors at x+�x� (� = 1, . . . , n)
via elastic bands of sti↵ness k, the governing
equation is

I'̈(x) + ⌘ '̇(x) +  0 ['(x),✓,f ]

= R2k
nX

�=1

['(x+�x�)� '(x)] ,
(1)

with I the total rotational inertia, ⌘ the velocity-
proportional damping constant, and  (',✓,f)
the on-site, multi-welled energy.

Similar to viewing an atomistic ensemble from
greater scale, we observe the dynamic processes
in a homogenized sense. Mathematically, this
calls for taking the continuum limit as the inter-
mass spacing a goes to zero. From (1), we define
�x� = a e� where e

� is the unnormalized dis-
tance vector. A Taylor expansion of '(x+�x�)
(using summation index notation) leads to

R2k

nX

�=1

['(x+�x�)� '(x)] =

R2a2k

2
',ij(x)

nX

�=1

e�i e
�
j +O(a3).

(2)

For the continuum governing equation and as-
sociated solutions remain finite, it is essential
that the system parameters obey the correct



WAVES 2017, Minneapolis

Figure 1: (a) Mechanical, phase-transforming network of rotating cylinders. (b) Domains of opposing
polarization ' in the mechanical network. (c) Comparison of predicted v and measured s (from
simulation) speeds of a circular domain wall as a function of curvature & = 1/R

c

.

scaling. From energy considerations [4], this re-
quires that terms of order O(a3) and higher van-
ish. Thus, the continuum governing equation is

⇢ '̈(x) + ⌫ '̇(x) = �'�  0 ['(x),✓,f ] , (3)

with ⇢, ⌫, and , respectively, the inertial den-
sity, viscosity, and elasticity coe�cient.

In the case of significant damping, we have
|⇢ '̈| ⌧ |⌫ '̇| so that (3) reduces to the Allen-
Cahn equation of phase separation [5]

⌫ '̇(x) = �'�  0 ['(x),✓,f ] . (4)

Although damping can be defined arbitrarily,
the linear approximation chosen here worked
excellently for our experimentally investigated
1D bistable networks [6]. Linear gradient flow
is also the most common kinetic model used in
phase field descriptions.

Qualitatively similiar to processes in solids,
Figure 1b illustrates phase separation within a
150⇥ 150 system of rotating cylinders with pe-
riodic boundary conditions. With the inertial
and coupling conditions satisfied, the kinetics of
phase separation within our system is described
by (4). For domain boundaries of su�ciently
small curvature &, (4) approximates the local
wall speed as v ⇡ �&/⌫ [5]. Figure 1c com-
pares the measured speed s of a simulated cir-
cular domain in the discrete system following
(1) to the speed v predicted by the Allen-Cahn
phase field model (4), illustrating further quan-
titative agreement for & ⌧ 1 as anticipated.
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Abstract

Higher-order, multiple scales perturbation anal-
yses of nonlinear periodic systems are presented
with the goal of predicting invariant waveforms
of infinite extent. The multiple scales analysis is
also used to study waveform stability, which is
shown to be amplitude-dependent. Using exam-
ple quadratic and cubic chains characterized by
dimensionless parameters described herein, nu-
merical studies confirm both amplitude-dependent
stability and less temporal growth/decay in spec-
tral content of the predicted waveforms as higher-
order approximations are employed.

Keywords: nonlinear wave, perturbation, sta-
bility, invariance

1 Introduction

Wave propagation in linear monoatomic, diatomic,
and other chains is of contemporary interest due
to their non-trivial dispersion, filtering, and fre-
quency bandgap behavior [1]. These model sys-
tems may arise in the analysis of one-dimensional
waveguides, or in the study of wave propagation
in three-dimensional crystals along preferred di-
rections, such as the [100] direction in zincblende
crystals (e.g., GaAs and NaCl). The presence
of nonlinearities in these systems introduces ad-
ditional, unique behavior which furthers their
functionality and engineering relevance.

Several recent studies have analyzed amplitude-
dependent dispersion and other nonlinear be-
havior of discrete chains [2–4] investigated wave
propagation in cubically nonlinear monoatomic
and diatomic chains using Lindstedt-Poincaré
and the Method of Multiple Scales, respectively,
with an emphasis on amplitude-dependent dis-
persion shifts. Further, they identified wave-
based devices which exploit bandgap shifting to
enable tunable filtering and wave-guiding. This
work builds upon these earlier studies by devel-
oping a higher-order multiple scales procedure
to inform dispersion, stability, and waveform
invariance. Stability is assessed through a lo-
cal fixed point analysis based on the multiple
scales-derived evolution equations. Nondimen-

sionalized chains are numerically simulated to
identify and characterize their amplitude-dependent
stability and waveform invariance.

2 Wave Invariance and Stability

This section introduces the two systems studied
herein, namely weakly nonlinear monoatomic
and diatomic chains. For the monoatomic chain,
the smallest repeatable subsystem, or unit cell,
consists of a single mass and its connecting springs
and dampers; the unit cell for the diatomic chain
contains two masses and two springs.

For the monatomic chain, a force balance on
the jth mass yields its equation of motion,

mẍj + k1(2xj � xj+1 � xj�1)� ✏k2(xj+1 � xj)
2

+ ✏k2(xj�1 � xj)
2 � ✏k3(xj+1 � xj)

3

� ✏k3(xj�1 � xj)
3 + ✏c(2ẋj � ẋj+1 � ẋj�1)

= 0 (1)

where xj = x(j, t) denotes the displacement
from equilibrium of the jth mass, m its mass,
k1, k2, and k3 the linear, quadratic, and cubic
sti↵nesses, respectively, and c denotes the linear
damping coe�cient. It is assumed that ✏ ⌧ 1
such that the nonlinear and damping terms are
small. A similar, matrix set of equations gov-
erns the response of masses in the jth unit cell
of the diatomic system.

A multiple scales analysis approach is cho-
sen for analyzing amplitude-dependent waves in
the two weakly nonlinear systems, similar to
that carried-out in [4]. Multiple time scales are
assumed to exist such that,

T0 ⌘ t, T1 ⌘ ✏t, T2 ⌘ ✏

2
t, . . . , Tn ⌘ ✏

n
t, (2)

where t denotes the original time scale and Tn

represents the nth time scale. Since ✏ ⌧ 1, each
time scale advances more slowly than its pre-
decessor. In accordance with these time scales,
di↵erentiation with respect to time contains mul-
tiple orders. This expansion leads to an asymp-
totic solution approach for xj of the form xj =

x

(0)
j +✏x

(1)
j +✏

2
x

(2)
j +...+✏

n
x

(n)
j and a series of lin-

ear problems whose solution yields higher-order
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Figure 1: Variance study of monoatomic chains.

dispersion relationships, higher-order waveforms,
and evolution equations supporting stability anal-
ysis.

Following the multiple time scales procedure,
higher-order waveforms are predicted using both
homogeneous and particular solutions to the re-
sulting system of linear equations. In the limit
as the asymptotic expansions are taken to higher
orders, it can be hypothesized that the wave-
forms should propagate for all space and time
without change – i.e., they should be an invari-
ant form. To test this hypothesis, the predicted
waveforms are injected into numerical simula-
tions and variance � is measured as a function
of two dimensionless parameters, ⇧2 ⌘ ✏k2↵0

k1

and ⇧3 ⌘ ✏k3↵2
0

k1
, where ↵0 denotes the wave am-

plitude at the zeroth order. Variance is defined
to be the time-averaged growth/decay of each
harmonic measured during a simulation. As il-
lustrated in Figure 1 for a monoatomic chain,
the harmonic variance of both second and third
harmonics (�2 and �3, respectively) reduces as
one injects waveforms found using 2nd-order ap-
proximations (denoted by superscript (2)) over
those given 1st-order ones (denoted by super-
script (1)). This trend is observed for all ⇧2

and ⇧3 values in the range illustrated. Similar
results can be shown for diatomic chains.

3 Conclusions

Higher-order multiple scales solutions have been
described for predicting multi-harmonic plane
wave propagation in cubically and quadratically
nonlinear monoatomic and diatomic chains. The
method yields higher-order waveforms which prop-
agate with decreasing variance as order is in-
creased. Wave stability has also been assessed

through introduction of linear damping and a
local stability analysis. The invariance and so-
lution stability suggest these multiharmonic wave-
forms could inspire devices that rely on the prop-
agation of unaltered harmonic content to relay
information over large time and space.

References

[1] M.I. Hussein, M.J. Leamy, and M.
Ruzzene, Dynamics of Phononic Materials
and Structures: Historical Origins, Recent
Progress, and Future Outlook, Applied Me-

chanics Reviews 66 (2014).

[2] A. F. Vakakis and M. E. King, Nonlin-
ear Wave Transmission in a Monocou-
pled Elastic Periodic System, The Jour-

nal of the Acoustical Society of America 98

(1995), pp. 1534–1546.

[3] R. K. Narisetti, M.J. Leamy, and M.
Ruzzene, A Perturbation Approach for
Predicting Wave Propagation in One-
Dimensional Nonlinear Periodic Struc-
tures, Journal of Vibration and Acoustics

132 (2010).

[4] K. Manktelow, M.J. Leamy, and M.
Ruzzene, Multiple Scales Analysis of Wave-
Wave Interactions in a Cubically Nonlinear
Monoatomic Chain, Nonlinear Dynamics

63 (2010), pp. 193–203.



WAVES 2017, Minneapolis

Elastic full waveform inversion of reflection seismic data: migration based formulation

Gadylshin Kirill1,∗, Guy Chavent2, Vladimir Tcheverda3

1Institute of Petroleum Geology and Geophysics, SB RAS, Novosibirsk, Russia
2Inria-Rocquencourt Domaine de Voluceau, France

3Institute of Petroleum Geology and Geophysics, SB RAS, Novosibirsk, Russia
∗Email: GadylshinKG@ipgg.sbras.ru

Abstract

The paper develops a reliable numerical method
to solve inverse dynamical problem of seismic
waves propagation on the base of nonlinear least
squares formulation which is widely known as
Full Waveform Inversion (FWI). The key issue
on this way is correct reconstruction of macro-
velocity component of the model with input seis-
mic data without time frequencies less than 5
Hz and reasonable source–receivers offsets. To
provide correct macro-velocity reconstruction we
modify regular nonlinear least squares formula-
tion used in standard versions of FWI by de-
composing the model space into two subspaces:

• slowly varying in space functions (propa-
gators p) which do not change direction of
propagation of seismic energy, but governs
travel times;

• sharply changing in space functions (space
reflectivity r) which do not change travel
time, but turn propagation direction to-
wards acquisition.

Keywords: elastic fwi, macro-velocity, in-

verse problem, nonlinear least squares

Introduction

The velocity model building in the depth do-
main is necessary to guarantee the correct travel-
times of wave propagation and therefore is a
crucial element in seismic data processing. As
early as the middle of 80’s of the last century
A. Tarantola introduced the Full Waveform In-
version (FWI) based on the matching of the ob-
served and the synthetic seismograms. The L2

norm is widely used for such matching, though
other criteria are also considered. To minimize
the misfit function and to find the elastic pa-
rameters of the subsurface, iterative gradient-
based algorithms are usually applied. Such ap-
proach to FWI proposed originally by Lailly
(1983) and Tarantola (1984) has been developed

and studied in a great number of publications
(see Virieux and Operto (2009), and the ref-
erences therein). However, the straightforward
application of FWI reconstructs reliably only
the reflectivity component of the subsurface but
fails to provide a smooth velocity model. The
smooth component could not be recovered sta-
bly without the presence of extremely low time
frequencies. The matter is the shape of the
data misfit functional differs a lot with respect
to various velocity components – it is nearly
quadratic with respect to reflectors, but per-
turbations of the smooth velocity component
(propagator) lead to a very complicated and
nonlinear behavior (see e.g. Sirgue, 2006). Heuris-
tically it is explained by the so-called ”cycle-
skipping” problem when phase shifts between
the recorded and synthetic data produce local
minima. In the Bunks et al. (1995) authors in-
troduce some new inversion strategy based on
the use of increasing time frequencies: they start
inversion with the lowest available ones and at
each subsequent iteration they increase the fre-
quency and use the results from the previous
step as the initial guess. But they perform this
inversion in time domain, hence have to use at
each step the low-pass band filtering of data in
the time domain which reduces the efficiency
of this technique. The next step in implemen-
tation of the frequency-domain FWI with in-
creasing time frequencies was done by G. Pratt
with co-authors in the paper (Pratt et al., 1998).
They use minimization in time frequency do-
main and very naturally proceed sequentially
from low to high frequencies. Unfortunately,
this approach did not resolve the problem of sta-
ble recovery of a macro-velocity when there is a
lack of low time frequencies in the data. In con-
trast, the proposed below modification of the
cost function is principally a new approach to
the Full Waveform Inversion for reflected waves
and stable recovery of the data with reasonable
range of time frequencies like 5–25 Hz.
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Theory and method

In what follows we are concentrated on appli-
cation of Full Waveform Inversion in the migra-
tion based formulation (Clement, Chavent and
Gomez, 2001) to reflection elastic seismic data.
Seismic inverse problem can be treated as a non-
linear operator equation:

F (m) = d,

where F : M → D is a nonlinear forward map,
which transforms model spaceM into data space
D. Forward map F is associated with elastic
waves equation in time-frequency domain of the
following form:

ω2ρvx +
∂

∂x

[

λ

(

∂vx
∂x

+
∂vz
∂z

)

+ 2µ
∂vx
∂x

]

+
∂

∂z

[

µ

(

∂vz
∂x

+
∂vx
∂z

)]

= 0

ω2ρvz +
∂

∂z

[

λ

(

∂vx
∂x

+
∂vz
∂z

)

+ 2µ
∂vz
∂z

]

+
∂

∂x

[

µ

(

∂vz
∂x

+
∂vx
∂z

)]

= f(ω)δ(x− xs)δ(z − zs)

Data d are solutions to this equation solved at
given receiver positions. In contrast to the stan-
dard nonlinear least-squares FWI formulation
(Tarantola, 1984; Virieux and Operto, 2009),
when unknown elastic model

m⃗(x, z) = (ρ(x, z),λ(x, z), µ(x, z))

is searched as the solution to the minimization
problem, reflection FWI in migration based for-
mulation uses decomposition of the model m⃗ in
two components (Chavent et. al, 2001):

m⃗ = p+ r = p+M(p)s.

Here p - propagator, which describes smooth
macro-velocity, r - depth reflector describing
rough perturbations of the model. The key mo-
ment in this decomposition is propagator-reflector
interrelation r = M(p)s, where s is unknown
data reflectivity (preimage or inverse image of
a depth reflector in data space D for a given
propagator p), while M(p) is true amplitude
prestack migration operator with linear reweight-
ing W (true-amplitude imaging):

M(p)s = W ◦Re

{(

δF

δm⃗
(p)

)∗
s

}

.

Such decomposition of the model leads to the
following modified nonlinear least squares FWI
formulation:

(p∗, s∗) = argmin ||F (p+M(p)s)− d| |2D.

The minimization with respect to the new vari-
ables (p and s) is done independently by stan-
dard local optimization techniques, such as the
modified Newton method.
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Abstract

The modal basis of elastic open waveguides con-
tains two continua of radiation modes and a dis-
crete set of trapped modes. A third set also
exists: the leaky modes. However, they do not
belong to the modal basis as they spatially grow
to infinity. Herein, the excitation of elastic open
waveguides is investigated. For numerical pur-
pose, the infinite transverse direction is model-
led with a truncated perfectly matched layer
(PML). Indeed, the PML o↵ers a natural way
to reveal the contribution of leaky modes. The
PML gives access to the improper Riemann sheets
by redefining the branch cuts, yielding two ro-
tated continua of radiation modes (PMLmodes).
The cases of an infinite medium and an open
waveguide are considered. It is shown that all
sets are necessary for achieving convergence of
the modal expansion.

Keywords: modal analysis, open waveg-
uide, leaky modes, perfectly matched layer,
Riemann surface

1 Introduction

Numerically, elastic waveguides can be model-
led with a cross-section finite element discretiza-
tion thanks to the so-called Semi-Analytical Fi-
nite Element method (SAFE) [1]. For open
waveguides, the SAFE can be combined with
a PML [2], among various other methods. The
PML eigenvalue problem has been studied by
way of the convergence of trapped and leaky
modes [2, 3]. Yet, the use of these modes and
of PML modes in a modal expansion may re-
main unclear. Besides, a biorthogonality rela-
tion must be derived. This talk aims to bring
insights on the full modal solution computed
with a PML, through numerical and theoretical
studies of elastic open waveguides.

2 Numerical modelling

For simplicity, the waveguide has two layers and
is axisymmetric. The first layer has a radius
r = a, and the second layer is infinite. The
latter is truncated by a PML of thickness h and

starting from the radial position d. The PML
is introduced using an analytic continuation in
the radial direction:

r̃(r) =

Z r

0
�(⇠)d⇠ (1)

�(r) is a complex attenuation function (Im� >
0) through the PML (r > d). At the end of
the PML (r = d + h), a Dirichlet condition is
applied. Assuming an axial wavenumber and a
time-harmonic dependance ej(kz�!t), the elasto-
dynamics variational formulation is written on
the cross-section. The finite element discretiza-
tion yields the quadratic eigenvalue problem [2]:
�
K1 + ik(K2 �KT

2 ) + k2K3 � !2M
�
U = 0

(2)
K1, K3 and M are symmetric. Because of the
PML, all the matrices are complex valued. It
has been shown in [1] that the so-called Auld’s
real orthogonality relationship must be used for
modal expansion in waveguides with complex
material properties (viscoelastic case). It can be
checked that this relation actually still applies
with a PML. Then, the total displacement field
can be expanded on M positive-going modes as
follows:

U(z,!) =
MX

m=1

EmF (km)eikmz. (3)

Em is the excitability matrix defined in [1], and
F stands for external forces.

3 Numerical results

A homogeneous elastic medium, excited by a
unit point load applied at the centre in z direc-
tion, is modelled. Figure 1 shows that a good
accuracy with respect to analytical results can
be achieved within a limited distance range. For
a given number of modes, this range increases
with the complex thickness h�̂ =

R d+h
d �(⇠)d⇠.

These results are consistent with Olyslager’s [5],
obtained for Green functions in scalar acoustic
waveguides.

In a bilayer open waveguide, leaky modes
dominate at small distances. Numerical results
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Figure 1: Relative error in an infinite medium
on longitudinal displacement at r = 0 and at a
fixed frequency between numerical and analyti-
cal results.

(not presented here for conciseness) show that
at great distances, long term di↵raction occurs
and cannot be properly described by leaky modes
but by PML modes that stand for body waves
(see section 4). It is noteworthy that a trun-
cated PML enables to compute this phenomenon,
while other types of absorbing layers have been
proved to be ine�cient [4].

4 On the modal decomposition

So far, the M modes included in Eq. (3) have
not been precisely defined. First, let us go back
to the initial elastic waveguide problem, un-
bounded and without PML. The key points of
the analysis are the definitions of the Riemann
surface and of the two branch cuts of the prob-
lem, such that outgoing waves in the transverse
direction decrease at infinity. The proper Rie-
mann sheet yields two sets of modes. The first
one is made of discrete proper poles, including
trapped modes. The second one is the branch
cuts contribution, yielding two continua of radi-
ation modes. Leaky modes are also poles of the
problem, but they lie on the improper Riemann
sheets (they grow to infinity in the transverse
direction).

With an infinite PML, the proper Riemann
sheet is modified. It is shown that both branch
cuts are rotated by an angle of �arg�. This
gives access to parts of the initial improper Rie-
mann sheets (numbered 2,3,4 - see Figure 2).
Hence, the modal basis changes as well. The
first set including trapped modes is unchanged.
The continua of radiation modes are now de-
fined by the rotated branch cuts. Besides, an-
other discrete set made of revealed leaky modes
is now included in the modal decomposition.

For numerical purpose, the PML needs to

Figure 2: Proper Riemann sheet of a viscoelas-
tic open waveguide with PML: initial branch
cuts (black lines) and rotated branch cuts (grey
line), trapped modes (circle) and leaky modes
(triangle).

be truncated. With a finite PML, the continua
of radiation modes become discrete [5]. These
modes are called PML modes. Although non
intrisic to the physics (PML modes mainly de-
pend on user-defined PML parameters), they
have to be included in the modal expansion to
achieve convergence, as mentioned in section 3.
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Abstract

The lack of coercivity of the sesquilinear form in
the standard Galerkin problem and associated
finite element method (FEM) models is one of
the major di�culties for simulating wave prop-
agation models using iterative methods. Practi-
cal realization of large-scale/high-frequency pre-
conditioned non-coercive wave propagation mod-
els are typically based on Multigrid or domain
decomposition methods (MG/DDM). Complete
mathematical analysis of the MG/DDM based
wave propagation models is still an open prob-
lem, and recent e↵orts in the literature include
partially addressing the mathematical challenge
for the homogeneous media Helmholtz model.
However for coercive di↵usion-type MG/DDM
models, mathematical analysis have been widely
investigated in the literature. A theoretical co-
ercive formulation for the constant coe�cient
model was developed by Moiola and Spence in
2014. The main focus of this work is on MG/DDM
for a new class of preconditioned high-order FEM
coercive Helmholtz wave propagation models de-
veloped recently by the authors.

Keywords: Helmholtz, Coercive, FEM, Pre-
conditioning

1 Introduction

We consider the Helmholtz acoustic wave prop-
agation model in a bounded media ⌦ ⇢ Rd, d =
2, 3, with an inhomogeneous absorbing impedance
boundary condition on @⌦.

It is well known that the standard Galerkin
variational formulation of the Helmholtz partial
di↵erential equation (PDE) in H1(⌦) is indefi-
nite for large wavenumbers, while the Helmholtz
PDE is not indefinite [8]. The lack of coerciv-
ity (indefiniteness) of the sesquilinear form in
the standard Galerkin problem and associated
finite element method (FEM) models is one of
the major di�culties for simulating wave prop-
agation models using iterative methods.

A key contribution to tackle the iterative
solver di�culty was developed about one decade
ago, for the heterogeneous Helmholtz model, by

Erlangga et al. [1] using a multigrid based pre-
conditioner. The preconditioned system in [1]
was obtained using a complex-shifted version of
the Helmholtz model. Various numerical results
suggested that the shift should depend on the
wavenumber. The recent mathematical analy-
sis in [2], for homogeneous Helmholtz model,
proved that the shift should be chosen propor-
tional to wavenumber to guarantee wavenumber-
independent convergence. However, the analy-
sis in [2] does not take into account the multi-
grid based preconditioner. Indeed recent high-
order FEM based multigrid models [3] (and ref-
erences therein) clearly demonstrate that the
shift should be chosen proportional to the square
of the wavenumber and that for multigrid based
preconditioner the choice proposed in [2] need
not result in converging iterates.

While the complex-shifted Helmholtz model
based preconditioners are considered to be the
best, the MG approach may not be the best op-
tion to implement the preconditioner. Indeed,
in the recent work [4] we demonstrated that the
MGM is not appropriate for a class of high-
frequency heterogeneous Helmholtz model, for
various shift values include those that work well
for the low- and medium-frequency models. In-
stead, motivated by the work [7], we developed
high-order FEM based domain decomposition
preconditioning models for high-frequency het-
erogeneous models in two and three dimensions,
and we demonstrated results on non-trivial ge-
ometries [4]. The DD preconditioning method
and analysis in [7] are restricted to the homoge-
neous Helmholtz model. It is an open problem
to develop analysis for the DDM in [4]. The lack
of coercivity in the standard wave propagation
models is one of the key di�culties in analyzing
the MG/DDM based iterative solvers for wave
propagation.

As mentioned in the 2014 SIAM Review ar-
ticle [8], solving the Helmholtz equation with it-
erative methods is di�cult, and a contributing
factor is the sign-indefiniteness of the standard
variational formulations. For the constant coef-



WAVES 2017, Minneapolis

ficient Helmholtz equation case, it was theoret-
ically demonstrated in [8] that a non-standard
space approach can produce a sign-definite vari-
ational formulation of the wave propagation model
in homogeneous media. However, the authors
of the theoretical article [8] also questioned the
practical use of their coercive sesquilinear for-
mulation for the homogeneous media Helmholtz
model.

In our recent work [5], we developed a prac-
tical high-order FEM version of the homoge-
neous formulation in [8], introduced a new shifted
preconditioner, showed wavenumber-independent
iterations of our new sign-definite preconditioned
FEM model, and investigated e�cient DD ap-
proximations of the preconditioner. Currently [6],
we are developing a heterogeneous counterpart
of [5], and this includes new formulation with
rigorous mathematical analysis. This work [6]
does not take into account of the application of
the MG/DD for preconditioning. In this work
we focus on developing MG/DDM based coer-
cive high-order preconditioned FEM heteroge-
neous wave propagation models in conjunction
with the novel formulation from [6].

1.1 Preliminary Results

Using the classical non-overlapping additive Schwarz
preconditioner (see [7] for a description of the
algorithm) we e�ciently simulate solutions to
a heterogeneous media model with the complex
non-smooth computational domain geometry from [5]
and a spatially varying refractive index n /2
C2(⌦). We implement the same high-order FEM
from [5] in order to simulate high-frequency prob-
lems with non-smooth solutions u /2 H2(⌦) and
up to 400 wavelengths per diameter of the com-
putational domain. Using a standard BiCGstab
iterative solver without preconditioner requires
12,896 iterations for a problem with 200 wave-
lengths per diameter of the computational do-
main, but with the classical non-overlapping AS
approximation of our novel preconditioner only
74 iterations are required. In this work we in-
vestigate several other AS type preconditioners
including overlapping and hybrid methods to
further increase e�ciency and simulate higher-
frequency problems with up to 400 wavelengths
per diameter of the computational domain.
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Abstract

We present a strategy to adaptively manipulate
the spatial characteristics of propagating elastic
waves in nonlinear phononic crystals. Our ap-
proach exploits the interplay of dispersion and
nonlinearity to reversibly activate modal char-
acteristics corresponding to higher frequencies
even while operating in low-frequency acoustic
regimes. This e↵ect, studied here using the well-
known nonlinear three-wave resonance mecha-
nism, is demonstrated via numerical simulations
for a broad class of phononic crystal architec-
tures exhibiting a wide spectrum of functional-
ity tuning capabilities.

Keywords: Dispersion, Nonlinearity, Modal
Mixing, Three-wave resonance

Introduction

Phononic crystals can function as e�cient elas-
tic (acoustic) wave manipulators due to their
ability to impart frequency-dependent spatial
characteristics to harmonic excitations. In this
regard, the activation of nonlinear mechanisms
in these structures results in the ability to spon-
taneously alter their response to changes in the
operating conditions (e.g., amplitude of excita-
tion). These adaptive characteristics typically
result in a significant modification of the spec-
tral and spatial characteristics of propagating
wavefields. For tone-burst excitations, the man-
ifestation can be classified into two distinct ef-
fects - the modulation of the envelope of the
wave packet, and the generation of harmonics
in the response [3]. In systems featuring the ca-
pability to support multiple modes of deforma-
tion, the nonlinearly-generated harmonics dis-
play dual spatial characteristics. One of the
components, referred to as the forced response,
depends on the spatial characteristics of the fun-
damental excitation, while the characteristics of
the other component (referred to as the free re-
sponse) are solely dependent on the linearized
properties of the structure [3]. However, these
two components coalesce when phase-matching

Figure 1: A periodic diatomic spring-mass truss

conditions are satisfied, i.e., the phase veloc-
ities of the fundamental and the nonlinearly-
generated harmonic are equal in the linearized
system [1,2]. In this work, we focus on the spa-
tial characteristics of phase-matching harmonic
generation using the three-wave interaction ap-
proach. To this end, we will consider phononic
crystals whose behavior can be represented by
the following governing equation

Mü+Ku+ "fNL(u) = 0, (1)

where u represents the vector of displacements
in the structure, while M and K refer to the
mass and linear sti↵ness matrix. fNL(u) is a
nonlinear force vector whose magnitude is much
smaller than the linear terms in the response
(represented by the scaling term "). An exam-
ple of such a system is shown in fig. 1, where
the springs are characterized by a cubic nonlin-
ear potential energy. We constrain wave motion
along the horizontal direction, but each mass
has two degrees of freedom to accommodate ax-
ial and flexural wave motion.
The weakness of the nonlinear terms can be
exploited to employ a multiple spatiotemporal
scales expansion ("kn, "kt; k = 0, 1, 2, · · · ), and
the leading order solution under the assumption
of a multifrequency ansatz can be written as

u0
n =A0("n, "t, "

2t)1

+
3X

p=1

Ap("n, "t, "
2t)�pe

i(kpn�!pt) + c.c,

where u0
n represents the fundamental solution,

and kp,!p and �p represent the wavenumber,
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Figure 2: Spatial and spectral wave profile in
two diatomic chains for the same excitation.
(a,c) Spatial wave profile, (b,d) 2D DFT of
the response superimposed to the band diagram
evaluated from unit cell analysis.

frequency and modal vector of the eigen so-
lution of the linearized problem. A0 and A
are slowly varying amplitudes whose functional
form is determined from the equations obtained
at O(") and higher. Under the assumption k3 =
k1+k2 and !3 = !1+!2, the equations govern-
ing the evolution of the amplitude envelope Ap

can be determined as [1, 2]

✓
@

@t1
+ c1g

@

@n1

◆
A1 = iq1A2A3

✓
@

@t1
+ c2g

@

@n1

◆
A2 = iq2A1A3

✓
@

@t1
+ c3g

@

@n1

◆
A3 = iq3A1A2, (2)

where n1 = "n, t1 = "t are the first order spa-
tiotemporal variables, and cpg(= d!/dk) repre-
sents the linear group velocity of the frequency
under consideration. The exact solution to these
equations can be determined using the inverse
scattering transform approach [1].
When !1 ⇡ !2, the above equations degenerate
to give rise to the case of second harmonic reso-
nance [2]. Under such conditions, even an initial
excitation which consists of only the fundamen-
tal harmonic (!1) will give rise to a propagating
wavefield with an additional second harmonic
(!3 = 2!1) that resonantly interacts with the
fundamental harmonic. This resonant interac-
tion results in the growth of the amplitude of

the second harmonic until the equilibrium con-
ditions of the three-wave interaction are estab-
lished. Furthermore, the generation of the sec-
ond harmonic also results in the activation of
deformation mechanisms (given by the modal
vector �p) corresponding to the linear solution
at twice the excitation frequency. A snapshot of
the spatiotemporal evolution of the lateral dis-
placements of the masses under phase-matching
conditions is plotted in figs. 2(a-b), where we
observe the presence of two coherent wavefields
in the response. On the contrary, the spatiotem-
poral evolution of the same initial excitation in
a system that does not satisfy phase-matching
conditions (shown in figs. 2(c-d)) features a sec-
ond harmonic whose amplitude is much smaller,
and is also more dispersive due to the pres-
ence of two distinct spatial contributions (corre-
sponding to k(2!1) and 2k(!1)) [3]. Therefore,
satisfying phase-matching conditions results in
e�cient transfer of energy from the fundamen-
tal acoustic mode of propagation to an optical
mode, whose characteristics are completely de-
scribed by that of the linear system. As a result,
a complete map of the switchable functionali-
ties that can be activated in these structures is
entirely determined from linear analysis, which
gives rise to virtually endless opportunities for
wave manipulation.
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2CMAP, École Polytechnique, Palaiseau, France

⇤Email: etienne.gay@onera.fr

Abstract

In this communication we develop an integral
representation of the acoustic waves emitted by
a source and transmitted by a randomly strat-
ified fluid flow. The analysis is carried out in
a regime of separation of scales whereby the
fluctuations of the flow are much smaller than
the source wavelength, which in turn is much
smaller than the thickness of the flow–the so-
called di↵usion regime. Our aim is to subse-
quently develop coherent interferometric (CINT)
imaging algorithms based on cross-correlation
functions of the acoustic waves recorded at the
bottom of the flow to possibly locate the source
above it.

Keywords: Aero-acoustics, Di↵usion, Coher-
ent interferometry.

Introduction

The purpose of imaging techniques is to esti-
mate the location of one or more sources and/or
reflecting structures with a passive or an ac-
tive array of receivers. Coherent interferomet-
ric (CINT) algorithms [1] have been developed
for imaging in cluttered media from the time
traces of echoes recorded at a remote array. The
main e↵ect of the clutter is to induce large delay
spread, or coda, to the recorded time traces in
regimes where significant multiple scattering of
the acoustic waves occurs. In this work we are
more particularly interested in the propagation
of acoustic waves in a stratified, heterogeneous
flow and the possible localization of sources by
these wave fields. CINT imaging is based on the
back-propagation of local space-time empirical
cross-correlations of the array data, namely the
recorded pressure fields at the near free-surface
of an half-space or a random slab [3,4]. Our ulti-
mate objective here is to extend CINT imaging
techniques to possibly account for the influence
of a convecting shear flow.

For that purpose, we study here the acous-
tic waves emitted by a source and transmitted
by a randomly stratified fluid flow. We start

from the earlier works of Garnier et al. [3,4] and
Borcea et al. [2] and consider successively the
influence of an homogeneous background flow,
and a randomly stratified background flow. The
analysis is based on an assumption of separation
of scales, whereby the fluctuations of the flow
are much smaller than the source wavelength,
which in turn is much smaller than the thick-
ness of the flow.

Acoustic waves in an homogeneous flow

We consider the Euler equations for a compress-
ible fluid flow and linearize them about an un-
perturbed, stationary flow for which the pres-
sure, fluid velocity, and fluid density do not de-
pend on time t. They are denoted by p0(r),
v0(r) and %0(r) respectively, where r 2 R3 stands
for the position, such that:

(v0 ·r)%0 = �%0r · v0 ,

(v0 ·r)v0 = � 1

%0
rp0 ,

(v0 ·r)p0 = c20(v0 ·r)%0 .

Here c0 stands for the sound velocity not influ-
enced by the waves. Linearization consists in
assuming that the actual flow is a perturbation
(%0,v0, p0) of the stationary flow generated by a
source f(t, r) per unit mass (neglecting grav-
ity):

�(t, r) = �0(r) + �0(t, r) ,

where � 2 {%,v, p}. The primed quantities p0,
v

0 and %0 are the acoustic pressure, fluid veloc-
ity and density, respectively, of which non-linear
contributions to the Euler equations above are
assumed negligible. We note r = (x, z) 2 R2⇥R
where x stands for the horizontal coordinates of
the position, and z stands for the vertical coor-
dinate. We start with the case where the unper-
turbed background flow is homogeneous, that is
v0 and %0 are non vanishing and constant in a
slab z 2 [�L, 0]. In addition the background
flow celerity v0 is horizontal, a situation which
arises in many instances of real media (oceans,
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Earth’s crust, atmosphere, jet flows, etc). Then
the acoustic velocity v

0 and pressure p0 satisfy:

(@t + v0 ·rx

)p0 +K0r · v0 = 0 ,

(@t + v0 ·rx

)v0 +
1

%0
rp0 = f ,

where K0 = %0c20 is the fluid compressibility,
and r

x

stands for the gradient in the horizon-
tal plane. With the appropriate Fourier trans-
form (FT) with respect to time t and horizon-
tal coordinates x, we can solve this system for
a source f(t, r) = F (t,x)�(z � zs) with zs � 0
and show that the acoustic pressure below the
slab has the integral representation:

p0(t,x,�L) =
1

16⇡3

ZZ
e�i!(t�·x�L⇣())

⇥
⇣%0 · bF

x

(!,)

�()⇣()
� %0 bFz(!,)

⌘
!2 d!d ,

where ⇣() = ( �
c20

� 2

� )
1
2 , � = 1 � v0 · , and

(bF
x

(!,), bFz(!,)) is the FT of the three-dimen-
sional source F , ! is the circular frequency, and
 is the horizontal slowness vector.

Acoustic waves in a random flow

We now consider the case where the bulk mod-
ulus K0 is randomly varying about an homoge-
nized value K = %0c2 and address the di↵usion
approximation regime [3], whereby the scale of
fluctuations ` of the former is much smaller than
the typical wavelength � of the waves, which in
turn is much smaller than the depth of the flow
L. This scaling is quantified by introducing the
small parameter 0 < " ⌧ 1 such that `

� = "
and `

L = "2. In this respect, the bulk modulus
depends on the depth z in the flow (�L, 0) and
is constant outside:

1

K0(z)
=

(
1
K

⇥
1 + ⌫

�
z
"2

�⇤
for z 2 [�L, 0] ,

1
K elsewhere ,

where (⌫(z))z2R is a zero-mean, second-order
stochastic process. Also the source is assumed
to vary at the scale " and is denoted by F

"(t,x) =
F (t/",x/"). Then the acoustic pressure admits
the following integral representation:

p0"(t,x,�L) =
1

16⇡3

ZZ
e�

i!
" (t�·x�L⇣())T "(!,)

⇥
⇣%0 · bF

"
x

(!,)

�()⇣()
� %0 bF "

z (!,)
⌘
!2 d!d ,

where ⇣() = ( �
c2 � 2

� )
1
2 , and T "(!,) is the

transmission coe�cient which defines how the
acoustic waves cross the slab. Its properties are
fully characterized as in [3]. Essentialy the main
di↵erence between the present situation and the
situation addressed in [3] where no background
flow is considered lies in the phase �. In the
latter situation it is �(t,x,) = t�  · x� L

c()
with c() = cp

1�2c2
, whereas in the situa-

tion the celerity of the background flow has an
important influence, as expected: �(t,x,) =
t �  · x � L⇣(), with the previous definition
of ⇣.

In future works we shall analyze how this
result compares with the existing experiments
and numerical simulations reported in the liter-
ature [5, 6], and develop a CINT imaging func-
tional of the source f based on the integral rep-
resentation established above.
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Abstract

We augment the classical inhomogeneous wave
equation by a zero-order term cu and consider
the task of reconstructing c from the solution u.
Here c is allowed to be time-dependent, which
makes the problem more di�cult. We present a
suitable existence and uniqueness result for the
wave equation and compute the Fréchet deriva-
tive of the solution operator. These results al-
low for the numerical reconstruction of c from
artifical data, for which we apply an inexact
newton method.

Keywords: parameter identification, dynamic
inverse problems, wave equation, Fréchet deriva-
tives, inexact Newton regularization

1 Introduction

For a fixed f 2 L2([0, T ], L2(⌦)) we consider u
as the weak solution of the wave equation

u00 ��u+ cu = f in [0, T ]⇥ ⌦, (1)

furnished with initial conditions u(0) = u0(0) =
0 and homogeneous Dirichlet boundary condi-
tions. Here ⌦ is a bounded domain of Rn (n 2
{1, 2, 3}) and T > 0. We are interested in the
identification of the time- and space dependent
parameter c based on knowledge of u.

2 Solution theory

To this end we need a well-defined solution oper-
ator S : D(S) ⇢ X ! L2([0, T ], L2(⌦)), where
an open subsetD(S) of a Hilbert spaceX would
be ideal. Most existence results require c 2
C1([0, T ]⇥⌦), cf. Evans [1]. We expand on the
results of Lions and Magenes [2]. Their theory
which is based on energy estimates and Galerkin
approximation guarantees unique solvability for
every c 2 H2([0, T ], L2(⌦)) which is bounded
below.

Theorem 1 There is a radius � > 0 so that (1)
possesses for every c 2 H2([0, T ], L2(⌦)) which

satisfies that there are c̃ 2 L1([0, T ], L2(⌦))
and c0 2 R with c̃ � c0 2 R a.e. as well as

kc� c̃kL1([0,T ],L2(⌦)) < � a unique weak solution

u 2 L2([0, T ], H1
0 (⌦)).

The set consisting of all those c is an open subset
of H2([0, T ], L2(⌦)).

3 Fréchet derivative

For the numerical inversion of Sc = u we use
a Newton approach, which requires the knowl-
edge of the derivative of S. Through formal dif-
ferentiation of the weak formulation we deduce
that uh = (S0c)[h] solves u00h��uh+cuh = �uh
with the same initial and boundary conditions
as u. To show that uh is well defined we use the
fact that S is locally Lipschitz-continuous and
the energy estimates for solutions of the wave
equation. These only apply to right hand sides
belonging to L2([0, T ], L2(⌦)), hence we need a
bit more spatial smoothness of our searched for
parameter, namely

c 2 H2([0, T ], L2(⌦)) \ L2([0, T ], Lp(⌦)) =: X

with p > n.

Theorem 2 S is Fréchet-di↵erentiable in c. For
every h 2 X we have (S0c)[h] = uh as given

above.

4 Ill-posedness

For the discussion of ill-posedness we have the
following results.

Lemma 3 S0 : X ! L(X,L2([0, T ], H1
0 (⌦)))

is locally Lipschitz-continuous.

Furthermore S : X ! L1([0, T ], H1
0 (⌦)) and

S : X \H1([0, T ], Lp(⌦)) ! L2([0, T ], H1
0 (⌦))

satisfy the tangential cone condition, i.e. for all

c 2 D(S) there exist r > 0 and 0 < ⌘ < 1 so

that

kSv � Sw � (S0w)[v � w]k  ⌘kSv � Swk

holds for all v, w 2 B(c, r) \D(S).

In the theory of inverse problems in Hilbert
spaces these properties would allow us to link
the local ill-posedness of the nonlinear equation
Sc = u and the local ill-posedness of its lin-
earization. Using compact embeddings we can
show that the linearization is indeed ill-posed.
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Figure 1: Test parameter at t = 1.0.

Lemma 4 If f 6= 0 then for every c 2 D(S) the
derivative S0c : X ! L2([0, T ], L2(⌦)) is a com-

pact operator with infinite dimensional range.

In particular its range Rg(S0c) is not closed in

L2([0, T ], L2(⌦)).

5 Numerical results

For the discretization of the wave equation we
use the finite element method in space and the
Crank-Nicolson scheme in time, which we im-
plemented using the C library ALBERTA [4].
For the regularized inversion we applied the in-
exact newton method CG-REGINN [3], which
requires a Hilbert space setting. Because of this
we omit the L2([0, T ], Lp(⌦)) part in the defi-
nition of X in the numerical discussion. The
method further requires not only the derivative
of S but its adjoint (S0c)⇤ as well, for which we
have set up a finite di↵erence scheme.

One of our testing parameters in the case
n = 2 is a ‘hat’, which moves for t 2 [0, 2]
through the domain ⌦ = (0, 1)2, i.e.

c(t, x) = 20h
�
4 kx� 1+t

4 (1, 1)k
�

with a smooth function h : R ! R with support
in [�1, 1]. The inversion algorithm is able to
reconstruct this parameter from artificial data
with 1% noise, resulting in the approximation
in Figure 2. This approximation possesses a
L2([0, T ], L2(⌦))-error of 45%, which of course
depends heavily on the scaling of the parameter.

Motivated by possible applications we also
consider the reconstruction from simulated mea-
surements, which yields similar results when us-
ing 2000 measurement points in [0, T ]⇥⌦, which
is significantly less than the number of degrees
of freedom in the discretized field u.
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Figure 2: Reconstruction from data with 1%
noise at t = 1.0.
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Abstract

We present recent advances in domain de-
composition methods for high-frequency time-
harmonic wave problems, where subproblems
of small sizes are solved using sparse direct
solvers, and are combined using iterative tech-
niques. We focus on a family of recently
proposed quasi-optimal domain decomposition
methods based on accurate approximations of
the Dirichlet-to-Neumann map, combined with
parallel, sweeping-type preconditioners.

Keywords: Optimized Schwarz methods, Fi-
nite element methods, Preconditioners

1 Introduction

Solving high-frequency time-harmonic wave
problems using finite element techniques is chal-
lenging, as such problems lead to very large,
complex and possibly indefinite linear systems.
Direct sparse solvers do not scale well for such
problems, and Krylov subspace iterative solvers
can exhibit slow convergence, or even diverge.
Domain decomposition methods (DDMs) are
currently the most promising approach, where
subproblems of smaller sizes are solved using
sparse direct solvers, and are combined with
iterative Krylov subspace techniques. Among
the di↵erent families of domain decomposition
techniques, optimized Schwarz methods [8] have
proved well suited for time-harmonic wave prob-
lems. The convergence rate of these methods
strongly depends on the transmission condition
enforced on the interfaces between the subdo-
mains, the optimal convergence being obtained
by using the Dirichlet-to-Neumann (DtN) map
related to the complementary of the subdomain
of interest. Using the DtN leads to a very ex-
pensive numerical procedure in practice, as this
operator is non-local. A great variety of tech-
niques based on local transmission conditions
have therefore been proposed to build practical
algorithms.

In this paper we review a family of quasi-
optimal domain decomposition methods ob-
tained by using accurate approximations of the

DtN for acoustic and electromagnetic waves.
The transmission conditions are obtained by
regularizing the exact half-space DtN and local-
izing it using complex Padé approximants. The
convergence of the resulting algorithm is opti-
mal for the evanescent modes and significantly
improved compared to competing approaches
for the remaining modes. Even with optimal
transmission conditions, however, the number
of iterations of Schwarz methods increases with
the number of subdomains. To address this is-
sue, we present a sweeping preconditioner that
approximates the inverse of the iteration oper-
ator for layered decompositions of the domain.
The parallel variants of these preconditioners
can be advantageously used to solve very large
problems with multiple right hand sides, by ef-
ficiently exploiting the computational resources
of massively parallel computers.

2 Mono-domain Time-Harmonic Wave
Problem

A generic time-harmonic wave propagation
problem with sources in the domain ⌦ and ho-
mogeneous boundary conditions on � can be
written in the form

Lu = f in ⌦,

Bu = 0 on �,
(1)

where L and B are linear operators. For ex-
ample, for an acoustic wave problem with a
Sommerfeld radiation condition (the unknown
scalar field u denoting the pressure), one would
have L := (� + k2) (with k the acoustic
wavenumber) and B := (@n � ik). For an
electromagnetic wave problem with a Silver-
Müller absorbing boundary condition (the un-
known vector field u now denoting the electric
field), one would have L := (curl curl � k2)
(with k the electromagnetic wavenumber) and
B := (�tncurl + ik�Tn ), with �tn and �Tn re-
spectively the tangential and tangential com-
ponent trace operators (�tn : v 7! n ⇥ v and
�Tn : v 7! n ⇥ (v ⇥ n)). Di↵erent sources and
more general boundary conditions can be con-
sidered without di�culty.

Recent Advances in Optimized Schwarz Domain Decomposition Methods for

Time-Harmonic Wave Problems

Plenary Lecture
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3 Domain Decomposition

We split the domain ⌦ into N
dom

sub-domains
⌦i without overlap. Let us denote �i := � \
⌦i, �1

i := �1 \ ⌦i and ⌃i,j := ⌦i \ ⌦j the
artificial transmission interfaces. The additive
Schwarz domain decomposition algorithm can
be described as follows, at iteration k + 1. For
i = 1, . . . , N , compute u(k+1) solution to

Lu(k+1)

i = f in ⌦i,

Bu(k+1)

i = 0 on �i,

Bi,ju
(k+1)

i = g(k)i,j on ⌃i,j .

(2)

Then for i, j = 1, . . . , N such that i 6= j and
⌃i,j 6= ;, update the interface unknowns accord-
ing to:

g(k+1)

j,i = Bj,iu
(k+1)

i on ⌃j,i. (3)

Detailed expressions for the operators Bi,j in
the case of time-harmonic acoustic and electro-
magnetic wave problems can be found in [12]:
they are respectively of the general form Bi,j =
@ni+S for acoustics and Bi,j = (�tni

curl+S) for
electromagnetics, where S is called the trans-
mission operator.

Thanks to the general form of the operators
Bi,j , in the case of non-overlapping decomposi-
tions the update relation (3) can be rewritten
as

g(k+1)

j,i = Bj,iu
(k+1)

i = �g(k)i,j + 2Su(k+1)

i , (4)

since ni = �nj on ⌃i,j = ⌃j,i.
Considering the full vector of unknowns g =

[g
1,2, g2,1, g2,3, . . . ]T made of all the interface un-

knowns gi,j , one step of the above algorithm can
be summarized as:

g(k+1) = Ag(k) + b, (5)

for some right hand side b. Iteration (5) is
a fixed-point iteration, the solution of which
solves the linear system:

Fg = (I �A)g = b. (6)

In practice (6) is solved using an iterative
Krylov subspace method such as GMRES or
Orthodir, which only requires the application
of the operator F on a given iterate. This ap-
plication involves the solution of the subprob-
lems, and is thus usually made “matrix-free”,
i.e. without explicitly constructing the associ-
ated matrix coe�cients.

4 Transmission Operators

The homogeneous boundary conditions on the
artificial interfaces between the subdomains
can be interpreted as impedance-type bound-
ary conditions. For acoustic waves, the lowest
order transmission operator on a generic arti-
ficial interface ⌃ reads S

IBC(�) := (�ik + �),
where � is a real constant. This is a zeroth-
order polynomial approximation of the half-
plane DtN, which generalizes the original De-
sprés condition [3] (� = 0). Optimized second-
order transmission conditions [9] take the form
S
GIBC(a,b)

:= (a + b�
⌃

), where �
⌃

is the
Laplace-Beltrami operator on ⌃, and a and b
are two complex numbers obtained by solving
a min-max optimization problem on the rate of
convergence. A rational approximation of the
DtN obtained with complex Padé approximants
leads to the transmission operator [1]:

S
GIBC(Np, ↵, ") := �ikC

0

� ik

NpX

`=1

A`

div
⌃

✓
1

k2"
r

⌃

◆✓
I +B`div⌃

✓
1

k2"
r

⌃

◆◆�1

,

This was shown in [1] to lead to quasi-optimal
convergence of the resulting DDM, i.e. to an
optimal convergence for evanescent modes, and
improved convergence for the other modes. A
complexified wave number k" = k + i", with
" a real positive constant, allows to regularize
the operator for grazing modes on the artificial
interfaces. The coe�cients C

0

, A` and B` are
those of a complex Padé approximation of the
square root with a rotation ↵ of the branch cut.

For electromagnetic waves, the zeroth-order
transmission condition is S

IBC(0

:= ik�T , and
optimized second-order transmission conditions
take the form [4,11]:

S
GIBC(a,b)

:= ik
⇣
I +

a

k2
r

⌃

div
⌃

⌘�1

✓
I � b

k2
curl

⌃

curl
⌃

◆
�T ,

where the curl operator is the dual operator of
curl and where a and b are chosen so that an
optimal convergence rate is obtained for the TE
and TM modes. Quasi-optimal convergence of
the DDM can be obtained using a rational ap-
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Figure 1: Unit circular cylinder under TE plane
wave incidence: number of GMRES iterations
vs. wavenumber (5 concentric subdomains, 20
points per wavelength).

proximation of the exact DtN [6,7]:

S
GIBC(Np, ↵, ") :=

ik
⇣
C
0

+

NpX

`=1

A`X (I +B`X)�1

⌘�1

⇣
I � curl

⌃

1

k2"
curl

⌃

⌘
�T ,

with X := r
⌃

1

k2"
div

⌃

� curl
⌃

1

k2"
curl

⌃

, and

where k", C0

, A` and B` are defined as in the
acoustic case. As an example, Figure 1 com-
pares the convergence of the DDM with dif-
ferent transmission conditions when computing
the scattered electromagnetic field by a unit ra-
dius cylinder illuminated by a plane wave. Simi-
lar polynomial or rational approximations of the
DtN can also be obtained for elastic waves; cur-
rent work investigates the properties of the ra-
tional approximation of the DtN proposed in [2].
In all cases, transmission conditions based on
perfectly matched layers (PMLs) can also be
considered, by appending a volume layer to the
transmission interface, in which a PML trans-
formation with a given absorption profile is ap-
plied.

All these methods are referred to as op-
timized Schwarz domain decomposition meth-
ods. Note that GIBC(Np, ↵, ") and PML have
in common that they introduce additional un-
knowns, whereas the other transmission condi-
tions do not. Also, while the polynomial and
rational transmission conditions can be formu-
lated explicitly through sparse surface equa-
tions, the PML conditions require a volume rep-

⌦1 ⌦2 ⌦3 ⌦4 ⌦5 ⌦6 ⌦7

Figure 2: Layered decomposition of the domain,
with one cut.

resentation.

5 Sweeping Preconditioners

In order to obtain scalable algorithms in terms
of the number subdomains, we consider a lay-
ered decomposition of the domain, as depicted
in Figure 2 (⌃i,j 6= ; if |i�j| = 1). We introduce

the forward and backward transfer operators Bf
i

and Bb
i , defined by:

Bf
i : gi,i�1

7�! �2Sui(gi,i�1

, 0)|⌃i,i+1
,

Bb
i : gi,i+1

7�! �2Sui(0, gi,i+1

)|⌃i,i�1
,

where ui(gi,i�1

, gi,i+1

)|⌃ refers to the restriction
on ⌃ of the solution to the subproblem Lui = f
defined by (2). Notice that the forward and
backward transfer operators only involve the so-
lution of subproblems with a nonhomogeneous
impedance boundary condition on one side only
(left or right), since either gi,i�1

or gi,i+1

is set
to 0. We also define the self-coupling operators
Ef
i and Eb

i , defined from an interface to itself:

Ef
i : gi,i�1

7�! gi,i�1

� 2Sui(gi,i�1

, 0)|⌃i,i�1
,

Eb
i : gi,i+1

7�! gi,i+1

� 2Sui(0, gi,i+1

)|⌃i,i+1
.

These operators correspond to the contribution
on an interface of the part of a wave that travels
through the domain and that is reflected back
to its interface of origin.

With these definitions, the matrix corre-
sponding to the Schwarz operator writes:

F(N) =

2

666666666666664

I Ef
2 Bb

2

Eb
1 I 0 0

0 0 I Ef
3

. . .
Bf

2 Eb
2 I

. . .
. . .

Bb
N�1

0 0

0 0 I Ef
N

Bf
N�1 Eb

N�1 I

3

777777777777775

.

Sweeping preconditioners can be con-
structed by looking for approximate inverses
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of this operator. The underlying idea is to
look for approximations that would involve the
same subproblem solves than for the (direct) it-
eration operator: this way a fully matrix-free
preconditioner can be obtained, whose appli-
cation is carried out in a similar fashion to
the original Schwarz iteration, without any pre-
calculation. Neglecting the self-coupling op-
erators E{f,b} leads to the double-sweep (DS)
preconditioner introduced in [13]: the explicit
inverse of the Schwarz operator M�1

DS

can be
built and involves two “sweeps” of subproblem
solves (forward and backward), which can be
done concurrently. Considering the lower and
upper triangular parts of the operator without
neglecting the self-coupling operators leads to a
Symmetric Gauss-Seidel (SGS) preconditioner
M�1

SGS

= L�1

N U�1

N , where both L�1

N and U�1

N also
lead to forward and backward sweeps, which
must however be done in sequence.

With accurate approximations of the DtN,
the number of iterations of the DDM is greatly
reduced with the application of these precondi-
tioners, and remains small even for large num-
bers of subdomains. As each sweep is intrin-
sically sequential, though, the time-to-solution
might not be improved depending on the num-
ber of CPUs available. Two avenues can be ex-
plored to recover scalability: one the one hand,
multiple right hand sides can be pipelined dur-
ing a sweep; and on the other hand, cuts can
be introduced in the sweeping process, in e↵ect
resulting in block versions of the precondition-
ers [14]. Figure 4 illustrates the convergence of
the preconditionned DDM on the cobra model
depicted in Figure 3, with N

dom

= 100 subdo-
mains. Short sweeps (over 10 to 25 subdomains)
already greatly improve convergence: combined
with right hand side pipelining, they allow to ef-
ficiently exploit all the available computational
power on massively parallel computers.

An open source implementation of all the
aforementioned algorithms is available online1

through the GetDDM package [12], which com-
bines the mesh generator Gmsh [10] and the fi-
nite element solver GetDP [5]. All transmission
conditions and preconditioners can be readily
tested on several examples, scaling from a few
thousand to several billion unknowns.

1
http://onelab.info/wiki/GetDDM

Figure 3: Cross-section of the solution of the
cobra model at k = 30⇡ (TE21 mode).
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Figure 4: Cobra model: number of GMRES it-
erations vs. sweep length at k = 100⇡ (100 sub-
domains, 20 points per wavelength).
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Stable implementation of embedding formulae for computation of far field patterns
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Abstract

For problems of time harmonic scattering by
polygonal obstacles, embedding formulae pro-
vide a useful and frequency-independent means
of computing the far field pattern for a large
class of incident fields, given the far field pat-
tern of a small set of canonical problems. The
number of such problems depends only on the
geometry of the scatterer. Whilst the formu-
lae themselves are in principle exact, any im-
plementation will inherit numerical error from
the method used to solve the canonical prob-
lems, leading to relatively large error at certain
points. Here we identify the cause of this prob-
lem, and present an alternative approach which
overcomes this problem.

Keywords: Helmholtz equation, numeri-

cal methods, far field pattern, high fre-

quency

1 Problem statement

We consider the two-dimensional acoustic scat-
tering problem, for a time harmonic plane wave

uiα(x) := e−ik(x1 cosα+x2 sinα), x:= (x1, x2) ∈ R
2

with incident angle α ∈ [0, 2π) and wavenum-
ber k > 0, by an N -sided sound-soft polygon
Ω− with boundary Γ. It follows that the total
solution uα = uiα + usα, where usα denotes the
scattered field, satisfies the Helmholtz equation
with Dirichlet boundary conditions

(∆+k2)uα = 0 in R
2 \Ω− anduα = 0 on Γ,

whilst us must satisfy the Sommerfeld radiation
condition (see, e.g. [2, (1.3)]). An object of in-
terest in practical applications is the far-field
pattern, which describes the distribution of en-
ergy of the scattered field, measured far away
from the scatterer. Formally it is defined by

usα(x) ∼ D(θ,α)
ei(k|x|+π/4)

√

2πk|x|
, as |x| ! ∞,

where D(θ,α) is the far-field coefficient at ob-
servation angle θ, (proportional to [2, (3.63)]).

2 Embedding formulae

Suppose we want to compute the far field coeffi-
cient D(θ,α) for a large range of incident angles
α ∈ [0, 2π). Given the solution for a relatively
small number of canonical problems, the em-
bedding formulae of [1, (3.4)] can do this for
any polygon for which each of the N internal
angles are a rational multiple of π. In the (sim-
pler) case where all N internal angles are equal,
we choose parameters p and q to be the small-
est integers such that q/p = (N + 2)/N , then
solve the problem of §1 and compute D(θ,αm)
for canonical incident angles α1, . . . ,αM , where
M = N(q − 1) depends only on the geometry.
For a square it follows that M = 8, and for a
equilateral triangle M = 12. For general ratio-
nal polygons, p, q and M follow from [1, §3.2].
It follows from [1, (3.4)] that

D(θ,α) =

∑M
m=1

Bm(α)Λ(θ,αm)D(θ,αm)

Λ(θ,α)
,

(1)
for (θ,α) ∈ [0,π)2, where Λ(θ,α) = cos(pθ) −
(−1)p cos(pα) and [Bm]Mm=1 ∈ CM solves the
system of equations

M
∑

m=1

Bm(α)D̂(αn,αm) = (−1)p+1D̂(α,αn),

(2)
for n = 1, . . . ,M , with D̂(θ,α) := Λ(θ,α)D(θ,α).
As explained in [1], for (θ,α) ∈ [0, 2π)2 such
that Λ(θ,α) ̸= 0, the representation (1) can be
evaluated explicitly to obtain D(θ,α). One ap-
plication of L’Hôpital’s rule is required for θ in
Θα := {θ ∈ [0, 2π) : Λ(θ,α) = 0}, with two
applications of L’Hôpital’s rule for θ in

Θ∗ :=

{

θ ∈ Θα :
∂Λ

∂θ
(θ,α) = 0

}

.

3 Numerical implementation

In theory, the formula (1) provides a fast method
to compute the far field pattern of an incident
wave of any angle, given the solution of a small
number (dependent only on the geometry) of
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canonical problems. We now demonstrate how
a naive implementation of (1) can lead to un-
bounded error at certain points. We denote by
PD(·,αm) a numerical approximation toD(·,αm)
for m = 1, . . . ,M , whilst [bm]Mm=1 ≈ [Bm]Mm=1

solves the system (2) with D replaced by PD.
Given the unavoidable error in the numerical
approximation of a polygonal scattering prob-
lem, the absolute error at a given point (θ,α) ∈
[0, 2π)2 is

∣

∣

∣

∑M
m=1

[

Bm(α)D̂(θ,αm)− bm(α)PD̂(θ,αm)
]
∣

∣

∣

|Λ(θ,α)|
.

This representation shows that even for small
numerical error, naive implementation of the
embedding formula leads to large relative and
absolute error at points θ ≈ θ0 ∈ Θα. This is
demonstrated by Figure 1, which shows the rel-
ative error in the embedding formulae for the
problem of scattering by a square of side length√
2, wavenumber k = 1 and incident angle α =

1 measured relative to one side of the square,
using MPSpack (see [3]) as the numerical sovler
P, for a range of degrees of freedom. This nu-
merical instability can be overcome by Taylor
expanding around the θ0 ∈ Θα to which θ is
closest. Truncating after nT terms, our approx-
imation reduces to D(θ,α) ≈

θ − θ0
Λ(θ,α)

M
∑

m=1

bm(α)
nT
∑

n=1

(θ − θ0)n−1

n!

∂n

∂θn
PD̂(θ,αm),

for which the error is provably bounded, pro-
vided θ is not close to θ∗ ∈ Θ∗. By combin-
ing this with a similar approach for the case
where θ is close to θ∗ ∈ Θ∗, one can construct
an implementation of the embedding formulae
for which the absolute error is bounded on all
(θ,α) ∈ [0, 2π)2. This is demonstrated by Fig-
ure 2, which is a correction of Figure 1, solving
the same problem.
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Figure 1: Relative error for naive approach.
Here EPD denotes the naive approximation..
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Figure 2: Relative error for the combined ap-
proach described in §3, we denote the resulting
approximation by E!

P
D.
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Abstract

We consider transverse propagation of electro-
magnetic waves through a two-dimensional com-
posite material containing a periodic rectangu-
lar array of cylindrical inclusions of radius ⇢
and calculate the e↵ective dielectric tensor of
the medium. We assume that the dimensionless
frequency ⌫ 1 while the concentration of the
inclusions is small. The approach is based on
the expansion of the magnetic field in a power
series in terms of a parameter proportional to
the quasimomentum q. As a result we obtain an
explicit expression of the e↵ective tensor with
the accuracy O ⌫4 ⇢4 .

Keywords: wave propagation, e↵ective tensor,
periodic medium

1 Introduction

We consider an infinite periodic rectangular ar-
ray of parallel cylinders of radius ⇢ with the pe-
riods ⌧1 and ⌧2 (see Figure 1) embedded in an
isotropic medium, and ` min ⌧1 , ⌧2 1.
In dimensionless variables, propagation of the
TE mode H 0, 0, u in the xy-plane is de-
scribed by the equation in the rectangle ABCD

1

µ
r " 1ru r ⌫2 u r , r ⇢, (1)

where r x, y , ⌫
!

c
, with the boundary

conditions at r ⇢:

Ju r K 0,

s
1

"

u r

n

{
0. (2)

Here brackets J K denote the jump of the en-
closed quantity across the interface of the cylin-
ders. In addition, u r must satisfy the Floquet-
Bloch condition

u r ⌧ eiq ⌧u r , (3)

where ⌧ is any of the lattice periods, q runs
the primitive cell of the dual lattice and q qq̂
with q̂ cos�, sin� being the unit vector.

For the long waves, u r, q can be represented
in terms of a convergent power series in q

u r, q 1 qu1 r, q̂ q2u2 r, q̂ . . . . (4)

Application of Green’s first identity to (1) gives
the relation between ⌫ and q

⌫2
q2

S
S

1

"µ
ru1 r, q̂ 2 dS . . . . (5)

2 First approximation

Substitution of (4)–(5) into (1) gives a system
of recursive equations. For u1 we have

�u1 r, q̂ 0, r ⇢, (6)

and conditions (2) and inhomogeneous condi-
tions on the boundary following from (3). Sim-
ilar to [1] the solution can be found in the form

uin1
n 0

A
n

z2n 1 B
n

z̄2n 1 , (7)

uex1 ↵1z �1z̄

n 0

1

2n !
C
n

⇣ 2n z D
n

⇣ 2n z̄ , (8)

where z x iy and ⇣ z is the Weierstrass
zeta-function. If we limit ourselves to the first
few terms of the above expressions then

uin1
2"

in

"
in

"
ex

↵ ↵1z �1z̄ O ⇢3 ,

uex1 ↵1z �1z̄ ↵⇢2 �1⇣ z ↵1⇣ z̄ O ⇢4 ,

where

↵1
i

2
e i� ↵⇢2

⌘1
⌧1

cos�
⌘2
⌧2

sin� ,

�1
i

2
ei� ↵⇢2

⌘1
⌧1

cos�
⌘2
⌧2

sin� ,

� is the angle between q̂ and the x-axis, and

↵
"in "ex

"in "ex
, ⌘1 ⇣ 1

2 ⌧1 , ⌘2 ⇣ i
2 ⌧2 , ⌧

k

⌧
k

, k 1, 2.
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Figure 1: Geometry of rectangular lattice of
cylinders of radius ⇢ and the fundamental cell
ABCD.

3 Second and third approximations

The second approximation u2 r is an even func-
tion of z and z̄ and does not contribute to the
average electric field. The third one u3 r should
satisfy

�u3 r u1 r , r ⇢, (9)

conditions (2) and corresponding conditions fol-
lowing from the expansion of (3). The required
solution in the whole rectangle ABCD has the
form

u3
↵1z

2z̄

8

�1zz̄
2

8
↵3z

3 �3z̄
3 w3,

(10)

where ↵3
i

48
e 3i�, �3

i

48
e3i�, and

ABCD

rw3 dS O ⇢2 .

4 The e↵ective tensor

We evaluate the electric field E and dielectric
displacement D by

E
i

⌫"
u
y

, u
x

, D
i

⌫
u
y

, u
x

. (11)

The e↵ective tensor " relates the average val-
ues of E and D over the rectangle ABCD in
Figure 1

D " E . (12)

Using approximation of the fields u1 and u3 we
find

E
q

⌫"
ex

1 ↵f 1 � �q2, 0
0, 1 ↵f 1 � �q2

�1 ↵1

i ↵1 �1
, (13)

D
q

⌫

1 ↵f 1 � �q2, 0
0, 1 ↵f 1 � �q2

�1 ↵1

i ↵1 �1
, (14)

From (12)-(14) we derive the e↵ective tensor

" "
ex

1 ↵f 1 � �q2

1 ↵f 1 � �q2
, 0

0,
1 ↵f 1 � �q2

1 ↵f 1 � �q2

, (15)

where

�
1

⇡
i⌘2⌧1 ⌘1⌧2 , q2 "

ex

⌫2,

�
1

48
⌧21 ⌧22 cos 2� ⌧21 ⌧22 ,

and f ⇡⇢2 ⌧1⌧2 is the volume fraction of the
inclusions. Thus, " depends not only on the
orientation of the lattice but also on the direc-
tion of wave propagation. However, in the case
of square lattice when ⌧1 ⌧2 ⌧ and � 0,
the e↵ective tensor becomes isotropic in our ap-
proximation " " I, where

" "
ex

1 ↵f � "
ex

⌫2

1 ↵f � "
ex

⌫2
(16)

with �
⌧2

24
. It should be noticed that our

result is somewhat di↵erent from that obtained
in [2] using a di↵erent approach.
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Abstract

In wave focusing subsurface geophysical appli-
cations, the recordings at the mirror, situated
on the surface of a half-space, may have to be
time-reversed while flipping the character of the
boundary conditions due to equipment/sensor
limitations. For example, the recording sensors
at the time-reversal mirror may record Dirichlet
data, but the transmitting equipment may be
able to accommodate Neumann data only. Un-
der certain conditions, such flipping may wor-
sen the focusing resolution. We study the re-
lation between the wavefields generated by the
recording-transmitting pairs D

r

-to-D
t

and D

r

-
to-N

t

, and propose a filter to improve the re-
solution imposed by the aforementioned equip-
ment constraints in the D

r

-to-N
t

case.

Keywords: Time-reversal, wave focusing, half-
space, subsurface resolution

1 Introduction

A wave source is located at point (x0, 0, 0) in a
half-space (Fig. 1), and the time-reversal mirror
is on the surface of the half-space. The mirror
is capable of recording either Dirichlet or Neu-
mann data generated by the wave source at x0.
We are interested in the time-reversed field  

generated by time-reversing either the Dirichlet
or the Neumann data; the time-reversed field is
governed by the Helmholtz equation:

div (µ grad ) + ⇢!

2
 = 0, x 2 ⌦ and

= P or N = Q, x 2 �, (1)

where N [ ] = µ grad[ ] · n; x = (x1, x2, x3); µ

is shear modulus; ⇢ is density; and P and Q

are the Dirichlet and Neumann prescribed data,
respectively (Fig. 1). We are interested in as-
sessing the resolution at the source location x0

when the recorded Dirichlet data are time-rever-
sed as Dirichlet data (D

r

-to-D
t

) and when they
are time-reversed as Neumann data (D

r

-to-N
t

).
None of the above time-reversals will result in
perfect focusing: even the D

r

-to-D
t

case will re-
sult in loss of resolution owing to the incomplete

(x0,0,0)
focal point

time-reversal mirror

�

�
x1

x2

x3

Figure 1: Half-space time-reversal wave focu-
sing problem

time-reversal mirror (or the unboundedness of
the physical domain), and the non-reversal of
the source (no sink). Of particular interest to
geophysical applications is the D

r

-to-N
t

case,
whereby geophones record Dirichlet data and
actuators apply Neumann data during the time-
reversal phase [1].

2 Resolution in time-reversal focusing

We consider two cases for the time-reversal pha-
se (D

r

-to-D
t

and D

r

-to-N
t

), as also proposed
in [2] and [3]. Their resolutions, along the depth
direction, are of interest. The resolution in the
D

r

-to-D
t

case, defined as the wavefield support
above half-maximum strength, is, approxima-
tely, 1.1� (Fig. 2(a)). By comparison, the dif-
fraction limit of a closed cavity problem is �/2.
As shown in Fig. 2(b), the resolution of the D

r

-
to-N

t

case is fairly poor, amounting to multiple
wavelengths. Due to practical applications, the
interest is in improving the resolution of the D

r

-
to-N

t

case.

3 Resolution control - filter design

Let g
D

and g

N

denote the Green’s functions for
a half-space, corresponding to homogeneous Di-
richlet or Neumann surface data, respectively.
Furthermore, let p denote the Dirichlet data re-
corded at the mirror, and let u denote the wa-
vefield generated by time-reversing the p data,
i.e., by setting P = p

⇤ in (1), where p

⇤ is the
conjugated p. Then, it can be shown that:

u = (N g

D

, p

⇤)� or û = 2µ
@ĝ

@x

1
p̂

⇤
����
⇠

1=0

, (2)
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Figure 2: Resolution along the depth direction
for cases D

r

-to-D
t

and D

r

-to-N
t

; � = 0.4, x2 =
x

3 = 0

where a caret is used for the doubly Fourier-
transformed function, i.e., (̂·) = F

x

2F
x

3(·);
ĝ(⇠1;x1) = � iei↵|⇠1�x

1|

2↵ , is the full-space Green’s

function, with ↵ =
p
(!/c)2 � k

2 for ! > k and

↵ = i
p

k

2 � (!/c)2 for ! < k; k =
p
k

2
2 + k

2
3,

and, k2 and k3 are the spatial wavenumbers; c =q
µ

⇢

is the wave velocity; and (a, b)� =
R
� ab d�.

Similarly, let v denote the wavefield genera-
ted by time-reversing the p data, when applied
as Neumann data, i.e., Q = µ

x0
p

⇤. Then:

v = �
✓
g

N

,

µ

x0
p

⇤
◆

�

or v̂ = �2
µ

x0
ĝp̂

⇤
����
⇠

1=0

, (3)

In deriving (2) and (3), relations between g

D

,
g

N

and g have been taken into account. Then,
with the aid of the translational symmetry of
the full-space Green’s function g:

N
x

[g
N

(x; ⇠)] = �N
⇠

[g
D

(x; ⇠)] , 8x 2 �, (4)

it follows that:

� x0
@

@x

1
v(x) = x0

@

@x

1

✓
g

N

,

µ

x0
p

⇤
◆

�

= � (N
x

g

N

, p

⇤)� = (N
⇠

g

D

, p

⇤)� = u(x). (5)

We would like for the v field (D
r

-to-N
t

) to have
the resolution of the u field (D

r

-to-D
t

), i.e., a

�-level resolution quality. Therefore, we require
that:

�x0

✓
g

N

,

µ

x0
f (p⇤)

◆

�

= (N g

D

, p

⇤)� = u, (6)

where f(·) is the sought filter to be applied on
the Dirichlet data prior to being time-reversed
as Neumann data. Using

�
@

@x

1 � i↵

�
ĝ = 0 and

(5), it can be shown that:

û =� x0
@

@x

1

✓
�2

µ

x0
ĝp̂

⇤
◆

⇠

1=0

= 2µĝ(i↵)p̂⇤|
⇠

1=0

) f (p⇤) = F�1
x

2 F�1
x

3 [�i↵F
x

2F
x

3p
⇤] . (7)

The filter’s (7) e↵ect, when applied to the D

r

-
to-N

t

case, is shown in Fig. 3.
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1
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x1/x0

Without �lter
With �lter

1.1

Figure 3: Resolution along the depth direction
for case D

r

-to-N
t

with and without filter; � =
0.4, x2 = x

3 = 0

4 Conclusions

A resolution-improving filter was derived that
can be applied in certain time-reversal wave fo-
cusing applications when equipment limitations
enforce a flipping in the character of the boun-
dary conditions between the recording and the
time-reversal phases. The filter is capable of
rendering resolution of order �.
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Abstract

A nonlinear optimization method is proposed
for the solution of inverse scattering problems in
the frequency domain, when the scattered field
is governed by the Helmholtz equation. The
time-harmonic inverse medium problem is for-
mulated as a PDE-constrained optimization prob-
lem and solved by an inexact truncated Newton-
type iteration [1]. Instead of a grid-based dis-
crete representation, the unknown wave speed
is projected to a particular finite-dimensional
basis of eigenfunctions [2], which is iteratively
adapted during the optimization. Truncating
the adaptive eigenspace (AE) basis at a (small
and slowly increasing) finite number of eigen-
functions e↵ectively introduces regularization into
the inversion and thus avoids the need for stan-
dard Tikhonov-type regularization. Both an-
alytical and numerical evidence underpins the
accuracy of the AE representation. Numerical
experiments demonstrate the e�ciency and ro-
bustness to missing or noisy data of the result-
ing adaptive eigenspace inversion (AEI) method.

Keywords: inverse problems, Helmholtz equa-
tion, adaptive eigenspace, regularization

1 Inverse problem

We consider a time-harmonic scattering prob-
lem in unbounded space from a penetrable in-
homogeneity located inside a bounded convex
domain ⌦ ⇢ Rd, d  3. Outside ⌦, the wave
speed c = c0 is known and may vary. Inside
⌦, we perform N

s

illuminations of the medium
with source terms f = f

`

, ` = 1, . . . , N
s

, and
the corresponding scattered field y

`

satisfies the
Helmholtz equation at the frequency ! together
with a Sommerfeld radiation condition at the
boundary � = @⌦, for simplicity:
8
<

:

�!

2
y

`

�r ·
�
c

2ry

`

�
= f

`

in ⌦,
@y

`

@n

� i
!

c0
y

`

= 0 on �.
(1)

Given the measurements y

obs

`

on �, we seek to
reconstruct the squared wave speed u = c

2 in-
side ⌦ such that every solution y

`

of (1) co-
incides on � with the measurements y

obs

`

. We
formulate now the inverse medium problem as a
PDE-constrained optimization problem by con-
sidering the reduced-space misfit functional [3]

F [u] =
1

2

NsX

`=1

ky
`

(u)� y

obs

`

k2
L

2(�). (2)

2 Adaptive eigenspace basis

Usually the unknown u is described by grid-
based point values and hence expanded in a
nodal basis. Here, we instead expand the pa-
rameter u in a basis of global eigenfunctions
{�

m

}
m�1 [2, 4] as

u(x) = u0(x) +
KX

m=1

�

m

�

m

(x), (3)

where �

m

are the first K eigenfunctions of
⇢

�r · (µ(x)r�

m

) = �

m

�

m

in ⌦,
�

m

= 0 on �,
(4)

and the “background” u0 satisfies
⇢

�r · (µ(x)ru0) = 0 in ⌦,
u0 = c

2
0 on �,

(5)

with, in both (4) and (5),

µ(x) =
1p

|ru(x)|2 + "

2
, 8x 2 ⌦, " > 0. (6)

Note that µ depends on the unknown parame-
ter u. In practice, we compute µ from the pre-
vious parameter u during the iterative process,
– see Algorithm below.

We remark that µ essentially coincides with
the gradient of the penalized total variation (TV)
regularization term [5]. Instead of adding a
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Figure 1: Left: uniform starting FE mesh with
30, 534 vertices. Right: exact profile u

Tikhonov regularization term to the objective
functional, the AEI approach projects u to the
basis of eigenfunctions of the gradient of the pe-
nalized TV-regularization functional; hence, the
AE basis inherits similar properties. The choice
of K is crucial to regularize the optimization
problem: at higher eigenvalues �

m

, the AE ba-
sis functions �

m

become increasingly oscillatory
and no longer carry useful information about u,
thus truncating the expansion at K builds reg-
ularization into the AEI approach.

3 AEI Algorithm

To solve the optimization problem, we use trun-
cated Newton-type methods together with stop
criteria [6] and frequency stepping. At each fre-
quency, the eigenfunctions basis is adapted to-
gether with the finite element (FE) mesh.

Algorithm

Input: initial guess u = 1, observations yobs
`

1. Choose K � 1

2. Compute �

m

(4) and u0 (5) with µ ⌘ 1

3. For ! = !1, . . . ,!end do

(a) Solve optimization problem
u := argmin

v2u0+span{�m}
F [v]

(b) Set µ from (6) with current ru

(c) Update K and the FE mesh

(d) Update �

m

(4) and u0 (5)

Output: last updated u

4 Numerical results

We consider the true profile u, shown in Fig. 1,
which mimics a layered material with regions
of di↵erent wave speed. The receivers are lo-
cated on the four lateral boundaries of ⌦ =
(0, 1)⇥ (0, 1). Moreover, nine Gaussian sources
are located at (0.1, 0.8), . . . , (0.9, 0.8). We use a
200⇥200 FE mesh, see Fig. 1, and set the initial
profile u = 1. To avoid any inverse crime, we

Figure 2: Left: reconstruction of u with 20%
noise (L2-error = 5.22%). Right: corresponding
adapted FE mesh with 2, 783 vertices

compute the reference solution on a finer di↵er-
ent FE mesh. Starting at the lowest frequency
! = 8, we use frequency stepping at the fre-
quencies ! = 10, 12, 14, . . . , 90.
The reconstructed profile with only K  360
control variables and the automatically deter-
mined adaptive FE mesh at the end of the adap-
tation process is shown in Fig. 2 for 20% mul-
tiplicative noise on the measurement data. The
AEI approach applies regardless of the underly-
ing optimization or discretization method used.
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Abstract

We describe the theory and practice of Schwarz-
type domain decomposition preconditioners with
local impedance or PML boundary conditions
for solving discretisations of the high-frequency
Helmholtz problem. Preconditioners for the pure
Helmholtz problem can be constructed by ap-
plying the Schwarz algorithm to nearby absorp-
tive problems. We present a new theory which
shows that nearly optimal performance for the
pure Helmholtz problem can be obtained by
solving local impedance problems on the ab-
sorptive problem, provided these are combined
with suitable restriction and prolongation op-
erators and provided the absorption parameter
is properly tuned. We also investigate numer-
ically the benefits of combining these methods
with suitable coarse grid problems.

Keywords: Helmholtz equation, high
frequency, domain decomposition,
local impedance condition, PML

Details of talk

We describe the construction of preconditioners
for Helmholtz-type problems of the form:

��u� (k2 + i")u = f , on ⌦ (1)

on a bounded domain ⌦ with impedance bound-
ary condition

@u

@n
� i⌘u = g on �, (2)

where � is the boundary of ⌦, " 2 R ia an
absorption parameter and ⌘ may depend on ".
Our aim is to solve the “pure Helmholtz prob-
lem” with " = 0 using, as preconditioner, some
(hopefully) cheap approximation of the absorp-
tive problem (" 6= 0), for some carefully chosen
". Ideally we seek a robust method for the pure
Helmholtz equation, where the number of GM-
RES iterations is bounded with respect to k.

A similar strategy is used in the “shifted
Laplace” preconditioner [3], where the chosen
approximation of the absorptive problem is the
multigrid V�cycle. Here, in order to make the
multigrid method work well for the absorptive
problem, a rather large choice of " (typically " ⇠
k2) is usually made. This choice is in a certain
sense necessary [2] and it guarantees that the
absorptive problem is uniformly coercive inde-
pendent of k (see, e.g. [5]). However this choice
also means the underlying absorptive problem
supplying the preconditioner is quite far away
from the pure Helmholtz problem which is be-
ing preconditioned. In fact, for the absorptive
problem (without approximation) to be a good
preconditioner for the pure Helmholtz problem
we require " ⇠ k [4]. Substantial improvement
of the robustness of the shifted Laplace precon-
ditioner has been obtained by applying deflation
techniques [8].

An advantage of domain decomposition prob-
lems is that elliptic technology (like classical
multigrid or Schwarz methods using local Dirich-
let problems) can be replaced by more wave-
friendly techniques (using various types of ab-
sorptive boundary conditions), and there is a
large literature on these methods (e.g. [7]). In
the talk we present a new theory for additive
Schwarz domain decomposition methods on over-
lapping subdomains where local problems are
taken to have impedance (first order absorbing)
boundary conditions. An important ingredient
is the use of global to local restriction operators
obtained by the action of a suitable partition
of unity. We shall show that this method yields
a robust preconditioner for the absorptive prob-
lem when the absorption is of the form " ⇠ k1+�

with � > 0, but � can be taken arbitrarily small.
Thus, combining this with the results in [4] we
have a near robust solver for the pure Helmholtz
equation. The details of this new theory will be
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in [1].
The subdomains in this near robust solver

can get quite large. We combine the local solves
with various choices of multilevel approximation
and investigate the best combination of meth-
ods to yield good parallel e�ciency. Related
experiments are in [6].
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Abstract

Local adaptivity and mesh refinement are key
to the e�cient simulation of wave phenomena
in heterogeneous media or complex geometry.
Locally refined meshes, however, dictate a small
time-step everywhere with a crippling e↵ect on
any explicit time-marching method. In [1] a
leap-frog (LF) based explicit local time-stepping
(LTS) method was proposed, which overcomes
the severe bottleneck due to a few small ele-
ments by taking small time-steps in the locally
refined region and larger steps elsewhere. Here
convergence (in the PDE sense) of the LTS-LF
method is proved when combined with a stan-
dard conforming finite element method (FEM)
in space. Numerical results further illustrate
the usefulness of the LTS-LF Galerkin FEM in
the presence of corner singularities.

Keywords: finite element, leap-frog, multirate
methods, local time-stepping

1 Introduction

We consider the classical wave equation

utt �r · (c2ru) = f in ⌦⇥ (0, T ) (1)

u|t=0 = u0 ut|t=0 = v0 in ⌦, (2)

where ⌦ denotes a bounded domain in Rd, f

a (known) source and u0, v0 prescribed initial
conditions. The speed of propagation, c = c(x),
is assumed piecewise smooth and strictly posi-
tive. At the boundary, we impose appropriate
boundary conditions for well-posedness.

For the spatial discretization of (1), we con-
sider a conforming finite element (FE) method
with mass-lumping. For the time discretiza-
tion, we opt for the leap-frog based local time-
stepping (LTS-LF) method to circumvent the
bottleneck caused by the overly stringent CFL
condition in the presence of local refinement
[1–3]. Hence we split the mesh into a ”coarse”
and a ”fine” sub-region with mesh size h and

hf, respectively. During each time-step �t in-
side the ”coarse” region, we use p time-steps of
smaller size �⌧ = �t/p inside the ”fine” region,
where p ' h/hf — see [1] for details.

Despite the many di↵erent explicit LTS meth-
ods that were proposed and successfully used
for wave propagation in recent years – see [4]
and references therein –, a rigorous space-time
convergence theory (in the PDE sense) is still
lacking.

To develop a general convergence theory for
explicit LTS methods, we first define finite-dim-
ensional restriction operators to the ”fine” grid
and formulate the leap-frog (LF) based LTS me-
thod from [1] in a Galerkin conforming finite el-
ement setting. Next, we prove continuity and
coercivity estimates for the LTS operator that
are robust with respect to the number of local
time-steps p, provided a genuine CFL condition
is satisfied. Here, new estimates on the coe�-
cients that appear when rewriting the LTS-LF
scheme in ”leap-frog manner” play a key role.
Those estimates pave the way for the stabil-
ity estimate of the time iteration operator, for
which we then prove a stability bound indepen-
dently of p.

Due to the local restriction, however, a ju-
dicious splitting of the iteration operator and
its inverse is required to avoid negative pow-
ers of h via inverse inequalities. By combin-
ing our analysis of the semi-discrete formula-
tion, which takes into account the e↵ect of lo-
cal time-stepping, with classical error estimates,
we eventually obtain optimal space-time conver-
gence rates.

Let uh denote the fully discrete Galerkin so-
lution with continuous piecewise polynomial fi-
nite elements of order `. Under standard smooth-
ness assumptions on the solution u of (1)–(2),
we rigorously prove that for �t, h ! 0:

ku� uhkL1([0,T ];L2(⌦))  C(1 + T )(h`+1 +�t

2),



WAVES 2017, Minneapolis

Figure 1: Computational mesh with two lev-
els of local refinement. The ”fine” region (in
green) always corresponds to the innermost 30
elements.

where the constant C depends only on u, but
not on h, �t, p or T .

2 Numerical experiment

We consider (1)–(2) in an L-shaped domain ⌦,
shown in Fig. 1, and set c = 1, f = 0 and the
final time T = 1. Next, we impose homogeneous
Neumann conditions on the boundary. For the
spatial discretization we opt for P2 continuous
finite elements with mass lumping.

First, we partition ⌦ into equal triangles
of size hinit. Towards the re-entrant corner,
we then locally refine the mesh by subdividing
twice the three elements nearest to the corner
– see Fig. 1. Hence the mesh refinement ratio,
that is the ratio between smallest elements in
the ”coarse” and the ”fine” regions, in the re-
sulting mesh is 4:1. We therefore choose a four
times smaller time-step �⌧ = �t/p with p = 4
inside the ”fine” region.

Clearly, this time-stepping strategy, albeit
local, is not optimal as the region of local mesh
refinement itself contains a sub-region of even
smaller elements. Thus, any local time-step will
again be overly restricted due to even smaller
elements inside the ”fine” region. To remedy
the repeated bottleneck caused by hierarchical
mesh refinement, multi-level local time-stepping
methods were proposed in [2, 3], which permit
the use of the appropriate time-step at every
level of mesh refinement. For simplicity, how-
ever, we restrict ourselves here to the original
(two-level) LTS-LF scheme from [1].

In Fig. 2 we compare the runtime of the

1 2 3 4 5 6 7

Number of refinements

1

2

3

4

5

6

7

8

C
P

U
 t

im
e

s
 (

in
 s

)

LTS-LF

LF

Figure 2: Comparison of run times between
LTS-LF and standard LF vs. number of global
refinements, with constant coarse/fine mesh size
ratio p = 4.

LTS-LF method on a sequence of meshes with
the runtime of a standard LF scheme with a
time-step �t/4 throughout the entire domain.
As expected, the LTS-LF method is faster than
the standard LF scheme, in fact increasingly so,
as the number of refinement levels increases. In-
deed, as the number of degrees of freedom inside
the ”coarse” region grows much faster than in
the ”fine” region, the use of local time-stepping
becomes increasingly beneficial.
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Impedance-Preserving Discretization for Modeling Unbounded Domains
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Abstract

The talk will contain an exposition of the work
over the past decade by the author and his col-
laborators on modeling wave propagation in un-
bounded domains. Key to the e↵ectiveness of
many developed methods is the special property
of midpoint integration completely eliminating
the discretization error in half-space impedance
that arises from linear finite element discretiza-
tion. Impedance preserving discretization com-
plements the method of perfectly matched lay-
ers, where impedance preservation is central to
its e↵ectiveness. In this talk, we briefly explain
the idea of impedance preserving discretization,
and show that the midpoint integration is also
critical to developing absorbing boundary con-
ditions for more complicated situations with dif-
fering signs of phase and group velocities, e.g.
anisotropic and periodic media.

Keywords: Absorbing Boundary Conditions,
Perfectly Matched Layers, Impedance Matching

1 Introduction

The idea of perfectly matched layers (PML), in-
troduced first by Berenger in 1994 and reinter-
preted in terms of complex coordinate stretch-
ing by Chu and coworkers, has transformed the
way unbounded domain modeling has been per-
formed. While related sponge/damping layer
methods took a backseat to the methods based
on rational approximations till that time, the
elegant idea of matching the impedance solved
the crucial problem of the reflections at the in-
terface of interior and the damping layers. Un-
fortunately, numerical discretization of PML re-
sulted in loss of perfect impedance matching,
requiring care with respect to the choice of the
decay functions and discretization.

The impedance preserving discretization in-
troduced by the author and coworkers has mit-
igated this limitation, facilitating e�cient dis-
cretization of PML. Specifically, we have shown
that a simple midpoint integration can com-
pletely eliminate the discretization error intro-
duced by linear finite element discretization in

capturing the half-space impedance. Thus, the
PML region is perfectly matched even after dis-
cretization, leading to the name perfectly matched
discrete layers (PMDL).

Interestingly, PMDL is shown to result in ra-
tional approximation of the half-space impedance,
making the link to a large class of absorbing
boundary conditions (ABCs) built on many in-
novative ideas over the past four decades. In
fact, we have shown that PMDL is intimately
linked to Higdon’s multidirectional absorbers,
which were already shown to be optimal ratio-
nal approximants of half-space impedance.

2 Impedance preserving discretizations

Consider the di↵erential equation,

The exact impedance, or equivalently the dy-
namic sti↵ness relation can be derived as,

Now consider the half-space discretized with lin-
ear finite elements of equal length L. The sti↵-
ness of the discretized half-space can be derived
by noting that adding a single finite element to
the discretized half-space results in a composite
half-space identical to the original half-space.
This results in a recursive relation,

where, [A, B; B, A], is the 2x2 sti↵ness of the
single finite element. The discretized impedance
is thus given by,

Linear finite element discretization of (2) fol-
lowed by exact integration results in,

which in turn results in an approximation of
the exact half-space sti↵ness in (3), with the
error that is second order in L, as expected from

�Ad

2

u

dx

2

+ Cu = 0. (1)

Adu

dx

=
p
ACu = K

exact

u. (2)

⇢
K

disc

u

0

0

�
=


A B

B A+K

disc

�⇢
u

0

u

1

�
,

(3)

K

disc

=
p
A

2 �B

2

. (4)

A = A/L+ CL/3, B = A/L+ CL/6, (5)
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linear finite element discretization.

Now consider a simple modification of the
above procedure. If the element sti↵ness ma-
trix is computed not with exact integration, but
with approximate midpoint integration, we get,

When (6) is substituted in (4), we get,

In other words, the error introduced by approx-
imate midpoint integration exactly nullifies the
error due to the finite element discretization.
This simple observation led to significant im-
provements in unbounded domain modeling as
outlined in the remainder of the summary.

3 Consequences of midpoint integration

Firstly, we note that while impedance preserv-
ing discretization is illustrated with the help of
a simple di↵erential equation (1), the idea is
applicable to situations where A, C are compli-
cated di↵erential operators [1]. Thus the idea
of impedance preserving discretizations is for-
mally applicable to complicated media includ-
ing elastic, viscoelastic and anisotropic media.
It must however be noted that the idea applies
only when A, C are independent of x, indicating
that the material properties must be invariant
in the direction of the unboundedness.

The e↵ectiveness of PMDL was easily real-
ized for Helmholtz equation and time-domain
wave equation in a relatively straightforward
manner, requiring only some attention to time-
stepping schemes [2-4]. In fact, PMDL is shown
to be e↵ective not only for rectangular corner
regions, but also for any convex computational
boundaries [4]. Similar success is achieved for
homogeneous elastic full- and half-spaces. In
fact, given its equivalence to rational ABCs,
PMDL provided an e↵ective way of deriving
and implementing high order rational ABCs for
more complicated wave equations and to corner
regions.

Care however must be exercised when ana-
lyzing more complicated media due to the pres-
ence of back propagating wave modes that have
opposing signs of phase and group velocities.
These include anisotropic acoustic and elastic
media, as well as isotropic elastic media with
layering. Back propagating waves are well-known
to be problematic in the context of PML given

that they result in artificial growth in PML re-
gion. Development of rational ABCs for these
cases have been sparse.

It turns out that PMDL o↵ers solutions to
the some of the di�cult cases of back propa-
gating waves. Two ideas play a central role in
this regard, both hinged on the choice of PMDL
lengths: (a) choosing the lengths such that the
decay of the reflected waves in the PMDL region
is stronger than the growth of the incident wave
– such choice appears to be e↵ective in model-
ing elliptic anisotropic media, both acoustic and
elastic [5]; (b) pairwise choice of PMDL param-
eters that seem to be e↵ective in significantly
more complicated case of non-elliptic anisotropy
[6]. It appears that both these ideas are e↵ec-
tive only if midpoint integration is utilized. Any
disruption of impedance preservation appears to
lead to numerical instabilities.

Another contribution facilitated by PMDL
is that impedance preservation is made possible
for periodic media, where regular PML ideas
are no longer applicable. In such cases, we de-
veloped the concept of equivalent impedance
matching continuous media, where PMDL ideas
can be e↵ectively used [7], although care must
be exercised to ensure stability of resulting schemes.
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Abstract

In this paper we present a numerical scheme for
the wave kinetic equation, based on the theory
of jump Markov processes. The scheme is im-
plemented in WKBeam, a code which describes
electromagnetic wave beams in realistic nuclear
fusion devices, accounting in particular for the
e↵ect of density fluctuations due to plasma tur-
bulence.

Keywords: wave kinetic equation, jumpMarkov
process, turbulent plasma

Introduction

For the specific case of wave beams, the wave
kinetic equation (WKE) [1–3] takes the form

{H
↵

, w
↵

} = �2�
↵

w
↵

+ S
↵

({w
�

}) , (1)

H
↵

w
↵

= 0, (2)

w
↵

|⌃ = w0
↵

, (3)

which can be derived from Maxwell equations in
the semiclassical limit  = !L/c ! 1 [4]. Here
! is the frequency of the beam, L the charac-
teristic length of variation of the medium and c
the speed of light. In order for the equation to
hold, the medium has to be weakly dissipative
and the Born scattering approximation must be
valid. The equation is defined in the geometri-
cal optics phase-space (x,N) 2 R3⇥R3, with x
the position and N the refractive index vector,
and its solution is the Wigner function of the
wave electric field w = {w

↵

}, decomposed on
the polarization basis.

The Poisson brackets on the left-hand side of
(1) are defined as {u, v} = @

N

u@
x

v � @
x

u@
N

v,
and H

↵

are the geometrical optics Hamiltoni-
ans. From (2) we deduce that a non-trivial
solution of (1)-(3) is supported on the disper-
sion surface {H

↵

= 0}, which is a closed set,
and therefore (1) must be posed in weak sense.
More specifically, we look for measure-valued
solutions, that have the meaning of a phase-
space energy density of the wave. Equation (3)
provides boundary conditions on a hypersurface

⌃. On the right-hand side of (1), the first term
accounts for dissipation, while the operator S

↵

describes scattering due to fluctuations of the
medium, and it reads:

S
↵

{w
�

} =
X

�

S
↵�

w
�

� ⌃
↵

w
↵

,

where the operator S
↵�

acts on measures as

S
↵�

w
�

=

Z

Rd
�
�↵

(x,N 0, dN)w
�

(dx, dN 0),

and ⌃
↵

(x,N) =
P

�

R
Rd �

↵�

(x,N, dN 0). In par-
ticular, the cross section �

↵�

(x,N, dN 0) is re-
lated to the probability of transition from the
state (x,N,↵) to the state (x,N 0,�).

In order to solve (1)-(3), we look for weak
solutions of the auxiliary Cauchy problem

8
<

:

@u
↵

@t
+ {H

↵

, u
↵

} = �2�
↵

u
↵

+ S
↵

{u
�

},

u
↵

|
t=0 = u0

↵

,
(4)

with initial condition u0
↵

chosen such that, at
least formally, w

↵

=
R
u
↵

dt satisfies (1)-(3).

Relevant stochastic process

We consider a jump Markov process

{X(t),N (t), a(t); t � 0} ✓ Rd ⇥ Rd ⇥ E,

where E is a finite set. In the proposed ap-
plication X, N and a represent the position,
momentum (refractive index) and polarization
mode, respectively. To characterize the process
we need:
- A bounded and positive-definite function � :
Rd ⇥ Rd ⇥ E ! R;
- A family of probability measures

{⇧(x,N,↵; dN 0,�), (x,N,↵) 2 Rd ⇥ Rd ⇥ E}.

We extract then a sequence 0  T0 < T1 <
. . . < T

n

of “times of jump” from a Poisson
distribution of parameter �̄ = sup�, and evolve
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the particles as follows:
- Between two jumps a(t) is constant and

⇣
Ẋ(t), Ṅ (t)

⌘
= b (X(t),N (t), a(t)) ;

- At the times of jump the variables N (t) and
a(t) are modified, according to the transition
semigroup

Q
t

= e��t

X

n>0

(�t)n

n!
⇧n,

where ⇧n denotes the n-fold convolution of the
measure ⇧.

Theorem 1 The infinitesimal generator of the

described process acts on f 2 C1
b

(Rd ⇥ Rd ⇥ E)
as Af = b ·rf + � [J f � f ] , where

J f(x,N,↵) =
X

�2E

Z

Rd
f(x,N 0,�)

⇥⇧(x,N,↵; dN 0,�).

By standard results [5], we know that the prob-
ability density u(t, dx, dN,↵) of the process sat-
isfies the Fokker-Planck equation (in weak form)

u(t, f) = u0(f)+

Z
t

0
u(s,Af)ds, 8f 2 C1

b

. (5)

We denote by A⇤f = �r·(bf)+J (�f)��f the
formal adjoint of A. When u is absolutely con-
tinuous with respect to the Lebesgue measure,
and its Radon-Nikodym derivative p is C1, (5)
is equivalent to @

t

p+A⇤p = 0.

Application to the WKE

For a measure-valued solution, the Cauchy prob-
lem (4) can be written in the form (5), where
u(t, dx, dN,↵) = u

↵

(t, dx, dN), f(t, x,N,↵) =
f
↵

(t, x,N) and:
- Advecting field

b(x,N,↵) = (@
N

H
↵

(x,N),�@
x

H
↵

(x,N))t .

- Total cross-section �(x,N,↵) = ⌃
↵

(x,N);
- Probability measures

⇧(x,N,↵; dN 0,�) =
�
↵�

(x,N, dN 0)

⌃
↵

(x,N)
.

If u
↵

is absolutely continuous with respect to
the Lebesgue measure, A⇤u

↵

= �{H
↵

, u
↵

} +
S
↵

{u
�

}, which can be compared with (1). As a

consequence of the specific form of �
↵�

encoun-
tered in the physics modeling, condition (2) is
automatically satisfied.

The interpretation of the WKE as a Fokker-
Planck equation allows us to build the follow-
ing numerical scheme: A numberN

m

of markers
{X

i

(0),N
i

(0), a
i

(0)}
i=1,...,Nm are sampled accord-

ing to (2) and (3); markers are evolved accord-
ing to the described procedure. This provides a
solution of (4) for �

↵

= 0. Absorption is then
introduced by weighting each marker with the

weight exp
⇣
�2

R
t

0 �↵dt
0
⌘
. Convergence of the

scheme was verified in a 1d ⇥ 1d test model,
before implementing it in WKBeam [4, 6], a code
which describes beams in turbulent plasmas ac-
counting for realistic tokamak parameters. An
example of application is shown in Figure 1.

Figure 1: Scattered beam in a tokamak (ITER),
poloidal plane zoom. Plasma electron-density
fluctuations determine a severe broadening of
the beam, and the formation of an undesired
reflected branch.
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Abstract

Willis [3] proposed e↵ective constitutive rela-
tions applicable to the mean wave motion in
composites with periodic microstructure. The
focus of this work is to represent Willis’ (e↵ec-
tive) constitutive relations using an eigensystem
approach and to explore its asymptotic behav-
ior within the first Brioullin zone.
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1 Introduction

Consider the time-harmonic scalar wave equa-
tion

�!2⇢(x)u�r · (G(x)ru) = f in Rd

where d = 1, 2, 3, while G(x) and ⇢(x) are the
shear modulus and mass density that are real-
valued L1 functions bounded below away from
zero. In what follows, G(x) and ⇢(x) are taken
to be Y -periodic with Y = {x

j

: 0 6 x
j

<
`
j

; j = 1, d}.
Next, consider the Bloch-wave solutions of

the form u(x) = ũ(x)e�ik·x, where ũ is Y -periodic
and depends implicitly on k and ! which are
hereon assumed to be fixed. If further the ex-
citation of a medium is taken in the form of (i)
plane-wave body force f(x) = f̃(x)e�ik·x and
(ii) eigenstrain field � = �̃(x)e�ik·x [3] where
both f̃ and � are Y -periodic, one has

�!2⇢(x)ũ�rk ·
�
G(x)(rkũ� �̃)

�
= f̃ in Y, (1)

where rk = r + ik. In this case the relations
between stress, momentum, strain and velocity
read

"̃ = (r+ ik)ũ, p̃ = �i!⇢ũ, (2)

�̃ = G("̃� �̃), ṽ = �i!ũ. (3)

The scalar wave equation (1) can then be
written as rk · �̃ + f̃ = �i!p̃. Averaging over
Y yields the e↵ective equation

ik · h�̃i+ hf̃i = �i!hp̃i, (4)

where h·i denotes the average of an L1(Y ) func-
tion in Y . In this setting, the goal is to obtain
the counterpart of (2) and (3) in terms of the
mean fields and to expose their asymptotic be-
havior when |k| and ! are small.

2 Eigensystem representation of e↵ec-

tive constitutive relations

To derive Willis’ e↵ective constitutive relations,
one may conveniently assume [3] that f̃ and �̃
in (1) are constants. Next, let {�̃

n

, �̃
n

} denote
the eigensystem that satisfies

�rk ·
⇣
G(x)rk�̃n

⌘
= �̃

n

⇢ �̃
n

in Y,

where {�̃
n

} are complete and orthonormal in
L2
⇢

(Y ). In this section, we assume that �̃
n

6= !2.
The e↵ective fields can be shown to satisfy


h�̃i
hp̃i

�
=

"
C̃

e �S̃
e⇤

S̃
e

⇢̃e

# 
h"̃� �̃i
hṽi

�
, (5)

where C̃
e

= C̃
e⇤
, ⇢̃e = ⇢̃e⇤ and

C̃
e

= hG
⇣
rk ⌦ Ã+ I

⌘
i,

S̃
e

= h�i!⇢Ãi,
⇢̃e = h⇢� i!⇢B̃i.

Here Ã and B̃ are represented by (providedP1
n=1 ãnh�̃n

i 6= 0)

Ã =
1X

n=1

ã
n

P1
n=1 b̃nh�̃n

i
P1

n=1 ãnh�̃n

i
� b̃

n

!
�̃
n

,

B̃ = � 1

i!

� 1X

n=1

ã
nP1

n=1 ãnh�̃n

i
�̃
n

� ik · Ã� 1
�
,

where

ã
n

=
(1, �̃

n

)

�̃
n

� w2
, b̃

n

=
(G,rk�̃n

)

�̃
n

� w2
.

C̃

e

and ⇢̃e are respectively the e↵ective elas-
ticity tensor and mass density in the Fourier
(k,!) space, and S̃

e is the corresponding cou-
pling vector – which together via (5) specify the
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non-local constitutive relationship in Rd. Note
that the e↵ective field equation (4) and Willis
constitutive relations (5) yield

Z̃ehũi = f̃ � ik · (C̃eh�̃i)� i!S̃e · h�̃i

where the e↵ective impedance is given by

Z̃e = �ik · (C̃eik) + ik · (S̃e + S̃

e⇤)i! � !2⇢̃e,

and it can be represented by

Z̃e =
1X

n=1

(1, �̃
n

)h�̃
n

i
�̃
n

� !2

!�1

.

3 Properties of e↵ective constitutive re-

lations and e↵ective impedance

When the eigenvalue �̃
n

has multiplicity one,
one can conveniently study the e↵ective consti-
tutive relations as !2 ! �̃

n

.

a. Non-degenerate case: h�̃
n

i 6= 0, 8n. If
�̃
n

6= !2, then all e↵ective properties are well-
defined. If !2 ! �̃

n

, a direct calculation shows
that the e↵ective constitutive relations are well-
defined provided h�̃

n

i 6= 0, 8n.
b. Exceptional case: h�̃

n

i = 0. If h�̃
n

i 6=
0 for given n and fixed k, then Z̃e ! 0 as !2 !
�̃
n

. Hence the e↵ective impedance captures the
Bloch pair (k, �̃

n

). On the other hand if h�̃
n

i =
0 for given n, then the e↵ective impedance fails
to capture the Bloch pair (k, �̃

n

), see also [1].
In particular, if h�̃

n

i = 0, then the Bloch eigen-
function �̃

n

has zero mean. It is not possible
to observe this Bloch pair when one is only ca-
pable of capturing the mean motion a physical
experiment.

If the eigenvalue �̃
n

has multiplicity more
than one, one is still able to study the excep-
tional and non-degenerate cases as !2 ! �̃

n

but in a rather complicated form.

4 Asymptotics of e↵ective impedance and

e↵ective constitutive relations

We consider the long-wavelength, low-frequency
asymptotics of the e↵ective impedance. We as-
sume that ! = ✏!̂ and k = ✏k̂, where ✏ ⌧ 1 and
k̂ is a fixed Bloch wave vector.

In particular, one can show that

Z̃e = Z̃e

4 +O(✏5),

where the O(✏4) approximation Z̃e of the e↵ec-
tive impedance satisfies

M̃

e
4 Z̃

e
4 = ⇢0!

2 + µ0 : (ik ⌦ ik) + !

2⇢1 · ik

+µ1 : (ik ⌦ ik ⌦ ik) + !

2⇢2 : (ik ⌦ ik)

+µ2 : (ik ⌦ ik ⌦ ik ⌦ ik),

where the coe�cient ⇢0, vector ⇢1, and tensors
µ0,µ1,µ2 and ⇢2 are exactly the same as their
counterparts in [2] obtained via the multiple-
scales homogenization approach, while M̃ e

4 is a
polynomial in (k,!). This implies that one will
have to modify the body force in the second
order homogenized wave equation in order to
bear physical relevance.

The leading-order expansions of ⇢̃e, C̃e and
S̃

e read

⇢̃e = ⇢0 +O(✏),

C̃

e = µ0 +O(✏),

S̃

e = O(✏).

Higher order expansions of e↵ective density, ef-
fective moduli and e↵ective couplings can be ob-
tained similarly.

5 The case of constant mass density

In the case that the mass density ⇢ is a constant,
the e↵ective mass density and e↵ective coupling
are constants, in particular

⇢̃e = ⇢, S̃

e = 0.

6 Discussion

To bear physical relevance, we consider Willis
e↵ective constitutive relations for pairs (k,!)
where k lies in the first Brillouin zone and !
is limited to the acoustic branch. In princi-
ple, however, the eigenfunction expansion ap-
proach adopted here has an advantage in that
it can be also applied to (higher-frequency) op-
tical branches.
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Abstract

Complete radiation boundary conditions (CRBC)
are local boundary condition sequences optimized
for models related to the scalar wave equation,
such as Maxwell’s equations in nondispersive di-
electrics. Here we consider their generalization
to electromagnetic waves in dispersive media
governed by Lorentz models. If only the permit-
tivity is frequency-dependent, parameters can
be chosen to guarantee rapid convergence with
increasing order. For metamaterials, on the other
hand, where both the permittivity and the per-
meability are frequency-dependent, so-called re-
verse modes exist and parameters for the stan-
dard CRBC cannot be chosen to guarantee con-
vergence. Here we show how to modify the for-
mulation so that convergence can be restored.

Keywords: Radiation conditions, dispersion

Introduction

As the radiation of energy to the far field is
typical in wave propagation problems, efficient
numerical simulation tools require accurate and
reliable techniques for truncating the computa-
tional domain. Complete radiation boundary
conditions (CRBC), introduced in [1], provide
such a technique for the scalar wave equation
and related systems, including Maxwell’s equa-
tions in isotropic dielectric media. Central to
the formulation of CRBC is the evolution of a
sequence of auxiliary fields, φj , defined implic-
itly by recursions:

a2j−1

∂φj−1

∂t
+ c

∂φj−1

∂n
+ σ2j−1φj−1 =

a2j
∂φj
∂t

− c
∂φj
∂n

+ σ2jφj ,

where the parameters aj , σj , are chosen to op-
timize an error bound.

Introducing the dimensionless parameter η =
δ
cT , where δ is the separation of any sources or
scatterers from the radiation boundary and T
is the simulation time, we prove that parame-
ters can be chosen so that the reflection error
can be made less than any tolerance τ using

P ∝ ln τ · ln η auxiliary fields. Optimal parame-
ters are easily computed using the Remez algo-
rithm. A library of implementations of CRBC
for Maxwell’s equations called rbcpack1 is be-
ing released. As of now it contains a module
for the Yee scheme [2], but implementations us-
ing discontinuous Galerkin and high order dif-
ference methods have been tested and will be
made available in future versions.

Dispersive Models

Now consider Maxwell’s equations in an isotropic
dispersive medium:

ϵ0 (1 +Ke∗)
∂E

∂t
= ∇×H,

µ0 (1 +Km∗) ∂H
∂t

= −∇× E.

Here we assume Lorentz models for the tempo-
ral convolutions; precisely with s the Laplace
transform variable dual to time we suppose

K̂e =
ω2
e

s2 + γes+ Ω2
e
, K̂m =

ω2
m

s2 + γms+ Ω2
m
.

The Drude model has Ωe = Ωm = 0, and dissi-
pation is absent if γe = γm = 0.

The analysis and optimization of the CRBC
parameters is performed in the Fourier-Laplace
domain. Take k dual to the transverse spatial
variables and s dual to time with ℜs = T−1. Er-
ror estimates on this contour up to time T follow
from Parseval’s Theorem. Outgoing waves are
proportional to:

e−λx, λ =

(

s2

c2
0

(

1 + K̂e

)(

1 + K̂m

)

+ |k|2
)1/2

,

where the branch is chosen so that ℜλ > 0,
encoding group velocity of the correct sign. The
error is then controlled by the scaled reflection
coefficient

ρ = e−λδ
∏ ajs+ σj − c0λ

ajs+ σj + c0λ

1www.rbcpack.org
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Consider first K̂m = 0. Then there are no
reverse modes, corresponding to the condition
ℑs · ℑλ ≥ 0. Choosing aj , σj nonnegative each
of the factors determining ρ has modulus below
1, which allows us to achieve rapid convergence.
To compute parameters in general we have, as
a first try, solved an ad hoc optimization prob-
lem for an average value of |ρ|2, estimated on a
mapped frequency domain,

(ℑs, k) = ((1 + z)/(1− z))(cos θ, sin θ),

using a Gaussian quadrature rule with 100×100
nodes in (z, θ), and MATLAB’s fmincon to de-
termine the parameters. As an example, set-
ting δ = 0.1 and T = 20 with c0 = 1, we
take P = 4, 6, 8. We consider a nondissipative
Drude model ω2

e = 4, which can be optimized
directly with the Remez algorithm, add dissipa-
tion, γe = 10−3, and a nondissipative Lorentz
model setting Ω2

e = 2. For the Drude models ρ̄
varies from 2.1× 10−3 to 3.9× 10−4, with very
little difference in the dissipative and nondissi-
pative cases. Results show some degradation in
accuracy for the Lorentz model, ρ̄ varying from
6.0× 10−3 to 1.5× 10−3, but clearly the CRBC
is still quite efficient in that case. We do find
substantial differences in the optimal parame-
ters between the Drude and Lorentz models.

We now consider a metamaterial where both
the permittivity and the permeability are gov-
erned by the Drude model. The material has
a negative index of refraction for frequencies
where both 1+K̂e and 1+K̂m are negative. For
such frequencies there are reverse modes. It is
well-known that in such circumstances the stan-
dard construction of Perfectly Matched Layers
(PML) fails [3], while for CRBC we are unable
to ensure that the imaginary parts of the de-
nominators in the definition of ρ are larger than
those in the denominator, spoiling convergence.

In [4] the authors show how to modify PML
to regain stability and accuracy. Their idea is
to alter the sign in the so-called complex grid
stretching to conform to the sign of the group
velocity. Here we adapt their idea to CRBC; in
Laplace variables this corresponds to multiply-
ing aj by a term with certain sign properties.
In real space the recursions become:

a2j−1 (1 +Kc∗)
∂φj−1

∂t
+ c

∂φj−1

∂n
+ σ2j−1φj−1 =

a2j (1 +Kc∗)
∂φj
∂t

− c
∂φj
∂n

+ σ2jφj .

To ensure |ρ| < 1 we require for ℜs > 0

ℜ(s(1 + K̂c)) > 0, ℑ(s(1 + K̂c)) · ℑλ ≥ 0.

For the Drude models these conditions are sat-
isfied if we make the simple choice K̂c =

ωeωm
s2 .

We carried out the optimization procedure
for the same cases as above with ω2

e = 4, ω2
m =

3. Here we found that ρ̄ varied from 1.8× 10−3

to 4.9×10−4. These accuracies are similar, and
in some cases better, than in the standard case.
We also find that the optimal parameters bear
greater similarities to the Drude model, but still
are substantially different.

In summary, we have shown how CRBCs
can be generalized to various dispersive mod-
els for electromagnetic waves. Clearly, much
work remains. In particular we need to consider
alternatives to the ad hoc optimization used
here, and most importantly develop a method
for rapid precomputation of good parameters.
In addition we need to develop and test various
implementations.
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Faraday cages, homogenized boundary conditions and resonance e↵ects
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Abstract

We study electromagnetic shielding by a cage of
perfectly conducting wires - the ‘Faraday cage
e↵ect’. In the limit as the number of wires
tends to infinity we derive continuum models for
the shielding, involving homogenized boundary
conditions on an e↵ective cage boundary. For
wires of su�ciently large radius there are reso-
nance e↵ects: at wavenumbers close to the nat-
ural resonances of the equivalent solid shell, the
cage actually amplifies the incident field, rather
than shielding it. By modifying the continuum
model we can calculate the wavenumbers giving
the largest response, along with the associated
peak amplitudes.

Keywords: Electromagnetic shielding, homog-
enization, multiple scales, resonance.

Introduction

The Faraday cage e↵ect is a well-known phe-
nomenon whereby electromagnetic waves can be
blocked by a wire mesh ‘cage’. Somewhat sur-
prisingly, until recently there was apparently no
widely-known mathematical analysis quantify-
ing the e↵ectiveness of the shielding as a func-
tion of basic parameters, such as the geometry
of the cage, and the thickness, shape and spac-
ing of the wires in the mesh from which it is
constructed. The recent publications [1, 3] pro-
vide such an analysis for the two-dimensional
case where the cage comprises a large number
of equally-spaced perfectly-conducting ‘wires’ of
the same shape and radius. Our analysis in [1,3]
uses homogenized boundary conditions derived
by the method of multiple scales and matched
asymptotic expansions, as employed in [2, 4] to
study similar problems.

For brevity we consider here only TE polar-
ization, requiring the study of a scalar field sat-
isfying the Helmholtz equation and zero Dirich-
let boundary conditions on the wires. The TM
case can be treated similarly [3].

Let ⌦� be a bounded simply connected open
subset of the plane with smooth boundary � =

�
⌦�

⌦+

(x, y)

n
s

K1

K2Kj

KM

" r

Figure 1: Faraday cage geometry

@⌦� and let ⌦+ := R2 \⌦� denote the comple-
mentary exterior domain. We consider a ‘cage’
of M non-intersecting wires {Kj}Mj=1 (compact
subsets of the plane, of identical radius r, shape
and orientation relative to �) distributed along
� with constant arc length separation

" = |�|/M,

where |�| is the total length of �, see Figure 1.

We set D := R2\
⇣SM

j=1Kj

⌘
. Given an incident

wave �i (e.g. a plane wave or point source) we
seek a scattered field � satisfying

(r2 + k2)� = 0, in D,

� = ��i, on @D,

and an outgoing radiation condition at infinity.

Homogenization for "! 0

In the limit as " ! 0 (M ! 1) we look for
outer approximations in ⌦± of the form

� = �±0 + "�±1 +O("2) in ⌦±.

The rapid variation close to � is modelled by a
boundary layer of width O("). Here we look for
a solution in multiple-scales form

�(n, s) = �(N,S; s),

where (n, s) are normal and tangential coordi-
nates (see Figure 1), (N,S) are rescaled versions
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Figure 2: Resonance e↵ects. Two slightly dif-
ferent sized cages of identical circular wires ir-
radiated by a point source. The smaller cage is
shielding while the larger cage is amplifying.

defined by (n, s) = ("N, "S), and �(N,S; s) is
assumed 1-periodic in the fast tangential vari-
able S, satisfying an appropriate cell problem.
Asymptotic matching gives homogenized bound-
ary conditions for �±j on �, the nature of which
depend on the thickness of the wires.

For ‘thin’ wires (radius r ⌧ ") the two-term
approximation �0 + "�1 is continuous across �
but undergoes a jump in normal derivative with


@�0
@n

+ "
@�1
@n

�+

�
= ↵ (�0 + "�1) on �,

where

↵ =
|�|

" log ("/(r|�|)) + a0
=

M

log (1/(rM)) + a0
,

and a0 is a constant depending on the wire shape.
(Specifically, a0 can be expressed in terms of the
logarithmic capacity of the scaled wire (1/r)Kj .)
The distinguished scaling in which ↵ = O(1) oc-
curs when r = O("e�c/") for some c > 0.

For ‘thick’ wires (radius r = O(")) the lead-
ing order approximation satisfies

�+0 = ��0 = 0 on �. (1)

The O(") corrections �±1 satisfy inhomogeneous
Dirichlet boundary conditions involving @�±0 /@n
and constants extracted from the boundary layer
cell problem. For non-resonant k, the homoge-
neous boundary condition (1) implies that ��0 ⌘
0 in ⌦�, so we predict a shielding e↵ect, with
� = O(") in ⌦�.

However, if k is resonant, i.e. k2 is a Dirich-
let eigenvalue of the negative Laplacian in ⌦�,
then the problem for ��0 is ill-posed and our
approximation breaks down. In practice, close
to resonance one observes a large excitation in-
side ⌦�; the cage amplifies the field rather than
shielding from it, see Figure 2. For k ⇡ k⇤ (a
resonant wavenumber) we modify our ansatz to

��(x, y) =
1

"
���1+�

�
0 +"��1 +O("2) in ⌦�.

Matching then reveals that

���1 = C�1 
⇤,

where  ⇤ is the eigenmode corresponding to k⇤

(in general a superposition of eigenmodes), and
solvability conditions for ��0 and ��1 give

|C�1| = A1

0

@1 +
k � k̃⇤

"2A2

!2
1

A
�1/2

,

where A1, A2, k̃
⇤ are constants depending on �

(the cage geometry) and the wire shape/size
(for details see [3]). The maximum amplitude
occurs not at k = k⇤ but rather at the shifted
value k̃⇤; in [3] we derive a three-term expansion
k̃⇤ = k⇤ + "k̃⇤1 + "2k̃⇤2, with explicit formulas for
k̃⇤1 and k̃⇤2. We also demonstrate the excellent
agreement between these asymptotic approxi-
mations and full numerical simulations.
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Wave motion lies at the heart of many disci-
plines in the physical sciences and engineering.
For example, problems and applications involv-
ing light, sound, heat or fluid flow are all likely
to involve wave dynamics at some level. In this
extended abstract, we present our recent work
on large-deformation elastic waves in solids, fo-
cusing on both homogeneous media and meta-
materials.

Specifically, we examine the propagation of
a large-amplitude wave in an elastic one dimen-
sional medium that is undeformed at its nom-
inal state. In this context, our focus is on the
e↵ects of inherent nonlinearities on the disper-
sion relation. Considering a thin rod, where the
thickness is small compared to the wavelength,
we present an exact formulation for the treat-
ment of a nonlinearity in the strain-displacement
gradient relation. As an example, we consider
Green Lagrange strain. The ideas presented,
however, apply generally to other types of ge-
ometric nonlinearities, such as Hencky strain,
and also to material nonlinearities regardless
of type or order. The only limitation is that
the nonlinearity has to be expressed analytically
and be integrable. Furthermore, a thick rod may
be considered by simply accounting for lateral
inertial in the model.

The derivation starts with an implementa-
tion of Hamilton’s principle and terminates with
an expression for the finite-strain dispersion re-
lation in closed form [1]. The derived relation is
then verified by direct time-domain simulations,
examining both instantaneous dispersion (by di-
rect observation) (see Figure 1) and short-term,
pre-breaking dispersion (by Fourier transforma-
tions), as well as by perturbation theory. The
results establish a perfect match between theory
and simulation and reveal that an otherwise lin-
early nondispersive elastic solid may exhibit dis-
persion solely due to the presence of a nonlinear-
ity. The same approach is also applied to flex-
ural waves in an Euler Bernoulli beam, demon-
strating qualitatively di↵erent nonlinear disper-

sive e↵ects compared to longitudinal waves. Fi-
nally, we present a method for extending this
analysis to a continuous thin rod with periodi-
cally embedded local resonators, i.e., an elastic
metamaterial (see Figure 2) [2]. The method,
which is based on a standard transfer matrix
augmented with a nonlinear enrichment at the
constitutive material level, yields an approxi-
mate band structure that accounts for the finite
wave amplitude. The e↵ects of the nonlinearity
on the subwavelength band gap are also high-
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Figure 1: Finite-strain dispersion curves for a
thin homogeneous rod [1]
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Figure 2: Finite-strain dispersion curves for
a thin homogeneous rod with periodically at-
tached local resonators [2]
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lighted, among other intriguing outcomes.
The present theory is not limited by the

strength of the nonlinearity, unlike perturbation-
based analysis which is commonly used in the
literature for weakly non-linear waves. A vali-
dated dispersion relation for a strongly nonlin-
ear problem provides new understanding of the
physics of nonlinear waves in general. This re-
sult is relevant to the study of waves in both
natural and engineered problems, and in prin-
ciple is applicable to a range of topics includ-
ing dislocation and crack dynamics, geophysi-
cal and seismic waves, material nondestructive
evaluation, biomedical imaging, elastic meta-
material engineering, nanoscasle thermal trans-
port, among others.
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Generalized Plane Waves, variable amplitude and vector valued equations
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Abstract

The need for approximated solutions to a vector
valued equation in electro-magnetic wave prop-
agation raises the question of the amplitude,
or polarization, of the approximated function.
In this work we propose to incorporate geomet-
ric optics expansions into the design process of
Generalized Plane Waves in order to take into
account variable amplitudes.

Keywords: generalized plane waves, variable
amplitude, geometric optics

1 Introduction

Generalized Plane Waves (GPWs) were intro-
duced in [4] as approximated solutions to a vari-
able coe�cient equation. These functions were
introduced in the framework of wave-based nu-
merical methods to address wave propagation
in inhomogeneous media, and in [5] we proved
the convergence of a numerical method coupling
GPWS with a Tre↵tz formulation for the vari-
able coe�cient Helmholtz equation. The design
process for GPWs depends on the coe�cients of
a given partial di↵erential operator L, and in-
troduces the parameter q as the order of approx-
imation of the homogeneous equation Lu = 0.

In references [4, 5], the operator considered
was the variable coe�cient Helmholtz operator
LH = �� � 2n(x). The design process was
later extended to a wide range of linear partial
di↵erential operators, see [2], but only to scalar
valued operators. The present work presents
a first attempt to design GPWs for the case of
vector valued equations. The main specificity in
this case, with respect to the scalar valued case,
is the need to consider a polarization instead of
a constant amplitude.

2 Generalized Plane Waves for a scalar
equation

In the framework of wave-based numerical meth-
ods to address wave propagation in homoge-
neous media, the numerical solution is sought in
a space of local exact solutions of the equation.
That is to say that, if the equation considered is

the constant coe�cient equation Lu = 0, every
basis function ' satisfies L' = 0. In the case
of LH several options have been considered in
the literature, such as classical plane waves or
Bessel functions.

In the case of a variable coe�cient operator
L, there are in general no such exact solutions.
To overcome this fact, GPWs were introduced
as local approximated solutions of the equation:
a GPW is a function ' = expP where the poly-
nomial P is designed to ensure that the lowest
order terms in the Taylor expansion of L[expP ]
are zero. Canceling the terms of the Taylor ex-
pansion provides a non linear system which un-
knowns are the coe�cients of P . However this
system can be split into a hierarchy of linear
invertible subsystems, with explicit solutions.
Therefore the design process provides an ana-
lytic formula to compute each coe�cient of the
polynomial P .

3 Towards vector valued equations

Now consider the case of a vector valued equa-
tion. In homogeneous media, the numerical so-
lution is sought in a space of local solution of the
equation. These basis functions have a constant
polarization, and the di↵erent components os-
cillate at the same frequency. Such a basis func-
tion can then be written as f(x) = p exp ik ·
x, where p is a constant polarization vector
depending on the operator,  the wave num-
ber and k the direction of propagation satisfies
|k| = 1.

In the case of a variable coe�cient vector
valued operator L, the most natural idea would
be to use a constant polarization as well, multi-
plied by a unique exponential function: f(x) =
p expP (x) with a constant p. However, in or-
der to get an approximation of order q of the
equation Lf = 0, the terms of the Taylor ex-
pansion of each component of Lf need to be
canceled, and therefore this choice for f leads
to an overdetermined system for the polynomial
coe�cients. To avoid this problem, we propose
to look for basis functions with a polynomial
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polarization: f(x) = A(x) expP (x).
In [2–5], GPWs have a constant amplitude

equal to one and so the design process requires
to find only one type of unknowns, that are the
coe�cients of the polynomial P . If we want
to use a polynomial polarization, we introduce
a new kind of unknowns in the design process,
that are the coe�cients of A. We will introduce
geometric optics expansions to split the design
process in two, and accordingly solve one sys-
tem for each type of unknowns involved in the
process.

4 Geometric Optics twist

The WKB approximation method for linear par-
tial di↵erential equations with variable coe�-
cients relies on asymptotic expansions with re-
spect to the wave number. Consider the equa-
tion LHu = 0. An approximated solution is
sought in the form '(x) = A(x) exp iS(x), so
that

LH'(x)

=

"
2A(x)

⇣
|rS(x)|2 � n(x)

⌘

� ı
⇣
A(x)�S(x) +rA(x) ·rS(x)

⌘

� 0
⇣
�A(x)

⌘#
eıS(x).

The WKB method provides an approximated
solution to LH' = 0 in the high frequency regime
by neglecting the O(0) terms and considering
separately the O(1) and O(2) terms as fol-
lows:

• solving first the so-called eikonal equation
|rS(x)|2 � n(x) = 0 for S,

• solving the so-called transport equation
r · (A(x)rS(x)) = 0 for A.

In order to obtain an approximation valid
for any frequency , we do not want to neglect
the O(0) terms in the design of GPWs with
variable amplitude. We therefore propose to
separate first the eikonal equation for the phase
function S, then to gather the O(1) and O(0)
terms to solve the following equation

i
⇣
A(x)�S(x) +rA(x) ·rS(x)

⌘
+ �A(x) = 0

for the amplitude A. Approximated solutions
to these two equations can be constructed us-
ing again a Taylor expansion and canceling the
terms of order lower than q.

In this presentation we will discuss the ap-
plication of these ideas for vector valued op-
erators, as well as corresponding interpolation
properties.
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Abstract

In this talk with present an original numerical
scheme for the explicit fourth order time dis-
cretization of linear dissipative wave equation.
This scheme is based on the modified equation
technique which, in general, gives implicit time
discretization when dissipation is present in the
propagating medium. We discuss the construc-
tion of the scheme, its stability properties and
present some space/time convergence results.
The scheme is shown to be more e�cient for the
considered cases than the fourth order explicit
Runge-Kutta scheme RK4.

Keywords: Time discretization, Dissipative wave
equation, Explicit schemes

1 Introduction

We consider the construction of e�cient explicit
high order time discretization for dissipative wave
equation. The model PDE we consider is

@ttu��u+r(x)@tu = 0, x 2 ⌦, t 2 [0, T ], (1)

where ⌦ ⇢ Rd and u(t) 2 H1
0 (⌦) with u(0) and

@tu(0) given. The damping function r(x) is non
negative. A typical spatial discretization in a
finite element space gives the following ODE

dttUh +Ah Uh +Bh dtUh = 0.

where Uh is the vector of unknowns, the sti↵-
ness matrix Ah is symmetric positive definite
and Bh is the symmetric and semi-definite posi-
tive dissipation matrix. The matrix Ah is sparse
and Bh is easily invertible if conforming finite
elements with mass lumping or discontinuous
Galerkin methods are used. In such case the
Leap-Frog scheme, LF, gives an explicit second
order in time fully-discrete approximation of (1)

Un+1
h � 2Un

h + Un�1
h

�t2
+Ah U

n
h

+Bh
Un+1
h � Un�1

h

2�t
= 0. (2)

To improve the accuracy of the time discretiza-
tion, the so-called modified equation technique,
ME, can be used, following [1]. It reads

eIh
Un+1
h � 2Un

h + Un�1
h

�t2
+ eAh U

n
h

+ (Bh +�t2Ch)
Un+1
h � Un�1

h

2�t
= 0, (3)

with eIh = Ih +�t2B2
h/12, where Ih is the iden-

tity matrix, eAh = Ah � �t2A2
h/12 and finally

Ch = (BhAh � AhBh)/12. The e�ciency of the
ME is deteriorated since the matrix Ch (which
in general is no longer block diagonal or diago-
nal) has to be taken into account in the system
that is solved at each time step: the scheme is
no longer explicit. In what follows we suggest a
variant of the ME that restores its e�ciency by
being explicit, stable and formally fourth order.

2 Explicit scheme construction

The idea is to replace the term Ch in equation
(3) by an approximation eCh that should at least
be a formal second order approximation in time.
Such approximation is sought under the form

�t2 eCh :=Dh(Ih + (Ih��t2D�1
h Ch)

�1). (4)

Where Dh is a symmetric positive definite and
diagonal (or block diagonal) matrix yet to be
defined. It can be shown, using a Neumann se-
ries that, if "h := �t2 kD�1

h Chk2 < 1, the defini-
tion (4) is a formal second order approximation
of Ch. After algebraic manipulations one can
see that the choice

Dh := Bh + 2eIh/�t

gives the explicit modified equation EME scheme

Un+1
h = Un�1

h + 2�t (D�1
h ��t2D�1

h ChD
�1
h )

⇥
⇣
2 eIh

Un
h � Un�1

h

�t2
� eAhU

n
h

⌘
. (5)
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3 Stability analysis

Energy technique. From the EME scheme,
one can deduce the energy identity

1

�t

⇣
En+ 1

2
h � En� 1

2
h

⌘
=�

⇣
Bh +�t2 eCh

⌘
V n
h · V n

h

where V n
h = 2(Un+1

h �Un�1
h )/�t and En+ 1

2
h is a

semi-norm for the solution if the CFL condition
for the modified equation is satisfied (see [2])

⌘h := �t2 kAhk2 / 12  1. (6)

Because of the approximation (4), the matrix
Bh + �t2 eCh has, in general, indefinite sign.
However one can show that

(Bh+�t2 eCh)Vh·Vh � �↵ "2 kDhk2 (E
n+ 1

2
h +En� 1

2
h )

where ↵ is a constant independent of R and
�t and "2 kDhk2 ⇠ �t. Hence, using discrete
Gronwall’s lemma one shows that the solution’s
energy grows with n at most as an exponential
function whose exponent is of order n�t2.

Eigenvalues analysis. Numerical applications
suggest that this estimate is not sharp if r(x) is
small. Therefore, writing r(x) = R r̂(x) where
r̂(x) is a normalized dissipation profile we write
the scheme equation (5) as

(Un+1
h , Un

h )
T = Ah(R) (Un

h , U
n�1
h )T

and investigate the eigenvalues �h(R) of the par-
ametrized matrix Ah(R). We show that if the
CFL condition (6) is satisfied then all the eigen-
values of A(0) are complex conjugate, have a
module exactly 1, are semi-simple, hence con-
tinuous w.r.t.R and di↵erentiable at R = 0.
Moreover we can show that

�h(R) = �h(0)(1 +Rµh) + o(R)

with, for some � independent of R and �t,

µh := ���t inf
�h2⌃h

�T
hBh�h,

where ⌃h is the set of normalized eigenvectors of
Ah. For standard finite element approximation,
we can verify numerically, in 1D, that µh < 0,
meaning that for small values of R the solution’s
L2 norm can not grow since |�h(R)| < 1.

4 Space/Time convergence in 1D

We consider a spatial discretization of prob-
lem (1) with ⌦ = [0, 1] and T = 2. We use
spectral finite elements of order 4 on a uniform
mesh. We consider the LF, ME, EME and RK4
schemes. Being given a space step, the time
step is chosen such as the maximum time step
allowed when there is no dissipation (for EM
and EME, it is (6)). We choose two dissipation
functions rpc(x) or r1(x).
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The e�ciency of the di↵erent explicit schemes
can be compared. We assume that an iteration
of LF have a cost of 1, 3 for the EME and 4 for
the RK4 (i.e. the number of mult. by Ah or Ch

per it.). We see below that at a fixed cost the
EME is ten times more accurate than RK4.
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Abstract

During the past 10 years, most of acoustic meta-
material research has been done within a theo-
retical frame in which the medium is at rest.
However, such acoustic metamaterials cannot
preserve their unique properties or functions in
the presence of flow. Therefore, in this study,
we propose a theoretical framework to examine
the e↵ect of non-uniform mean flow on acoustic
metamaterials for the purpose of understand-
ing the physics of acoustic metamaterials within
flow and designing a new concept of acoustic
metamaterial.

Keywords: Acoustic metamaterial, scattering
pattern, non-uniform flow, compressible fluid

1 Introduction

For a decade, the cloaking metamaterials have
been attracting many researchers with high fea-
sibility [1–3]. This concept, hiding an object
optically or acoustically, is based on transfor-
mation optics or transformation acoustics. The
acoustic cloak has been developed rapidly based
on its analogy with the optical cloak, but there
are clear limitations due to di↵erent physical
properties between acoustics and electromag-
netism [2,3]. In this work, we focus on the pres-
ence of medium convection, which is a clear dif-
ference between acoustics and electromagnetism.
Most of the acoustic metamaterial research have
been done within a stationary medium, but the
medium convection is important in acoustics
unlike in electromagnetism. Thus, to be applied
on a realistic situation, the research of acoustic
cloaking metamaterials in flow field is impor-
tant.

Recently, only a few researchers attempted
to consider the acoustic cloak in the flow field.
Huang et al. [3] introduced an analytic frame-
work, which can consider the acoustic cloak in
the flow field by taking the e↵ect of non-uniform
flow as equivalent sources. But, more of the
real flow e↵ects need to be considered theoret-
ically [4–6]. Thus, in this study, we propose

a theoretical framework for an analysis of the
flow e↵ect on cloaking performance, by which
we can get physical understandings and concep-
tual ideas for designing a new acoustic cloaks.

In Section 2, a formulation to study the acous-
tic cloaks in non-uniform and compressible flow
field is summarized. In Section 3, the results
of numerical simulation are illustrated and dis-
cussed with physical explanation.

2 Formulation

In this section, we propose a formulation to
study scattering patterns of acoustic cloaks im-
pinged by an acoustic wave in a moving medium.
We derive a convective wave equation as an im-
proved version of previous work [3] by including
the non-uniform velocity in di↵erential wave op-
erator and taking the e↵ect of compressibility in
fluid into account.

D2
0p

0

D0t2
�c2r2p0 = S

eq

(x, t) = S
comp

(x, t)+S
non

(x, t)

(1)
where S

comp

(x, t) =

� ⇢0c
2[u0 ·r+

D0

D0t
(
�p0

⇢0c2
) +

�p0

⇢0c2
D0

D0t
](r · u0)

� ⇢0c
2 D0

D0t
[
1

�⇢0
(u0 ·r)⇢0 +

1

�c2
(u0 ·r)c2]

� c2
D0p0

D0t
(u0 ·r)

1

c2

� ⇢0[
D0p0

D0t
(u0 ·r) + ⇢0c

2rp0 ·r](
1

⇢0
),

(2)

S
non

(x, t) =

r · [2(u0 ·r)u0 +
⇢0

⇢0
((u)0 ·r)u0].

(3)

where D0/D0t denotes the total derivative
defined by @/@t+ u0 ·r, ⇢ is density, t is time,
u is velocity, p is pressure, c is speed of sound,
and � is ratio of specific heats.
As shown in Eq. (1), the non-uniform velocity
is included in the di↵erential operator. S

eq

(x, t)
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indicates the equivalent source terms that can
be interpreted as a coupled e↵ect of background
flow with incident wave. Such mathematically
abstruse terms are divided into two parts with
their own physical meanings, S

comp

(x, t) for com-
pressibility in fluid and S

non

(x, t) for non-uniformity
of flow.

3 Results and Discussions

In this section, by solving Eq. (1) of present for-
mulation with FEM, the numerical results are
illustrated and discussed briefly. In numerical
simulations, we used the existing acoustic cloak
which was designed in a stationry medium [2].
The plane wave is impinging on acoustic cloak
with Helmholtz number of kR1 = 3. The back-
ground flow has a subsonic Mach number of
M=0.1.

Figure 1 shows the numerical results of acous-
tic pressure around the acoustic cloak in the
flow field forM = 0 and 0.1 by using the present
formulation. As shown in Fig. 1(a), the acous-
tic cloak can hide the object almost perfectly.
However, as shown in Fig. 1(b), the acoustic
cloak loses its unique property to makie an ob-
ject acoustically invisible in presence of back-
ground flow. As compared in Fig. 1(c), the ex-
isting acoustic cloak clearly shows the unwanted
scattering near the geometrical zone of shadow.

In this study, we proposed a theoretical frame-
work to examine the scattering pattern of acous-
tic cloak in the presence of non-uniform mean
flow. In numerical simulations, the existing cloak
could not make an object acoustically invisi-
ble within flow. In order to understand the
scattering from the acoustic cloak within flow,
the equivalent source terms were divided into
two terms with their own physical meanings.
The proposed theoretical framework is expected
to accurately predict the scattering from the
acoustic cloak in a moving medium and give us
an idea to design a new acoustic cloak.
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Abstract

We consider the numerical solution of time-har-
monic scattering of acoustic and electromag-
netic waves from obstacles with uncertain ge-
ometries. Using first-order shape derivatives,
we derive deterministic boundary integral equa-
tions for the mean field and the two-point cor-
relation function of the random solution for a
soft-obstacle Dirichlet problem. Sparse tensor
Galerkin discretizations of these equations are
implemented with the so-called combination tech-

nique. We generalize the method to non-nested
meshes using a nodal transfer operator. Sim-
ilar discretization errors for the covariance is
achieved with O(N logN) degrees of freedom
instead of O(N2). Performance comparison of
our approach to classic Monte-Carlo Galerkin
formulation is given for di↵erent shapes. Fi-
nally, we verify the robustness of the sparse ten-
sor approximation and compare it to low-rank
approximations techniques.

Keywords: uncertainty quantification, sparse
tensor approximation, boundary integral equa-
tions

1 Introduction

Let a nominal scatterer D0 2 R3 be an open
bounded perfect conducting/soft C2-domain with
simply connected boundary �0 := @D0 and set
D

c
0 = R3\D0. We seek to model di↵racted fields

by small amplitude random shape variations of
the nominal domain D0. For this, let (⌦,P,⌃)
be a probability space and, for simplicity, con-
sider perturbations of the form:

(x,!) := (x,!)n0(x), ! 2 (⌦,P,⌃), (1)

with x 2 �0, and n0 the exterior unit normal
vector to the reference domain D0. The am-
plitude (x,!) is such that it belongs to the
Bochner space L

1(⌦,P;C2(�0;R)), i.e.

sup
!2⌦

k(·;!)kC2(�0;R) < 1.

��

����

��

��

����

�	��

Figure 1: Nominal and perturbed domains

Furthermore, we assume the distribution  to be
centered at zero. For su�ciently small " > 0, we
define families of randomly perturbed bound-
aries by:

�"(!) := {x+ " (x,!)} : x 2 �0}, (2)

defining interior and exterior domains D"(!)
andD

c
"(!), accordingly. The transformation (2)

defines an isomorphism with �0.
Assuming a time-harmonic regime and an

incident plane wave U inc, we seek a total acous-
tic field U" := U

inc+U

s
" satisfying the following

boundary value problem:

�U"(x) + k

2
0U"(x) = 0 x 2 R3 \D"(!), (3)

�DU
s
" (x) = ��DU

inc x 2 �"(!), (4)����
@U

s
"

@r

� ik0U
s
"

���� = o(r�1) r ! 1, (5)

with k0 2 R+ a given wavenumber, r = kxk2
where k.k2 denotes the Euclidean norm and �D

the Dirichlet trace. The above problem (3)-(5)
is well posed [5] as well as its electromagnetic
counterpart. Since U" is Fréchet di↵erentiable
on D

c
"(!) [4], for each realization ! 2 (⌦,P,⌃),

we can derive the shape-Taylor expansion:

U"(x,!) = U0(x) + "U

0
0(x,!) +O("2), (6)
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for x 2 D

c
0 \D

c
", with U0 being the solution in

the nominal domain and U

0
0 the shape derivative

defined as

U

0
0(x,!) := lim

"!0

1

"

(U"(x,!)� U0(x)).

Moreover, by analogy with [1], its local shape
derivative U 0

0 solves the following Dirichlet Prob-
lem over Dc

0:

�U

0
0(x) + k

2
0U

0
0(x) = 0 x 2 D

c
0, (7)

�DU
0
0(x) = �(x,!)�NU0 x 2 �0, (8)

along with radiation conditions as in (5) and
�NU0 being the Neumann trace of the nominal
solution. A similar problem holds for the elec-
tromagnetic case [3].

2 Deterministic solvers and sparse ten-
sor approximation

Our goal is to estimate the statistical first and
second moments:

E[U"](x) :=

Z

⌦
U"(x,!)dP(!)

and corrU"(x,y) := E[U"(x, ·)U"(y, ·)]. Based on
the expansion (6), we can prove that

E[U"](x) = U0(x) +O("2)

and varU"(x) = "

2E[U 0
0(x, ·)2] +O("3), with the

first term deduced from

corrU 0
0
(x,y) := E[U 0

0(x, ·)U 0
0(y, ·)],

which is the unique solution of a suitably de-
fined tensorized problem [6]. We can represent
U0 and U

0
0 using single layer potentials. Thus,

for each one, surface densities must solve the
following boundary integral equations [5]:

V�NU0 = U

inc on �0, (9)

(V ⌦ V)⇥ = C on �0 ⇥ �0, (10)

where V is the single layer boundary integral
operator with its corresponding tensor form for
the covariance, ⇥ := corr�NU 0

0
and C(x,y) :=

corr(x,y)�NU0(x)�NU0(y).
By applying the program defined in [6] over

nested meshes along with combination technique
developed [2], we can obtain approximations of
the second moments using O(N logN) degrees
of freedom with convergence rates as shown in
Figure 2. By coercivity of V, a minimum re-
finement level L0 is required to observe conver-
gence. Moreover, we will show that these results
also hold for non-nested meshes by using nodal
transfer operators.

Figure 2: Convergence results for k0 = 1.
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Abstract

Nonlinear models of lasers, noise, and the SALT

equations Although the theoretical description

of lasing has been studied for many decades,

only recently has it become practical to accu-

rately model the lasing process in complex mi-

crostructured lasers, such as random lasers or

photonic-crystal laser cavities. A key enabling

factor is the SALT (steady state ab-initio laser

theory) description pioneered by Tureci, Stone,

and others starting in 2006, which reduces the

complex time-dependent Maxwell-Bloch equa-

tions to a much simpler frequency-domain non-

linear eigenproblem for steady-state lasing modes.

The SALT equations themselves resisted gen-

eral solution for several years, but recently we

have developed e�cient numerical approaches

to solving SALT for complex 3d structures. We

can even exploit existing linear Maxwell solvers,

simply performing a sequence of linear solves in

an Anderson-accelerated loop to solve the non-

linear problem. Moreover, given this numeri-

cal foundation, a whole host of new analytical

and semi-analytical results become possible, via

perturbation theory around the SALT modes.

This includes a new understanding of degener-

ate lasing modes, and a new generalized theory

of the laser linewidth and relaxation sidebands

arising from quantum fluctuations in the laser.

In this talk, we review the mathematical de-

scription of lasing and explain why a nonlinear

eigenproblem results above threshold, and out-

line several new developments in laser theory

that have been enabled by SALT.

Plenary Lecture



WAVES 2017, Minneapolis



WAVES 2017, Minneapolis

Transparent Boundary Conditions for the Wave Propagation in Fractal Trees

Patrick Joly

1,⇤
, Maryna Kachanovska

1
, Adrien Semin

2

1POEMS, ENSTA ParisTech-INRIA-CNRS, Université Paris-Saclay, Palaiseau, France
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Abstract

This work is dedicated to an e�cient resolu-
tion of the wave equation in self-similar trees
(e.g. wave propagation in a human lung). In
this case it is possible to avoid computing the
solution at deeper levels of the tree by using
the transparent boundary conditions. The cor-
responding DtN operator is defined by a func-
tional equation in the frequency domain. In this
work we propose and compare two approaches
to the discretization of this operator in the time
domain. The first one is based on the multistep
convolution quadrature, while the second one
stems from the rational approximations.

Keywords: fractal tree, wave equation, convo-
lution quadrature, rational approximations

1 Introduction

Given a compact self-similar p-adic tree T con-
sisting of a countable set of edges and vertices,
we study the wave equation defined on its edges

µ@
tt

� @
x

(µ@
x

u) = 0 (1)

equipped with condition u(M⇤, t) = f(t) at the
root vertex M⇤ of T . The function µ is con-
stant along every edge ⌃. If the length of ⌃ is
`, the length of each of its p children ⌃

j

, j =
0, . . . , p�1 is ↵

j

` with 0 < ↵
j

< 1. Moreover the
value of µ along ⌃

j

is µ
j

times its value along
⌃, with µ

j

> 0. The problem (1) is completed
with vertex conditions explained in Figure 1.
The problem (1) is equipped with Neumann or
Dirichlet boundary conditions at ’infinity’ (no-
tice however that the tree is compact), incor-
porated into the variational formulation of the
problem. E.g., for Neumann:

d2

dt2
(µu, v)T + (µ@

x

u, @
x

v)T = 0, (2)

v 2 H1
µ

, u 2 C1(0, T ;L2,µ) [ C0(0, T ;H1
µ

).

For a precise definition of the spaces and scalar
products see [1]. We restrict ourselves to the

case

X

i

µ
i

↵
i

< 1,
X

i

µ
i

/↵
i

> 1 (3)

so that Dirichlet and Neumann problem di↵er
and the embedding H1

µ

⇢ L2
µ

is compact.

In order to perform the computation, we trun-
cate the tree at a certain level using a transpar-
ent boundary condition at each end point M :

@
x

u(M) =
p�1X

i=0

µ
i

⇤
i
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)u(M, ·)

where ⇤
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(@
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) = ↵�1
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`�1⇤(↵
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), ⇤(@
t

) is the
DtN operator associated with a reference tree
(whose root edge has length 1) and ` the length
of the edge terminating at M . ⇤(@

t

) is a con-
volution operator whose symbol ⇤(!) (through
@
t

$ �i!) is not known explicitly. However,
this function satisfies

⇤(!) cos(!)� ! sin! =
⇣
cos! + ⇤(!)

sin!

!

⌘⇣ p�1X

i=0

µ
i

↵
i

⇤(↵
i

!)
⌘
.

(4)

A meromorphic solution ⇤(!) to the above prob-
lem is unique, provided the value ⇤(0) (which
depends whether the Dirichlet or the Neumann
problems are solved). In [1] the authors ex-
ploited this property to propose transparent BCs
based on the Laurent expansion of ⇤(!) near
! = 0. However, this requires truncating the
tree at the level where |`!| ⌧ 1. The goal of
this work is to relax this condition.

2 Approach 1: Convolution Quadrature

We suggest to apply a trapezoid convolution
quadrature [2] for the approximation of ⇤(@

t

) .
For the discretization of the volumetric terms in
time we use an explicit leap-frog scheme. More
precisely, denoting by T

i

the subtree for which
the computation is done using FEM (for sim-
plicity we assume that all end edges have same
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Figure 1: Edge transmission conditions

length `), and by T
e

= T \T
i

, we rewrite (2) as:
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dt2
(µu, v)Ti + (µ @

x

u, @
x

v)Ti (5)

+
d2

dt2
(µu, v)Te + (µ@

x

u, @
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v)Te = 0, v 2 H1
µ

.

After space discretization along T
i

(not along
T
e

) we discretize in time, with constant �t, u|Ti
with leapfrog and u|Te with the trapezoidal rule:
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Denoting u�t

= (u
n

) the semi-discrete solution,
this can be rewritten in an equivalent way, {M

k

}
being the set of end nodes of T
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Here ⇤
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) are the discrete DtN operators
with symbol ⇤

j,�t
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The computation of the convolution weights
�n
i

(�t), n � 0, requires a procedure of the eval-
uation of ⇤(!) in the complex plane; one way
to do so is described in [1]. The stability of the
scheme can be shown by energy techniques.

3 Approach 2: Rational Approximations

Using the coercivity properties of a DtN oper-
ator, one can show that !�1⇤(!) is a Herglotz
function (i. e. an analytic map from the upper
complex half-space into itself). Moreover, ⇤(!)
is of the form

⇤(!) = ⇤(0) +
1X

p=0

a
p

!2

!2 � ⌦2
p

,

with ⌦
p

6= 0, a
p

> 0 and ⇤(0) � 0. The idea is
to look for rational approximations of ⇤(!) in a
class of rational Herglotz functions. For exam-
ple, such an approximation ⇤N (!) can be ob-
tained by truncating at order N the above sum.
In this case (5) becomes: for all v 2 H

µ,0(T ),
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Then the volumetric terms in (6) can be semidis-
cretized in time with the help of the explicit
leapfrog scheme, and the terms related to the
boundary equations with the help of the im-
plicit trapezoid rule, similarly to how it is done
for the Maxwell equations in dispersive media.
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Abstract

High-order finite di↵erence (FD) methods for
evolving simulated waves in time typically per-
mit larger time steps than discontinuous Galerkin
(DG) methods of equal order and degrees of
freedom. This gap in e�ciency widens as the
order increases. If, however, one uses finite-
di↵erence-style basis functions within a Galerkin
formulation, one can enjoy the stability bene-
fits of a built-in discrete energy and upwinding
without sacrificing the e�ciency of large time
steps. We call this new approach the discontin-
uous Galerkin di↵erence (DGD) method.

Keywords: high-order, upwind, finite di↵er-
ence, discontinuous Galerkin

1 Introduction

The most popular method for simulating elec-
tromagnetic waves is the Yee scheme, a second-
order-accurate finite di↵erence method. Inex-
orably advancing computing power is gradually
forcing practitioners to abandon the Yee scheme
in favor of methods with a higher order of accu-
racy. The more wavelengths within the domain,
the more the accuracy of a second-order method
lags behind that of, say, a sixth-order method.

One thorny drawback of higher-order FD
methods is the di�culty of achieving stable bound-
ary closures. Stability issues in FD methods
have been a strong impetus in the adoption of
Galerkin methods. A Galerkin discretization
of the continuous wave equation automatically
translates the physically conserved energy into
a discrete conserved energy. A discontinuous
Galerkin discretization allows in addition the
stabilizing influence of upwind fluxes.

The stability of high-order DG methods has,
however, historically required the sacrifice of
some of the fabulous e�ciency of high-order FD
methods. The true solution on each DG cell is
interpolated with high-degree polynomials which
have large derivatives near the cell boundaries.
As the degree of the polynomials increases, so
do their derivatives, which inherently limits the
size of the time step one can take when evolving

the discretized system of equations.
The innovation of the discontinuous Galerkin

di↵erence method is to approximate the true so-
lution with the same polynomials that a high-
order FD method would use, in particular us-
ing data from outside each cell to interpolate
within the cell. This forestalls the problem of
large derivatives near cell boundaries, thus large
time steps are once again feasible [1].

2 DGD basis functions

We illustrate in one dimension; higher-dimensional
basis functions are tensor products of the one-
dimensional basis functions. Also we illustrate
with a degree-six polynomial interpolant although
the method may be of arbitrary order. We use
a uniform grid with a single node at the center
of each cell.

The Lagrange interpolant is formed from the
data at the center of seven di↵erent cells, but is
used to approximate the solution only in the
middle cell, between the dashed lines in the
above figure. Note that high derivatives appar-
ent at the edges of the interpolant are irrelevant
because the interpolant is not used outside of
the middle cell. Each other cell is interpolated
across the seven nodes centered across that cell.

Conversely, the data at each node influences
the interpolant in its own cell and in each of
the three neighboring cells to each side. We can
thus form a nodal basis with basis functions as
illustrated below.

The discontinuity of the basis functions is
a feature, not a bug. Insofar as the true solu-
tion can be approximated by a degree six poly-
nomial, a linear combination of our basis func-
tions will match it exactly, with no discontinu-
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ities in the sum. If there are any discontinu-
ities in our approximation, they must be due to
“higher frequencies” that can’t be represented
by polynomials of degree six. Such jumps on cell
boundaries may be penalized by upwind fluxes,
which dissipate (non-resolvable) high-frequency
modes, thus enhancing numerical stability.

As this is simply a basis, we can use any DG
formulation that can be applied to the partial
di↵erential equation of interest. In this work we
focus on the scalar wave equation and employ
the upwind DG method from [2]. However we
could equally well have used IPDG [3], SIPDG
[4], or LDG [5].

3 Boundary closures

DGD basis functions are identical up to transla-
tion, except near the domain boundaries. Out-
side the domain, we extend the grid with enough
“ghost nodes” (e.g. three for degree six poly-
nomials) so that the cells on the edge of the
domain can be interpolated.

Values at the ghost nodes may be simply
evolved as additional degrees of freedom in the
discretization. Alternatively, one may choose to
evolve only interior degrees of freedom, and ob-
tain values at the ghost nodes by extrapolating
interior nodes. In practice, we have had good
results from evolving the one ghost node near-
est the domain and extrapolating to the rest. It
is important to note that regardless of whether
ghost values are evolved or extrapolated, the
Galerkin formulation remains energy-stable.

We impose boundary conditions by means
of fluxes at the domain boundaries, just as with
any DG method.

4 A numerical example

We discretized the two-dimensional scalar wave
equation on a unit square with DGD basis func-
tions and the formulation of [2] with 16, 24, and
36 grid points in each dimension. The basis
polynomials were degree seven in position and
degree six in velocity. The true solution had
wavelengths around one half. Domain bound-

ary fluxes were calculated from outside states
given by the true solution.

Simulations were stable to time 100 with a
“CFL” of 0.5. The observed order of conver-
gence was 7.6.
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Abstract

Over the last few decades, the KdV equation
has been extended to include higher order ef-
fects. Although this equation has only one con-
servation law, exact periodic and solitonic solu-
tions are shown to exist.

Keywords: 02.30.Jr, 05.45.-a, 47.35.Bb

1 Introduction

The KdV equation is one of the most ubiqui-
tos physical equations. It consists of the math-
ematically simplest possible terms representing
the interplay of the nonlinearity and dispersion.
This simplicity may be one of the reasons for
success. We investigate this equation improved
as derived from the Euler inviscid and irrota-
tional water equations.

Just as for conventional KdV, two small pa-
rameters are assumed: wave amplitude/depth
(a/H) and depth/wavelength squared (H/l)2.
These dimensionless expansion constants are cal-
led ↵ and �. We take the expansion one order
higher. The new terms will then be of second
order. This procedure limits considerations to
waves for which the two parameters are compa-
rable.

The next approximation to Euler’s equations
for long waves over a shallow riverbed is (⌘ is
the elevation above a flat surface divided by H)

⌘
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In (1) and subsequently we use low indexes for

derivatives
⇣
⌘
nx

⌘ @

n
⌘
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n

⌘
. This second order equa-

tion was called by Marchant and Smyth [1] the
extended KdV. It was also derived in a di↵erent
way in [2, 3]. We call it KdV2. It is not in-
tegrable. However, by keeping the same terms
but changing one numerical coe�cient we can

obtain an integrable equation [4]. Not only is
KdV2 non integrable, it only seems to have one
conservation law (volume or mass). A simple
derivation of adiabatically conserved quantities
can be found in [4].

2 Periodic solutions for KdV2

We look for periodic nonlinear wave solutions
of KdV2 equation (1). Introduce y := x � vt.
Then ⌘(x, t) = ⌘(y), ⌘

t

= �v⌘
y

and equation
(1) takes the form of the ODE

(1� v)⌘
y

+
3

2
↵ ⌘⌘

y

+
1

6
� ⌘3y �

3

8
↵2⌘2⌘

y

(2)

+↵�

✓
23

24
⌘
y

⌘2y +
5

12
⌘⌘3y

◆
+

19

360
�2⌘5y = 0.

Now assume that periodic solutions exist in
the same form as solutions of the KdV equation

⌘(y) = A cn2(By,m) +D, (3)

where A,B,D are as yet unknown constants (m
is the elliptic parameter). The constant D en-
sures that the volume of water is the same for
all m.

Insertion of (3) into (2) leads to a set of three
coupled equations for four unknowns A,B, D, v.
The fourth equation, volume conservation con-
dition completes the set. Then all unknowns
can be calculated as functions of the elliptic pa-
rameter m and KdV2 parameters ↵ and �.

One of the equations of this set is a quadratic
equation for B2. Then there are two roots:

(B2)1 =
A↵

m�
z1 and (B2)2 =

A↵

m�
z2,

where

z1 =
43�

p
2305

152
and z1 =

43 +
p
2305

152
.

A particular solution of this set of equations is
obtained for m = 1. In this case cn2(By, 1) !
Sech2(By) and A > 0, therefore only z2 assures
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real-valued B. Then A,B, v are expressed by
z2,↵,�. This particular soliton solution was
found by us in [3, Sec. IV].

For periodic solutions situation is more com-
plex. There are two branches of solutions. In
one branch, connected to z2, real-valued B are
obtained form 2 (m

s

, 1), wherem
s

⇡ 0.9611495
is the root of equation expressed by Jacobi el-
liptic functions. For this branch amplitudes A
are always positive, that is, the wave profile
are ’normal’ cnoidal functions where crests are
larger than troughs. The parameters A,B,D, v
of solutions together with the wavelength � and
the period T for this branch are shown in fig-
ure 1 for ↵ = � = 0.1.
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Figure 1: Parameters of the solution as funtions
of m for the branch related to z = z2. Case
↵ = � = 1

10 .

The second branch of solutions is connected
to z1. Then real values for B are obtained for
m 2 (0,m

s

), with amplitudes A < 0. This
means that the wave profiles have the form of
inverted cnoidal functions. For m ! 0 these
solutions tend to a cosine functions with van-
ishing amplitude. Figure 2 display results for
parameters of solutions of the second branch.

The most important di↵erence of these ex-
act solutions and KdV solutions is the fact that
KdV2 admisses solutions of the form of inverted
cnoidal function. The complexity shown in fig-
ures 1 and 2 is the result of imposing the con-
dition of volume conservation.

In both branches of solutions there exist val-
ues of m for which solutions do not move v = 0.
Positions of m values for such ’frozen’ solutions
are marked by thin dotted vertical lines in fig-
ures 1 and 2. Such a property appeares in KdV
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Figure 2: Parameters of the solution as funtions
of m for the branch related to z = z1. Case
↵ = � = 1

10 .

solutions but with a single branch.
The details of the derivation of exact solu-

tions to KdV2 and their properties will be pub-
lished soon [5]. Numerical tests confirming the
properties of analytic solutions are contained in
this paper, as well.
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Abstract

There is an emerging need to perform high fre-
quency scattering analysis on high-fidelity mod-
els. Conventional Finite Element analysis suf-
fers from irretrievable loss of the boundary ac-
curacy as well as pollution error. Man-made
geometries can be represented exactly in Iso-
geometric Analysis (IGA) with no geometrical
loss even with very coarse mesh. The aim of
this paper is to analyze the accuracy of IGA
for exterior acoustic scattering problems. The
numerical results show extremely low pollution
error even for very high frequencies.

Keywords: Acoustic scattering, high-frequency,
Isogeometric analysis, pollution error

1 Introduction

The pollution error is a limiting factor when an-
alyzing high-frequency scattering problems with
a conventional Finite Element Method. In order
to achieve a prescribed upper bound for the er-
ror, it is necessary to increase the mesh density
n� = �/h faster than the wavenumber k where
� is the wavelength (� = 2⇡/k) and h is the el-
ement size. Another limitation in using conven-
tional FEM is the loss of geometrical representa-
tion of the domain boundaries of the discretized
model. The domain discretization in IGA how-
ever has no a↵ect on the geometrical accuracy.
In fact, the discretization of the IGA model is
a result of its parametric definition. As a result
the boundaries of the domain are presented ex-
actly in IGA with no artificial facets. In addi-
tion, refinement in IGA can be performed with-
out changing the geometry of the domain. To
solve an unbounded exterior problem in the con-
text of finite elements it is necessary to truncate
the domain artificially. Constructing Absorb-
ing Boundary Conditions (ABCs) and Perfectly
Matched Layer (PML) are among the common
methods of domain truncation. The truncation
of the domain mimics the infinite space in a fi-

nite domain at the cost of introducing the trun-
cation error to the numerical solution. In or-
der to study the performance of any numerical
scheme for exterior scattering problems it is nec-
essary to separate the pollution error from the
truncation error.

2 Problem formulation

Let us consider ⌦� as a two-dimensional cir-
cular cylinder R

0

= 1 centered at the origin
with boundary � := @⌦�. The associated exte-
rior (i.e. unbounded) domain of propagation is
⌦+ := R2

/⌦�. Solving the scattering problem
leads to computing the wave field u as the solu-
tion to the following Boundary-Value Problem
(BVP): given an incident plane wave field u

inc,
find u such that

�u+ k

2

u = 0, in ⌦+

,

@

n�u = g := �@

n�u
inc

, on �,

lim
|x|!+1

|x|(d�1)

⇣
ru · x

|x| � iku

⌘
= 0,

(1)

where � is the Laplacian operator, r the gra-
dient operator and n

�

is the outward-directed
unit normal vector to ⌦�. The spatial variable
is x = (x, y). We consider the sound-hard case
and apply the Neumann boundary conditions
on � at R = 1 as stated in the second equation
of system (1). The Sommerfeld’s radiation con-
dition at infinity is applied in the last equation
of system (1) which presents the outgoing wave
to the domain. We consider an incident plane
wave u

inc(x) = eikd·x, with incidence direction
d = (1, 0)T . To truncate the computational do-
main, the second-order Bayliss-Turkel ABC is
applied on the circle with radius R

1

= 2 and is
given by [1]:

@

n⌃u+(�ik+


2
� 

2

8(� ik)
)u� 1

2(� ik)
@

2

su = 0,

where n
⌃

is the outward directed unit normal
to ⌃, @

n⌃ := @r is the normal derivative,  =
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1/R
1

is the curvature and @

2

s := R

�2

1

@

2

� is the
second-order curvilinear derivative on the ficti-
tious boundary at R = 2. The domain trun-
cation error was included in the exact solution
making it suitable to analyze the pollution and
approximation errors and avoid domain trunca-
tion error. [2].

3 Numerical results

We generated the crown mesh between R = 1
and R = 2 by four identical patches in IGA. A
Matlab R� code was prepared to obtain the nu-
merical results. The real part of the numerical
solution is shown in Fig.1 where k = 100, degree
p = 4 in IGA and n� = 5 points per wavelength.
The error |uh � u

ex| is shown in Fig. 2. To ex-
amine the performance of IGA for higher k, the
evolution of the L

2

-norm error vs. k is given in
Fig. 3. No pollution error is visible even for k

up to 100 for p = 3 and higher in IGA.

Figure 1: Real part of the numerical IGA solu-
tion uh, k = 100, p = 4, n� = 5.

4 Conclusion

We studied the performance of IGA in solving
high frequency scattering problems. By con-
sidering the truncation error in the exact solu-
tion, we separated the pollution error from the
truncation error. Numerical results show no no-
ticeable pollution error even for high k for ba-
sis functions of order p = 3 and higher. The
possibility of exactly presenting domain bound-
aries in IGA even with very coarse meshes and
its convenient refinement makes it an attractive
platform for scattering problems.

Figure 2: Absolute error |uh � u

ex|.

Figure 3: L
2

error vs. k (p = 1 · · · 5).
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Complete radiation boundary conditions for the Helmholtz equation in waveguides
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Abstract

We introduce a high-order absorbing boundary
condition, called a complete radiation boundary
condition (CRBC), for numerical computation
of radiating solutions to the Helmholtz equation
in waveguides. The CRBC is defined on an ar-
tificial boundary resulting from domain trunca-
tion by a certain recursive formula of auxiliary
variables involving damping parameters, which
can be tuned to minimize reflected waves from
the fictitious boundary. We show that the so-
lution to the problem supplemented with the
CRBC converges exponentially to the exact ra-
diating solution and present numerical experi-
ments illustrating the convergence theory.

Keywords: complete radiation boundary con-
dition, Helmholtz equation, waveguide

1 Introduction

We introduce a complete radiation boundary
condition [1] for a domain truncation technique
to numerically solve radiating solutions to the
Helmholtz equation in waveguides. We consider
the model problem

∆u+ k2u = f in Ω∞,

∂u

∂ν
= 0 on ∂Ω∞

with the radiation condition at infinity, where
the semi-infinite waveguide Ω∞ with boundary
∂Ω∞ satisfies Ω∞∩{x > −δ} = (−δ,∞)×Θ for
some δ > 0. Further, we assume that Ω∞∩{x <

−δ} is bounded and Θ is a Lipschitz bounded
domain in Rd−1, d = 2 or 3. The radiating solu-
tion is characterized by the series representation

u(x, y) =
∞
∑

n=0

Ane
iµnxYn(y)

for (x, y) ∈ (−δ, 0) ×Θ, where (λ2n, Yn) for n =
0, 1, . . . , are Neumann eigenpairs of −∆y in Θ
and µ2

n = k2 − λ2n. Noting that there exists
N such that λ2n ≤ k2 for n ≤ N and λ2n > k2

for n > N , the solution is composed of propa-
gating modes

∑N
n=0

Ane
iµnxYn and evanescent

mode
∑

n>N Ane
−µ̃nxYn with iµn = −µ̃n < 0.

Possibly, it may include a cutoff mode corre-
sponding to n = N with µN = 0.

For numerical computation of the radiation
solution domain truncation, for example at x =
0, needs to precede application of discretization
techniques such as FEM or FDM, and we denote
the resulting finite domain by Ω = Ω∞∩{x < 0}
and the artificial boundary at x = 0 by ΓE . The
complete radiation boundary condition of order
(np, ne) to be imposed on ΓE for an approxi-
mate radiation condition is defined in terms of
auxiliary variables φj for j = 0, 1, . . . , np + ne

satisfying the Helmholtz equation and the re-
currence relations

φ0 = u, (1)

(∂x + aj)φj = (−∂x + ãj)φj+1 (2)

for j = 0, 1, . . . , np + ne − 1 near the boundary
ΓE, and the terminal condition

∂xφnp+ne = 0 on ΓE, (3)

where aj and ãj are damping parameters given
by

aj =

{

−ikcj for j = 0, 1, . . . , np − 1,
σj for j = np, . . . , np + ne − 1

ãj =

{

−ikc̃j for j = 0, 1, . . . , np − 1,
σ̃j for j = np, . . . , np + ne − 1

with the conditions

0 < cj , c̃j ≤ 1 and 0 < σj, σ̃j . (4)

It is easy to see that if aj is chosen to be −iµn

for some j then the CRBC serves as the ex-
act radiation condition for the n-th mode. In
general cases, it can be shown that the reflec-
tion coefficient ρn of the n-th mode is given by
ρn = |Zn|,

Zn =

np+ne−1
∏

j=0

(aj + iµn)(ãj + iµn)

(aj − iµn)(ãj − iµn)
(5)

for non-cutoff modes and ρN = 0 (due to the
terminal condition (3)) for the cutoffmode. The
application of the CRBC to a time-harmonic
wave propagation problem can be found in [3,4].



WAVES 2017, Minneapolis

2 Parameter selection

The CRBC can be optimized by choosing pa-
rameters aj and ãj minimizing the reflection
coefficients for most important modes. In prac-
tice, if the distribution of eigenvalues of −∆y in
Θ is known such as the smallest axial frequen-
cies µmin of propagating modes and the smallest
decay rate µ̃min of evanescent modes, then the
parameters are taken to be a solution to the
min-max problem

ρp ≡ min
aj ,ãj

max
µ∈[µmin,k]

np−1
∏

j=0

∣

∣

∣

∣

(aj + iµ)(ãj + iµ)

(aj − iµ)(ãj − iµ)

∣

∣

∣

∣

,

ρe ≡ min
aj ,ãj

max
µ∈[µ̃min,µ̃max]

np+ne−1
∏

j=np

∣

∣

∣

∣

(aj − µ)(ãj − µ)

(aj + µ)(ãj + µ)

∣

∣

∣

∣

.

Here µ̃max is an upper bound of decay rates of
evanescent modes whose reflection would not be
ignorable without the absorbing boundary con-
dition. It is established (see e.g., [2]) that the
reflection coefficients ρn,p and ρn,e with opti-
mally selected parameters decay exponentially

ρp ≤ e−Cnp/ ln(k/µmin) ≤ e−Cnp ,

ρe ≤ e−Cne/ ln(µ̃max/µ̃min)

and the parameters of the min-max problems
can be obtained numerically by the Remez al-
gorithm.

3 Approximate the DtN operator

The exact radiation condition can be interpreted
based on the Dirichlet-to-Neumann(DtN) oper-
ator

T : H1/2(ΓE) → H−1/2(ΓE)

u =
∞
∑

n=0

unYn )→ T (u) =
∞
∑

n=0

iµnunYn.

The CRBC is also associated with the approxi-
mate DtN operator

Tcrbc(u) =
∞
∑

n=0

iµn

(

1− Zn

1 + Zn

)

unYn,

which converges to the DtN operator in the sense
that for M > N and for φ ∈ H1/2+s(ΓE), s > 0,
it holds that

∥(T − Tcrbc)φ∥2H−1/2(ΓE)

∥φ∥2
H1/2+s(ΓE)

≤ C

(

e−Cnp + e−Cne/ ln(µ̃M/µ̃min) + (1 + λ2M )−s

)

This convergence result of Tcrbc plays a cru-
cial role in the analysis on well-posedness of the
truncated problem and convergence of approxi-
mate solutions.

4 Numerical experiments

We conduct numerical tests with the CRBC of
different orders when k = 20, Θ = (0, 1) in R

and the source includes only propagating modes.
As expected from the convergence theory, it is
observed from the error plot that the accuracy
of the CRBC is improved as the order np in-
creases as long as the mesh size h is fine enough.

np

1 2 3 4 5
10-10

10-8

10-6

10-4

10-2

100

L2, h = 1/800
H 1, h = 1/800
L2, h = 1/1600
H 1, h = 1/1600
L2, h = 1/3200
H 1, h = 1/3200
ρp

Figure 1: Relative errors in propagating modes
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On the e�ciency of an ADI splitting combined with a discontinuous Galerkin
discretization
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Abstract

We consider the alternating direction implicit
(ADI) method for the time-integration of Max-
well’s equations with linear, isotropic material
properties on a cuboid. The main advantage
of this method is unconditional stability, while
only being of linear complexity if combined with
finite di↵erences on a Yee grid.

In this paper we combine the ADI method
with a discontinuous Galerkin (dG) discretiza-
tion in space. We show that for regular meshes
consisting of cuboids the method can be imple-
mented with optimal (linear) complexity. Our
work in progress consists of proving error bounds
which are uniform in the mesh discretization pa-
rameter.

Keywords: alternating direction implicit, dis-
continuous Galerkin, Maxwell’s equations, sec-
ond order scheme, unconditional stability

1 Introduction

The source-free linear Maxwell’s equations with
perfectly conducting boundary conditions on a
cuboid domain ⌦ ⇢ R3 are stated as

@
t

E = 1
"

curlH, (0, T )⇥ ⌦,

@
t

H = � 1
µ

curlE, (0, T )⇥ ⌦,

E(0) = E0, H(0) = H0, ⌦,

n⇥ E = 0, (0, T )⇥ @⌦.

Here, ", µ : ⌦ ! R denote the electric permit-
tivity and the magnetic permeability, respec-
tively. For the sake of readability, we set " =
µ = 1 in the following.

Choosing a suitable function space and defin-
ing u = (E,H), we can write this system as the
abstract Cauchy problem

@
t

u = Mu, u(0) = u0,

where the Maxwell operator M is defined as

M =

✓
0 curl

� curl 0

◆
.

2 Discretization

The ADI scheme for Maxwell’s equations was
proposed in [2,3]. It is a splitting scheme, where
the curl operators are split into a positive part
C1 and a negative part C2 given by

C1 =

0

@
0 0 @

y

@
z

0 0
0 @

x

0

1

A , C2 =

0

@
0 @

z

0
0 0 @

x

@
y

0 0

1

A .

Accordingly, the Maxwell operator is split into
M = A+ B with

A =

✓
0 C1
C2 0

◆
, B =

✓
0 �C2

�C1 0

◆
. (1)

The time-integration is then carried out via the
so-called Peaceman–Rachford scheme, which is
defined as

(I � ⌧

2A)u⇤ = (I + ⌧

2B)u
n,

(I � ⌧

2B)u
n+1 = (I + ⌧

2A)u⇤.
(2)

It is well known, that the Peaceman–Rachford
scheme is unconditionally stable and of classical
(non-sti↵) order two.

We combine the ADI scheme with a cen-
tral flux dG discretization in space on a regular
grid consisting of cuboids. This yields space-
discretized versions of the operators C1 and C2
and – by composing them according to (1) – of
the operators A and B.

3 E�ciency

The complexity of the method is mainly gov-
erned by the cost of solving the linear systems
occuring in the Peaceman–Rachford scheme. The
e�ciency mainly depends on the sparsity pat-
tern of the corresponding matrices resulting from
the space discretization. We present two ways
to achieve a scheme of optimal (linear) complex-
ity, both yielding matrices with a bandwidth
bounded independently of the number of ele-
ments in the mesh.
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3.1 Second order formulation

The second order formulation follows the idea
in [2, 3]. Here, in the first halfstep of (2), the
unknown H-field is plugged into the equation
for the E-field:

�
I � ⌧

2

4 C1C2
�
E⇤ =

�
I � ⌧

2

4 C
2
1

�
En + ⌧

2 curlH
n,

H⇤ = Hn � ⌧

2C1E
n + ⌧

2C2E
⇤.

This requires the solution of a linear problem
for E⇤.

Proceeding analogously for the spatially dis-
cretized version of (2) and numbering the de-
grees of freedom appropriately, we end up with
matrix structures of the discretized operators
C1, C2, and I� ⌧

2

4 C1C2 as shown in Fig. 1. Since
the latter matrix is banded with a bandwidth
being independent of the number of elements,
the above linear system for E⇤ can be solved
in linear complexity. The second halfstep fol-
lows completely analogously by interchanging
the roles of C1 and C2.

Figure 1: Structure of the matrices correspond-
ing to C1, C2 (left) and I � ⌧

2

4 C1C2 (right) after
reordering. Red: inner element coupling, or-
ange: coupling between elements.

3.2 First order formulation

As an alternative to changing into the equiva-
lent scheme above, we propose a suitable num-
bering of the degrees of freedom. This leads
again to an implementation of the original Peace-
man–Rachford scheme (2) which is of linear com-
plexity. The numbering is motivated by noting
that in the operators A and B only two com-
ponents, one from the electric and one from the
magnetic field, are actually coupled via only one
spatial derivative, e.g. in A, the E1 component
is only coupled to the H3 component via @

y

.
By intertwining the degrees of freedom of these

coupled components and ordering them elemen-
twise according to the spatial derivative applied
to them, we end up with matrices of the struc-
ture displayed in Fig. 2. As the bandwidth of
this matrix is again bounded independently of
the number of elements, linear systems involv-
ing this matrix can be solved in linear time.

Figure 2: Structure of the matrix corresponding
to I � ⌧

2A after reordering. Red: inner element
coupling, orange: coupling between elements,
blue: identity.

4 Error analysis

Currently, we investigate the error analysis of
the full discretization of the ADI scheme. The
aim is to prove error bounds of optimal order in
space and time with constants being uniform in
the mesh parameter of an admissible sequence
of spatial meshes.

Our analysis is based on [1], where the ab-
stract Cauchy problem is analyzed in a vari-
ational framework which fits nicely to the dG
discretization. Nevertheless, it is considerably
more involved, in particular for upwind fluxes.
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Abstract

We consider time-harmonic scattering problems
of acoustic waves from either a bi-periodic in-
homogeneous medium which is absorbing on an
open set or a bi-periodic sound-soft obstacle in
R3, both with a local perturbation. For this,
the Floquet-transform is used to reformulate
the problem as an equivalent system of cou-
pled variational problems on a bounded domain.
This system possesses a unique solution for both
scattering problems. Furthermore, we calculate
the Fréchet derivative of the operator, which
maps the perturbation to the solution.

Keywords: Scattering, Floquet-transform, Fré-
chet derivative

1 Introduction

Scattering problems from bi-periodic inhomo-
geneous medium or bi-periodic sound-soft ob-
stacle are occurring for example during non-
destructive testing methods for, e.g., nano-gras.
The setting for the scattering problem from in-
homogeneous medium is close to the setting an-
alyzed in [1].

For simplicity, we consider here the simplest
setting where functions are 1-periodic with re-
spect to x1 and x2, and set for j 2 Z2

Wj :=
�
! + j : ! 2 (�1/2, 1/2)2

and
I :=

�
! : ! 2 (�⇡,⇡)2 .

2 Problem formulation

The first problem that we investigate is the scat-
tering problem from an inhomogeneous medium,
which is formulated as follows: Let n 2 L1(R3)
be a 1-periodic function with respect to the first
two coordinates and Im(n) > 0 on an open
set in R3. Moreover, we choose q 2 L1(R3)
with supp(q) ✓ W0 ⇥ (�R0, R0), R0 > 0, and
the wave number k > 0. Then find a function
u 2 H1

loc(R3) with u 2 H1(R2⇥ (�R,R)) for all
R � R0 such that

�u+ k2(n2 + q)u = g in R3, (1)

where g 2 L2(R2 ⇥ (�R0, R0)). Additionally,
the function should fulfill the radiation condi-
tion

u(x̃, x3) =
1

2⇡

Z

R2

\(��±Ru)(⇠)ei⇠·x̃±i
p

k2�|⇠|2(x3⌥R) d⇠

(2)

for x̃ 2 R2 and |x3| > R � R0, where ��±R is the
trace operator on �±R := R2 ⇥ {±R} and f̂ is
the Fourier-transform of a function f 2 L2(R2).

We define for ↵ 2 I the space
H1

↵(W0⇥(�R,R)) as the closure with respect to
the H1(W0⇥(�R,R)) norm of ↵-quasi-periodic
C1-functions in R3 with respect to 1-periodicity
in the first two coordinates. After applying
the isomorphic Floquet-transform J to the cor-
responding variational formulation we get the
problem: Find a function ũ 2 L2(I;H1

↵(W0 ⇥
(�R,R))) such that for all R � R0 and for all
↵ 2 I the equation

�ũ(↵, ·)+k2n2ũ(↵, ·)+ 1

2⇡
k2qJ �1ũ = J g (3)

holds in W0⇥ (�R,R). This time the functions
{ũ(↵, ·)}↵2I should fulfill Rayleigh’s radiation
condition.

The scattering problem from a sound-soft
obstacle can be introduced analogously since it
mainly di↵ers in the following two things: The
function n2 is 1 everywhere and instead of R3

we introduce a domain ⌦R such that

R2 ⇥ (R0, R) ✓ ⌦R ✓ R2 ⇥ (0, R)

and

x 2 ⌦R ) x+

0

@
j1
j2
0

1

A 2 ⌦R 8j 2 Z2.

These changes enforce the perturbation to be
in the parametrization of the domain instead
in the parameter n2. Thus, let ⇣ : R3 ! R3

be a function, which is the identity function in
R2 ⇥ [R0,1), and define ⌦R = ⇣(R2 ⇥ (0, R)),
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� := ⇣(R2 ⇥ 0), and ⌦ :=
S

R>0⌦R. More-
over, we choose a C2-function q : R3 ! R3 with
supp(q) ✓ W0 ⇥ (�R0, R0) and define the per-
turbed domain ⌦R

s as ⌦R
s = (⇣+q)(R2⇥(0, R)).

Since we have to fulfill the periodicity condition
for the domain to apply the Floquet-transform,
we use the transformation theorem to get the
formulation: Find u 2 H1

loc(⌦) such that u 2
H1(⌦R) for all R > R0 satisfies the equations

div(C⇣+qru) + k2c⇣+qu = c⇣+qg in ⌦, (4)

��u = 0 on �,

and fulfills the radiation condition (2), with cer-
tain functions C⇣+q 2 C1(R3,R3) and c⇣+q 2
C1(R3,R). It is important that supp(C⇣+q �
I3) and supp(c⇣+q � 1) are included in ⇣(W0 ⇥
(0, R)).

Applying the Floquet-transform gives us the
formulation:

Find a function ũ 2 L2(I;H1
↵(⇣(W0⇥(0, R))))

such that for all R � R0 and for all ↵ 2 I the
equation ũ(↵, ·) = 0 holds on �R

0 := W0 ⇥ {R}
and

�ũ(↵, ·)+k2ũ(↵, ·) + 1

2⇡
k2(c⇣+q � 1)J �1ũ

+
1

2⇡
div(C⇣+q � I3)rJ �1ũ = J g

holds in ⇣(W0 ⇥ (0, R)). Again, the functions
{ũ(↵, ·)}↵2I should fulfill Rayleigh’s radiation
condition.

3 Existence theory

If we assume to have q = 0, then the existence of
a solution to the problem (3) pointwise in ↵ 2 I
follows from Fredholm-theory under further as-
sumptions that Im(n2) � 0 and Im(n2) > 0 on a
open set in R3. With the help of a Neumann se-
ries argument we get uniform continuity of the
solution operator with respect to ↵ 2 I. From
this we conclude that the function ũ, ũ(↵, ·) :=
ũ↵ with the solution ũ↵ to the pointwise prob-
lem, lies in L2(I;H1(R2 ⇥ (�R,R))).

Thus, after considering the problem without
a perturbation, we are able to use Fredholm-
theory to conclude the existence of a solution
to the perturbed problem.

Theorem 1 Under the assumptions for Im(n2)
and Im(q) � 0 there exists a unique solution

ũ 2 L2(I;H1
↵(W0 ⇥ (�R,R))) for the problem

(3) such that

||ũ||L2(I;H1
↵(W0⇥(�R,R)))

 c||J g||L2(I⇥W0⇥(�R,R)).

In consequence, there exists a solution to (1)
under the same conditions.

For existence theory for the scattering prob-
lem from a sound-soft obstacle, e.g., see [2].

4 Fréchet derivatives

Apart from existence theory, the previously sket-
ched framework also serves to, e.g., compute
Fréchet derivatives for the solution operators
F1,2 that map the perturbation q to the solu-

tion u
(1),(2)
q of the corresponding perturbed scat-

tering problem. These derivatives can be com-
puted for both scattering problems and repre-
sented by the Floquet-transform on the bounded
domain I⇥W0⇥(�R0, R0) for the medium scat-
tering problem and I ⇥ ⇣(W0 ⇥ (0, R0)) for the
sound-soft scattering problem.

Theorem 2 The operator F1 : D(F1) ! H1(R2⇥
(�R,R)) has in q 2 D(F1) the Fréchet deriva-

tive F0
q : L

1(W0⇥(�R0, R0)) ! H1(R2⇥(�R,R)),
h 7! wh, where wh 2 H1(R2 ⇥ (�R,R)) is the

solution to (1) with the right-hand side g =

k2hu
(1)
q .

Theorem 3 The operator F2 : D(F2) ! H1(⌦R)
has in q 2 D(F2) the Fréchet derivative F0

q :

D(F2) ! H1(⌦R), h 7! wh, where wh 2 H1(⌦R)
is the solution to (4) in ⌦R

with the right-hand

side �A(g)[h](u
(2)
q , ·), and A(g) is the Fréchet

derivative of the sesquilinear form of the cor-

responding variational problem with respect to

q.
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Wave energy delivery to multiple subsurface targets using time-reversal method
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Abstract

We discuss the applicability of a time-reversal
concept to the focusing of wave energy to mul-
tiple subsurface targets embedded within an ar-
bitrarily heterogeneous three-dimensional elas-
tic host. The motivation stems from an inte-
rest in facilitating oil ganglia mobility in sup-
port of enhanced oil recovery (EOR) methods.
We quantify the focusing by a suitable motion
metric, and provide numerical evidence suppor-
tive of the method’s e�cacy in illuminating the
targets even when embedded within randomi-
zed media.

Keywords: wave energy focusing, time-rever-
sal, subsurface targets, EOR, fracking

1 Introduction

There are a few engineering applications, where
there is interest in focusing wave energy to tar-
gets embedded within heterogeneous hosts. Li-
thotripsy, i.e., the breaking of kidney stones,
has been a long-standing application of wave fo-
cusing in therapeutics; similarly motivated ap-
plications can be found in cancer treatment.
In therapeutics, the typical setting involves a
closed-cavity, or equivalently, the surrounding
of the target with sources/receivers that direct
energy to the target. Here, we are interested
in exploring wave focusing to select targets em-
bedded within the subsurface, i.e., hosted by a
semi-infinite heterogeneous elastic domain, which
poses challenges not encountered in closed-cavity
or waveguide settings. The application is mo-
tivated by enhanced oil recovery needs, where
there is interest in facilitating the mobility of
oil ganglia in reservoir subregions typically by-
passed by primary modes of recovery.

To this end, we numerically evaluate the
potential of the application of a time-reversal
concept to illuminate the targets, and assess
its e↵ectiveness by computing suitable motion
metrics. Specifically, we consider the setting
depicted in Fig. 1: we assume that there are
multiple targets embedded within an arbitrarily

heterogeneous semi-infinite host, with, in gene-
ral, contrasting properties with the host. We
assume further that a single source (or more)
is present within each target: the sources are
triggered, and a time-reversal (TR) mirror (e.g.,
geophones) records the response on the surface
of the half-space. The receiver signals are time-
reversed and the interest is in assessing the wave
energy refocusing potential to the targets, gi-
ven the presence of multiple challenges, which
include the limited extent of the mirror, the un-
boundedness of the host, the lack of a sink, and
others.

Figure 1: Model configuration: REG, INC, and
PML stand for host (regular) domain, inclusi-
ons (targets), and perfectly-matched-layers, re-
spectively; the sources are located within the
targets, and TRM stands for the time-reversal
mirror

2 Mathematical background

To numerically simulate the refocusing experi-
ment, we consider the two steps typically invol-
ved in a time-reversal application. In a first, or
forward step, the sources are triggered, and the
receiver array (the TR mirror) records. This
phase is governed by the Navier equations of
motion, i.e.,

r · [µ (ru+ru

|)+� {(r · u) I}]�⇢ü = f (1)

where µ(x) and �(x) are the Lamé parame-
ters, and ⇢(x) denotes mass density; u(x, t) is
the displacement field and f(x, t) denotes the
source/force vector (x 2 ⌦REG). To properly
account for the unboundedness of the domain,
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the physical domain is truncated through the in-
troduction of perfectly-matched-layers (PMLs);
the PMLs form the bu↵er zone ⌦PML around
⌦REG, per Fig. 1. The details of the numerical
treatment for the forward step are given in [2].

Following the forward step, the recorded re-
sponse at the mirror is time-reversed. If the
domain of interest were a closed cavity, if the
mirror were to envelope the domain, and if the
forcing term in (1) were to be also time-reversed
(sink), then perfect refocusing to the original
source locations within the targets is expected
[1] (for an infinite aperture and for the conti-
nuous problem). Due to practical limitations,
the aforementioned ideal conditions are impos-
sible to attain, and, consequently the focusing
is expected to degrade. In addition: while the
receivers record Dirichlet data (displacements),
equipment limitations allow only the applica-
tion of Neumann data (tractions), which could
further degrade the focusing. With the above
conditions, the time-reversal phase is numeri-
cally simulated using (1), without the forcing
term, and subject to the free-surface mirror con-
ditions, i.e., applied tractions implemented by
time-reversing the recorded Dirichlet data. Mat-
hematically, the time-reversal of recorded Diri-
chlet data as Neumann data resembles steps in
subsurface imaging processes; however, the dif-
ference in the illumination zone between a mi-
gration approach and the inclusion-originating
data would likely not allow for the imaging of
the targets using a migration method.

To quantify the focusing, we introduce the
time-averaged kinetic energy for x 2 ⌦REG [3]:

KETA(x) =
1

2T

Z T

0
u

|(x, t)⇢(x)u(x, t) dt. (2)

3 Numerical experiment

The model is 80m⇥80m⇥40m (depth), with a
6.25m-thick PML bu↵er enveloping all sides ex-
cept the top surface. The model is divided into
two layers, with the interface at 20m depth.
Two spheroidal, relatively soft, targets (semi-
axes 7.5m, 7.5m, and 3.75m), are placed at two
di↵erent depths, with one centered at (-15m,-
15m,-20m) and the other at (15m,15m,-30m),
respectively. The physical properties are sum-
marized in table 1; in order to introduce further
heterogeneity, the values of table 1 were spati-
ally randomized; cp and cs indicate P- and S-
wave speed, respectively; the shear wave map is

shown in Fig. 2. The resulting time avera-

cp(m/s) cs(m/s)
targets 387.30 223.61
top layer 670.82 387.30

bottom layer 866.03 500.00

Table 1: Model physical properties

Figure 2: Shear wave speed distribution

Figure 3: Time-averaged kinetic energy KETA

ged kinetic energy is shown in Fig. 3: despite
the various limitations, the targets are clearly
illuminated.

4 Conclusion

We quantified and demonstrated the applica-
bility of time-reversal in the focusing of wave
energy at multiple subsurface targets embedded
within heterogeneous elastic hosts, without re-
solution loss of practical significance. The ap-
proach is a good candidate for EOR.
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Abstract

A new class of discontinuous Galerkin method
with tame CFL numbers is presented.
Keywords: Discontinuous Galerkin, CFL.

Introduction

Discontinuous Galerkin methods has emerged
as a highly flexible and accurate tool for numer-
ical solution of wave propagation problems aris-
ing in many areas of engineering and science, [1].
A drawback with traditional dG methods is the
strong reduction of the CFL number as the or-
der of the spatial discretization increases. There
are some alternatives for relaxing or taming the
CFL, e.g. by the use of staggered approxima-
tions, [2, 3], mappings [1] or by careful modifi-
cation of the numerical fluxes [4].

Below we present a di↵erent approach based
on modifying the variational statement itself in
a way so that we give up precise control of the
L2-norm of the solution in favor of control of
a semi-norm. As we will illustrate below our
modification allows us to balance increased CFL
numbers against an increase in the rate of the
long term error growth. When paired with Tay-
lor series method, the most aggressive version
of Sobolev-dG (SOB-dG) is able to time march

with CFL numbers that increase with order.

Sobolev discontinuous Galerkin

We introduce SOB-dG by considering the scalar
transport equation, u

t

+ u

x

= 0, on the peri-
odic domain x 2 ⌦ = [0, 2] and with initial data
u = sin(⇡x). We discretize the spatial domain
into K elements ⌦

k

= [x
k�1, xk] with x

k

=
2(k/K). On each element we approximate the
solution by a degree N polynomial u ⇡ u

k

h

=P
N

j=0 û
k

j

(t)�
j

(z), where z 2 [�1, 1] is a local co-

ordinate on each element and, for simplicity, we
choose �

j

= z

j�1.
Let ⇧b

a

(z) be the polynomial space spanned
by {za, za+1

, . . . , z

b}, then SOB-dG is defined
by the element-wise variational statements (2).

Note that the standard strong dG formu-
lation (see [1]) is obtained with the “stride”
s = N + 1 resulting in � 2 ⇧N

0 and r 2 {0}.
Also note that for r > 0, some of the equations
for that r will be reduced to identities 0 = 0
but that the total number of equations is al-
ways N +1. Finally note that the choice of s is
constrained to (N + 1)/s being an integer.

The numerical fluxes are chosen as a straight-
forward generalization of the standard central
or upwind flux (↵ = 1 and ↵ < 1)

✓
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Here {{·}} and [[·]] are the standard definitions
of trace average and jump, [1]. With this choice
of numerical flux we have the following

Theorem 1 Let u

h

be the global solution com-

posed of element solutions u

k

h

satisfying (2) and

(1) then

d

dt
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Numerical Experiments

We first consider the case N = 11 and vary
the stride s = 1, 2, 3, 4, 6, 12. We use an up-
wind flux with ↵ = 0. To the right in Fig-
ure 1 we plot the spectrum (scaled by the ele-
ment size) of the discrete operator with 40 el-
ements. As can be seen, the spectral radius
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Figure 1: Left: the spectra for methods using N = 11 and strides from s = 1 to s = 12 (standard
dG). The increase in the spectral radii is monotone with s. Right: For fixed strides the spectrum
remains identical independent of N . The figure displays (s,N) for: (2,11), red squares, (2,9), black
dots, (3,11), purple squares, and (3,5), blue dots.

Table 1: Maximum errors over space and time.

(s,K) E(t = 1) E(t = 10) E(t = 100)
(2,14) 9.18(-8) 1.07(-4) 6.14(-1)
(2,28) 5.76(-11) 2.05(-9) 1.98(-4)
Rate 10.6 15.7 11.6
(6,8) 3.47(-9) 3.73(-9) 5.96(-9)
(6,16) 1.14(-12) 1.56(-12) 2.51(-12)
Rate 11.6 11.2 11.2
(12,5) 2.13(-8) 2.09(-8) 2.09(-8)
(12,10) 5.12(-12) 7.02(-12) 3.01(-11)
Rate 12.0 11.5 9.4

increases drastically with the stride. In fact,
when marching the solution with a 12th order
Taylor series method we can use CFL numbers
2.5, 0.9, 0.45, 0.3, 0.15 for s = 1, 2, 3, 4, 6. Com-
pared this to 0.04 for standard dG.

We also consider the case where the stride
is kept fixed and the degree of the approxima-
tion, N , is varied. The results for stride s = 2
and N = 9, 11; and s = 3 and N = 5, 11 are
displayed to the right in Figure 1. The spectra
reveals an interesting property of SOB-dG, for
a fixed stride the spectra is identical for all N .
The explanation for this can be gleaned from
the variational statement whose structure will
result in mass matrices that are block triangu-
lar with (N + 1)/s blocks with of size s ⇥ s on
the diagonal. These blocks are similar and thus
share eigenvalues.

Finally, Table 1 reports maximum errors (over
space and time) for N = 11 and s = 2, 6, 12
(standard dG). The number of elements have

been scaled so that each method has the same
computational cost. The method s = 6 gives
the smallest errors for all times, outperforming
standard dG, while s = 2 has rapid growth in
time and is competitive only for short times.
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Abstract

Multiple seismic data sets are often recorded to
monitor changes in Earth properties. We test a
method for imaging those changes, Alternating
Full-Waveform Inversion (AFWI), to determine
how errors in the model translate into errors in
the final image. The results appear to follow a
normal distribution, which opens up the possi-
bility of quantifying these errors.

Keywords: full waveform inversion, time lapse
seismic, uncertainty, noise

1 Introduction

Monitoring of an oil field for changes in reservoir
parameters during production is important for
e�cient oil recovery. The technique most com-
monly used to do this is time-lapse (4D) seismic.
In 4D seismic multiple surveys are acquired over
a region and their di↵erences used to detect
changes in fluids (Lumley, 2001). The first sur-
vey acquired over a field is called a baseline sur-
vey and subsequent surveys are called monitor
surveys. Full Waveform Inversion (FWI) is a
promising tool for 4D analysis. The objective
of FWI is to deliver a velocity model of the sub-
surface by iteratively matching modelled and
recorded data (Virieux et al., 2009). FWI itera-
tively updates the Earth model, and 4D changes
can then be related to changes in elastic prop-
erties (e.g. pressure, fluid saturation, density).
Uncertainty is a key component of any mea-
surement, especially in 4D monitoring where we
are often looking for small changes in localized
regions. Based on previous work (Yang 2014,
Maharramov and Biondi, 2014), we try to un-
derstand the best way to quantify uncertainty
following a more rigorous statistical approach,
by understanding the main contributors to un-
certainty. In seismic images, the main sources
of uncertainty are usually velocity model uncer-
tainty and coherent noise. The former will be
considered for this project.

2 The Method

Because FWI is a nonlinear optimization prob-
lem, it is solved iteratively. In Alternating Full
Waveform Inversion (AFWI), we use the dif-
ferences in how baseline and monitor models
converge to determine a set of weights. These
weights are then used to constrain the final joint
inversion for the change in the material proper-
ties, highlighting areas that have been identified
as having the highest probability of changes.
The objective function to be minimized is:

(1)

E(m0,m1) =
1

2
kF (m0)� d0k2

+
1

2
kF (m1)� d1k2

+
1

2
km0 �m1

�
k
2

where m0 and d0 are the baseline model and
data, m1 and d1 are the monitor model and
data, and � is the set of weights calculated by
AFWI.

3 Numerical Example

We use a simple 2D model of two reflectors,
where the position of the top reflector is shifted
to introduce a change between the baseline and
monitor models. One hundred di↵erent gaus-
sian noise realizations are created and added to
the model. For each model realization, AFWI
is applied to create a set of weights (Figure 1),
and the time lapse velocity change is recovered
by minimizing the objective function given in
equation (1) (Figure 2 shows the recovered time
lapse change for the same model used in Fig-
ure 1). For each time lapse change image the
distance between the two reflectors �z is cal-
culated for each column of the resulting image,
and then averaged. Figure 3 shows a histogram
of the averaged �z for all the noise realiza-
tions. As expected, the recovered �z are ap-
proximately normally distributed. Most of the
results are near the true �z which is 16. The
errors in �z seem to be symmetric with small
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errors occurring more frequently than large er-
rors.

Figure 1: Map of probable changes in one of
the models; areas with higher values represent
areas where there is the highest probability of
change.

Figure 2: Recovered time lapse velocity change
for the same noise realization as in Figure 1.
Both top reflectors have been recovered accu-
rately even though the noise artifacts are quite
strong.

4 Discussion and Conclusion

We showed that errors in our recovered time
lapse change are approximately normally dis-
tributed. The key remaining question is, can
we go beyond this and provide an algorithm
that calculates absolute errors? Current and
future work to address this question is focusing
on Bayesian statistics and the potential appli-
cation of Monte Carlo methods.

Figure 3: Histogram of the �z from the recov-
ered time lapse changes of the di↵erent noise
realizations models
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Abstract

Nanoplasmonics forms a major part of the field
of nanophotonics, which explores how electro-
magnetic fields can be confined over dimensions
on the order of or smaller than the wavelength.
Here, we present an integral-equation formula-
tion of the mathematical model that delivers
accurate solutions in small computational times
for surface plasmons coupled by periodic corru-
gations of flat surfaces an extension of single
layer configurations to a more challenging case;
multilayered configurations. The new configu-
ration is composed of a thin layer of a metal
(gold, silver, etc.) with depth larger than skin
depth of the material, buried into di↵erent epox-
ies on top (glass/polymer substrate) and the
bottom (liquid/water/blood).

Keywords: plasmons, integral equations, high-
order solvers

1 Introduction

Nanoplasmonics forms a major part of the field
of nanophotonics, which explores how electro-
magnetic fields can be confined over dimensions
on the order of or smaller than the wavelength.
Initiated in 1902 by R.W. Wood [1] with the dis-
covery of grating anomalies, this phenomenon
has attracted significant attention over the last
hundred years [2,3]. Mie in 1908 gave a mathe-
matical description of light scattering from spher-
ical particles of sizes comparable to the wave-
length [2], describing an e↵ect that would come
to be known as localized surface plasmons in
the context of nanoplasmonics. It is based on
interaction processes between electromagnetic
radiation and conduction electrons at metallic
interfaces or in small metallic nanostructures,
leading to an enhanced optical near-field at sub-
wavelength dimension. In 1899, Sommerfeld
had described surface waves (waves propagat-
ing at the surface of metals) mathematically,
and in 1902 Wood observed anomalous drops in
the intensity of light reflected by a metallic grat-
ing [2]. But theory and observation would not
be linked until 1941, by Fano [4]. Further exper-

imental validation came in 1968, when Kretschmann
and Raether used prism coupling to excite sur-
face waves with visible light [5]. Other forms
of coupling to surface plasmons have been thor-
oughly investigated since then. All of the phe-
nomena mentioned above are based entirely on
classical electromagnetics, and thus can be math-
ematically described by Maxwell’s equations. In
this paper, an integral-equations formulation is
given for multilayered an infinitely periodic metal
configuration whose period d is on the nanome-
ter scale. This configuration is composed of
a thin layer of metal with depth larger than
skin depth of the material, buried into di↵erent
epoxies on top (glass/polymer substrate) and
the bottom (liquid/water/blood) both extend
infinitely above and below the surface. Some
details of the numerical implementation and the
results of a few numerical experiments are also
given in Sec. 2 and 3.

2 Formulation and Algorithm

In this section, a system of integral equations
for the total exterior fields ui (ui = Ez in Trans-
verse Electric –TE– and ui = Hz in Transverse
Magnetic –TM– polarizations) and its normal
derivative @ui

@n on the surface �i for i = 1...n are
given. The metal surface �i are periodic and
satisfies fi(x+ di, y) = fi(x, y). For the sake of
the completeness and for experimental setting,
we look into 3 layer settings; glass/polymer sub-
strate on the upper surface, epoxy in the lower
one and metal in between.

As x ! �i and using the boundary condi-
tions, the surface integral equations become:
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and Ga(x, y) is the quasi periodic Green’s func-
tion. Here uinc(r) denotes the incoming inci-
dent wave and ⌫ = 1 for TE polarization and
⌫ = ki/ke for TM polarization.

Our numerical algorithm depends on seek-
ing the unknowns on the surface of the grating,
and the matrix elements are evaluated through
the derivation of a careful decomposition that
allows for explicit evaluation of the singular and
non-singular parts of the kernels [7].

3 Numerical Results

In this section, we provide numerical experi-
ments for the algorithm described above imple-
mented in MATLAB. The test cases in the simu-
lations that follow correspond to (“two-dimensional”)
infinitely periodic metal gratings that invariant
in the z direction. To investigate the existence
of plasmonic resonances, we concentrate on the
analysis at length scales where these do appear,
namely

h << � ⇠ d

where d is the period, h is the height of the
rough surface and � is the wavelength.

Here we present results of the integral solver
for convergence, and display a specific verifica-
tion against the high-order perturbation method
introduced in [6] (See Fig. 1).

Figure 1: The error in the total field and its normal

derivative as a function of the number of collocation

points for the sinusoidal grating. The error is shown

on a logarithmic scale for where a plasmon is generated.
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Abstract

Adopting a post-Minkowski approximation for
the Einstein-matter equations, we describe work
towards numerical construction of helically sym-
metric spacetimes representing binary neutron
stars. Established methods for solving the con-
straints of general relativity, thereby producing
initial data for the Einstein-matter equations,
start with trial data. We seek trial data with-
out conformal flatness which gives rise to “junk
radiation”. Our work relies on sparse, modal,
spectral-element methods and 2-center domain
decompositions. We gratefully acknowledge NSF
DMS 1216866 for supporting most of this work.

Keywords: Spectral methods; neutron stars;
gravitational waves.

1 Problem statement

Our e↵orts toward the construction of binary
neutron star (BNS) initial data are based on
the Landau-Lifschitz (LL) formulation of the
Einstein equations. This formulation views the
(densitized, contravariant) spacetime metric as

gµ⌫ ⌘ (�⌘)1/2(⌘µ⌫ � h̄

µ⌫), ⌘ = det(⌘µ⌫), (1)

where ⌘

µ⌫ is the (flat) Minkowski metric and
h̄

µ⌫ the deviation from the flatness. The over-
bar is standard notation. We enforce the “har-
monic gauge” (HG) condition @gµ⌫/@xµ = 0,
assuming the Einstein summation convention.
For blackholes systems harmonic coordinates will
not penetrate horizons, and so not cover the
whole spacetime. We assume that a BNS space-
time (which, free of strong internal gravity, pos-
sesses no internal horizons) may be covered en-
tirely by a harmonic coordinate system.

The HG Einstein equations in LL form are

⇤h̄

µ⌫ = S

µ⌫�
⌧��↵(g)h̄

⌧�
,h̄

�↵
,�

+ h̄

↵�
h̄

µ⌫
,↵� � 16⇡|g|Tµ⌫

,

(2)

where a comma denotes di↵erentiation and den-
sity weights (�⌘)1/2 are assumed unit. ⇤ is the

ordinary wave operator, and S

µ⌫�
⌧��↵(g) is a tensor

depending on the metric, but not its derivatives.
The perfect-fluid stress energy tensor,

T

µ⌫ = (e+ p)Uµ
U

⌫ + pg

↵�
, (3)

depends on the velocity U

µ, energy density e,
and pressure p. Our description of the fluid fol-
lows [1]. Define the enthalpy h = (e+p)/(mBn),
where n is the baryon number density and mB

the mean baryon mass. Assume a cold matter
equation of state: n = n(h), e = e(h), p = p(h).

We also assume helical symmetry, in partic-
ular corotation U

↵ = (�⇠�⇠
�)�1/2

⇠

↵, where ⇠

↵

is a Killing vector field which is timelike in the
fluid. Covariant conservation of Tµ⌫ then yields

h(�⇠�⇠
�)1/2 = constant in the fluid, (4)

to be enforced with (2) subject to nonlocal bound-
ary conditions not discussed here.

For a scalar problem helical symmetry stems
from @t ! �⌦@', since the field depends on
time through ' ⌘ � � ⌦t, where � is an az-
imuthal angle and ⌦ the rotation rate. This re-
placement converts ⇤ into the mixed-type heli-
cally reduced wave operator (HRWO) L = r2�
⌦2

@

2

'. For a metric theory imposition of helical
symmetry requires care, since it assumes a heli-
cal Killing vector ⇠µ. Price and coworkers have
introduced helical scalars e A [2], where the tilde
means “corotation” and A runs over ten tensor-
spherical-harmonic labels. The e A are coe�-
cients in an expansion of h̄µ⌫ with respect to a
basis of corotating tensor spherical harmonics.
Although this formalism is a key aspect of our
work, we ignore all details here.

2 Post-Minkowski (PM) approximation

Our PM approximation starts with expansions
of h̄µ⌫ and the fluid variables. Based on Kepler’s
law and other considerations, we assume

h̄

tt ⇠
1
h̄

tt +
2
h̄

tt
, h̄

tj ⇠
1.5
h̄

tj
, h̄

jk ⇠
2
h̄

jk

e ⇠
1
e+

2
e, p ⇠

1
p+

2
p, ⌦ ⇠

0.5
⌦.

(5)

We seek variables which are accurate only through
order 2, and consider the corresponding expan-
sions/truncations of (2) and (4). One signifi-

cant simplification is then S

µ⌫�
⌧��↵(g) ! S

µ⌫�
⌧��↵(⌘).
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3 Numerical methods
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(a) Inner domain decomposition.

(b) Double cross section.

Figure 1: 2-center domain.

Helically symmetric solutions are equilibrium
configurations; whence we do not solve the above
equations as an evolution problem. Instead, we
use a version of the self-consistent field method
[3], an iterative scheme. Linear problems en-
countered in the process are solved by precondi-
tioned GMRES. Ours is a multidomain spectral-
element approach, with a sparse representation
of the HRWO L achieved on subdomains through
integration matrices [4]. We have shown that
conditioning issues can be surmounted through
the use of further preconditioning on top of the
sparsification [5, 6]. The problem domain D is
a “2-center domain” split into a collection of
(overlapping or conforming) subdomains. Here
we consider the minimal configuration with 15
subdomains: blocks B1, B2, B3, B4, B5; cylin-
ders C

1, C

2, C

3, C

4, C

5; inner shells S

1

I , S

2

I
around star I; inner shells S1

II , S
2

II around star
II; and an outer shell S1

out

. Figure 1 depicts
the decomposition. Such decompositions were
pioneered by Pfei↵er et al. [7] and are used in
the EllipticSolver of SpEC [8]. Our approach
features (i) sparse representation of L on subdo-

mains, (ii) “gluing” of conforming and overlap-
ping subdomains, (iii) modal-based precondi-
tioning of subdomain solves, (iv) standard global
preconditioning, (v) low-rank treatment of stel-
lar surfaces, (vi) exact domain reduction.
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Abstract

This paper concerns the inverse random source
scattering problem for the acoustic wave prop-
agation. The goal is to reconstruct the statis-
tical properties of the source from the bound-
ary measurement of the radiated random wave
field. Using multiple frequency data, we pro-
pose a regularized Kaczmarz method to solve
the ill-posed Fredholm integral equations which
arise from the mild solution for the direct prob-
lem. Numerical results are presented to show
the e�ciency of the proposed method.

Keywords: inverse source scattering, Helmholtz
equation, stochastic di↵erential equation

1 Introduction

Motivated by medical applications, the inverse
source scattering problems have been investi-
gated extensively in the literature [4]. There is
a lot of information available concerning its so-
lution mathematically and numerically. For in-
stance, there exist an infinite number of sources
that radiate fields which vanish identically out-
side their supported domain so that the inverse
source problem does not have a unique solution
at a fixed frequency. To overcome the obsta-
cle, one may either seek the minimum energy
solution, which represents the pseudo-inverse of
the problem, or use multi-frequency scattering
data to ensure uniqueness and gain increased
stability of the solution [3].

In many applications the source and hence
the radiated field may not be deterministic but
rather are modeled by random processes. Their
governing equations are stochastic di↵erential
equations and their solutions are random func-
tions. It is more important to study their sta-
tistical characteristics such as mean, variance,
and even higher order moments. The inverse
stochastic source scattering problem is to de-
duce the mean and variance of the random source
function from measurements of the random ra-
diated fields [2, 5]. Although the deterministic

problem has been extensively investigated, lit-
tle is known for the stochastic case, especially
its computational aspects.

2 Problem formulation

Consider a model problem of the two-dimensional
stochastic Helmholtz equation in a homogeneous
medium:

�u+ 2u = f in R2,

where  > 0 is the wavenumber, u is the radi-
ated random wave field, and the electric current
density f is assumed to be a random function
driven by an additive white noise:

f(x) = g(x) + �(x)Ẇ
x

, x 2 R2.

Here g and � are two deterministic real func-
tions which have compact supports contained
in the rectangular domain D ⇢ R2, W

x

is a
Brownian sheet or a two-parameter Brownian
motion, and Ẇ

x

denotes the white noise which
can be roughly thought as the derivative of the
Brownian sheetW

x

. In this random source model,
the functions g,�, and �2 can be viewed as the
mean, standard deviation, and variance of the
function f , respectively. As usual, the Sommer-
feld radiation condition is required for the wave
field:

lim
r!1

r
1
2 (@ru� iu) = 0, r = |x|.

Let BR = {x 2 R2 : |x| = R}, where R > 0
is su�ciently large such that D ⇢ BR. Denote
by @BR the boundary of BR. Given the ran-
dom source function f , i.e., given g and �, the
direct problem is to determine the random wave
field u. The inverse problem is to reconstruct g
and �2 simultaneously from the measured wave
field on @BR at a finite number of wavenumbers
j , j = 1, . . . ,m.

3 Reconstruction formulas

We have proposed in [1] a new approach for
solving the stochastic inverse source scattering
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problem in higher dimensions. We show that
there exists a unique mild solution to the stochas-
tic direct scattering problem by constructing a
sequence of regular processes approximating the
white noise.

Theorem 1 Let ⌦ ⇢ R2 be a bounded domain.
Assume that g 2 L2(D),� 2 Lp(D) \ C0,⌘(D),
where ⌘ 2 (0, 1] and p 2 (p0,1] if 3

2  p0  2

or p 2 (p0,
3p0

3�2p0
) if 1  p0 <

3
2 . Then there ex-

ists almost surely a unique continuous stochastic
process u : ⌦ ! C satisfying

u(x,) =

Z

D
G(x,y;)g(y)dy

+

Z

D
G(x,y;)�(y)dW

y

, (1)

where G(x,y;) is the fundamental solution for
the Helmholtz equation.

Taking the expectation on both sides of (1)
and using properties of stochastic integrals yields
a Fredholm integral equation to reconstruct g:

E(u(x,j)) =

Z

D
G(x,y;j)g(y)dy,

j = 1, . . . ,m. (2)

Taking the variance on both side of (1) and us-
ing the Itô isometry for stochastic integrals, we
derive another Fredholm integral equation can
be derived to reconstruct �2:

V(Reu(x,j))�V(Imu(x,j))

=
1

16

Z

D

�
Y 2
0 (j |x� y|)� J2

0 (j |x� y|)
�

�2(y)dy, j = 1, . . . ,m, (3)

where J0 and Y0 are the Bessel function of the
first and the second kind with order zero, re-
spectively.

It is known that Fredholm integral equa-
tions of the first kind are ill-posed. Using multi-
frequency scattering data, the PI has proposed
a regularized Kaczmarz method to overcome the
challenge of solving the ill-posed integral equa-
tions (2) and (3). The Kaczmarz algorithm is
an iterative method for solving linear systems
of algebraic equations. The idea is to project
the current approximation solution at each fre-
quency successively onto the hyperplanes spanned
by the solutions at other frequencies. It is only
required to solve a small scale linear system
with size equal to the number of measurement
at each iteration.

Figure 1: (left) The exact mean g; (right) The
exact variance �2.

Figure 2: (left) The reconstructed mean g;
(right) The reconstructed variance �2.

4 Numerical results

As a numerical example, Figure 1 shows the ex-
act mean g and variance �2; Figure 2 shows
the reconstructed mean g and �2. The scat-
tering data is obtained by the numerical solu-
tion of the stochastic Helmholtz equation via
the Monte Carlo method, which allows us to
simulate the actual process of measuring data.
The mean and variance in (2) and (3) are ap-
proximated by taking the average of the solu-
tions after a certain number of realizations are
done for the randomness.
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Abstract

According to theoretical study seismic wave prop-
agating in a model with fluid-filled fractures
structure may lead to the wave-induced fluid
flow. Moreover, these flows are expected to de-
pend on the connectivity of the fractures. How-
ever, this effect is expected at high frequencies
where scattering may dominate. In this paper
we perform numerical study of this effect. We
show that in case of connected fractures the
wave velocity is lower than in the case of the
nonintersected fractures. However, energy dis-
sipation is mainly connected with the scattering
and effect of fracture connectivity can not be es-
timated from full weveform simulation.

Keywords: poroelasticity, wave induced fluid
flow, attenuation, finite difference simulation.

1 Introduction

Problems of seismic wave propagation in media
with mesoscopic heterogeneties (fractures) are
of great interest in reservoir geophysics. Re-
cently, it was shown that if the fractures are in-
terconnected then wave propagating in such me-
dia causes wave-induced fluid flows (WIFF) in-
side the fracture system, whereas disconnected
fractures do not support WIFF [1]. This causes
seismic energy dissipation and opens a possibil-
ity to characterize the fracture system connec-
tivity and reservoir permeability from the seis-
mic waves.

However, previous numerical studies of this
physical effect are performed using quasi-static
approximation of poroelastic models, assuming
that the wavelength is much greater than the
fractures but the effect is observed at frequen-
cies close to 10 kHz. It is clear that quasi-static
approximation leads to high error at these fre-
quencies, moreover the size of fractures is com-
parable with the wavelength which makes the
scattering effect dominating. To observe the
WIFF and estimate its influence on wave prop-
agation in this paper we present numerical sim-
ulations of seismic wave propagation in poroe-

lastic media with highly permeable fluid-filled
fracture systems with different orientation and
connectivity.

2 Numerical Simulation

Wave propagation in fluid-filled poroelastic me-
dia is described by the dynamic Biot equations
[2]:

ρf
T

φ

∂q

∂t
+

η

k0
q = −∇p− ρf

∂v

∂t
,

ρ
∂v

∂t
= ∇ · σ − ρf

∂q

∂t
,

∂σ

∂t
= (λu∇ · v + αM∇ · q)I+ µ

[

∇v + (∇vT)

]

,

−∂p
∂t

= M(α∇ · v +∇ · q).

Here v and q are solid and fluid particle ve-
locities, σ is stress tensor, p is fluid pressure; T
is tortuosity, φ is porosity, η is fluid viscosity, k0
is permeability; ρf and ρ are fluid density and
bulk density of the porous fluid-saturated ma-
terial; M and α are auxiliary variables, λu and
µ are Lame constants of undrained material.

For the numerical approximation of the pre-
sented model we use the standard staggered grid
scheme with the second order of approximation
in time and space [3].

We simulate plane wave propagation in four
types of models: (a) fractures parallel to the
wave propagation direction, (b) perpendicular
fractures, (c) 50% of fractures are parallel to the
wave propagation direction and 50% of them are
perpendicular to the wave propagation direction
with no conditions on the fracture intersection,
(d) same as (c) but we require each fracture to
intersect with at least one other fracture, Fig.
1.

For each mode, we simulated plane wave
propagation using Ricker pulse with central fre-
quencies from 250 Hz to 25 kHz, in total 28 dif-
ferent simulations. In addition, we varied per-
meability of the fracture filling material from
10−17 to 10−8 m2. This particular parameter
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Figure 1: Sketches of the models types, left to
right parallel, perpendicular, nonintersected, in-
tersected

defines the transport property of the material
and governs the fluid flow intensity.

We use periodic boundary conditions at the
top and bottom of the domain and PML at
the sides. We record the field at two lines and
then, using deconvolution of these signals, we
estimate velocity and attenuation of the seismic
wave at frequencies around the central one.
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Figure 2: Attenuation (left) and phase velocity
(right) for parallel, perpendicular, nonintersect-
ing, and intersecting (from top to bottom).

3 Discussions

According to the plots presented in Fig. 2 if the
signal frequency exceeds 10 kHz the scattering

of the seismic waves by the fractures dominates
over all other physical attenuation mechanisms.
Which is reasonable according to general wave
scattering theory because at this frequency the
wavelength is about 0.4 m whereas the fracture
length is 0.04 m. At the same time no attenu-
ation peaks [1] connected to the WIFF can be
reliably determined. Meanwhile, the main re-
sult is that we can clearly see that in case of
connected fractures the velocity of wave propa-
gation is lower than that in the case of nonin-
tersected fractures. This effect can be used to
estimate the a degree of fracture network con-
nectivity from seismic and acoustic data.

4 Acknowledgements

This research was partially financially supported
by the RFBR grants no. 17-05-00250, 17-05-
00579, 16-05-00800.

References

[1] Rubino, J. German and Muller, Tobias M.
and Guarracino, Luis and Milani, Marco
and Holliger, Klaus, Seismoacoustic sig-
natures of fracture connectivity, Journal
of Geophysical Research: Solid Earth 119

(2014), pp. 2252–2271.

[2] Masson, Y. J. and Pride, S. R. and Ni-
hei, K. T., Finite difference modeling of
Biot’s poroelastic equations at seismic fre-
quencies, Journal of Geophysical Research:
Solid Earth 111, (2006), B10305.

[3] Virieux, J., P-SV wave propagation in het-
erogeneous media: Velocity-stress finite-
difference method, Geophysics 51, (1986),
pp. 889–901.



WAVES 2017, Minneapolis

Numerical modeling of a time-fractional Burgers equation

Bruno Lombard1,∗, Denis Matignon2

1LMA, CNRS, UPR 7051, Aix-Marseille Univ., Centrale Marseille, 13453 Marseille, France
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Abstract

A fractional time derivative is introduced into
Burgers equation to model losses of nonlinear
waves arising in acoustics. A diffusive represen-
tation of the fractional derivative replaces the
nonlocal operator by a continuum of memory
variables that satisfy local ordinary differential
equations. A quadrature formula yields a sys-
tem of local partial differential equations. The
quadrature coefficients are computed by opti-
mization with a positivity constraint. One re-
solves the hyperbolic part by a shock-capturing
scheme, and the diffusive part exactly. Exten-
sive details can be found in [3].

Keywords: fractional derivatives, diffusive rep-
resentation, nonlinear acoustics, Strang split-
ting

1 Introduction

We investigate Burgers equation with a frac-
tional time derivative Dα

t (ε ≥ 0, 0 < α < 1):

∂u

∂t
+

∂

∂x

(

au+ b
u2

2

)

= −εDα
t u, (1)

For a causal function u(t), Dα
t u refers to the

Caputo fractional derivative in time of order α:

Dα
t u =

1

Γ(1− α)

∫ t

0
(t− τ)−α ∂u

∂τ
(x, τ) dτ, (2)

where Γ is the Gamma function. The l.h.s. of
(1) is a standard transport equation, with lin-
ear advection at constant speed a and a nonlin-
ear quadratic term with coefficient b. The r.h.s.
of (1) models linear losses and memory effects
along the propagation. Since α < 1, the hyper-
bolic nature of Burgers equation is preserved.

Various physical configurations are described
by (1). Particular values of ε and α enable to
recover Chester’s equation describing propaga-
tion of finite-amplitude sound waves in tubes,
up to O(ε2) terms. This equation is widely used
to model brass instruments (trombones, trum-
pets): the transport terms describe the steep-
ening of waves, yielding the typical ”brassy”

effect, and the fractional term models the vis-
cothermal losses at the wall of the duct. More-
over, the linear Lokshin equation can be seen
as the superposition of two one-way fractional
transport equations of this type [1]. Other ap-
plications of (1) concern viscoelasticity, propa-
gation in elastic-walled tubes, or more generally
wave propagation in media with memory and
complex rheological properties.

2 Diffusive approximation

The convolution product (2) can be recast as

Dα
t u =

∫ +∞

0
φ(x, t, θ) dθ, (3)

with the diffusive variable φ given by

φ(x, t, θ) = γα θ
2α−1

∫ t

0

∂u

∂τ
(x, τ) e−(t−τ) θ2 dτ,

(4)

with γα = 2 sin(πα)
π

> 0. From equation (4), φ
satisfies the following first-order ordinary differ-
ential equation (ODE):

∂φ

∂t
= −θ2 φ+ γα θ

2α−1∂u

∂t
. (5)

The integral in (3) is approximated by a quadra-
ture formula on L points, where the diffusive
variables φℓ satisfy an ODE deduced from (5):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Dα
t u(x, t) ≈

L
∑

ℓ=1

µℓ φ(x, t, θℓ) ≡
L
∑

ℓ=1

µℓ φℓ(x, t),

∂φℓ

∂t
= −θ2ℓ φℓ + γα θ

2α−1
ℓ

∂u

∂t
, ℓ = 1, · · · , L.

(6)
An adequate choice of the weights µℓ and nodes
θℓ is crucial for the efficiency and accuracy of
the diffusive approximation, see e.g. [3] and ref-
erences therein. Injecting (6) into (1) yields

∂

∂t
U+

∂

∂x
F(U) = SU, (7)

with U(x, t) = (u, φ1, . . . , φL)
T . The energy of

U decreases if µℓ > 0 and θℓ > 0. A Strang
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splitting is used to solve (7). The propagative
part is solved by a finite-volume scheme with
flux-limiters [2], whereas the diffusive part is
solved exactly. The CFL condition of stability
is the same as for the inviscid Burgers equation.

3 Numerical experiments
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Figure 1: linear fractional advection, for vari-
ous fractional order α. Left row: snapshots of
the numerical and exact solutions. Right row:
seismograms.

First, we consider linear advection (b = 0).
A smooth truncated sinusoid is injected at the
left boundary of the domain. Closed-form an-
alytical solutions are known for α = 1/3 and
α = 1/2. These cases are illustrated in fig-
ure 1. In the left row, one compares snapshots
of the numerical and exact solutions. Greater
values of α yield a greater attenuation and a
slower propagation, as predicted by the disper-
sion analysis [3]. The right row illustates the
time and space evolution of the waves.

Second, we consider both nonlinear prop-
agation and fractional attenuation (figure 2).
The initial data is a rectangular pulse. Without
attenuation, classical phenomena are observed:
the pulse splits into a left rarefaction wave and
a right shock (a), which collide (b). With atten-
uation, the right-going shock smears and even
disappears for sufficiently large ε.

(a) ε = 0, t1 ε = 0, (b) t2 > t1
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(c) α = 1/2, t1 α = 1/2, (d) t2 > t1
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Figure 2: nonlinear advection and fractional at-
tenuation. (a-b): numerical and exact solutions
without attenuation. (c-d): numerical solutions
for α = 1/2 and various values of ε.

4 Conclusion

This article is an attempt for better understand-
ing the competition between nonlinear effects
and nonlocal relaxation. Many theoretical ques-
tions remain to be addressed. In particular,
it seems that the emergence of shocks is con-
ditional (unlike the inviscid Burgers equation).
This question requires a deeper analysis to con-
firm / infirm the numerical observations.
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Abstract

We report here on the calculation of gravita-
tional radiation and strong-field dynamics from
spinning black-hole binaries (BHB). This research
is crucial not only for interpreting the data gath-
ered by ground-based interferometric gravita-
tional wave (GW) detectors such as advanced
LIGO, VIRGO, and other similar detectors un-
der construction, but it is also important for
understanding the astrophysical and cosmologi-
cal implications of the final kick, mass, and spin
of the BHB merger remnant.

Keywords:

Binary Black Holes. Numerical Relativity
Simulations. Gravitational Waves.

1 Introduction

In 2005, Campanelli, Lousto, Marronetti and
Zlochower pioneered a major breakthrough in
the area of numerical relativity (NR): the mov-
ing puncture method for numerically solving Gen-
eral Relativity’s field equations [1]. This tech-
nique1 has become one of the two dominant
methods for simulating the inspiral, merger, and
ringdown of binary black holes. It has allowed
analysis of the rich physics of black-hole merg-
ers, from the gravitational radiation produced
by quasi-circular binary black holes [3] to the
discovery of large gravitational recoils from generic
binary mergers [4] and spin precessional dy-
namics [5]. We have studied the distributions of
the spins, remnant mass, and recoil velocity of
generic binaries during inspiral and merger [?,
6] and simulated binaries with large mass ra-
tios [7].

2 Research summary

The main objective of this research program is
to cover the physical 7-dimensional parameter
space of a BHB system, i.e. arbitrary mass ra-
tios q = M1/M2 and arbitrary individual spins
(magnitude and direction) of the holes in an

1
The method was also simultaneously and indepen-

dently developed by the numerical relativity group at

NASA/GSFC [2].

e�cient way. This program faces several im-
portant challenges. First, simply sampling the
7-dimensional parameter space in an e�cient
manner to extrapolate the behavior of generic
BHBs from a small set of simulations is a task
in itself. Second, the regions of parameter space
that are directly relevant to current detectors
like aLIGO/VIRGO as well as future detectors
such as eLISA, KAGRA, and the Einstein Tele-
scope, which encompass intermediate-mass and
supermassive BHBs, respectively, require very
high resolution near the horizons and have proven
to be extremely computationally demanding.

The current generation of GW detectors are
expected to identify many coalescing BHBs per
year , over a broad range of (redshifted) masses
between 20M� and 100M�. These generally
spinning and precessing moderate-mass BHBs
should have a short but rich, multimodal sig-
nal. In much of this mass region, numerical rel-
ativity and hybrids are immediately actionable,
with durations and frequency content compara-
ble to relevant data. The signal brevity – rel-
atively few cycles are available – also insures
a broad posterior distribution, comparable to
inter-simulation spacing. For this reason, nu-
merical relativity has an extremely significant
role to play in the interpretation of these kinds
of events, both as synthetic signals used to val-
idate existing search and parameter estimation
algorithms, as well as parameter estimation tem-
plates, directly compared to the data itself.

One of the most remarkable results that came
from breakthroughs of 2005 in numerical rel-
ativity is that the merger remnant of a BHB
merger can recoil at thousands of kilometers per
second .

As ⇠ 93% of the astrophysically interest-
ing supermassive BHB merger recoil occur in
the mass ratio range 1/10 < q < 1, we need
to model the mass ratio dependence accurately.
Over the last few years we completed a set of
several hundred high-recoil runs where one BH
was spinning and the other non-spinning. These
extensive runs allowed us to begin the model-
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ing of the unequal-mass dependence of the re-
coil. However, because we had one BH non-
spinning, our runs all obeyed the symmetry that
~S = ~S1 + ~S2 and ~� = m(~S2/m2 � ~S1/m1) were
collinear. To complete our modeling, we need to
remove this symmetry. Similarly, all of our pre-
vious runs had spins Si/m2

i < 0.9. Here too, we
will need to use our new highly-spinning data to
model the recoil for the astrophysically relevant
case of 0.9 . Si/m2

i . 0.998 .

One of the outstanding problems in numer-
ical relativity is the simulation of nearly ex-
tremal (spin) binaries. Very high spins are thought
to be common in nature. On the other hand,
we have strong evidence from analysis of Kerr
geodesic , particle-limit calculations of recoils ,
and perturbation theory that the dynamics of
highly spinning black holes (BHs) cannot be elu-
cidated with any degree of certainty using lower
spin simulations.

The study of mergers of highly-spinning bi-
naries started in earnest with the work of Lovelace
and collaborators with their development of ini-
tial data that could represent binaries with high
spins. Previously, initial data constructions were
based on conformally flat backgrounds which
are limited to spins of about ↵ = S/M2 . 0.92 .
While spins of 90% the maximum may seem
large enough, a more accurate measure of the
spin would be the parameters 1/(1 � ↵) (see
the discussion in concerning spin-induced turbu-

lence in black-hole perturbations), making ↵ =
0.9 very far calculations of the physical upper
limit of BH spins ↵ ⇠ 0.998 (for thin-disk ac-
cretion).

Moving-punctures-based codes [1,2] have not
been able to Evolve highly spinning holes. Im-
portantly, this includes the international Ein-
stein Toolkit consortium , which includes re-
searchers at RIT and over 50 other institutions.

To overcome this limitation, our group de-
veloped a new initial data solver, HiSpID , that
uses the single domain spectral method devel-
oped by Ansorg et al. for Bowen-York data to
solve the nonlinear coupled system of ellipti-
cal PDEs for superimposed boosted Kerr BHs
with arbitrary momenta and spins. Unlike the
data introduced by Lovelace and collaborators ,
we use puncture based initial data, and thus
our new data are manifestly compatible with
the moving puncture approach. We are in the
process of fine-tuning the algorithm for highly-

spinning binaries with arbitrary spin-orientations
and have already produced waveforms for highly-
spinning binaries with specific spin orientations.

Our initial data is based on a superposition
of boosted conformally Kerr black holes (each
in a puncture gauge) metrics and associated ex-
trinsic curvatures. The free data we extract
from this are the conformal metric and trace-
free extrinsic curvature, as well as the trace of
the extrinsic curvature. We intend to make this
available to the whole NR community.
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Abstract

The problem of wave scattering from a peri-
odic row of parallel cylinders, of arbitrary cross-
section, is studied via the boundary element
method (BEM). The standard procedure of in-
troducing the periodic Green’s function is fol-
lowed to give rise to a simplified integral equa-
tion. However, in general this requires the com-
putation of an infinite sum that is slow to con-
verge. Here a novel method is presented in or-
der to approximate this infinite sum via a finite
sum and asymptotic corrections; the scheme is
rapidly convergent and straightforward to im-
plement for cylinders of arbitrary cross-section.
Numerical results for the transmission and re-
flection coe�cients from arrays with di↵erent
cross sections are obtained.

Keywords: Acoustic scattering, periodic Green’s
function, BEM.

1 Introduction

The problem of scattering from arrays of cylin-
ders or gratings has been studied previously in
acoustics e.g. [1], [3], and for elastic waves [2].
Following the approach of [1], we seek a solu-
tion via boundary element methods (BEMs).
This requires the determination of the periodic
Green’s function (and its normal derivative) which
is generally non-standard to compute. Here we
present a novel approach to tackle this di�culty
via an asymptotic correction to truncating the
infinite series in the case of an infinite array. Re-
sults are given for arrays of cylinders of various
cross sections.

2 Problem formulation

We consider an acoustic plane wave scattered
by an infinite row of aligned, parallel cylinders,
as illustrated in Fig. 1. The total field, which is
written as the sum of the incident and scattered
fields

�(x) = �in(x) + �sc(x),

x
1

x
2

x
3

✓
0

0

�in

Figure 1: Time-harmonic plane wave, with in-
cident angle ( 

0

, ✓
0

), scattering from a periodic
array of parallel cylinders with spacing d and
cross section Vm.

satisfies the Helmholtz equation

(r2 + k2)� = 0.

The case of rigid scatterers is considered so that
a Neumann boundary condition is imposed on
the surfaces of scatterers @Vm. Reformulating
as a boundary integral equation and taking ad-
vantage of the periodicity in the domain, we
may rewrite the problem as an integral over a
single reference cylinder @V 0

�(x0) = �in(x0)+

Z

@V 0
�(⇠0)

@GP (x0, ⇠0)

@n
dS(⇠0).

The kernel of this integral contains the periodic
Green’s function GP , which for this problem
takes the form of an infinite sum of Hankel func-
tions and is not straightforward to compute. An
important summary of current methods to eval-
uate the Green’s function is given in [4].

3 The periodic Green’s function

In order to e�ciently compute GP , we truncate
the infinite sum at some integer M , and expand
asymptotically, for large m, the remaining ‘tail-
ends’ of the sum for m � M and m  �M so
that

@GP

@n
(x, ⇠) = � ik̄

4

M�1X

m=�(M�1)

⇣
eikdm sin 0 cos ✓0

⇥ H
(1)

1

(k̄rm)
(u+ dm)n

1

+ vn
2

rm

◆
+ �

+

+ ��,
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where u = x0
1

� ⇠0
1

, v = x0
2

� ⇠0
2

and

rm =
p
(u+ dm)2 + v2.

Also k̄ = k
p

1� cos( 
0

)2, as a result of fac-
toring out the x

3

dependence in the problem.
Expanding for large m, defining

↵± = d
�
k̄ ± k sin 

0

cos ✓
0

�
,

and using the Lerch transcendent [5] allows us
to replace the infinite sums that arise in the
‘tail-ends’ �± by the asymptotic form

�± = � ik̄

4

r
2

⇡k̄d
ei(±

¯ku� 3⇡
4 )

eiM↵±
p
M(1� ei↵±)

⇥
✓
±n

1

+
C 0
±

M
+

D0
±

M2

◆
,

where C 0
± and D0

± depend on the coordinates
u, v, the surface normal n, the dimensionless
wavenumber, kd, and the angle of the incident
wave.

4 Results

Recalling the periodic behaviour of the Green’s
function in the x

1

direction, we can compare
to what extent our approximations satisfy this
condition by taking the largest di↵erence be-
tween any two peaks in the function over a range�
�3d

2

, 3d
2

�
, say, as a measure of the error, as

shown in Fig. 2. As can be seen, the sum with
correction is more accurately periodic than the
truncated sum alone. We employ this evalua-
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Figure 2: Left, the value of the derivative of
GP over x

1

for the truncated sum with (orange)
and without (blue) correction term at M = 150.
Right, a comparison of the error as M increases.

tion of GP in a BEM scheme, in order to calcu-
late reflection and transmission coe�cients for
infinite arrays. Given the excellent convergence
of the corrected sum even at M = 50, a trunca-
tion point of M = 200 was chosen to ensure suf-
ficiently accurate results, though this may not

be optimal. We have calculated results for a
variety of cross sections, including the “gourd”-
shaped cylinders as seen in Fig. 4. The results
for circular cylinders shown in Fig. 3 display
good agreement with [1].

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 3: Reflection and transmission coe�-
cients of the first two propagating modes for an
array of circles, incident angle ( 
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Figure 4: Reflection and transmission coe�-
cients of the first three propagating modes for
an array of gourds, incident angle ( 
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Abstract

We formulate a finite element framework for the
observation of surface plasmon-polaritons (SPP)
on 2D materials, such as graphene. The 2D ma-
terial is modeled as an idealized hypersurface
with an e↵ective complex-valued conductivity.
The simulation of the scattering process uses a
perfectly matched layer. A good resolution of the
SPP structures on the hypersurface is achieved
by using goal-oriented adaptive local mesh re-
finement utilizing the Dual-Weighted Residual

(DWR) method.

Keywords: Finite element method, surface
plasmon-polariton, discontinuity on hypersur-
face, time-harmonic Maxwell’s equations

1 Introduction

In the terahertz frequency range, the e↵ective
(complex-valued) surface conductivity of atom-
ically thick 2D materials such as graphene has
a positive imaginary part that is considerably
larger than the real part. This feature allows for
the propagation of slowly decaying electromag-
netic waves, called surface plasmon-polaritons
(SPPs), that are confined near the material in-
terface with wavelengths much shorter than the
wavelength of the free-space radiation. SPPs
are promising ingredients in the design of novel
optical applications promising “subwavelength
optics” beyond the di↵raction limit. There is
a compelling need for controllable numerical
schemes which, placed on firm mathematical
grounds, can reliably describe SPPs in a variety
of geometries.

We introduce a finite-element framework suit-
able for the treatment of electromagnetic wave
propagation along conducting sheets embedded
in spaces of arbitrary dimensions. The use of
higher-order conforming elements is well suited
for the numerical problem at hand. The weak
discontinuity across the interface can be aligned
with the triangulation and the regularity of the
solution away from the interface leads to high
convergence rates. For overcoming the two-scale

character with much finer SPP structures close
to the interface, an adaptive, local refinement
strategy based on a-posteriori error estimates is
used.

2 Variational formulation and finite ele-
ment approximation

Let ⌦ be a bounded domain. The e↵ect of a
surface conductivity �

⌃
r on an interface ⌃ enters

the time-harmonic Maxwell equations as a jump
condition. After rescaling k0 = !

p
"0µ0 ! 1

the corresponding variational equation reads [3]

A(E,') = F (') 8' 2 X(⌦), (1)

where the bilinear form

A(E,') :=

Z

⌦
(µ�1

r r⇥E) · (r⇥ '̄) dx

�
Z

⌦
"̃r E · '̄ dx� i

Z

⌃
(�⌃

r ET ) · '̄T dox

� i

Z

@⌦

q

µ

�1
r "̃r ET · '̄T dox, (2)

and the right hand side

F (') := i

Z

⌦
Ja · '̄ dx (3)

are defined on a space

X(⌦) =
n

' 2 H(curl) : 'T

�

�

⌃[@⌦ 2 L

2
o

. (4)

"̃r and µr denote relative permittivity and per-
meability, respectively. E is the electric field
and Ja denotes a Hertzian dipole source.

LetXh(⌦) ⇢ X(⌦) be a finite-element space
spanned by curl-conforming Nédélec-elements
on a quadrilateral mesh [1] and define a finite-
element approximation Eh 2 Xh(⌦) of E as the
solution of (1) with X(⌦) replaced by Xh(⌦).

3 Local mesh refinement and adaptivity

The desired SPP has a wavelength much smaller
than the one manifested by the dipole free-space
radiation field. This two-scale character that
the electromagnetic wave exhibits in the spatial
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Figure 1: A resonating SPP excited on a ring of conducting material due to a Hertzian dipole located
in the interior close to the material. Resonance of the SPPs changes the radiation characteristics of
the dipole.

resolution creates a challenge for finite-element
simulations. A much finer minimal mesh refine-
ment is necessary near the interface ⌃ in order
to resolve the highly oscillatory SPP. An e�-
cient method for a posteriori error control is the
dual weighted residual (DWR) method [2]. It
constructs estimates of local error contributions
in terms of a target functional J with the help
of a “dual problem.” More precisely, let J (E)
be a quantity of interest given by a possibly
non-linear Gâteaux-di↵erentiable function

J : H(curl;⌦) ! C.

The corresponding dual problem is to find a
solution Z 2 X(⌦) such that

A(',Z) = DEJ (E)['] 8' 2 X(⌦). (5)

Here, DE .['] denotes the Gâteaux derivative in
direction ' with respect to E. Let EH and ZH

be finite-element approximations of E and Z.
Then [2, 3] up to a term R of higher order

�

�J (E)� J (U)
�

� 
X

Q2TH

⌘Q +R, with

⌘Q :=
1

2

�

�

�

⇢Q(EH ,Z �ZH) + ⇢

⇤
Q(ZH ,E �EH)

�

�

�

.

Here, ⇢Q and ⇢

⇤
Q denote the primal and dual

cell-wise residual, respectively, associated with
variational equations (1) and (5). The local
indicators ⌘Q can be approximated e�ciently
and are used in an estimate, mark, refine cycle
[2] for local mesh adaptivity. A good choice for
a quantity of interest for SPPs is

J (E) =

Z

⌃
kET k2 dox.

Figure 1 shows a solution and the corresponding
locally refined mesh for a SPP on a circle exited
by a Hertzian dipole close to the circle.

4 Outlook

The numerical framework that was presented
admits several generalizations and extentions,
e.g., to waveguides that contain a few graphene
layers. Although our numerical results focused
on 2D thus far, our underlying choice of local
adaptivity can lead to a significant reduction of
computational cost in higher spatial dimension.
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Abstract

In exploration seismology constructing an accu-
rate velocity model is imperative. One of the al-
gorithms which can lead to an accurate velocity
model is Full Waveform Inversion (FWI). Stan-
dard FWI uses only scalar data such as pres-
sure to construct a velocity model and does not
provide any directivity information about the
wavefields. Extending FWI to vector data al-
lows us to use both pressure and velocity com-
ponents at the same time, giving directivity in-
formation about the wavefields. By extending
FWI to vector data and thus improving the in-
put data to FWI, we obtain both improved res-
olution and directivity information.

Keywords: Wave propagation, Seismic inver-
sion, FWI, Broadband data

1 Introduction

Recently, there have been some advances in ma-
rine seismology regarding data acquisition. In-
stead of recording only conventional seismic data
(scalar ones), one can record both scalar and
vector data (pressure and velocity components)
at the same time [2]. This has led to vari-
ous techniques in seismic acquisition as well as
wavefield separation and ghost removal [1].

The main di↵erence between the vector and
scalar data is that for the vector data we know
the pressure and particle velocity whereas for
the scalar case we know only the pressure.

In spite of the fact that the standard FWI
algorithm takes advantage of the large amount
of scalar data contained in the seismic traces,
it fails to provide directivity information about
the wavefields.

In this study, we present an extension of
the algorithm proposed by [3] to FWI of vector
acoustic data. Thus we are able to gain com-
plete information about the wavefields namely,
directionality and because of this, better lat-
eral resolution to estimate velocities. In this ap-
proach, we use dipole sources as well as monopole
sources in di↵erent orientations and our wave
solver for a complete acoustic wave equation to

generate vector acoustic data. We then derive
and test an FWI algorithm with synthetic data.

2 Methodology and Results

Generally in Full Waveform Inversion we try to
reconstruct model parameter m which can be
defined by

m =
⇢


, (1)

from displacement data u = Fm, where F is
forward modelling operator.  and ⇢ are the
compressibility and mass density, respectively.

For the vector-acoustic system we denote
source S which denotes both pressure and point-
force sources as

S =

✓
q
f

◆
,

and also total wavefields

uq,f =

✓
Pq,f

Vq,f

◆
,

where Pq,f and Vq,f are pressure and ve-
locity and subscriptions p and f refer to pres-
sure and point-force source respectively. Now
we can construct a set of equations for vector-
acoustic system in terms of our model parame-
ter m (Eq. 1), gives

⇢
Pq,f +mr · Vq,f = q,
V̈q,f +rPq,f = f.

(2)

Where ¨ means second derivative with respect
to time. In order to generate vector data and
solve the wave equation of our system in the
time domain, we use a two-dimensional con-
stant density acoustic solver from PySIT [5].
The receivers in our system are the usual point
receivers meaning they record pressure.

After generating vector data, the next step
is the calculation of the objective function:

J (m) =
ws

2

Z

T

Z

R
wr[uq(m; r, t)� dq(r, t)]

2+

wr[uf (m; r, t)� df (r, t)]
2 dtdr

Where ws and wr are the source and re-
ceiver linear weighting operators. dq and df are
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the recorded data from pressure and point-force
source respectively. Minimization of the objec-
tive function requires computing the gradient
and finally optimization; we use the l-BFGS
method to do this optimization [4].
In order to verify our VFWI algorithm, we

Figure 1: A sub-sampled initial and true BP ve-
locity model (with %12 of samples remaining).

Figure 2: Reconstruction of a sub-sampled BP
velocity model by using angle dipole source with
regularization.

present a BP velocity model (Fig. 1) reconstruc-
tion. This model is consist of salt flanks and ir-
regular shapes and discretized using 115 nodes
in the z direction and 205 nodes in the x direc-
tion. The inverse crime is committed by using
the same solver for generating the ’true’ data
and the ’synthetic’ data. Here we only show
the estimated BP velocity by using angle dipole
source (Fig. 2). Reconstruction of velocity in
the case of BP model is very hard as the model is

so complicated. In order to obtain a good recov-
ery and remove the artefacts, we performed reg-
ularization process. we used 50 sources and 50
receivers are placed all the way across the top of
the computational domain and also 30 l-BFGS
iterations to estimate this model. As can be
seen from Fig. 2, recording vector acoustic data
in the case of angle dipole source results in get-
ting sharp edges on some of the smaller features
especially near the edges of the model. There-
fore VFWI gives reasonable resolution and edge
preservation.
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Abstract

We consider multiple scattering of electromag-
netic waves by randomly distributed, densely
packed, spherical particles. For space discretiza-
tion, we use the discrete exterior calculus (DEC).
The time-dependent problem is solved by a wave
frequency -corrected time-stepping scheme, and
the time-harmonic solution is obtained by the
exact controllability method.

Keywords: computational electromagnetics, light
scattering, multiple particle scattering, discrete
exterior calculus, exact controllability

1 Introduction

Randomly distributed spherical obstacles are used
for modeling massive particle clusters, e.g., dust
particles, aerosols, and regolith structures. Three-
dimensional simulations considering multiple scat-
tering of electromagnetic waves, by such obsta-
cles, is modeled by the Maxwell equations,

"
@E

@t
�r⇥H = �J, (1)

µ
@H

@t
+r⇥E = �J⇤, (2)

where E and H are the electric and magnetic
fields, " is the electric permittivity, µ is the mag-
netic permeability, and J and J⇤ are the source
functions. Recently, e.g., the discrete dipole
approximation and T-matrix methods are used
for solving the problem (see, e.g. [5, 6]). In
this paper, we consider discrete exterior calculus
(DEC) [3] as a generalization of finite di↵erence
schemes.

2 Methods

For spatial discretization, we employ a pair of
primal and dual mesh. The primal 1-cells (edges)
Ej and 2-cells (faces) Fj are assigned with or-
thogonal dual 2-cells F⇤

j and dual 1-cells E⇤
j ,

respectively.
We consider electric and magnetic fields, re-

spectively, as discrete primal and dual 1-forms.

Those are column vectors e and h, where each
term is ej :=

R
Ej E and hj :=

R
E⇤
j
H. The

Maxwell system (1)-(2) is spatially discretized
as

?1
d

dt
e� dT1 h = �j, (3)

?�1
2

d

dt
h + d1e = �j⇤, (4)

where right-hand side are the source terms j(⇤) :=R
F(⇤) J(⇤). Matrix d1, built of values -1, 0, and
1, is the incidence matrix expressing the rel-
ative orientation between faces and edges [7].
The discrete Hodge stars ?1 and ?2 are diago-
nal matrices defined as

?1,j,j :=

R
F⇤

j
"E0

R
Ej E0

, ?2,j,j :=

R
E⇤
j
H0

R
Fj

µH0
,

where E0 and H0 are fields of possible solution.
The time integration and Hodge approximation
are optimized for time-harmonic problems of
single frequency, which also eliminates the elim-
inates the pollution e↵ect, which is traditionally
caused by systematic error in simulated wave-
length [8]. Elimination of this cumulative er-
ror source improves accuracy especially in large
scale problems, where domain diameter include
dozens of wavelengths.

The time-harmonic solution is obtained by
the exact controllability method [2]. That is, we
steer a dynamical system from an initial state to
a particular state by using an appropriate con-
trol mechanism realized by the conjugate gra-
dient (CG) method. Essentially, we minimize a
quadratic error functional, which is the squared
energy norm of the system. At the discrete
stage, the functional is is spanned by a diago-
nal mass matrix, and the algorithm operates in
L2-type Hilbert space without preconditioning.
At each CG iteration, the state equation, ad-
vancing forward in time, and the corresponding
adjoint state equation, advancing backward in
time, are solved. Only the current and previous

guzina
Line
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Figure 1: The spherical domain is filled with
C15 structure and surrounded by perfectly
matched layer layer. Existence of a particle in
at any cell is marked by colors.

gradient and search vectors and scalar-valued
weights are needed to be stored at each itera-
tions.

3 Numerical experiments

A spherical domain is filled with N randomly
distributed spherical particles of radius 0.28�0,
and the particle cluster is exposed by an elec-
tromagnetic plane wave of wavelength �0 = 1.
Inside each particle, " = 2.25"0, where "0 is
the vacuum permittivity, and µ = 1. The do-
main is discretized with a C15-type tetrahedral
close-packed [9] grid with 6000 unknowns per
�3
0 and cut by a structured spherical boundary

(see, Fig. 1). The boundary elements are du-
plicated and stretched to to apply radial per-
fectly matched layer [4] for truncating the do-
main. Existence of a particle at any position is
marked by flags and the permittivity is changed
element-wise, such that outside the particles " =
"0 and µ = 1. We consider, for N = 73, 582,
1966, and 19992, the far-field Mueller matrix [1]
components. The total scattering intensities
(phase function S11) are presented in Fig. 2
as a function of the phase angle.
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Abstract

The title problems are treated using Laplace
transforms and separation of variables. This
approach has been used for spheres since the
1950s. When applied to spheroids, we encounter
new questions, such as how do spheroidal wave-
functions behave for complex parameters? We
describe our recent work in this direction.
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1 Introduction

We consider acoustic scattering of a sound pulse
by a bounded three-dimensional obstacle with
smooth boundary S. The scattered field u(r, t)
solves an initial-boundary value problem (IBVP)
for the wave equation

r2

u = c

�2

@

2

u/@t

2 in B for t > 0,

where B is the unbounded exterior of S and c is
the constant speed of sound. In addition, there
are zero initial conditions

u = 0 and @u/@t = 0 in B at t = 0 (1)

and a boundary condition on S for t > 0.
The word “acoustic” in the title is impor-

tant: we always assume that u is a velocity po-
tential, so that v = gradu is the fluid veloc-
ity and p = �⇢ @u/@t is the (excess) pressure,
where ⇢ is the constant background density.

Problems of physical interest often involve
incident pulses, with moving wavefronts across
which p or normal velocity vn is discontinuous.
However, in most cases, it can be arranged that
u is continuous across wavefronts, even though
p or vn is not. Consequently, it is advantageous
to solve for u, assumed to be continuous and
piecewise-smooth; assuming too much smooth-
ness may exclude interesting physical problems.
Also, seeking weak solutions must be done with
care: such solutions may not respect the proper
jump conditions across wavefronts, conditions
that stem from the underlying continuum me-
chanics. See [4] for details and references.

2 Use of Laplace transforms

The textbook method for solving IBVPs is to
use Laplace transforms. Thus, define

U(r, s) = L{u} =

Z 1

0

u(r, t) e�st dt.

U satisfies the modified Helmholtz equation,

r2

U � (s/c)2U = 0 in B. (2)

Here, we have used the continuity of u and the
initial conditions (1).

We solve (2) using the Laplace transform
of the boundary condition and a mild growth
condition as |r| ! 1, and then we invert using

u(r, t) =
1

2⇡i

Z

Br

U(r, t) est ds,

where Br is a Bromwich contour in the s-plane.
For an incident sound pulse, we know that,

for any fixed r, u(r, t) = 0 for su�ciently large t.
Consequently U(r, s) is an analytic function of s
for Re s > 0. When U(r, s) is continued analyt-
ically into the other half-plane, Re s  0, singu-
larities will be encountered. These singularities
are poles and they occur in complex-conjugate
pairs (unless they are real and negative). The
singularities are known as natural frequencies.
Once they have been located, we can contem-
plate moving the Bromwich contour to the left,
picking up residue contributions.

3 The sphere

For scattering by a sphere of radius a, we use
spherical polar coordinates, r, ✓ and �. Separa-
tion of variables leads to

U =
1X

m=0

1X

n=m

kn(sr/c)P
m
n (cos ✓)Am

n (�, s), (3)

Am
n = A

m
n (s) cosm�+B

m
n (s) sinm�. (4)

Here kn is a modified spherical Bessel function,
P

m
n is an associated Legendre function, and A

m
n

and B

m
n are to be determined using the bound-

ary condition. We note two things about the
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form of expansion (3). First, the angular func-
tions Pm

n (cos ✓) cos
sin

m� do not depend on s. Sec-
ond the radial function, kn(sr/c), does not de-
pend on the mode number m. This structure is
lost when we consider scattering by a spheroid.

As an example, suppose we have a Dirich-
let boundary condition, u(a, ✓,�, t) = d(✓,�, t),
a given function satisfying d(✓,�, 0) = 0; this
constraint ensures that u is continuous. Sup-
pose that D = L{d} has the expansion

D(✓,�, s) =
1X

m=0

1X

n=m

P

m
n (cos ✓)Dm

n (�, s), (5)

where Dm
n = D

c

mn(s) cosm� + D

s

mn(s) sinm�

and D

c

mn and D

s

mn are coe�cients. Then the
boundary condition yields

U =
1X

m=0

1X

n=m

kn(sr/c)

kn(sa/c)
P

m
n (cos ✓)Dm

n (�, s). (6)

This formula shows that the natural frequencies
are those values of s for which kn(sa/c) = 0.
There may be additional singularities arising
from the form of Dc

mn(s) and D

s

mn(s).
All this is well known; the method outlined

above was first used by J. Brillouin in 1950. See
[5] for details and references.

4 The prolate spheroid

We use prolate spheroidal coordinates ⇠, ⌘ and
�, defined by x = h

p
(⇠2 � 1)(1� ⌘

2) cos�, y =
h

p
(⇠2 � 1)(1� ⌘

2) sin�, z = h⇠⌘, where h is a
positive constant. The foci are at (x, y, z) =
(0, 0,±h). The surface ⇠ = ⇠

0

> 1 is a prolate
spheroid with semi-major axis of length a = h⇠

0

and semi-minor axis of length b = h

p
⇠

2

0

� 1.
The exterior of the spheroid corresponds to ⇠ >

⇠

0

, �1  ⌘  1 and �⇡  � < ⇡.
To solve (2), we write

U =
1X

m=0

1X

n=m

R

(3)

mn(ip, ⇠)S
m
n (ip, ⌘)Am

n (�, s) (7)

for ⇠ > ⇠

0

. Here p = sh/c, Am
n is defined by

(4), R(3)

mn is an outgoing radial spheroidal wave-
function (SWF) and S

m
n is an angular SWF [1].

Comparing (7) with (3), we see that the radial

part R(3)

mn(ip, ⇠) depends on both m and n, and
the angular part Sm

n (ip, ⌘) depends on s.
For the Dirichlet boundary condition, u = d

on ⇠ = ⇠

0

, we expand D = L{d} as

D(⌘,�, s) =
1X

m=0

1X

n=m

Smn(ip, ⌘)Dm
n (�, s),

see (5), whence

U =
1X

m=0

1X

n=m

R

(3)

mn(ip, ⇠)

R

(3)

mn(ip, ⇠
0

)
S

m
n (ip, ⌘)Dm

n (�, s).

This formula should be compared with (6).
The natural frequencies are determined by

the zeros of R

(3)

mn(ish/c, ⇠
0

) in the complex s-
plane. It turns out that the relevant properties
of radial SWFs are not in the literature on spe-
cial functions, so we have developed some new
asymptotic approximations that can be used to
estimate the natural frequencies. There is lit-
erature on computing SWFs numerically [2, 3];
comparisons between asymptotics and numerics
are being made.
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Abstract

We focus on the construction of transmission
conditions for optimized Schwarz domain de-
composition methods applied to time-harmonic
elastic wave scattering problems solved numeri-
cally with finite element methods. In particular,
we investigate di↵erent local approximations of
the Dirichlet-to-Neumann map, and compare
their impact on the convergence rate of the do-
main decomposition algorithm.

Keywords: Scattering, 2D elastic waves, opti-
mized Schwarz method, approximate DtN map

1 Introduction

The aim of this ongoing work is to solve time-
harmonic elastodynamic scattering problems
for which the scatterer is inhomogeneous. As
is well-known, direct sparse solvers do not scale
well for such problems and iterative solvers ex-
hibit poor convergence or even diverge, espe-
cially in the high-frequency regime. Domain
decomposition methods provide an alternative,
combining direct sparse solvers on subproblems
of smaller sizes with an iterative Krylov solver.
In this paper we investigate the impact of the
transmission conditions used between the subd-
mains on the convergence of the iterative algo-
rithm.

2 Problem statement

2.1 Mono-domain time-harmonic

elastic wave problem

Let us consider ⌦� := {x 2 R2 : |x|  r
int

}
with boundary � and its complementary ⌦+ :=
R2\⌦�. When illuminated by a time-harmonic
incident wave uinc, the scattering problem is
formulated as follows: find the displacement u
in ⌦+ solution to the Navier equation

div�(u) + ⇢!2u = 0, (1)

with

�(u) = �(divu)I + 2µ✏(u), (2)

✏(u) =
1

2
([ru] + [ru]T ), (3)

such that

u = �uinc, on �, (4)

and satisfying the Kupradze radiation condi-
tions at infinity. The coe�cients � and µ in
(2) are the Lamé coe�cients. In view of a fi-
nite element discretization, ⌦+ is truncacted by
an artificial boundary �1, which delimits the
bounded domain ⌦ under study.

2.2 Domain decomposition

We split the domain ⌦ into N
dom

sub-domains
⌦
i

without overlap. Let us denote �
i

:= � \
⌦
i

, �1
i

:= �1 \ ⌦
i

and ⌃
ij

:= ⌦
i

\ ⌦
j

the
transmission boundary. At iteration n + 1 for
a sub-domain ⌦

i

, the classical additive Schwarz
domain decomposition method can be described
as follows. First, find the volume solution un+1

i

such that

8
>><

>>:

div�(un+1
i

) + ⇢!2un+1
i

= 0, on ⌦
i

,
un+1
i

= �uinc, on �
i

,
�(un+1

i

)n
i

+ Bun+1
i

= 0, on �1
i

,
�(un+1

i

)n
i

+ T un+1
i

= gn
ij

, on ⌃
ij

,
(5)

where n
i

is the outgoing normal of ⌦
i

, B is the
operator describing boundary conditions at in-
finity, T is the transmission operator and gn

ij

is the surface field given by the previous itera-
tion. Then update the interface unknowns gn+1

ji

as follows

gn+1
ji

= �gn
ij

+ 2T un+1
i

, on ⌃
ij

. (6)

Considering the vector g = [g
ij

]T containing the
interface unknowns for all ij pairs, one step of
the above algorithm can be summarized as

gn+1 = Agn + b, (7)
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for some right-hand side b. This is a fixed point
iteration, the solution of which satisfies the lin-
ear system

Fg = (I �A)g = b. (8)

3 Transmission operators

Multiple choices are possible for the transmis-
sion operator T , the optimal operator being the
Dirichlet-to-Neumann map associated to the
complementary of the subdomain. This oper-
ator being nonlocal (and thus computationally
expensive), we investigate four approximations:

• Zeroth order condition:

T0u = �i[(�+ 2µ)k
p

u
p

+ µk
s

u
s

], (9)

with k
p

and k
s

the wavenumbers associated
with u

p

(the longitudinal pressure wave with
a vanishing curl), and u

s

(the transverse
shear wave with a vanishing divergence) re-
spectively.

• Padé-localized, split square-root condition:

T1u = �i[(�+ 2µ)k
p

(
�⌃

k2
p,✏

+ I)1/2u
p

+µk
s

(
�⌃

k2
s,✏

+ I)1/2u
s

],

with �⌃ the tangential Laplacian operator

and k
↵,✏

:= k
↵

+ 0.39ik1/3
↵

H2/3, ↵ = s, p (H
being the mean curvature of ⌃). This con-
dition is then localized using complex Padé
approximants [2, 3].

• Padé-localized, combined square-root condi-
tion [1]:

T2u = �[(I +⇤2)
�1⇤1u+ 2µMu], (10)

with the tangential Günter derivative M,

⇤1 := i⇢!2[(�⌃+k2
p,✏

)�1/2In+(�⌃+k2
s,✏

)�1/2It)],

and

⇤2 := �i[r⌃(�⌃ + k2
s,✏

I)�1/2n · In
�n(�⌃ + k2

p,✏

I)�1/2div⌃It],

where In = n ⌦ n, It = I � In with n the
outgoing normal, and div⌃ the tangential di-
vergence operator. The square-roots are also
implemented thanks to Padé approximants.

• Perfectly matched layers: the transmission
operator is constructed by appending a vol-
ume layer to the transmission interface, in
which a PML transformation with absorption
profile is applied.

4 Preliminary results

We consider an annulus-shaped domain ⌦, split
into two concentric subdomains with ⇢ =
1kg.m�3, ! = 2⇡ s�1 and � = µ = 1Pa. Fig-
ure 1 displays the eigenvalues of the iteration
operator F for the two transmission conditions
T0 and T1 for a given finite element discretiza-
tion. These spectra lead respectively to 49 and
23 GMRES iterations in the domain decompo-
sition algorithm as implemented in [2].

0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5
T0
T1

Figure 1: Spectrum of the iteration operator F
for transmission conditions T0 and T1
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Abstract

We present a numerical method for a Drude
metamaterial model in two dimensions that is
discretized using a mimetic finite di↵erence (MFD)
method in space and staggered exponential time
discretization (ETD). The MFD spatial discretiza-
tion on rectangular elements produces a three
parameter family of mimetic schemes. By op-
timizing within the family for the lowest nu-
merical dispersion error we identify the optimal
ET-MFD method with fourth order dispersion
error. The ETD was essential to the success of
the optimization procedure.

Keywords: Maxwell’s equations, Drude Meta-
material, Mimetic Finite Di↵erence, Exponen-
tial Time Discretization.

1 Introduction

Mimetic finite di↵erence methods for Maxwell’s
equations can be viewed as extensions of the
famous Yee scheme in computational electro-
magnetics to polygonal and polyhedral meshes.
The spatial discretization allows for the con-
struction of a parameterized family of compati-
ble discretizations for Maxwell’s equations that,
like the Yee scheme, preserve important contin-
uum properties of the Maxwell system, such as
exact preservation of the divergence conditions
and energy conservation or decay (under a suit-
able stability condition) [1]. Here, we construct
MFD discretization for a metamaterial model
and exploit the parameterization on rectangular
meshes to develop a method with low numerical
dispersion error.

2 Maxwell-Drude Model

We consider the two dimensional (2D) Trans-
verse Electric (TE) mode of Maxwell’s curl equa-

tions in a Drude metamaterial given as
8

>

<

>

:

✏
@

@t
E = �J + curlH,

µ
@

@t
H = �K � curlE,

(1)

along with the constitutive laws
8

>

<

>

:

@

@t
J = ��eJ + ✏!2

p,eE,

@

@t
K = ��mK + µ!2

p,mH.
(2)

Here E and H are the electric and magnetic
fields; J and K are the polarization, and mag-
netization current densities. The parameters
✏ and µ are the permittivity and permeabil-
ity, !p,e and !p,m are the electric and mag-
netic plasma frequencies, and �e, �m are elec-
tric and magnetic damping frequencies, respec-
tively. The operators curl and curl are the 2D
vector and scalar curl operators, respectively.
The system is completed by adding initial con-
ditions, perfect conducting boundary conditions,
and divergence constraints.

3 Exponential Time Discretization

Rewrite Maxwell’s curl equations (1) and con-
stitutive laws (2) in a matrix form

@

@t

✓

E
J

◆

= X
✓

E
J

◆

+
✓

✏�1curlH
0

◆

, (3)

@

@t

✓

H
K

◆

= Y
✓

H
K

◆

�
✓

µ�1curl E
0

◆

, (4)

X =

„
0 �✏�1

✏!2
p,e

��
e

«
, Y =

„
0 �µ�1

µ!2
p,m

��
m

«
.

A second order ETD method has the following
staggered form (m = n� 1

2

):

„
En+1

Jn+1

«
= e

�tX
„
En

Jn

«
+ X�1

“
e

�tX � I
” „

✏�1curlHm+1

0

«
,

„
Hm+1

Km+1

«
= e

�tY
„

Hm

Km

«
� Y�1

“
e

�tY � I
” „

µ�1
curlEn

0

«
.
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4 Mimetic Finite Di↵erence Discretiza-
tion is Space

MFD discretization can be viewed as a gener-
alization of finite elements to general polygonal
elements. However, here, we are interested only
in the case of rectangular elements.

In the discrete form the electric field E and
the polarization current density J will be repre-
sented by degrees of freedom (DoF) which are
averages of tangential components along each of
the mesh edges. The magnetic field H and the
magnetization current density K will be repre-
sented by DoF that are the average values on
the element, see Fig. 1. Computing these DoF
for a smooth field defines an interpolant.

We construct the discrete (primary) scalar
curl operator to be exact, in the sense that inter-
polant and curl operators commute. The vector
curl operator is defined as dual to curl.

Next, each discrete space (edge space for
E and J and face space for H and K) has to
be equipped with an appropriate inner product,
which is built based on the inner products local
to individual elements. The inner product for
face space for H and K is rather straightforward
and is defined uniquely. It is in the construction
of the local inner product for edge space for E
and J that we encounter non-uniqueness that
can be described by a set of three parameters.

To deal with computational e�ciency issues
and to preserve the parameters in the inner prod-
uct matrices, M, we use a generalized mass-
lumping method. Instead of simply lumping all
non-diagonal elements to diagonal, M ⇡ D, we
use an approximation M�1 ⇡ D�1MD�1.

H, K

E, J

E, J

E
, J

E
, J

Figure 1: Illustration of DoF for unknown quan-
tities E,J and H,K.

5 Dispersion Reduction

We express the numerical dispersion error for a
general member of fully discrete ET-MFD fam-
ily and for a general harmonic wave using gen-
eralized eigenvalues of the spatial and tempo-
ral discrete operators, which we refer to as in-

dexes. The problem of minimizing the numeri-
cal dispersion reduces to the problem of match-
ing the indexes of these discrete operators at
highest orders of accuracy by selecting appro-
priate parameters in the inner product matri-
ces. A general member of the ET-MFD fam-
ily is second order accurate both in space and
time. On the other hand, the optimal ET-MFD
achieves fourth order of accuracy by canceling
the second order error coming from space and
time discretizations. In Figure 1, we illustrate
the dramatic increase in accuracy in the optimal
ET-MFD method compared to the Yee scheme
with ETD in the special case, K = 0, when
the Drude model reduces to the cold isotropic
plasma model [2].
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Figure 3: We consider a cold isotropic plasma with !P = 1 and !i = 1. Figure (a) plots relative dispersion error
for a wave with k = 4 and resolved at 12 and 24 points per wavelength on a mesh with an aspect ratio � = 1 for
both the ET-Yee and ETMFD schemes. We choose the Courant number to be ⌫ = 1

2 . Figure (b) plots the relative
dispersion error for a cell with x y = 12 2 for the aspect ratios � = 4, 1, 1

4 . In this case we choose the Courant
number to be ⌫ = 1

2 min{�3, 1}.

Table 1: Relative L2 Errors for Experiment 2.

Electric Field, E Current Density, J
log

2

(h) ET-Yee rate ETMFD rate ET-Yee rate ETMFD rate
-4 1.1024e-02 4.8495e-05 3.0064e-02 1.3322e-04
-5 2.7237e-03 2.0170 3.0206e-06 4.0049 7.4940e-03 2.0042 8.3901e-06 3.9890
-6 6.7826e-04 2.0057 1.8844e-07 4.0026 1.8704e-03 2.0024 5.3485e-07 3.9715
-7 1.6931e-04 2.0021 1.1767e-08 4.0013 4.6717e-04 2.0013 3.4784e-08 3.9426
-8 4.2303e-05 2.0009 7.3501e-10 4.0008 1.1674e-04 2.0007 2.3361e-09 3.8963

where Fn
h = (En

h,J
n
h)

T and the interpolation IE
h operator is defined in (3.3).

To define the dispersion error we fit an appropriate temporal function, F (t : !h), to tempo-
ral grid data {En

h,e
i

}N
n=0

at some edge ei to find the best discrete frequency wh. To calculate
the relative dispersion errors, we perform the following procedure. If (ah, bh) is the result of
the non-linear least squares fitting of time tracking data {Fn

h|e}N
n=1

to the appropriate function
(exp(aht) cos(bht) for the electric field and ✏

0

!

2

pe
a

h

t (a
h

+!
i

) cos(b
h

t)+b
h

sin(b
h

t)

b2
h

+(a
h

+!
i

)

2 for the current den-
sity) then we define the relative dispersion error by

Eh
d (Fh) :=

r

(a ah)
2

+ (b bh)
2

a

2

+ b

2

, (6.18)

where a, b are the true data.
For comparison, we have also performed our simulations with the corresponding ET-Yee

scheme (i.e., Yee spatial staggering with ETD), which is second order accurate in space and
time. In Table 1 we present relative L

2 errors in the electric field and polarization density, while
in Table 2 we present relative dispersion errors for the electric field and polarization density,
respectively. Figures 4, and 5 plot the results of Tables 1-2. Our results indicate fourth order
dispersion and L

2 error convergence for the ETMFD as compared to the corresponding (well
known) second order convergence for the ET-Yee scheme.
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Table 1: Relative L2 Errors for Experiment 2.

Electric Field, E Current Density, J
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(h) ET-Yee rate ETMFD rate ET-Yee rate ETMFD rate
-4 1.1024e-02 4.8495e-05 3.0064e-02 1.3322e-04
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where Fn
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h,J
n
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T and the interpolation IE
h operator is defined in (3.3).

To define the dispersion error we fit an appropriate temporal function, F (t : !h), to tempo-
ral grid data {En

h,e
i

}N
n=0

at some edge ei to find the best discrete frequency wh. To calculate
the relative dispersion errors, we perform the following procedure. If (ah, bh) is the result of
the non-linear least squares fitting of time tracking data {Fn

h|e}N
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to the appropriate function
(exp(aht) cos(bht) for the electric field and ✏
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, (6.18)

where a, b are the true data.
For comparison, we have also performed our simulations with the corresponding ET-Yee

scheme (i.e., Yee spatial staggering with ETD), which is second order accurate in space and
time. In Table 1 we present relative L

2 errors in the electric field and polarization density, while
in Table 2 we present relative dispersion errors for the electric field and polarization density,
respectively. Figures 4, and 5 plot the results of Tables 1-2. Our results indicate fourth order
dispersion and L

2 error convergence for the ETMFD as compared to the corresponding (well
known) second order convergence for the ET-Yee scheme.
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Figure 2: Numerical Dispersion error in a
log polar plot for wave resolution measured in
points per wavelength (ppw), !p,e = 1 = �e,
✏1 = 1, aspect ratio of an element � = �y

�x .
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Abstract

We aim at determining the acoustic field radi-
ated in 2D by a time-harmonic source in a fluid
in flow. We use Goldstein’s equations, well-
adapted to describe the complex coupling be-
tween the radiation of acoustic waves and the
transport of acoustic vortices. These involve a
vectorial harmonic transport equation which is
proved to be well-posed outside a spectrum of
frequencies corresponding to resonant stream-
lines. Then the full model is shown to be well-
posed under a coercivity condition, implying a
subsonic flow with a small enough vorticity.

Keywords: aeroacoustics, harmonic transport
equation, Fredholm alternative

1 Introduction

We consider acoustic propagation in a general
flow v0, vortical which corresponds to ω0 ≡
curl(v0) ̸= 0. To describe the propagation of
small acoustic and hydrodynamic perturbations,
we have chosen Goldstein’s equations [3]. In
the potential areas ω0 = 0, corresponding to
the velocity v0 = ∇ϕ0 where ϕ0 is the veloc-
ity potential, the Goldstein equations reduce
to a classical convected scalar wave equation
[1]. Here we consider the more complicated case
of non-potential flows, for instance the Lamb-
Chaplygin dipole vortex [2], whose streamlines
are represented in Fig. 1. The streamlines di-
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Figure 1: The Lamb-Chaplygin flow

vide in two families: closed streamlines corre-
sponding to recirculation rolls and infinite stream-
lines. For the unclosed streamlines, we are able
to prove that the Goldstein equations are well-
posed. Here we focus on the recirculation areas,
for instance on the one surrounded by a black
line on Fig. 1. More precisely we will consider
a circular flow, to simplify the presentation and
to get explicit results.

2 Geometry and equations

We consider Ω a disc of radius R > 0 and a
given circular flow v0 = v0(r)eθ with v0/r ∈
C1([0, R]) and with 0 < v− ≤ v0. In polar co-
ordinates, the Goldstein equations read in Ω:

ρ0c
−2

0
D2

ωϕ = div [ρ0 (∇ϕ+ ξ)] + ρ0f(1)

Dωξ +B(r)ξ = ω0 curlϕ. (2)

We have introduced:

Dω ≡ −iω +
v0
r

∂

∂θ
, B(r) ≡

(

0 −2v0/r
ω0 0

)

.

ω0(r) = v0(r)/r + v′0(r) and f is an acoustic
source. ϕ(r, θ) is the acoustic potential and
the vector ξ(r, θ) is the hydrodynamic unknown.
ρ0(r) and c0(r) are the given density and sound
speed of the flow. Once the Goldstein equations
are solved, the velocity perturbation is given by
v = ∇ϕ+ ξ and the pressure by p = −ρ0Dωϕ.
To close Eq. (1)-(2), we take (ϕ, ξ) θ-periodic
and we add a radiation condition:

∂ϕ/∂r + ξr = i(ω/c0)ϕ at r = R.

Our aim is to study the well-posedness of Eq. (1)-
(2). Our strategy is

• to determine the integral form of the so-
lution ξ(ϕ) of the transport equation (2),

• to introduce ξ(ϕ) in the wave equation
(1) and to prove that the resulting scalar
problem is well-posed.
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3 Solution of the transport equation

We focus first on the transport equation (2) and
we consider the following problem: for ω ≥ 0,
find ξ ∈ (L2(Ω))2 such that
{

Dωξ +B(r)ξ = f ,

∀r ∈ [0, R], ξ(r, 0) = ξ(r, 2π),
(3)

where f ∈ (L2(Ω))2 is a source term 2π-periodic
in the variable θ. In the following we will con-
sider 2ω0v0/r > 0: it corresponds to a sta-
ble flow profile and we can show that when
2ω0v0/r < 0, the time-harmonic regime doesn’t
exist. Then the eigenvalues of B(r) are ±iλ(r)
where λ(r) :=

√

2ω0v0/r is real. We introduce
the spectrum of resonance frequencies:

Kres(v0) :=
{

ω±,n(r), n ∈ Z, r ∈ [0, R]
}

, (4)

where ω±,n(r) = (v0/r)n± λ(r), and we have

Theorem 1

• If ω /∈ Kres(v0), then (3) has a unique

solution and ∃C(ω) > 0 such that:

∥ξ∥L2(Ω)2
≤ C(ω) ∥f∥L2(Ω)2

(5)

• If ω ∈ Kres(v0), (3) is ill-posed in (L2(Ω))2.

The proof consists simply in determining explic-
itly the solution as a convolution integral.

Kres(v0) is represented in blue in Fig. 2 for
a velocity v0 = br + cr2 with b = 1 and c =
0.5, in a disc of radius R = 1. The spectrum
is found continuous for large frequencies (here
ω ! 2) and band gaps exist at low frequencies.
The frequency ω = 1.2, represented as a red

0 1 2 3 4 5 6 7 8
−1

0

1

2

ω

b=1, c=0.5, ω=1.2

Figure 2: Spectrum Kres(v0). The particular
frequency ω = 1.2 is represented in red.

circle, is in the spectrum since it corresponds
to two resonant frequencies: ω+,−1(r1) = ω =
ω−,3(r2) with r1 = 0.27 and r2 = 0.78. On Fig.
3 is represented the quantity ℜe(ξx) obtained
numerically for ω = 1.2. We see that two lines
are found resonant in the sense that the solution
takes large values on these streamlines. These
lines are found located at the values r = r1 and
r = r2 obtained theoretically.

Figure 3: ℜe(ξx) obtained numerically.

4 Well-posedness of the Goldstein equa-

tions

Now we consider the coupled problem Eq. (1)-
(2). Eq. (2) corresponds to Eq. (3) with f =
ω0 curlϕ. The final result is

Theorem 2 If ω /∈ Kres(v0), then the Gold-

stein equations Eq. (1)-(2) are well-posed under

the condition

1− [min
Ω

(v0/c0)]
2 − C(ω) ∥ω0∥L∞

> 0, (6)

with C(ω) introduced in (5).

This condition implies a subsonic flow
minΩ(v0/c0) < 1 and a vorticity of the flow |ω0|
small enough. The proof follows from:

• using a variational formulation, the prob-
lem (1)-(2) is proved to be of Fredholm
type under the coercivity condition (6),

• using a Fourier decomposition in θ, the
homogeneous problem for f = 0 is proved
to have no other solution than 0.
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Abstract

We show how boundary integral equations on an
uncertain boundary can be replaced by volume
integral equations with a stochastic kernel but
on a fixed support. This is advantageous for
applications because with the volume integral
equation, the Galerkin discretisation can be de-
fined on a fixed domain instead of on (sample)
realisations of the stochastic boundary.

Keywords: Stochastic Boundary integral equa-
tions

1 Introduction

We are studying electromagnetic scattering prob-
lems with boundary integral equations and want
to account for uncertainties in the geometry of
the boundary. This leads to define a probabilis-
tic model for the uncertain boundary (see sec-
tion 2) and, as a consequence, to study stochas-
tic boundary integral equations. The numerical
solution of stochastic boundary integral equa-
tions su↵ers from the fact that each realisation
of the integral equation concerns the construc-
tion of a distribution on a new support and
hence a numerical solution would require a new
mesh, a new operator discretisation etc. For
small geometrical fluctuations, it is possible to
reduce the problem, via asymptotic expansions
around a nominal (or average) surface, to an
integral equation with only a stochastic kernel,
on this fixed nominal boundary (see [1]). For
geometrical fluctuations beyond asymptotically
small variations we propose, in section 3, a vol-
ume integral equation equivalent to the stochas-
tic boundary integral equation. In section 4, the
weak formulation of the volume integral equa-
tion is defined showing how the deformation
mappings are used in a concrete construction
of stochastic Galerkin matrices.

2 Stochastic deformation

The nominal boundary surface, �0, is repre-
sented as a generic manifold, �, with charts,
{U

p

}, and a (chart-wise) embedding, µ � ', in
R3.

�0

iv
t

�v

t�v

t

�

V

v�

T

t

U1

U
p

U3

'

µ

Figure 1: The mappings defining the stochastic
kernel

To define deformations of �0, we use nor-
malised finite stochastic linear combination of
smooth vector fields on R3

v
↵

=
X

p

↵
p

v
p

with ↵
p

centered random reals and kv
↵

k = 1,
spanning a vector space V . For each v 2 V , the
flow �v : R3 ⇥ T ! R3, defined by

t 2 T @
t

�v(x, t) = v(�v(x, t)),

defines a stochastic deformation of �0. We choose
a probability density on T and take the flow co-
ordinate, t, to be statistically independent of
v. We put su�cient constraints on the vector
fields (e.g., zero divergence) such that the set of
deformations be a family of di↵eomorphisms.

The Electric Field Integral Equation (EFIE),
which is often used in electromagnetic scatter-
ing models, is given by

⇥Z

y2�v
t

Geh

x

(y) ^H(y)
⇤
�v
t
= �

⇥
Ei

⇤
�v
t
(x)
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on the deformed surfaces �v

t

= �v

t

[�0]. This
integral equation can be “pulled back” to � via
the embeddings iv

t

= �v

t

�µ. First, the integrand
on the LHS is rewritten

Z

y2�v
t

Geh

x

(y) ^H(y) =

Z

y2�
Geh

x

(iv
t

(y)) ^H(iv
t

(y))

and, secondly, the equation itself

Z

y2�
Geh(iv

t

(x), iv
t

(y)) ^H(iv
t

(y))

= �Ei(iv
t

(x))

(We use di↵erential forms for all the fields, such
that the pull-back with f is simply the compo-
sition with f .)

3 The volume integral equation

The flow interval can be considered as a third
dimension extending the manifold � into an ab-
stract volume � ⇥ T where the line element on
the flow interval T contributes to the volume
element. On this volume, we obtain an integral
equation with a “stratified” kernel

K((x, t), (y, s)) = �(s�t)G(iv
t

(x), iv
s

(y))

parameterised by the normalised vector fields.
We can use the embedding map for any nor-

malised vector field v 2 V

iv : �⇥ T 3 (x, t) 7! iv
t

(x) 2 R3

to push forward di↵erential forms on �⇥ T via

iv⇤ : T ⇤(�⇥ T ) 3 (⇠, ⌧) 7! iv
t⇤(⇠, ⌧) 2 T ⇤R3

to di↵erential forms on R3. The “stratified”
kernel of the integral equation over � ⇥ T is
therewith transformed into a kernel on R3 with
(v, t)-dependent weights. For a given probabil-
ity distribution on T ⇥V , the kernel is actually
a stochastic kernel on

⌦ =
[

(t,v)2T⇥V

�v

t

⇢ R3

with a “surely 0” extension to any environment
of ⌦.

4 Weak formulation

In order to be able to solve the above defined
integral equation numerically, we study the con-
struction of the stochastic Galerkin matrix. For
this, we define a finite dimensional approxima-
tion space for 2-form distributions on (an envi-
ronment of) ⌦

FES = {j
k

2
2̂

T ⇤R3 : k = 1, . . . , N}

(In addition, we define interpolators on the prob-
ability space P = T ⇥ V allowing for a discreti-
sation of vector-valued functions on P , but we
do not elaborate this here.) The current distri-
bution, J 2

V2 T ⇤R3, solution of the stochas-
tic boundary integral equation is then repre-
sented as a function over the probability space
P 3 p 7! J(p) =

P
n

j
n

In(p). The discretised
integral equation, for any p 2 P , is a linear al-
gebra problem: find the coe�cients In(p) such
that

8m
X

n

Geh

p;mn

In(p) = e
p,m

where

Geh

p;mn

=

Z

x2⌦
j
m

(x) ^A
p

j
n

(x)

and

A
p

j
n

(x) =

Z

y2⌦
Geh

p

(x, y) ^ j
n

(y)

with Geh

(t,v) = iv
t⇤ ⇥ iv

t⇤K.

5 Conclusion

We are studying the nature of stochastic bound-
ary integral equations via mathematically equiv-
alent stochastic volume integral equations. Be-
cause the volume integral equations are defined
on a fixed domain, they are more convenient
both for numerical computations and for the
study of the convergence of numerical approxi-
mations, at least point-wise over the probability
space. We will present a numerical implementa-
tion of a simplified 2-dimensional case for which
we are able to compare exact solutions to nu-
merical results.
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Abstract

We present the coupling of a nodal discontinu-
ous Galerkin (DG) scheme with high-order ab-
sorbing boundary conditions (HABCs) for the
simulation of transient wave phenomena. The
HABCs are prescribed on the faces of a cuboidal
domain in order to simulate infinite space. To
preserve accuracy at the corners and the edges
of the domain, novel compatibility conditions
are derived. The method is validated using 3D
computational results.

Keywords: Transient waves, Discontinuous fi-
nite element, Absorbing boundary condition

1 Introduction

DG schemes are widely used for large-scale sim-
ulations of transient waves in complex media.
For many applications, these schemes must be
coupled with nonreflective boundary techniques
in order to limit the size of the computational
domain without losing accuracy or computa-
tional e�ciency. In this context, PMLs and
local HABCs are attractive since they provide
high-fidelity solutions at reasonable computa-
tional cost. Nevertheless, HABCs have received
far less attention than PMLs, and very few cou-
plings with DG schemes have been proposed.

Local HABCs involve the computation of
auxiliary fields governed by di↵erential equa-
tions on the boundary (see e.g. [1, 2]), and re-
quire specific treatments at the corners of the
domain. Hagstrom and Warburton [2] proposed
compatibility conditions that preserve accuracy,
but that are di�cult to devise for complicated
problems. In this work, we derive simpler com-
patibility conditions in the acoustic case by us-
ing a di↵erent representation for the HABCs.

2 HABC and compatibility conditions

Let the field p(x, t) governed by the wave equa-
tion @

tt

p � �p = 0 in the cuboidal domain

⌦ = {x 2 R3 : |x| < L

x

, |y| < L

y

, |z| < L

z

}.
For each face, we consider HABCs derived

using the (2N +1)th Padé approximation of the
square root in the exact nonreflective condition
[1]. On the face belonging to the plane x = L

x

,
we write the condition as

@

t

p+ @

x

p =
2

M

NX

i=1

a

i

@

t

�
p

x

i

� p

�
, (1)

where N auxiliary fields px
i

are governed by

@

tt

[b
i

(px
i

� p)]��x

?p
x

i

= 0, 8i 2 [1, N ], (2)

with a

i

= tan2(i⇡/M), b
i

= a

i

+ 1, �x

? = � �
@

xx

and M = 2N + 1. This HABC is nearly
identical to the one proposed by Collino [1]. It is
equivalent to a special case of the one considered
in [2], but the specific structure of Eqs. 1-2 leads
to simpler compatibility conditions.

Additional relations must be defined on the
border of each face (i.e. on the edges) because
of the operator �x

? in Eq. 2. Following [2],
they are devised to ensure the compatibility of
the system. On the edge belonging to the line
(x, y) = (L

x

, L

y

), the fields p

x

i

and p

y

j

defined
on the adjacent faces then verify the boundary
conditions

@

t

p

x

i

+ @

y

p

x

i

=
2

M

NX
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a

j

@

t
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p

xy

ij

� p
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i

�
, 8i,

@

t

p

y

j

+ @

x

p

y

j

=
2

M

NX

i=1

a

i

@

t

�
p

xy

ij

� p

y

j

�
, 8j,

where N

2 auxiliary fields pxy
ij

are governed by

@

tt

h
(1 + a

i

+ a

j

)pxy
ij

� b

i

p

y

j

� b

j

p

x

i

i

� @

zz

p

xy

ij

= 0, 8i, j. (3)

Similarly, relations close to Eq. 2 are pre-
scribed on the corners to give boundary con-
ditions for the auxiliary fields defined on the
edges. They involve N3 auxiliary fields that are
governed by algebraic relations on the corners.
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3 Scheme and computational procedure

The scheme is written for the pressure-velocity
system and based on the variational form

(�
(@

t

p+r · u),�
�
⌦k

=
⌦
n · (uin � u?),�

↵
�k�

(@
t

u+rp),
�
⌦k

=
⌦
n(pin � p

?),
↵
�k

(4)

with test functions � and  , a mesh cell ⌦
k

, its
boundary �

k

, and the external unit normal n.
Upwind fluxes are defined by taking

p

? = (r+)in + (r�)ex (5)

n · u? = (r+)in � (r�)ex (6)

where r

± = p ± n · u are the outgoing (+) and
incoming (�) characteristics. The subscripts in

and ex denote interior and exterior values on �
k

.
The HABC is incorporated in the scheme

by rewriting Eq. 1 with characteristics. On the
face belonging to the plane x = L

x

, one has

r

� (def.)

= p� e
x

· u (Eq. 1)

=
2

M

NX

i=1

a

i

(px
i

� p).

This incoming characteristic is used in the up-
wind fluxes (Eqs. 5-6) on the domain boundary.
Since the auxiliary fields are governed by 2D
and 1D wave-like equations (Eqs. 2-3) on the
faces and the edges, we use 2D and 1D versions
of the variational form (Eq. 4). HABCs are
prescribed on the auxiliary fields by using the
same strategy. The procedure then consists in
3D/2D/1D solvers on the domain/faces/edges.
For each mesh node of the edges and for each
corner, the incoming characteristics are com-
puted by solving systems with 2N and 3N2 un-
knowns. See [3] for the detailed procedure and
GPU computational performance results.

4 Numerical results

We consider the propagation of a spherical wave
in the cuboidal domain ⌦ = [�0.5, 0.5]3. The
wave is generated using a point source at the po-
sition (0, 0.1, 0.2) with a Ricker wavelet. We use
a mesh composed of 70,895 tetrahedra, third-
degree basis functions and a fourth-order Runge-
Kutta scheme. Simulations are performed with
HABCs of di↵erent orders. For each case, Fig-
ure 1 shows the time-evolution of the error

vuut kp� p

ref

k2
L2(⌦)

+ ku� u
ref

k2
L2(⌦)

sup
t>0

�
kp

ref

k2
L2(⌦)

+ ku
ref

k2
L2(⌦)

�
,

where p

ref

and u
ref

correspond to the solution
of the free-space problem defined on R3.

At the beginning, the error is dominated by
the numerical error (the same in all the cases)
generated when the wavefront is travelling in-
side ⌦ and has not reached the boundary yet.
Later, a modeling error is generated because of
the spurious reflection of waves at the boundary.
The higher the order of the HABC, the smaller
the error, which validates the method for short
times. For long times, the error converges to-
wards the same value for all the orders, except
for N = 0 where the error remains decreasing.
This is due to the poor long-time behaviour of
Padé-type HABCs, which has been observed in
2D in [2]. We plan to extend the method for
long-time simulations and other physical waves.

Figure 1: Error with HABCs having N addi-
tional fields (N = 0, 2, . . . , 12). The main spher-
ical wavefront is travelling in ⌦ when t 2 [0, 2].
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Abstract

We study the inverse problem of determining
the shape of sound soft inclusions in a sound
hard waveguide using time domain data. We
prove existence and uniqueness for the forward
problem, and derive a numerical method using
time domain integral equations. For the in-
verse problem we suggest to use a time domain
version of the Linear Sampling Method. After
analysis of the time domain inversion scheme,
we provide numerical examples.

Keywords: Inverse scattering, Waveguide, Qual-
itative method, Time domain.

1 Introduction

The inverse problem of using the Linear Sam-
pling Method to detect sound soft objects in
a sound hard acoustic waveguide was studied
in [1] and for penetrable scatterers was studied
by us in [4]. This paper concerns the analogous
problem using time domain data [2, 5], but un-
like [2] we propose to use the time domain data
directly in the time domain LSM (the TDLSM).
An important contribution from [2] was the de-
sign of incident waves that have fast decay in
time, limiting the need for long time compu-
tations. Here, we present numerical tests us-
ing the TDLSM with the new incident field and
show promising results.

2 Forward Problem

Let P := R⇥ (0, H), H > 0 denote the infinite
waveguide that forms the background domain
for our study. Then D ⇢ P denotes a bounded
and smooth impenetrable sound soft obstacle in
P . We assume that the incident field is due to
a point source at x0 2 P \D with time depen-
dence ⇠(t) (a smooth causal function). Then, if
ui
x0

denotes this incident wave, it satisfies the
wave equation in P \ {x0} with vanishing ini-
tial conditions. The forward problem is to find

u
x0 ⌘ u

x0(t,x), the scattered field, that satisfies
8
>><

>>:

@2
ttux0 ��u

x0 = 0 in P \D, for t > 0
@⌫ux0 = 0 on @P, for t > 0
u
x0 = �ui

x0
on @D, for t > 0

u
x0 = @tux0 = 0 in P, for t  0

Here ⌫ is the unit outward normal to P . There
is no need of any radiation condition on u be-
cause ui

x0
is causal and the wave speed is finite.

Using the Fourier-Laplace transform, in [3]
we prove that this problem is wellposed, and
show how the forward problem can be approx-
imated using a time domain integral equation
on @D. This requires a careful implementation
of the fundamental solution for the waveguide.
The use of a time domain integral equation ob-
viates the need for a mesh truncation condition.

3 Inverse Problem

For the inverse problem we suppose that there
is a measurement line ⌃ = L⇥(0, H) at x = �L
such D \ ⌃ = ; (of course the interesting case
is when ⌃ is far from D). Then for every source
point x0 2 ⌃ we suppose that it is possible to
record the scattered field u

x0(t,x), t > 0, x 2 ⌃.
From this data we wish to find the shape of the
unknown scatterer D. In practice the data will
only be known for a finite number of measure-
ment and source locations and at discrete times.

The TDLSM rests on the study of the time
domain near field operator. This is defined for
g 2 L2((0, T )⇥ ⌃) by

Ng(t,x) =

Z

⌃

Z 1

0
u
x0(t�⌧�⌘,x)g(⌘,x0) d⌘ dsx0

where ⌧ is a parameter. This is the time domain
analogue of the near field operator in time har-
monic scattering.

We prove thatN is injective with dense range
and then consider the near field equation of find-
ing g

z

2 L2((0, T )⇥ ⌃) such that

Ng
z

(t,x) = ui
z

(t,x) t > 0,x 2 ⌃, (1)

where ui
z

is the solution of the wave equation
in the waveguide P due to a point source at
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the auxilliary point z 2 P and time modulation
⇠(t).

Again using Fourier-Laplace transform tech-
niques, show that there is an approximate solu-
tion to the near field equation (1) that can be
used as an indicator function for the scatterer
D (but as usual for the TDLSM or time har-
monic LSM we cannot prove that a regularized
version of the solution of (1) is this solution).

In Fig. 1 we show results of a numerical ex-
periment in the case H = 1 with L = �2 and
L = �5 using the incident field from [2] with
five terms:

⇠(t) =
5X

n=1

⇠n(t)

where

⇠n(t) =
d

dt

⇣
sin(Ant)e

�Bn(t�Cn)2
⌘

and An, Bn, Cn 2 R are fixed to select the mean
frequency and the support of the signal in the
Fourier domain. We use: Bn = ⇡2

200 , Cn =
5p
2Bn

, and

An = ⇡(n� 0.5)� 4Bn

⇡(n� 0.5)

The advantage of this choice is that it decreases
the amplitude of the modes in the waveguide
at the cuto↵ frequencies, so the scattered wave
decays rapidly in time.

The scatterer is a disk of radius 0.2 centered
at x = (0, 0.6). The results show that the left
hand side of the circular scatterer is detected by
the algorithm (sources and measurements are to
the left) and the reconstruction is rather insen-
sitive to the Tikhonov regularization parameter.

4 Conclusion

We have demonstrated theoretically and numer-
ically that the TDLSM can be used to solve
a time domain inverse scattering problem in
a waveguide. Interesting future work includes
testing the method on scatterers that are invis-
ible at a selected frequency.
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Abstract

This work focuses on the well-posedness and stabil-
ity of the linearised Euler equations (1) with imped-
ance boundary condition (2,3). The first part covers
the acoustical case (u0 = 0), where the complex-
ity lies solely in the chosen impedance model. The
existence of an asymptotically stable C0-semigroup
of contractions is shown when the passive imped-
ance admits a dissipative realisation; the only source
of instability is the time-delay ⌧ . The second part
discusses the more challenging aeroacoustical case
(u0 6= 0), which is the subject of ongoing research.
A discontinuous Galerkin discretisation is used to
investigate both cases.
Keywords: impedance boundary condition, diffus-
ive representation, stability, discontinuous Galerkin

Introduction

This work focuses on the (dimensionless) homentropic
linearised Euler equations (LEEs)
(
@tp+r · u+ u0 ·rp+ � pr · u0 = 0

@tu+rp+[u0 ·r]u+[u·r]u0+p[u0 ·r]u0 = 0,
(1)

defined on (0,1)⇥ ⌦, where ⌦⇢Rn is a bounded
Lipschitz open subset, p (u) is the acoustical pres-
sure (velocity), u0 2 C1(⌦)n is the (given) base
flow, and � > 1 is the specific heat ratio. On the
boundary � := @⌦ (with outward normal n), a so-
called acoustical impedance boundary condition is
prescribed :

p(t, x) = [z ?
t
u ·n(·, x)] (t) (x 2 � :=@⌦), (2)

where the impedance (z 2 D0
+(R)\S 0

(R), causal
convolution kernel) models a mono-dimensional me-
dium as a continuous linear time-invariant system.

A recent analysis of acoustical models in the
time domain [6] has shown that a wide range of
sound absorbing materials and ground layers, as-
sumed locally-reacting, can be modelled by kernels
such as (“ 0 ” is the weak derivative, a0,a1 � 0):

z = a0� + a1�
0
+D

0
2 +D3(·� ⌧), (3)

where ⌧ � 0 and Di 2 L1
loc(0,1) is a causal

oscillatory-diffusive kernel (Ii ⇢ Z countable, poles
<[sn,i] < 0, rn,i > 0, µi positive Borel measure):

Di(t) =
X

n2Ii

rn,ie
sn,it

| {z }
oscillatory

+

ˆ 1

0
e�⇠t dµi(⇠)

| {z }
diffusive

, (4)

which models resonances and visco-thermal losses
(e.g. fractional kernel D2 / t�1/2). A key feature
of such positive real kernels is that they can be real-
ised (in the sense of systems theory) by a diagonal,
dissipative, infinite-dimensional dynamical system.
Note that, if ⌧ > 0 in (3), then (2) is a delayed

boundary condition, which models wave reflections.
The two sources of instability in (1,2) are the base
flow u0 and the impedance z.

1 Acoustical case

The acoustical assumption (u0 = 0) removes hy-
drodynamic instabilities, but leaves room for purely
acoustical ones triggered by the impedance bound-
ary condition (2,3). Below, the delayed (⌧ = 0)
and undelayed (⌧ > 0) cases are successively in-
vestigated by recasting the PDE (1,2) into a Cauchy
problem on a Hilbert space H:

Ẋ(t) = AX(t), X(0) = X0 2 D(A). (5)

To express A, a time-domain realisation of z in a
state-space ⇥ is needed. The given asymptotic sta-
bility results (see Thms. 3 and 5), crucially rely on
the dissipativity of this realisation.
1.1 Undelayed impedance (⌧ = 0)

Impedances z of increasing complexity can be con-
sidered, with ⇥ either finite or infinite-dimensional:
proportional (z = a0�), for which no realisation is
required; derivative (z = a1�

0), for which ⇥ = C.
For the sake of brevity and clarity, only two simpli-
fied examples (compared with (3)) are given below
before the statement of the general result.

Example 1. Let ẑ(s) be a real rational function,
bounded for <[s] � 0. If <[ẑ(s)] � 0 (passiv-
ity), then it can be realised by a dissipative ODE
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in ⇥ = RN , with a suitable energy norm (positive
real lemma, see [4, § 3.1]). Eq. (5) is then defined
on H = L2(⌦)⇥ (L2(⌦))n ⇥ L2(�;⇥).

Example 2. Let z = a0�+D2 (not D
0
2), and define

the weighted spaces �↵(⇠) = L2(0,1;↵(⇠) dµ2).
The diagonal, dissipative, infinite-dimensional real-
isation of D2 in ⇥ = �1 leads to H = L2(⌦) ⇥
(L2(⌦))n ⇥ L2(�;�1), and (5) then reads:

AX = A
0

@
p
u
'

1

A =

0

@
�r · u
�rp

A'+B u · n

1

A

V = H1 ⇥ (H1(div) \ (H1/2)n)⇥ L2(�;�1+⇠)

D(A)=

(
X 2 V

�����
[A'+B u·n]2L2(�;�1)

p|�=a0u·n+C' (in L2(�))

)
,

where, formally, (A')(x, ⇠) = �⇠'(x, ⇠) (state
operator), (B u ·n)(x, ⇠) = (⇠)u ·n(x) (control),
and (C ')(x) =

´1
0 '(x, ⇠) dµ2(⇠) (observation).

Theorem 3. Assume that ⌧ = 0 in (3). If <[a0]>0,

a1 � 0, <[sn,i] < 0, rn,i > 0 and µi is a positive

Borel measure, then z admits a dissipative realisa-

tion, and (5) has a unique strong solution X , such

that kX(t)k  kX0k for t � 0 and kX(t)k t!
1

0.

Proof (Sketch). We follow [4]. The dissipativity of
the realisation of z implies that of A. Well-posedness
follows from the m-dissipativity of A. With the
Fredholm alternative, we show that ⇢(A) � iR⇤

(we use that Hs(⌦) ⇢ L
2
(⌦), s > 0, is a compact

embedding). Since 0 /2 �p(A), asymptotic stability
then follows from the Arendt-Batty theorem.

Remark 4. With an infinite-dimensional realisation
of z, the embedding D(A) ⇢ H may not be com-
pact, hence the need to finely inspect ⇢(A), as the
pre-compactness condition of LaSalle’s invariance
principle is not straightforward to verify.
1.2 Delayed impedance (⌧ > 0)

The delayed case (⌧ > 0) can also be recast into (5)
using a hyperbolic realisation of the delay through a
transport equation, which leads to an additional ex-
tension: eH=H⇥L2(�;L2(0, ⌧ ;⇥)). Asymptotic
stability then becomes delay-dependent, which is
typical of time-delayed linear systems (see [5] and
references therein). The energy method of Thm. 3
leads to a sufficient stability condition for the pure

delay case (i.e. D3 = a⌧�, not a diffusive kernel).

Theorem 5. Let a⌧ 2 C and a1 > 0. If <[a0] >
|a⌧ |, then the result of theorem 3 extends to the case

z = a0� + a1�
0
+D

0
2 + a⌧�(·� ⌧).

Proof (Sketch). Similar to Thm. 3. The energy norm
on the hyperbolic variables, k·kL2(�;L2(0,⌧ ;C)) (here,
⇥ = C), is tuned so that A is dissipative. [5]

2 Aeroacoustical case

The aeroacoustical assumption is u0 6= 0 in (1). In
the case of a subsonic base flow (|u0| < 1), and un-
der stringent assumptions on u and u0 (which must
be, in particular, potential), the energy functional of
Cantrell and Hart [1, Eq. (64)] can be used to con-
struct a contraction C0-semigroup. Without these
assumptions, however, there is no energy balance,
and the dissipativity of A is lost: well-posedness
can only be achieved in a space like “e�µtL2(⌦)”,
for some µ > !0(A) > 0, where !0(A) is the
growth rate of A. (This constitutes a difficulty of
the LEEs, compared to e.g. the Galbrun equation,
see [1].) Current research focuses on the identifica-
tion of instabilities with (2,3), see e.g. [3].

3 Numerical method

Insights into the stability of (5) can be gained by
a numerical approximation of the temporal growth
rate !0(A). A nodal discontinuous Galerkin method
[2] is used to formulate Ẋh = AhXh+BhX(·�⌧),
with Xh = (ph,uh,'h). The time-domain imped-
ance boundary condition (2,3) is enforced through
a centred numerical flux that couples the acoustical
unknowns (ph,uh) with the memory variables 'h.
If ⌧ > 0, finite-dimensional criteria, which rely on
e.g. linear matrix inequalities (LMIs) or spectral
conditions, are used to assess stability.
Acknowledgment This research is supported jointly
by ONERA and DGA.
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Abstract

Gravitational waves (GWs) could directly probe
the multi-dimensional flow during the first sec-
ond of core-collapse supernova explosions. We
outline the structure of the predicted GW signal
from neutrino-driven supernovae of non-rotating
progenitors and quantitative dependencies gov-
erning the amplitudes of this signal and its evo-
lution in the time-frequency domain.

Keywords: supernovae, gravitational waves

1 Introduction

Core-collapse supernovae [1] are the explosions
of stars that begin their life with a mass of
&8M�. At the end of their lives, such massive
stars build up an iron core at their centre, which
eventually collapses due to electron capture re-
actions and photodisintegration of heavy nuclei.
After reaching supranuclear densities, the core
rebounds, and a shock wave is launched into the
infalling outer shells. The shock initially stalls,
and is later revived on a time scale of hundreds
of milliseconds, likely by neutrino heating, or
in rare cases of rapidly rotating progenitors by
magnetohydrodynamic e↵ects.

Observations and theory have shown that
these explosions typically exhibit strong asym-
metries [2]. In the more generic case of slowly
spinning progenitors, these asymmetries arise
naturally during the first second as neutrino
heating drives convective overturn behind the
shock or from the large-scale “standing accre-
tion shock instability” (SASI) [2].

The electromagnetic signatures from the ex-
plosion are determined at later times, and thus
only provide indirect clues about the multi-D
character of the supernova “engine” in the first
second(s) after collapse. Gravitational waves
(GWs) could provide a more direct way to probe
the dynamics in the supernova core. Sophisti-
cated data analysis methods could help to dis-
criminate between di↵erent supernova mecha-
nisms or at least facilitate GW detection by us-
ing predicted waveforms from simulations (see,
e.g., [3]). We here sketch some of the physics

that determines properties of the GW signal
from convection and the SASI in neutrino-driven
explosions,

2 GW Emission from Supernovae

The GW amplitudes h (often expressed as in-
variant amplitudes A = hD by factoring out the
distance D of the source) are determined by the
temporal variation of the mass quadrupole mo-
ment of a system, which can occur in supernova
for several reasons.

In the classical scenario of GW emission dur-
ing rotational collapse, the quadrupole moment
is non-zero from the outset because of the ro-
tational deformation of the core and changes
during the collapse and bounce. This case is
su�cently well understood [4] to allow quanti-
tative measurements of the angular momentum
of the core for a Galactic supernova with Ad-
vanced LIGO [5].

In the absence of rotation, aspherical mass
motions in the neutrino heating layer (or “gain
layer”) also lead to GW emission in the later
post-bounce phase due to temporal variations
in the mass quadrupole moment. Recent 2D
simulations [6, 7] show several distinct phases:
Shock ringing after prompt convection leads to
a low-frequency signal around 100Hz for about
50ms, followed by a signal at several hundred
Hz with stochastic amplitude modulations, and
a “tail” due to asymmetric shock expansion in
the explosion phase. There are still few 3D
models, which show lower amplitudes by a fac-
tor of ⇠10 [8, 9], but these have already revealed
a new low-frequency component from the SASI
at 100–200Hz [9, 10].

3 The Typical GW Frequency

Because of the stochastic character of GW emis-
sion due to SASI and convection, the relation
of the waveforms to the physical parameters of
the accretion flow onto the proto-neutron star
(PNS) is less obvious, but a closer analysis of
the waveforms in the time-frequency domain still
reveals systematic patterns. For example, the
high-frequency coomponent of the signal has
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been shown to originate from the deceleration
of downflows at the boundary of the gain re-
gion [6], which stochastically excites an ` = 2
surface g-mode. The typical frequency fg of the
GW signal traces that of the g-mode, and can
be related [7] to the PNS mass M and radius R,
to the electron antineutrino mean energy hE⌫̄ei,
and to the nucleon mass mn as

f
g

⇡ 1

2⇡

GM

R2

r
1.1

mn

hE⌫̄ei

✓
1� GM

Rc2

◆
. (1)

In 3D [9], this relation still holds, although the
excitation of surface oscillations from the gain
region is less e�cient, and the excitation of by
PNS convection plays a relatively greater role.

4 Estimate of GW Amplitudes

The relation of the GW amplitudes to the vi-
olence of convection and SASI has only been
studied qualitatively so far. Here we sketch
a crude physical model that roughly explains
qualitative dependencies seen in simulations.

Using dimensional analysis, the GW ampli-
tude from oscillatory motions in the PNS sur-
face layer can be related to the potential energy
Eg stored in the ` = 2 surface g-mode [9]:

A = hD ⇠ G

c4

Z
�⇢

2

GM

r
dV ⇠ GEg

c4
. (2)

One can estimate Eg by relating the g-mode en-
ergy flux to the convective luminosity in the ad-
jacent region [11] and assuming that excitation
is coherent over one convective overturn time-
scale, which results in Eg ⇠ ↵MaE

conv

in terms
of the kinetic energy in convection E

conv

, the
convective Mach number Ma, and an additional
factor ↵ . 1 quantifying the overlap of the forc-
ing with the spatial dependence and frequency
of the ` = 2 mode visible in GWs.

For excitation by convection in the gain re-
gion, we can estimate the maximum amplitude
A

max

around shock revival by expressing E
conv

in terms of the mass M
gain

of the gain region
and the typical convective velocity. By using
c
s

= (GM/3r
sh

)1/2 [12], (where r
sh

is the shock
radius) and relating the mass in the gain region
to the explosion energy E

expl

via the nucleon
recombination energy ✏

rec

[13], we obtain

A
max

⇠ G

c4
↵
E

expl

✏
rec

GM

3r
sh

Ma3 ⇠ 9 cm⇥↵⇥
✓

E
expl

1051 erg

◆

(3)

for typical values of Ma2 = 0.3 [12] and r
sh

⇡
200 km at shock revival. This estimate is close
to the GW amplitudes from the 3D models of
[9] for ↵ . 1 and qualitatively reproduces the
trend towards stronger GW signals from more
energetic explosions in 2D models [7].

For the excitation of oscillation modes by
PNS convection, we can estimate E

conv

by equat-
ing the convective luminosity and the di↵usive
core neutrino luminosity L

core

. This leads to

E
conv

⇠ L2/3
core

�R2/3�M1/3 in terms of the mass
�M ⇡ 1M� and width�R ⇡ 10 km of the PNS
convection zone during the pre-explosion phase.
With typical values of L

core

= 1053 erg s�1 and
Ma = 0.05, we obtain A ⇠ 1 cm ⇥ ↵, again
roughly in line with [9]. Since L

core

, �R, and
�M do not vary strongly across progenitors,
one expects smaller variations than for g-mode
excitation by convection in the gain region.
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Abstract

The DPG methodology with its attractive prop-
erties of uniform mesh independent stability,
automatic adaptivity and parallelizability is stud-
ied in the context of wave propagation in optical
fibers. In this application, we are interested in
pulse propagation and laser amplification. Both
these tasks present mathematical and numerical
challenges: stability of the variational formula-
tion, interaction with heating e↵ects and trans-
verse mode instability. We show how the DPG
methodology o↵ers an e↵ective solution strat-
egy to address these issues.

Keywords: Discontinuous Petrov-Galerkin method,
electromagnetic waves, fiber optics

Introduction

Accurate modeling of wave propagation in non-
linear media is an important task in a variety
of application areas including nonlinear optics,
nonlinear elastic wave propagation and femtosec-
ond laser spectroscopy. Our interest will be
in modeling electromagnetic pulse propagation
and laser amplification in optical fibers. These
two applications are governed by the same set of
Maxwell equations, but have di↵erent modelling
ansatzs that account for di↵erent optical phe-
nomena of interest. We briefly highlight both
models.

Pulse Propagation via Schrödinger Equation

Nonlinear, dispersive Maxwell equations in the
context of optical fibers have been studied ex-
tensively in the past [1]. Early approaches to
the analysis of the dispersive, intensity-dependent
nonlinearities in the model were based on sev-
eral simplifying approximations. These approx-
imations include: a slowly varying pulse enve-
lope, the optical field being quasi-monochromatic
and maintaining a specific polarization along
the fiber length, and the nonlinear terms being
a perturbation of the purely linear case. With
these assumptions, the full Maxwell equations

Figure 1: Plots of two di↵erent solutions

Figure 2: Convergence rate curves

were reduced to a nonlinear Schrödinger (NLS)
type equation in the variable A, a complexified
amplitude [1]:

i

@A

@z

� �

2

@

2

A

@T

2

+ �|A|2A = 0, (1)

where T is an observation window (time), z

is the propagation direction, and �, � are ma-
terial constants. Applying the DPG method
to the above equation is non-trivial: as shown
in [2], any reasonable first order reformulation
of (1) results in an L

2 unstable variational for-
mulation. This is overcome by developing a
generalized boundary operator and proving L

2

stability of the resulting 2nd order variational
formulation. In addition, non-standard energy
spaces call for an operator-specific approxima-
bility theorem to guarantee convergence with
optimal rates. Our theoretical results in this
analysis are corroborated by numerical studies
(shown in figures 1 and 2).
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Transverse Mode Instability

Consider the coupled set of Maxwell equations
with no free charges:

r⇥ E = �@B
@t ,

r⇥H = @D
@t + J,

r · E = 0,

r ·H = 0,

As usual, upon eliminating the magnetic field
H, we get the following curl� curl equation for
the electric field E:

r⇥r⇥ E =
�1

c

2

@

2

@t

2

E� µ

0

@

2

@t

2

P.

We assume the following model for the polar-
ization vector P(E):

P(E) = P
background

(E) + P
gain

(E) + P
thermal

(E).

The background polarization can then be writ-
ten as:

P
background

(E) = ✏

0

(n2

e↵

� I)E,

where ✏

0

is the free space dielectric constant,
n
e↵

is the e↵ective refractive index tensor, and
I is the identity tensor. The gain polarization
is:

P
gain

(E) =
�i✏

0

n
e↵

c

!s
g E.

where !s is the source frequency, c is the speed
of light, and g is the population gain function.
Finally, the thermal polarization is given as:

P
thermal

(E) = 2✏
0

(�n)n
e↵

E.

Here, we define the thermally perturbed refrac-
tive index �n := n

⇥

✓(x, y, z, t), where n

⇥

is
the experimentally calculated thermo-optic co-
e�cient for silica (a uniform material constant)
and the variable ✓ satisfies the following heat
equation:

@✓
@t = thermal

⇢0Cfiber
�✓ +Q(E),

✓(|r| = r

0

) = 0.

Here, the Dirichlet condition ✓(|r| = r

0

) = 0
is applied on the radial boundary

p
x

2 + y

2 =
|r| = r

0

of the fiber. Also, C
fiber

= C

fiber

(x, y, z)
is the specific heat capacity of the material, ⇢

0

is
the background material density and 

thermal

=



thermal

(x, y, z) is the thermal conductivity of
the material. The heat source Q(x, y, z, t) is
a function that depends nonlinearly on E as
r(|E|2) · nz and nz is the unit normal in the
+z direction.

Our final electromagnetic equation is thus:

r⇥r⇥E = (
!

2

s

c

2

n2

e↵

+
2

c

@g

@t

n
e↵

�i

!s

c

gn
e↵

+2(�n)
!

2

s

c

2

n
e↵

)E.

Given that the electromagnetic phenomenon hap-
pens at a much smaller time scale than the heat-
ing e↵ects, we assume a time-harmonic relation
for the electric field:

E(x, y, z, t) = E
0

(x, y, z) · e�!st
,

where the beam propagates with frequency !s,
the signal (seed) frequency. Our solution scheme
is as follows. We have a coupled system with
three di↵erent time-scales: The time-harmonic
Maxwell (time scale in nanoseconds), the time-
independent population gain (time scale in mi-
croseconds) and the time dependent heat equa-
tion (time scale in milliseconds).

The primal DPG method is used with an im-
plicit Euler time-stepping scheme for the heat
equation (with E dependent load) under radial
Dirichlet conditions. The population gain is an
algebraic update. The time harmonic Maxwell
system is then solved with the ultraweak DPG
formulation (e↵ective in high-frequency wave prop-
agation problems) with polarization values ob-
tained from the previous heat equation solution.
We iterate the process updating the relevant
quantities until convergence. The time step is
chosen corresponding to the largest time scale of
the coupled system, i.e., the heat equation, and
is updated with h/hp adaptive refinements. The
use of DPG adaptivity for the heat/Maxwell
systems along with the guaranteed discrete sta-
bility of the ultraweak/primal formulations is
critical for a numerically stable and tractable
method which allows us to e↵ectively simulate
the TMI phenomenon.
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Abstract

This paper deals with the efficient numerical
simulation of time-harmonic scattering and res-
onance problems in open systems, which exhibit
wavenumbers on different scales. One exam-
ple are waves for which the geometry causes a
dispersion effect, i.e. waves can propagate with
different speed levels. In order to overcome the
performance issues of standard non-modal meth-
ods, we present a two scale variant of the Hardy
space method. It allows to optimize the method
to two different wavenumbers on different scales.

Keywords: resonance problems, Hardy space
infinite element method, Wood’s anomaly

Introduction

For given frequency ω > 0 let u be a radiating
solution to the scalar Helmoltz equation

−∆u− ω2u = 0 (1)

on a cylindrical waveguide Ω := R+ × Υ with
a bounded cross-section Υ ⊂ Rd. Than u is a
superposition of the waveguide modes

un(x, y) := exp(iκn(ω)x)ϕn(y), (x, y) ∈ Ω, (2)

with wavenumbers κn(ω) :=
√
ω2 − λn. (λn,ϕn)

are the eigenpairs of −∆ on Υ. In the vicinity
of a so-called cut-off frequency ωn0

:=
√

λn0

(also referred to as Wood’s anomaly), there ex-
ist wavenubers on highly different scales, i.e.
|κn0

(ω)| ≪ |κn(ω)|, n ̸= n0. This leads to per-
formance issues for non-modal methods like the
perfectly matched layer or the Hardy space in-
finite element method, since they are typically
adjusted to one specific wavenumber.

PML convergence results

For a linear complex scaling x̂(x) := σx with
σ ∈ C and ℑ(σ) > 0 in longitudinal direction
of the waveguide, the complex scaled functions
ûn(x, y) := un(x̂(x), y) decay exponentially for
ω ̸=

√
λn. Therefore, the unbounded wave-

guide is typically truncated to a bounded layer
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Figure 1: Level sets of gs0,s1 for s0 = −2 + 2i
(green dot) and s1 = s0/10 (red square) with
corresponding Γ := {s : gs0,s1(s) = 1} (green
line). The blue diamonds are the poles iκn(ω)
of Un for ω = 6.285 and λn := (nπ)2

of thickness L leading to a truncation error of
the form | exp(iσκn(ω)L)| (see [1,2]). Neverthe-
less, in the vicinity of cut-off frequencies this
exponential convergence degenerates due to a
very small wavenumber κn0

. In [3] a hybrid per-
fectly matched layer/modal based method was
proposed for these cases. However, this hybrid
method cannot be applied easily to resonance
problems, where ω is the sought resonance.

HSM convergence results

In [2, 4] the Hardy space method is presented
and analyzed for scattering and resonance prob-
lems in scalar waveguides. The method relies
on a Laplace transform in longitudinal direction
leading to meromorphic functions

Un(s, y) := L{un(·, y)}(s) =
ϕn(y)

s− iκn(ω)
, s ∈ C.

(3)
See Fig. 1 for a location of the poles iκn for a
ω > 0 in the vicinity of a cut-off frequency.

There are two complex parameters s0, s1 ∈
C in the two scale Hardy space method. In some
sense, the method can be related to a complex
scaling method where two linear complex scal-
ings with σj = 1/sj are used simultaneously.
The discretization error of the method with re-
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Figure 2: Discretization error with respect to
δω > 0 corresponding to frequencies ω =

√
λ2+

δω for N = 60, s0 = −2 + 2i and s1 = cs0 with
varying constants c.

spect to the number of unknowns N in longitu-
dinal direction is bounded by

gs0,s1(iκn(ω))
N , n ∈ N, (4)

with gs0,s1(s) :=
∣

∣

∣

s−s0
s+s0

s−s1
s+s1

∣

∣

∣
, s ∈ C.

If ω > 0 with ω ̸=
√
λn, ℜ(s0) < 0, ℑ(s0) >

0 and s1 ∈ s0R, than gs0,s1(iκn(ω)) < 1 for
all n ∈ N and the Hardy space method con-
verges exponentially up to an arbitrary small
threshold. Fig. 1 indicates, that a scaling of
the parameters s0 and s1 with respect to the
wavenumbers improves the convergence rate con-
siderably.

Numerical experiments

For the first numerical test we use a given refer-
ence solution consisting of 7 waveguide modes
U :=

∑

6

n=0
cnUn with some cn ∈ C. Fig. 2

shows, that the optimal parameter choice for s1
is related to the magnitude of the wavenumber
κ2(ω) ≈

√
λ2

√
δω for small δω. Note, that there

exists for scattering problems an extremely ef-
ficient version of the Hardy space method (la-
beled in Fig. 2 with ’special’) using an implicit
mode matching for the critical waveguide mode.
Unfortunately, this version cannot be used for
resonance problems.

But the two scale HSM can be used for reso-
nance problems and leads to linear Matrix eigen-
value problems. So for the second numerical
test we solve two resonance problems with res-
onances near 2π =

√
λ2. In Figures 3 and 4

the absolute value of a resonance functions for
two slightly different domains are given. On
the curved left part, on top and at the bottom
of the domain we have used homogeneous Neu-
mann boundary conditions. On the right the
two scale HSM is used with fixed s0 and dif-
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Figure 3: Resonance function (left) and corre-
sponding discretization error (right) for a reso-
nance ω with |ω − 2π| ≈ 10−2 w.r.t. to N for
s0 = −2 + 2i and s1 = cs0 with varying con-
stants c.

0 20 40 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

1

0.5

0.1

0.05

0.01

0.005

0.001

Figure 4: As in Fig. 3 with |ω − 2π| ≈ 10−4

ferent s1 and number of longitudinal unknowns
N . The optimal values of s1 correspond almost
exactly to the values indicated by Fig. 2 for the
scattering problem. With decreasing distance
of ω to

√
λ2 the HSM with smaller values for

c becomes more and more efficient and outper-
forms the standard HSM and a standard linear
PML substantially.
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Abstract

In this paper, we first represent the non-linear
Hasegawa-Mima Partial Di↵erential Equations
(PDE’s) as a coupled two linear Elliptic-Hyperbolic
system of PDE’s. We then apply the Petrov-
Galerkin method to obtain a sequence of fixed-
point approximate solutions that converge weakly
to a solution of the Hasegawa-Mima problem
that is simulated using a Finite Element method.

Keywords: Plasma Confinement, Drift Waves,
Hasegawa-Mima, Periodic Sobolev Spaces, Petrov-
Galerkin approximations

1 Introduction

Magnetic plasma confinement is one of the most
promising ways in future energy production. To
understand the phenomena related to energy
production through plasma confinement, sev-
eral mathematical models can be found in liter-
ature (see [1–3]), of which the simplest and pow-
erful 2D turbulent system model is the Hasegawa-
Mima equation, which describes the time evo-
lution of drift waves. Although it was originally
derived by Akira Hasegawa and Kunioki Mima
in [2], it can be extended [4, 5] and put as

��u
t

+ u
t

= {u,�u}+ ku
y

(1)

where {u, v} = u
x

v
y

�u
y

v
x

is the Poisson bracket,
u(x, y, t) describes the electrostatic fluctuations,
k = @

x

ln n0
!ci

is a constant depending on the
background particle density n0 and the ion cy-
clotron frequency !

ci

, which in turn depends on
the initial magnetic field

2 The Formulation

Let a square domain ⌦ = (0, L)2 with boundary
� = @⌦, a function u0 2 H2(⌦), and a temporal
bound T > 0 be given. We consider the follow-
ing Hasegawa-Mima problem: seek u : ⌦̄⇥ [0, T ] �! R2

such that
8
><

>:

��u
t

+ u
t

= {u,�u}+ ku
y

on ⌦⇥ (0, T )

PBCs on u and ~⌫ ·ru on �⇥ (0, T )

u(x, y, 0) = u0(x, y) on ⌦̄

(2)

where ~⌫ is a unit outward pointing normal vec-
tor to � and PBC stands for periodic boundary
conditions. Since handling the non-linearity of
the Poisson bracket is both theoretically and
computationally expensive, we formulate (2) as
a coupled system of linear equations as follows.
Let w = ��u + u, then the PDE of (2) can
be put in the form of the following Elliptic-
Hyperbolic coupled system problem: Seek {u,w} :
⌦̄⇥ [0, T ] �! R2 such that:
8
>>>><

>>>>:

��u+ u = w on ⌦⇥ (0, T )

w
t

+ ~V (u) ·rw = ku
y

on ⌦⇥ (0, T )

PBCs on u and ~⌫ ·ru on �⇥ (0, T )

u(x, y, 0) = u0(x, y) on ⌦̄

(3)

where ~V (u) = h�u
y

, u
x

i is a divergence-free vec-
tor field. We begin with an existence result for
the first PDE in (3) on Periodic Sobolev Spaces
H1

P

(⌦), using the Petrov-Galerkin method, af-
ter which we formulate the system (3) as a se-
quence of fixed-point problems and obtain ap-
proximate solutions using the Hilbert basis {�

i

}1
i=1

ofH1
P

(⌦) of eigenvectors of the (periodic) Lapla-
cian operator with increasing eigenvalues �

i

> 0
and E

N

= span {�1,�2, · · · ,�N

} theN -dimensional
subspace of H1

P

(⌦).

3 Results

• We construct a sequence {u
N

, w
N

} that
converges weakly to a weak solution {u,w}
of (3).

• Based on this approach, we implement a
numerical simulation based on Finite-element
space semi-discretization of (3) followed
by a semi-implicit Crank-Nicolson semi-
discretization.
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Abstract

We address the problem of constructing high-
order implicit schemes for wave equations. We
considered two classes of one-step schemes adapted
to linear Ordinary Di↵erential Equations, one
based upon Padé approximant of exponential,
other one requiring the inversion of a unique lin-
ear system such as SDIRK (Singly Diagonally
Implicit Runge Kutta) schemes.

Keywords: forward problem, implicit time in-
tegration, Runge-Kutta schemes, Padé schemes

Construction of diagonal Padé schemes

Let us consider the following linear ODE:

y

0(t) = Ay(t) + F (t), t 2 (0, T ] (1)

where A is a given matrix, coming from spatial
discretization, and F the term source. After
each step �t = t

n+1� t

n

the analytical solution
to (1) reads

y(tn+1) = e�tA
y(tn) +

Z �t

0
e�uA

F (n�t+ u)du

!

(2)

The diagonal Padé approximant [1] of the ex-
ponential function ez is a rational function

R

m

(z) =
P

m

(z)

Q

m

(z)
, z 2 C,

where P

m

(z) =
P

m

i=0

m! (2m� i)!

(2m)! i! (m� i)!
(z)i and

Q

m

(z) = P

m

(�z). R

m

is the stability function
and the stability region is defined as

S = {z 2 C such that |R
m

(z)|  1}.

R

m

satisfies the A-stability condition which re-
quires that S � C� = {z 2 C, Re(z)  0} [2].

Herein, we assume that Q
m

(�tA)�1 is well
defined. Solution (2) can then be written as

Q

m

(�tA)y(t
n+1) = P

m

(�tA)y(t
n

) + �, (3)

where

� = Pm(�tA)

Z �t

0

e�uAF (n�t+ u) du+O(�t2m+1).

(4)

By using the Taylor expansion of y(t
n

) and y(t
n+1)

around t

n

+ �t

2 in (3) we obtain the approxima-
tion �

n

of �:

�

n

=
mX

r=1

A

r�1�t

r

2m�rX

i=0

!

r

i

F (t
n

+�t c

i

)

where c

i

are quadrature points and !r

i

are the
weights. We then end up with the following
numerical scheme:

Q

m

(�tA)y
n+1 = P

m

(�tA)y
n

+ �

n

. (5)

The obtained scheme is the diagonal Padé scheme
of order 2m. It is implicit and A-stable. Its sta-
bility function is the same as that of the Gauss-
Runge-Kutta (Gauss RK) schemes [1]. How-
ever, Gauss RK schemes which are used also to
solve non-linear ODE, are too expensive in prac-
tice. The Padé schemes presented here can be
seen as a simplification of Gauss RK schemes
in the case of linear ODE. In fact with these
diagonal Padé schemes we need to solve m/2
complex linear system if m is even, (m � 1)/2
complex and one real linear system if m is odd.

Numerical dispersion and dissipation

To study the dispersion and dissipation prop-
erties of the scheme, we consider the following
linear test equation

y

0(t) = i�y(t), y(t0) = y0 and � 2 R,

which analytical solution is approximated by

y(t
n+1) = eizy(t

n

) ⇡ R

m

(iz)y
n

= y

n+1.

The dispersion and dissipation errors can be
measured by considering the ratio between eiz

and R

m

(iz). We then define the dissipation
error as  (z) = |R

m

(iz)| � 1 and the disper-
sion error as �(z) = z � arg[R

m

(iz)]. Since
|P

m

(iz)| = |Q
m

(iz)|, the diagonal Padé schemes
are not dissipative:  (z) = 0. Furthermore,
we show in Figure 1 the relative dispersion er-
rors, for m = 1, . . . , 5, which is much smaller
with high-order schemes. We choose z/m in the
x-axis because m represents the computational
complexity of the schemes.
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Figure 1: Relative dispersion error

E�ciency in terms of computational time

We consider the acoustic wave equation
8
>>>>><

>>>>>:

⇢ @

t

u� div v = 0, 8(x, t) 2 ⌦⇥ R+

µ

�1
@

t

v �ru = 0, 8(x, t) 2 ⌦⇥ R+

u = f

D

, x 2 �
D

µ@

n

u = f

N

, x 2 �
N

(6)

Equation (6) is solved in 1-D with ⇢ = µ = 1 in
⌦ = [0, 500] using the finite element solver Mon-
tjoie. We choose [0, 1000] for the time interval.
We used Dirichlet condition on the left

u(x = 0, t) = e

�i!t exp �1

2

✓
t� T

⌧

◆2
!
.

where

! = 2⇡, ⌧ =
20

2
p
2 log 2

, T = 100

and a homogeneous Neumann condition is set
on the right extremity. The analytical solution
reads

u(x, t) = e

i!(x�t) exp �1

2

✓
t� T � x

⌧

◆2
!
.

Since Padé schemes can be used only for lin-
ear ODE, their comparison with classical SDIRK
[1] which solve also non-linear ODE may not be
fair. So, to get a comparable scheme, we con-
sider the case:

R

l

s

(z) =
N(z)

(1 + �z)s+l

, s 2 N, l 2 N. (7)

The numerator N(z) and � are computed such
that R

l

s

satisfies the A-stability condition and

represents an approximation of order s+1 to the
exponential function. The obtained schemes are
new and we called them Linear-SDIRK schemes
(LSs� l) since they share the same property as
SDIRK.

In Figure 2 we show the convergence curves
of Linear-SDIRK and Padé schemes of order 6.
We choose �t/m to take into account the com-
plexity of each scheme (m = s+ l for LSs� l).
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Figure 2: Convergence curves at t = 200

In Table 1, we present the computational times
needed for Linear-SDIRK and Padé schemes to
reach 1% of relative L

2 error computed at t =
1000 between the numerical solution and the
analytical solution. The results show that the
Padé schemes are more e�cient than the Linear-
SDIRK schemes. The obtained results in 1-D

Padé Pade4 Pade6 Pade8
Nb time step 33333 8360 3875
Times 1mn36 37s 24s
Linear-SDIRK LS3�1 LS5�2 LS7�3
Nb time step 25960 7355 3700
Times 1mn48 53s 38s

Table 1: Computational time after imposing 1% of
relative errors at t = 1000.

and 2-D confirmed the e�ciency of Padé schemes.
The next step is to combine Padé schemes with
optimized high-order explicit schemes we are
developing to construct locally implicit schemes.
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Abstract

This paper focuses on finding the electromag-
netic (EM) field and the time-averaged Poynt-
ing vector produced after a time harmonic EM
plane wave of an arbitrary fixed (linear) polar-
ization is incident on an infinite perfect electric
conducting (PEC) wedge. The aim is to find out
how the polarization of this incident EM wave
impacts the solution to di↵raction by perfectly
conducting wedges.
We use the z invariance of the scatterer and
the PEC boundary conditions to rewrite the
EM field governed by Maxwell’s equations in
terms of two uncoupled scalar potentials or De-
bye potentials. These potentials will be func-
tions of an arbitrary polarization angle and re-
spectively solve the acoustic (or scalar) wedge
problem with Dirichlet or Neumann boundary
conditions.

Keywords: Electromagnetic Wave Di↵rac-

tion, PEC Wedge, Arbitrary Linear Po-

larization, Debye Potential, Sommerfeld-

Malyuzhinets Technique

1 Introduction

The focus of this paper is the di↵raction of a
time harmonic EM plane wave of any polariza-
tion by a PEC infinite wedge. To solve this, we
follow techniques in [5], [4] and [9] to rewrite
the EM field for Maxwell’s equations in terms
of two uncoupled scalar potentials called the De-
bye potentials. These potentials will both solve
the scalar infinite wedge problem with perfect
boundary conditions, i.e. Dirichlet or Neumann
boundary conditions. We find these scalar solu-
tions by the Sommerfeld-Malyuzhinet technique
outlined in [1]. We check the scalar wedge so-
lutions by comparing with results and plots ob-
tained in [1] and [3]. The most comparable pa-
per is [6] which studies an inhomogeneous (or
evanescent) EM plane wave of arbitrary polar-
ization di↵racted by a PEC wedge at skew in-
cidence expanding on a simpler problem in [7].

Introduced in 1909 by P. Debye in [2], Debye
potentials have mostly been used for problems
involving conical or spherical domains, for ex-
ample [10] and [8]. These same methods can
also be applied to wedge problems.

2 Formulation

Let the region exterior to the wedge be �⇡ <
�✓w < ✓ < ✓w < ⇡, where ✓ = ±✓w are the
wedge faces. The incident wave is a time-harmonic
EM plane wave with time factor e�i!t, wavenum-
ber k, amplitude A, polarization angle ↵ and
incident angle ✓ = ✓I . The governing equa-
tions are Maxwell’s equations. We assume that
the domain is linear, isotropic, homogeneous
and source free so that the electric permittivity
✏ and the magnetic permeability µ can be as-
sumed to be constant scalars. The electric and
magnetic phasors, E and H, are defined from
the electric and magnetic intensity, Ê and Ĥ,
by,

Ê = Re

⇢
Ee�i!t

p
✏

�
, Ĥ = Re

⇢
He�i!t

p
µ

�
. (1)

Noting that the wave speed is c = !
k = 1p

✏µ ,

Maxwell’s equations can be rewritten in terms
of the two phasors,

r⇥H + ikE = 0, r · E = 0,

r⇥ E � ikH = 0, r ·H = 0. (2)

The PEC boundary conditions are,

E ⇥ n|✓=±✓w = 0, (3)

H · n|✓=±✓w = 0, (4)

where n is the unit normal to the wedge faces,

n|✓=±✓w = ±e✓. (5)

These boundary conditions imply that the elec-
tric field has no tangential component on the
wedge faces and that both the magnetic field
and the Poynting vector,

Ŝ = Ê ⇥ Ĥ, (6)
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have no normal component on the wedge faces.
We also define the time-averaged Poynting vec-
tor in terms of the phasors as,

S =
1

2
c<{E ⇥H⇤}. (7)

3 The Electromagnetic Field

The EM field satisfying (2)-(4) can be written
in terms of an electric and a magnetic vector
potential which are both independent of z and
fixed in the z direction requiring us to construct
two scalar potentials. These two scalar poten-
tials are proportional to the total field solutions
to the acoustic wedge problem with Dirichlet
and Neumann boundary conditions, denoted �(D)

and �(N) respectively. This EM field is,

E =

0

B@
� sin(↵)

ikr
@
@✓�

(N)

sin(↵)
ik

@
@r�

(N)

cos(↵)�(D)

1

CA , (8)

H =

0

B@

cos(↵)
ikr

@
@✓�

(D)

� cos(↵)
ik

@
@r�

(D)

sin(↵)�(N)

1

CA . (9)

where ↵ is the polarization angle and denotes
the angle that the incident electric field makes
with the z-axis. �(D) and �(N), obtained from
[1], in integral form are,

�(D) =
A
2⇡i

Z

�++��

� cos(�✓I)e�ikr cos(ẑ)

sin(�(✓ + ẑ))� sin(�✓I)
dẑ

(10)

�(N) =
A
2⇡i

Z

�++��

� cos(�(✓ + ẑ))e�ikr cos(ẑ)

sin(�(✓ + ẑ))� sin(�✓I)
dẑ

(11)

where � = ⇡
2✓w

and �
+

, �� are the usual Som-
merfeld contours.

4 Conclusion

The EM field can be approximated as kr ! 1
for a high frequency or far-field approximation.
This is used to determine E ·H and S. We find
that the problem is E-polarized if ↵ = 0 or ⇡
and is H-polarized if ↵ = ±⇡

2

. In both cases the
total EM field is orthogonal and the Poynting
vector is confined to the x-y plane. If ↵ is not
equal to a multiple of ⇡

2

then the total EM field
is not orthogonal and the Poynting vector is not
confined to the x-y plane.
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Abstract

We investigate a sampling method to recover
the support of a local perturbation in a periodic
layer from measurements of scattered waves at
a fixed frequency without knowledge of the ge-
ometry of the periodic background media. We
analyze the method in a simplified case where
the infinite domain is truncated using periodic
boundary conditions (which would correspond
with the semi-discretized version of the contin-
uous model with respect to the Floquet-Bloch
(FB) variable [2]). As a data for the inverse
problem, (propagative and evanescent) plane waves
are used to illuminate the structure and mea-
surements of the scattered wave at a parallel
plane to the periodicity directions are performed.
We introduce the near field operator and the
near field operator associated with single FB-
mode measurements then exploit them to built
an indicator function of the defect. Numeri-
cal validating results are provided for synthetic
data in dimension 2.

Keywords: Inverse scattering, locally perturbed
period layer, sampling methods

1 The direct problem

Let L > 0 and M be a positive number, M > 1.
For simplicity, we present the problem only in
R2 but the results remain valid in dimension
3. In what follows periodicity is understood to
hold only with respect to the first space coordi-
nate. We consider the ML�periodic Helmhlotz
equation for which the total field u is anML�periodic
(with respect to the first variable) function and
satisfies

�u+ k2nu = 0 in R2 (1)

where the wavenumber k is positive and real
valued. We assume that the index of refraction
n 2 L1(R2) has a non negative imaginary part
and is ML�periodic. Moreover, we assume in
addition that n = n

p

outside a compact domain
⌦ where n

p

2 L1(R2) is L-periodic and there
exists h > 0 such that n = 1 for |x

d

| > h.
We denote by D := supp(n � 1) (respectively

D
p

:= supp(n
p

�1)) such that D = D
p

[⌦. Let
ui be an ML�periodic incident wave satisfying
�ui+k2nui = 0 in R2. Then the scattered wave
us := u� ui is ML�periodic, verifies

�us + k2nus = �k2(n� 1)ui in R2 (2)

and is assumed to satisfy the Rayleigh radiation
condition

us =
X

`2Z
bus,±(`)ei↵#(`)·x+i�#(`)(xd⌥h), 8±x2 � h

where ↵#(`) := 2⇡`
ML

, �#(`) :=
p
k2 � ↵#(`)2

with non negative imaginary part, {bus,±(`)}
`2Z

are the Rayleigh sequences at x
d

= ±h and h >
0 is such that D ⇢ {|x2|  h}.

Assumption 1 We assume that n and k are

such that for all ui 2 L2(D), problem (2)-(1)
has a unique solution us 2 H1(|x2|  h, |x1| 
ML) for all h > 0.

2 The inversion algorithm

The main goal is to build an indicator function
for ⌦ without reconstructing D or D

p

. We use
incident plane waves defined as

ui(x; j) =
�i

2�#(j)
ei↵#(j)x+ i�#(j)(xd�h), j 2 Z.

We then consider the near field operator N :
`2(Z) ! `2(Z) defined by

[Na]
`

=
X

j2Z
a(j)bus,+(`, j), 8 a = {a(j)}

j2Z 2 `2(Z)

where bus,+(·, j) are the Rayleigh coe�cients as-
sociated with the scattered field generated by
the incident field ui(.; j).

We shall also consider a single FB near field
operator. We remark that an ML�periodic
function has decomposition into the sum of M
quasi-periodic functions with period L and quasi-
periodicity factors ↵

q

:= 2⇡q/(ML), with q =
0, · · · ,M � 1. This can be seen by arranging
the Fourier coe�cients modulo M so that

u = 1
M

P
M�1
q=0 u

q
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where u
q

has a Fourier expansion only on q+Mj
Fourier modes. Let a 2 `2(Z), we define for
q = 0, · · · ,M � 1, the element a

q

2 `2(Z) by
a
q

(j) = a(q + Mj). We then define the oper-
ator I

q

: `2(Z) ! `2(Z) which transforms a to
ã such that ã

q

= a and ã
q

0 = 0 if q 6= q0.
We then remark that the dual of I

q

, I⇤
q

a = a
q

.
The single FB near field operator is defined as
N

q

= I⇤
q

NI
q

. The justification of the sampling
method introduced below relies on the solvabil-
ity of the so-called interior transmission prob-

lem defined as: Seek (u, v) 2 L2(D) ⇥ L2(D)
such that u� v 2 H2

0 (D) and

8
>><

>>:

�u+ k2nu = 0 in D,

�v + k2v = 0 in D,

u� v = ' on @D,

@(u� v)/@⌫ = on @D,

(3)

for given (', ) 2 H3/2(@D)⇥H1/2(@D) where
⌫ denotes the outward normal on @D. In the
following q is a fixed number between 0 andM�
1. We assume that R2 \D is connected, ⌦ does
not intersect D

p

and ⌦ lies within a period of
size L. Moreover, we recall that M should be
greater than 1 meaning in particular that there
exists one period of size L that does not contain
⌦.

Our algorithm uses the farmework of the
Generalized Linear Sampling Method [1, 3] to
built an indicator function for identifying the
domain ⌦ (we also provide indicator functions
for D and D

p

). We introduce two functionals
J
↵

(�, ·) and J
↵,q

(�, ·) : `2(Z) ! R defined by

J
↵

(�, a) := ↵(N
]

a, a) + kNa� �k2,

J
↵,q

(�, a) := ↵(N
]

I
q

a, I
q

a) + kI⇤
q

NI
q

a� �k2

where N
]

:= |<N |+ |=N |. Let us denote by �z

and �z
q

the Rayleigh sequences of respectively
�(·, z) and �

q

(·, z), which are respectively to
the ML�periodic and ↵

q

-quasiperiodic funda-
mental solutions of �v + k2v = ��

z

satisfying
the Rayleigh radiation condition. We then con-
sider a↵,z, a↵,z

q

and ã↵,z
q

in `2(Z) verifying

J
↵

(�z, a↵,z)  inf
a2`2(Z)

J
↵

(�z; a) + c(↵)

J
↵

(�z
q

, a↵,z
q

)  inf
a2`2(Z)

J
↵

(�z
q

; a) + c(↵)

J
↵,q

(I⇤
q

�z
q

, ã↵,z)  inf
a2`2(Z)

J
↵,q

(I⇤
q

�z
q

; a) + c(↵)

with c(↵)/↵! 0 when ↵! 0. We introduce

I
↵

(z) = (N
]

a↵,z, a↵,z)

✓
1 +

(N]a
↵,z

,a

↵,z)
D(a↵,z

q ,ã

↵,z
q )

◆

where for a and b in `2(Z)

D(a, b) =
�
N

]

(a� I
q

b), (a� I
q

b)
�
.

Theorem 2 Assume that Assumption 1 holds,

that (3) defines a well posed problem and that

<(n) � 1 or 1 � <(n) is positive definite in a

neighborhood of @D. Then,

• z 2 D i↵ lim
↵!0(N

]

a↵,z, a↵,z) < 1

• z 2 D
p

i↵ lim
↵!0(N

]

a↵,z
q

, a↵,z
q

) < 1

• z 2 ⌦ i↵ lim
↵!0 I↵(z) < 1.

3 A numerical example

We here present a numerical example that shows
how one can reconstruct ⌦ even though the re-
construction of D is not accurate. The param-
eters setting is:
k = ⇡/3.14, n

p

= 2 in
D

p

, and n = 4 in ⌦; set
� = 2⇡/k and choose
L = 2⇡. Index of in-
cident waves: Z

inc

:=
{j = q + M`, 0  q 
M�1,�N

min

 N
max

}
with N

min

= N
max

= 5.
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Figure 1: Reconstruction of D (left) and recon-
struction ⌦ (right).
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Abstract

We develop an e�cient and accurate numeri-
cal method for the computation of linear waves
scattered by random rough surfaces. The method
is based upon a combination of the Transformed
Field Expansion method, which represents the
solution as a provably convergent power series,
and the Monte Carlo technique for sampling
the probability space. The compelling aspect
of the proposed method is that, at each pertur-
bation order and every sample, the governing
Transformed Field Expansion equations share
the same deterministic Helmholtz operator on
a deterministic domain. Thus, an LU factoriza-
tion of the matrix discretization of this single
operator can be employed repeatedly for every
perturbation order and every random sample.
The computational complexity of the whole al-
gorithm is significantly reduced as a result.

Keywords: Grating scattering; Linear Waves;
High–Order Spectral Methods; Transformed Field
Expansions; Monte Carlo Simulation.

1 Introduction

The scattering of linear waves from random rough
surfaces has long been a subject of interest due
to its significant applications in seismology, re-
mote sensing, oceanography, and surface plas-
monics to name just a few. The simplest ap-
proach is to use the Monte Carlo (MC) method
where a set of numerical solutions are obtained
for independent identically distributed (i.i.d.)
sample surface profiles which are subsequently
utilized to calculate the statistics of the scat-
tered waves [2]. An alternative approach is to
transform the scattering problem on a random
domain into a stochastic problem on a deter-
ministic domain, which is then solved with ei-
ther Monte Carlo simulations [1] or stochas-
tic Galerkin methods [3]. Both of these meth-
ods become computationally intractable when a
large number of degrees of freedom is required

for the spatial discretization.
We propose an e�cient Monte Carlo Trans-

formed Field Expansion (MC–TFE) method for
the simulation of electromagnetic wave scatter-
ing by random rough surfaces. To be more pre-
cise, our algorithm begins with the TFE ap-
proach: A change of variables which flattens the
problem domain, followed by expansion of the
scattered field in a Taylor series. This generates
a Helmholtz problem at every perturbation or-
der with deterministic coe�cients and random
sources posed on a deterministic domain. We
then employ at Monte Carlo method to sam-
ple the relevant probability space and compute
statistics.

An important observation is that for every
perturbation order and every surface realiza-
tion, the same deterministic Helmholtz opera-
tor must be inverted. For this we apply a High–
Order Spectral Legendre–Galerkin method, and
the resulting discretization matrix is factored
(e.g., by the LU factorization algorithm) and
stored. In this way we can e�ciently solve at
every perturbation order and every sample with
simple forward and backward substitutions, thereby
significantly reducing the computational cost.

2 The Model

We consider the simplified problem of scalar
linear waves propagating in two dimensional,
constant–density layers, scattered by a random
periodic interface shaped by y = g(!;x), g(!;x+
d) = g(!;x), where ! is the random sample
and (x, y) are the spatial variables. As we have
a perturbative method in mind we let g = "f

(where initially " ⌧ 1), and we assume that f

is a stationary process with a continuous and
bounded covariance function c(x� y).

2.1 Governing Equations

The well–known time–harmonic governing equa-
tions for the reflected, v+(!;x, y), and transmit-
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ted, v�(!;x, y), fields generated by plane–wave
incidence vi(x, y) = exp(ik+(sin(✓)x�cos(✓)y)),
can be stated generically as

L[v±] = 0, in S

±
g

, (1a)

B[v±] = Q[vi], at @S±
g

, (1b)

posed on the truncated domains

S

+
g

:= {g < y < a}, S

�
g

:= {�a < y < g}.

The operator L contains Helmholtz operators,
while the boundary operator B incorporates not
only the transmission conditions at the layer in-
terface (continuity of the total field and its nor-
mal derivative), but also transparent boundary
conditions using DtN maps at y = ±a.

To model the stationary random surface we
appeal to the Karhunen–Loéve expansion. If
the covariance operatorK'(x) :=

R
d

0 c(x�s)'(s) ds,
has singular values �

j

and eigenfunctions '
j

(x)
the Karhunen–Loéve expansion of f(!;x) is given
by f(!;x) = f̄(x)+

P1
j=1

p
�

j

⇠

j

(!)'
j

(x), where

f̄ is deterministic while the ⇠

j

are i.i.d. Gaus-
sian random variables with zero mean and unit
variance.

2.2 The MC–TFE Method

The Transformed Field Expansions (TFE) method
was devised by the author and Reitich to over-
come severe cancellations in classical High–Order
Perturbation of Surfaces algorithms applied to
(1). In brief, a domain flattening change of vari-
ables, e.g., in {g < y < a},

x

0 = x, y

0 = a(y � g)/(a� g),

is a↵ected which transforms (1) into

L0[u±] = F 0(u±, g), in S

±
0 ,

B0[u±] = Q0[ui] +R0(u±, g) at S±
0 .

for transformed fields, u±, on “trivial” domains.
The right–hand–sides F 0 and R0 are O(g)

so that, upon setting g = "f and expanding u

±

in a Taylor series in ", one realizes a linear, con-
stant coe�cient Helmholtz equation with known
source for each correction u

±
n

:

L0[u±
n

] = F 0
n

(u±
n�1, . . . , f),

B0[u±
n

] = Q0[ui
n

] +R0
n

(u±
n�1, . . . , f).

It is this last observation which reveals the strength
of our new approach: Once a single solver for in-
verting the di↵erential operator L0 and bound-
ary conditions B0 is constructed, it can be re–
used not only for every perturbation order, but
also for every realization in a Monte Carlo sim-
ulation, greatly reducing the cost of the algo-
rithm.

3 Preliminary Results

Using this computational strategy we can com-
pute statistics of quantities of interest, e.g., the
reflectivity, R (the sum of the e�ciencies in the
upper layer), which we display in Figure 1 for
a selection of incidence angles ✓ between 0 and
60 degrees for four values of ".

θ (Degree)
0 10 20 30 40 50 60

R

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ε = 0.2
ε = 0.4
ε = 0.6
ε = 0.8

Figure 1: Mean reflectivity for ✓ 2 [0, 60o] and
" = 0.2, 0.4, 0.6, 0.8.
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Abstract

Well-posed variational formulations for resonant
time-harmonic Maxwell’s equations are an im-
portant matter as they are convenient for fi-
nite element methods and they help understand
the resonant heating in tokamaks. Still, the
limit of the viscous system when ⌫ ! 0 is ill-
posed and the di�culty is that the solution has
singularities of type 1

x

. We consider the cold
plasma model to study the influence of a radio-
frequency (RF) electromagnetic wave sent in a
tokamak plasma for heating purpose. Combin-
ing the vanishing viscosity principle with some
well defined manufactured solution leads to a
well-posed variational formulation of the equa-
tions in the case of a normal incidence heating
wave.

Keywords: Maxwell’s equations, hybrid reso-
nance, resonant heating, singular solutions, man-
ufactured solutions, finite element method

1 Propagation of a RF heating wave

We consider that the electromagnetic phenom-
ena related to the RF heating wave are described
by the linear current Maxwell equations com-
bined with the Newton law for the electrons
8
<

:

� 1
c

2@tE+r^B = µ0J
@
t

B+r^E = 0
J = �q

e

N
e

ue

m
e

N
e

(@
t

ue + ue ·rue) = �qeNe

(E+ ue ^B).

A viscous term m
e

N
e

⌫ue in the source term of
the Newton law can be considered. We then
want to pass to the limit ⌫ # 0 as ⌫ shall be of
order 10�7 in ITER. Considering the bulk mag-
netic field is much more intense than the one
associated to the RF heating, after the Fourier
transform @

t

 �i!, and introducing B⌫ =
r^E⌫ , the viscous system rewrites at the first
order

r^B⌫ �
⇣!
c

⌘2
✏⌫ E⌫ = 0

with ✏⌫ = ✏+ i⌫I, ✏ being the hermitian tensor
of the plasma. The plasma is supposed uniform

in the y and z directions, so ✏ = ✏(x) and is of
the form

⇣!
c

⌘2
✏ =

0

@
↵ i� 0
�i� ↵ 0
0 0 �

1

A with

8
<

:

↵(0) = 0
↵0(0) 6= 0
�, � > 0

.

We also consider that the electric component of
the RF wave is a plane wave E(x) = e exp(ik·x)
with k = (k

x

, 0, k
z

), so that we can consider
the problem for r = (@

x

, 0, ik
z

) and functions
(E⌫ ,B⌫) depending only on x 2 ⌦ = [�1, 1].
The solution to this regularized problem has
been studied in [2], and the x component of
the electric field E⌫ admits a singular part com-
posed of a principal value of 1

↵

and of a Dirac
mass. Introducing some manufactured solutions
which verify the symmetrized system

(
r^C⌫ �

⇣!
c

⌘2
(✏⌫)tF⌫ = g⌫

C⌫ = r^ F⌫ + q⌫

and such that F ⌫

x

admits a similar singularity
as E⌫

x

, we observe that for ' 2 C1
0(⌦)

Z

⌦
(E⌫^C⌫�F⌫^B⌫)

��
x

'0 =

Z

⌦
(E⌫ ·g⌫�B⌫ ·q⌫)'.

The goal is now to build such fields so that we
will be able to pass to the limit and therefore
obtain information on (E,B) that could com-
plete the ill-posed variational formulation

Find (e
y

, b
z

) 2 L2(⌦)⇥ L2(⌦) such that⇢ R
⌦(ey'

0
1 + b

z

'1) = 0, 8'1 2 H1
0 (⌦)R

⌦(bz'
0
2 + e

y

( �
2

↵

� ↵)'2) = 0, 8'2 2 H1
0,0(⌦)

and
b
z

(±1)⌥ i�e
y

(±1) = f±.

With H1
0,0(⌦) the space

�
v 2 H1

0 (⌦), v(0) = 0 .

2 Normal incidence case: numerical sim-
ulations

We first consider the case k
z

= 0, which allows
us to separate the study of E

z

(O-mode) of the
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study of the other components (X-mode) since
r ^ r ^ E = (0,�E00

y

, E00
z

). For any ' 2 C1
0(⌦)

such that '(0) 6= 0, the well-posedness of the
formulation

Find (e
y

, b
z

) 2 L2(⌦)⇥ L2(⌦) such that8
<

:

R
⌦(ey'

0
1 + b

z

'1) = 0, 8'1 2 H1
0 (⌦)R

⌦(bz'
0
2 + e

y

( �
2

↵

� ↵)'2) = 0, 8'2 2 H1
0,0(⌦)R

⌦

�
b
z

(F+
y

'0 � q+
z

') + e
y

(g+
y

'� C+
z

'0)
�
= 0,

and
b
z

(±1)⌥ i�e
y

(±1) = f±.

for any � > 0 and (f�, f+) 2 C2 has been estab-
lished in [3]. And the solution to this problem
has been shown to be the same as the vanishing
viscosity limit solution for ⌫ > 0.
A finite element method discretization enforc-
ing the boundary conditions in the equations
leads to a linear system AX = B of dimen-
sion 4N +1 for 2N +1 equidistant nodes in the
domain [�1, 1] to solve. The mass matrix A is
composed of two band matrix blocks, and of one
line corresponding to the integral relation and
compensating the fact that the second equation
is verified for test functions that do not vanish
at 0. This method leads to e�cient numerical

Figure 1: FEM with manufactured solutions
(above) and with a friction regularizing term
(below) for 13 nodes on the Whittaker test case.

schemes compared to methods involving a small

regularizing friction term, see Figure 1.
Another result from the analysis made in [3] is
the identification of the singular parts of the
fields in function of the manufactured solutions
(E,B) = k(F+,C+)+(E

r

,B
r

) with the regular
part (E

r

,B
r

) 2 H1
v(0)=0(⌦) ⇥ H1(⌦). A finite

element method discretization leads to similar
results as the ones of the previous method.
These results prove the utility of a well posed
variational formulation on the limit of the (E⌫ ,B⌫)
fields.

3 Oblique incidence case

Now if k
z

is not necessarily 0, the major di↵er-
ence is that the z component of the electric field
is no more decoupled from the x and y compo-
nents. This is called mode coupling in plasma
physics. The singularity of E

x

might have a
greater influence on the system as the equation
on E⌫

z

now writes

E⌫

z

00 + �E⌫

z

= ik
z

E⌫

x

0

with E⌫

x

expected to be as singular as 1
x

. How-
ever we will show that the manufactured func-
tions method can be modified to fit this prob-
lem. These results shall be illustrated by nu-
merical simulations.
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Abstract

A numerical method for eigenvalue computa-
tions in periodic boundary value problems for
Helmholtz’ equation in 3D with the boundary
element method (BEM) and the Sakurai-Sugiura
method (SSM) is proposed. The SSM is one
of numerical methods for non-linear eigenvalue
problems. This method obtains eigenvalues in-
side a fixed contour in the complex plane by cal-
culating an integral along the contour. In this
paper, we extend integral operators in the BEM
to complex phase factor in order to calculate
the contour integral. With this calculation, we
develop an eigenvalue analysis for Helmholtz’
equation in 3D with the BEM and the SSM.

Keywords: BEM, Sakurai-Sugiura method, con-
tour integral method, eigenvalue analysis

1 Introduction

We consider eigenvalue analyses of problems in
which waves are scattered by a periodic array
of scatterers. Eigenvalues of these problems are
called Wood’s anomalies (also called Rayleigh’s
anomalies). One of the promising numerical
methods for analysing Wood’s anomaly is the
combination of the boundary element method(BEM)
and the Sakurai-Sugiura method (SSM) [1, 2].
Although eigenvalue problems formulated with
the BEMs result in non-linear eigenvalue prob-
lems, the SSM can solve non-linear eigenvalue
problems e�ciently.

The combination of the BEM and the SSM
has been applied to periodic boundary value
problems in 2D [3] and non-periodic problems
in 3D [4]. In this paper, we develop a numer-
ical method of analysis for periodic boundary
value problems for Helmholtz’ equation in 3D
with the BEM and the SS method.

2 Formulation

We deal with periodic boundary value prob-
lems for Helmholtz’ equation in 3D. The unit
domain (�1,1)⇥ (�L/2, L/2)⇥ (�L/2, L/2)
is denoted by D. For simplicity, we consider a

single scatterer whose domain D2 is simply con-
nected and finite. The exterior domainD1 is de-
fined by D1 = D\D2 and the surface between
D1 and D2 is denoted by �. We consider the
wave scattering problems for Helmholtz’ equa-
tion: find a function u satisfying Helmholtz’
equation �u + k

2
i

u = 0 in each domain D

i

,
boundary conditions

u := u

i

= u

j

, q :=
1

"

i

@u

i

@n

=
1

"

j

@u

j

@n

on � and periodic conditions

u(x1, L/2, x3) = ei�2
u(x1,�L/2, x3),

u(x1, x2, L/2) = ei�3
u(x1, x2,�L/2),

@u

@x2
(x1, L/2, x3) = ei�2

@u

@x2
(x1,�L/2, x3),

@u

@x3
(x1, x2, L/2) = ei�3

@u

@x3
(x1, x2,�L/2),

where u
i

is the limit value of u from domain D

i

to @D

i

, k
i

is the wave number in D

i

, �
j

(j =
2, 3) is the phase factor along x

j

directions, "
i

is a constant defined in each subdomain D

i

and
n is the normal vector defined on @D

i

and the
direction of n is fixed. We also assume that
the scattered wave u

s = u � u

inc satisfies the
radiation condition in D1.

One of boundary integral equations corre-
sponding to this problem is written as follows:
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is the periodic Green function defined by
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(x� y) =
X

⇠2L
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(x� y � ⇠) (3)
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where L is the lattice points defined by L =
{(0, ⇠2, ⇠3)|⇠2 = pL, ⇠3 = qL, p, q 2 Z}, � =
(0,�2,�3) andG

i

is the Green function of Helmholtz’
equation with the wave number k

i

. (1) and (2)
are known as the PMCHWT formulations.

By an appropriate discretisation method, e.g.
Galerkin’s method, the integral equations in (1)
and (2) can be reduced to a linear equation
A(�2)x = b where A(�2) is a given matrix, x is
an unknown vector and b is a given vector. We
use the notation A(�2) in order to emphasize
that the coe�cient matrix A depends on the
phase factor �2 while �3 is fixed. In this paper,
we consider an eigenvalue problem as follows;
find �2 such that A(�2)x = 0 has a non-trivial
solution.

3 Eigenvalue analysis

The non-linear eigenvalue problem defined in
the previous section can be solved with the SSM.
This method finds eigenvalues inside a fixed con-
tour C in the complex plane by reducing the
non-linear eigenvalue problem to a generalised
eigenvalue problem [1].

For applying the SSM to the integral equa-
tions in (1) and (2), we have to calculate A(�2)
along the contour C. The periodic Green func-
tion in (3), however, cannot be calculated as is
for complex �2 since the summation in (3) di-
verges if �2 has a imaginary part. This problem
is solved by the Fourier analysis for calculating
the lattice sums in the periodic fast multipole
method. We found that this technique gives the
analytic continuation of (3) with respect to �2

though this technique was first proposed for ac-
celerating the calculation of (3) [5].

4 Numerical results

We consider spherical scatterers arranged peri-
odically along x2 and x3 directions with period
L = 1. The radius of each sphere is 0.35. We
first solve the periodic boundary value problem
with these scatterers for several �2 and observe
the behaviour of the solution. Figure 1 shows
the absolute values of the solution u at x ⇡
(0.097,�0.157, 0.298). In this figure, the abso-
lute value of the solution u diverges at �2 ⇡ 3.00
and it implies that an eigenvalue of this problem
is expected to be around this point. According
to this result, we apply the SSM with the con-
tour C = {z|z = 3 + 0.05ei✓, 0  ✓ < 2⇡} and
obtain one eigenvalue (3.004,�4.156⇥ 10�6) in
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Figure 1: The absolute value of the solution u

at x ⇡ (0.097,�0.157, 0.298).

this contour as is expected in Figure1.

5 Conclusion

We developed a numerical method of eigenvalue
analysis for periodic boundary value problems
with the BEM and the SSM.
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Abstract

Boundary Integral Equations (BIEs) for scatter-
ing problems are usually designed not to have
real fictitious eigenvalues. However, they may
still have complex fictitious eigenvalues with small
imaginary parts which may cause inaccurate so-
lutions. This paper discusses the performances
of BIEs for transmission problems based on the
distributions of complex fictitious eigenvalues.
Numerical examples suggest that a properly for-
mulated Single Integral Equation (SIE) has fic-
titious eigenvalues with larger imaginary parts
and are more accurate than other BIEs tested.

Keywords: transmission problems, single in-
tegral equations, fictitious eigenvalues

1 BIEs and fictitious eigenvalues

Fictitious eigenvalues of a BIE for wave prob-
lems are the frequencies !’s at which the BIE
is irregular although the original problem has
a unique solution. BIEs are usually designed
not to have real valued fictitious eigenvalues,
although they may have complex ones. In [1],
we have proposed a simple method to distin-
guish true and fictitious complex eigenvalues in
transmission problems. Also, we have presented
numerical examples in [1] which indicate that
BIEs may have almost real fictitious eigenval-
ues, which may result in inaccuracies of the so-
lutions. These results motivate us to find desir-
able BIEs for transmission problems whose fic-
titious eigenvalues have large imaginary parts.

We first formulate transmission problems gov-
erned by the Helmholtz’ equation in 2D with
e�i!t time dependence. The scatterer is denoted
by ⌦2 2 R2 whose boundary is � = @⌦2 and
whose exterior domain is ⌦1 = R2 \ ⌦2. Our
problem is to find u which satisfies �u+ k2

i

u =
0 in ⌦

i

(i = 1, 2) subject to boundary conditions

u+ = u� (= u), 1
✏1

@u

+

@n

= 1
✏2

@u

�

@n

(= q) on � and

outgoing radiation condition for usca = u�uinc.
In this statement, ✏

i

is a constant (✏
i

> 0) in
⌦
i

, k
i

is the wavenumber given by k
i

= !
p
✏
i

,
the superscript + (�) stands for the trace to

the boundary from ⌦1 (⌦2), @/@n stands for
the normal derivative (the normal is directed
towards ⌦1) and uinc is the incident wave, re-
spectively. True eigenvalues for this problem
are defined as those ! 2 C at which the homo-
geneous problem has non-trivial solutions.

To solve this problem, we consider the fol-
lowing boundary integral equations:

✓
↵��

2 I � (↵D1 + �D2)
�(�N1 + �N2)

(↵✏1S1 + �✏2S2)
�✏1��✏2

2 I + (�✏1D0
1 + �✏2D

0
2)

◆✓
u
q

◆
= b

(1)

where I is the identity, b is the incident wave
term, S

i

and D
i

(i = 1, 2) stand for single and
double layer potentials and D0

i

and N
i

repre-
sents their normal derivatives, respectively. The
kernel functions G

i

(i = 1, 2) for S
i

are given by

G1(x, y) = (i/4)H(1)
0 (k1|x� y|) and G2(x, y) =

(�i/4)H(2)
0 (k2|x�y|) whereH(m)

n

stands for the
n-th Hankel function of m-th kind. With this
non-standard choice of kernel functions one can
distinguish true and fictitious eigenvalues easily
because the true (fictitious) ones appear in the
lower (upper) half of the complex plane (see [1]).

The constants (↵,�, �, �) in (1) are chosen
either (1, 1, 1/✏1, 1/✏2) or (1/✏1,�1/✏2, 1,�1) or
(✏1,�✏2, 1,�1). We call the equations thus ob-
tained as PMCHWT, Müller 1 and Müller 2,
respectively. The complex fictitious eigenval-
ues of the PMCHWT and Müller formulations
are those of certain transmission problems [1]
and those of Müller 2 and PMCHWT are identi-
cal. Also, it is known that complex eigenvalues
of some transmission problems may have very
small imaginary parts. Therefore, the fictitious
eigenvalues of (1) may have very small imagi-
nary parts which results in inaccurate BIE so-
lutions for real frequencies if ! is close to one of
fictitious eigenvalues.

We next consider the following Single Inte-
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gral Equation (SIE) proposed in section 5 of [2]:

✏2S2

✓
1

✏1
M1µ

◆
�

✓
I

2
+D2

◆
L1µ

=
1

2
uinc +D2u

inc � ✏2S2

✓
1

✏1

@uinc

@n

◆
. (2)

where µ is the unknown density function, a, b
are constants and L1,M1 are defined as follows:

L1µ = aS1µ+ b

✓
I

2
+D1

◆
µ

M1µ = a

✓
�I

2
+D0

1

◆
µ+ bN1µ.

The SIE is a promising candidate for our desir-
able BIEs, because its fictitious eigenvalues are
not those of the transmission problems. Indeed,
one can show that fictitious eigenvalues of (2)
are those of the exterior Dirichlet problem with
incoming radiation condition, and those of the
interior impedance problem with the boundary
condition given by av� + b@v�/@n = 0. We
can adjust the constants a, b so that the lat-
ter eigenvalues have su�ciently large imaginary
parts. In this paper, we choose a = 1, b = �i/k1
because this choice is expected to separate fic-
titious eigenvalues farther from real axis than
other choices [3]. Note that Im(a/b) > 0 holds,
thus ensuring that the related fictitious eigen-
values have positive imaginary parts. The ex-
terior Dirichlet eigenvalues also have positive
imaginary parts because of the choice for G2.
Finally, we note that the operator of the SIE in
(2) is a compact perturbation of a non-zero con-
stant, hence the corresponding discretized equa-
tion converges fast with iterative solvers.

2 Numerical examples

We consider a single circular scatterer with the
radius of 1.0 for ⌦2, in which case we can calcu-
late eigenvalues and solutions analytically. We
set ✏1 = 4, ✏2 = 1. The upper figure of Fig. 1
shows the eigenvalues. (See [1] for the numerical
method to obtain them.) We see that fictitious
eigenvalues of the SIE have larger imaginary
parts than those of the PMCHWT and Müller
formulations. The middle three figures show the
averaged error of the solutions u and q vs (real)
relative to the exact solutions vs (real) !. We
see that the SIE is more accurate than other for-
mulations which become inaccurate at frequen-
cies near fictitious eigenvalues with small imag-
inary parts. We also see that the PMCHWT is

more accurate than the Müller 2 although their
eigenvalues are identical to each other. In ad-
dition, the SIE converges faster than other for-
mulations with GMRES (the lower of Fig. 1).
Acknowledgement: This work is supported
by JSPS KAKENHI Grant Number 14J03491.
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Figure 1: Eigenvalues of the BIEs (upper), error
of the BIEM solutions for uinc = eik1x2 relative
to the exact solutions (middle) and number of
iterations (lower) with GMRES.
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Dispersive  Quantization  of  Linear  and  Nonlinear  Waves
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Abstract

The evolution, through spatially periodic linear
dispersion, of rough initial data leads to sur-
prising quantized structures at rational times,
and fractal, non-di↵erentiable profiles at irra-
tional times. Similar phenomena have been ob-
served in optics and quantum mechanics, and
lead to intriguing connections with exponential
sums arising in number theory. Ramifications
and recent progress on the analysis, numerics,
and extensions to nonlinear wave models will be
discussed.

Keywords: Dispersive wave models, Talbot
e↵ect, fractal, quantized, optics, quantum me-
chanics, integrable system.

In the early 1990’s, Michael Berry and col-
laborators, [2–4], discovered a fascinating and
unexpected phenomenon that they named the
Talbot e↵ect after an experimental observation
of William Henry Fox Talbot, [24], the inventor
of the photographic negative. This remarkable
phenomenon was first observed in the funda-
mental equations of geometric optics and quan-
tum mechanics on periodic domains. Early ana-
lytical investigations can be found in [12,20,21].

Unaware of this work, in the course of writ-
ing my undergraduate text on partial di↵eren-
tial equations, [19], I posed the following
“elementary” exercise: find and graph the solu-
tion to the linearized Korteweg-deVries or
Airy equation

u

t

= u

xxx

, (1)

the “simplest” model of linearly dispersive
waves, with periodic boundary conditions on
[�⇡,⇡] and Riemann-problem-type initial data:

u(0, x) = �(x) =

⇢
1, 0 < x < ⇡,

0, �⇡ < x < 0.

Plotting the evident Fourier series solution

u(t, x) =
1

2
+
2

⇡

1X

j=0

sin
�
(2j + 1)x� (2j + 1)3t

�

2j + 1
,

(2)

at times uniformly spaced by �t = .1, pro-
duced surprising non-di↵erentiable, fractal-like
profiles, as plotted in Figure 1. Even more re-
markably, at times spaced by �t = ⇡/30 ⇡
.10472, the same solution has a piecewise con-
stant profile, as illustrated in Figure 2.

Indeed, it can be proved that, at “rational”
(relative to the length of the interval) times t =
⇡p/q, for p, q 2 N, the solution (2) is constant
on subintervals of length ⇡/q, [18], whereas, at
irrational times, it is a non-di↵erentiable frac-
tal function, [20], [8]. Di↵erentiation confirms
the remarkable result that, at rational times,
the fundamental solution to the periodic initial-
boundary value problem is a linear combination
of delta functions. Consequently, given any so-
lution u(t, x) to the initial value problem, its
value u(⇡p/q, x) at rational time t = ⇡p/q and
position x depends on only finitely many values
of the initial data! Berry and Klein, [3], use the
latter behavior to explain the phenomenon of
quantum revival, in which an initially concen-
trated wave function, representing, say, an elec-
tron in an atomic orbit, at first
spreads out but later relocalizes. Indeed, relo-
calization occurs at all rational times, the num-
ber of localization sites depending upon the size
of the denominator. Experimental confirma-
tions of the Talbot e↵ect in both optics and
atomic physics are described in [4].

As shown in [18], these same phenomenon
arise in all one-dimensional linear evolution
equations with integral polynomial (meaning a
constant multiple of a polynomial with all inte-
ger coe�cients) dispersion relation [18], includ-
ing the Airy equation (1) and the free space
linear Schrödinger equation iu

t

= u

xx

. In fact,
the Fourier series representation of the integra-
ted fundamental solutions of such dispersive
partial di↵erential equations are known asGauss
sums or, more generally, Weyl sums, of great
importance in modern number theory, [26]. In-
deed, one route to proving the celebrated
Riemann Hypothesis, initiated by Hardy and
Littlewood, [11], would be to establish the best

Plenary Lecture
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Figure 1: Fractal solution profiles to the Airy equation on a periodic domain at irrational times.
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Figure 2: Piecewise constant solution profiles to the Airy equation on a periodic domain at irrational
times.

conjectured estimates on such slowly convergent
Fourier series, although the modern consensus
is that this proof strategy is too di�cult to carry
out, and so the million dollar Clay Prize remains
out of reach.

Subsequent investigations, [6], revealed that
the dynamic evolution of linearly dispersive
waves on periodic domains with discontinuous
initial profiles is strongly dependent upon the
large wave number asymptotics of the disper-
sion relation. In particular, asymptotically lin-
ear or sublinear dispersion, such as that in the
Benjamin-Bona-Mahoney (BBM) equation, [1],
the regularized Boussinesq equation, [23], or the
full water wave problem, [27], eventually pro-
duces slowly changing waves, in which the so-
lution has assumed what looks like a slightly
fractal wave form superimposed over a slowly
oscillating ocean, similar to small scale ripples
on a swelling sea that moves up and down while
gradually changing form. If the dispersion rela-
tion is superlinear but subquadratic, the waves

start out oscillatory, eventually becoming frac-
tal, having an overall unidirectional motion while
small scale features vary rapidly and seemingly
chaotically. For dispersion relations exhibiting
polynomial asymptotics, such as the Schrö-
dinger, Korteweg–deVries, Benjamin–Ono, and
integrable Boussinesq equations, [9], we observe
dispersive quantization at rational times and
fractalization at irrational times. As above, if
the dispersion relation is exactly polynomial,
it can be rigorously proved that the solution
quantizes into piecewise constant profiles. In
the asymptotically polynomial case the quan-
tized profile is an unknown non-constant form
between jumps, in some case possibly with some
small fractalization superimposed (although this
may be a numerical artifact). Finally, if the dis-
persion relation is superquadratic but asymp-
totic to a non-integer power of k, only fractal
solution profiles are observed. Apart from the
case when the dispersion relation is polynomial,
all such results are currently based on numeri-
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Figure 3: Solution profiles to the Korteweg–deVries equation on a periodic domain.

cal observations through explicit summation of
the rather elementary, slowly decaying Fourier
series.

Further numerical experiments strongly in-
dicate that the dispersive quantization and
fractalization e↵ects persist into the nonlinear
regime, for both integrable and non-integrable
systems [6], including equations of both gener-
alized Korteweg–deVries and nonlinear Schrö-
dinger type. In Figure 3 we display samples of
our numerical calculations of the solution to the
periodic Korteweg–deVries equation with step
function initial data. Again, at irrational times
the solution appears to be a continuous frac-
tal, non-di↵erentiable function, whereas at ra-
tional times it is evidently quantized, although
the profiles between jumps are no longer con-
stant, and may include some fractal “foam”.
Our numerics are based on an elementary op-
erator splitting scheme combined with FFT for
both the linear and nonlinear components; a
convergence analysis, sadly not quite complete,
is outlined in [7]. Subsequently, Chousionis,
Erdoğan, and Tzirakis, [8,10], rigorously estab-
lished some of our numerical observations,
including estimates on the fractal dimension of
the solution graphs. Their proofs rely on
functional analytic Besov space estimates
combined with subtle number-theoretic cancel-

lations in the slowly convergent series.

Finally, let me remark on some well known
history. The revolutionary discovery of the soli-
ton was sparked by the original movie of Zabusky
and Kruskal, [28], that displayed a numerical
simulation of the solution to the periodic initial-
boundary value problem for the Korteweg–
deVries equation with small nonlinearity.
Indeed, in our numerical simulations in Figure
3, we used the same parameter values as in the
original Zabusky–Kruskal experiments. (In con-
trast, the celebrated studies of Lax, Levermore,
and Venakides, [14, 15, 25], are concerned with
the small dispersion regime and convergence to
shock wave solutions of the limiting nonlinear
transport equation.) Because Zabusky and
Kruskal’s selected initial data was a smoothly
varying cosine, no Talbot fractalization e↵ect
was observed. (And, technically, the elastically
interacting waves that emerge from the initial
cosine profile are not true solitons, in that these
only exist for the full line problem, but, rather,
cnoidal waves embedded in a hyperelliptic finite
gap solution to the periodic initial-boundary
value problem, [13,16].) It is fascinating to spec-
ulate how the history of solitons and integrable
systems might have di↵ered were Zabusky and
Kruskal to have chosen a discontinuous initial
profile instead!
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One evident consequence of these studies is
that, contrary to the conventional wisdom, when
dealing with nonlinear wave models on bounded
intervals, the principal source of analytic di�-
culty may be, counterintuitively, not the non-
linear terms, but rather the poorly understood
behavior of linearly dispersive partial di↵eren-
tial equations. Our investigations imply that
the qualitative behavior of the solution to the
periodic problem depends crucially on the large
wave number asymptotics of the dispersion rela-
tion, reinforcing Benjamin et. al.’s critique, [1],
that, for example, the Korteweg–deVries equa-
tion is an unsatisfactory model for surface waves
because its cubic dispersion relation e↵ectively
transmits the high frequency modes in the wrong
direction, with unboundedly negative phase ve-
locity and group velocity, inciting unphysical in-
teractions with other solution components. And
indeed, in the periodic problem, this shortcom-
ing is observed as the number-theoretic reso-
nant interaction of high frequency modes
spawned by the initial data serve to produce
a-physical fractalization and quantization e↵ects
in the engendered solution.

The elementary but surprising results de-
scribed in this presentation raise many more
questions than they answer. Beyond the ana-
lytical challenges of rigorously proving some of
our experimental observations, here are a few
possible directions for further research.

• We have concentrated on the periodic
boundary value problem for linearly dis-
persive wave equations. The behavior un-
der other boundary conditions, e.g.
u(t,�⇡) = u

x

(t,�⇡) = u(t,⇡) = 0 in the
case of the Airy equation, is not evident
because, unlike the Schrödinger equation,
these boundary value problems are not
naturally embedded in the periodic ver-
sion.

• Another important direction would be to
extend our analysis to dispersive equations
in higher space dimensions. With the ap-
propriate integrality hypothesis on the dis-
persion relation, the periodic problem on
a rectangle whose initial data is constant
on rational subrectangles will result in a
solution that is quantized at rational times
and fractalized at irrational times. An in-
teresting question is whether similar phe-

nomena arise on more general domains.
The case of dispersive waves on a sphere,
e.g. the earth, is particularly deserving of
further investigation. Other important ex-
amples include the integrable Kadomtsev–
Petviashvili (KP) and Davey–Stewartson
equations, [9], and a variety of non-inte-
grable three-dimensional surface wave mod-
els found, for example, in [5, 17].

• How does this subtle analytic behavior im-
pact numerical solution techniques? The
fact that di↵erent time steps (rational ver-
sus irrational) result in radically di↵erent
solution profiles indicates that the design
of numerical solution schemes that accu-
rately capture the phenomena will be a
significant challenge.

• As noted above, the Talbot e↵ect has been
experimentally observed in both optics and
atoms. Can one design experiments that
exhibit such behavior in other dispersive
media?
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Mikhail Osintcev1,⇤, Semyon Tsynkov1

1Department of Mathematics, North Carolina State University, Raleigh, USA
⇤Email: mishaosintsev@gmail.com

Abstract

We compare several approaches for handling the
artificial outer boundaries that can be imple-
mented with the standard FDTDmethod in 3D.
Our goal is to obtain the asymptotic estimates
of computational complexity for each class of
methods and corroborate those with numerical
results so as to show the advantages and disad-
vantages of the various methodologies.

Keywords: computational electromagnetics,
unbounded domains, numerical e�ciency.

1 Local artificial boundary conditions

There is a number of established artificial
boundary conditions (ABCs) for Maxwell’s
equations that are derived using asymptotic
considerations. The low-order ABCs (e.g.,
Sommerfeld, Higdon, Betz-Mittra, or Mur) are
widely used in FDTD methods since 1970’s [1].
These ABCs are easy to implement (indepen-
dently at each boundary node), but their ac-
curacy is not satisfactory in most cases. Fur-
thermore, these ABCs may su↵er from a dete-
rioration of performance in long-time computa-
tions [2]. The overall complexity is

C0(N) = N3a, (1)

where N is the grid dimension in one direction
and a = const depends on the implementation.

A number of more accurate local high-
order ABCs (e.g., Givoli-Neta or Hagstrom-
Warburton [3]) have also been proposed, but
in most cases the treatment of corners is dif-
ficult and no 3D implementation has been de-
scribed by the authors. The exception is the
recent development of double absorbing bound-
aries (DAB) by LaGrone and Hagstrom [4]. It
provides a nearly uniform theoretical accuracy
over long time intervals, yet in our experiments
we observed a rapid growth of the error for the
magnetic field when the solution was driven by a
non-solenoidal current. The algorithm of DAB
is rather sophisticated, but we assume that the

computational complexity can still be estimated
in the form similar to (1).

2 Perfectly matched layer

Another group of popular and e�cient ap-
proaches for truncating the unbounded regions
in EM simulations are perfectly matched layers
(PMLs). A PML is an absorbing layer that sur-
rounds the computational domain. The PML
and the computational domain are usually dis-
cretized on the same grid, hence the computa-
tional complexity of a FDTD/PML implemen-
tation is as follows:

CPML(N) = (1 + 2⌫)3N3a, ⌫ = P/N, (2)

where P is the number of nodes in the PML.
The value of ⌫ may be relatively small for large
grid dimensions N . The PMLs usually provide
a low level of spurious reflections and their im-
plementation is straightforward in FDTD. Yet
they may be prone to error growth in long-time
simulations [5, 6]. In particular, our computa-
tions show that the performance depends on the
type of the source (antenna current) that drives
the EM field. For solenoidal currents the solu-
tion with a PML is usually stable yet for non-
solenoidal currents it may deteriorate rapidly.

3 Lacunae-based time marching

The lacunae-based time marching can be used
to mitigate the long-time deterioration of the
PML [6, 7]. This approach is based on the fol-
lowing property of Maxwell’s equations in vac-
uum (the Huygens’ principle): provided that
the currents are compactly supported in both
space and time, the propagating electromag-
netic waves have sharp aft fronts. The orig-
inal problem is decomposed into a series of
partial subproblems driven by compactly sup-
ported partial currents. The latter are obtained
by a smooth partition of the original currents.
The computational complexity of this algorithm
is

CLac-PML =
(1 + 2⌫)3

(1� µ)
N3a, (3)
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where 0 < µ < 1 is the overlap between the con-
secutive partial currents. If the overlap is small,
then the computational complexity (3) tends to
(2). The original lacunae-based time march-
ing requires divergence-free sources [6]. Its ex-
tension based on quasi-lacunae [7] removes this
limitation yet keeps the asymptotic complexity
(3) unchanged. The most recent work [8] re-
duces quasi-lacunae to classical lacunae, which
improves the performance and enables the proof
of a temporally uniform error bound.

The lacunae-based time marching can also
be used as a standalone closure at the artifi-
cial outer boundary [9]. The idea is to take a
su�ciently large auxiliary domain beyond the
actual computational domain so that the re-
flections o↵ the outer boundary of this auxil-
iary domain won’t reach the computational do-
main by the time the latter falls into the lacuna.
This algorithm is considerably more expensive
than the lacunae-based algorithm with PML.
Its complexity is given by the same expression
(3) but with the quantity (1+2⌫)3 replaced with
a large constant, on the order of 150. The ad-
vantage of this algorithm, however, is that it
does not require any special treatment of the
artificial outer boundary per se. The outgoing
waves propagate into the auxiliary region and
then get canceled there once the main computa-
tional domain falls inside the lacuna. As such,
this algorithm is provably free from any error
associated with the domain truncation.

4 Computational results

We use our serial FORTRAN FDTD code to
compare the computational complexity of the
various boundary conditions numerically. Con-
sider a cubic domain with side l = 10 and the
propagation speed c = 1. Take a 100⇥100⇥100
grid for the FDTD scheme, with the spatial size
h = 0.1 and the time step �t = 0.03(3). We
compute on a 16-core Linux server, Intel Xeon
CPU E5-2698 v3 with 2.30 GHz. Table 1 shows
the time T for an update of one time step, the
value of a, and the maximum relative error " for
each ABC. Note that for more accurate ABCs
the value of " is dominated by the discretization
error rather than reflections. Finally, we include
the data for the original implementation of the
DAB [4], which is written in C++ and therefore
does not allow for a direct comparison.

ABC T (sec) a "
1 0.657 6.565⇥ 10�7 17.08⇥ 10�2

2 0.667 6.665⇥ 10�7 5.44⇥ 10�2

3 0.805 4.656⇥ 10�7 3.56⇥ 10�2

4 1.301 1.506⇥ 10�7 3.56⇥ 10�2

5 26.709 3.459⇥ 10�8 3.56⇥ 10�2

6 0.6669 8.551⇥ 10�7 3.56⇥ 10�2

Table 1: Comparison of the various boundary
conditions in a serial implementation. The ABC
types: 1 - Sommerfeld ABC, 2 - Higdon ABC,
3 - Uniaxial 10-point PML, 4 - Lacunae with
Uniaxial 10-points PML, 5 - Lacunae without
PML, 6 - DAB with 4 recursions.
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Using gravitational waves to understand the physics of neutron stars
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Abstract

Neutron stars are complicated objects, touch-
ing on all ten volumes of the famous Landau-
Lifschitz textbook series on theoretical physics.
They can emit several types of gravitational wave
signals, from ringdowns of normal modes lasting
a fraction of a second to continuous waves last-
ing longer than human civilization. I summarize
the possible signals and describe how they can
be used in the future to learn about the physics
of matter under the most extreme conditions in
the modern universe.

Keywords: Gravitational waves, astrophysics,
neutron stars

The first gravitational wave detections were
from binary black holes, but neutron stars have
more to tell us in the long run [1]. Neutron
star mergers can produce “chirps” like those
from black hole mergers, but longer and car-
rying more information. Single neutron stars
can also emit gravitational waves from the ring-
down of their fundamental modes, excited by
the same events that produce giant gamma-ray
flares. Single or binary neutron stars can pro-
duce continuous wave signals lasting thousands
of years. The latter two types of signals are only
possible with matter, and we can use all three to
probe the properties of the matter, which can-
not be reproduced under terrestrial conditions.

First the mergers, which are a safe bet to de-
tect in the next few years: Chirping means the
amplitude and frequency both rise with time,
entering the LIGO band at tens of Hz and end-
ing minutes later above a kHz, followed by an
exponentially damped sinusoid. The precise am-
plitude and frequency chirp rates are determined
for most of the signals’ duration by the evolu-
tion of the orbit, which is well approximated
by point particles moving in their mutual grav-
itational field. But in the later orbits and first
stages of the merger the frequency evolution is
slightly accelerated by the tidal deformability of
the neutron stars—their tides induce quadrupoles
on each other, which change their gravitational
fields [2]. Matched filtering is capable of picking
up this small acceleration (on top of the basic

chirp rate due to the masses) and determining
it via the response to filtering with waveform
templates of varying parameters.

As the stars merge, numerical simulations
show power spectra with peaks at a frequency
dependent on tidal deformability, and peaks at
two more characteristic frequencies related to
the mean densities of the stars and their rel-
ativistic compactness parameters (roughly the
Newtonian gravitational potentials at the stel-
lar surfaces) [3]. The compactness frequency
corresponds to the point at which the stars be-
gin to touch and hydrodynamical forces signifi-
cantly alter the point particle motion; and the
density-related frequency is related to f -mode
acoustic oscillations of the merged star. All
three frequencies can tell us about the equa-
tion of state of bulk matter at densities higher
than in atomic nuclei, and thus give insight into
a poorly constrained sector of nuclear physics.
The bad news is that it requires combining 100
events or so to get all this detail [4], so if neutron
star merger rates are low we may wait beyond
2020 for the whole picture.

Fundamental modes (f -modes) of neutron
stars have frequencies of a few kHz and damping
times of hundreds of ms [5]. The main damping
mechanism is gravitational radiation, in fact:
the large pressure and density oscillations are
extremely e↵ective at producing gravitational
waves rather than losing energy to viscous and
other damping mechanisms. The biggest exci-
tations of f -modes of single neutron stars likely
are associated with “giant gamma-ray flares,”
which are observed every few years in our galaxy
and nowadays thoroughly searched for gravita-
tional waves, mainly with time-frequency tech-
niques rather than matched filtering [6]. An f -
mode frequency is a good measurement of the
mean density of the star, not surprisingly since
the mode is a global acoustic wave. The damp-
ing time relates somewhat to the total mass of
the neutron star, although the connection is less
clean and robust.

Continuous gravitational waves are ampli-
tude and frequency modulated by the daily and
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yearly motions of the detectors as they move
with the Earth. Since these modulations de-
pend on the sky location of the signal source,
searches for such signals benefit from knowing
the location, for instance from radio observa-
tions. Conversely, detection of a new continu-
ous gravitational wave source will yield an accu-
rate sky location. These most sensitive of these
searches (for known targets) have been varia-
tions on the coherent integration techniques of
heterodyning and matched filtering; while all-
sky searches have used various semi-coherent
techniques to produce candidates for coherent
follow-up. The latter methods are necessary
due to the impossible computational costs of co-
herently searching years of data, the whole sky,
and wide frequency bands.

The amplitude of a continuous wave signal
will yield information on the source. Combined
with radio measurements of the distance, the
gravitational wave amplitude tells us the non-
axisymmetry of the neutron star, which in turn
tells us about the internal magnetic field or elas-
tic stresses in the star. For example, searches
without detections already have placed upper
limits on the internal magnetic fields of some
neutron stars [7]. An extremely strong signal
could provide evidence for a stellar composi-
tion including particles more exotic than neu-
trons [8].

The ratio of continuous gravitational wave
frequency to the star’s spin frequency (as indi-
cated by radio pulses) tells us about the emis-
sion mechanism. The ratio is expected to be 2,
possibly with some admixture of 1: This tells us
emission is from a static deformation of the neu-
tron star, and tells us how close the star’s rota-
tion axis is to a principal axis [9]. A ratio about
4/3 means the emission mechanism is rotational
modes or r-modes, whose mere existence could
reveal some complicated physics [10], and the
correction from 4/3 is a robust measurement of
the neutron star’s compactness [11].

References

[1] B. J. Owen, Probing Neutron Stars with
Gravitational Waves, in New Words, New
Horizons in Astronomy and Astrophysics,
a report on the Astro2010 Decadal Sur-
vey, National Academies Press, Washing-
ton, 2010.

[2] E. E. Flanagan and T. Hinderer, Con-

straining neutron star tidal Love numbers
with gravitational wave detectors, Physical
Review D 77 (2008), 021502.

[3] K. Takami, L. Rezzolla, and L. Baiotti,
Spectral Properties of the Post-merger
Gravitational-wave Signal from Binary
Neutron Stars, Physical Review D 91
(2015), 064001.

[4] M. Agathos et al., Constraining the Neu-
tron Star Equation of State with Gravi-
tational Wave Signals from Coalescing Bi-
nary Neutron Stars, Physical Review D 92
(2015), 023012.

[5] V. Ferrari and L. Gualtieri, Quasi-Normal
Modes and Gravitational Wave Astron-
omy, General Relativity and Gravitation
40 (2008), 945–970.

[6] J. Abadie et al., Search for Gravitational
Wave Bursts from Six Magnetars, Astro-
physical Journal Letters 734 (2011), L35–
L42.

[7] J. Aasi et al., Gravitational-waves from
Known Pulsars: Results from the Initial
Detector Era, Astrophysical Journal 785
(2014), 119–135.

[8] B. J. Owen, Maximum Elastic Deforma-
tions of Compact Stars with Exotic Equa-
tions of State, Physical Review Letters 95
(2005), 211101.

[9] D. I. Jones, Parameter Choices and
Ranges for Continuous Gravitational Wave
Searches for Steadily Spinning Neutron
Stars, Monthly Notices of the Royal Astro-
nomical Society 453 (2015), pp. 53–66.

[10] K. D. Kokkotas and K. Schwenzer, R-mode
astronomy, European Physical Journal A
52 (2016), 38.

[11] A. Idrisy, B. J. Owen, and D. I. Jones, R-
mode frequencies of slowly rotating rela-
tivistic neutron stars with realistic equa-
tions of state, Physical Review D 91
(2015), 024001.



WAVES 2017, Minneapolis

Spectral analysis of cavities partially filled with a negative-index material

Sandrine Paolantoni1,⇤, Christophe Hazard1

1POEMS, CNRS / ENSTA ParisTech / INRIA, Palaiseau, France
⇤Email: sandrine.paolantoni@ensta-paristech.fr

Abstract

The purpose of this talk is to investigate the
spectral e↵ects of an interface between a usual
dielectric and a negative-index material (NIM),
that is, a dispersive material whose electric per-
mittivity and magnetic permeability become neg-
ative in some frequency range. We consider here
an elementary situation, namely, 1) the sim-
plest existing model of NIM : the Drude model
(for which negativity occurs at low frequencies);
2) a two-dimensional scalar model derived from
the complete Maxwell’s equations; 3) the case
of a simple bounded cavity: a camembert-like
domain partially filled with a portion of non
dissipative Drude material. Because of the fre-
quency dispersion (the permittivity and perme-
ability depend on the frequency), the spectral
analysis of such a cavity is unusual since it yields
a nonlinear eigenvalue problem. Thanks to the
use of an additional unknown, we show how to
linearize the problem and we present a complete
description of the spectrum.

Keywords: Maxwell’s equations, metamateri-
als, spectral theory

1 Formulation of the problem

In [1], it is proved that the time-harmonic trans-
mission problem between a dielectric material
and a NIM may be ill-posed for particular ra-
tios of the refraction index across the interface.
On the one hand, for a smooth interface, this
occurs when this ratio is equal to �1. On the
other hand, when the interface contains a cor-
ner, this occurs for a whole interval of ratios,
which is related to a black hole e↵ect at the
corner. We propose here to study the spectral
counterpart of these properties.

We consider a circular cavity C of radius
R, divided into two angular sectors V and D
defined by an angle ✓1 2 (0,⇡), as shown in
figure 1. The domains V and D respectively
contain vacuum and a NIM described by a non
dissipative Drude model. This leads us to define
two functions "!(✓) and µ!(✓) of the polar angle

✓ 2 (�⇡,⇡] by

"!(✓)

"0
= 1� ⌦2

e

!2
�(✓) and

µ!(✓)

µ0
= 1� ⌦2

m

!2
�(✓),

where ⌦m and ⌦e are constants linked with the
NIM, and � is the indicator function of (�✓1, ✓1)
(so that "!(✓) = "0 and µ!(✓) = µ0 if |✓| > ✓1).

NIM
vacuum

�

⌃V

D✓1

Figure 1: The cavity

We consider the following eigenvalue prob-
lem : find ! 2 C and a nonzero ' 2 H1

0 (C) such
that

!2"!'+ div

✓
1

µ!
grad'

◆
= 0, (1)

which implicitly contains transmission conditions
at the interface ⌃ between V and D: the conti-
nuity of ' and µ�1

! @'/@n.
This problem is clearly non-linear (with re-

spect to !2). It can be linearized by using an
augmented formulation approach, which con-
sists in introducing a new unknown u, only de-
fined in D. We denote by R the operator of re-
striction to D of functions defined on the whole
cavity C and by ⇧ the operator of extension by
0 in V of functions defined in D. It is readily
seen that if !2 /2 {0,⌦2

m}, problem (1) is equiv-
alent to find (', u) 2 H1

0 (C)⇥ L2(D) such that

A

✓
'
u

◆
= !2

✓
'
u

◆
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with A =

✓
� 1

"0µ0
�+ ⌦2

e1D � 1
"0µ0

div⇧

⌦2
mRgrad ⌦2

m

◆
.

The implicit transmission conditions across ⌃
are now the continuity on ' and (grad'+⇧u).n.

Consider the Hilbert space H = L2(C) ⇥
L2(D)2. By defining the domain of operator A
byD(A) = {(', u) 2 H,' 2 H1

0 (C), div(grad'+
⇧u) 2 L2(C)}, we can show that A is self-
adjoint and non negative if we choose the inner
product

((', u), ('0, u0))H = "0µ0

Z

C
''0 +

1

⌦2
m

Z

D
u · u0.

Its spectrum thus belongs to R+.

2 The essential spectrum

Contrarily to the case of a cavity filled by a
usual dielectric (for which the spectrum is al-
ways purely discrete), the presence of the inter-
face of the Drude material is responsible for a
component of essential spectrum �ess(A).

Theorem 1 �ess(A) = {⌦2
m} [ {0} [ I where

I =
h
⌦2

m
2

⇣
1� |⇡�2✓1|

⇡

⌘
, ⌦

2
m
2

⇣
1 + |⇡�2✓1|

⇡

⌘i
.

Each point � = !2 of the essential spectrum
is characterized by the existence of a so-called
Weyl sequence, that is, a sequence ('n, un) 2
D(A) such that k('n, un)k = 1, (A��I)('n, un)
strongly tends to 0 in H and ('n, un) weakly
tends to 0. We will show how to construct such
Weyl sequences. Their construction depends on
the various parts of �ess(A) which are respec-
tively related to di↵erent phenomena.

First of all, ⌦2
m is an artifact of the aug-

mented formulation. Indeed, it is easily seen
that for any  2 H1

0 (D), the pair (0, curl2D( ))
is an eigenfunction of A associated with ⌦2

m,
which shows that ⌦2

m is an eigenvalue of infinite
multiplicity of A (any Hilbertian basis of the as-
sociated eigenspace is thus a Weyl sequence of
A).

The remainder of the essential spectrum is
related to various resonance phenomena.

The value !2 = 0 is linked with a bulk reso-

nance in the Drude material. Indeed, as !2"!µ!

tends to 1 as !2 ! 0, we can build a Weyl
sequence which represents low frequency oscil-
lations confined in D, that is, ('n, un) with
'n = 0 in V .

Then, !2 = ⌦2
m
2 is associated with a surface

resonance on the interface between V and D,
which occurs when the ratio µ!|V /µ!|D is equal
to �1. Indeed, we can construct a Weyl se-
quence which corresponds to highly oscillating
vibrations which are localized near any point of
⌃ di↵erent from the corner.

Finally, if ✓1 6= ⇡/2, then I \{⌦2
m/2} is non-

empty and any !2 in this set is associated with
a corner resonance related to the black hole ef-
fect highlighted in [2]. A possible Weyl sequence
represents a family of waves which propagate
towards the corner. As the distance from the
corner tends to 0, they become more and more
oscillating and their group velocity tends to 0,
so that their energy accumulates near the cor-
ner.

There is no other point in the essential spec-
trum of A. This follows from the fact that
if !2 /2 {0;⌦2

m} [ I, the operator A � !2I is
semi-Fredholm (that is, of closed range and fi-
nite dimensional kernel), which can be deduced
from [1]. The complementary part of the spec-
trum, that is, the discrete spectrum of A (com-
posed of isolated eigenvalues of finite multiplic-
ity), is thus located in R+\({0,⌦2

m}[I). These
eigenvalues accumulate at 1 (since A is un-
bounded) as well as at 0, since 0 belongs to
�ess(A) without being an eigenvalue of A.
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Abstract

High frequency imaging with optical, infrared
or microwave systems must be done with only
intensities because phases, or time resolved sig-
nals, cannot be recorded. Phase retrieval meth-
ods have been developed over a long time and
are flexible and e↵ective but depend on prior in-
formation about the image and can give uneven
results. When, however, multiple illuminations
of the object to be imaged are available then
it may be possible to recover the missing phase
information. I will present some recent results
that use multiple illuminations and I will dis-
cuss associated imaging methods, their resolu-
tion and their robustness. I will also present
the results of numerical simulations using these
methods in optical and microwave imaging.
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Abstract

The Discontinuous Galerkin in Time Domain
Method (DGTD) is one of the most promis-
ing methods to simulate multiscale phenomena.
It combines high order precision (p) with flex-
ible geometries (h) resulting in inhomogeneous
hp-approximation spaces. In a cartesian frame-
work we show that some parts of the numerical
scheme, namely heterogeneous flux terms, can
lead to an outburst of computational cost on
nonconforming meshes. A new scheme devoid
of this bottleneck and proved to be stable is
presented along with numerical results.

Keywords: Discontinuous Galerkin, noncon-
forming approximation, computational cost

1 Introduction

DGmethods build an approximate solution whi-
ch is piecewise polynomial (p) over the mesh
(h). It shows various attractive properties, es-
pecially flexibility to multiscale geometries, al-
lowing high precision modelling. However, DG-
TD solvers have performance bottlenecks which
limit its use for industrial purpose, compared to
Finite Di↵erence in Time Domain for instance.

One can notice that, in a hp-conforming con-
text, increasing correlatively the approximation
order and the mesh size is a powerful strategy
to reduce numerical cost. However, in complex
geometries, the presence of low-scale inner el-
ements can constrain the mesh, leading to hp-
nonconforming configurations (Fig. 1). As sho-
wn in the sequel, the latter create extra com-
putational costs, due to nonconforming fluxes,
which can invalidate the interest of hp�expans-
ion strategies.

We present here a new numerically e�cient
DGTD scheme based on lumped fluxes for non-
conforming cartesian grids. A stability result
is provided, as well as a numerical example on
electromagnetic wave propagation.

Figure 1: Usual h�
nonconforming mesh.
The front part is re-
fined to fit with a
drilled dielectric plate,
the back one is re-
laxed.

2 DG Scheme and Performance Issues

We consider 3D time-dependent Maxwell’s equa-
tions on a cavity ⌦, with metallic boundary con-
ditions on @⌦:

@
t

U +A(@)U = 0 in (0, T )⇥ ⌦,

B(n
b

)U = 0 in (0, T )⇥ @⌦,

U(0, ·) = U0 in ⌦,

where U = (E,H)T is the electromagnetic field,
A(@) : (E,H) 7! (�r^H,r^E)T the Maxwell
di↵erential operator, B(n

b

) : (E,H)T 7! (0,�n
b

^
E)T the boundary condition operator, n

b

the
unit outward normal, and U0 the initial data.
This problem is well-posed in U = C0

�
(0, T );

H
curl

(⌦)2
�
. Denoting by T

h

the mesh, F
int

and
F
bound

the sets of interior and boundary faces,
and U

hp

the approximation space of U, DG usual
variational formulation holds:

For all t 2 (0, T ), find
�
u(t, ·),�

�
2
�
Uhp

�
2

, such as:
X

K2T
h

"
h@tu,�iK| {z }

mass

+ hA(@)u,�iK| {z }
sti↵ness

+
X

f⇢@K
f2F

bound

hB(nb)u,�if| {z }
bound. flux

+

X

f⇢@K
f2F

int

⌦
JM(nf )uKf ,��↵

f
�
⌦
JM(�nf )uKf ,�+

↵
f| {z }

int. fluxes

#
= 0,

(1)

whereM(n
f

) = A(n
f

)��N(n
f

), is the flux ma-
trix accross a given face f with arbitrary unit
normal n

f

, A(n
f

) and N(n
f

) the centered and
upwind parts, and � 2 [0, 1] an upwinding pa-
rameter. �± stands for the trace of � on both
sides of f , J·K is the jump accross f and h·, ·i

K

is the usual L2(K)6 scalar product. Discretiza-
tion of (1) is led using Line-Based method [1]
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in space and Leapfrog integration in time. This
DGTD scheme uses Gauss-Lobatto basis func-
tions with a lumping method to compute mass,
sti↵ness and conforming flux terms. Table 1
shows the numerical costs for three di↵erent
configurations giving the same level of accuracy:

Config. CPU-time (w.r.t. Q1) Dofs (⇥103)

Q1 1.0 93
Q2 0.13 10

Q1/Q2 52 47

Table 1: Comput. costs on 123 mesh with Q1 func-

tions, 43 with Q2, and related Q1/Q2 hybrid config.

One can notice that CPU-time on hybrid
configuration (t) is about 50 times more impor-
tant than on the Q1 refined mesh (t

ref

), while

expected to be
tref

2  t  t
ref

. A cost tracking
led on this computation revealed this is due to
nonconforming fluxes involved in Q1/Q2 cou-
pling, computed with standard exact surface
quadratures. Thus, a new handling of these
terms is developped, so-called flux-lumping, to
recover a satisfactory level of performance.

3 The Flux-Lumped (FL) DG Approach

The idea is to consider the flux term across a
nonconforming surface S

nc

as one global quan-
tity, instead of several local fluxes. Each in-
terior flux in (1) is splitted into 4 terms, cor-
responding to homogeneous (±.±) and hetero-
geneous (±.⌥) centered and upwind parts. Ho-
mogeneous terms are treated as before, noncon-
forming heterogeneous ones can be lumped but
have to be rebalanced to ensure scheme stabil-
ity. Given �±, the trace spaces of u on S±

nc

,
we define two reconstruction operators ⇧±

Snc
:

�⌥ �! �±, by:

⇧±
S
nc

⇣
A⌥u⌥

⌘
=

N±
dofX

j=1

b⇡±
j

�
u⌥�Pf(j)

⇣
bA±bL±

j

⌘
1f(j),

where A± = A(⌥n), b⇡±
j

�
u⌥

�
2 R, f(j) is the

sub-face containing dof j, P
f(j) is the (H

curl

)2

surface-conforming transformation, bA and (bL
j

)
j

are the matrix A and basis functions expressed
in the reference element [�1, 1]3. Finally, the
heterogeneous nonconforming flux-lumping holds:

⌦
⇧±

S
nc

�
A±u⌥�,�±↵±

S
nc

=

N±
quadX

j=1

!±
j ⇧

±
S
nc

�
A±u⌥���±

j

�
.�±��±

j

�
,

(2)

where (!±
j

,�±
j

)
j

are surface quadrature weights
and points, fulfilling the following conditions:

• (C1) Consistency: 8u± 2 �±,

⌦
⇧�

Snc

�
A+u+

�
, u�

↵�
Snc

=
⌦
⇧+

Snc

�
A�u�

�
, u+

↵+
Snc

,

and either
⌦
A�u�, A�u�

↵�
Snc

=
⌦
⇧+

Snc

�
A�u�

�
,⇧+

Snc

�
A�u�

�↵+
Snc

,

or the same identity switching signs + and �.

• (C2) Positivity:

8u± 2 �±,
⌦
A±u±, A±u±

↵±
Snc/c

� 0 .

We thus proved the following stability result:

Theorem 1 Given u 2 U
hp

, if (!±
j

,�±
j

)
j

in (2)
are satisfying (C1) and (C2), then the semi-
discrete energy associated to the Gauss-Lobatto
Flux-Lumped DG approach decreases: 8t 2 (0, T ),

de

dt
(t)  0, with e(t) =

1

2

X

K2Th

hu, ui
K

.

4 Numerical Example

Computing propagation of 1-modes using flux-
lumping approach on the hybrid configuration,
the expected numerical e�ciency is reached, see
Fig. 2 and Table 2.

Config. CPU-time (w.r.t. Q1) Dofs (⇥103)
FL Q1/Q2 0.86 47

Table 2: Computational costs with FLDGTD

scheme on the hybrid configuration (same accuracy).

Figure 2: Left: Nonconforming surfaces and re-

construction operators used in the example. Right:

L2-space/L1-time error w.r.t mesh isotropic

refinment factor.
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Abstract

We provide a generalization, in both two and
three dimensions, of the volume-surface integral
equation formulation given in [SIAM J. Appl.
Math., 297-308, 2003], for acoustic scattering
by inhomogeneous media to the case where the
material properties have jump discontinuities
within the scattering inhomogeneity. We also
discuss a Nyström numerical solution methodol-
ogy that relies on analytic resolution of singular-
ities to achieve rapidly convergent integration
scheme while employing an FFT based interpo-
lation strategy for accurate approximations of
di↵erential operators.

Keywords: Wave Scattering, Bergmann’s Equa-
tion, Integral Equation, High-Order Method.

1 Introduction

We consider an open bounded set ⌦, represent-
ing the scattering inhomogeneity, that is a union
of a finite number J of open connected domains
⌦j of class C2, j = 1, . . . , J , such that ⌦i\⌦j =
; for i 6= j, and ⌦0 = Rd\ [J

j=1 ⌦j for d = 2, 3,
to be the homogeneous exterior. We further as-
sume that no more than two di↵erent ⌦js inter-
face at any given point. The density and wave
number inside ⌦j , denoted by ⇢j and j , respec-
tively, are smooth within ⌦j .

The interaction of the incident field  inc with
the inhomogeneity ⌦ induces a field  j in ⌦j

that satisfies the Bergmann’s equation

⇢j ·r


1

⇢j(x)
r j(x)

�
+ 2j (x) j(x) = 0, (1)

for j = 0, 1, . . . , J . As ⇢0 is constant, equa-
tion (1) reduces to the Helmholtz equation for
j = 0. The scattered field  s= 0 �  inc, be-
ing outgoing, satisfies the Sommerfeld radiation
condition. Moreover, across the interface �jk

between ⌦j and ⌦k, the following transmission

conditions are satisfied

j �  k = 0, (2)

1

⇢j

@ j

@njk
� 1

⇢k

@ k

@njk
= 0, (3)

where njk is the unit normal to the surface �jk.
It can be shown that the the field  ` in ⌦`

for ` = 0, . . . , J can be obtained as the solution
of the integral equation given by

 ` =  inc +
JX

j=1

KjVj j +
X

(j,k)2I

SjkFjk j

where I := {(j, k) : j > k and �jk is an inter-
face between ⌦j and ⌦k},

(KjVj j)(x) =

Z

⌦j

G0(x,x
0)(Vj j)(x

0)dx0,

(SjkFjk j)(x) =

Z

�jk

G0(x,x
0)(Fjk j)(x

0)ds0,

Vj j = (20 � 2j ) j + ⇢�1
j (r⇢j) ·r j , Fjk j =

(⇢k/⇢j � 1) @ j/@n0, andG0(x,x0) is the Green’s
function of the Helmholtz equation. The corre-
sponding integral equation for J = 1 can be
found in [3].

2 Numerical method and results

While the method we propose below can be ap-
plied, with minor adaptations, for solution of
the three dimensional problem, in this text, we
restrict our presentation to the two dimensional
case.

To compute the integral KjVj j , we begin
by decomposing ⌦j into PB number of bound-
ary patches and PI number of interior patches,
where boundary patches are homeomorphic to
(0, 1) ⇥ (0, 1] and interior patches are homeo-
morphic to (0, 1)⇥(0, 1) via a smooth invertible
parametrization xp = xp(s, t) for p = 1, . . . , P .
Then, by employing a partitions of unity {!p(x) :
p = 1, . . . , PB, PB + 1, . . . , P = PB + PI}, we
rewrite the volume integral operator as (KjVj j)(x)
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=
PX

p=1

(Kj,pVj,p j,p)(x), where (Kj,pVj,p j,p)(x) =

1R

0

1R

0
G0(x,x0

p)Vj,p j,p(x0
p)ds

0dt0, Vj,p j,p=(20�2j (x0
p))

j(x0
p)+ ⇢j(x0

p)
�1 (r⇢j(x0

p)) ·r j(x0
p)wp(x0

p)Jp(x
0
p),

x

0
p = xp(s0, t0) and Jp is the Jacobian of the

transformation xp. We observe that {!p(x|t=1), p =
1, . . . , PB} serves as a partitions of unity for �jk,
which enable us to rewrite the surface integral

operator as (SjkFjk j)(x) =
PBP
p=1

(Sjk,pFjk,p j,p)(x),

where (Sjk,pFjk,p j,p)(x) =
R 1
0 G0(x,x0)Fjk,p j,p(x0)

ds0, and Fjk,p j,p = (⇢k/⇢j�1) @ (x0
p)/@njk(x0

p)

!p(x0|t=1) JS
p (x

0
p), where JS

p is the surface Ja-
cobian.

We place the computational grid in such a
way that it simultaneously conforms to the re-
quirements of the high order quadratures for ap-
proximations of volume and surface integral op-
erators. Before discussing the approximation of
integral operators, we briefly describe our ap-
proach for the computation of di↵erential oper-
ators.

Di↵erential Operators: We employ an FFT
based e�cient and accurate two dimensional in-
terpolation scheme for o↵-grid evaluation of the
discrete data. This allows us to obtain deriva-
tives using, for instance, a finite di↵erence scheme
with a very small step size, yielding accurate
approximations in an e�cient manner.

Surface Integral: For computing Sjk,pFjk,p j,p

when x 2 �jk or is close to the interface �jk,
we adopt an approach similar to the one dis-
cussed in [1]. As a first step, the singularity in
the kernel is localized using a floating partition
of unity. In this region, a change of integration
variable centered around the point of singularity
with vanishing derivatives at the origin, analyt-
ically resolves the logarithmic singularity of the
kernel. We then use a high-order quadrature
rule to integrate accurately.

Volume Integral: To integrate over an inte-
rior patch, we adopt the methodology similar to
the one introduced in [2]. The singular integral
is handled by changing to polar variables cen-
tered around the point of singularity followed by
an application of trapezoidal rule for accurate
approximation of the integral. Our methodol-
ogy to integrate over boundary patches, on the
other hand, follows closely the steps prescribed
in [1] where the numerical approach utilizes a

Figure 1: Concentric disc of radius units 1 and an-
nulus of thickness 0.2. Inside the annulus 1/e =p
8 and ⇢1/⇢e = 10. Inside the disc 2/e =

p
2

and ⇢2/⇢e = 20. Acoustic size of the scatterer is
ea = 24. In the left, we display the real part of
the incident field and in the right, we display the
absolute value of the total field.

change of variable in s0 variable that not only re-
solve the kernel singularity, but also helps over-
come the near singular behavior of the inte-
grand. We refer the readers to [1] for a more
detailed discussion on this methodology.
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Table 1: 1 =
p
2/2, ⇢1 = 2, 2 =

p
3/2, ⇢2 = 4

and acoustic size of the obstacle ea = 4. 3-
point Newton-Cotes quadrature is used for in-
tegration in the t-direction over the boundary
patches.

N2 N1 Iter. Rel. Err. Order

202 612 2 3.18e-01 —
722 2244 4 8.30e-02 1.94e+00
2722 8580 5 2.49e-02 1.74e+00
10562 33540 6 2.03e-03 3.61e+00
41602 132612 8 1.72e-04 3.56e+00
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Abstract

We discuss how to test the late stages of cos-
mic inflation through the measurement of the
stochastic gravitational wave (GW) background
at terrestrial and space interferometers, as well
as at pulsar timing array experiments.
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1 Detection of GW from inflation

The current standard cosmological paradigm re-
quires a stage of accelerated expansion that took
place well within the first second of life of our
universe. This accelerated expansion was driven
by an unconventional source that is commonly
denoted as the “inflaton field”. Inflation ex-
plains why the observed universe is nearly ho-
mogeneous and isotropic at large scale, why it
is nearly spatially flat, and why it has few or
none topological defects. Inflation also explains
the generation of primordial energy density den-
sity perturbations, that gave rise to tempera-
ture anisotropies in the Cosmic Microwave Back-
ground (CMB) radiation, and acted as the seed
of structures in the universe (galaxies, and clus-
ters of galaxies) [1].

We do not know at what energy scale infla-
tion took place, and we do not know how long
it lasted. We conventionally measure the infla-
tionary expansion in terms of e-folds. During
inflation, the scale factor a (t) of the universe (a
quantity proportional to how physical lengths
expand; loosely speaking, one can think of it as
the radius of the universe) expanded according
to the law

a (t) ≃ a0 e
H(t−t0) , t ≤ t0

≡ a0 e
−N , N ≥ 0 (1)

In this expression, t is cosmic time, and t0 de-
notes the value of time at the end of inflation.
The quantity a0 denotes the value of the scale
factor at this time. The quantity H is nearly
constant (and its value is related to the energy
scale of inflation), so that the expansion during
inflation is nearly exponential. The quantity N

is called “e-folds”, and inflation ends at N = 0.
We denote by tN the time corresponding to the
e-fold N , and by aN the value of the scale factor
at this time (we thus see that it is appropriate
to denote by t0 the time at the end of inflation,
when N = 0). Greater values of N correspond
to earlier times. We do not know at which value
of N inflation started.

The primordial energy density perturbations
can be understood as the sum of many modes
of different wavelength. Modes of larger wave-
length ≡ smaller frequencies were produced ear-
lier during inflation, so at greater values of N .
The largest modes in our sky were produced at
N ≃ 60 (this number differs for different mod-
els of inflation, but typical models of inflation
give N ≃ 60, so we will keep this number fixed
in our discussion). We cannot observe greater
modes, and so we cannot experimentally probe
inflation at times [1].

CMB measurements are extremely precise,
and they have provided us with %-accurate kno-
wledge of comological parameters. However,
the CMB only measures modes of the density
perturbations of cosmic-size, produced in the
interval 53 ≤ N ≤ 60. As we mentioned, modes
produced at earlier times are too large to be
observed in our sky. Modes produced at later
times are too small to affect CMBmeasurement.
All the final stages of inflation, from N ≃ 53
to N = 0 are currently essentially unexplored,
apart from constraints related to the require-
ment that the density perturbations are small
enough so that they do not produce too many
primordial black holes.

Inflation also produced GW. These GW are
also present in our sky as a superposition of
waves of all possible wavelengths. GW pro-
duced at 53 ≤ N ≤ 60 also leave an imprint on
the CMB (they have an effect that is subdomi-
nant with respect to that of the density pertur-
bations; this effect has not been measured yet,
and it is the object of a very intensive experi-
mental program [2]). GW produced in the later
stages of inflation (smaller values of N) have



WAVES 2017, Minneapolis

smaller wavelength, and they can be probed
through interferometers (either on earth, or on
space) and pulsar array experiments [3]. This
opens new potential observational windows on
inflation.

There can be different sources of GW in act
during inflation. The most common one is sim-
ply the production from the inflationary expan-
sion itself (the space-time expansion, excites all
fields in the universe to some extent). This sig-
nal is universal, but it is unfortunately too weak
to be observed at the current and the next gen-
eration interferometers. There are however well
motivated models of inflation, belonging to the
so called class of axion inflation [4], that can po-
tentially result in a larger GW signal [5–8]. This
signal is is extremely characteristic, as it has a
blue spectrum (it grows with frequency), it is
polarized [6,9], and it has large non-gaussianity
[10, 11]. All these properties differ from those
of the universal GW signal from the expansion,
and from the GW background produced by as-
trophysical sources. Therefore, such a signal
could be clearly characterized, if above obser-
vational threshold. Our talk is mostly based on
Ref. [3], which discusses the status of this field.
Additionally, we will also mention other pos-
sible cosmological sources of GW, both within
and outside the inflationary paradigm.
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Abstract

We prove bounds on the heterogeneous Helmholtz
equation r · (Aru) + k

2
nu = �f that are ex-

plicit in k, A, and n, and then extend these to
the case when A and n are random fields.

Keywords: Helmholtz equation, heterogeneous,
random

1 Introduction

There is a long history of proving bounds on the
solution of BVPs involving the homogeneous
Helmholtz equation

�u+ k

2
u = �f, (1)

where k > 0. In particular:
1. The argument introduced by Vainberg [10]

proves a sharp k-explicit bound on the solution
of (1) under conditions on the propagation of
singularities. In the case of the exterior Dirich-
let and Neumann problems, these propagation
of singularities results hold when the obstacle
is nontrapping by the results of Melrose and
Sjöstrand [6].

2. Identities introduced by Morawetz [7] prove
k-explicit bounds on the solution of (1); these
arguments work best on the exterior Dirichlet
problem when the domain is star-shaped.

In this talk we consider proving bounds on
the heterogeneous Helmholtz equation.

LA,nu := r · (Aru) + k

2
nu = �f (2)

where k > 0, A is a symmetric real-valued posi-
tive definite d⇥d matrix, and n is a real-valued
function bounded away from zero (when this
equation is posed on an unbounded domain we
assume that I�A and 1�n have compact sup-
port, so equation (2) becomes (1) near infinity).
Our goal is for these bounds to be explicit in k,
A, and n.

Note that the arguments in point 1 above
prove a sharp k-explicit bound on the solution
of (1) under a nontrapping condition. However,
the constant in the bound is not explicit in A

or n, and it is not straightforward to check if

a given A and n satisfy the nontrapping condi-
tion.

Having proved bounds on the heterogeneous
Helmholtz equation we then convert them into
bounds on the Helmholtz equation where A and
n are random fields – this is motivated by the
body of work on uncertainty quantification for
the equation (2) when k = 0, and on the work
by Feng, Lin, and Lorton [5] on the interior
impedance problem when A = I and n is a
random perturbation of a constant (with the
magnitude of this perturbation decreasing with
k).

2 Main results

We consider 4 problems:

1. The exterior Dirichlet problem; i.e. equa-
tion LA,nu = �f is posed in the exterior of a
bounded obstacle, with Dirichlet boundary con-
ditions on the obstacle and the Sommerfeld ra-
diation condition at infinity.

2. The truncated exterior Dirichlet problem;
i.e. equation LA,nu = �f is posed in the exte-
rior of a bounded obstacle, with Dirichlet bound-
ary conditions on the obstacle, but the radi-
ation condition is approximated by truncating
the (unbounded) exterior domain and applying
an impedance boundary condition on the artifi-
cial boundary.

3. The transmission problem; i.e. equation
LA,nu = �f is posed in Rd, with the Sommer-
feld radiation condition at infinity.

4. The truncated transmission problem; i.e.
equation LA,nu = �f is posed in Rd, but the ra-
diation condition is approximated by truncating
the (unbounded) exterior domain and applying
an impedance boundary condition on the arti-
ficial boundary; this problem is therefore the
interior impedance problem.

Problem 3 can be considered as a special
case of Problem 1 when the obstacle is the empty
set, and similarly Problem 4 can be considered
as a special case of Problem 2.

We use appropriate generalisations of the
identities introduced by Morawetz to prove bounds
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on these problems that are explicit in k, A, and
n, under the condition that the domains are ei-
ther star-shaped or star-shaped with respect to
a ball and under certain conditions on A and
n. (These bounds are quite involved, and so we
do not have space to state them here.) We note
that the conditions on A and n allow them to
be su�ciently small (but independent of k) per-
turbations of constants.

Some bounds on these problems that are ex-
plicit in k, A, and n already exist in the liter-
ature; these are summarised in §3 below. The
main di↵erences between our bounds and this
previous work are:

1. To our knowledge, our bounds are the
only ones that cover the case when both A and
n vary.

2. We show how the conditions on A and n

that arise from the Morawetz-multiplier argu-
ment are equivalent to a non-trapping condition
on the rays.

Furthermore, to our knowledge, the only ex-
isting bound in the literature when one of A or
n are random fields is the one in [5] mentioned
above.

3 Previous bounds in the heterogeneous
case

We now outline the previous work on bounds
on the four problems above that are explicit
in k, A, and n. We highlight, however, that
there is also a large body of work on proving
analogous bounds for the Helmholtz equation
posed above an infinite rough surface, and the
Helmholtz transmission problem through an in-
finite rough layer.

Bounds on the transmission problem when
A = I and n is variable were obtained in [9].

Bounds on the exterior Dirichlet problem
when A = I and n is variable were obtained
in [2], and when A is variable and n = 1 in [1].

Bounds on the interior impedance problem
when A = I and n is variable were obtained
in [3] and [4] and when A is variable and n = 1
in [8].
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éléments finis de problèmes d’Helmholtz
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Abstract

We construct a new reliable, e�cient and local
a posteriori error estimate for the Electric Field
Integral Equation (EFIE). It is based on a new
localization technique depending on the choice
of a generic operator which is used to transport
the residual into L2-type space. Under appro-
priate conditions on the construction of this op-
erator, we show that it is asymptotically exact
with respect to an energy norm of the error.

Keywords: a posteriori error, integral equa-
tions, electromagnetism

1 Introduction

The Boundary Element Method (BEM) is a widely
used tool, based on boundary integral formu-
lations, for the resolution of wave propagation
problems (Acoustics, Electromagnetism · · · ). Nev-
ertheless, for these BEM which are used for
oscillating problems, we lack e�cient, reliable
and automatic tools for the control of the er-
ror. Such tools are called a posteriori error es-
timates ⌘ and are ideally reliable and e�cient
i.e. Ceff⌘  ku � ulk  Crel⌘ thus ensuring
complete control over the norm of the error.
Moreover, they must be local in the sense that
⌘ can be decomposed as the sum of local contri-
butions computed over each element of a mesh
Tl. Such ⌘ can be included in an auto-adaptive
refinement algorithm to ensure the quality of
numerical simulations.

The main di�culties in the context of BEM
are the non-local character of the norms and op-
erators. Consequently, localization techniques
must be used to derive an indicator ⌘ but the
standard ones do not yield to an explicit infor-
mation on the constants Crel and Ceff and by
consequence, can lead to inaccurate measure of
the error.

Recently, we have proposed for acoustic prob-
lem a new localization technique which enables
a full control over these constants [1]. In this ab-
stract, we propose an extension of the technique

to electromagnetism problems. In the section
2, we present an abstract setting larger than
the electromagnetism in order to explain the
methodology. In the next sections, we apply
it to the EFIE.

2 Abstract setting

Let A : H ! H⇤ be a linear operator from
some Hilbert space H to its topological dual
H⇤ such that A = A0 + K where A0 is a con-
tinuous and T -coercive operator ie there exists
T 2 L(H,H) some bijective operator such there
exists ↵ > 0, hA0v , Tvi � ↵kvk2H and hK· , T ·i
is a compact bilinear form where h· , ·i is the du-
ality bracket.

We are interested in the Galerkin approxi-
mation of the problem Au = b in a sequence of
nested discrete spaces (Vl)l2N i.e Vl ⇢ Vl+1 ⇢ H
: find ul 2 Vl such that< Aul , vl >=< b , vl >,
for all vl 2 Vl. We assume that this discrete
problem is well-posed and lim

l!+1
ul = u in H.

We have the following fundamental result:

Theorem 1 Let ⇤ : H⇤ ! V ⇢ [L2(�)]d be
an isomorphism where V is a closed subspace of
[L2(�)]d. Then the a posteriori error estimate
defined by ⌘⇤ := k⇤ rlk0,� where rl := b � Aul
is reliable, e�cient and local.

Moreover, if there exists ⇤ such that the iden-
tity ⇤⇤⇤A0 = T + K1 holds where ⇤⇤ is the
adjoint operator of ⇤ and K1 is a compact per-
turbation, then ⌘⇤ is asymptotically exact with
respect to the norm of the error |ku � ulk|2 =
hA0(u� ul) , T (u� ul)i.

Remarks:

1. The first part of the theorem is trivial.
Actually, since ⇤ is an isomorphism, we
have k⇤�1kopkrlkH⇤  ⌘�  k⇤kopkrlkH⇤ .
We conclude by using the fact that krlkH⇤

is equivalent to ku � ulkH when the con-
tinuous problem is well-posed.
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2. The second part comes from the follow-
ing property: lim

l!+1
ul = u in H implies

ēl := (u�ul)/ku�ulkH * 0 weakly in H
when l ! +1 and consequently, for any
compact operator eK : H ! W , eK ēl ! 0
strongly in W , in other words, eK (u� ul)
tends to zero faster than ku� ulkH .

3 Application to the Electric Field Inte-

gral Equation

We consider the scattering by a perfectly con-
ductor object in a non-bounded homogeneous
media of an electromagnetic wave. This object
is represented by a Lipschitz bounded domain
with simply connected and connected boundary
� whose outward unit normal is n. We use the
well-known EFIE to solve this problem. This
integral equation can be written in the previ-
ous abstract setting in this way (see for exam-
ple [2]): H = H�1/2(div�,�),

Au = Sku+
1

k2
r�Sk div�u (1)

where Sk and Sk are the scalar and the vec-
tor single layer potentials respectively, k is the
wavenumber and r� is the surface gradient.

The operator T is defined from the Helmholtz
decomposition of every vector field of H: 8v =
⇧loopv+⇧starv = n⇥r� +r�' 2 H�1/2(div�,�),
Tv = ⇧loopv � ⇧starv. Finally, the T-coercive
operator A0 is defined by (see [2])

A0v = S0v +
1

k2
r�S0 div�v � 2⇧⇤

starS0v. (2)

The construction of a candidate for ⇤ is based
on pseudo-di↵erential calculus. Therefore, in
order to use this tool, the surface � is assumed
to be smooth for the construction. Moreover,
the Helmholtz decomposition allows us to han-
dle any vectorial boundary operator M as a 2⇥2
matrix of scalar boundary operators Mij :

M = [n⇥r� r�]


M11 M12

M21 M22

� 
⇧loop

⇧star

�

We propose to find ⇤ as a pseudodi↵erential op-
erator such that the principal symbol �p(⇤

⇤⇤A0) =
�p(⇤)

2�p(A0) = �p(T ). In this context, we have

�p(A0) =

"
1

2k⇠k 0

0 � k⇠k
2k2

#
, �p(T ) =


1 0
0 �1

�

where ⇠ is a parameter being a cotangent vector
on �.

The structure of these principal symbols sug-
gests to find ⇤ in the form

⇤ = [n⇥r� r�]


⇤+ 0
0 ⇤�

�
(3)

with �p(⇤
+) = 1/

p
2k⇠k and �p(⇤�) = k

p
2/k⇠k

Finally, we construct the candidates for ⇤±

by using the Laplace-Beltrami operator:

⇤± =
p
2k

✓
I � ��

k2

◆⌥1/4

(4)

In fact, �p(��) = �k⇠k2 and we have added the
identity I to obtain an isomorphism.
Remarks:

1. The operator ⇤ defined by (3) and (4) is
an isomorphism [3] onto L2

t (�) = {v 2⇥
L2(�)

⇤3
: v·n = 0} for Lipschitz surface.

2. By construction, ⌘⇤ is asymptotically ex-
act for smooth surface but as for the acous-
tic case, we expect that the e�ciency con-
stant is close to one in presence of some
geometrical singularities.

3. The implementation of ⌘⇤ is based on the
use of the algorithm proposed in [4] to
compute e�ciently the operators (4).

4 References
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Abstract. We propose a new hybrid strategy be-
tween the boundary element method (BEM) and ray
tracing in order to allow the accurate and quick sim-
ulation of high frequency Non Destructive Testing
(NDT) configurations involving di↵raction phenom-
ena. Results from its implementation to 2D acoustic
NDT-like di↵raction configurations are presented.
The strategy proposed is however generic, and can
be extended to three-dimensional configurations and
elastodynamic wave propagation.

Keywords: Hybrid method, BEM, Ray tracing,

High frequency scattering

1. Motivations. Aiming at the computa-
tional modeling of ultrasonic NDT experiments,
we consider the simulation of the di↵raction of
an ultrasonic wave by a small object whose char-
acteristic diameter r� is similar to the charac-
teristic wavelength � (r� = O(�)) and embed-
ded in a spatially large medium (L � �, see
Fig. 1). Neither discretization-based numerical
methods (FEM, FDM, BEM...) nor asymptotic
methods, if applied in isolation to such config-
urations, allow for fast or accurate enough sim-
ulation: numerical methods are precise but ex-
pensive at high frequencies, while asymptotic
methods are well-suited for long-distance prop-
agation simulations but inaccurate for di↵rac-
tion. This leads us to propose a hybrid strategy
coupling BEM and ray tracing. The latter is
a Lagrangian formulation of geometrical optics,
based on a WKB ansatz [3]

u(x) = A(x)ei!�(x)

for the primary field variable u. The amplitude
A, phase �, and direction of propagation d̂(x)
at point x 2 ⌦, which characterise the ansatz,
are evaluated by solving the ray tracing system
composed of the eikonal and transport equa-
tions, see [3].

We focus here on the implementation of the
hybrid strategy to the model problem of 2D

L

⌦

⇥S(xs

) ⇥R(x

r

)

u

i

r�

�

D

s

D

r

Figure 1: Geometrical setting.

acoustic di↵raction.

2. The Hybrid method. The hybrid method
relies on a multi-scale approach to solve the
scattering problem whereby propagation and dif-
fraction phenomena are treated separately. Its
framework is based on the conditions under which
far field asymptotics is valid, expressed in terms
of two parameters ↵ := r�/min(D

s

, D
r

) and
� := kmin(D

s

, D
r

). In its far field zone, i.e
seen from points for which ↵ ⌧ 1, � � 1, and
↵� = O(1), the probed defect can be modelled
by a moderate number P of well-chosen points
yp
c

, 1  p  P on its boundary � (or by its cen-
troid y

c

for su�ciently small r�/�), as follows.
Incident and di↵racted waves are approximated
as rays (A

i/r

,�
i/r

, d̂
i/r

) received or emitted by
these points. Then, to take the di↵raction e↵ect
into account by BEM, we first approximate the
incident field on the defect as a superposition
of plane waves locally defined in the vicinity of
each point yp

c

from the incident ray. Using a par-
tition of unity (⌘

p

)
p

of the boundary we write
on the defect y 2 �,

ui(y) ⇡
PX

p=1

⌘
p

(y)Ai(y
p

c

;x
s

)ei!�i(y
p
c ;xs)

⇥ ei!d̂i(y
p
c )·(y�y

p
c ).

By linearity of the di↵raction problem, we then
solve P problems for unknown densities  p sup-
ported on �, with the Brakhage-Werner indirect
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integral equation,

p

2
(x) +

Z

�

⇣ @G

@⌫(y)
� ikG

⌘
(x, y) p(y)ds(y)

= �⌘p(x) ei!d̂i(y
p
c )·(x�y

p
c ), x 2 �, p 2 [1, P ].

Finally, resorting to the far field (relative to de-
fect size r�) asymptotics allows to approximate
the di↵racted wave at a su�ciently-remote re-
ceiver x

r

as

u(x
r

) =
PX

q=1

PX

q=1

Ar(xr; y
q

c

)Ai(y
p

c

;x
S

)

⇥ ei!(�r(xr;y
q
c )+�i(y

p
c ;xs))Rq

p

(d̂r(y
q

c

), d̂i(y
p

c

)),

i.e. a superposition of di↵racted rays emitted by
each modelization point yq

c

, propagated in the
direction d̂r(y

q

c

) and weighted by a di↵raction
coe�cient Rq

p

defined by

Rq

p

(d̂r, d̂i) = �ik

Z

�
e�ik(d̂r·(y�y

q
c ))⌘q(y)

⇥ (1 + d̂r · ⌫(y)) p(y; d̂i) ds(y).

3. Online-O�ne acceleration. Addition-
ally, we have developed an online-o✏ine proce-
dure to reduce the computational cost of the
di↵raction coe�cient evaluation (most expen-
sive operation in the method) to allow a fast
treatment of multi-source and multi-receiver con-
figurations which involve large numbers of pairs
of incident and di↵raction directions. O✏ine,
we evaluate the matrix of the di↵raction coef-
ficients for predefined incident and di↵raction
directions, and compute its truncated low rank
approximation using a SVD [4]. Online, we
evaluate a polynomial interpolation of the sin-
gular matrices in the direction of interest and
compute from them an approximation of the
di↵raction coe�cients in the same directions.
The acceleration was found in 2D numerical tests
to be e↵ective if the number of directions ex-
ceeds about 200, and is expected to perform
even better under 3D conditions.

4. Numerical experiment. We tested the
coupling strategy (in conjunction with the CIVA
platform [1]) on the computation of the time re-
sponse for the di↵raction of an ultrasonic plane
wave by a small circular hole in a solid rectan-
gular slab immersed into water (Fig. 2). Using
(i) CIVA’s ray tracing solver to propagate the
rays in the media and through their interfaces

water

solid

medium

⇥
S

R

�

Figure 2: Configuration (left), computed echo
for a cylindrical flaw (right).

Figure 3: Computed echo for a kite-shaped flaw.

and (ii) a home-made BEM solver to evaluate
the di↵raction coe�cients for a suitable sample
of frequencies, and then performing an inverse
Fourier transform, we computed the transient
di↵racted field at points located on a line of re-
ceivers (labelled ’R’ in Fig.2). We checked that
the time reconstruction of our solution coincides
with CIVA’s obtained from the harmonic ana-
lytic evaluation of di↵racted field for cylindrical
cavities. Besides, we point out that this hybrid
strategy brings flexibility in NDT simulations.
For the same configuration in CIVA, one can
compute the di↵raction echo of any flaw geom-
etry of same size, just by changing the di↵rac-
tion coe�cient in CIVA. For the configuration
of Fig. 2, we present in Fig. 3 the time response
of a kite-shaped flaw in the solid material at the
points on the line of receivers.

5. Ongoing work and outlook. Current
work aims at extending the presented approach
to cases where the defect is close to a bound-
ary. We will then develop its extensions to 3D
acoustics before elastodynamics.
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Abstract

In this paper we discuss the discontinuous Petrov-
Galerkin (DPG) method for high frequency wave
propagation problems. The DPG method o↵ers
uniform pre-asymptotic stability for any wave
number, and this allows for a fully automatic
hp-adaptive algorithm. In addition, being a
minimum residual method, DPG always deliv-
ers a Hermitian positive definite matrix. We in-
troduce a new iterative solution scheme which
benefits from these attractive properties. This
novel solver is integrated within the DPG adap-
tive procedure by constructing a two-grid-like
preconditioner for the Conjugate Gradient (CG)
method. We demonstrate our results using a
2D acoustics problem and show convergence in
terms of iterations at a rate independent of the
mesh and the wavenumber.

1 Introduction - Overview of DPG

As a model problem we consider linear acoustics
in a bounded domain ⌦.

8
<

:

i!u+ rp = 0, in ⌦
i!p+ divu = 0, in ⌦
p � u · n = g, on @⌦

(1)

1.1 Di↵erent variational formulations

Depending on which norm one seeks to measure
convergence, the equations in (1) give rise to
four di↵erent formulations: the trivial or strong,
the classical, the mixed and the ultraweak [2].
Using methods similar to those in [1], it can be
shown that the four formulations are simulta-
neously well or ill posed.

1.2 Optimal test functions

Discretizing (1) leads in a well posed problem
if and only if Babuška’s discrete inf-sup condi-
tion holds. An arbitrary choice of the discrete
test space often leads to lack of stability. On
the contrary, in the case of the DPG method,
one computes on the fly the optimal test func-

tions which realize the supremum of the inf-sup

condition. We thus obtain a Petrov-Galerkin
scheme for which discrete stability is guaran-
teed even in the pre-asymptotic region.

1.3 Minimum residual method

DPG can also be viewed as a minimum residual
method, wherein one minimizes the residual in
the norm dual to the test space norm. Conse-
quently, the resulting sti↵ness matrix is always
Hermitian and positive definite, making the use
of CG ideal.

1.4 Mixed method

DPG can be interpreted as a mixed method
where one solves simultaneously for the solu-
tion and the Riesz representation of the resid-
ual. The existence of a built-in error indicator
and the aforementioned stability properties sug-
gest the use of automatic hp-adaptivity, starting
from very coarse meshes.

2 Gaussian beam (resonating cavity)

For reasons outlined in [2] the ultraweak formu-
lation is preferred. The DPG ultraweak formu-
lation of (1) reads:

8
>>>>>><

>>>>>>:

u 2 (L2(⌦))d, p 2 L2(⌦)
du · n 2 H�1/2(�h), p̂ 2 H1/2(�h)
p̂ � du · n = g, on @⌦
(i!u, v) � (p, divhv) + hp̂, v · ni = 0
(i!p, q) � (u,rhq) + h du · n, qi = 0
8 v 2 H(div,⌦h), q 2 H1(⌦h)

(2)

We demonstrate the adaptive DPG technology
by solving a problem that is characterized by a
solution with localized behavior. In particular,
we use (2) to simulate a Gaussian beam in free
space with a cavity in the middle of the domain.
The angular frequency is 500⇡ (approximately
350 wavelengths along a 45� angle). Note that
the initial mesh is far away from satisfying the
Nyquist criterion. In Figures (1, 2) we show
the evolution of the mesh and the corresponding
numerical solution of the pressure. The mesh is
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built along with the solution. The DPG method
avoids unnecessary computations in areas of the
domain where the wave does not exist.

Figure 1: Meshes

Figure 2: Pressure

3 Solver

In practice, we are not interested in a fully con-
verged solution at every adaptive step, but only
in a solution which is accurate enough to per-
form reliable refinements. Consequently, an it-
erative solver would be preferable provided that
it is combined with a good preconditioner.

3.1 Two-grid-like solver outline

Direct solver on the coarse grid. We fix
an arbitrary mesh throughout the adaptive re-
finements and solve the problem using a direct
solver. We define this to be our coarse grid,
and we store the Cholesky decomposition of the
global sti↵ness matrix. The Cholesky decompo-
sition is used later in the coarse grid correction.
Macro-element. We now choose a fine grid.
The fine grid is the mesh obtained after arbi-
trary many adaptive hp-refinements applied to
the coarse grid.

Figure 3: Macro Grid Definition

(a) Coarse Grid (b) Fine Grid (c) Macro Grid

We define the macro grid to be the resulting
mesh after we eliminate all the new degrees of

freedom which do not lie on the skeleton of the
coarse mesh (Fig.3).
Symmetric two-grid cycle. We perform the
symmetric two grid cycle between the coarse
and the macro grid and use it as a precondi-
tioner for the CG method. We use the additive
Schwartz smoother with patches defined to be
the support of a coarse grid vertex basis func-
tion. Note that for the coarse grid correction
the construction of restriction and prolongation
operators reduces to a 1D interpolation problem
since the macro grid and the coarse grid have
the same topology.

3.2 Results

In Fig 4, we compare the two-grid-like precon-
ditioner with the additive Schwarz. For the
two-grid-like preconditioner, we follow a simple
strategy, where the coarse grid is redefined ev-
ery 10 refinements. We show results for angular
frequencies ! = 40⇡ and 120⇡.

Figure 4: Iterations vs dof
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The number of iterations for the two-grid-like
preconditioner remains bounded and appears to
be independent of the frequency and the mesh.

4 Current/future work

Our current work focuses on some theoretical
convergence analysis to support our results. Ul-
timately, we are aiming to build a solver suitable
for larger problems arising from 3D computa-
tions (3D Maxwell).
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Abstract

We investigate e�cient methods to simulate mul-
tiple scattering (MS) of obstacles in homoge-
neous media. With a large number of small ob-
stacles, optimized softwares based on Finite El-
ement Method (FEM) lose their robustness. As
an alternative, we work with an integral equa-
tion method, which uses single-layer potentials
and truncation of Fourier series to describe the
scattered field. We limit our numerical experi-
ments to disc-shaped obstacles. We first com-
pare our method with Montjoie (a FEM-based
software); secondly, we investigate the e�ciency
of di↵erent solver types (direct and iterative) in
solving the dense linear system generated by the
method. We observe that the optimal choice de-
pends on the distance between obstacles, their
size and number, and applications.

Keywords: small obstacles, acoustic scatter-
ing, single layer, GMRES preconditioning.

1 Introduction

This project is part of a program studying di-
rect and inverse problem for acoustic wave in
strongly inhomogeneous media. As a first step,
we consider inhomogeneities created by a great
number of small non-overlapping obstacles. The
following discussion are based on our report [1].

The method we use is in the family of Galer-
kin Boundary Integral Equations; for convenie-
nce, we call it Fourier Series - Single Layer (FS-
SL). For NObs non-overlapping obstacles with
boundary {�J}1JNObs

, the scattered wave is
described as a superposition of single-layer po-
tentials with density VJ 2 C(�J),

uscatt =
NObsX

J=1

Z

�J

i
4 H

(1)
0 ( |x� y|)VJ(y) d�(y) .

The continuous densities are approximated by
truncation of their Fourier Series. We choose
the single-layer Ansatz, since it gives rise to the
simplest integral equations. Generally, accept-
able precision (⇠ 10�7) can be obtained with
low approximation order (< 4). As a result, the

linear system (LS) generated by FS-SL, however
dense, is small. Moreover, the intrinsic problem
regarding invertibility does not arise with small
obstacles. We limit our numerical experiments
to soft scattering of disc-shaped obstacles. In
this geometry, a SL potential can be written as
a superposition of multipoles; as a result, the
resulting LS-s have explicit expressions.

The use of integral equation, in particular
single-layer, in MS problems is not new. In par-
ticular, the authors of [3] also used this Ansatz
for low and high frequencies. Our numerical ex-
periments can be considered as a complement
to their work. On the other hand, our collab-
oration with the acoustic lab I2M at Univer-
sité de Bordeaux necessitates the development
of robust ‘in-house’ codes, which can be evolved
according to our needs. Our codes are written
in Fortran 90 with double precision and use a
parallel architecture1. Users can select among
the Direct Solvers (Mumps, Lapack and Scala-
pack), and the iterative GMRES solvers [2] with
various preconditioners.

2 Numerical Comparison with FEM

The comparison is done at precision 10�3 be-
tween Montjoie (MJ) Q6 and FS-SL order 2.
Parameters : Angle of incidence of plane wave (PL) = 90.0 ;
Wavenumber  = 10.0 ; Number of obstacles = 200; Obs. Rad.

Wavelength

⇠ 0.048 ; Obs. Rad.
Obs Dist.

= 0.1 ; Obs. Dist.
Wavelength (WL)

⇠ 0.48.

With small linear system, the pre-processing
time of FS-SL is small compared to that of MJ.

Time comparison FS-SL Montjoie
for Pre-processing Order 2 CG Q6

Size of linear system (LS) 1000 842677

Task Duration of time (in secs)
Construction of LS 5.46 e� 2 1.97

Factorization of Coe↵ mat 0.44 29.8

Resolution (by Mumps) 2.91 e� 3 0.35
Total time 0.498 32.12

For post-processing, one can either evaluate the
Hankel function exactly or use a cubic Hermite
interpolation. The relative di↵erence in L2 norm

1
Our tests were run on the cluster Plafrim (www.plafrim.fr).



WAVES 2017, Minneapolis

between two evaluation methods is of order 10�5.

Evaluation on Exact Inter- Montjoie
400⇥ 400 points Eval -polation

Post-pro. time (secs) 26.2 4.30 0.72
Pre + Post time (secs) 26.70 4.80 33.82

Despite the time cost for post-processing, for
the final solution, FS-SL is still faster than MJ.

3 Solver comparison

We investigate the e�ciency of di↵erent solver
types in solving the dense LS generated by FS-
SL. For iterative solvers, we study the precon-
ditioners associated to Jacobi and Gauss-Seidel,
c.f. [1, Appendix C] for definitions.

Numerical Result 2 For closely-spaced ob-
stacles, we observe that the direct solvers out-
perform the iterative ones. We note the promi-
nent robustness of the Lower-upper Symmetric
Gauss-Seidel (LU-SGS) and Symmetric Gauss-
Seidel (SGS) among other preconditioners.

Parameters : Method order =2; Angle of incidence = 90.0;
Wavenumber = 10.0; Obs. Rad.

Wavelength
⇠ 0.048 ; Obs. Rad.

Obs Dist.
= 0.1 ;

Obs. Dist.
Wavelength

⇠ 0.48; Size matrix = 104 ⇥ 104. GMRES param-

eters : Error Tol= 10�6, Iter Max = 5000, Restart = 400.

Solver Rel di↵ of ] Time

density in H1/2 Iter (secs)

Mumps 3.07E � 10 n/a 2.42E + 02
Lapack 0.0 n/a 8.04E+01

Right LU-SGS 1.44E � 01 1146 5.73E + 02
Right SGS 1.47E � 01 1151 5.98E + 02

Scalapack (-n16) 3.22E � 10 n/a 3.46E+01

The optimal choice is Scalapack and Hermite
interpolation, taking 1 min 10 secs on 16 pro-
cessors for visualization on a 800⇥ 800 grid.

Numerical Result 3 When the obstacles are
further apart, GMRES with LU-SGS and SGS
regain in performance.
The parameters are the same as above except Obs. Rad.

WL
⇠

0.016, Obs. Rad.
Obs Dist

= 0.005, Obs. Dist.
WL

⇠ 3.18. GMRES param-

eters : Error Tol= 10�7, Iter Max = 5000, Restart = 500.

Solver Rel di↵ of ] Time

density in H1/2 Iter (secs)

Mumps 0.0 n/a 2.51 e+ 02

Lapack 4.04 e� 12 n/a 7.99E + 01
Right LU-SGS 2.89 e� 04 57 3.75E+01

Right SGS 3.50E � 04 56 3.70E+01

Scalapack (-n16) 9.27E � 12 n/a 3.49E+01

For the current configuration, GMRES with LU-
SGS is faster than Lapack, and is head-to-head
with Scalapack run on 16 processors. We also
note that the distance between obstacles has
small impact on the direct solvers.

0 10 20 30 40
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30

�2

�1

0

1

2

Figure 1: Soft scattering of a planewave coming
from the south by 104 obstacles, by FS-SL + Scala.+
Hermit inter. Size matrix = 50000⇥ 50000.

Numerical Result 4 Currently, the only sol-
ver that can handle very large number of ob-
stacles is Scalapack. For 10000 obstacles with
the same parameters as in Experiment 2, FS-
SL with Scalapack takes 24 mins 40 secs on 48
processors, see Figure 1.

4 Conclusion

When the obstacles are far-way, under low pre-
cision, one can either use Scalapack or GM-
RES with LUSGS or SGS as preconditioners.
When the obstacles are close together, direct
solvers are more e�cient. Regarding applica-
tion to inverse problems using full wave inver-
sion technique, direct solvers provide an attrac-
tive choice, with higher precision and the fea-
ture to resolve linear systems with multiple right
hand sides. We are currently extending this
work to solid obstacles.
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Abstract

A theoretical foundation is developed for ac-
tive seismic reconstruction of fractures endowed
with spatially-varying interfacial condition (e.g.
hydraulic fractures). The proposed indicator
functional carries a superior localization prop-
erty with no significant sensitivity to the frac-
ture’s contact condition, measurement errors,
and illumination frequency. This is accomplished
through the paradigm of the F]-factorization
technique and the recently developed General-
ized Linear Sampling Method (GLSM) applied
to elastodynamics. The analysis of the well-
posedness of the forward problem leads to an
admissibility condition on the fracture’s (lin-
earized) contact parameters. This in turn con-
tributes toward establishing the applicability of
the F]-factorization method, and consequently
aids the formulation of a convex GLSM cost
functional whose minimizer can be computed
without iterations. Such minimizer is then used
to construct a robust fracture indicator func-
tion, whose performance is illustrated through
a set of numerical experiments.

Keywords: inverse scattering, elastic-wave
imaging, partially-closed fractures

1 Problem statement

With reference to Fig. 1(a), consider the elastic-
wave sensing of a partially closed fracture � ⇢
R3 embedded in a homogeneous, isotropic, elas-
tic solid endowed with mass density ⇢ and Lamé
parameters µ and �. The fracture is charac-
terized by a heterogeneous contact condition
synthesizing the spatially-varying nature of its
rough and/or multi-phase interface. Next, let
⌦ denote the unit sphere centered at the origin.
For a given triplet of vectors d 2 ⌦ and qp, qs2
R3 such that qp k d and qs?d, the obstacle is
illuminated by a combination of compressional

and shear plane waves

uf(⇠) = qp e
ikp⇠·d + qs e

iks⇠·d (1)

propagating in direction d, where kp and ks =
kp
p

(�+2µ)/µ denote the respective wave num-
bers. The interaction of uf with � gives rise to
the scattered field v 2 H1

loc

(R3\�)3, solving
r·(C :rv) + ⇢!2v = 0 in R3\�,
n ·C :rv = K(⇠)JvK � tf on �,

(2)

where !2 = k2sµ/⇢ is the frequency of excita-
tion; JvK = [v+� v�] is the jump in v across �,
hereon referred to as the fracture opening dis-
placement (FOD); C = � I

2

⌦I
2

+ 2µ I
4

is the
fourth-order elasticity tensor; Im (m=2, 4) de-
notes the mth-order symmetric identity tensor;
tf = n ·C :ruf is the free-field traction vector;
n = n� is the unit normal on �, andK = K(⇠)
is a symmetric and possibly complex-valued ma-
trix of specific sti↵ness coe�cients mapping the
displacement jump to surface traction. The far-
field patterns of the scattered waveforms i.e.
v1 := v1

p � v1
s – defined based on the asymp-

totic expansion of v

v(⇠) =
eikpr

4⇡(�+2µ)r
v1
p (⇠̂)+

eiksr

4⇡µr
v1
s (⇠̂)+O(r�2),

as r := |⇠| ! 1, are then recorded over the
unit sphere of observation directions ⇠̂.

Theorem (well-posedness).Assume that tf 2
H�1/2(�)3 and that K 2 L1(�)3⇥3 is symmet-
ric such that =K 6 0 on �, i.e. that ✓·=K(⇠)·
✓ 6 0, 8✓ 2 C3 and a.e. on �. Then prob-
lem (2) has a unique solution that continuously
depends on tf 2 H�1/2(�)3.
proof. see [1, Theorem 3.2].

2 Elements of the inverse solution

For given compressional and shear wave densi-
ties gp(d)kd and gs(d)?d, d 2 ⌦, the elastic
Herglotz wave function is defined as
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Figure 1: Elastic-wave imaging of a heterogeneous fracture �: (a) sensing configuration, and (b) 3D
GLSM indicator thresholded at 10% and thus-recovered fracture surface �̆.

ug(⇠) :=

Z

⌦

n

gp(d)e
ikpd·⇠ � gs(d)e

iksd·⇠
o

dSd,

where ⇠ 2 R3. In this setting, the far-field op-
erator F : L2(⌦)3 ! L2(⌦)3 is defined by

F (g) = v1
g⌦

, (3)

where v1
g⌦

is the far-field pattern of v 2 H1

loc

(R3\�)3
solving (2) with data uf = ug. Based on this,
the self-adjoint operator F] : L2(⌦)3 ! L2(⌦)3

is defined by

F] := |<F | + =F, (4)

<F = 1

2

(F + F ⇤), =F = 1

2i (F � F ⇤).

It is then shown that both F and F] possess the
following decompositions

F = H ⇤T H , F] = H ⇤T]H . (5)

Here, the Herglotz operator H :L2(⌦)3!H�1/2(�)3

is given by

H (g) := n ·C :rug on �, (6)

whose adjoint operator H ⇤ : H̃1/2(�)3 ! L2(⌦)3

is shown to be compact and injective; The mid-
dle operator T : H�1/2(�)3 ! H̃1/2(�)3 (resp.
T]) is governed by the contact law at the frac-
ture interface, and given by

T (tf)(⇠) := Jv(⇠)K, ⇠ 2 �, (7)

(resp. [1, Remark 4]). Now, the following prop-
erties form the bedrock of the GLSM’s theo-
rem and its a�liated indicator, namely: (i) the

ranges of H ⇤ and F 1/2
] coincide, and (ii) both

operators T and T] are continuous and coercive
i.e.
�

', T](')
�

H� 1
2
(�)

> c k'k2
H� 1

2
(�)

,

|h', T (')i| > c k'k2
H� 1

2
(�)

, 8' 2 H�1/2(�)3

where c, c > 0 are independent of '.

3 GLSM criteria for imaging

The essential idea behind GLSM stems from the
particular nature of an approximate solution g
to the far-field equation

F �g = �1
L , kF � � F k 6 �, (8)

where � > 0 is a measure of noise in data, and
�1

L is the far-field pattern of a trial radiating
field, see [1, Definition 2]. In this setting, the
behavior of g in the sampling region is exposed
by characterizing the range of H ⇤, which then
forms the basis for approximating the charac-
teristic function of a hidden fracture. In this
vein, let us define the GLSM cost functional by

J�↵(�
1
L ; g) := kF �g � �1

L k2 +

↵
�

|(g, B�g)| + �kgk2
�

, g 2 L2(⌦)3,
(9)

where ↵ > 0 and B� denotes either F � or F �
] .

Assuming that B� is compact, J�↵ has a mini-
mizer gL

↵,� 2 L2(⌦)3 satisfying

lim
↵!0

lim sup
�!0

J�↵(�
1
L ; gL

↵,�) = 0. (10)

In the case whereB� = F �
] , the cost functional (9)

is convex and that its minimizer is obtained
non-iteratively.
Theorem (main). �1

L 2 Range(H ⇤) ()
�

lim sup
↵!0

lim sup
�!0

(|(gL↵,�, B�gL
↵,�)|+�kgL

↵,�k2)<1,

()
lim inf
↵!0

lim inf
�!0

( |(gL↵,�, B�gL
↵,�)|+ �kgL

↵,�k2)<1 .

Based on this, a robust GLSM criterion

IG (L) :=
⇥

|(gL↵,�, B�gL
↵,�)| + �kgL

↵,�k2
⇤�1/2

is designed for the reconstruction of heteroge-
neous fractures, as illustrated in Fig. 1 (b).
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Abstract

Mass-spring chains with only extensional de-
grees of freedom have for long provided insights
into the behavior of crystalline solids. Here we
add rotational degrees of freedom to the masses
in a chain and study the dynamics of phase
boundaries across which both twist and stretch
can jump. Surprisingly, for some combinations
of parameters characterizing the energy land-
scape of our springs we find propagating phase
boundaries for which the rate of dissipation,
as calculated using isothermal expressions for
the driving force, is negative. This suggests
that we cannot neglect the energy stored in the
oscillations of the masses in the interpretation
of the dynamics of mass-spring chains. Thus,
we define a local temperature of our chain and
show that it jumps across phase boundaries, but
not across sonic waves. Hence, impact prob-
lems in our mass-spring chains are analogous
to those on continuum thermoelastic bars with
Mie-Gruneisen type constitutive laws.

Keywords: Phase transitions, non-linear lat-
tices, elastic rods

1 Introduction

Chains of masses and springs (see figure 1) have
been used as models to understand thermal prop-
erties and phonons in crystalline solids for a
long time. When the potentials characterizing
the springs have multiple wells then the dynam-
ics of mass-spring chains has been shown to be
similar to that of one-dimensional bars capable
of phase transitions [1,2]. This insight has been
utilized to extract kinetic relations for moving
phase boundaries by comparing solutions of im-
pact and Riemann problems in continuum bars
to those in the bistable chains [2].

In this paper we go beyond mass-spring chains
in which each mass has just a translational de-
gree of freedom – each of our masses translates
and rotates about the line connecting them. The
continuum analogue of this mass-spring chain is
a rod that can stretch and twist (but not bend).

The dynamics of phase boundaries in such a rod
is described by a kinetic relation which con-
nects the thermodynamic driving force across
the phase boundary with its velocity. We show
that the appropriate kinetic relation is one in
which the phase boundary propagates adiabat-
ically.

“L” phase “H” phase

Vo

Wo

Phase boundary

j j+1

j+1/2

Figure 1: Mass-spring chain in which each mass
has an extensional and rotational degree of free-
dom. A phase boundary separates regions of the
chain in which springs are in di↵erent phases.
Springs in the ‘H’ phase have high strains and
those in the ‘L’ phase have low strains. We spec-
ify extensional velocity v0 and rotational veloc-
ity w0 on the masses at the boundary.

2 Thermomechanics of 1-D chain

Let us begin by considering phase boundaries
propagating in a one-dimensional continuum rep-
resenting our chain in the interval 0  x  L.
At each reference point we have two variables –
the deformed position z(x, t) of the rod cross-
section located at x at time t, and ↵(x, t) the
angle through which that cross-section has ro-
tated at time t. We require that z(x, t) and
↵(x, t) be continuous at all x and t so that the
rod does not break. We do not allow bending
deformations of the rod. The stretch of the rod
is �(x, t) = @z

@x

and the twist is (x, t) = @↵

@x

.
These quantities are allowed to jump at a finite
number of points in our continuum. If one such
jump is located at x = s(t) then let us denote
x > s(t) as the + side, x < s(t) as the - side. For
any quantity y(x, t) we denote y(x+, t)�y(x�, t)

by [|y|] and y(x+,t)+y(x�,t)
2 by hyi. From conti-

nuity of the deformed material we have [|z|] =
0 and [|↵|] = 0. Di↵erentiating these two equa-
tions with respect to time we get the kinematic
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jump conditions

ṡ[|�|] + [|ż|] = 0, (1)

ṡ[||] + [|↵̇|] = 0. (2)

The equation for balance of linear momentum
for a portion of the rod in the interval (x1, x2)
in the absence of body forces is d

dt

R
x2

x1
⇢ż dx =

T |x2
x1
, where ⇢(x, t) is the mass per unit length

and and T (x, t) is the tension in the rod [1,2]. If
we localize this equation to a discontinuity s(t)
(with x1  s(t)  x2) then we get the linear
momentum jump condition

[|T |] + ṡ[|⇢v|] = 0, (3)

with v(x, t) = ż. The equation for the balance
of angular momentum for a portion of the rod
in the interval (x1, x2) in the absence of body
moments is d

dt

R
x2

x1
⇢r2

g

↵̇dx = M |x2
x1
, where r

g

is
the radius of gyration of the cross-section and
M(x, t) is the torque in the rod. If we localize
this equation to a discontinuity s(t) (with x1 
s(t)  x2) then we have

[|M |] + ṡ[|⇢r2
g

w|] = 0, (4)

where w(x, t) = ↵̇. Starting from the balance
laws given above one can derive an expression
for the isothermal driving force across a discon-
tinuity which is given by

f
driving

= [|W |]� hT i[|�|]� hMi[||], (5)

where W (�,) is the Helmholtz free energy per
unit length of our continuum. We imagine that
W (�,) has two wells located at di↵erent points
on the �� plane. The phase corresponding to
low (high) values of � and  is denoted as j =
L(j = H), and in each phase W (�,) assumes
a quadratic form.

3 Results

Our major result is that the use of eqn. (5)
gives negative dissipation rates that violate the
second law of thermodynamics. To re-examine
the negative dissipation rate cases, we introduce
a temperature in our analysis defined locally at
mass j through

k⇥
j

(t) = KE
j

(t) + PE
j+ 1

2
(t)� Econt

j

. (6)

Here, KE
j

(t) is the kinetic energy of the jth

mass at time t, PE
j+ 1

2
(t) is the potential energy
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Figure 2: Adiabatic driving force as a function
of phase boundary velocity in a chain.

of the spring between mass j and mass j +1 at
time t and Econt

j

is the sum of kinetic energy

at mass j and potential energy in spring j + 1
2

computed using the average values of the ve-
locities and strains that satisfy the continuum
jump conditions, Econt

j

= 1
2mj

hu̇
j

i2+ 1
2Ijh✓̇ji

2+
�1(hzj�z

j�1i, h↵j

�↵
j�1i), where hyi is the tem-

poral average of y over a time corresponding to
few periods and �1 is the potential energy of one
spring. k is proportional to a specific heat in the
continuum theory. So, our definition of the lo-
cal temperature captures the ‘thermal’ portion
of the energy in the chain that is neglected in a
purely mechanical continuum theory. The ap-
propriate expression for the driving force across
a phase boundary in such a situation is

f
driving

= �E log(1 +
[|⇥|]
⇥�

), (7)

where we treat ⇥� and E as constants. This
driving force gives non-negative dissipation rates
and is plotted in figure 2.
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Abstract

We are interested here in using the Linear Sam-
pling Method [1] in its modal form [2] to im-
age defects in an elastic waveguide by using
realistic scattering data, that is data coming
from sources and receivers on the surface of the
waveguide in the time domain, as it has already
been done in the acoustic case [3].

Keywords: Linear Sampling Method, surface
data, waveguide, elasticity, time domain

1 The Linear Sampling Method: a modal

formulation

Let the space dimension be 2. We consider a
waveguide W = ⌃ ⇥ R of transverse section ⌃
and boundary �. This waveguide is made of an
isotropic material of density ⇢ and Lamé con-
stants (�, µ). Let be denoted u the displace-
ment, � the stress tensor associated with u fol-
lowing �(u) = �(divu) I + µ(ru + ru

T ), and
let us decompose

u =

✓
u

S

u3

◆
, � · e3 =

✓
t

S

�t3

◆
,

where the subscripts S and 3 denote the com-
ponents of a vector along the transverse section
and along the axis, respectively. We introduce
the mixed variables X, Y defined by:

X =

✓
t

S

u3

◆
, Y =

✓
u

S

t3

◆
.

The guided modes are the solutions with sepa-
rated variables to div�(u)+⇢!2

u = 0 inW with
boundary condition �(u) · ⌫ = 0 on �, where ⌫
is the exterior normal to W . They are given for
n 2 N by

✓
X

±
n

(x)
Y

±
n

(x)

◆
=

✓
±X

n

(x
S

)
Y
n

(x
S

)

◆
e±i�nx3 ,

with (X
n

,Y
m

)⌃ = �
mn

, where (·, ·)⌃ is a scalar
product over L2(⌃) without complex conjuga-
tion.

For a given frequency !, �
n

is real for only a fi-
nite number of guided modes, which are named
propagating modes. The other ones are either
inhomogenous or evanescent. Because we only
consider far fields, thoses modes will not be
taken into account.
The asumption is then made that any elastic
field, written in the (X,Y) variables, can be
decomposed as follows:

X|⌃ =
X

n

(X,Y
n

)⌃Xn

, Y|⌃ =
X

n

(X
n

,Y)⌃Yn

.

We then consider a defect D inside the waveg-
uide which lies between two sections ⌃± and de-
note ⌦ = W\D. The scattered field u

s±
n

(and
its Y extension Y

s±
n

) associated to the incident
propagating mode u

±
n

is solution of the follow-
ing forward problem for a given frequency !:

8
>><

>>:

div�(us±
n

) + ⇢!2
u

s±
n

= 0 in ⌦,
�(us±

n

) · ⌫ = 0 on �,
u

s±
n

= �u

±
n

on @D,
(RC),

with (RC) a radiation condition. The data in
this case are the components of the scattering
matrix S, namely the projections S±±

mn

along
the X

m

on the two sections ⌃± of the scattered
fields Ys±

n

, the number of lines and columns be-
ing limited to 2P . The Linear Sampling Method
consists in solving the following system for all
sampling points z = (z

S

, z3):
8
>>>>><

>>>>>:

P�1X

n=0

U+�
mn

h�
n

+ U��
mn

h+
n

= ei�m(R+z3)Y
m

(z
S

).p,

P�1X

n=0

U++
mn

h�
n

+ U�+
mn

h+
n

= ei�m(R�z3)Y
m

(z
S

).p,

m = 0, . . . , P � 1, where

U = S
✓
K 0
0 K

◆
,

K is the P ⇥P diagonal matrix the components
of which are ei�nR/2i�

n

, ±R is respectively the
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x3 coordinate of the section ⌃± and p is a po-
larisation parameter. If, roughly speaking, a so-
lution H = (h�, h+), with h± = (h±1 , . . . , h

±
P

),
is found, then z 2 D according to a classical
result related to the LSM [2].

2 The case of surface solicitations and

measurements

The method shown above needs data within the
waveguide, which is not realistic in the con-
text of Non Destructive Evaluation. We write
� = �0[�

d

, d being the height of the waveguide
and �0 and �

d

being respectively its lower and
upper boundary. A family of source functions
(g±

i

(x))1iM

= (g(x�x±
i

))1iM

is defined for
an even and compactly supported function g de-
fined on R with x±

i

= ±(R+i�). The di↵raction
problem satisfied by the total field u is:

8
>>>><

>>>>:

div�(u) + ⇢!2
u = 0 in ⌦,

�(u) · ⌫ = g

±
i

on �
d

�(u) · ⌫ = 0 on �0,
u = 0 on @D,
(RC).

(1)

The corresponding scattered field u

s is u � u

i,
where u

i solves the same problem (1) as u in
W without the boundary condition u = 0 on
@D. Our data are the components of a matrix
M of general term defined by a single compo-
nent of the scattered fields measured at points
(d, x±

j

)1jM

for all sources (g±
i

)1iM

. The
measurement matrix M is related to the LSM
matrix U by the relationship

M = �RUET , (2)

where R and E are some reception and emission
matrices. The conditionning of these matrices
can be rigorously analyzed and optimized: it
strongly depends on the number 2M of sources
and receivers and on the minimal distance � be-
tween them. Inverting the system (2) enables to
compute U and then to apply the modal LSM
as in section 1.
The above method can be extended to the 3D
case by considering one or several lines of source
and measurement points.

3 The case of data in the time domain

In the time domain, we consider the following
problem:

8
>><

>>:

⇢@
t

2u� div�(u) = 0 in ⌦⇥ (0,+1),
�(u) · ⌫ = g

±
i

(x)�(t) on �⇥ (0,+1),
u = 0 on @D ⇥ (0,+1),

u = @
t

u = 0 on ⌦⇥ {0}.

The data consist of the corresponding scattered
fields measured at the same points as before in
the time interval (0,+1). Here, �(t) is suit-
ably chosen so that the frequencies for which
the group velocity vanishes are avoided. By
applying a Fourier transform to our data, we
recover the previous system (1) at a given fre-
quency !. We now have multi-frequencies data,
which allows us to image the defect with a bet-
ter accuracy than in the frequency domain. In
the figure below, the reconstruction is done us-
ing multiple frequencies which correspond to a
number of propagating modes P ranging from
8 to 14.

Figure 1: Defect identification with artificial data
using multiple frequencies, M = 42

References

[1] D. Colton, A. Kirsch: A simple method for
solving inverse scattering problems in the
resonance region, in Inverse Problems 12

(1996) pp. 383-393.

[2] L. Bourgeois, F. Le Louër, E. Lunéville:
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Abstract

We collect some results obtained recently for
time-periodic solutions of nonlinear wave equa-
tions. The model problem arises fromMaxwell’s
equations in the presence of nonlinear material
responses. The emphasis will be on the aspect
of localization, i.e., the e↵ect of having solutions
that decay to zero in the (unbounded) spatial
directions.

Keywords: nonlinear wave equation, brea-

thers, calculus of variations, polychromatic

solutions

1 The problem

Our problem consists in finding suitable condi-
tions on the coe�cient V : R3 ! R and the
nonlinear function f : R3 ⇥ R ! R such that
spatially localized, time-periodic solutions E :
R3 ⇥ R ! R3 exists either for the quasilinear
problem

r⇥r⇥E+@2
t

�
V (x)E+f(x, |E|2)E

�
= 0 (1)

or the semilinear problem

r⇥r⇥E + V (x)@2
t

E + f(x, |E|2)E = 0. (2)

(1) arises, e.g., from a nonlinear Maxwell model
without charges and currents

r⇥ E + @
t

B = 0, r ·D = 0,

r⇥H � @
t

D = 0, r ·B = 0

and with Kerr-type nonlinear material laws

B = µ
0

H, D = ✏
0

(1 + �
1

(x) + �
3

(x)|E|2)E.

2 Time harmonic solutions of (1)

The ansatz: E(x, t) = U(x)ei!t reduces (1) to
the stationary problem

r⇥r⇥ U + Ṽ (x)U = f̃(x, |U |2)U in R3 (3)

with Ṽ = �!2V and f̃ = !2f . Our results are
based on the variational characterization of so-
lutions of (3) as critical points of the functional

J [U ] =

Z

R3
|r⇥U |2 + Ṽ (x)|U |2 � F̃ (x, |U |2) dx

where f̃(x, s) = @
s

F̃ (x, s). For the following
three theorems, cf. [1], [3], we make the as-
sumption of cylindrical symmetry Ṽ = Ṽ (r, x

3

),
f̃ = f̃(r, z, s), r =

p
x2
1

+ x2
2

. We denote by
�(L) the spectrum of a selfadjoint linear oper-
ator L = r⇥r⇥+Ṽ (x).

Theorem 1 (Defocusing case) Let f̃(x, s) =

�̃(x)|s|
p�1
2
. If Ṽ , �̃ satisfy

(i) �̃(x)  �C(1+ |x|↵), ↵ > 3

2

(p�1), p > 1,

(ii) Ṽ 2 L1(R3), sup Ṽ < 0

then (3) has a ground-state.

Theorem 2 (Focusing case) Let f̃(x, s) =

�̃(x)|s|
p�1
2

with 1 < p < 5 and let Ṽ , �̃ 2 L1(R3)
be 1-periodic with inf �̃ > 0. If 0 62 �(L) then

(3) has a ground-state.

Additionally, examples of cylindrically symmet-
ric coe�cients Ṽ are constructed with 0 62 �(L).

Theorem 3 (Positive definite case) Let L
have positive spectrum and assume

(i) Ṽ (r, z) is reverse Steiner-symmetric in z,

(ii) 0  f̃(r, z, s)  C(1 + s
p�1
2 ), 1 < p < 5,

(iii) f̃(r, z, s) = o(1) as s ! 0 unif. in r, z,

(iv) s 7! f̃(r, z, s) strictly increasing in s,

(v) F̃ (r, z, s)/s ! 1 as s ! 1 unif. in r, z,

(vi) �
�

(r, z, s) := f̃(r, z, (s + �)2)(s + �)2 �
f̃(r, z, s2)s2 is symmetrically decreasing in

z for all s � 0, � � 0.

Then (3) has a ground-state.

Examples of nonlinearities satisfying (i)–(vi) are
given.
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3 Real-valued breathers for (2)

Except for the sine-Gordon breather and [2] very
few examples of real-valued breather solutions
for nonlinear wave equations are known. How-
ever, for the vector-valued semilinear problem

(2) with f(x, s) = q(x)± �(x)|s|
p�1
2 the follow-

ing result was proven in [4].

Theorem 4 Let T = 2⇡
q

V (0)

q(0)

and p > 1. As-

sume V, q and � are positive radially symmetric

and C2

with sup q

�

< 1 and T
q

q(r)

V (r)

7 2⇡ on

R3 \ {0}. Assume further that

�����2⇡ � T

s
q(r)

V (r)

�����

1
p�1

=

⇢
O(e�↵r) as r ! 1,
o(1) as r ! 0.

Then (2) has a non-zero T -periodic, real-valued,
exponentially decaying solution.

The idea is to reduce (2) via the ansatz E(x, t) =
 (r, t)x

r

, r = |x| to an ODE in time with r = |x|
as a parameter and to discuss the ODE in phase
space. Under exactly the same assumptions on
q, V,� also complex-valued exponentially decay-
ing solutions E(x, t) = ei

2⇡
T t (r)x

r

exist.

Our final example illustrates how real-valued
breathers can be constructed via the calculus of
variations. Here we consider f(x, s) = �(x)|s|
and polarized solutions E(x, t) = (0, u(x

1

, t), 0)T

with a real valued time-periodic profile u : R⇥
R ! R. With V,� depending only on x

1

and
writing x instead of x

1

the wave equation (2)
becomes

V (x)u
tt

� u
xx

= �(x)u3 in R⇥ R.

Our special choice is

�(x) = �(x), V (x) = ↵+ ��per(x),↵,� > 0,

i.e., � is the delta-distribution centered at 0
and V is made from a 1-periodic extension of
the delta-distribution centered at 1/2. (2) will
be solved by an even-in-x function u(�x, t) =
u(x, t) satisfying the nonlinear Neumann prob-
lem
8
>><

>>:

V (x)u
tt

� u
xx

= 0 in (0,1)⇥ R,
�2@

x

u(0, t) = u(0, t)3,
u(x, t) ! 0 as x ! 1

u(x, t+ T ) = u(x, t)

(4)

Theorem 5 Let ↵ > 0, � > 4↵/⇡. Then (4)
has infinitely many real-valued breathers which

are even in x and T/2-antiperiodic in t with

T = 4
p
↵.

The variational framework comes into play
as follows. We use a Fourier-decomposition in
time

u(x, t) =
X

kodd

a
k

�
k

(x)eik!t, a�k

= ā
k

with normalized Bloch-modes �
k

which are ex-
ponentially decaying as x ! 1 and �

k

(0) = 1.
The nonlinear Neumann boundary condition

�2@
x

u(0, t) = u(0, t)3

becomes for odd k = 2l + 1

⇡|k|(�1)la
k

+O(1)a
k

= (a ⇤ a ⇤ ā)
k

. (5)

In the suitable sequence Hilbert-space solutions
of (5) can be found as critical points of a strongly
indefinite functional J : H ! R.

Concluding remarks. By construction we get
polychromatic waves

P
k

a
k

�
k

(x)eik!t with a
k

6=
0 for infinitely many k. Here even the ground-

states are polychromatic.
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Abstract

Considering time-harmonic inverse scattering of
either electromagnetic or acoustic waves from
an inhomogeneous anisotropic medium, we pro-
vide Tikhonov and sparsity-promoting regular-
ization techniques in Banach spaces. To this
end we analyze the dependence of the scattered
fields and their derivatives on material param-
eters of an admissible set equipped with Lp-
topology. Therewith we first show convergence
of non-linear Tikhonov regularization against a
minimum-norm solution and second extend that
method to a sparsity-promoting one.

Keywords: inverse medium scattering, regu-
larization, sparsity

1 The scattering problem

We consider a penetrable and anisotropic in-
homogeneous medium D ⇢ Rd (d = 2, 3 in the
acoustic and d = 3 in the electromagnetic case),
which is either described by a matrix-valued
contrast Q 2 Cd⇥d in the acoustic case or by
the inverse of relative permittivity "

r

2 C3⇥3

in the case of electromagnetic scattering, where
D is additionally assumed to be non-magnetic.
To simplify notation both material parameters
will be named ⇢ in the sequel, an element of
a bounded subset P of Lp = Lp(B,Cd⇥d) for
p 2 [1,1] in the acoustic and p = 1 in the
electromagnetic case on a ball B containing D.
Roughly speaking P provide some bounds for
the real and imaginary parts of ⇢, such that
the underlying solution approach as well as ba-
sic concepts of scattering theory are applicable,
using Meyers’ bounds [1,2] in the acoustic case.

The propagation of acoustic scattered waves
us in Rd generated by an incident field ui is
governed by

div((Id+⇢)rus) + k2us = � div(⇢rui), (1)

and the scattered magnetic field Hs in R3 by

curl(⇢ curlHs)� k2Hs = curl((Id�⇢) curlui).
(2)

Note that the scattered fields are radiating, i.e.
us satisfies Sommerfeld’s radiation condition

lim
|x|!1

|x|(d�1)/2

✓
dus

d|x|(x)� ikus(x)

◆
= 0,

and Hs the Silver-Müller radiation condition

lim
|x|!1

curlHs(x)⇥ x̂� ikHs(x) = 0,

both uniformly in all directions x̂ = x/|x| of the
unit sphere Sd�1.

2 The solution operator

Because we require us to be locally H1 and ac-
cordingly Hs 2 H

loc

(curl,R3), the solutions of
(1) and (2) have to be understood in the weak
sense, i.e. partially integrated against test func-
tions gain sesquilinear forms, with correspond-
ing solution operators L(⇢, ui).

Under the assumption of unique solvability
for all parameters ⇢ 2 P, one can show that
existence and continuous dependence of this so-
lution follows from uniqueness due to the theory
of Riesz-Fredholm. Since we will handle pertur-
bations ⇢0 of ⇢, we therefore assume that ⇢0 is
small enough such that ⇢ + ⇢0 2 P. Then we
have that the solution operator is continuous
and di↵erentiable in the following sense:

Theorem 1 For {⇢0n}n2N such that ⇢+⇢0n 2 P
for all n 2 N and k⇢0nkLp

n!1���! 0, it holds that

kL(⇢+ ⇢0n, u
i)� L(⇢, ui)� L0(⇢, ui)[⇢0n]kH1

k⇢0nkLp
! 0.

3 The forward operator

From now on, we rely on incident fields ui in
form of Herglotz wave functions

vg(x) =

Z

Sd�1
eikx·✓g(✓) dS(✓), for x 2 Rd

and for g 2 L2(Sd�1) (or rather for square-
integrable tangential vector fields g 2 L2

t (S2)),
that solve the homogeneous Helmholtz equation
or Maxwell’s equations.
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Since the scattered field L(⇢, vg) (represen-
tative for the acoustic or rather the electromag-
netic problem) has an asymptotic behavior as
a spherical function for |x| ! 1, its far field
pattern (L(⇢, vg))

1 defines the well-known far
field operator F⇢ on L2

(t)(S
d�1) such that F⇢g =

(L(⇢, vg))
1. Now, for q 2 [1,1) we denote the

qth Schatten class by Sq, a Banach space of
compact operators on L2

(t)(S
d�1). Then using a

trace class operator, which–roughly speaking–
maps the total field L(⇢, vg) + vg to the cor-
responding far field pattern, allows to define a
contrast-to-far field mapping

F : P ⇥ L2

(t)(S
d�1) ! Sq, q � 1,

which becomes the forward operator of our prob-
lem. Note that F⇢ is compact and belongs to the
set S

1

of trace class operators on L2

(t)(S
d�1), as

the integral kernel (L(⇢, vg))
1 : Sd�1 ⇥ Sd�1 !

C of F(⇢) is analytic in both variables. Due to
the embedding `p ⇢ `q for 1  p < q  1, it
even belongs to Sq.

Since the forward operator F is linked to the
solution operator L, its properties of continuity
and di↵erentiability can be transferred.

4 Regularization results

For the inverse problem we consider the stable
approximation of ⇢

exa

from perturbed measure-
ments of its far field operator F(⇢

exa

). In detail,
we seek to approximate ⇢ for noisy measure-
ments F �

meas

such that

kF(⇢
exa

)� F �
meas

kSq 6 �.

Therefore for a convex regularization functional
R we minimize the Tikhonov functional

J↵,�(⇢) :=
1

2
kF(⇢)� F �

meas

k2Sq
+ ↵R(⇢).

4.1 The acoustic case

In the acoustic case we can benefit from the
compact embedding of W 1,p⇤ into Lp, where
p⇤ = dp

p+d 2 (1, d), such that a classical non-
linear Tikhonov regularization result, e.g. see [3],
is derived for R(⇢) = k⇢kp⇤

W 1,p⇤ .

A sparsity-promoting alternative is based on
a wavelet basis of W 1,p⇤ , such that

R(⇢) =
1

r

X

j

!j |⇢j |r > C(r)k⇢krW 1,p⇤ ,

for r 2 [1, p⇤] and wavelet coe�cients ⇢j (e.g.
Daubechies or Meyer wavelets).

Recall that ⇢† is called a R-minimizing so-
lution to F(⇢†) = F(⇢

exa

), if

R(⇢†) = min
R(⇢)

�
⇢ 2 P \W 1,p⇤ , F(⇢) = F

exa

.

Thus we gain a statement of sparsity regular-
ization:

Theorem 2 J↵,� possesses a minimizer in P\
W 1,p⇤

. If �n ! 0 and ↵n = ↵n(�n) such that

0 < ↵n ! 0 and 0 < �2n/↵n ! 0,

then every sequence of minimizers of J↵n,�n con-

tains a subsequence, weakly converging to an R-

minimizing solution ⇢† in Sq.

4.2 The electromagnetic case

Somewhat weaker results compared to Theo-
rem 2 can also be stated in the electromagnetic
case via the following approach:

Let ⇢j be coe�cients of a wavelet basis in
L2 such that all basis functions are also in L1.
Thus a weighted `p-norm then gives an appro-
priate penalty term,

R(⇢) =
1

p

X

j

!j |⇢j |p, p 2 (1, 2],

for weights (!j)j satisfying k⇢kL1  R(⇢)
To avoid Hölder continuous spaces one can

otherwise handle functions of bounded varia-
tion. Therefore we restrict the parameter set
such that also the total variation of ⇢ 2 P is
bounded and thus the penalty term becomes

R(⇢) = k⇢kBV = k⇢kL1 + TV (⇢).
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Searching for a stochastic background of gravitational radiation
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Abstract

We give a brief introduction to stochastic
gravitational-wave backgrounds and discuss the
standard detection methods used to search for
them.
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1 Introduction

The direct detection of gravitational waves (GWs)
by the Laser Interferometric Gravitational-Wave
Observatory (LIGO) [1] has opened a radically
new way of observing the universe. The first
detected event (GW150914) was observed on
Sep 14th, 2015 by the two LIGO detectors [2].
The observed signal consisted of the final inspi-
ral and merger of a pair of black holes (roughly
30 M� each) at a distance of ⇠1.3 billion light-
years from Earth. The energy in the GWs emit-
ted by this system was approximately 3M�c

2,
corresponding to a peak luminosity of more than
10 times the combined luminonsity of all the
stars in all the galaxies in the visible universe!
The second event (GW151226), observed on Dec
26th 2015, also consisted of the inspiral and
merger of a pair of black holes, this time with
component masses of approximately 14 M� and
7 M�, at a distance of ⇠ 1.4 billion light years
from Earth [3]. The fact that such energetic
events were observed only in terms of the GWs
they emitted illustrates the potential for new
discoveries that comes with the opening of this
new window onto the universe.

2 Stochastic gravitational waves

GW150914 and GW151226 were single events,
observable with both template-based and burst
searches with relatively high significance [2, 3].
But in addition to these “loud” events, we ex-
pect there to be many more “quiet” events (at
larger distances from Earth or with smaller com-
ponent masses), which cannot be individually

detected. The combined signal from the final
mergers of binary black holes from the popula-
tion that gave rise to GW150914 and GW151226

is “popcorn-like”, in the sense that the dura-
tion of an individual signal is small compared
to the separation in time between successive sig-
nals. Since the individual arrival times are ran-
domly distributed, the combined signal is itself
random—i.e., an example of a stochastic back-

ground of gravitational radiation.

More generally, a stochastic background of
gravitational radiation is any random signal pro-
duced by a large number of weak, independent,
and unresolved sources. A stochastic background
can be popcorn-like (described above) or it can
be a confusion noise, produced by signals that
overlap in time or frequency. It can be either
astrophysical or cosmological in origin. In many
ways, a stochastic GW background is analogous
to the cosmic microwave background (CMB)—a
stochastic background of electromagnetic radia-
tion, produced roughly 400,000 years after the
Big Bang.

Given the weakness of the gravitational in-
teraction, cosmological GWs are expected to de-
couple from matter in the very early universe
much earlier than any other form of radiation.
The detection of a cosmological background would
thus allow us to study the physics of the earliest
times and highest energy scales, unachievable in
standard laboratory experiments. On the other
hand, the detection of a stochastic background
of astrophysical origin, such as that from the
population of binary black holes, would provide
information about the spatial distribution and
formation rate of this source.

3 Characterizing stochastic GWs

The simplest type of stochastic background is
Gaussian, stationary (in time), unpolarized, and
isotropic (GW power on the sky equal from all
directions). Such a background is characterized
by a single quantity Sh(f), which is the GW
strain power spectral density (units strain2/Hz)
summed over both polarizations and integrated
over the sky. It is related to the fractional en-
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ergy density spectrum ⌦gw(f) via

⌦gw(f) ⌘
1

⇢c

d⇢gw
d ln f

=
2⇡2

3H2
0

f3Sh(f) , (1)

where ⇢c = 3c2H2
0/8⇡G

2 is the critical energy
density needed to close the universe. For an
anisotropic distribution of GWs, the background
is described by a function P(f, n̂), which speci-
fies the GW power coming from direction n̂. It
is related to Sh(f) via Sh(f) =

R
d2⌦n̂ P(f, n̂).

4 Distinguishing signal from noise

Detecting a stochastic background is challeng-
ing because a stochastic signal is e↵ectively an-
other source of noise in a single detector. As
such, one must either construct null combina-
tions of the data (which act as an instrumental
noise monitor), or use instrumental noise mod-
eling to help distinguish the GW signal compo-
nent from instrumental noise. Better yet, with
two or more detectors, one can cross-correlate

the data, taking advantage of the common GW
signal incident on all detectors. Cross-correlation
is a robust method for searching for a stochastic
background, provided the instrumental and en-
vironmental noise are not also correlated across
the detectors.

5 Detection methods

To claim detection of a stochastic GW back-
ground, one needs to show that the observed
data are more consistent with a model M1 that
consists of a stochastic signal plus instrumental
noise than with a model M0 that consists of
instrumental noise alone. This can be done [4]
using either frequentist statistics or Bayesian in-

ference, both of which are typically based on
a likelihood function p(d|~✓↵,M↵), which gives
the probability of the observed data d, given
a model M↵ having parameters ~✓↵. From the
likelihood function, one can construct the (fre-
quentist) maximum-likelihood ratio statistic

⇤ML(d) ⌘
max~✓1 p(d|

~✓1,M1)

max~✓0 p(d|
~✓0,M0)

, (2)

or Bayes’ factor (for Bayesian inference)

B10(d) ⌘
R
d~✓1 p(d|~✓1,M1)p(~✓1|M1)R
d~✓0 p(d|~✓0,M0)p(~✓0|M0)

, (3)

where p(~✓↵|M↵) is the prior probability distri-
bution for the parameters ~✓↵ associated with

modelM↵. A large value of ⇤ML(d) or lnB10(d)
is evidence in favor of model M1 over M0.

6 Observational results

To date, a stochastic background of gravita-
tional radiation has not been detected, but there
are constraints on the strength of both isotropic
and anisotropic backgrounds using data from
a variety of detectors spanning the GW spec-
trum. Figure 1 shows current and projected
bounds on ⌦gw(f) for an isotropic background
from CMB measurements, pulsar timing obser-
vations (PTA), and ground-based interferome-
ters [5].

Figure 1: Current and projected bounds on
⌦gw(f). The colored lines are di↵erent theoret-
ical predictions for a cosmological background.
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Abstract

When higher order, beyond KdV, shallow wa-
ter equations are considered, momentum and
energy are no longer exact invariants. How-
ever, adiabatic invariants (AI) can be found.
Their existence results from the general theory
of near-identity transformations (NIT) which al-
low us to transform higher order nonintegrable
equations to asymptotically equivalent (when
small parameters tend to zero) integrable form.
The exactness of these adiabatic invariants is
shown in numerical tests.

Keywords: 02.30.Jr, 05.45.-a, 47.35.Bb

1 Introduction

It is a well known fact that the Korteweg – de
Vries equation (KdV) possesses an infinite num-
ber of invariants, see, e.g. [1, 2], also known as
integrals of motion. The lowest order invari-
ant assures volume conservation of the fluid (as
the fluid is assumed to be incompressible this is
equivalent to mass conservation). The second
invariant is related to the conservation of the
fluid momentum. The third order KdV invari-
ant is related to the energy. This relation is not
so obvious. As shown in [3,4] the energy of the
fluid has an invariant form only in a particu-
lar reference frame moving with the velocity of
sound. In the fixed frame energy has a nonin-
variant form. However, it varies only by a small
fraction, particularly when collisions of solitons
occur, see [4].

Several authors have extended the KdV to
second order (KdV2). Here the term second

order means the order of perturbation expan-
sion with respect to small parameters. However,
this improved form is short of exactly conserved
entities other than the ubiquitous mass law.

2 Extended KdV equation

We consider the second order KdV equation [4,
Eq. (1)], (↵ and � are small expansion param-

eters, ↵ = a/h, � = (h/l)2, where a, h, l are
wave amplitude, water depth and average wave-
length, respectively)

⌘

t

+ ⌘

x

+
3

2
↵ ⌘⌘

x

+
1

6
� ⌘3x �

3

8
↵

2
⌘

2
⌘

x

(1)

+ ↵�

✓
23

24
⌘

x

⌘2x +
5

12
⌘⌘3x

◆
+

19

360
�

2
⌘5x = 0,

called by Marchant and Smyth [5, Eq. (2.8)] the
”extended KdV”. We call it KdV2.

It is well known, see, e.g. [2, Ch. 5], that an
equation of the form

@T

@t

+
@X

@x

= 0, (2)

where neither T (an analog to density) nor X

(an analog to flux) contain partial derivatives
with respect to t, corresponds to some conser-

vation law. It can be applied, in particular, to
the KdV equations and to the equations of KdV
type like (1). If both functions T and X

x

are
integrable on (�1,1) and lim

x!±1
X = const

(soliton solutions), then integration of equation
(2) yields

d

dt

✓Z 1

�1
T dx

◆
= 0 or

Z 1

�1
T dx = const. (3)

since

Z 1

�1
X

x

dx=X(1, t)�X(�1, t) = 0. (4)

The same conclusion applies for periodic solu-
tions (cnoidal waves), when in the integrals (3),
(4) limits of integration (�1,1) are replaced
by (a, b), where b� a = ⇤ is the space period of
the cnoidal wave (the wave length).

In [4], we noted that I

(1) =
R1
�1 ⌘ dx is an

invariant of equation (1) and represents the con-
servation of mass.

The second invariant of KdV, I(2)=
R1
�1⌘

2
dx

is not an invariant of KdV2, since upon multi-
plication of equation (1) by ⌘ one obtains

0=
@

@t

⌘

2

2
+

@

@x

F (⌘, ⌘
x

, . . . , ⌘4x) +
1

8
↵� ⌘⌘

x

⌘2x.

(5)
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Since the last term in (5) cannot be expressed as
@

@x

X(⌘, ⌘
x

, . . .),
R +1
�1 ⌘

2
dx is not a conserved

quantity. There are no exact higher order in-
variants of (1).

3 Near-identity transformation (NIT)

In [7] we derived an AI for KdV2 using mainly
a direct method consisting in an approximate
elimination of nonintegrable terms in eqautions
like (5). In this paper we stress another method
based on NIT introduced in 1985 by Kodama
[8]. NIT allows us to transform a given second
order KdV type equation into Hamiltonian form
if one neglects higher (third) order terms in the
resulting equation. Introduce a near-identity
transformation of the following form

⌘ = ⌘

0 + ↵a⌘

02 + �b⌘

0
xx

+ · · · (6)

[In the following we use the sign +. The in-
verse transformation, up to second order terms,
is ⌘

0 = ⌘ � ↵a⌘

2 � �b⌘

xx

+ · · · ].
When (6) is inserted into KdV2 (1) and third

order terms neglected the resulting equation for
⌘

0 has the same form as (1) but with some co-
e�cients altered. This property allows us to
choose the parameters a, b of NIT such that the
transformed KdV2 equation takes a Hamilto-
nian form. This condition implies

�

↵

a� 3b = �1

8

�

↵

. (7)

Then there exist exact invariants of the trans-
formed KdV2 equation which under inverse NIT
transformation become adiabatic invariants of
original equation (1). The general form of the
second invariant is thenZ 1

�1
⌘

02
dx

Z 1

�1

⇥
⌘

2 � 2↵a⌘3 + 2�b⌘2
x

⇤
dx. (8)

The third invariant is

I

(3)
ad = �1

4

Z 1

�1

⇢✓
⌘

3 � 1

12

�

↵

⌘

2
x

◆
(9)

+ ↵

✓
�5

2
a� 1

8

◆
⌘

4 +

✓
19

180
+

2

3
b

◆
�

2

↵

2
⌘

2
2x

��

↵

✓✓
5

6
� 6b

◆
⌘⌘

2
x

+
4

3
a⌘⌘

2
2x

◆��
dx.

In (8)-(9) a, b have to fulfil relation (7). Our
numerical studies [7] confirmed that relative de-
viations of these AI from constant values are in-
deed very small (of the order of 10�5�10�4) for
several multisoliton waves evolving according to
the KdV2.
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Abstract

Using layer potential techniques we explore the
plasmon resonance phenomenon for nanoparti-
cles. We give asymptotic formulas on the size
of the particle for: the shift in the resonances
as the size of the particles increases, the far and
inner field at the plasmonic resonances and the
heat generated by them.
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1 Introduction

Plasmon resonant nanoparticles are particles whose
size range in the order of a few to a hundred
nanometers and whose material has a negative
permittivity and permeability. These proper-
ties give them unique capabilities of enhancing
the brightness and directivity of light, confining
strong electromagnetic fields, and outcoupling
of light into advantageous directions, when illu-
minated at the right frequency [3]. Plasmonic
nanoparticles find their use, among many, as la-
bels in molecular biology and thermotherapy as
nanometric heat-generators.

As the size of the nanoparticles increases,
the resonance frequency shifts. This was ob-
served in, for instance, [2]

In this paper we present results concerning
their mathematical analysis using layer poten-
tial and asymptotic analysis techniques. We
precisely quantify the shift phenomenon and give
asymptotic formulas for the far field, inner far
field and heat generation.

2 Layer potential formulation

Let ui be the incident wave of frequency ! and
D be the particle of size �. The scattering prob-
lem for a TM polarized wave can be modeled by

the following Helmholtz equation

r · 1

µD
ru+ !2"Du = 0 in R2\@D,

u+ � u� = 0 on @D,

1

µm

@u

@⌫

����
+

� 1

µc

@u

@⌫

����
�
= 0 on @D,

(1)

and u � ui satisfies the Sommerfeld radiation
condition. Here

km = !
p
"mµm, kc = !

p
"cµc,

and

"D = "m�(R3\D̄)+"c�(D̄), µD = "m�(R3\D̄)+"c�(D),

We assume that "m and µm are real and strictly
positive and that <µc < 0 and =µc > 0. Let
G(x, y, k) be the green function for the Helmholtz
equation. By using the following single-layer
potential and Neumann-Poincaré integral oper-
ator

Sk
D[ ](x) =

Z

@D
G(x, y, k) (y)d�(y), x 2 R2,

(Kk
D)

⇤[ ](x) =

Z

@D

@G(x, y, k)

@⌫(x)
(y)d�(y), x 2 @D,

we can represent the solution u in the following
form

u(x) =

⇢
ui + Sk

m

D [ ], x 2 R2\D̄,
Sk

c

D [�], x 2 D,

where  ,� 2 H� 1
2 (@D) satisfies the following

system of integral equations on @D:
8
>>><

>>>:

Sk
m

D [ ]� Sk
c

D [�] = ui,

1
µ
m

�
1
2Id+ (Kk

m

D )⇤
�
[ ] + 1

µ
c

�
1
2Id� (Kk

c

D )⇤
�
[�]

=
@ui

@⌫
,

(2)
In what follows we note K⇤

D := (K0
D)

⇤ and SD =
S0
D.
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3 Main results

We write system (2) as A(�,!)[ ,�] = [ui,
@ui

@⌫
].

The plasmonic resonances occur when an
eigenvalue of A(�,!) approchaes zero. In the
limit where the size of the particle is going to
zero (or quasi-static limit), the resonance oc-

curs at the frequencies where �µ :=
µc + µm

2(µc � µm)
is very close to one of the eigenvalues of the
Neumann-Poincare operator K⇤

D. We note this
eingenvalues by �0,�1,�2... and by '0,'1,'2...
the associated eigenfunctions.

Using asymptotic analysis in system (2) we
have the following theorem, which confirms the
quasi-static approximation for plasmonic reso-
nances and quantifies the shift in the resonances
as the particles size increases.

Theorem 1 Let ⌧0, ⌧1, ⌧2, ... be the eigenvalues

of A(�,!). The following asymptotic expansion

hold

⌧j(!) = �µ � �j + (!�)2 log(!�)⌧j,1 +O((!�)2),

where

⌧j,1 = �(AD,1['j ],SD['j ])L2 ,

and AD,1 is a compact operator on L2(@D).

Finding asymptotic solutions to system (2)
gives asymptotic expansion in the far field and
inner field.

Theorem 2 The solution u to (1), for x away

from the domain D, centered at the origin, has

the following asymptotic uniformly in x

u(x) = ui(x) +ryG(x, 0, km) ·M(�µ, D)rui(0)

+O

✓
�4

dist(�µ,�(K⇤
D))

◆
,

where �(K⇤
D) denotes the spectrum of K⇤

D in

L2(@D) and M(�µ, D) :=
R
@D(�Id�K⇤

D)
�1[⌫]x d�(x).

Theorem 3 The solution u to (1), inside the

domain D, centered at the origin, has the fol-

lowing asymptotic in L2(D)

u = ui(0) +
⇣
�x+ SD

�
�µId�K⇤

D

��1
[⌫]

⌘
·rui(0)

+O

✓
�3

dist(�µ,�(K⇤
D))

◆
,

where ⌫ is the outward-going normal to D.

The inner field enhancement translates into a
change of temperature governed by the heat
equation

8
>>>>>>>><

>>>>>>>>:

⇢C
@⌧

@t
�r · �r⌧ =

!

2⇡
=(")|u|2, in (R2\@D)⇥ (0, T )

⌧+ � ⌧� = 0 on @D,

�m
@⌧

@⌫

����
+

� �c
@⌧

@⌫

����
�
= 0 on @D,

⌧(x, 0) = 0,
(3)

where ⇢ = ⇢c�(D) + ⇢m�(R2\D) is the mass
density, C = Cc�(D)+Cm�(R2\D) is the ther-
mal capacity, � = �c�(D) + �m�(R2\D) is the
thermal conductivity and T 2 R is the final time
of measurements.

Theorem 4 Let u be the solution to (1). The

solution ⌧ to (3), in the boundary of a plasmonic

particle occupying a domain D, has the follow-

ing asymptotic, uniformly in (x, t) 2 @D⇥(0, T )

⌧ = FD + Vb
c

D (��Id�K⇤
D)

�1[
@FD

@⌫
]

+O

✓
�4 log �

dist(�µ,�(K⇤
D))

2

◆
.

where Vb
c

D is the single layer heat potential, ⌫ is

the outward-going normal to D, �� := �
c

+�
m

2(�
c

��
m

) ,

bc :=
⇢
c

C
c

�
c

and

FD :=
!

2⇡�c
=("c)

Z t

0

Z

D

e
� |x�y|2

4b
c

(t�t

0)

4⇡bc(t� t0)
|u|2(y)dydt0.
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Abstract

Semi-analytical and numerical methods are pre-
sented to describe the attenuation of water
waves in a two-dimensional fluid domain, which
has its surface covered by a rough thin elas-
tic beam and is of finite depth. Roughness of
the beam is incorporated via a random pro-
cess describing the variations in the properties
of the beam’s mass and rigidity. The semi-
analytical method is based on a multiple-scale
expansion of the velocity potential, from which
an equation can be derived describing the at-
tenuation of the e↵ective wave field. The nu-
merical results, which are obtained via a step-
approximation method, validate the multiple-
scale approach for small-amplitude beam rough-
ness.

Keywords: random media, wave attenuation,
e↵ective wave field, multiple-scale approach

Introduction

Scattering and wave-localisation phenomena oc-
cur in many branches of wave science for in-
cident waves propagating through rough (ran-
domly disordered) media. However, models for
wave propagation along elastic plates floating
on water are often based on homogeneous plate
assumptions, i.e. constant material properties
and constant thickness. This assumption may
not hold and the wave-propagation character-
istics over large distances may be a↵ected by
the plate roughness causing attenuation of the
waves.

Here, we extend the work of Rupprecht et
al. [1] who considered wave propagation along a
rough thin-elastic beam in vacuo to a model of
a rough thin-elastic beam floating on water of
finite depth. This extension introduces a verti-
cal dimension to the problem, and a 5th-order
boundary condition at the interface of water
and the elastic beam has to be satisfied. The
beam roughness is modelled by small-amplitude,
continuous variations in beam mass and rigid-
ity.

A semi-analytical multiple-scale approxima-
tion for the velocity potential is used to describe
the attenuation of the e↵ective wave field, i.e.
the mean wave field with respect to realisations
of the random medium. We compare the results
with those obtained from a random sampling
approach, which is based on a step approxima-
tion of the roughness profile.

Mathematical model

We consider an infinitely long thin-elastic beam
of negligible draught floating on water of con-
stant depth H. The equilibrium fluid surface
coincides with z = 0, where the coordinate z
denotes the vertical axis pointing upwards. The
beam extends to infinity in both horizontal di-
rections (with horizontal coordinate x) and is
modelled using Euler–Bernoulli theory. The
schematic is shown in the figure below.

x

z

z = 0

Rough beam

Wave

Water

Flat bed

z = �H

Under the usual assumptions of linear water-
wave theory (i.e. fluid incompressible, inviscid
and its flow irrotational) the velocity potential
is described by Laplace’s equation. Further-
more, the sea-floor is assumed to be imperme-
able. Using the linearised version of Bernoulli’s
beam equation and the linearised kinematic sur-
face condition at the interface between beam
and water, the following PDE system is ob-
tained for x 2 (�1,1),

�� = 0, z 2 (�H, 0), (1a)

@z� = 0, z = �H, (1b)

(@2
x(b@

2
x)� ↵g + 1)@z�� ↵� = 0, z = 0, (1c)

where ↵ is the angular frequency squared over
the gravitational acceleration, g the beam mass
and b its rigidity (both functions of x). For the
varying mass and the varying rigidity
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problem, respectively, the beam roughness is
modelled as a (continuous) Gaussian autocor-
related random process with correlation length
lG and small roughness amplitude ".

Random sampling step approximation

We consider a monochromatic wave of unit-am-
plitude propagating in positive x-direction. For
a given roughness realisation on a long, finite in-
terval (0, L) for the varying mass and the vary-
ing rigidity problem (quantities constant out-
side of this interval), the roughness profile is
approximated by a piece-wise constant function.

Whereas the solution in the work of Rup-
precht et al. [1] only consists of one travelling
and one evanescent wave mode in both direc-
tions and each subinterval, the full linear solu-
tion of the the velocity potential here contains
one travelling, two damped-travelling and an in-
finite number of evanescent wave modes in both
directions and each subinterval. For numeri-
cal computations, the full linear solution has to
be approximated with a finite number of wave
modes and an iterative algorithm is used to ob-
tain the solution in the rough interval.

The beam deflections ⌘, which can be ob-
tained via @t⌘ = @z� for z = 0, are calcu-
lated for large ensembles containing approxi-
mately 1500 samples of randomly generated
beam realisations, which share the same rough-
ness amplitude, ", and correlation length, lG.
The e↵ective attenuation rate, Q, is extracted
from the e↵ective wave field, h⌘i, where h·i de-
notes the ensemble average of the included quan-
tity with respect to realisations, i.e. the e↵ective
attenuation rate is defined via

|h⌘i|/⇠ e�Qx (0 < x < L). (2)

Multiple-scale approximation

The semi-analytical approach to approximate
the wave attenuation considers two scales: the
local scale l (coordinate denoted by x), which is
of the order of the wave length and roughness
correlation length, and the observation scale L
(coordinate denoted by x2), over which attenu-
ation is observed. It is assumed that the scales
are related by L = "�2l for small " ⌧ 1. Apply-
ing a multiple-scale expansion of the complex,
time-harmonic potential �(x, z) gives

�(x) = �0(x, x2) + "�1(x, x2) + "2�2(x, x2) + . . . ,

where x2 = "2x. Applying this expansion to
the underlying PDE system (1) and separating

the resulting equations with respect to orders of
" provides systems of order O(1),O("),O("2).

Solving the systems of orders O(") and O("2)
using the stationarity of the random processes
which describe the varying mass and varying
rigidity over (�1,1), respectively, leads to the
evolution equation of the leading-order-wave am-
plitude, A(x2), from which the attenuation co-
e�cient

Q = Im

"
k̄3⇣

4b̄k̄5 tanh(k̄H) + ↵
�
1 + 2k̄H

sinh(2k̄H)

�

#
(3)

can be derived, where k̄ corresponds to the
travelling wave mode for a beam with averaged
mass and mean rigidity b̄. ⇣ is a complex-valued
integral, which is evaluated numerically.

Results

The figure below shows non-dimensional atten-
uation rates predicted by the numerical simula-
tions (circles) and multiple-scale approximation
(solid line) as functions of non-dimensional cor-
relation length, for the varying mass (left-hand
panel) and the varying rigidity problem (right-
hand panel).

Varying mass

0

2

4

6

Q
/k̄

[⇥10�4]

" = 5⇥ 10�2

0 1 2 3 4 5
k̄lG

Varying rigidity

" = 5⇥ 10�2

0 1 2 3 4 5
k̄lG

We can observe good agreement between the
two solution approaches for both varying mass
and varying rigidity problem in the small cor-
relation length regime. The agreement of the
multiple-scale approach in both cases suggests
that varying mass and varying rigidity produce
same attenuation. Results for the phase changes
will be shown at the conference.
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Abstract

We are interested in solving sound-hard scat-
tering problems by two obstacles with a large
obstacle subject to high-frequency regime rela-
tively to the wavelength and a small one subject
to low-frequency regime. The iterative method
presented allows to decouple the two obstacles
and to use Geometric Optics for the large ob-
stacle and Boundary Element Method for the
small obstacle.

Keywords: Helmholtz equation, High-frequency
problems, Boundary Element Method, Multiple
scattering.

1 Introduction

Literature provides a lot of interest and tech-
niques for multiple scattering problems and high-
frequency problems, see for example [1–3].

In this talk, we want to solve multiple scat-
tering problems with two obstacles (or more):
a large obstacle ⌦1 subjects to high-frequency
techniques (Geometric Optics) and a small one
⌦2, see Figure 1. We used disks for simplicity
but the shapes can be more complicated.

u

inc

⌦1

⌦2 �
⌦
ext

Figure 1: Geometric configuration : a large ob-
stacle (⌦1) and a small one (⌦2).

Geometrics Optic (G.O.) is really interest-
ing for high-frequency problems but has several
drawbacks like: i) di�culty to evaluate the nor-
mal derivative of the solution on the boundary
of ⌦2, ii) di�culty to find enough rays going
from ⌦1 to the small obstacle ⌦2 and, iii) when
⌦2 has a complicated shape, di�culty to obtain
an accurate solution in the vinicity of ⌦2.

The iterative method presented tackles these
di�culties by coupling Galerkin Boundary El-
ement Method and Geometrics Optic using an

iterative method where both obstacles can be
considered independently (see Section 2). Then,
instead of solving an integral equation with Neu-
mann boundary condition on @⌦2, we define
an equivalent problem just with the knowledge
of the trace of the G.O. solution on an addi-
tional boundary. This equivalent problem is in-
troduced in Section 3.

Notations
Let ⌦1 be the large obstacle, ⌦2 the small one
and � = @⌦2. Finally, we denote the exterior
domain by ⌦

ext

= R2 \
�
⌦̄1 [ ⌦̄2

�
, the incident

field is u
inc

and the outgoing normal is ⌫. The
initial Helmholtz problem to solve is

8
>>><

>>>:

��u(x)� k

2
u(x) = 0, x 2 ⌦

ext

@u

@⌫

(x) = �@uinc
@⌫

(x), x 2 @(⌦̄1 [ ⌦̄2)

Radiation condition at infinity.

(1)

2 The iterative method

The iterative method decouples the obstacles
and allows to solve iterative problems where in-
teractions between obstacles are taken into ac-
count by the boundary conditions that are up-
dated at each iteration [1]. We denote by u1 and
u2 the scattered fields produced respectively by
⌦1 and ⌦2.

Each step of the iterative method consists
in solving two problems: i) the scattering by
⌦1 using G.O. with an incident field that is the
sum of @uinc

@⌫

+ @u2
@⌫

the normal derivative of the
scattered field by ⌦2 (initialized to zero) and
ii) the scattering problem for ⌦2 with boundary
condition on �: @uinc

@⌫

+ @u1
@⌫

. The total scattered
field by these two obstacles is then u1 + u2.

Convergence of this iterative process was stud-
ied and proved under distance condition between
the obstacles (depending on the frequency) by
Balabane [1].

In our case, we want to use a G.O. code
for ⌦1 and XLiFE++ a C++ library providing
FEM and BEM solvers (XLiFE++ [4]) for ⌦2.
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3 Coupling Integral equations with high-
frequency methods

The di�culty with the evaluation of the normal
derivative of the G.O. solution on � and the
influence of the shape of ⌦2 on the accuracy
are withdrawn using a total field integral equa-
tion on � with an additional arbitrary artificial
boundary, denoted by ⌃, around ⌦2 where we
enforce the coupling by using the trace of the
solution from the G.O. problem, see Figure 2.
There is no condition on the shape of ⌃, we will
use a circle in the sequel. Instead of solving
an integral equation (with Neumann boundary
condition) on �, we introduce a system of two
integral equations on � and ⌃ to get a total field
integral equation without Neumann boundary
condition.

⌦2 ⌃

�

⌦
c

⌦
e

\ ⌦
c

Figure 2: The small obstacle ⌦2, its boundary
� = @⌦2, the additional boundary ⌃ and ⌦

c

.

We introduce V⌃,K� respectively the single
layer and double layer potential operators for
the Helmholtz equation and we add in index
the boundary where it operates then an integral
representation of the solution of the scattering
by ⌦2 can be given by

u2(x) =

(
(K�p) (x)� (V⌃q) (x) in ⌦

c

(K�p) (x) in ⌦
e

\ ⌦
c

The additional potential V⌃q will enforce the
boundary condition. The related boundary in-
tegral system is:

�

(�)
1 (K�p) (x)� �

(�)
1 (V⌃q) (x) = 0, on �

�

(⌃)
0 V⌃q = �

⌃
0 ũ, on ⌃,

where �

⇥
0 and �

⇥
1 are the trace and the normal

trace on ⇥ and ũ = u

inc

+ u1, the sum of the
traces on ⌃ of the incident field and the solution
from the large obstacle problem using G.O.

This formulation is not eigenfrequency-free
but using a Brakhage-Werner formulation for

the p and by reconstructing the normal deriva-
tive of u1 on ⌃ with an additional problem, we
can obtain an eigenfrequency-free formulation
that will be presented in the talk.

4 Conclusion

We have presented a method to couple a high-
frequency code with a boundary element code to
solve multiple scattering problems. This method
based on an iterative method and a total field
integral equation tackles the di�culties induced
by the G.O. (normal derivative, accuracy, limi-
tation for the shape of the small obstacle). Fig-
ure 3 presents a preliminary result after one it-
eration using BEM on @⌦1 and G.O. on @⌦1.
The first iteration provides a quite good result
except in the shadow area. We need to write a
G.O. code able to iterate to continue.

Figure 3: The scattered field after 1 iteration
with the total field I.E on �,⌃ and on @⌦1 i)
BEM (left), ii) G.O. (center), and iii) the refer-
ence solution (one I.E on � [ @⌦̄1) (right).
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Abstract

We present a combined field and boundary inte-
gral equation method for solving time-dependent
scattering of acoustic waves by thermoelastic
obstacles. The approach is geared towards a
finite element discretization in the interior of
the scatterer and a boundary element approx-
imation of the acoust field. Using an integral
representation of the solution in the infinite ex-
terior domain occupied by the fluid, the prob-
lem is reduced to one defined only over the fi-
nite region occupied by the solid, with nonlocal
boundary conditions. The resulting non local
boundary problem is analized using the Laplace
transform in terms of time-domain data. Ex-
istence and uniqueness results are established
in the Laplace domain where Galerkin semi-
discretization approximations are derived and
error estimates are obtained. Full space-time
discretization and time-domain error estimates
based on the Convolution Quadrature method
are also presented.

Keywords: Fluid-structure interaction, Cou-
pling BEM-FEM, Time-domain boundary in-
tegral equation, Wave scattering, Convolution
quadrature.

Introduction

We are concerned with a time-dependent direct
scattering problem in fluid-thermoelastic solid
interaction, which can be simply described as
follows: an acoustic wave propagates in a fluid
domain of infinite extent in which a bounded
thermoelastic body is immersed. We denote ⌦�
the bounded domain occupied by the thermoe-
lastic body with a Lipschitz boundary � and we
let ⌦+ := R3 \⌦� be its exterior. The problem
is then to determine the scattered velocity po-
tential V in the fluid domain, the deformation
of the solid U and the variation of the tem-
perature ⇥ in the obstacle with respect to the
equilibrium temperature ⇥0.

In the linear small displacement regime, the

governing equations are [3] :

c�2@ttV ��V =0 in ⌦+⇥(0, T ),

⇢⌃@ttU��⇤U+ ⇣r⇥ =0 in ⌦�⇥(0, T ),

�1@t⇥��⇥+ ⌘@t(r ·U) = 0 in ⌦�⇥(0, T ),

where ⇢⌃ is the density of the solid,  is the
thermic difussivity, ⌘ is a constant proportional
to the thermal expansion coe�cient ⇣. As usual
the symbol �⇤ is the Lamé operator defined by

�⇤U := µ�U+ (�+ µ)r(r ·U).

On the interface � between the solid and the
fluid we have the transmission conditions

(C"(U)� ⇣⇥I)n = � ⇢f@n(V + V inc)n,

@tU · n = � @n(V + V inc)

@n⇥ =0

where n is the exterior unit normal to ⌦�, and
V inc denotes the given incident field. We as-
sume the causal initial conditions

U(x, t) =
@U(x, t)

@t
=0, ⇥(x, t) = 0,

V (x, t) =
@V

@t
(x, t) = 0.

An integro-di↵erential system

Following the ideas introduced in the seminal
work of Bamberger and Ha-Duong [1] the sys-
tem is transformed into the Laplace domain and
recast as an integro-di↵erential problem mak-
ing use of a layer potential representation of the
acoustic field.

The resulting non-local system below involves
the operators of the Calderón projector for the
acoustic field but retains the weak PDE formu-
lation for the elastic and thermal unknowns. It
can be represented in matrix operator form as

L(u, ✓,�,�) = (d1, d2, d3, d4),

where the data (d1, d2, d3, d4) is given by

d1 = � s ⇢f ��
0
(�+vincn), d2 =0,

d3 = @+
n v

inc, d4 =0,
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and the matrix of integral and di↵erential
operators is given by

L :=

0

@
As �⇣(div)0 s⇢f ��0n 0

s⌘ div Bs 0 0
�sn>�� 0 W(s) �( 12 I�K(s))0

0 0 1
2 I�K(s) V(s)

1

A .

Above s 2 C+ is the Laplace parameter and

As : H
1(⌦�) ! (H1(⌦�))

0,

Bs : H
1(⌦�) ! (H1(⌦�))

0

are the operators associated with the elastic and
thermal bilinear forms

a(u, ·; s) := (C"(u), "(·))⌦�
+ s2⇢⌃(u, ·)⌦� ,

b(✓, ·; s) := (r✓,r(·))⌦� + (s/)(✓, ·)⌦� .

Continuous and discrete well posedness

We study the conforming Galerkin discretiza-
tion of the system on arbitrary closed subspace
of the solution space endowed with the appro-
priate energy norm. The well posedness of the
discrete problem is done by reformulating this
equations in terms of an exotic transmission
problem and showing the coercivity of the re-
sulting operator. This techinique is similar to
the one discussed in [4] for purely acoustic/elastic
interaction.

Error estimates for the semidiscretization are
obtained by observing that an appropriate ellip-
tic projection of the error term satisfies equa-
tions with the same structure as the ones satis-
fied by the unknowns, to which all of the above
machinery can be applied.

Bounds are established explicitly in terms of
the laplace parameter s and its real part �. This
enables to translate the estability estimates into
the time-domain while mantaiing explicit knowl-
edge of the behaviour of the bounding constants
with respect to time. The fact that the analysis
is carried out in arbitrary closed subspaces im-
plies that, by taking the discrete space to be the
entire solution space, the well posedness of the
continuous problem is obtained as a by-product.

A fully discrete system

The linear system arising from the discretiza-
tion has a structure that can be depicted by
the block matrix

h
FEM(s) s⇢f (N�)th

�s⇢f (N�)h BEM(s)

i
2

4


uh

✓h

�


�h

�h

�

3

5=

2

4


�s⇢f�t

h�
h

⌘h

�


0

⇢f↵h

�

3

5 ,

where the sparse Finite Element block contains
mass and sti↵ness matrices as well as first or-
der terms related to the elastic and thermal un-
knowns. The boundary element block BEM(s)
contains the Galerkin discretization of the oper-
ators of the acoustic Calderón calculus and the
coupling trace matrix (N�)h is the discretiza-
tion of the bilinear form arising from the duality
pairing huh · ⌫,�hi�.

The system is discretized in time using BDF2
Convolution Quadrature [5] for the integral equa-
tion block and BDF2 time-stepping for the finite
element block. As pointed out in [2], this ap-
proach is equivalent to an application of BDF2-
CQ to the entire discrete matrix. This fact is
used to derive error estimates for the discretiza-
tion by considering a global CQ approximation-
resulting in a second order accurate scheme.
Numerical convergence studies and simulations
for the 2D case are carried out.
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Abstract

In room acoustics, sound absorbing materials
are often used. The mathematical description
is done with the wave equation and absorbing
boundary conditions. The numerical treatment
can be done with Boundary Element methods,
where the absorbing boundary results in a Robin
boundary condition. This boundary condition
connects the Neumann trace with the Dirichlet
trace of the time derivative.

Here, an indirect formulation in combina-
tion with the generalized convolution quadra-
ture method is applied. This allows, first, to
have a simple formulation of the Robin bound-
ary condition in the Laplace domain and, sec-
ond, to have a variable time step size. The lat-
ter allows to discretise right hand sides with a
non-smooth behavior. Convergence studies of
a pure time dependent problem show the ex-
pected rates. The computation of the sound
pressure level in a staircase of the University of
Zurich, show the suitability of this approach in
determining the indoor acoustics.

Keywords: indirect BEM, generalized CQ, ab-
sorbing BC

1 Governing equations

Let ⌦� ⇢ R3 be a bounded Lipschitz domain
with boundary � := @⌦ and let ⌦+ := R3\⌦�

denote its unbounded complement. Let n de-
note the unit normal vector to � pointing into
the exterior domain ⌦+. We consider the ho-
mogeneous wave equation (with constant sound
speed c in the medium) for � 2 {+,�}

@

tt

u� c

2�u = 0 in ⌦� ⇥ R
>0,

u (x, 0) = @

t

u (x, 0) = 0 in ⌦�

,

�

�

1 (u)� �

↵

c

�

�

0 (@
t

u) = f (x, t) on �⇥ R
>0,

(1)
where �

�

1 = @/@n is the normal derivative ap-
plied to a su�ciently smooth function in ⌦� and
�

�

0 denotes the trace operator to � applied to a
su�ciently smooth function in ⌦�. In (1), ↵

denotes the non-negative admittance, which is

the inverse of the specific impedance of the sur-
face �. This specific impedance is scaled by the
density and the wave velocity. The mathemati-
cal analysis allows any non-negative finite value
for ↵, however, realistic values are in the range
0  ↵  1. The lower limit models a sound
hard wall and the upper limit is a totally ab-
sorbing surface. Further, measured values show
a frequency dependence and are listed in na-
tional design codes like the ÖNORM in Austria
(ÖNORM EN 12354-6).

We employ layer potentials to express the
solution in terms of retarded potentials (cf. [1]).
The ansatz for the solution u as a single layer
potential is given by

u (x, t) = (S ⇤ ') (x, t) :=
Z

�

'

⇣
y, t� kx�yk

c

⌘

4⇡ kx� yk d�
y

8 (x, t) 2 ⌦� ⇥ R
>0,

which satisfies the first two equations in (1).
The density ' then is determined via the third
equation. The application of the trace �0 and
normal trace �1 to u involves the usual integral
operators of acoustics. It holds for � 2 {+,�}

�

�

0 (S ⇤ ') = (V ⇤ ')

�

�

1 (S ⇤ ') = �
⇣
�

'

2
�K0 ⇤ '

⌘
,

where these equations hold almost everywhere
on �⇥ R

>0.
The third equation in (1) leads to the bound-

ary integral equation for the single layer ansatz

�
⇣
�

'

2
�K0 ⇤ '

⌘
� �

↵

c

(V ⇤ '̇) = f

a.e. in �⇥ R
>0. (2)

Certainly, also an integral equation using the
double layer potential is possible.

The integral equation (2) is discretized in
space and time. The spatial discretization fol-
lows the standard procedure. The geometri-
cal discretization is done with linear triangles
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Figure 1: Sound pressure level in dB versus time in the upper left part of the observation screen

and the data are approximated by piecewise lin-
ear shape functions. The temporal discretiza-
tion uses the generalized convolution quadra-
ture method (gCQ) [3]. This allows an easy re-
alization of the time derivative in (2) as a simple
multiplication by the Laplace variable.

All computations are done in 3-D and a nor-
mal BE formulation without any fast techniques
is used. All regular integrals are performed with
Gaussian quadrature formulas. The singular in-
tegrals are treated with the formulas of Erichsen
and Sauter [2]. For the solution a direct solver
is used. All implementations are done within
the BE-library HyENA [4].

2 Numerical examples

The numerical behavior of the proposed method
and the advantage of using the gCQ will be pre-
sented in the talk. Here, due to space restric-
tions, only the industrial example is shown. The
influence of absorbing layers in room acoustics
is studied. In 2010/11, the atrium of the “In-
stitut für Mathematik” at the University Zurich
has been acoustically improved by installing ab-
sorber panels at the ceilings. This action has
been successful and the following numerical model
tries to model this e↵ect. The material data
from air resulting in a wave speed c = 343 m/s

are assumed. In Fig. 1, the sound pressure level
is depicted over time. Note, the sound pressure
level is given in dB and negative values indicate
sound below the threshold of hearing. Further,
the initial phase where the pressure is zero, i.e.,
the time until the wave arrives, is truncated as
in this case the dB measure gives very large neg-
ative values. In this plot two things can be ob-
served. First, the peaks with the negative val-

ues show the wave reflections, which arrive for
the di↵erent damping cases at di↵erent times.
Second, the sound pressure for ↵ = 0.1, i.e.
no mounted damping material, has in the mean
the larger pressure values. The two other cases
show that the damping material can reduce the
sound pressure level as reported from the real
building, where it is claimed that the atrium is
no longer such noisy.
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tique. Math. Meth. Appl. Sci., 8:405–435
and 598–608, 1986.

[2] S. Erichsen and S. A. Sauter. E�-
cient automatic quadrature in 3-d Galerkin
BEM. Comput. Methods Appl. Mech. En-

grg., 157(3–4):215–224, 1998.

[3] Maria Lopez-Fernandez and Stefan A.
Sauter. Generalized Convolution Quadra-
ture with Variable Time Stepping. IMA J.

Numer. Anal., 33(4):1156–1175, 2013.

[4] Ma. Messner, Mi. Messner, F. Rammerstor-
fer, and P. Urthaler. Hyperbolic and elliptic
numerical analysis BEM library (HyENA).
http://www.mech.tugraz.at/HyENA,
2010. [Online; accessed 22-January-2010].



WAVES 2017, Minneapolis

Inverse scattering with iterative determination of the regularization parameter

Nick Schenkels

1,⇤
, Wim Vanroose

1

1Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
⇤Email: nick.schenkels@uantwerpen.be

Abstract

Many applications can be described by a PDE
model with a set of unknown parameters that
we wish to calibrate based on measurements re-
lated to its solution. This can be seen as a con-
strained minimization problem where we want
to minimize the mismatch between the observed
data and our model prediction, including an ex-
tra regularization term, and use the PDE as a
constraint. Often, a suitable regularization pa-
rameter is determined by solving the problem
for a whole range of parameters – e.g. using the
L-curve – which is computationally very expen-
sive. In this work we present an iterative way
to find a good regularization parameter based
on the discrepancy principle.

Keywords: Inverse scattering, iterative regu-
larization, constrained minimization

1 Problem description

We consider the Helmholtz equation on a square
domain ⌦ ✓ R2 and write the solution u as the
sum of an incoming and a resulting scattered
wave: �

�+ k2
�
(uin + usc) = 0. (1)

In order to simulate outgoing waves, we use
ECS boundary conditions. We now wish to re-
construct the space dependent wave number k
on ⌦ based on measurements of the scattered
waves usc on the boundary �⌦ for di↵erent in-
coming waves uin. We use uin, eusc 2 Cn to de-
note the vectors that contain all the incoming
waves and the measurements of the resulting
scattered waves respectively and usc(k) 2 Cn

for our model predictions. This results in the
following constrained minimization problem:

min
k2Rm

J (k) = kusc(k)� euk22| {z }
=:D(usc(k))

+↵
��k2

��2
2| {z }

=:R(k)

such that H(k) (uin + usc(k)) = 0.

(2)

Here, H(k) 2 Rmn⇥mn is the discrete version of
the Helmholtz operator from (1), applied to all
the di↵erent waves at the same time.

2 Iterative regularization

In [1] Gazzola and Nagy derive an iterative way
to determine a suitable regularization parame-
ter for the classical Tikhonov problem for linear
problems of the form kAx� bk22 + ↵ kxk22, with
x, b 2 Rn, A 2 Rn⇥n and ↵ 2 R+

0 . The approach
they used can be generalized to non-square lin-
ear problems [3] and even non-linear problems
as we shall describe next.

Assume we can solve (2) for a fixed value
of ↵ using some iterative method. We then de-
fine the discrepancy Di(↵) = D(usc(k↵)), i.e.
the residual after i iterations for a fixed regu-
larization parameter. If " is an estimate for the
norm of the noise, then the discrepancy princi-
ple proposes to choose ↵ such that for large i
Di(↵) ⇡ ⌘", with 1 / ⌘ a small tolerance value.

If we approximate the discrepancy linearly
as Di(↵) ⇡ a↵+b, then b = Di(0), i.e. the resid-
ual if no regularization. Furthermore, if ↵i�1 is
our current best estimate for the regularization
parameter, then a can be approximated by:

a =
Di(↵)� b

↵
⇡ Di(↵i�1)�Di(0)

↵i�1
.

Using the discrepancy principle as a stopping
criterion, i.e. Di = ⌘", we find the following up-
date formula for the regularization parameter:

↵i =

����
⌘"�Di(0)

Di(↵i�1)�Di(0)

���� . (3)

The absolute value is added in order to assure
that the regularization parameter stays positive
in the first few iterations. From (3), it follows
that we can update the regularization parame-
ter based on the residual without regularization
and the residual with our current estimate.

3 Numerical experiment

We performed a numerical experiment, where
we wished to reconstruct k on a regular 100 ⇥
100 grid based on measurements of the scattered
waves for incoming waves hitting the domain at
50 di↵erent angles. We added Gaussian noise
to simulate a noise level of approximately 35%.
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Figure 1: From left to right: the exact wave number, which is the sum of three Gaussian functions,
and the reconstructed wave number without and with regularization.

Figure 1 shows the reconstruction and fig-
ure 2 the evolution of the relative error and the
regularization parameter. Clearly, the regular-
ization suppresses some of the oscillations that
occur due to the noise in the measurements. We
also forced the algorithm to perform 25 iter-
ations, even though the discrepancy principle
was already satisfied after 8.

4 Conclusion and remarks

From our numerical experiments we see that
the method proposed in [1] can be adapted to
non-linear problems. We used a Newton-CG
solver for the minimization, but the update for
the regularization parameter doesn’t depend on
this. The biggest di↵erence is that the original
method is a Krylov method, where in each itera-
tion a new basis vector is added to the solution
space. These vectors turn out to be indepen-
dent of the regularization parameter, hence the
same basis can be used to solve both the regu-
larized and the non-regularized system for any
regularization parameter. In the non-linear con-
text this will generally not be the case any more
and in order to calculate Di(↵i�1), i Newton
steps have to be performed. Even though this is
computationally very expensive, typically only
a few iterations are needed before the discrep-
ancy principle is satisfied. Hence the method
can still be more e�cient than calculating a
full L-curve for example [2]. Furthermore, we
can drastically decrease the computational cost
by only recalculating the last few Newton iter-
ations or not recalculating anything at all.
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Abstract

Unified Transform Method (UTM) [8, 10], al-
ternatively called the Fokas Method, has re-
cently advanced the understanding of boundary
value problems (BVPs) in the case of linear and
nonlinear integrable equations. This method
provides significant advantages computationally
and allows for the study of many equations with
various boundary conditions using a unified con-
ceptual framework.

The surprising phenomenon of “dispersive
quantization” describes the solutions to a wide
range of dispersive wave models for rough ini-
tial data on bounded domains exhibiting frac-
tal profiles at irrational times and quantized,
meaning discontinuous but otherwise smooth,
at rational times. This is an example of an ob-
served, but as yet poorly understood, dynamical
behaviors that depend crucially upon the large
wave number asymptotics of the dispersion re-
lation. The UTM will enable a better under-
standing of the e↵ects of the boundary condi-
tions in linear and nonlinear dispersive models
with various boundary conditions and new nu-
merical methods.

Keywords: Unified TransformMethod, Bound-
ary Value Problems, Dispersive Quantization

BVPs have been shown to possess an inter-
esting property known as dispersive quantiza-
tion or the “Talbot e↵ect.” Chen and Olver [5,
6] numerically study fractalization and quan-
tization in linear and nonlinear systems. For
linear systems with nonpolynomial dispersion
relations as well as for nonlinear systems, they
are unable to attain rigorous theoretical results.
Chousionis, Erdoğan, and Tzirakis [7, 9] pro-
vide a rigorous confirmation of some of their
numerical observations but are unable to go be-
yond periodic boundary conditions. Olver also
attained theoretical results in the case of pe-
riodic boundary conditions for specific linear
equations [12]. Figure 1 shows graphs of the
solution to the periodic initial-boundary value
problem on 0  x  2⇡ for u

t

= u

xxx

with a

step function initial condition (see [12] for de-
tails).

The current restriction to periodic boundary
conditions will be eliminated using the UTM
since in this method using di↵erent boundary
conditions has only a minor e↵ect appearing in
calculational details. Further, using the UTM,
one can find solutions to third order PDEs on
the finite interval such as the linear KdV equa-
tion. This is a case where classical series solu-
tions do not exist.

Applying the UTM to these problems allows
for a deeper understanding of this phenomenon
and its relation to boundary conditions and dis-
persion relation at least in the case of linear
problems. Numerically, this phenomenon is very
di�cult to capture and a greater understanding
of this analytically will aid in the creation of
appropriate and useful numerical methods. In-
deed, the design of appropriate numerical meth-
ods is a significant challenge.

The Talbot e↵ect or dispersive quantization,
so named in honor of an optical experiment by
Talbot [13], was first discovered in the early
1990’s in the contexts of optics and quantum
mechanics by Berry and collaborators [1, 2, 3,
4, 11]. Dispersive quantization is one of a class
of phenomena involving the extreme coherent
interference of waves that also helps to illus-
trate the structure of limits in physics [4]. The
Talbot e↵ect has been investigated for periodic
BVPs for both integrable nonlinear equations
as well as non-integrable models of a similar na-
ture [5, 6, 7, 9, 12].
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Abstract

Solutions of the wave equation produce Lorentz-
holomorphic functions that generate timelike sur-
faces via generalized Weierstrass-Enneper rep-
resentations. These solutions can be naturally
extended to non-smooth functions, allowing for
variants of timelike surfaces with non-smooth
features. In this context, we investigate fami-
lies of isometric timelike surfaces arising from
semi-rigid motions, which di↵er only in the di-
rections of principal curvatures.
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resentation, Lorentz-holomorphic mapping

1 Weierstrass-Enneper representations

The paper [2] gives a unified Lie-algebraic struc-
ture for conformal parametrizations of general
Euclidean, spacelike, and timelike surfaces via
Weierstrass-Enneper representations. These rep-
resentations are expressed through pairs of gen-
erating functions of a complex or hyperbolic
variable, where features of the geometry of the
surface are expressed in terms of properties of
the generating functions.

In R1,2 with metric �dr

2
1 + dr

2
2 + dr

2
3, we

parametrize a timelike surface by a simply con-
nected region ⌦ in R1,1 with metric �dx

2+dy

2.
Rather than introducing a complex structure on
(x, y) as for Euclidean and spacelike surfaces,
we use, for compatibility with the Lorentz met-
ric, the hyperbolic structure z = x+ ⌧y, where
⌧

2 = 1 and z̄ = x � ⌧y. Then zz̄ = x

2 � y

2

and @̄ = @

@z̄

= 1
2(

@

@x

� ⌧

@

@y

). Functions f(z) =

u(x, y) + ⌧v(x, y) where @̄f = 0 are Lorentz-
holomorphic; they satisfy the Lorentz-Cauchy-
Riemann equations

u

x

= v

y

, u

y

= v

x

. (1)

Consequently, u and v satisfy the wave equa-
tion: u

xx

� u

yy

= 0 and v

xx

� v

yy

= 0.

It is shown in [2] that for mappings  1 and
 2 of a hyperbolic variable that satisfy the in-

tegrability conditions

Im( 1@̄ 2 � 2@̄ 1) = 0
 ̄1@̄ 1 �  ̄2@̄ 2 = 0,

(2)

the following formulas give conformal parametriza-
tions of timelike surfaces:

r1(x, y) = Re
R
z

z0
( 2

1 +  

2
2)d⇣

r2(x, y) = Re
R
z

z0
⌧( 2

1 � 2
2)d⇣

r3(x, y) = 2Re
R
z

z0
 1 2 d⇣.

(3)

These are generalized Weierstrass-Enneper rep-
resentations for timelike surfaces, determined
up to a translational constant. When  1 and  2

are Lorentz holomorphic, they satisfy (2) auto-
matically and yield timelike surfaces with mean
curvature zero.

2 Lorentz-holomorphic maps

Lorentz-holomorphic functions appear as solu-
tions of the Lorentz-Cauchy-Riemann equations
(1), taking the form

(u, v) = (4)

1
2

�
h(x+ y)� k(�x+ y), h(x+ y)+ k(�x+ y)

�
,

where h and k have partial derivatives of at least
first order. Lorentz-holomorphic maps are plen-
tiful since they constitute an infinite-dimensional
Lie group.

The form of the expression (4) shows how
Lorentz-holomorphic functions are immediately
generalized by removing conditions of smooth-
ness on h and k. We refer to these non-smooth
functions also as Lorentz-holomorphic. The pa-
per [1] motivates and constructs general Lorentz-
holomorphic maps and studies them from a ge-
ometric perspective.

3 Special constructions

The present study makes use of the work in [1]
and [2] to construct families of timelike surfaces.

Equation (4) with smooth h and k produces
Lorentz-holomorphic functions  1 and  2 given
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as

2 
i

(x+ ⌧y) = (5)

h

i

(x+y)�k

i

(�x+y) + ⌧ [ h
i

(x+y)+k

i

(�x+y)].

These functions yield smooth timelike surfaces
with mean curvature zero by means of (3).

One may consider extensions of the Weier-
strass representation (3) where we relax smooth-
ness conditions on h

i

and k

i

in (5) in such a
way that the integrals in (3) are independent
of path. We refer to these also as timelike sur-
faces. Given a curve in the x+⌧y plane with cer-
tain prescribed properties, the paper [1] shows
how to construct a Lorentz-holomorphic func-
tion x+ ⌧y ! u+ ⌧v so that the given curve is
a constant-u or constant-v contour of the func-
tion. In this way, a curve in the Lorentz plane
(which need not be smooth) gives rise to a time-
like surface.

We also construct timelike surfaces that are
related in that they arise from di↵erent Lorentz-
holomorphic functions  

i

: x + ⌧y 7! u + ⌧v

whose constant-u and v contour plots in the
x+ ⌧y plane appear identical when the coloring
that distinguishes the constant-u curves from
the constant-v curves is removed. The con-
tour plots of these functions have di↵erent sym-
metries under the dihedral group D4 (see [1]).
Those with larger symmetry groups are built
from functions h and k that have a lower de-
gree of invertibility.

Any of the surfaces thus constructed give
rise to a family of isometric timelike surfaces
with mean curvature zero by the transforma-
tion ( 1, 2) ! (e⌧✓ 1, e

⌧✓

 2), where ✓ 2 [0, ⇡4 ).
This is analogous to the Bonnet transforma-
tions of Euclidean minimal surfaces, that trans-
form, for example, the catenoid to the helicoid.
The surfaces in any such family have more in
common than simply the mean curvature and
metric and therefore the Gaussian curvature.
Across any such family, the composition of the
Gauss map with the coordinate chart is identi-
cal, as well as the principal curvatures. Trans-
formations between surfaces in one family sim-
ply change the directions of principal curvature.
We refer to these deformations as semi-rigid mo-
tions, one step away from a rigid motion. The
question of finding non-trivial isometries that
preserve principal curvatures but allow the di-
rections of principal curvature to vary is the

classic problem of Bonnet, which is solved in
[3] for isothermally parametrized Euclidean sur-
faces.
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Abstract

We investigate the spectrum of regular quantum
trees through a relation to orthogonal polyno-
mials of two variables. For self-adjoint Robin
vertex conditions, the behavior of the low eigen-
values is analyzed through the interlacing prop-
erty of the roots of orthogonal polynomials. The
spectrum approaches a band-gap structure as
the length of the quantum tree increases. The
lowest band becomes negative for large negative
derivative-to-value ratio, and there emerge two
isolated eigenvalues below the bands.
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orthogonal polynomials

1 A quantum tree and its spectrum

For a metric tree graph as in Fig. 1, we inves-
tigate the spectrum of a Schrödinger operator
with Robin-type vertex conditions. The graph
�n is finite with n branching levels and the same
degree b + 1 at each vertex; b is the branching
number. It is known that the eigenvalues ap-
proach those of the Neumann vertex conditions
as the spectral variable tends to infinity. The
aim of this investigation is to compute the lower
Robin spectrum.

The graph can be viewed as a model for pho-
tons in a tree structure with high optical density
compared with the surrounding medium. The
eigenvalues of �n correspond to the frequencies
of the free standing waves in the structure.

Each edge of �n is identified with the x-
interval [0, 1]. The quantum-graph operator An

acts on each edge by

� d2

dx2
+ q(x) .

The domain D(An) consists of all continuous
functions f 2 L2(�n) whose restriction to any
edge e is in H2(e) and that satisfy the Robin
vertex condition

X

e2E(v)

f 0
e(v)� ↵f(v) = 0, (1)

in which E(v) is the edge set of a vertex v and
f 0
e(v) is the derivative of f at v along the edge e

directed away from v. An is self-adjoint on its
domain [1, Theorem 1.4.4]. Neumann vertex
conditions correspond to ↵ = 0.

Figure 1: A quantum graph tree �n with n = 3
branching levels, each with branching number b = 3.

In this communication, we take q(x) = 0
and consider only eigenfunctions that are to-
tally symmetric, that is, invariant under all sym-
metries of the graph. This allows one to reduce
the spectral problem to a tree with no branch-
ing (Fig. 2). The vertex conditions (1) become,
for the reduced graph, the Robin condition

�f 0
i(1) + bf 0

i+1(0)� ↵fi+1(0) = 0. (2)

Figure 2: The totally symmetric eigenfunctions of
the quantum tree in Fig. 1 are the eigenfunctions
of this reduced graph with vertex conditions (2) de-
pending on the branching numbers of the tree.

The eigenvalue problem Anf = �f is equiv-
alent to a matrix system Mn(µ)(c1i, c2i)

n
i=1 = 0,

with Mn(µ) a square matrix of size 2n, � =
µ2, and fi(x) = c1i cos(µx) + c2i sin(µx). Let
Dn = hn(µ) detMn denote the determinant of
Mn multiplied by an appropriate non-vanishing
scalar function of µ. The roots of Dn as a func-
tion of µ are the square roots of the eigenvalues
� of An. We take µ > 0 if � > 0 and iµ < 0
if � < 0. Figure 3 shows the graphs of D19 for
various values of ↵.

By choosing hn(µ) appropriately, the sequence
{Dn} satisfies the recurrence relation

Dn+1 = [(b+ 1)x + ↵z] Dn � bDn�1,

D�1 = x2 � 1, D0 = �↵z,
�
x = cosµ, z = µ�1 sinµ

�
.

Observe that � = µ2 is an eigenvalue of An

whenever the curve (x = cosµ, z = µ�1 sinµ)
in the (x, z)-plane intersects the zero-set of Dn

as a polynomial in x and z, as shown in Fig. 4.
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�i�
-� � 2� 3� 4�

�i�
-� � 2� 3� 4�

�i�
-� � 2� 3� 4�

�i�
-� � 2� 3� 4�

�i�
-� � 2� 3� 4�

Figure 3: Graph of D19(µ). The roots mark the
square-root eigenvalues µ =

p
� for the totally sym-

metric eigenfunctions of the quantum tree in Fig. 1
with 19 levels. In each case, the branching number
is 2, and, from top to bottom, the Robin constant ↵
is 2, 0 (Neumann case), �2.5, �5, and �6.

2 Spectrum and orthogonal polynomials

By defining two sequences of polynomials in the
variable v = (b+ 1)x+ ↵z,

Pn = v Pn�1 � b Pn�2, P�1 = 0, P0 = 1,

Qn = v Qn�1 � bQn�2, Q�1 = 1, Q0 = 0,

one can write

Dn = (x2 � 1)Qn � ↵zPn .

Because of Favard’s Theorem [2, Theorem 4.4],
{Qn} and {Pn} are sequences of orthogonal poly-
nomials. Their roots are symmetric about v =
0, and for each n, the roots of Pn and Qn inter-
lace and the roots of Pn and Pn+1 interlace.

The zero set of Pn in the (x, z)-plane consists
of the straight lines (b + 1)x + ↵z = vnk (k =
1, . . . , n), and for Qn one has (b+1)x+↵z = ṽnk
(k = 1, . . . , n�1). Using the signs of ↵z and
x2 � 1 and the interlacing property of {vnk}k
and {ṽnk}k, one can prove that the zero set of
Dn consists of curves separated by the zero sets
of Pn and Qn and that they cross those of Qn

when z = 0 and those of Pn when x = ±1, as
shown in Fig. 5. The two rightmost zero-curves
of Dn are unrestricted for x > 1 and z > 0.

x

z

-2 0 2 4 6 8 10
-1

0

1

2

3

4

5

Figure 4: The blue curves form the zero-set of the
polynomialD9(x, z). Their intersection with the spi-
ral curve (x = cosµ, z = µ�1 sinµ) determine the
eigenvalues � = µ2 of An.

x

z

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

-0.5

0.0

0.5

1.0
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2.0

Figure 5: Solid straight lines: level sets of Pn.
Dashed straight lines: level sets of Qn. Solid curves:
level sets of Dn.

One deduces the following facts:

(a) The eigenvalues of An gather in spectral
bands as n ! 1, and each but the first band
lies in an interval ⇡2(n2, (n+ 1)2) for n � 1.

(b) If ↵ < �2(b + 1), then the first band of
eigenvalues is negative. This band tends to �1
and its width tends to 0 as ↵ ! �1.

(c) Two negative eigenvalues appear to the left
of the first band for su�ciently negative ↵.
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Abstract

Discontinuous finite element methods have pro-
ven their numerical accuracy and flexibility, but
they are still criticized for high number of de-
grees of freedom used for computation. The
Tre↵tz approach provides a way to overcome
these di�culties. The particularity of Tre↵tz-
type methods is in special choice of basis func-
tions: they represent the local solutions of the
initial equations. Thus in case of time-dependent
problems it requires a space-time mesh.

This approach has been widely used with
time-harmonic formulations [1,2], while the stud-
ies are still limited for reproducing temporal
phenomena [3].

In the present work we develop the theory
for coupled elasto-acoustic systems and we pre-
sent results for the first-order acoustic wave pro-
pagation system.

Keywords: Elasto-acoustic system, Tre↵tz-DG
method, space-time formulation

1 Acousto-elastic system

We consider an initial boundary value problem
in elasto-acoustic media. Given a space domain
⌦ = ⌦F [ ⌦S ⇢ Rn, a bounded Lipschitz poly-
tope, and a time domain I = [0, T ], we set
QF := ⌦F ⇥I, QS := ⌦S⇥I and Q = QF [QS .

Wave propagation in elastic media can be
described in terms of velocity vs ⌘ vs(x, t) and
stress tensor � ⌘ �(x, t):

A@t� � "(vs) = 0 in QS , (1)

⇢s@tvs �r · � = 0 in QS .

and in acoustic media in terms of velocity vf ⌘
vf (x, t) and pressure p ⌘ p(x, t):

@tp+ c2f⇢fr · vf = f in QF , (2)

⇢f@tvf +rp = 0 in QF ,

Here A ⌘ C�1, ⇢s, cf , ⇢f are piecewise constant
medium parameters.

Continuity of velocity and stress normal com-
ponents through the fluid-solid interface � :=

⌦F \ ⌦S is guaranteed by natural transmission
conditions:

vf · n� = vs · n� on �, (3)

�n� = �pn� on �,

where n� 2 ⌦ is a normal vector to �.

We also consider Dirichlet boundary condi-
tions on @⌦, and initial conditions vf0, p0, vs0,
�0 at time t = 0. In the following, in order
to simplify the formulations, we set the source
function f ⌘ 0.

2 Tre↵tz-DG formulation

We preliminary introduce a mesh Th on Q :=
QF [QS . We consider a particular mesh whose
elements are right rectangular-sided prisms with
vertical faces parallel to the time axes. We sup-
pose evenly that all discontinuities of media pa-
rameters lie on the inter-element boundaries.
We denote by Fh := [K2Th@K the mesh skele-
ton, which can be decomposed into the subsets:

F
h

description

F⌦F
h

, F⌦F
h

internal ⌦-like faces t = const.

FIF
h

, FIS
h

internal I-like faces x = const.

F0F
h

, F0S
h

⌦
F

⇥ {0}, ⌦
S

⇥ {0}
FTF

h

, FTS
h

⌦
F

⇥ {T}, ⌦
S

⇥ {T}
FDF

h

, FDS
h

(@⌦
F

\ �)⇥ I, (@⌦
S

\ �)⇥ I
FFS

h

�⇥ I

We define Tre↵tz space:

T(T
h

) :=
n

(!
f

, q,!
s

, ⇠) ⇢ H1(T
h

)4 s. t. (4)

@
t

q + c2
f

⇢
f

r · !
f

= ⇢
f

@
t

!
f

+rq = 0, 8K
F

2 T
h

,

A@
t

⇠ � "(!
s

) = ⇢
s

@
t

!
s

�r · ⇠ = 0, 8K
S

2 T
h

o

.

Multiplying equations (1-2) by the test func-
tions of Tre↵tz space, integrating by parts in
space and time, we obtain the Tre↵tz-DG for-
mulation for coupled elasto-acoustic system:

Search (vf h, ph, vsh,�h) ⇢ H1(Th)4 such that,
for all KF ,KS 2 Th and for all (!f , q,!s, ⇠) ⇢
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H1(Th)4 it holds:

Z

@KS

h

(A �̂h : ⇠ + ⇢s ˆvsh · ws) · nt
K (5)

� ( ˆvsh⇠ + �̂h!s) · nK

i

ds = 0,
Z

@KF

h

(
1

c2f⇢f
p̂hq + ⇢f ˆvf h · !f ) · nt

K

+ (p̂h!f + ˆvf hq) · nK

i

ds = 0.

The numerical fluxes ˆvf h, p̂h, ˆvsh, �̂h are de-
fined on the mesh skeleton Fh as following:

F
h

ˆv
f

h

p̂
h

FIF
h

{{v
f

h

}}+ �[[p
h

]]
x

{{p
h

}}+ ↵[[v
f

h

]]
x

F⌦F
h

v
f

h

� p
h

�

FTF
h

v
f

h

p
h

F0F
h

v
f 0 p0

FDF
h

g
DF p

h

+ ↵(v
f

h

� g
DF ) · nK

FFS
h

v
f

h

· nt

K

= v
s

h

· nt

K

p
h

+ ↵(v
f

h

� v
s

h

) · nt

K

F
h

ˆv
s

h

�̂
h

FIS
h

{{v
s

h

}}� �[[�
h

]]
x

{{�
h

}}� �[[v
s

h

]]
x

F⌦S
h

v
s

h

� �
h

�

FTS
h

v
s

h

�
h

F0S
h

v
s0 �0

FDS
h

v
s

h

� �(�
h

� g
DS )nK

g
DS

FFS
h

v
s

h

� �(�
h

� p
h

)nt

K

�
h

nt

K

= �p
h

nt

K

Here ↵, �, �, � are positive penalty parameters,
(nK , nt

K) 2 Q the outward pointed unit normal
vectors to @K ⇢ Fh, and superscript ”�” re-
presents the flux taken from neighbour element
with lower time.

Coercivity and continuity of the bilinear and
linear forms in (5) are based on L2(Th) norm
estimations. They confirm well-posedness of
Tre↵tz-DG variational problem.

3 Numerical results

To test the performances of our formulation, we
have decided to solve the acoustic equation first.
For that purpose many choices of basis func-
tions are possible. The main condition to be
satisfied is the Tre↵tz property (4) inside each
element. We have computed a wave polynomial
basis using the Taylor expansions of generating
exponential functions, which are the exact so-
lutions of the initial acoustic system (2). In the
one-dimensional case, we need eight polynomial
functions for each unknown, velocity and pres-
sure, to achieve approximation of order 3.

The results of convergence of the numeri-
cal velocity as a function of cell size h for dif-
ferent approximation orders are represented in
Figure 1.
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slope=3.66
order=3
slope=5.02

Figure 1: Convergence of vf (x, t) as a function
of cell size h

The obtained convergence order is higher
than the order of polynomial basis used for com-
putation. Moreover it requires less number of
degrees of freedom compared to the classical
DG method in order to achieve the same ac-
curacy. In higher-dimension cases, polynomials
are similarly computed using Taylor expansions
of generating exponential functions, the exact
solutions of the system in 2D plus time and 3D
plus time. The accuracy of wave simulations in
coupled acoustic-acoustic media shows a high
sensitivity to the handling of transmission con-
ditions.
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Abstract

The possibility of designing structures able to
manipulate and control wave propagation — the
so-called metamaterials — has attracted a lot
of interest in different fields, from optics to me-
chanics. With respect to mechanical metama-
terials, most of the works up to now have been
limited to linear material behavior. In this pa-
per, the dynamic behavior of local resonant
metamaterials with nonlinear oscillators is in-
vestigated. The harmonic balance method is
used to derive approximate expressions for the
dispersion relations of these materials. The key
idea here is to account for the effects of sub/
superharmonic terms which have been neglected
so far. Direct numerical simulations are also
performed in order to verify the approximate
solutions. From these analyses, unique features
of this class of nonlinear metamaterials are re-
vealed, such as: tunability, multiple stable wave
modes and multiple band gap generation. More-
over, the possibility of designing non-reciprocal
devices is demonstrated.

Keywords: wave propagation, nonlinearity,
metamaterials, lattice system

1 Introduction

Metamaterials are engineered structures in
which the design of a meta-atom with specific
properties gives rise to on-demand and unusual
macroscopic effective behavior. Herein, the in-
terest lies in the possibility of manipulating wave
propagation by making use of local resonance
phenomenon [1], typical of so-called acoustic
metamaterials. Most of the works up to now
in acoustic metamaterials have been limited to
linear material models [2]. This work intends
to show that fascinating and unrevealed phe-
nomena are yet to be discovered when nonlin-
earities, proper of many real materials, as for
instance, rubber-like materials, are taken into
account (see Figure 1(a)).

The interest in investigating new features
emerging from geometric or material nonlineari-

Figure 1: (a) Problem overview, i.e., revealing
the effects of nonlinear metamaterials on wave
propagation, (b) corresponding 1D continuum
model, and (c) corresponding 1D lattice model
investigated in this paper.

ties within the framework of local resonant meta-
materials and phononic crystals has evolved as a
natural consequence of the fast development in
the area in the recent years. Among the promis-
ing features associated with nonlinearity in pe-
riodic systems are solitary wave propagation [3],
nonreciprocal wave propagation [4], amplitude-
dependent dispersion relation [5], bistability and
multistability [3].

Within the framework of local resonant meta-
materials, Lazarov and Jensen [6] were the first
to investigate the effect of nonlinear local res-
onators on the propagation of waves through a
1D lattice system. They showed that due to the
nonlinearity, the dispersion relation of the sys-
tem becomes amplitude-dependent, which in-
duces a frequency shift of the local resonant
band gap. In the present paper, a chain with
nonlinear cubic resonators, as shown in Fig-
ure 1(c), is studied in more detail. In par-
ticular, sub/superharmonic generation has
been considered and revealed the possibility of
generating multiple band gaps.

2 Methodology

The harmonic balance method was used to ana-
lyze the oscillatory motion of the nonlinear peri-



WAVES 2017, Minneapolis

odic system. Direct numerical simulations were
also performed in order to verify the approxi-
mating solutions.

3 Results and Discussion

The analysis of the dispersion relations derived
for the considered nonlinear local resonant meta-
material (LRMM) shows that multiple stable
wave solutions may exist, as depicted in Figure
2. This occurs because each local resonator at-
tached to the chain acts as a forced duffing oscil-
lator. In damped nonlinear systems, multiple

stable waves occur only for sufficiently large
values of the nonlinear parameter Γ, which en-
compasses both the degree of nonlinearity and
excitation wave amplitude. In this case, one
wave mode (wave 1 in Figure 2) is associated
with the main chain and its interaction with
local oscillators and it is typical in linear LR-
MMs; the second one (wave 2 in Figure 2) has
low propagation speed (group velocity) and it
is responsible for large displacements of oscilla-
tors. This second wave mode contributes to the
reduction of the effectiveness of the attenuation
zone due to local resonance phenomenon.

Figure 2: Multiple stable wave modes in a dis-
crete cubic LRMM.

Up to now, the few works in the literature
concerned with nonlinear LRMMs neglected the
contribution of sub/superharmonics. In this
work, sub/superharmonic generation has been
considered within the framework of the harmonic
balance formulation and revealed a new phe-
nomenon proper of nonlinear LRMMs: the pos-
sibility of the existence of multiple band gaps

around sub/superharmonic resonances. This
opens new possibilities for passive vibration con-
trol.

Due to the generation of multiple harmon-
ics, nonlinear LRMMs can be used in the design
of devices whose dynamic behavior depends on
the wave propagation direction [7]. By sequen-

tially coupling two chains of LRMMs, one with
linear resonators and another one with nonlin-
ear resonators, a system with asymmetric be-

havior is constructed (see Figure 3).

Figure 3: Nonreciprocal behavior of a system
comprising connected linear and nonlinear lat-
tices.

4 Conclusions and Future Prospects

It was shown that cubic metamaterials exhibit
multiple stable wave modes, multiple band gap
generation and nonreciprocity. Such features
make them promising for applications in sen-
sor technology, damage detection, imaging, en-
ergy harvesting, among others. In the future,
the effect of other nonlinear material models in
the dynamic behavior of metamaterials will be
investigated.
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Abstract

A novel deterministic method capable to com-
pute the first two statistical moments of elec-
tric fields scattered by a perfect electric con-
ducting grating with stochastic surface pertur-
bations was developed and implemented. The
resulting electric field integral equations are sol-
ved via the boundary elements method with dis-
cretization based on piecewise hierarchical con-
stant basis, e.g. Haar’s wavelets, and a sparse
approximation.

Keywords: Uncertainty quantification, grat-
ings, scattering

Introduction

One dimensional periodic gratings are ubiqui-
tous in electromagnetic technologies due to their
remarkable properties, generating a vast litera-
ture devoted to their analysis and simulation.
Yet, most works assume an ideal deterministic
shape, oblivious to the e↵ect of roughness or
uncertainty that the surface in reality may por-
tray. Roughness can be produced, for example,
by manufacturing processes or operating con-
ditions. Though generally small, these distor-
tions can undermine the gratings performance.
To provide an e�cient and robust tool to accu-
rately account these uncertainties motivates the
present swork.

Due to the random nature of the perturba-
tions, it is necessary to formulate the scattering
problem in terms of stochastic parameters. The
well-known Monte-Carlo simulation is generally
used to quantify these uncertainties. However,
this method requires high computational e↵ort.
Alternative methods for solving stochastic par-
tial di↵erential equations (SPDEs) have been
proposed, calculating the statistical moments
(mean, variance, and so on) based on a deter-
ministic approach [1, 2], and avoiding the cal-
culation of a set of samples. By using a first-
order shape Taylor expansion, valid for small

perturbations, the statistical moments are de-
terministically obtained, which produces a fast
and reliable numerical algorithm.

In this work, we seek to compute the ex-
pected value and variance of the scattered field
by a perfect electric conducting (PEC) grating
with random surface perturbations. As custom-
ary, we reduce the volume problem to one over
the boundary by means of a suitable Green’s
function, establishing an integral equation. This
dimension reduction considerably reduces the
number of degrees of freedom (DOFs) required
to solve the problem. Furthermore, by using
hierarchical basis or Haar wavelets, we can nat-
urally implement a sparse approximation.

Mathematical Modeling

We consider a PEC grating with surface �̃⇥R,
where �̃ 2 R is parametrized by a ⇤-periodic
mapping R 3 t ! (t, y(t)) i.e. y(t + ⇤) = y(t).
This defines the infinite, z-invariant open and
periodic domain of propagation D̃ ⇥ R ⇢ R3.
We denote the restriction to a period by D with
boundary �.

Decomposing the electric field E and the
magnetic field H in their cartesian components,
it is possible to define the transverse electric
(TE) polarization, where E

x

= E
y

= H
z

=
0. Moreover, we assume a time-harmonic wave
(eı!0t) with angular frequency !0. The total po-
larized electric field u is defined as u(r) := E

z

(r)
with r 2 D̃ ⇢ R2, and parallel to the grooves of
the grating. We consider incident plane waves
ui = eık·r, where k = k(cos ✓

i

, sin ✓
i

) = (k
x

, k
y

)
is the wave-vector with module 2⇡/�, and angle
of incidence ✓

i

. By linearity, the total wave is
given by u(r) = ui(r) + us(r), where us is the
scattered field. Moreover, the incident field sat-
isfies Helmholtz’s equation; therefore, we aim to
calculate the scattered one. For TE polariza-
tion, a PEC surface leads to a Dirichlet bound-
ary condition, given by the trace operator �0.
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With this setting, it is possible to condense the
scattering problem over one period through the
restricted domain D with boundary �, and the
appropriate radiation condition:

(�+ k2)us = 0 in D, (1)

�0u
s = ��0u

i on �, (2)

us(x+ ⇤, y) = eıkx⇤us(x, y), (3)

y1/2
�
@
y

� ık
�
us = 0 as y ! 1. (4)

Our numerical method is based on the elec-
tric field integral equation (EFIE) [3]:

(VJ )(r) = ��0u
i(r), r 2 �. (5)

In this formulation, the density J : � ! C is
the surface current density, and V is the weakly
singular (WS) operator. This operator is given
by the Dirichlet trace of the Single Layer (SL)
potential S, so that V := �0S. Since the scatter-
ing problem is defined over a periodic domain,
the SL potential is given in terms of a periodic
Green’s function.

To introduce shape randomness, a standard
probability space (⌦,⌃,P) is set. Specifically,
we define small random perturbations from a
reference nominal deterministic boundary �0 as

�
✏

(!) := {r+ ✏(r,!)n0(r) : r 2 �0},
with ! 2 ⌦, and the bounded amplitude  2 R.
This defines an infinite open perturbed domain
D

✏

⇢ R2 wherein solutions of (1)-(4) are de-
noted by u

✏

(!).
To approximate the statistical moments, a

first order shape-Taylor expansion is considered:

us
"

(r,!) = us0 + ✏u̇s[(!)n0] +O(✏2), (6)

where u̇s is the shape derivative of us at D0

given the perturbation field (!)n0 [1].
We aim to obtain deterministically the ex-

pected value and the variance of the scattered
field us

✏

over D
✏

. According to (6), the mean
field can be computed as E[us

✏

](r) = us0+O(✏2),
where us0 can be obtained directly from (1)-(4)
on the nominal domainD0 via (5). On the other
hand, for ✏ ⌧ 1, the variance can be obtained
from [1]

Var[us
✏

](r) = ✏2E[u̇s(r, ·)2] +O(✏3).

Hence, we need to calculate

Cor[u̇s] = (S ⌦ S)M, (7)

where M : �0 ⇥ �0 ! C is a bivariate unknown
surface density. To compute M , we must solve
the tensorized volume problem for u̇s through
the integral representation [1]:

(V⌦ V)M = Cor[] (J ⌦ J ) , on �0 ⇥ �0. (8)

Direct tensorization increases the number of
DOFs from N to N2. Nevertheless, by using hi-
erarchical constant basis or Haar wavelets, we
can perform a sparse approximation thereby re-
ducing DOFs from N2 to O(N logN). With
this, (5) and (8) are solved via the Boundary
Element Method.

Numerical Results

For the implemented algorithm, we obtain rates
of convergence of 0.50 and 0.67 for the dense
and sparse approximations considering k = 42,
respectively . While, the obtained convergence
rate for the first moment is equal to 1.0 for k =
6, 13, and 42 (Fig.1).
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Figure 1: Method convergence
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Abstract

We study numerically the ϵ-rank of subblocks
arising in Schur complement matrices of dis-
cretized three dimensional Helmholtz problems.
A small ϵ-rank is the key ingredient forH-matrix
techniques, and while Laplace-like problems have
this property, the ϵ-rank for the Helmholtz case
is growing with increasing wave number. We
study here the growth rate in the case of a het-
erogeneous Helmholtz problem with a checker
board wave speed distribution, and compare it
to the constant wave number case.

Keywords: Heterogeneous Helmholtz Equa-
tion, Schur Complements, ϵ-Rank

1 Introduction

In contrast to Laplace-like problems, effective
iterative methods for solving Helmholtz prob-
lems are rare and expensive, for an overview,
see [4, 6] and references therein. Direct meth-
ods are thus attractive for such problems, and
a significant effort has gone into combining re-
ordering techniques and LU-decompositions us-
ing multifrontal methods, where additional sav-
ings are sought through compression techniques
using low rank properties of subblocks arising in
the factorization. While there are some theoret-
ical results on the potential low rank property
for the constant wave number case [1–3], and
also comprehensive numerical experiments [5],
much less is known about the case of variable
wave numbers. We study here numerically the
specific case of a checker board wave speed dis-
tribution.

2 Problem Setting

We study numerically the Helmholtz equation

∆u+ (2πν)2

V 2 u= δ(r − rs)f in Ω := (0, L)3,
u= 0 on ∂Ω,

(1)
where ν is the frequency, V is the velocity, rs are
the coordinates of the source f , and the wave
number is k := (2πν)

V (x,y,z) , chosen such that we

have a well posed problem with Dirichlet con-
ditions.

We discretize the Helmholtz equation (1) us-
ing a standard seven point finite difference dis-
cretization with mesh spacing h := 1

n , which
leads to a sparse linear system Au = f . If we
partition the system matrix into a first block
A1 corresponding to the first x-y plane of dis-
cretization points, and denote the remaining di-
agonal block by A2, the linear system becomes

(

A1 A12

A21 A2

)(

u1

u2

)

=

(

f1
f2

)

. (2)

We are interested in the Schur complement ma-
trix S := A1 − A12A

−1

2
A21 ∈ CN×N , N =

(n − 1)2. We apply the singular value decom-
position to the matrix subblock Sm := S(1 :
m,N−m+1 : N) and study the decay of its sin-
gular values σj as a function of h and k. We will

compute for a large subblock, m = (n−1)2−1

2
, its

ϵ-rank, which is defined as the smallest number
rϵ such that σj

σ1
< ϵ for all j > rϵ.

3 Numerical Experiments

We simulate on the cube with dimension L =
1200m, and frequency ν = 4Hz, 8Hz, 16Hz us-
ing the corresponding number of grid points n =
20, 40, 80 with velocity V1(x, y, z) = 2400m/s
for 10 points per wavelength (ppw), and velocity
V1(x, y, z) = 1200m/s for 5 ppw. We see in Ta-
ble 1 that with 5 ppw the ϵ-rank is substantially
larger than with 10 ppw. We then consider a
Checker Board (ChB) type case with five fields
in each direction and velocity V1 = 2400m/s in
the white fields using 10 ppw, and V2 = V1

c in
the black fields using 10/c ppw, where c is a
contrast parameter. We see in Table 1 that the
ϵ-rank grows in the ChB case with c = 2 for
larger ϵ more like for ν const and 10ppw, while
for small ϵ the growth is more like for ν const
and 5 ppw. For c = 4 the ϵ-rank is then much
larger, while for c = 8 it suddenly drops, proba-
bly because the waves in the black fields are now
not at all resolved any more with 1.25 ppw. We
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ϵ 1e-2 1e-4 1e-6 1e-2 1e-4 1e-6 1e-2 1e-4 1e-6 1e-2 1e-4 1e-6 1e-2 1e-4 1e-6
n ν V=const, ppw=10 V=const, ppw=5 V=ChB, c = 2 V=ChB, c = 4 V=ChB, c = 8
20 4 27 46 59 19 50 67 34 55 73 50 102 138 20 38 50
40 8 6 68 110 96 154 198 89 148 198 108 227 326 44 66 91
80 16 32 180 276 84 417 547 35 296 449 94 497 749 86 124 176

Table 1: ϵ-rank for a large matrix subblock Sm for a constant velocity and checker board cases with
contrast c and 10 ppw in the white fields, and under-resolution in the black fields

ϵ 1e-2 1e-4 1e-6 1e-2 1e-4 1e-6 1e-2 1e-4 1e-6 1e-2 1e-4 1e-6 1e-2 1e-4 1e-6
n ν V=const, ppw=10 V=const, ppw=20 V=ChB, c = 1/2 V=ChB, c = 1/4 V=ChB, c = 1/8
20 4 27 46 59 24 44 56 27 47 62 9 29 47 24 46 58
40 8 6 68 110 53 94 120 53 98 126 50 88 121 55 103 127
80 16 32 180 276 110 201 249 125 210 292 113 201 280 111 199 278

Table 2: ϵ-rank in 3d for a large matrix subblock Sm for a constant velocity and checker board cases
with contrast c and 10 ppw in the white fields, and over-resolution in the back fields

next show in Table 2 the corresponding results
for the over-resolved case. We see that now in
all cases the ϵ-rank is growing comparably to
the constant wave number case at resolution of
10 ppw in the first column (which is the same
as in Table 1), which indicates that it is the
lower resolution of 10 ppw in the white fields
which dictates the ϵ-rank growth. The growth
is O(k

4

3 ), like in the constant wave number case,
see [5], where it was also noticed that increas-
ing the resolution does not influence the ϵ-rank
once the waves are well resolved.

4 Conclusion

We studied numerically how the ϵ-rank is grow-
ing in subblocks of Schur complement matrices
arising from discretized heterogeneous Helmholtz
problems. We found that the growth for a checker
board situation is comparable to the homoge-
neous case, provided the resolution in all fields
of the checker board is at least as good as the
resolution of the homogeneous case, and there
are no under-resolved fields of the checker board.
The growth in 3d for a planar Schur comple-
ment is then also O(k

4

3 ), like in the constant
and random wave number case studied in [5].

This research was partially supported by RFBR
grants 16-05-00800,17-01-00399 and the Russian
Academy of Sciences Program ”Arctic”.
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Abstract

When applied to the Helmholtz or time-harmonic
Maxwell equations with absorption, classical-
additive-Schwarz domain-decomposition precon-
ditioning works well if the absorption is large
enough.

Keywords: Helmholtz equation, time-harmonic
Maxwell equations, domain decomposition, ab-
sorption, iterative solvers, preconditioning, GM-
RES

1 Introduction

This talk is about domain-decomposition pre-
conditioners for the Helmholtz and time-harmonic
Maxwell equations with absorption. The main
message is that, when applied to the Helmholtz
or time-harmonic Maxwell equations with ab-
sorption, the classical additive-Schwarz
domain-decomposition preconditioner works well
if the absorption is large enough. How large the
absorption needs to be is quantified in theorems,
and illustrated in numerical results.

This talk is based on the recent paper [5]
and the upcoming paper [1].

2 The Helmholtz equation

We consider the Helmholtz interior impedance
problem,

⇢
��u� (k2 + i")u = f in ⌦,

@u/@n� iku = g on @⌦,
(1)

where k, " > 0 and ⌦ is a 2-d convex polygon.
We assume that " . k2.

We denote by A" the system matrix arising
from continuous piecewise linear (P1) Galerkin
finite element approximations of (1).

We consider the classical two-level additive-
Schwarz preconditioner, where zero Dirichlet bound-
ary conditions are imposed on the subdomains

(observe that, since " > 0, these subdomain
problems have a unique solution for every k);
we denote the action of this preconditioner by
B�1

",AS (see [5, Equations 3.1 and 3.7] for the
precise definition). We let Hsub denote the sub-
domain diameter, H the coarse-grid diameter,
and � the overlap parameter.

We work with the euclidean vector norm,
weighted by the matrix Dk := S + k2M , where
S is the matrix corresponding to the discreti-
sation of the ru · rv term in the variational
forrmulation, and M is the mass matrix (and
thus A" equals S � (k2 + i")M plus a term cor-
responding to an integral over @⌦). We denote
the weighted norm and inner-product by k ·kDk

and h·, ·iDk respectively.

Theorem 1 (Main result for left precon-
ditioning)

(i) kB�1
",ASA"kDk .

✓
k2

|"|

◆
for all H,Hsub.

Furthermore, there exists a constant C1 such

that

(ii) |hV, B�1
",ASA"ViDk |

&
✓
1 +

H

�

◆�1 ⇣ "

k2

⌘2
kVk

2
Dk

,

for all V 2 Cn
, when

max

(
kHsub, kH

✓
1 +

H

�

◆✓
k2

|"|

◆2
)

 C1

✓
1 +

H

�

◆�1✓
|"|

k2

◆
. (2)

Combining this result with the analogue in the
Dk norm of the Elman estimate for GMRES
(see [5, Theorem 5.1]) we obtain:
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Corollary 2 (GMRES convergence for left
preconditioning) Consider the weighted GM-

RES method where the residual is minimised in

the norm induced by Dk (see, e.g., [6]). Let rm

denote the mth iterate of GMRES applied to the

system A", left preconditioned with B�1
",AS. Then

krmkDk

kr0kDk

. 1�

✓
1 +

H

�

◆�2 ⇣ "

k2

⌘6
!m/2

,

(3)
provided condition (2) holds.

The bound (3) shows that, if " ⇠ k2, � ⇠ H,
and both kH and kHsub are su�ciently small,
then GMRES converges in a k-independent num-
ber of iterations (and this is confirmed by nu-
merical experiments). The bound (3) has the
number of iterations growing severely when " ⌧
k2, but numerical experiments show that this
bound is pessimistic in this regime [5, §6.1].

Our main motivation for studying this prob-
lem is so-called “shifted Laplacian” precondi-
tioning; i.e. preconditioning A0 (the discretisa-
tion of the problem (1) with " = 0) with an
approximation of A�1

" (such as B�1
",AS), and the

natural question of how best to choose ".
This question of how to choose " is discussed

further (in conjunction with the results in [3])
in [5, §1]. With the preconditioner B�1

",AS de-
fined above, the theory is not yet able to justify
rigorously the choice of " for B�1

",AS to be a good
preconditioner for A0. Nevertheless, this situa-
tion can be improved if the Dirichlet boundary
conditions on the subdomains are replaced by
impedance boundary conditions – this will be
discussed in the talk by Ivan Graham.

3 The time-harmonic Maxwell equations

Analogues of Theorem 1 and Corollary 2 can
be obtained for the PEC problem for the time-
harmonic Maxwell equations [1]; i.e. (1) is re-
placed by
⇢

r⇥ (r⇥E)� (k2 + i")E = f in ⌦,
E⇥ n = 0 on @⌦,

where now ⌦ is a 3-d convex polyhedra. Note
the PEC boundary condition means that this is
not the exact analogue of the Helmholtz prob-
lem (1) (the main obstacle to translating the
Helmholtz results across to the Maxwell impedance
problem is that the appropriate function space
for the latter problem is not H(curl;⌦)).

4 How these results were obtained

The Helmholtz theory in [5] was inspired by the
results in [2], where non-self-adjoint problems
that are “close to” self-adjoint coercive prob-
lems were considered. Although the Helmholtz
problem (1) is not close to a self-adjoint coer-
cive one, and our technical tools are very di↵er-
ent, [2] provided a framework that we were able
to adapt into the above results.

The paper [4] provides, in some sense, the
Maxwell analogue of [2]; our Maxwell results,
therefore, both follow this framework and use
some specific results from [4].
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Abstract

We discuss time domain boundary element meth-
ods for singular geometries, in particular graded
meshes and adaptive mesh refinements. First,
we discuss edge and corner singularities for a
Dirichlet problem for the wave equation. Time
independent graded meshes lead to e�cient ap-
proximations, as confirmed by numerical exper-
iments for wave scattering from screens. We
briefly discuss adaptive mesh refinement pro-
cedures based on a posteriori error estimates.
A modified MOT scheme provides an e�cient
preconditioner (or stand-alone solver) for the
space-time systems obtained for the Galerkin
discretisations.

Keywords: Time-domain boundary ele-
ment method, adaptive mesh refinements,
graded meshes.

E�cient and accurate computational meth-
ods to simulate sound emission in space and
time are of interest from the modeling of envi-
ronmental noise to acoustic scattering. Galerkin
time domain boundary element methods prove
to be stable and accurate in long–time compu-
tations and are competitive with frequency do-
main methods for realistic problems [2].

In this talk we discuss recent work on adap-
tive mesh refinements and graded meshes for
singular geometries, as motivated by the sound
emission on tires [1].

We consider the wave equation outside a
scatterer ⌦� in R3, where ⌦� is a bounded
polygon or a screen with connected complement

⌦ = R3 \ ⌦�. The acoustic sound pressure
field u due to an incident field or sources on
� = @⌦ satisfies the linear wave equation for
(t,x) 2 R⇥ ⌦:

@2
t

u(t,x)��u(t,x) = 0

with Dirichlet boundary conditions u(t,x) =
f(t,x) for x 2 �, and u(t,x) = 0 for t  0.

A single-layer ansatz for u,

u(t,x) =

Z

�

�(t� |x� y|,y)
4⇡|x� y| ds

y

,

results in an equivalent weak formulation as an
integral equation of the first kind in space-time
anisotropic Sobolev spaces [2, 5]:

Find � 2 H1
�

(R+, eH� 1
2 (�)) such that for all  2

H1
�

(R+, eH� 1
2 (�))

Z 1

0

Z

�
(V �(t,x))@

t

 (t,x) ds
x

d
�

t

=

Z 1

0

Z

�
f(t,x)@

t

 (t,x) ds
x

d
�

t , (1)

where d
�

t = e�2�tdt and

V �(t,x) =

Z

�

�(t� |x� y|,y)
4⇡|x� y| ds

y

.

A theoretical analysis requires � > 0, but prac-
tical computations use � = 0.

We study time dependent boundary element
methods to solve (1) and related boundary inte-
gral equations for a half-space, based on approx-
imations by tensor products of piecewise poly-
nomials in space and time.
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We present three types of results:
1) If � is a screen, the density � exhibits edge
and corner singularities. Motivated by recent
work by Müller and Schwab for 2d FEM, in
[3] we adapt a classical analysis by von Peters-
dor↵ for time-independent problems and obtain
the precise singular behaviour of � near @�:
�(t,x) ⇠ dist(x, @�)�1/2 near an edge, �(t,x) ⇠
dist(x, @�)�0.703 near a right-angled corner.
Time-independent graded meshes provide a quasi-
optimal approximation of these singularities. The
numerical experiment depicted in Figure 1 com-
pares the convergence in energy norm on graded
and uniform meshes for � = [0, 1]2⇥ {0} and il-
lustrates the theoretically predicted convergence
of orderDOF�1, resp.⇠ DOF�1/2. We present
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Figure 1: Energy convergence for graded
vs. uniform meshes.

an application to the singular horn geometry be-
tween a vibrating tire and the road.

2) We use provably reliable residual error in-
dicators, as well as heuristic ZZ and hierarchical
indicators to steer adaptive mesh refinements.
Figure 2 shows that the residual indicators con-
verge at the same rate as the energy error for
an example problem with � = S2. We briefly
recall the theoretical results on reliability and
(weak) e�ciency of the residual error indicators
(see [2]) and compare the adaptive methods ob-
tained from the di↵erent error indicators.

3) To obtain provably stable methods and a
rigorous error analysis, we require conforming
Galerkin discretisations. In general, the dis-
cretization of (1) leads to a lower Hessenberg
linear system in space-time, with one band above
the diagonal. Motivated by adaptivity and C1

temporal basis functions, there has been much
recent interest in works by by Sauter-Veit, Merta
et al. , Schanz and others in e�cient solvers. We
present an approximate time-stepping scheme
[4], based on extrapolation, which becomes ex-
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Figure 2: Energy convergence vs. residual error
indicators for model problem on � = S2.

Geometry DOF Energy MOT Error
sphere 320 8.5692 8.5470 .26%

1280 8.6059 8.6059 ⌧ 1%
icosahed. 320 20.538 21.480 4.6%

1280 19.879 20.143 1.3%
screen 288 0.4233 0.4497 6.2%

1250 0.4589 0.4716 2.8%

Table 1: relative errors in energy: modified
MOT vs. GMRES with residual 10�9.

act for �t ! 0. It may be used as either a pre-
conditioner or standalone solver. Table 1 com-
pares one step of this method to the (essentially
exact) solution of the space-time system as ob-
tained from GMRES.
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Abstract

We consider the e�cient numerical approxima-
tion of Maxwell’s equations in a spatial domain
with complex geometry.

For the space discretization discontinuous
Galerkin (dG) methods are well-suited since they
easily allow to use unstructured, possibly locally
refined meshes. For the time integration stan-
dard explicit or implicit methods perform sub-
optimal. The former su↵er from a constraint on
the time step size (CFL condition). The latter
require the solution of a large linear system in
each time step.

If the geometry of the problem requires a
grid with only a few tiny elements, a combina-
tion of an explicit and an implicit time integra-
tor provides a promising alternative. These so-
called locally implicit methods have been con-
sidered in [1–3] for central fluxes dG discretiza-
tions.

We present an error analysis for the full dis-
cretization of Maxwell’s equations with the lo-
cally implicit scheme [3] and show how this method
can be extended to an upwind fluxes dG dis-
cretization.

Keywords: Maxwell equations, locally implicit
schemes, error analysis, full discretization, dis-
continuous Galerkin methods

1 Linear Maxwell’s equations

Let ⌦ ⇢ R3 be a bounded domain and T be a
finite time. The time evolution of electromag-
netic phenomena in linear, isotropic materials
with magnetic permeability µ(x) and electric
permittivity "(x) are described by Maxwell’s
equations

µ@tH = � curlE, in (0, T )⇥ ⌦,

"@tE = curlH� J, in (0, T )⇥ ⌦.
(1)

Here, the unknowns H(t, x) and E(t, x) are the
magnetic and the electric field, respectively, and
J(t, x) is a given electric current density. The

Figure 1: Locally refined mesh.

equations (1) are complemented with initial con-
ditionsH0(x), E0(x) and metallic boundary con-
ditions (n⇥E)|@⌦ = 0.

2 Space discretization

We discretize (1) in space by employing a dG
method with polynomial order k. This leads to
the semidiscrete problem

@tHh = �CEEh � ↵SHHh, in (0, T ),

@tEh = CHHh � ↵SEEh � Jh, in (0, T ),
(2)

where CH and CE denote the discretized curl-
operators and SH and SE are stabilization op-
erators. For ↵ = 0 we obtain a central fluxes
dG method and for ↵ 2 (0, 1] we use an up-
wind fluxes dG scheme. It is well-known that
central fluxes dG methods are convergent of or-
der k whereas upwind fluxes dG methods are
convergent of order k + 1/2.

3 Time discretization

In order to obtain a fully discrete scheme we
further have to integrate (2) in time. Explicit
time integration schemes, such as the Verlet (or
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leap frog) method,

H
n+1/2
h �Hn

h = �⌧

2
CEE

n
h,

En+1
h �En

h = ⌧CHH
n+1/2
h � ⌧

2
J
n
h,

Hn+1
h �H

n+1/2
h = �⌧

2
CEE

n+1
h ,

where J
n
h = Jn+1

h + Jn
h, require a severe restric-

tion on the time step size ⌧ in order to guarantee
stability. In fact, we are forced to use step sizes
⌧ ⇠ hmin, where hmin denotes the diameter of
the smallest mesh element (CFL condition).

This constraint can be overcome by using an
implicit time integrator, for instance the Crank–
Nicolson method,

H
n+1/2
h �Hn

h = �⌧

2
CEE

n
h,

En+1
h �En

h =
⌧

2
CH(Hn+1

h +Hn
h)�

⌧

2
J
n
h,

Hn+1
h �H

n+1/2
h = �⌧

2
CEE

n+1
h .

However, this requires the solution of a large
linear system for En+1

h in each time step.

4 Locally implicit scheme

We consider the case where the spatial mesh
contains only a small number of fine elements,
see Figure 1 for an example. Unfortunately,
even one single fine element requires using a
very tiny time step when applying an explicit
time integrator. One remedy to this problem
is to apply a locally implicit time integrator.
These schemes employ an implicit time integra-
tor for the fine elements while retaining an ex-
plicit time integration method on the coarse el-
ements. In [1] Verwer proposed such a scheme
for central fluxes dG methods (↵ = 0) by blend-
ing the Crank–Nicolson scheme with the Verlet
method. We adapted Verwer’s idea in [3] which
results in the following locally implicit scheme,

H
n+1/2
h �Hn

h =� ⌧

2
CEE

n
h,

En+1
h �En

h =⌧Ce
HH

n+1/2
h

+
⌧

2
Ci
H(Hn+1

h +Hn
h)�

⌧

2
J
n
h,

Hn+1
h �H

n+1/2
h =� ⌧

2
CEE

n+1
h .

(3)
Here, the operators Ce

H, Ci
H constituting the

blending of both methods are given as

Ci
H = CH � �i, Ce

H = CH � �e,

where �i and �e are cut-o↵ functions assigning
the mesh elements to the implicitly and explic-
itly integrated part, respectively. It turns out
that besides all fine elements we have to treat
their neighbors implicitly. All remaining ele-
ments can be integrated explicitly.

As mentioned above the scheme (3) is lim-
ited to a central fluxes dG discretization. We
extended this scheme to the upwind fluxes case
resulting in the method

H
n+1/2
h �Hn

h =� ⌧

2
CEE

n
h � ⌧

2
↵Se

HHn
h,

En+1
h �En

h =⌧Ce
HH

n+1/2
h

+
⌧

2
Ci
H(Hn+1

h +Hn
h)

� ⌧↵Se
EE

n
h � ⌧

2
J
n
h,

Hn+1
h �H

n+1/2
h =� ⌧

2
CEE

n+1
h � ⌧

2
↵Se

HHn
h,

(4)
where Se

H, Se
E are appropriate modifications of

the full stabilization operators SH, SE.
Our main result is the following.

Theorem 1 The locally implicit schemes (3),
(4) are stable under a CFL condition depend-

ing only on the coarse part of the mesh. Both

schemes converge with order two in time. More-

over, the scheme (3) is convergent of order k in

space. The method (4) is convergent of order

k + 1/2 on the coarse part of the mesh and of

order k in the fine part.
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Abstract

We examine the e↵ect of a periodic bottom on
the free surface of a fluid linearized near the
stationary state, and we develop a Bloch the-
ory for the linearized water wave system. This
analysis takes the form of a spectral problem for
the Dirichlet – Neumann operator of the fluid
domain with periodic bathymetry.

Keywords: water waves, bottom topography,
shallow water regime, Bloch spectral decompo-
sition.

1 Introduction

The motion of a free surface of fluid propagat-
ing over a variable topography is a problem of
significance for ocean dynamics in coastal re-
gions where waves are strongly a↵ected by the
bathymetry. There is an extensive literature de-
voted to the e↵ect of variable depth over sur-
face waves and there are many scaling regimes
of interest, including long-wave scaling regimes
where the typical wavelength of surface waves
is assumed to be much longer than the typi-
cal lengthscale of the variations of the bottom
depth. In Section 2, we report on the evolu-
tion of waves in the shallow water regime in the
presence of a periodic bottom varying rapidly
with respect to the typical surface wavelength,
a regime fitting the the context of homogeniza-
tion theory [5]. Our analysis brings out a res-
onance phenomenon between nonlinear surface
waves and the periodic bottom. The need for
new tools to address the dynamics of these reso-
nant situations motivated our recent work on a
Bloch theory for the linearized water wave equa-
tions [4].

Bloch decomposition is a classical tool to
study wave propagation in periodic media. In
the setting of the Schrödinger operator with a
periodic potential, known as Hill’s equation, the
problem has been studied in great detail, see
reference [6] for example. In another setting,
Allaire, Palombaro and Rauch [1] studied the
problem of propagation of waves packets through
a slightly perturbed periodic medium, where

the period is assumed small compared to the
size of the wave packet, and constructed so-
lutions in the form of slowly modulated Bloch
plane waves.

Here, we develop a Bloch theory in the con-
text of surface water waves in the form of a
spectral problem for the Dirichlet - Neuman op-
erator of the fluid domain. We find that the
presence of the bottom results in the splitting
of double eigenvalues near such points of multi-
plicity, creating a spectral gap. Thanks to the
explicit expansion of the Dirichlet-Neuman op-
erator in powers of the bottom variations [2],
we compute the gap opening for a bottom of
the form b(x) = �b̃(x) perturbatively in � and
we quantify bounds on spectral gap openings.

In a numerical study of Bloch waves, Yu and
Howard [9] considered linear waves propagating
over a periodic bottom for various examples of
bottom profiles. Using a conformal map that
transforms the original fluid domain to a uni-
form strip, they computed numerically Bloch
eigenfunctions and identified spectral gaps. Our
work provides a theoretical framework and a
rigorous analytic basis for these numerical com-
putations. In addition we provide a systematic
perturbation method that describes the split-
ting of multiple eigenvalues and the formation of
intervals of forbidden energies, or energy gaps.
We consider the case b(x) = � cos(x) in analogy
with the Matthieu equation for the Schrödinger
operator. We calculate the asymptotic behav-
ior of the first several spectral gaps and their
centres. In particular, we observe a distinct dif-
ference between the behavior of spectral gaps
in the theory of Hill’s operator and with the
Dirichlet - Neumann operator.

2 Shallow water scaling regime

The fluid domain consists of the region (d =
1, 2)

⌦(b, ⌘) = {(x, z) 2 Rd+1,�h0+b(x) < z < ⌘(x, t)}

where the dependent variable ⌘(x, t) denotes the
surface elevation and b(x) is the variation of the

Plenary Lecture
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bottom of the fluid domain from its mean value,
assumed to be periodic. Our starting point is
the Hamiltonian formulation (Zakharov [10])
phrased in terms of the Dirichlet-Neumann op-
erator [3] which takes the form of a coupled sys-
tem for the surface elevation ⌘ and the trace of
the velocity potential at the surface ⇠ = '|z=⌘

:

8
<

:

@t⌘ �G[⌘, b]⇠ = 0 ,

@t⇠ + g⌘ +
1

2
|r⇠|2 � (G[⌘, b]⇠ +r⌘ ·r⇠)2

2(1 + |r⌘|2) = 0 .

(1)
The quantity G[⌘, b] is the Dirichlet-Neumann
operator, defined by

G[⌘, b]⇠ =
p
1 + |r⌘|2@n'|z=⌘

, (2)

where ' is the solution of the elliptic boundary
value problem

⇢
�'+ @2z' = 0 in ⌦(b, ⌘) ,
'|z=⌘

= ⇠, @n'|z=�h0+b
= 0 .

(3)

In order to identify the various scaling asymp-
totic regimes, we define the parameters

µ =
h20
�2

, " =
A

h0
,� =

B

h0
, � =

`

�
,

where A and B are the amplitude of surface
waves and the bottom variations respectively
and �, and ` their respective typical wavelength.

We consider relatively large amplitude sur-
face waves, setting " = 1 and assuming

� =
p
µ = � ⌧ 1 . (4)

The condition � = � expresses a small bathymetry
slope, while the roughness strength is

⇢ :=
p
µ/� = 1.

The first step consists of the construction
of an approximate solution and a consistency
analysis. The latter refers to an estimate on
how well the approximate solution satisfies the
original water wave system. We look for an ap-
proximate solution of the form

⌘a = ⌘0(X, t) + �⌘1(X,X/�, t/�) (5)

⇠a = ⇠0(X, t) + �2⇠1(X,X/�, t/�) . (6)

where (⌧ = t/�, Y = X/�) are fast variables.
The following system of equations is derived in
[5].

Theorem 2.1. Setting V0 = r⇠0 and h = 1 +
⌘0, the leading term (⌘0, V0 = r⇠0) satisfies the
classical shallow water system (h = �1 + ⇣0)

⇢
@t⌘0 +r · (hV0) = 0 ,
@tV0 + (V0 ·r)V0 +r⌘0 = 0 .

(7)

The corrector term (⌘1, ⇠1) satisfies the linear
nonlocal coupled system (DY = 1

i @Y )

8
<

:

@⌧⌘1 + V0 ·rY ⌘1 � |DY | tanh(h |DY |)⇠1
= V0 ·rY sech(h |DY |)b ,

@⌧⇠1 + V0 ·rY ⇠1 + ⌘1 = 0.
(8)

The system (7) represents the e↵ective or
homogenized surface wave dynamics, while the
system (8) for the corrector terms has the form
of the linearized water wave equations in a do-
main of depth h(x, t), with a background flow
given by the velocity V0(x, t). Here, the func-
tions (⌘1, ⇠1) are periodic in the fast variables
Y , while the variables (X, t) are to be treated
as parameters. The source term in the rhs of
the evolution equation for ⌘1 is due to the scat-
tering of the background flow from the variable
bottom.

Theorem 2.2. The functions (⌘a, ⇠a) are ap-
proximate solutions of the Euler equations, i.e.
they satisfy the Euler equations up to a ‘small’
error term Ea

|Ea|He < Ca�
3/4 ,

where | · |He is an energy norm defined as :

|Ea|He = |Ea1|L2 + ��3/8|Ea2|H1/2

and Ea = (Ea1, Ea2) (corresponding to the equa-
tions for (⌘, ⇠) ). The constant Cadepends upon
various norms of the data (⌘0, ⇠0, ⌘1, ⇠1) .

The principal di�culty in the analysis is that
the shallow water limit and the homogeniza-
tion process must be performed simultaneously.
We prove that (⌘1, ⇠1) are bounded uniformly
on time intervals ⌧ 2 [�T/�, T/�]. This re-
sult is valid for the natural time scale t = O(1)
associated to the shallow water equation only
if the free surface does not resonate with the
rapidly varying bottom. Such a resonance oc-
curs if there exists (X, t) such that

(k · V0(X, t))2 = |k| tanh(h(X, t)|k|)
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for some k 2 Z corresponding to a nonzero
mode of the Fourier decomposition of b. This
condition can be viewed as a nonlinear general-
ization of the classical Bragg resonance. When
such resonances occur, it induces secular growth
e↵ects that destroy the accuracy of the approx-
imation. which is then valid on a much smaller
time scale, t = o(1) and the dynamics of the
leading term (⌘0, V0) will likely be a↵ected. A
quantitative measure of nonresonance is then
necessary. The kth Fourier modes (⌘̂1,k, ⇠̂1,k)
are nonresonant at (X, t) with respect to the
homogenized solution (⌘0(·, t), ⇠0(·, t)) and the
bottom topography b(Y ) if b̂k 6= 0 and

|!k(X, t)2 � �
k · V0(X, t)

�2| > 1

Bk
.

Resonances are however not exceptional. When
resonances occur, secular growth of the correc-
tor terms takes place, and it compromises the
validity of the approximation. In this way, a
small amplitude, rapidly oscillating bathymetry
will a↵ect the free surface at leading order.

3 Bloch Theory

Motivated by the limitations of the above study,
we are interested in analytical tools that may
be useful to address the dynamics of these res-
onant situations. As a first step, we considered
the two-dimensional water wave system with a
periodic bottom profile, linearized near the sta-
tionary state, and we develop a Bloch theory for
the linearized water wave evolution [4]. This
analysis takes the form of a spectral problem
for the Dirichlet – Neumann operator in a fluid
domain with periodic bathymetry and flat up-
per surface elevation. We restrict here to the
two-dimensional water wave problem.

The system (1) linearized about the station-
ary solution (⌘(x), ⇠(x)) = (0, 0) is

⇢
@t⌘ �G[b]⇠ = 0
@t⇠ + g⌘ = 0,

(9)

where we denote G[0, b] by G[b]. This is an ana-
log of the wave equation, with the usual Lapla-
cian replaced by the nonlocal operator G[b] with
2⇡-periodic dependence on the horizontal spa-
tial variable x:

@tt⌘ + gG[b]⌘ = 0. (10)

In analogy with the classical case of partial dif-
ferential operators with periodic coe�cients, we

construct the Bloch eigenvalues and eigenfunc-
tions of the spectral problem

G[b]�(x, ✓) = ⇤(✓)�(x, ✓), (11)

with boundary conditions (�1
2  ✓ < 1

2)

�(x+ 2⇡, ✓) = �(x, ✓)e2⇡i✓. (12)

It is convenient in Bloch theory to define

 (x, ✓) = ei✓x�(x, ✓) (13)

to transform the original problem to an eigen-
value problem with periodic boundary condi-
tions. Indeed, condition (12) implies that  (x, ✓)
is periodic in x of period 2⇡. The spectral prob-
lem is now rewritten in conjugated form

e�i✓xG[b]ei✓x (x, ✓) = ⇤(✓) (x, ✓) (14)

 (x+ 2⇡, ✓) =  (x, ✓). (15)

When the bottom is flat (b = 0), the Bloch

eigenvalues ⇤(0)
n (✓) are given explicitly in terms

of the dispersion relation for water waves over
a constant depth h and labeled in order of in-
creasing amplitude (see Figure 1). Denoting
gn(✓) = g(n+ ✓) tanh(h(n+ ✓)),

for �1

2
 ✓ < 0, ⇤(0)

2n (✓) = g�n(✓)

for 0  ✓  1

2
, ⇤(0)

2n (✓) = gn(✓)

while

for �1

2
 ✓ < 0, ⇤(0)

2n�1(✓) = gn(✓)

for 0  ✓  1

2
, ⇤(0)

2n�1(✓) = g�n(✓),

where n 2 N and the Bloch parameter ✓ 2 T1,
i.e. the parameter is assumed to be periodic of
period 1.

Eigenvalues are simple for �1
2 < ✓ < 0 and

0 < ✓ < 1
2 . For half-integer values of ✓, namely

✓ = 0, 12 , 1, . . . , eigenvalues ⇤
(0)
n (✓) have multi-

plicity two. As in the case of Bloch theory for
other problems, the presence of the bottom re-
sults in the splitting of double eigenvalues near
such points of multiplicity, creating a spectral
gap.

An illustration of eigenvalues as functions
of ✓ is given in Figure 1. The left hand side
shows the unperturbed first five eigenvalues in
the case of a flat bottom, labelled in order of
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Figure 1: First five eigenvalues in order of mag-
nitude: (left) flat bottom; (right) in the pres-
ence of a small generic bottom perturbation.
The spectrum is represented by the vertical red
lines.

magnitude. The right hand side shows these
eigenvalues in the presence of a small generic
bottom perturbation and the gap openings.

The spectrum of the Dirichlet-Neumann op-
erator G[b] on the line, namely on L2(R), is
the union of the ranges of the Bloch eigenvalues
⇤n(✓):

�L2(R)(G[b]) = [+1
n=0[⇤

�
n ,⇤

+
n ]

where

⇤�
n = min

✓2T1
⇤n(✓), ⇤

+
n = max

✓2T1
⇤n(✓).

It is the analog of the structure of spectral bands
and gaps of the Hill’s operator [6].

Theorem 3.1. For all ✓ 2 (�3
8 ,�1

8) [ (18 ,
3
8),

the L2-spectrum of G✓[b] := e�i✓G[b]ei✓x on the
domain D = H1(T1) is composed of an increas-
ing sequence of eigenvalues ⇤n(✓) that are sim-
ple, and analytic in ✓ and b 2 BR(0) ⇢ H1[0, 2⇡).
The corresponding eigenfunctions  n(x, ✓) are
2⇡-periodic in x, and analytic in ✓ and b 2
BR(0).

The result in Theorem 3.1 can be seen a
direct consequence of the general theory of per-
turbation of self-adjoint operators (Rellich [8]).
An alternate proof using the implicit function
theorem in a functional form (see [7]) is pre-
sented in [4] which in turn, can be extended to
prove the following result.

Theorem 3.2. In the neighbourhood of the cross-
ing points ✓ = 0,±1

2 , i.e for ✓ 2 [�1
2 ,� 5

16) [

(� 3
16 ,

3
16)[( 5

16 ,
1
2 ], the spectrum of G✓[b] is com-

posed of an increasing sequence of eigenvalues
⇤n(✓) which are continuous in ✓. For �3

16 < ✓ <
3
16 , the lowest eigenvalue ⇤0(✓) is simple, and it
and the eigenfunction  0(x, ✓) are analytic in ✓
and b.

Both Theorems 3.1 and 3.2 are local in ✓.
Their domains of definition overlap on the inter-
vals ✓ 2 (�3

8 ,� 5
16)[(�1

8 ,� 3
16)[(18 , 3

16)[( 5
16 ,

3
8).

By uniqueness, in these intervals the eigenval-
ues and eigenfunctions agree.

4 The example of b(x) = � cos(x)

We now examine the classical example of b(x) =
� cos(x) corresponding to the Matthieu equa-
tion for the Schrödinger operator.

A perturbation calculation using the expan-
sion of G[b] in powers of b [2] shows that the
first gap occurs for ✓ = ±1/2 and is of order
O(�)

⇤�
1 � ⇤+

0 =
1

4
sech2(

h

2
)� .

The second gap occurs at ✓ = 0. We find that,
unlike the case of the Matthieu operator, the
second gap opens only at order O(�4).

⇤�
2 � ⇤+

1 =
1

12
�4sech2(h) tanh(2h). (16)

In general the nth gap satisfies

⇤�
n � ⇤+

n�1  C(n)�n.

We see in Figure 2b of [9] that the second gap is
indeed much smaller in size than the first one.

We are also able to calculate analytically the
deviation of the centre. Denoting

sn(✓) = (n+ ✓)sech((n+ ✓)h)

we find that

1

2
(⇤�

1 + ⇤+
0 ) = � �2

s20(
1
2)(g

2
0(

1
2)� 9

4)

4(g0(
1
2)� g1(

1
2))

. (17)

It is straightforward to check that this quantity
is negative. More generally, one can prove that
this is the case for gaps of higher index. Namely,
1
2(⇤

�
n + ⇤+

n 1) < 0, i.e., the deviation of the
centers of the gap from its unperturbed position
is negative. Hence for increasing � all of the gap
centers are transposed, or downshifted, to lower
frequency. This is an analytical verification of
Figure 2b of reference [9].
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On the other hand, when b(x) = �(cos(x) +
cos(3x)), the second gap opens at order O(�2)

⇤�
2 � ⇤+

1 = �2sech2(h)
4� 2 tanh(h) tanh(2h)

tanh(h)� 2 tanh(2h)
.

We are currently working on the construc-
tion of slowly modulated Bloch plane waves as-
suming the bottom variations are significantly
shorter than the long surface modulations. We
are examining how the presence of the bottom
modifies the e↵ective coe�cients of the derived
Nonlinear Schrödinger equation.
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Abstract

I plan to discuss recent work (joint with Roland
Griesmaier) on the fixed frequency inverse source
problem, emphasizing how we adapted uncer-
tainty principles from the work of Donoho-Stark [1]
to the far field splitting and data completion
problems.

Keywords: Polarized uncertainty principle, in-
verse source problem

The far field radiated by a source f , at wavenum-
ber k, is the asymptotic description of the out-
going solution to the Helmholtz equation

�
�+ k2

�
u = k2f

which has asymptotics

u ⇠ eikr

(kr)
d�1
2

kd bf(k⇥)

where bf denotes the Fourier transform of fand
⇥ is a point on the unit sphere. Thus the data
for the inverse source problem is the restricted
Fourier transform of the source. We cannot re-
cover f from this data, but we can say some-
thing about a lower bound for the convex hull
of the support of f [2, 6]. In particular, if a
far field is radiated from the union of two dis-
joint domains (i.e. by a sum of sources. each of
which is supported in one component), unique
continuation tells us that the far field can be
split uniquely into the fields radiated from each
component. We focus on the question of how
far apart these sets must be so that the split-
ting is reasonably well-conditioned. Because the
problem is linear, it makes sense to estimate
the condition number of this splitting operator.
We bound the condition number by (1� ⌧2)�

1
2 ,

where ⌧ is the dimensionless parameter kd1 kd2
k|c|

in R2, and (kd1 kd2)3/2

k|c| in R3, where d1 and d2
are the diameters of the connected components
and |c| is the distance between them. We show
by example that the bound is sharp in R2.

I think the most interesting feature is that
we can obtain these estimates as a simple ap-
plication of an uncertainty principle. Perhaps
the simplest example of an uncertainty princi-
ple (from [1]) is the following, where f is a func-
tion on ZN and bf is its N -point discrete Fourier
transform.

Theorem 1 (Donoho-Stark). Let supp f ⇢ T
and supp bf ⇢ W , then

|T | |W | � N

Theorem 1 implies that, if |T | |W | < N ,
the subspaces VT of functions supported on T ,
and XW of functions with DFT’s supported on
W have empty intersection. Donoho and Stark
combined this principal with other arguments
to do data completion. They showed that if
f 2 XW , then the values of f on T could be re-
covered from its values on the complement, and
they described L2 and L1 based algorithms to
carry this out.

We call the theorem below a polarized un-
certainty principle.

Theorem 2 (Griesmaier, S.). Let supp f ⇢ T
and supp bg ⇢ W , then

|(f, g)| 
r

|T | |W |
N

||f || ||g||

Where theorem 1 implies that VT \ XW is
empty if |T | |W | < N , the polarized principle
in theorem 2 explicitly bounds the cosine of the

angle between the two subspaces by
q

|T | |W |
N .

A direct consequence is that the splitting oper-
ator that maps the sum f + g into its compo-
nents has a condition number no greater than
the cosecant of that angle.

A more general version replaces the Fourier
transform with an operator A:

Theorem 3 (Griesmaier, S.). Suppose that

A : L2 ! L2, A�1 : L1 ! L1,

cA := ||A||2,2 ||A�1||1,1

Plenary Lecture
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and that supp f ⇢ T and supp Ag ⇢ W , then

|(f, g)|  cA
p

|T | |W | ||f || ||g||

The relevant subspaces for our application
to the inverse source problem are dictated by
the phenomenon of evanescence, which tells us
that, if f is supported in the ball of radius R,
then its far field is very close to the subspace
VkR. In 2D, VkR is the subspace of L2(S1)
spanned by ein✓ with |n|  kR, and in 3D it
is the span of the spherical harmonics of index
n, such that n(n+ 1)  kR.

The role of A is played by the far field trans-
lation operator Tc, which maps a far field ↵(⇥)
to eic·⇥↵(⇥). If ↵ is the restricted Fourier trans-
form of f , then Tc↵ is the restricted Fourier
transform of f(·+c). Once we show that Tc has
the required mapping properties, the polarized
uncertainty principle estimates the cosine of the
angle between VR1 and TcVR2 and gives us the
bound on the condition number referred to in
the first paragraph. Similar analysis applies to
splitting for more than two disjoint domains,
as well simultaneous splitting and data comple-
tion.

Examples in 2D show that the dependence
on wavenumber, diameter, and separation dis-
tance in kd1 kd2

k|c| is sharp, at least when the sep-
aration distance is large compared to the diam-
eters. A corollary is that increasing resolution
(by increasing k) also increases the condition
number. This is not the case for the linearized
inverse scattering problem or for the splitting of
point sources, where increasing the wavenumber
does not adversely a↵ect the conditioning.
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Abstract

When the Helmholtz equation is discretized by
standard finite di↵erence or finite element meth-
ods, the resulting linear system is notoriously
di�cult to solve, in fact increasingly so at higher
frequencies [1, 2]. Instead of solving the
Helmholtz equation in the frequency domain,
we thus reformulate it in the time domain and
seek a time-periodic solution of the wave equa-
tion via Controllability Method (CM) [3,4]. Al-
though straightforward time integration of the
wave equation can actually be used to reach
the asymptotic time-periodic limit, its conver-
gence is usually too slow in practice. The CM
approach greatly speeds up convergence to the
time-periodic solution by using the (unknown)
initial conditions as control variables.

At each iteration the Controllability Method
requires only the solution of a forward and back-
ward time-dependent wave equation and that of
a positive definite elliptic problem; hence, it is
inherently parallel. To overcome the bottleneck
from the stringent CFL condition due to lo-
cal mesh refinement, we use local time-stepping
(LTS) methods based on explicit Runge-Kutta
schemes [5].

Keywords: time-harmonic waves, controllabil-
ity method, local time-stepping, scattering prob-
lems

1 Introduction

We consider a time-harmonic acoustic scatter-
ing problem outside a sound-soft bounded ob-
stacle �D:

�r · (c2ru)� !

2
u = f in ⌦,
u = gD on �D,

c

@u

@n

� i!u = gS on �S .

(1)

Here, ⌦ ⇢ Rd is a bounded region, �S is an
artificial boundary, ! is the time frequency, c is
the speed of propagation and f, gD and gS are
given sources.

If u solves (1), the function

y(x, t) := Re(u(x) (t)), (t) = exp(�i!t),

is the time-periodic solution of the correspond-
ing wave equation with period T = 2⇡

/!:

ytt �r · (c2ry) = f̃ in ⌦⇥ (0, T ),
y = g̃D on �D ⇥ (0, T ),

c

@y

@n

+ yt = g̃S on �S ⇥ (0, T ),

(2)

where f̃ = Re(f ), g̃D = Re(gD ) and g̃S =
Re(gS ). The (unknown) initial values are de-
noted by

y(·, 0) = e0, yt(·, 0) = e1 in ⌦. (3)

Once e0 and e1 have been determined, the sought
time-harmonic solution of (1) is given by

u = e0 +
i

!

e1. (4)

2 Controllability Method

Instead of solving the Helmholtz equation (1)
directly, we look for initial values e = (e0, e1)
such that the time-dependent solution y(x, t) of
(2) is T -periodic. To do so, we minimize the
functional

J(e) =
1

2

Z

⌦

|cr(y(T ; e)� e0)|2+|yt(T ; e)� e1|2 ,

where y(·; e) solves (2), (3), by using the pre-
conditioned conjugate gradient method (PCG)
[3, 4].

3 Spatial Discretization

We discretize the weak formulation of (2), (3) in
space with conforming P3 finite elements with
order preserving “mass lumping”. Next, we let
z(t) = M

1
2y(t) and Z = (z, ż)|, which yields

the system of ordinary di↵erential equations:

Ż(t) = BZ(t) +R(t) t > 0

withA = M� 1
2K(c2)M� 1

2 ,D = M� 1
2S(c)M� 1

2 ,
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B =


0 I

�A �D

�
and R =


0

M� 1
2F

�
.

Here, M is the (diagonal) mass matrix, K is the
sti↵ness matrix, S is a mass matrix restricted to
�S , and F is the right-hand side.

4 Time-Discretization

For the time discretization of (2), we use the
Runge-Kutta based local time-stepping method
(LTS-RK4) [5]. Hence, we split the mesh into
fine and coarse part and then advance inside
each subregion with a di↵erent time step, �t

and �⌧ = �t
/p, respectively. As shown in [5],

the LTS-RK4 method is fully explicit and fourth-
order accurate.

Figure 1: The FE mesh (Left: computational domain;
Right: zoom of the refined mesh)

5 Numerical Results

First, we consider (1) in ⌦ = (0, 1)⇥ (0, 1) with
the exact solution

u(x) = exp(id|x), d = (cos(3⇡/4), sin(3⇡/4))|.

The mesh inside ⌦ is locally refined near the
upper left corner. The local mesh refinement
ratio p is given by p ⇡ h

coarse

/h
fine

. For the time
integration of (2) we either use a standard RK4
method or the LTS-RK4 method from [5]. In
Figure 2 we observe that the LTS-RK4 method
results in a comparable number of iterations
yet at a smaller cost. Moreover, the number
of PCG-iterations is essentially independent of
p.
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Figure 2: Number of PCG-iterations vs. local mesh

refinement ratio p ⇡ h

coarse/h
fine

Figure 3: Controllability Method: e
`

at iterations ` = 1

(top left), ` = 100 (top right) and ` = 600 (bottom left).

Solution of the Helmholtz equation (bottom right).

Next, we compare the solution of (1) by us-
ing the Controllability Method (CM-PCG) and
the standard direct solution of (1). Again, we
use P3-FE with LTS-RK4 integration. The wave
number is k = !

/c = 128⇡ (! = 32⇡, c = 0.25).
As shown in Figure 3, the iterative solution of
the CM-PCG converges to the solution of the
Helmholtz equation.
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Abstract

The pollution error of Hybridizable Discontin-
uous Galerkin (HDG) methods is studied for
problems involving non-smooth solutions. A
quasi-optimal HDGmethod for problems involv-
ing point sources is designed for which quadratic
accuracy is proved in the L2-error. It is shown
that even for non-smooth solutions, if the or-
der p of the HDG discretization is slightly in-
creased with the frequency !, the pollution er-
ror can be eliminated. In particular, it is proved
that the order should be chosen such that p =
O(log!). Results are derived for constant wave-
speeds but can be directly extended to piece-
wise smooth wave-speeds, albeit with a slightly
more aggressive scaling for p. Numerical exam-
ples are provided to corroborate the claims.

Keywords: first, second, third

1 Introduction

Solving the time-harmonic wave equation for
heterogeneous wave-speeds in the high-frequency
regime is an ubiquitous problem, in particular
in geophysical exploration. This problem is still
open in the context of numerical analysis, both
from the points of view of e�ciency and accu-
racy.

In view of accuracy, several advances have
been made following mostly two fronts: (i), meth-
ods using basis functions adapted to the prob-
lem, e.g., plane-waves, and (ii), new stabilized
formulations relying on polynomials basis.

Within the second front, Hybridizable Dis-
continuous Galerkin (HDG) methods provide
an accurate discretization technique, especially
for heterogeneous media. Further, HDG meth-
ods can be seamlessly combined with state-of-
the-art solvers resulting not only in an accurate
but also e�cient method (c.f. [2]). Alas, it is
well-known that HDG methods su↵er from the
pollution error. In practice, this means that
even if the number of degrees of freedom per
wavelength is kept constant, the numerical so-

lution deteriorates as the frequency increases.
However, if the order of the polynomial approxi-
mation is increased logarithmically with the fre-
quency, the pollution error can be entirely elim-
inated for smooth problems.

Several applications, however, rely on prob-
lems involving point sources or discontinuous
wave-speeds, which produces non-smooth solu-
tions. Unfortunately, for non-smooth problems
there is few methods treating this case.

In the present work, we design a quasi-optimal
HDG method with a quadratic accuracy in the
L2-error for problems involving point sources.
We focus on problems involving constant wave-
speeds but all results can be easily extended to
piecewise smooth wave-speeds.

2 Method

Let ⌦ = [0, 1]2. We solve the constant density
acoustic Helmholtz equation given by

��u� !2u = �x in ⌦ , (1)

with Robin boundary conditions on the bound-
ary @⌦

u+ i!
@u

@n
= g on @⌦; (2)

here, ! is the frequency and �x is the Delta dis-
tribution centered at x 2 ⌦ modeling a point
source at x.

Note that the solution u of this problem will
in general not be smooth. Nevertheless, it can
be decomposed as u = ũ+G�(x, .) where G� is
the fundamental solution of Laplace’s equation
and ũ can be proved to be in H2(⌦). The un-
known part ũ can be obtained from equations
(1)-(2) with appropriately adjusted right-hand
sides.

We discretize the model problem for ũ us-
ing an HDG method based on the ultra-weak
formulation previously considered in [1].

For appropriately chosen basis functions of
order p defined on elements T of a mesh Th with
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mesh-size h, we can prove that the correspond-
ing HDG solution ũh approximating ũ satisfies
the optimal error estimate

kũ� ũhkL2(⌦)  C(!)
X

T2Th

✓
h

p

◆2

|ũ|H2(T ) ,

as long as h = O(1/!). Here, C(!) is indepen-
dent of h and p and depends linearly on !. This
linear dependence determines the pollution er-
ror.

3 Numerical Examples

Numerical examples verifying the quadratic ac-
curacy can be found in [1]. Here, we concentrate
on the assessment of the pollution error. To this
end, we place a point source at (1/⇡, 1/⇡) 2
⌦ and choose the boundary data g in such a
way that the exact solution ũ is the fundamen-
tal solution of Helmholtz’ equation centered at
(1/⇡, 1/⇡).

To assess the pollution error, we compute
the approximation ũh of ũ defined over a uni-
form partitioning of ⌦ into squares. Then, C(!)
can be estimated as the ratio Ch(!) of the error
of the HDG solution and the best approxima-
tion error:

C(!) ⇡ Ch(!) =
kũ� ũhkL2(⌦)

infvh kũh � vhkL2(⌦)

We computed numerical solutions ũh on sev-
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p = O(log(!))

Figure 1: Estimates for Ch(!) for di↵erent
choices of p. For each choice, there are 6 (uni-
form) elements per wavelength.

eral uniform meshes. For each mesh, the prob-
lem is defined so that the frequency depends
on the mesh-size. In particular, for each mesh
we chose the frequency ! so that there are 6
elements per wavelength. In Figure 1 for each

mesh, we compare the e↵ect of polynomial re-
finement on Ch(!). We see that C(!) = C! for
p = 1 and therefore that mere mesh refinement
is not su�cient to attenuate the pollution error.
However, if the polynomial degree p is increased
as !0.25, the pollution error is eliminated.

4 Future work

We would like to explore adaptive refinement
techniques in order to increase the e�ciency of
the approach. We believe that this might lead
to a numerical method that allows for an al-
most optimal choice of degrees of freedom per
wavelength while preserving the elimination of
the pollution error and the quadratic accuracy
in the L2-error.
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Abstract

In this work, we want to solve a scattering prob-
lem outside a convex polygonal scatterer for a
general class of boundary conditions using the
Half-Space Matching Method. This method has
been introduced in [1] and consists in replac-
ing the problem by a system of coupled inte-
gral equations whose unknowns (whose defini-
tion depends on the boundary conditions) live
on the lines supported by each edge of the poly-
gon. Using the Mellin Transform, we are able
to show that this system is coercive + compact
in presence of dissipation. Compared to inte-
gral methods, this method can be applied for
some anisotropic elastic problems where calcu-
lating the green function might be expensive or
impossible.

Keywords: scattering problem, integral oper-
ators, Fourier transform

1 The model problem

The problem that we are interested in is the
Helmholtz equation in a 2D infinite plane minus
a compactly supported non-penetrable convex
polygonal scatterer O

������

�p+ !2p = 0 in ⌦ = R2\O,

↵p+ �
@p

@n
= g on @O,

(1)

for a given g 2 L2(@O) and where n is the out-
going normal to O. We consider the dissipative
case (Im(!2) > 0) and look for a solution p de-
caying at infinity. Without loss of generality,
we suppose that � 2 {0, 1}.

• If � = 1, the problem is coercive in H1(⌦)
if Im(↵) � 0. Let us remark that one

classically consider g 2 H� 1
2 (@O) but our

formulation requires g 2 L2(@O).

• If � = 0 and ↵ 6= 0, in contrast to the pre-
vious case, the classical framework would
lead to take g 2 H

1
2 (@O) but our ap-

proach allows to consider more general data.

As a consequence, the solution may not be
in H1(⌦) up to the boundary (see [2] for
a similar problem).

O

⌃0

⌃1

⌃2

x0
y0x

1

y1

x2

y2
✓0 ✓1

✓2

Figure 1: Multi-domain representation

2 The Half-Space Matching formulation

The Half-Space Matching Method consists in
coupling several analytical representations of the
solution in half-planes surrounding the obstacle.
To simplify the presentation, we will suppose
that @O is a triangle, as represented in Figure
1. If we denote

�j = ↵p+ �
@p

@n
on ⌃j ,

applying the Fourier transform in the yj direc-
tion, the solution in each half-space ⌦j is given
by

p(xj , yj) =

1p
2⇡

Z

R

�̂j(⇠)d⇠

↵+ i�
p
!2 � ⇠2

ei
p

!

2�⇠

2
x

j
ei⇠y

j
(2)

in ⌦j = {(xj , yj), xj > 0}, j 2 Z/3Z, where
Im

p
!2 � ⇠2 � 0 (see Figure 1 for the nota-

tions). We assume that � Im(↵) � 0 so that the
denominator does not vanish.
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The representations have to coincide in the
infinite intersections of the half-planes. Since
Im(!2) > 0, we can show that this will be sat-
isfied if and only if the representations match
on the boundaries of these intersections. These
relations, completed with the boundary condi-
tions on @O, give

�����
�j = Dj,j±1

↵,�

�j±1 on ⌃j±1 \ ⌦j ,

�j = g on ⌦j \ @O,
(3)

for j 2 Z/3Z, where

Dj,j±1
↵,�

: L2(⌃j) ! L2(⌃j±1 \ ⌦j)

 ! ↵pj( ) + �
@pj( )

@nj±1
.

This leads to a system of coupled integral equa-
tions whose unknowns are �j± = �j⌃j\⌦j±1 :

8j 2 Z/3Z,
�j+ = Dj,j+1

↵,�

�j+1
+ +Dj,j+1

↵,�

�j+1
� +Dj,j+1

↵,�

gj+1,

�j� = Dj,j�1
↵,�

�j�1
+ +Dj,j�1

↵,�

�j�1
� +Dj,j�1

↵,�

gj�1,

(4)
where gj = g|⌃j\@O. This system can be rewrit-
ten as

[I+ D][�] = [G]. (5)

The operator D is not compact because of the
cross points. However, it has been shown in [1]
that in the case of a square, we can decom-
pose the operator by using the Laplace trans-
form into

D = D0 +K,

where kD0k < 1 and K is a compact operator.
For a general polygon, this result can be ex-
tended by using the Mellin transform and we
get the

Proposition 1. Problem (4) can be written as

[A+K][�] = [G], (6)

where A is coercive and K is compact. More-
over, since A + K is injective, problem (4) is
well-posed.

The injectivity of A+K can be deduced from
the uniqueness property of the initial problem.
Let us mention that when one of the angle of
the polygon tends to 0 or ⇡, the norm of D0

tends to 1 and the formulation (6) becomes ill-
conditioned.

3 Numerical results

For the simulation, we truncate each ⌃j and
discretize the formulation by Lagrange finite el-
ements. To compute the Fourier integrals, we
introduce also a truncation and a quadrature
formula. Note finally that once we obtain the
�j , we can reconstruct the solution in ⌦ by us-
ing the formula (2).

Figure 2: Real part of p with ↵ = 1,� = 0,! =
1, and g = � exp(i!(

p
3/2x+ 1/2y)).

Remark that, even if the theoretical results
are established only for Im(!2) > 0, the nu-
merical method works for the case without dis-
sipation, provided that we use the representa-
tion of the outgoing solution in (2) for each half
space. One numerical result, obtained using
XLiFE++ [3], is shown in Figure 2.
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documentation of XLiFE++, POEMS,
ENSTA, (2016).



WAVES 2017, Minneapolis

Analysis of an observers strategy for initial state reconstruction in unbounded domains

S. Fliss1, S. Impériale2, P. Moireau2, Antoine Tonnoir3,⇤

1POEMS (CNRS/ENSTA ParisTech / Inria), Palaiseau, France
2Inria Saclay-Ile de France, Team M⌅DISIM, France
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Abstract

In this work, we are interested in the problem of
recovering a compactly supported initial state of
the wave equation in unbounded domain (such
as the whole plane, a waveguide...). To this pur-
pose, we assume that the velocity is known in
a bounded observation region surrounding the
support of the initial state. We consider an iter-
ative algorithm of reconstruction based on back
and forth nudging and prove the exponential
convergence of this algorithm and its robust-
ness with respect to noisy measures, at the con-
tinuous level. We also study the e↵ect of the
discretization process on the algorithm conver-
gence.

Keywords: Initial state recovery, Geometrical
Control Condition, Observers, Unbounded do-
main

1 The Observers strategy

Let us consider the problem of recovering (u0, v0)
the initial state of the wave equation

@ttu��u = 0 in D,
u = 0 on @D,
(u, @tu)t=0 = (u0, v0) in D,

given the partial measures z = @tu during time
[0, T ], T > 0, in the observation domain DObs

(see Figure 1). Following the ideas of [1], let

Figure 1: Notations and examples of unbounded
domains: on the left D = R2 \ O and on the
right D = R⇥ [0, 1] \ O, where O is a bounded
obstacle represented in black.

us introduce the sequence of observers {bun, bunb }

where:

@ttbun ��bun + �(@tbun � z)|DObs
= 0 in D,

bun = 0 on @D,

(bun, @tbun)t=0 = P(bun�1
b , @tbun�1

b )t=0 in D,

and

@ttbunb ��bunb � �(@tbunb � z)|DObs
= 0 in D,

bunb = 0 on @D,
(bunb , @tbunb )t=T = (bun, @tbun)t=T in D,

and � > 0 is a gain parameter. The forward ob-
server is initialized with an arbitrary initial con-
dition compactly supported in D0. The back-

ward observer bunb is initialized at final time T
and is solved indeed backward in time. The
forward observer is initialized at t = 0 via a
projection step with the linear operator P de-
fined from Y = H1(D) ⇥ L2(D) into itself and
that satisfies

• P(u, v) = (u, v) if Supp(u, v) ⇢ D0

• and k P(u, v) kYk (u, v) kY
In this iterative algorithm, we expect the se-
quence of initial state error (eun0 = bunt=0�u0, evn0 =
@tbunt=0 � v0) to converge to (0, 0) as n grows.

2 The reconstruction operator

Let ⇧� denotes the operator from Y into itself
defines by (eun+1

0 , evn+1
0 ) = ⇧�(eun0 , evn0 ). We can

show that 8Y 2 Y

⇧�Y = Y � 2�

Z T

0
S⇤(0, s)S(0, s)Y ds.

The operator S(0, s) is defined by S(0, s)(eu0, ev0) =
(eu, @teu)t=s where eu is solution to the damped
wave equation:

@tteu��eu+ �@teu|DObs
= 0 in D,

eu = 0 on @D,
(eu, @teu)t=0 = (eu0, ev0) in D.

(1)

With the above form of ⇧� , we are able to prove
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Theorem 1 The operator ⇧� is symmetric and

positive. Moreover, if the observability inequal-

ity

Z T

0
k @tu k2L2(DObs)

dt �  k (u0, v0) k2Y , (2)

is satisfied for any initial state (u0, v0) com-

pactly supported in D0, then ⇧� is a contrac-

tion and the algorithm converges. Furthermore,

if we consider noisy data z = @tu + ⌘ with ⌘ 2
L1([0, T ], L2(DObs)) we have the error bound

k eun0 , evn0 kY ↵n k eu00, ev00 kY +
2�

1� ↵

Z T

0
k ⌘ kL2(DObs)

where 0 < ↵ < 1.

Let us point out that the projection step is nec-
essary to ensure the convergence of the algo-
rithm. Indeed, if at step n Supp(bun, @tbun)t=0

6⇢ D0, then we cannot ensure that ⇧� is a con-
traction.

A classical way to prove observability inequali-
ties consists in using the so-called Geometrical
Control Condition (GCC) [2,3]. In our case, the
di�culty is that the domain D is unbounded
whereas the observation area DObs is bounded.
Therefore, we cannot expect the inequality (2)
to be true for initial states with support out-
side the domain surrounded by DObs. Let Dext

denotes this exterior domain. To prove (2), we
show

Theorem 2 Under the GCC on Dext [ DObs

and recalling that DObs surround D0, there ex-

ists a time T s.t. the observability inequality (2)
is satisfied for initial data supported in D0.

In some sense, Theorem 2 is a GCC restricted
to a class compactly supported initial data. To
prove this result, we proceed in two steps : first
we show that the energy in Dext is controlled
by the observations in DObs (this holds only be-
cause DObs surrounds D0), then we apply the
result on the GCC on the union Dext [DObs.

3 Discretization aspects

From a numerical point of view, we need to
bound the computational domain by introduc-
ing an artificial boundary and imposing an ab-
sorbing boundary condition. Because this con-
dition is not exact, the problem in the bounded
domain is not equivalent to the original one set

on the unbounded domain. As a consequence,
because of this approximation added to the dis-
cretization one, we cannot deduce directly from
Theorem 1 the convergence of the associated
discrete algorithm.

Following the same approach as for the contin-
uous level, we are able to construct the discrete
equivalent of the operator ⇧� which is the ma-
trix ⇧h

� that reads

⇧h
� = I � 2�

N�1X

j=0

(St)jSj

where N is the number of time-step, S is the
matrix s.t. eUj+1 = SeUj and eUj is the approx-
imation of eu solution to (1) at step j. Then,
we can show with the expression of ⇧h

� that the
discretized algorithm ensures, at least, that the
error decreases (provided there is no measure
noise). More importantly, we can also formu-
late the discrete observability inequality that eUj

should satisfy to ensure the exponential conver-
gence of the algorithm at the discrete level.
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Abstract

We investigate the feasability of constructing lo-
cal solutions to the Helmholtz equation thanks
to high-order DG finite element approximations
of the Dirichlet-to-Neumann operator. This is
then used in a Tre↵tz Discontinuous Galerkin
method in place of a boundary element method
that was succesfully applied in [1] to solve the
Helmholtz problem in very large domains. We
perform comparisons between the two approaches
by considering large domains of propagation in-
cluding heterogeneities.

Keywords: Helmholtz equation; time-harmonic
elastic equation; pollution e↵ects; discontinuous
approximation; Dirichlet-to-Neumann

Introduction

When the Helmholtz equation is set in very
large domains, the finite element solution may
su↵er from pollution e↵ect. Maintaining a given
level of accuracy requires increasing the den-
sity of nodes which rapidly exceeds the capaci-
ties in storage and computational times even in
the framework of massively parallel computer
platforms (cf., for example, [2]). Discontinuous
Galerkin (DG) methods have demonstrated a
stronger durability than standard FEMs, also
called Continuous Galerkin (CG) methods (cf.,
for example, [3]). Tre↵tz methods for which the
local shape functions are wave functions (cf., for
example, [4]) have also proved to be a good al-
ternative with its pioneering example called Ul-
tra Weak Variational Formulation (UWVF) de-
vised by Després [5]. In the other hand Bound-
ary Integral Equations (BIE) seem to resist bet-
ter to “pollution e↵ect” than FEMs. and the
idea of building a FEM in which local shape
functions are obtained as BIE solutions has been
recently investigated in [1,6,7]. [1] uses DG frame-
work and the key feature of this work is the
construction of an improved approximation of
the Dirichlet-to-Neumann (DtN) operator for

matching the local solutions at the interfaces of
the mesh. It is thus possible to see the method,
called in [1] BEM Symmetric Tre↵tz DGmethod
(BEM-STDG), globally as a DG method at the
level of the DG formulation mesh and locally as
a BIE at the element level. Actually, BIEs are
used only to compute the DtN operator within
each element of the DG formulation mesh. Ob-
viously the quality of the overall solution strongly
depends on the accuracy of the approximation
of the DtN operator. The symmetry yields an
important gain too. The storage of the bound-
ary integral operators involved in the formula-
tion is indeed avoided, the contribution of the
BIEs being element-wise only. Moreover the de-
grees of freedom of the discrete problem to be
solved are located on the boundaries of the el-
ements and the approximations are ultimately
performed in terms of piecewise polynomial func-
tions on a BEM mesh. In contrast then to usual
Tre↵tz methods, h or p refinements are as sim-
ple and e�cient as in a standard FEM or DG.
In [1], several numerical experiments with BEM-
STDG show very good performance as com-
pared to standard FEM.
Regarding the very good performance of BEM-
STDG for solving Helmholtz problems in very
large domains, we propose here to extend the
approach of [1] to solve time harmonic elastic
equations. Nevertheless, since at the end we
want to consider problems with variable coef-
ficients, we propose to approximate the DtN
operator with FEM instead. By this way, we
can benefit from the high level of flexibility of
FEM. BEM-STDG does resist to the pollution
e↵ect because the approximation of the Neu-
mann trace is discontinuous. This can not be
achieved with a standard FEM. We could think
about using mixed finite elements but it turns
out that using mixed FEM for the elasticity con-
tributes to breaking the symmetry of the stress
tensor. There is thus a need in introducing a
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Lagrange multiplier which pertubs the inf-sup
conditions making them unstable. This is why
we propose to build a DG approximation of the
DtN operator and to plug it into the solver that
we have developed for BEM-STG.

The considered problem

We consider the numerical solution of the time-
harmonic elastic problem that is supposed to be
well-posed

8
<

:

�+2µ
!2⇢

rr · u + 2µ
!2⇢

r⇥r⇥ u+ u = 0 in ⌦,

⌃n = g(x) on @⌦

posed on the two dimensional domain ⌦. The
constraint tensor ⌃ is given by the Hooke’s law

⌃(u) = �div(u)I+ µ(ru+ uT )

and n is the outward unit normal.

The global Tre↵tz DG numerical method

The domain ⌦ can be partitioned into a mesh
T composed of polygons T : ⌦ = [T2T T . Every
edge E of the mesh is either a part of the exte-
rior boundary @⌦ or an interior edge E 2 Eint.
The interior edges are shared by two polygons
TE,+ and TE,�.

Moreover, we denote by uT and vT the re-
strictions to the polygon T of the trial and test
functions u and v. The linear space V consists
of the functions such that uT 2 (H1(T ))2 sat-
isfies the elastic equation on every polygon T .
The finite dimensional subset Vh of V is com-
posed of functions such that uT is a piecewise
polynomial on every edge of T .

The variational formulation takes the form:
Find u 2 VH such that for all v 2 Vh

X

E2Eint

Z

E
uTE,+qTE,� + uTE,�qTE,+

+ pTE,�vTE,+ + pTE,+vTE,�

+

Z

E
↵ [u][v] =

Z

@⌦
gv.

where we have denoted by pT = ⌃(uT )nT and
qT = ⌃(vT )nT the Neumann traces of uT and
vT . The penalization coe�cient ↵ is a strictly
positive number.

The local numerical method

On every polygon T , the traces uT , resp. vT ,
and pT , resp. qT , are related by a Dirichlet-to-
Neumann operator:

pT = DtNTuT and qT = DtNTvT .

The auxiliary method (here a high-order DG
method) computes an approximation of the Neu-
mann traces on a set of quadrature points. It
allows to compute the first four integrals of the
variation formulation. In order to ensure no loss
of accuracy, these local computations should be
achieved with a higher polynomial degree than
the given traces uT and pT .
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Abstract

In this work, we theoretically and experimen-
tally study nonlinear elastic wave propagation
in architected soft solids. Di↵erent PDMS struc-
tures are considered based on a ”rotating squares”
geometry, known to exhibit an auxetic behavior
upon unidirectional quasi-static loading. The
nonlinear dynamics of these structures is mod-
eled with a discrete model, accounting for both
the translational and rotational degrees of free-
dom of the rigid square masses as well as their
elastic coupling exhibiting geometrical nonlin-
earity. Vector soliton solutions are predicted
and observed experimentally. We also demon-
strate that managing the nonlinearity of these
structures over a range of di↵erent nonlinearity
types and amplitudes is quantitatively feasible.

Keywords: Nonlinear elastic waves, architected
soft solids, vector solitons, nonlinearity manage-
ment

1 Introduction

Soft architected solids have recently attracted a
significant attention, because of the exotic ef-
fective mechanical properties that can be as-
sessed from the careful design of their geome-
tries [1], and their various applications, such as
in robotics [3]. While the vast majority of re-
ported results deal with their quasi-static me-
chanical properties, or with the tuning of the
linear wave dispersion properties [4–6], we here
focus on the propagation of nonlinear waves in
a soft structure composed of ”rotating squares”,
known to exhibit a negative Poisson Ratio [7].
The main goal we pursue is to understand and
model the relation between the dynamic elas-
tic nonlinearity experienced by nonlinear waves
during their propagation and the geometrical
structure of the architected soft solid metama-

terial. We expect these results will contribute
to the design of advanced elastic wave devices,
complementary to what has been achieved with
granular structures, with applications for instance
in pulse mitigation or nonlinear wave control
[8–10].

impactor

40 cm

6 cm

PDMS joints

copper cores

Figure 1: Pictures of the architected soft solid
samples that have been tested. Unit cells of the
periodic arrangement consist of square masses
connected to the neighbors with PDMS joints.
In the presented designs, squares are alterna-
tively rotated by a static angle ✓0 = 25o. Masses
can be modified by adding copper cores.

2 Description of the problem

We consider the propagation of plane pulse elas-
tic waves in a high symmetry direction of a
soft solid structure as shown in Fig. 1. Model-
ing of nonlinear plane waves propagating in the
horizontal direction is proposed, based on dis-
crete square masses, arranged periodically and
connected together at their corners by longitu-
dinal and torsional linear springs. Each mass
has two degrees of freedom, an horizontal dis-
placement and a rotation, and the nonlinearity
of the system comes from the nonlinear rela-
tions between these degrees of freedom and the
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Figure 2: (a) Spatio-temporal diagram of a displacement pulse propagating along the soft metamaterial
structure. (b) Spatial profiles of the displacements at four times of the experiment before the first
reflexion at the right boundary. Experimental results are in circles and fits with the analytical soliton
solution are the lines.

elongations of the coupling springs, i.e. it is
a geometrical nonlinearity. A system of cou-
pled nonlinear equations is derived and can be
numerically solved or, applying several approx-
imations, transformed into a single nonlinear
Klein-Gordon equation. Classical solitary wave
solution forms can therefore be obtained [11].

3 Results

We experimentally realize several tests for the
propagation of pulses in the presented samples.
For some of the excitation parameters, we are
able to observe propagation of stable pulses of
elastic wave (see Fig. 2(a)), composed of both
rotation and displacement motions. These pulses
exhibit shapes that show quantitative agreement
with the analytical solitary wave solution, Fig. 2(b).
In the linear approximation, there exists two
modes of propagation with di↵erent dispersion
properties. In the nonlinear case analyzed here,
both modes act together to form a stable soli-
tary wave pulse with a defined velocity, and thus
qualifies as a vector solitary wave. Analytical
results have also been derived for a wide range
of other geometrical parameters and show that
these soft solid structures represent an interest-
ing platform for quantitative nonlinearity man-
agement of elastic waves.
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Abstract

We propose an e�cient finite di↵erence algo-
rithm for the 3D wave equation in domains with
curvilinear boundaries. Our approach combines
the method of di↵erence potentials for handling
the complex geometries on regular grids and the
Huygens’ principle for time marching.

Keywords: method of di↵erence potentials,
Huygens’ principle, wave equation

1 Introduction

We consider an initial boundary value problem
(IBVP) for the 3D wave equation:

utt = c2�u, (x , t) 2 ⌦⇥ [0, T ], (1a)

B.C. on @⌦⇥ [0, T ], I.C. at t = 0, (1b)

where c is the speed of light and � is the Lapla-
cian. The boundary conditions set on the walls
of the curvilinear cylinder � = @⌦⇥ [0, T ] may
depend on time. The computational domain ⌦
may have a complex shape in 3D in the sense
that its boundary @⌦ does not have conform to
the (regular) discretization grid, see Fig. 1.

𝑡 

0 

Г 

𝑇 

:

Figure 1: Computational domain (schematic).

The approaches to solving IBVPs of type
(1) include various discretizations over ⌦ (e.g.,
finite volumes, DG) that have to exercise a
case-by-case care for the geometry and specific
boundary conditions (BCs) in (1b), as well as

the time-dependent BEM that becomes progres-
sively more costly as the time elapses and is also
sensitive to the type of boundary conditions.

We propose an easy to implement finite dif-
ference time domain algorithm capable of han-
dling complex non-conforming boundaries and
arbitrary boundary conditions on regular grids
with no loss of accuracy. Moreover, for the gov-
erning PDEs that admit the di↵usionless prop-
agation of waves (i.e., satisfy the Huygens’ prin-
ciple), the proposed algorithm has a provably

better asymptotic complexity in long runs than

even the plain explicit time marching over ⌦ re-

gardless of the type of discretization (finite dif-
ferences, finite volumes, FEM, DG). The reason
is that the original 3D problem is e�ciently re-
duced from the domain to its boundary only.

Our approach employs the method of di↵er-
ence potentials (MDP) [1] that has previously
been used for steady-state problems, e.g., the
Helmholtz equation [2]. The novel contribution
of this paper is the time marching algorithm
that is particularly e�cient for Huygens’ PDEs
as it exploits the lacunae in their solutions. In
our prior work, we have used lacunae for han-
dling the artificial outer boundaries [3, 4].

2 Method

The MDP equivalently reduces the PDE (1a)
from its domain ⌦⇥ [0, T ] to the operator equa-
tion at the boundary � = @⌦⇥ [0, T ]:

P�⇠� = ⇠�, (2)

where P� is a Calderon’s projection and ⇠� ⌘
(⇠0, ⇠1) is the density of a generalized Calderon’s
potential. The functions ⇠0 and ⇠1 can be inter-
preted as traces of the solution u and its nor-
mal derivative on �, respectively. The bound-
ary equation (2), which is equivalent to (1a), is
solved as a system along with the BC from (1b),
which can be arbitrary as long as the overall for-
mulation (1) is well-posed. In simple cases, the
BC explicitly provides some component of ⇠�,
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e.g., ⇠0 in the case of a Dirichlet BC and ⇠1 in
the case of a Neumann BC. The remaining com-
ponent is then obtained as a solution to (2).

The MDP enables an e�cient solution of the
boundary equation (2). It also allows one to eas-
ily restore the solution u on the entire ⌦ at Tfinal

using ⇠�. The solution of (2) requires solving
a number of inhomogeneous auxiliary problems
(APs) for equation (1a) formulated on a larger
domain ⌦0 that has simple shape, see Fig. 2.
The boundary @⌦0 conforms to the grid and as
such, the APs can be easily integrated by any
appropriate finite di↵erence scheme.

𝑡𝑖𝑚𝑒 

T 

0 

:
0:

Figure 2: Computational domain for the AP.

The key component of our time marching
algorithm is the use of the Huygens’ principle,
which implies that for a finite domain in space,
the extent of the domain of dependence of equa-
tion (1a) in time is also finite. This property
allows one to solve (2) over long computational
times Tfinal � T sequentially, updating the den-
sity ⇠� by “chunks” of size T , see Fig. 3.
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Figure 3: Time marching by “chunks” of size T .

In doing so, the time marching is done only
along the boundary �, which e↵ectively reduces
the space dimension of the evolution scheme for
⇠� by one compared to the conventional time

marching of the solution over the entire 3D do-
main ⌦. The solution u on ⌦ is computed only
once, at the final moment t = Tfinal. Due to the
reduced dimension and the special choice of an
economical basis on �, the proposed method ap-
pears more e�cient in long runs than the stan-
dard explicit time marching over ⌦.

3 Numerical simulations

We have tested the proposed method for a va-
riety of IBVPs (1) where the domain ⌦ was a
ball while the discretization grid was Cartesian.
In all the cases, we have obtained stable per-
formance over long times and the design rate of
grid convergence that corresponds to that of the
core scheme used in MDP (second order for our
current simulations). In Fig. 4, we are showing
the convergence for a Robin BC in (1b).
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Figure 4: Grid convergence for a Robin BC.

4 Future work

In the future, we will consider exterior problems
and high order accurate schemes.
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Abstract

Standard numerical methods often fail to solve
the Helmholtz equation accurately near reen-
trant corners, since the solution may become
singular. The singularity has an inhomogeneous
contribution from the boundary data near the
corner and a homogeneous contribution deter-
mined by boundary conditions far from the cor-
ner. We present a regularization algorithm that
uses a combination of analytical and numerical
tools to distinguish between these two contri-
butions and ultimately subtract the singularity.
We then employ the method of di↵erence poten-
tials to numerically solve the regularized prob-
lem with high-order accuracy on a domain with
a curvilinear boundary. Our numerical experi-
ments show that the regularization successfully
restores the design rate of convergence.

Keywords: singular solutions, regularization,
di↵erence potentials

We consider the constant coe�cient ho-
mogeneous Helmholtz equation on a bounded
2D domain with a reentrant corner, see Fig-
ure 1. The PDE is supplemented with Dirich-
let boundary conditions on each segment of the
boundary:

�u+ k2u = 0 on ⌦, (1a)

u
��
�1

= '1, u
��
�2

= '2, u
��
�3

= '3. (1b)

Problems with reentrant corners are hard be-
cause the solution may become singular near
the corner, i.e., the derivatives of the solution
become unbounded. Standard numerical meth-
ods perform poorly near singularities, so they
must be modified before use on singular prob-
lems. Wave problems with reentrant corners
may arise, for instance, when analyzing the
scattering of radar waves near an air–ocean–sea
ice interface. Marin et al. [1] have solved sev-
eral Helmholtz-type equations on domains with
reentrant corners using BEM and the method
of fundamental solutions.

↵

�3

�1

�2

⌦

Figure 1: A schematic for the domain ⌦ with a
reentrant corner.

We use regularization (i.e., singularity sub-
traction) and the method of di↵erence poten-
tials [3] to achieve high-order accuracy near
a corner. Singular solutions to the boundary
value problem that are expected to hamper nu-
merical convergence are first subtracted out to
produce a regularized problem, whose solution
is known ahead of time to be smooth enough to
be solved numerically without loss of accuracy.
The regularized problem is then solved numer-
ically with the method of di↵erence potentials.

The key di�culty with this problem is that
there may be two contributions to the singular-
ity which must be handled individually. If we
temporarily ignore the boundary condition on
the outer boundary �3, we can write the solu-
tion u to the Helmholtz equation over the do-
main ⌦ as u = v + w, where v is a particular
solution that satisfies the boundary conditions
on the sides of the wedge and

w(r, ✓) =
1X

m=1

amJm⌫(kr) sin(m⌫(✓ � ↵))

is an arbitrary linear combination of solutions
that satisfy the homogeneous boundary condi-
tions. Both the particular solution v and the
Fourier–Bessel series w may be singular, and we
refer to these two components of the singularity



WAVES 2017, Minneapolis

as the inhomogeneous contribution and homo-
geneous contribution, respectively. The inho-
mogeneous contribution is local, in the sense
that it is determined by the boundary condi-
tions in the vicinity of the corner. We use the
methodology of Fox and Sankar [2] to derive an
asymptotic series for v near the corner:

v(r, ✓) ⇠
1X

m=1

v(m)(r, ✓) (r ! 0).

The work [2] provides a constructive proce-
dure for determining the terms v(m) from the
Helmholtz equation and boundary conditions
near the corner. These terms have increasing
regularity, as do the Bessel functions Jm⌫ , so
we propose the regularization

u = u(reg) + v(1) + . . .+ v(Mv) (2)

+
MwX

m=1

amJm⌫(kr) sin(m⌫(✓ � ↵)),

where the fixed integers Mv and Mw are cho-
sen large enough to guarantee that u(reg) has a
certain number of bounded derivatives.

Unlike the inhomogeneous contribution, the
homogeneous contribution is nonlocal, since the
unknown intensity factors (am) that character-
ize w are determined by the boundary condi-
tion on �3, far from the corner. To compute
the leading intensity factors a1, . . . , aMw for use
in the regularization (2), we must know what
portion of the boundary data on �3 is from w,
and what portion is from v. When both v and
w are nonzero, “splitting” the data on �3 be-
comes a challenging issue. In this way, our work
is more general than that of Marin et al. [1],
who have considered problems with only homo-
geneous contributions to the singularity. Once
the leading intensity factors are computed, the
original boundary value problem (1) is recast in
terms of the su�ciently smooth function u(reg)

to form the regularized problem.
The method of di↵erence potentials [3] uses

the discrete counterparts of Calderon’s opera-
tors to accommodate general curvilinear bound-
aries while leveraging the accuracy and e�-
ciency of high-order finite di↵erence schemes.
This way, the method of di↵erence potentials
overcomes a primary limitation of finite dif-
ference methods, their inability to accurately
handle boundaries that do not conform to the

Figure 2: Convergence rate vs. grid dimension.

discretization grid. The method of di↵erence
potentials has the same asymptotic complexity
as finite di↵erence schemes on regular structure
grids. In FEM, on the other hand, high-order
accurate approximations can be built for arbi-
trarily shaped boundaries only in fairly sophisti-
cated and costly algorithms with isoparametric
elements.

We have applied the method of di↵erence
potentials to the regularized problem for sev-
eral di↵erent configurations of the boundary
and data. In all cases we found that the regu-
larization restored the design fourth order con-
vergence; see Figure 2 for the results from one
such experiment. Future work could extend
our methodology to more di�cult cases, such
as time-dependent waves, or reentrant corners
that lay on the interface between two materials.
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Abstract

We present a mathematical analysis of the start-
stop approximation that is routinely used in
synthetic aperture radar (SAR) imaging. The
objective is to quantify the e↵ect of those fac-
tors that the start-stop approximation neglects.
They include the displacement of the antenna
during the pulse round-trip time between the
radar platform and the target and the Doppler
frequency shift. We show that both phenomena
can be accounted for by appropriately correct-
ing the signal processing algorithm. This, in
turn, requires computing the emitted and scat-
tered field with the help of the Lorentz trans-
form. If the correction is done, then the e↵ect of
the antenna motion on the image becomes neg-
ligibly small. Otherwise, the image gets shifted
and also distorted. For some imaging settings,
the distortions due to the start-stop approxi-
mation may become substantial, which is not
commonly discussed in the SAR literature.

Keywords: synthetic aperture radar (SAR),
start-stop approximation, Lorentz transform,
correction for antenna motion.

We analyze the Doppler e↵ect in the con-
text of synthetic aperture radar (SAR) imag-
ing, following up and expanding on our earlier
results [1]. Understanding of the Doppler e↵ect
is critical for evaluating and then mitigating the
e↵ect of the start-stop approximation on the im-
age. The start-stop approximation is a common
tool in SAR signal processing. It simplifies the
analysis by assuming that the radar antenna is
motionless during the transmission and recep-
tion of the interrogating signals.

The two important e↵ects ignored under the
start-stop approximation are the displacement
of the antenna during the time the signal trav-
els back and forth between the antenna and the
Earth’s surface and the Doppler frequency shift.
The latter appears because the antenna actu-
ally moves when the pulse is emitted and the
reflected signal received. Our main objective is
to provide a quantitative analysis of the impact

of these two e↵ects on SAR imaging.
The role of the start-stop approximation can

be analyzed by having the standard retarded
potential

P

✓
t� 2r

c

◆

replaced with the new propagator

P

✓
t
⇣
1 + 2

v

c
cos �

⌘
� 2r

c

⇣
1 +

v

c
cos �

⌘◆
(1)

derived using the Lorentz transform, which pre-
serves the governing wave equation in the case
of moving transmitters/receivers. Formula (1)
takes into account both the frequency shift and
antenna displacement. The quantity v in (1) is
the platform velocity, � is the angle between the
velocity and the direction to the target, and 2r
is the round-trip distance, see Figure 1.
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Figure 1: Monostatic stripmap SAR.

The new propagator (1) helps one correct
the SAR signal processing algorithm and com-
pensate for the adverse e↵ect of the start-stop
approximation on the image. In doing so, imple-
menting the correction is relatively easy because
it does not require any additional information
besides the geometric quantities (angles and dis-
tances, see Figure 1) and the platform velocity
v. This is in contradistinction, say, to the cor-
rections aimed at mitigating the distortions due
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to the Earth’s ionosphere, see [2] and [3, Chap-
ter 3], for which one first needs to reconstruct
the unknown characteristics of the ionosphere.

Our analysis is based on representing the
image as a convolution of the ground reflectiv-
ity ⌫(z) that characterizes the target with the
imaging kernel W (y, z) = W (y � z) that char-
acterizes the radar system:

I(y) =

Z
⌫(z)W (y, z)dz. (2)

The e↵ect of the Doppler correction is quan-
tified by studying the properties of the corre-
sponding kernel W . Representation (2) allows
for a rigorous consideration of all the e↵ects and
robust prediction of the system performance.

If, on the other hand, the SAR signal pro-
cessing procedure is not corrected to account for
the motion of the radar platform, then the re-
sulting SAR image becomes shifted in the az-
imuthal direction and may also be distorted
(blurred). In many cases, the foregoing distor-
tions will be small. Yet for certain imaging sce-
narios, the distortions of the image caused by
the start-stop approximation may appear sig-
nificant. The type of SAR imaging systems
that may be particularly prone to this kind
of distortions are those that exploit the inter-
rogating waveforms (chirps) with low rate of
frequency modulation, i.e., the so-called fre-
quency modulated continuous waves (FMCW).
These systems are actually contemplated and
built in practice (see, e.g., [4, 5], as well as
the new ViSAR project by DARPA), because
the FMCW waveforms seem to present fewer
hardware limitations for airborne or spaceborne
SAR platforms. At the same time, to the best
of our knowledge the possibility of image deteri-
oration caused by the start-stop approximation
did not receive a proper attention in the SAR
literature, with the exception of [3, Chapter 6].
Other relevant publications include [6].

Let us also note that some existing books
on SAR, e.g., [7, 8], treat the Doppler e↵ect
with notable inaccuracies, erroneously attribut-
ing to it the mechanism of azimuthal resolu-
tion. Hence, we find it important to clearly
demonstrate the role of both the actual phys-
ical Doppler e↵ect, which is due to the antenna
velocity v and is referred to as the Doppler ef-
fect in fast time, as well as that of the so-called
Doppler e↵ect in slow time. The latter is a lin-
ear variation of the local wavenumber along the

synthetic array, and it is this phenomenon that
enables the signal compression in the azimuthal
direction and yields the azimuthal resolution.
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Boundary integral equations for scattering problems with mixed boundary conditions
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Abstract

We present boundary integral equation formula-
tions of scattering problems with mixed bound-
ary conditions that rely on smooth blendings of
the di↵erent types of boundary conditions.

Keywords: Scattering, mixed boundary con-
ditions

1 Introduction

We consider a scalar scattering problem with
mixed Dirichlet and Neumann boundary con-
ditions, for which we present a blending strat-
egy via smooth cuto↵ functions. Specifically, we
solve for the scattered field u

s that satisfies the
Helmholtz equation

�u

s + k

2
u

s = 0 in R3 \D (1)

u

s = �u

i on �D

@nu
s = �@nu

i on �N

lim
|r|!1

r

�1(@us/@r � iku

s) = 0,

whereD is a bounded domain in R3 whose bound-
ary is a closed surface � such that �D[�N = �.
We use a smooth family of partitions of the
unity parametrized by the parameter � consist-
ing of a pair of cut-o↵ functions (��

D,�
�
N ) such

that (i) �

�
D + �

�
N = 1 on � and (ii) �

�
D is sup-

ported in a �-neighborhood of �D in � and �

�
N

is supported in a �-neighborhood of �N in �,
that is �

�
D(x) = 1 for all x 2 �D such that

d(x,�N ) � � and �

�
D(x) = 0 for all x 2 �N

such that d(x,�D) � � where the distances are
measured on the surface �—and similar prop-
erties for ��

N . Given this family of partitions of
unity we consider the following family of scat-
tering problems parametrized by �: find u

s,�

radiative solutions of Helmholtz equation with
blended impedance boundary conditions

�u

s,� + k

2
u

s,� = 0 in ⌦+ (2)

Z�

�
Du

s,� + �

�
N@nu

s,� = �Z�

�
Du

i � �

�
N@nu

i
,

on �, where the impedance Z is such that =Z >

0. It can be easily shown that equations (2) are

well posed. We retrieve the solution u

s of equa-
tions (1) as the limit when � ! 0 of the solu-
tions us,� of equations (2). The blending strat-
egy can be easily extended to the case of pene-
trable scattering when the interior of D is filled
with a material with corresponding wavenum-
ber k�, and the same Dirichlet boundary con-
ditions are imposed on �D while the classical
transmission conditions are imposed on �N (i.e.
D is partially coated).

2 Numerical Results

Using regularization strategies introduced in [2],
well-conditioned boundary integral equation for-
mulations of the blended equations (2) can be
readily obtained. More importantly, Nyström
solvers based on these formulations [1] can be
applied without the need to directly address
the nature of discontinuity of their solutions at
the junction between �D and �N . We present
in Figures 1 and 2 scattering experiments for
both impenetrable and penetrable cases that il-
lustrate the convergence in the far-field of the
blended solutions us,� in the limit as the overlap
parameter � approaches 0.
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Figure 1: Scattering experiments in the case of a unit sphere with Dirichlet boundary conditions in the
northern hemisphere and Neumann boundary conditions in the southern hemisphere, and wavenumber
k = 32. Left: plots of the radar cross section as a function of the azymuthal angle ✓ for � = 0 for
various values of the parameter � in the blended boundary conditions. We computed RCS for 1024
values of the angle ✓ from 0� to 180�. Right: plots of the total fields in the near field in the case
� = 0.01.

Figure 2: Scattering experiments in the case of a unit sphere with k+ = 16 and k� = 32, when the
northern hemisphere is coated. Left: plots of the radar cross section as a function of the azymuthal
angle ✓ when the longitudinal angle � = 0 for various values of the parameter � in the blended boundary
conditions. We computed RCS under broadsight incidence, for 1024 values of the angle ✓ from 0� to
180�. Right: plots of the total fields in the near field in the case � = 0.01.
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Abstract

We will solve the Cauchy problem for the focus-
ing Davey-Stewartson II equations (that model
the shallow-water limit of evolution of weakly
nonlinear water waves) in the presence of excep-
tional points (and/or curves). We also provide
a method of reconstruction of complex-valued
once differentiable conductivities in the inverse
impedance tomography problem.

Both results are based on the inverse scat-
tering problem for the Dirac equation, which is
solved without restrictions that guarantee the
absence of exceptional points. Below we will
mostly discuss the latter result (see [1-3] for
more details and applications).

Keywords: ∂-equation, inverse Dirac problem,
conductivity, Davey-Stewartson equations

1 Main results

I. Let z = x+ iy ∈ C, ∂ = 1

2

(

∂
∂x + i ∂

∂y

)

. Con-

sider the Dirac equation

∂ψ = Qψ, Q(z) =

(

0 Q12(z)
Q21(z) 0

)

(1)

where Qij ∈ Lp
com(C), p > 4.

Let ψ be the (2 × 2)-matrix solution of (1)
that depends on parameter k ∈ C and has the
following behavior at infinity:

ψ(z, k)e−ikz/2 → I, z → ∞. (2)

Note that the plane waves ϕ0(k, z) := eikz/2,
k ∈ C, are growing at infinity exponentially in
some directions, and the same is true for the
elements of the matrix ψ(z, k).

Problem (1),(2) is equivalent to the
Lippmann-Schwinger equation:

ψ(z, k) = eikz/2I

+

∫

O
G(z − z′, k)Q(z′)ψ(z′, k)dx′dy′, (3)

whereG(z, k) = 1

π
eikz/2

z andO ⊂ C is a bounded
domain containing the support of Q. Equation
(3) is Fredholm in Lq(O), q > 2p/(p − 2). Af-
ter ψ is found in O, the right-hand side of (3)
defines ψ for all z ∈ C. Solutions ψ of (3) are
called the scattering solutions, and the values
of k such that the homogeneous equation (3)
has a non-trivial solution are called exceptional
points. The set of exceptional points will be
denoted by E .

The matrix

h(ς, k) =
1

(2π)2

∫

∂O
e−iςz/2ψ(z, k)dz,

where ς ∈ C, k ̸∈ E , is called the (generalized)
scattering data.

Following Sung, we will work with matrix v
(instead of ψ) defined as follows

v =

(

µ11(z, k) µ12(z, k)eiℜ(kz)

µ21(z, k)eiℜ(kz) µ22(z, k)

)

,

(4)

where µij = ψij(z, k)e−ikz/2. Matrix-function v
is defined for k /∈ E and satisfies

∂

∂k
v(z, k) = ei(kz+zk)/2v(z, k)ho(k, k) =: T v,

(5)
where ho := Πoh is the off-diagonal part of h
obtained by replacing the diagonal entries by
zeros.

If E = ∅, then equation (5) holds in the
whole plane and can be solved. After v (and
therefore, ψ ) is found, the potential Q can be
found from (1): Q = ∂ψ(ψ)−1.

We use the following method to recover Q if
E ̸= ∅. It is known that the set E is bounded.
We choose A large enough so that the disk

D = {k ∈ C : |k| < A}

contains E and a non-exceptional point k0. Let
ψ+(z, k) be the solution of the Lippmann-
Schwinger equation (3) with the argument k in
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the functionG being fixed and equal to k0. Such
a solution exists and is analytic in k. Moreover,
one can show that ∂v+

∂k
= 0, k ∈ D, where v+ is

defined by (4) with ψ replaced by ψ+.
Let v′ = v for k /∈ D and v′ = v+ for k ∈

D. Then ∂v′

∂k
= T ′v′, where T ′ = T outside

of D and T ′ = 0 in D. The above construction
allows one to express the jump of v′ on ∂D as an
integral operator applied to v+|∂D and reduce
the above equation for v′ to a Fredholm integral
equation of the form

(I + Tz)w = −TzI, w = v′ − I. (6)

Operator Tz is defined on the space

Hs =
{

u ∈ Ls(R2
k)
⋂

C(D)
}

, s > 2,

of functions of k. It depends on parameter z
and is given by

Tzφ(k) =
1

π

∫

C\D
ei(ςz+zς)/2φ(ς)ho(ς, ς)

dςRdςI
ς − k

+
1

2πi

∫

∂D

dς

ς − k

∫

∂D

(

ei/2(ςz+ς′z)φ−(ς ′)Πo

+ei/2(ς−ς′)zφ−(ς ′)ΠdC
)[

Ln
ς ′ − ς

ς ′ − k0
h(ς ′, ς)dς ′

]

,

where φ ∈ Hs, φ− is the boundary trace of φ
from the interior of D, C is the operator of com-
plex conjugation, ΠoM = Mo is the off-diagonal
part of a matrix M , ΠdM = Md is the diagonal
part, and ho = Πoh.

Let Sε,p be the space of potentials Q with
support in O such that Q ∈ Lp

comp(C), p > 4,
and FQ ∈ L2−ε(C), ε > 0 (F is the Fourier
transform).

Theorem 1 Let Q12, Q21 ∈ Sε,p. Then for each
s̃ > max( 2p

p−4
, 4ε−2) the following statements are

valid.

• Operator Tz is compact in Hs̃ for all z ∈ C

and depends continuously on z.

• Let us fix z0 ∈ C. Then, for generic po-
tentials Q12, Q21 in Sε,p, the equation

(I + Tz)w = −TzI (7)

is uniquely solvable in Hs̃ for all z in some
neighborhood of z0 (the neighborhood may
depend on Q).

• For k ̸∈ E, the function ψ = [eikz/2CΠd +
e−izk/2Πo](w + I), where w(·) is the so-
lution of (7), satisfies the equation ∂ψ =
Qψ in O.

• From (1), (2) it follows that Q = ∂ψ(ψ)−1,
|k| ≫ 1.

II. Consider the Davey-Stewartson II equations

qt = 2iqxy ± 4q(ϕ− ϕ),

∂ϕ = ∂|q|2, q(z, 0) = q0(z),

where the choice of the sign corresponds to the
defocusing/focusing case. Let

Q0(z) =

(

0 q0(z),
±q0(z) 0

)

, z ∈ C.

Let h be the scattering data for the Dirac equa-
tion (1) with Q = Q0. We define the time de-
pendent scattering data h(ς ′, ς, t) as

e−t(ς2−ς′
2
)/2Πoh(ς ′, ς) + e−t(ς2−ς′

2
)/2Πdh(ς ′, ς),

and use Theorem 1 to find the potential q =
q(t, z) that corresponds to this data. The po-
tential satisfies the Davey-Stewartson II equa-
tions (see [2] for details).

III. We find the complex-valued conductiv-
ity γ via the Dirichlet-to-Neumann map on ∂O
for the equation

div(γ∇u(z)) = 0, z ∈ O. (8)

Theorem 1 allows one to recover γ assuming
that γ ∈ W 1,p(O), p > 4, F(∇γ) ∈ L2−ε(R2),
ε > 0, (here ∇γ is extended by zero in R2\O).
The results, under weaker conditions, have been
known for real-valued γ.
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Abstract

We study passive pulse redirection in a granular
network of two semi-infinite, ordered homoge-
neous granular chains mounted on linear elastic
foundations and coupled by weak linear sti↵-
nesses. A series of repetitive half-sine pulses is
applied to an “excited chain”, whereas the “ab-
sorbing” chain is initially at rest. Passive pulse
redirection from the excited to the absorbing
chain can be achieved by macro-scale realization
of the Landau-Zener quantum tunneling e↵ect,
induced by a stratification of the elastic founda-
tion of the excited chain. Irreversible wave redi-
rection in the forced network happens through
sustained 1:1 resonance capture, whereas recur-
ring nonlinear beats between the two chains oc-
cur in the absence of resonance capture.

Keywords: Breathers, granular media

1 Introduction

Uncompressed ordered granular networks exhibit
rich nonlinear behavior [1, 2]. The absence of
linear acoustics and the zero speed of sound
in these media led to their characterization as
“sonic vacua” [1]. Their strongly nonlinear acous-
tics are fully tunable with energy, so they can
support a variety of interesting wave phenom-
ena [3, 4], including discrete standing or prop-
agating breathers, i.e., oscillating wavepackets
with localized envelopes [5, 6]. Hasan et al. [7]
considered an impulsively forced granular net-
work and showed irreversible wave redirection
in the form of propagating breathers. This phe-
nomenon was governed by the macroscopic ana-
log of the Landau-Zener quantum tunneling ef-
fect [8], and its practical realization was by spa-
tial stratification of the coupling of the network.
Here we extend these results to a periodically
forced network.

2 Propagating Breathers and Recurring
Energy Transfers

We consider the forced granular network of Fig-
ure 1 of two semi-infinite, weakly coupled (with

linear sti↵nesses) and weakly damped, uncom-
pressed, homogeneous granular chains of identi-
cal PDMS beads with radius R = 4.75⇥ 10�3m
mounted on linear elastic foundations. The foun-
dation sti↵ness and the coupling sti↵ness for
each bead have parameters k̃1 = 4115Nm�1

and k̃2 = 402Nm�1, respectively. The force
applied to the “excited” chain is a series of half-
sines, F̃0 sin(2⇡ft)H[sin(2⇡ft)], where H[·] de-
notes the Heaviside function, whereas the “ab-
sorbing” chain is unforced. In Figure 2 we show
propagating breathers in the network for F̃0 =
23.1N and f = 51.52Hz. Intense and recurring
energy exchanges are noted, as well as synchro-
nization of each applied pulse with a generated
breather, indicating 1:1 resonance in the acous-
tics.

Figure 1: The two-dimensional weakly coupled
granular network under periodic excitation.

3 Targeted Energy Transfer and Passive
Wave Redirection

By stratifying the elastic foundation of the ex-
cited chain we can induce a macroscopic ana-
logue of the Landau-Zener quantum tunneling
e↵ect in space. This stratification is given by
(1 � si)k̃1 for i = 1, 2, ..., where si = (i � 1)s
for i = 1, 2, 3, and si = 3s for i � 4. In Fig-
ure 3 we present the resulting wave redirection
for s = 27%. We deduce passive breather redi-
rection from the excited to the absorbing chain.
This is due to sustained 1:1 resonance captures
between dominant frequency components of the
responses of the excited and absorbing chains
as explained in [9]. In fact, for fixed excitation
such wave redirection can occur only if the strat-
ification parameter is above the critical thresh-
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old s ⇡ 26% [9]. These results pave the wave
for designing nonlinear acoustic metamaterials
with features of passive wave redirection.

Figure 2: Spatio-temporal evolutions of the
instantaneous kinetic energies of the leading
beads showing recurring energy exchanges be-
tween propagating breathers.

Figure 3: LZT e↵ect leading to wave redirec-
tion: Spatio-temporal evolutions of instanta-
neous kinetic energies of the leading 40 beads of
the excited and absorbing chains for s = 27%.
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Abstract

The Boundary Element Method (BEM) is a pow-
erful numerical method for the computational
simulation of wave scattering problems in acous-
tics and electromagnetics. Because of the sur-
face integral representation, the number of de-
grees of freedom scales favourably compared to
volumetric methods. However, solving the dense
set of linear equations poses severe limitations
on the maximum frequency that can be used
on present-day computing platforms. This pa-
per presents the combined use of parallelisation,
preconditioning, and compression techniques to
achieve large-scale BEM simulations.

Keywords: boundary element methods, high-
performance computing, parallelisation

1 Introduction

Wave scattering phenomena play an important
role in many engineering problems. Here, we
will consider acoustic scattering at rib cages for
the design of ultrasound medical devices and
electromagnetic scattering at telescope mirrors
used in astronomy. For both applications, the
physical model is given by time-harmonic wave
scattering at a bounded object embedded in free
space. Then, using a boundary integral for-
mulation will be e↵ective because the radiation
conditions are automatically satisfied and dis-
cretisation with the Boundary Element Method
(BEM) will only need a grid density that scales
quadratically with the frequency. However, the
resulting linear system is dense and, therefore,
requires a large storage capacity and e�cient al-
gorithms to solve it. This becomes all the more
important when considering high-frequency scat-
tering at large-scale objects, as is the case in our
targeted engineering applications. Standard BEM
will be unfeasible to obtain accurate results for
large-scale simulations without the use of accel-
eration techniques, such as matrix compression,
preconditioning, and parallelisation. Where the
use of only one or two of these is su�cient for
moderately high frequencies [2,3], for numerical

simulations at larger scale, all three will have to
be used simultaneously, as will be presented in
this paper. All techniques are implemented in
the open-source library BEM++ [1].

2 Background

The present research in high-performance com-
puting for BEM is inspired by two di↵erent ap-
plications in engineering. Both have the chal-
lenge that scattering of high-frequency waves
have to be computed at a large-scale object con-
sisting of smaller, disjoint parts.

The first target application is within medi-
cal treatment planning. Computational experi-
ments are important prediction tools in the de-
velopment of surgery with non-invasive modal-
ities. For instance, High-Intensity Focused Ul-
trasound (HIFU) uses a focusing of acoustic rays
to locally destroy tissue with ablation. In the
case of liver cancer, the reflection of rib bone
has to be computed at a frequency of 1 MHz.

The other target application is in the area
of astronomical instrumentation. The mirrors
of large telescopes typically consist of a constel-
lation of many bended plates that reflect the
signals from the universe to the feed. These
mirrors can be adaptively perturbed to improve
the quality of the image. Numerical simulation
of which requires the computation of electro-
magnetic scattering at a reflector with a size of
several thousand wavelengths across.

3 Formulation

Time-harmonic acoustic and electromagnetic scat-
tering can be modelled with the Helmholtz and
Maxwell equations, respectively, reformulated
into boundary integral equations. Here, for the
acoustic model, the rib cage is considered to
be a rigid object and we will use a Burton-
Miller formulation since it is free of spurious
resonances. For the electromagnetic model, the
metal mirror is a perfect electrical conductor
modelled by a sheet, so the Electric Field Inte-
gral Equation (EFIE) will be used.
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3.1 Matrix compression

The memory footprint of a BEM scales quadrat-
ically with the number of degrees of freedom
and, therefore, becomes prohibitively expensive
at high frequencies. Acceleration methods that
reduce the memory footprint are the fast multi-
pole method and H-matrix compression, among
others. Here, we will use H-matrix compres-
sion because it is readily available in the open-
source BEM++ library, it is very e�ctive for
moderately high frequencies and it will be ad-
vantageous for future research into simulation
of multiple right-hand sides.

3.2 Preconditioning

Iterative linear solvers typically require an in-
creased number of iterations for larger simula-
tions, leading to longer compute times. Here,
the OSRC preconditioner will be used, which is
based on high-frequency approximations of the
Neumann-to-Dirichlet map.

3.3 Parallelisation

The trend of modern computer architecture is
to include more and more compute cores in a
single system, instead of faster cores. Here, we
will use the special structure of the targeted en-
gineering applications having disjoint objects.
This allows for a high-level parallelisation ap-
proach of the block structure, which can be com-
bined with H-matrix compression and OSRC-
preconditioning.

4 Numerical results

For the HIFU problem, a human rib cage model
will be excited by an array of ultrasound piston
elements at 1 MHz, which yields an object of
135 times the wavelength. The surface mesh
covers the wavelength with at least 8 triangular
elements, resulting in a BEM with 479 124 de-
grees of freedom. The use of H-matrix compres-
sion for the assembly of the boundary operators
reduced the memory requirement from 7 TB to
194 GB. Solving the system with OSRC precon-
ditioning took 19 iterations and 7 minutes only,
where the result is depicted in Fig. 1.

5 Conclusions and outlook

Computational simulation of high-frequency wave
scattering at large-scale objects with BEM is

Figure 1: The acoustic pressure at the surface
of and exterior to a human rib cage model.

only feasible when acceleration algorithms are
being used. Here, parallelisation, precondition-
ing and compression are combined to achieve ef-
ficient numerical simulations. Current research
consists of computational experiments at ob-
jects of larger scales and the design of fast BEM
techniques that employ a tighter connection be-
tween parallelisation, preconditioning and com-
pression.
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Abstract

We elaborate on a class of solutions to the time-
dependent Schrödinger equation for the simple
harmonic oscillator in one dimension. They are
derived by the action of the corresponding max-
imal kinematical invariance group on the stan-
dard ground state solution. We show that the
product of the variances attains the required
minimum value only at the instances that one
variance is a minimum and the other is a maxi-
mum, when the squeezing of one of the variances
occurs. The generalized coherent states are ex-
plicitly constructed and their Wigner function
is studied. The overlap coe�cients between the
squeezed, or generalized harmonic, and the Fock
states are explicitly evaluated in terms of hyper-
geometric functions and the corresponding pho-
ton statistics are discussed. Some applications
to quantum optics, cavity quantum electrody-
namics and superfocusing in channelling scat-
tering are mentioned. Explicit solutions of the
Heisenberg equations for radiation field opera-
tors with squeezing are found.

Keywords: harmonic oscillator, squeezing, quan-
tum optics

1 Introduction

From the very beginning, nonclassical states of
the linear Planck oscillator, in particular the co-
herent and squeezed states, have been a sub-
ject of considerable interest in quantum physics
[1]. They occur naturally on an atomic scale
and, possibly, can be observed among the vibra-
tional modes of crystals and molecules. A single
mono-chromatic mode of light also represents a
harmonic oscillator system for which nonclassi-
cal states can be generated very e�ciently by
using the interaction of laser light with non-
linear optical media. Generation of squeezed
light with a single atom has been experimen-
tally demonstrated. On a macroscopic scale,
the squeezed states are utilized for the detection
of gravitational waves below the so-called vac-
uum noise level and without violation of the un-
certainty relation. The past decades’ progress

in the generation of pure quantum states of mo-
tion of trapped particles provides not only a
clear illustration of basic principles of quantum
mechanics, but it also manifests the ultimate
control of particle motion. These states are of
interest from the standpoint of quantum mea-
surement concepts and facilitate other applica-
tions including quantum computation

It is well known that the harmonic quan-
tum states can be analyzed through the dy-
namics of a single, two-level atom which ra-
diatively couples to the single-mode radiation
field in the Jaynes-Cummings(-Paul) model ex-
tensively studied in the cavity QED. Creation
and detection of thermal, Fock, coherent and
squeezed states of motion of a single ion con-
fined in an rf Paul trap where the state of atomic
motion had been observed through the evolu-
tion of the atom’s internal levels (e.g., collapse
and revival) under the influence of a Jaynes-
Cummings interaction realized with the appli-
cation of external (classical) fields [8, 9]. The
distribution over the Fock states is deduced from
an analysis of Rabi oscillations. Moreover, Fock,
coherent and squeezed states of motion of har-
monically bound cold cesium atoms were exper-
imentally observed in a 1D optical lattice. This
method gives a direct access to the momentum
distribution.

Experimental recognitions of the nonclassi-
cal harmonic states of motion have been achieved
through the reconstruction of the Wigner func-
tion in optical quantum state tomography, from
a Fourier analysis of Rabi oscillations of a trapped
atom, and/or by a direct observation of the
square of the modulus of the wavefunction for a
large sample of cold cesium atoms in a 1D op-
tical lattice [6,8]. Our theoretical consideration
complements all of these advanced experimen-
tal techniques by identifying the state quantum
numbers from first principles. This approach
may provide a guidance for engineering more
advanced nonclassical states.
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2 Aims

The aim of this work is to show how to construct
the minimum-uncertainty squeezed states for quan-
tum harmonic oscillators, which are important
in the above applications, in the most simple
closed form. Our approach reveals the quan-
tum integrals of motion of the squeezed states
in terms of solution of a certain Ermakov-type
system [1–3]. As a result, the probability ampli-
tudes of these nonclassical states of motion are
explicitly evaluated in terms of hypergeomet-
ric functions. Their experimental observations
in cavity QED and quantum optics are briefly
reviewed. Moreover, the radiation field opera-
tors of squeezed photons, which can be created
from the QED vacuum, are introduced by sec-
ond quantization with the aid of hidden sym-
metry of the harmonic oscillator problem [5, 7]
in the Heisenberg picture.
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Figure 1: Snapshot of the oscillating electron
density of the dynamic harmonic state of (1).

3 Methods

First, the minimum-uncertainty squeezed states
for the time-dependent linear harmonic oscilla-
tor

2i 
t

+  

xx

� x

2
 = 0 (1)

in coordinate representation, with the help of
transformation

0 =

s
�(t)p
⇡

e

i[↵(t)x2+�(t)x+(t)+�(t)]
e

�(�(t)x+)2/2

(2)
is discussed. Then, the generalized coherent,
or TCS states are constructed. The Wigner
and Moyal functions of the squeezed states are
evaluated directly from the corresponding wave-
functions and their classical time evolution is
verified with the help of Mathematica. The

eigenfunction expansions of the squeezed (or gen-
eralized harmonic) states in terms of the stan-
dard Fock ones are derived.
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Abstract

We identify explicit conditions on geometry and
material contrast for creating band gaps in acous-
tic and 2-d photonic crystals. The approach
here makes use of the electro-static and quasi-
periodic source free resonances of the crystal,
which deliver a representation for solution op-
erators associated with propagation of waves in-
side the periodic high contrast medium. This,
together with the Dirichlet spectrum and an
auxiliary spectrum associated with the inclu-
sions, delivers conditions for opening band gaps
at finite contrast for a given inclusion geometry.

Keywords: band gaps, PDE, photonics, spec-
tral theory

1 Introduction

We identify new explicit counditions on geome-
try and material contrast for creating band gaps
in certain periodic media. We consider waves
in a periodic medium in Rd, d = 2, 3 composed
of two materials. One material is in the form
of disjoint inclusions, while the other acts as a
“host” for the inclusions. The inclusions are
surrounded by the host and do not touch the
boundary of the period cell. The union of the
inclusions D1, . . . , Dn

inside each period is de-
noted by D. The crystal occupies all of Rd and
has fundamental period cell Y = (0, 1]d.

The material coe�cient is a(x) = k(1��⌦(x))+
�⌦(x), where �⌦(x) is the indicator on the in-
clusions ⌦ = [

m2Zd(D+m). Wave propagation
in the crystal at frequency ! is described by

�r · (a(x)ru(x)) = !2u(x), x 2 Rd (1)

The self-adjoint operator L
k

= �r · a(x)r
is defined by the quadratic form in L2(Rd)

Z

Rd
a(x)|ru(x)|2 dx (2)

whose domain is the Sobolev Space W 1,2(Rd).
Equation 1 describes both waves in acoustic crys-
tals as well as (transverse) waves in 2-d photonic

crystals. For acoustic crystals, the coe�cient
(a(x))�1 = ⇢(x) describes the medium’s mass
density, while for photonic crystals, (a(x))�1 =
✏(x) describes the dielectric coe�cient of a non-
magnetic isotropic medium.

By Floquet Theory ( [2]), the spectrum of
the operator L

k

has the band structure

�(L
k

) = [
j2NSj

(3)

where S
j

are the spectral bands associated with
Bloch waves propagating inside the crystal. The
Bloch waves h(x) satisfy equation 1 with the
quasi-periodicity condition

h(x+ p) = h(x)ei↵·p, x 2 Rd, p 2 Zd (4)

where the wave vector ↵ lies in the first Bril-
louin zone Y ⇤ = (�⇡,⇡]d and !2 is an associ-
ated Bloch eigenvalue �

j

(↵, k) for j 2 N. The
spectral bands S

j

can then be described by

S
j

= [min
↵2Y ?

�
j

(k,↵), max
↵2Y ?

�
j

(k,↵)]. (5)

A band gap is an interval (!�,!+) such that

�(L
k

) \ (!2
�,!

2
+) = ; (6)

2 Analyticity of Bloch Eigenvalues in k

The main result relies on a representation of
solution operators for the form

B
k

[u, v] =

Z

Y

a(x)ru(x) ·rv(x)dx (7)

This form is defined on the Sobolev space

H1
↵

(Y ) = {u 2 H1(Y ) : u(x)e�i↵·x is Y -periodic}
(8)

for ↵ 6= 0, and H1
#(Y )/C for ↵ = 0. In both

cases, the inner product is

hu, vi =
Z

Y

ru(x) ·rv(x)dx (9)

so that the operator T↵

k

can be defined

hT↵

k

u, vi = B
k

[u, v] (10)



WAVES 2017, Minneapolis

This operator has a spectral representation in
terms of the eigenvalues {µ

i

}
i2N of the Neumann-

Poincaré operator

K↵

D

⇢(x) = p.v.

Z

@D

@G↵(x, y)

@n(y)
⇢(y)d�(y), x 2 @D.

(11)
where G↵(x, y) is the (quasi)-periodic Green’s
function for the Laplacian on Y .

This representation is used to show that, for
fixed ↵, the Bloch eigenvalues �

j

(↵, k) are an-
alytic in a neighborhood of k = 1 by follow-
ing [1]. When the @D is smooth enough, and
when D belongs to the class of “bu↵ered ge-
ometries”, i.e. geometries for which there is
a minimum distance t between each inclusion
(and from the inclusions to the cell wall), there
is an ↵-independent lower bound µ⇤ > �1

2 on
�(K↵

D

). For these geometries and each j 2 N,
one obtains a radius of convergence r⇤

j

(↵) such

that, for |k�1| < r⇤
j

(↵), the power series in k�1

for �
j

(↵, k) converges uniformly (see [4]).

3 Main Result: Band Gaps for Finite

Contrast

We now state the main theorem. We consider
only the class of “bu↵ered” inclusions with C1,�

boundary for � > 0.
Let �(��

D

) denote the Dirichlet spectrum
of the Laplacian onD, and let {�⇤

j

}
j2N ⇢ �(��

D

)
denote the eigenvalues with nonzero mean eigen-
functions. Set {�0

j

}
j2N = �(��

D

) \ {�⇤
j

}
j2N.

Let

S(⌫) = ⌫
X

j2N

a2
j

⌫ � (�⇤
j

)2
� 1, (12)

where a
j

is the mean of the eigenfunction of �⇤
j

,
and let {⌫

j

}
j2N be the roots of 12. Finally, set

�
N

= {�0
j

}
j2N [ {⌫

j

}
j2N (13)

No longer distinguishing between the compo-
nents of �

N

, we write �
N

= {⌫
j

}
j2N. Combin-

ing the analyticity of the Bloch eigenvalues and
an interlacing theorem relating �(��

D

) and �
N

( [3], Prop. 3.4), we obtain the main result,
which establishes the existence of band gaps in
�(L

k

) for finite contrast ratio k:

Theorem 1 Opening a band gap
Consider any “bu↵ered” crystal geometry such
that the inclusions D have C1,� boundary with

� > 0. Suppose �⇤
j

2 �(��
D

) is simple, so that
�⇤
j

< ⌫
j+1. Set

d
j

=
1

2
dist

⇣
{⌫�1

j+1},�N \ {⌫�1
j+1}

⌘

where �
N

is given by equation (13), and

r
j

=
⇡2d

j

(1/2 + µ⇤)

1 + ⇡2d
j

(1/2� µ⇤)
. (14)

Then one has the band gap

�(L
k

) \
✓
�⇤
j

, ⌫
j+1(1�

⌫
j+1dj

kr
j

� 1
)

◆
= ; (15)

if

k > k
j

= r�1
j

0

@1 +
d
j

⌫
j+1

1� �

⇤
j

⌫j+1

1

A . (16)

The proof for this theorem can be found
in [5]. Equation 15 shows the existence of band
gaps for the medium, as well as estimates on
the gaps’ size and location, so long as the con-
trast k exceeds the threshold k

j

in equation
16. 14 and 16 show explicitly the dependence
of k

j

on the spectral parameters µ⇤, �(��
D

),
and �

N

, all given by the inclusion geometry.
This theorem provides mathematically sound
guidance for prescribing material parameters to
open band gaps in acoustic and photonic crys-
tals, and could be used to engineer band gap
structures in a wide variety of frequency ranges.
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Abstract

E↵orts are currently underway to detect gravi-
tational waves with f ⇠ 10�7 � 10�9Hz using
pulsar timing arrays by collaborations around
the world, and detection is expected within the
next few years. One such group is the North
American Nanohertz Observatory for Gravita-
tional Waves (NANOGrav). I will discuss how
pulsar timing arrays are used to detect gravita-
tional waves and what sources we expect to find
in the low-frequency regime, with an emphasis
on supermassive black hole binaries.

Keywords: astrophysics, cosmology, black holes,
gravitational waves, pulsars

1 Introduction

General relativity predicts orbiting black holes
produce gravitational waves (GWs), as was con-
firmed by the LIGO detection in 2015 [1]. Su-
permassive black hole binaries (SMBHBs), which
form in galaxy mergers, produce GWs with f ⇠
10�7�10�9Hz. These can be detected through
long-term timing observations of millisecond pul-
sars (MSPs) in pulsar timing arrays (PTAs).

2 Pulsar Timing

MSPs are rapidly spinning (P ⇠ 1�10ms) neu-
tron stars whose radio emission is observed as
a series of periodic pulses. Pulsar timing in-
volves fitting the observed pulse times of ar-
rival (TOAs) to complex models that account
for the pulsar’s spin evolution and the pulse
propagation from the pulsar to Earth [2]. The
di↵erences between the observed and predicted
TOAs are called the residuals.

Low-frequency GWs induce changes in the
residuals which can be detected by timing pul-
sars over many years [3, 4]. Since this e↵ect is
correlated between di↵erent pulsars, analyzing
the residuals from an array of pulsars allows the
e↵ect of GWs to be separated from other sys-
tematic e↵ects [5, 6]. PTAs have been formed
by the Parkes Pulsar Timing Array (PPTA) [7],
the European Pulsar Timing Array (EPTA) [8],
and the North American Nanohertz Observa-

tory for Gravitational Waves (NANOGrav) [9],
and these groups also share data and collabo-
rate as part of the International Pulsar Timing
Array (IPTA) [10]. Currently, more than ten
years of timing observations have been made.

3 Stochastic Background Detection

SMBHBs form a GW stochastic background that
can be detected by PTAs. Assuming circular bi-
naries that evolve solely due to GW emission,
the GW strain is [11]

hc(f) = Agw

✓
f

f1yr

◆↵

, (1)

where f1yr ⌘ (1 yr)�1, Agw is the dimensionless
GW amplitude at f = f1yr, and ↵ = �2/3. Agw

depends on the black hole mass distribution, the
co-evolution of galaxies and black holes, and the
galaxy merger rate [12–16]. In addition, gas and
stars around SMBHBs may accelerate the or-
bital decay, changing the frequency-dependence
of hc(f) [13,17]. The current limits from PTAs
are already being used to constrain astrophys-
ical models (see Fig. 1) [11]. Based on current
PTA sensitivities and source modeling, a detec-
tion is expected soon.
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Figure 1: Limit on the GW stochastic back-
ground from the NANOGrav 9-yr data re-
lease [11]. Predictions from theoretical mod-
els [12–14] are shown for comparison.
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4 Continuous Wave Detection

GWs from individual SMBHBs are also detectable
for nearby massive sources. The GW strain
from a circular SMBHB with black hole masses
M1 and M2 is given by [18]

h(f) =

r
32

5

M5/3

DL
(⇡f)2/3 , (2)

where M ⌘ (M1M2)3/5/(M1 + M2)1/5 is called
the “chirp mass,” and DL is the luminosity dis-
tance. While no detection has been made yet,
pulsar timing has been used to put constraints
on the black hole masses of the nearby galaxy
3C 66B [19].
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Abstract

Time-harmonic acoustic scattering problems orig-
inally defined on unbounded regions are numer-
ically solved. This is done by coupling the au-
thors’ recently developed high order local ab-
sorbing boundary condition (ABC) with high
order finite di↵erence methods. As a result,
high order numerical methods with an overall
order of convergence equal to the methods em-
ployed in the interior of the computational do-
main are obtained. These methods are com-
pared in terms of their implementation, com-
plexity, computational cost, and their conver-
gence on several numerical experiments.

Keywords: Acoustic scattering, High order lo-
cal absorbing boundary condition, High order
methods, Helmholtz equation

1 Introduction

In a recent work [1], we developed a new high or-
der local ABC based on exact series representa-
tion of the outgoing waves in the exterior region
to a circle in two-dimensions (2D) or a sphere
in three dimensions (3D) of radius R enclosing
a scattering or radiating region. We used the
acronym FFE-ABCs to refer to them. Our con-
struction of the FFE-ABCs proceeded in the
opposite direction of many previously defined
ABCs. Instead of defining local di↵erential op-
erators which progressively annihilate the first
terms of a series representation of the solution in
the exterior of the artificial boundary, we used
a truncated version of an exact series represen-
tation of the solution in the exterior, directly.
As a result, we were able to construct the ABC
without defining special di↵erential operators at
the boundary. This derivation of the absorbing
condition is extremely simple. Moreover, the
order of the error at the artificial boundary in-
duced by this novel ABC can be easily reduced
to reach any accuracy within the limits of the
computational resources. This is accomplished

by simply adding as many terms as needed to
the truncated series without moving the artifi-
cial boundary farther out.

We showed in [1] that the error introduced
by using the FFE-ABC at the artificial bound-
ary can be made negligible in comparison with
the error made using the second order finite dif-
ference method in the computational domain.
As a consequence, a second order convergent
method was obtained on the whole domain. This
was achieved with relatively few terms in the
expansions (5 terms in 2D and 8 terms in 3D).
This is a good performance. However, the full
potential of the FFE-ABCs can be achieved by
combining them with higher order methods of
discretization for the computational domain to
produce overall high order methods. In this
work, we consider high order finite di↵erence
methods, such as those described in the next
sections, for the discretization of the computa-
tional domains. Then, we show that we can eas-
ily maintain, over the whole domain, the magni-
tude of the error made by an appropriate high
order method used in the interior, employing
the truncated FFE-ABC with enough terms at
the boundary. As a result, a method with an
overall order of convergence equal to the method
employed in the interior of the computational
domain is obtained.

2 High order finite di↵erence methods

We consider the scattering of a time-harmonic
plane wave from a circular obstacle in an un-
bounded two-dimensional region. Therefore, the
equation to be discretized is the Helmholtz equa-
tion in polar coordinates:

�u+k2u = @2

ru+
1

r
@ru+

1

r2
@2

✓u+k2u = 0. (1)

We choose as an artificial boundary a circle of
radius R at which the following Karp FFE-ABC
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is imposed:

u(R, ✓) = H0(kR)

L�1X

l=0

Fl(✓)

(kR)

l
+H1(kR)

L�1X

l=0

Gl(✓)

(kR)

l
,

@ru(R, ✓) = @r H0(kr)

L�1X

l=0

Fl(✓)

(kr)l
+H1(kr)

L�1X

l=0

Gl(✓)

(kr)l

!����
r=R

@2
ru(R, ✓) = @2

r H0(kr)

L�1X

l=0

Fl(✓)

(kr)l
+H1(kr)

L�1X

l=0

Gl(✓)

(kr)l

!����
r=R

2lGl(✓) = (l � 1)

2Fl�1(✓) + d2✓Fl�1(✓),

2lFl(✓) = �l2Gl�1(✓)� d2✓Gl�1(✓), for l = 1, . . . L� 1.

Our computational domain is the circular
annular domain r

0

 r  R. The number of
grid points in the radial direction is N and in
the angular direction is m + 1. Therefore, the
step sizes in the radial and angular directions
are �r = (R � r

0

)/(N � 1) and �✓ = 2⇡/m,
respectively. Also, ri = (i�1)�r, ✓j = (j�1)�✓
and ui,j is the approximation to u(ri, ✓j), where
i = 1, . . . N and j = 1, . . . ,m+ 1.

We employ various high order finite di↵er-
ence methods to discretize the Helmholtz equa-
tion (1) in polar coordinates and modify them,
nearby and at the artificial boundary points, to
incorporate the above FFE-ABC.

The first method is the standard fourth or-
der centered finite di↵erence method in polar
coordinates. After substitution of the discretized
first and second order derivatives into (1), we
arrive to the discrete equation

↵++

i ui+2,j + ↵+

i ui+1,j + ↵iui,j + ↵�
i ui�1,j

+↵��
i ui�2,j + �iui,j+1

+ �iui,j�1

+�iui,j+2

+ �iui,j�2

= 0, (2)

where
↵++

i = � 1

12

�
1

�r2
+ 1

�r

�
, ↵+

i = 1

3

⇣
4

�r2
+ 2

ri�r

⌘
,

↵i =
�30

12�r2
� 30

12�✓2r2i
+k2,↵�

i = 1

3

⇣
4

�r2
� 2

ri�r

⌘
,

↵��
i = � 1

12

⇣
1

�r2
� 1

ri�r

⌘
, �i =

4

3�✓2r2i
,

�i =
1

12�✓2r2i
.

This is a classical fourth order 9-point scheme
for the Helmholtz equation in polar coordinates.
It requires special treatment at several nodes
near the boundaries where the FFE-ABC must
be included. We applied it to the scattering of
a plane wave of frequency k = 2⇡ from a soft
circular obstacle of radius r

0

= 1. An order of
convergence fourth for the farfield pattern ap-
proximation was obtained with L=8 terms in
Karp’s expansion. Also, the L2-norm relative
error made with only 12 points per wavelength

(ppw) was 2.09 ⇥ 10�3 while the error made
using a second order centered scheme with 24
ppw was 2.59 ⇥ 10�3. Thus, the extra com-
putations made using the fourth order method
compared with the second order one were negli-
gible considering the greater accuracy achieved
on a coarser grid.

A drawback of this 4th order method is the
modifications needed at several points close to
the boundary and the complex discrete formulas
that result. In an attempt to remedy this, we
also explored the application of a fourth order
deferred corrections method. It consists of a
standard centered second order method with a
5-points stencil which includes the truncation
error given by

er2
5ui,j + k2ui,j � ⌧i,j = 0, where

⌧i,j =


�r2

12

✓
@4
ru+

2

r
@3
ru

◆
+

�✓2

12r2
@4
✓u

�
(ri, ✓j)

This computation proceeds in two steps. First,
a second order approximation is obtained from
the application of a second order di↵erence scheme
for the Helmholtz equation and the FFE-ABC.
Secondly, the derivatives in ⌧i,j are calculated
using the approximations ui,j obtained in step
1 and employing second order di↵erence. Then,
the second order centered scheme is applied again
with the approximated ⌧i,j as forcing term. This
implementation is based on a smaller stencil
than the standard fourth order technique and
produce similar results. We also considered com-
pact finite di↵erence schemes with 9-point sten-
cils for fourth and sixth order techniques called
equation based schemes which are described in
[2] and other papers cited there. Results and
comparison of the various methods will be dis-
cussed in the presentation.
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Abstract

We study approximate models for transmissions
problem between homogeneous and periodic half-
planes when the period is small regarding to the
wavelength. In a previous work, using matched
asymptotic expansions techniques, we derived
high order transmission conditions. Here, we
study an approximate model associated to these
high order transmission conditions which con-
sists in replacing the periodic media by an ef-
fective one but the transmission conditions are
not classical. We establish well-posedness for
the approximate problem and error estimates
and show some numerical results.
Keywords: homogenization, periodic media,
high order transmission conditions

A transmission problem between an ho-

mogeneous and a periodic half-plane. We
look for (x = (x1, x2) 2 R2):

r ·
h
a

⇣
x

"

⌘
ru"(x)

i
+ !

2
u"(x) = f(x) (1)

where " > 0 is a small parameter, Im!

2
> 0,

f 2 L

2(R2) such that supp f b ⌦� := {x1 <

0}, and a is an uniformly bounded and coercive
function such that, in ⌦�, a is a constant a0 >

0, and in ⌦+ := {x1 > 0}, a is 1-periodic in the
two directions.

Matched asymptotic expansions and high

order transmission conditions. In [1,2], we
used di↵erent asymptotic expansions far from
the interface and near the interface. By match-
ing these expansions, we can derive a problem
at order 0 (� := @⌦±):

(
r · (A⇤

0ru0) + !

2
u0 = f on R2 \ �

[u0]� = 0, [A⇤
0ru0 · e1]� = 0

(2)

where A

⇤
0 = a0 on ⌦� and A

⇤
0 = A

⇤ on ⌦+ with
A

⇤ = (a⇤ij) the homogenized tensor [3].

At the next order, we obtain

8
><

>:

r · (A⇤
0ru1) + !

2
u1 = 0 on R2 \ �

[u1]� = P(u0)

[A⇤ru1 · e1]� = Q(u0)

(3)

where P and Q are defined by
�����
P(u) := C1@x1hui⇤ + C2@x2hui
Q(u) := C3@

2
x1x2

hui⇤ + C4@
2
x2x2

hui. (4)

with h·i the average over � and h·i⇤ the weighted
average hui⇤ := (a0u|�� + a

⇤
11u|�+)/2.

The constants Cj are defined from profile
functions, which are solution of problems posed
in the infinite strip B := R⇥ (0, 1):

r · [a(y)rU ] = g on B (5)

Due to the matching conditions, the functional
framework for (5) is non-standard because U

must be allowed to grow polynomially when y1 !
±1 (weighted Sobolev spaces). The constants
Cj are defined from the behaviours at y1 = ±1
of the profile functions (see Figure 1).

“Naive” approximate model. In order to
construct a approximate model, setting u

1
" :=

u0+"u1 and neglecting the O("2) terms, we get
a first approximate model:

8
><

>:

r · �A⇤
0ru

1
"

�
+ !

2
u

1
" = f on R2 \ �

[u1"]� = "P(u1")

[A⇤
0ru

1
" · e1]� = "Q(u1")

(6)

But this is not possible to show that this prob-
lem is well-posed (or even Fredholm) because
the constants Cj can have the wrong sign.

Geometric shift. The idea is to “open” the
interface � into a small strip of order " so that
the jumps and means over � are now taken over
the two boundaries �±

" := {±↵

±
"} ⇥ R where



WAVES 2017, Minneapolis

↵

±
> 0 are two constants chosen carefully. We

also define ⌦±
↵" := {x1 ? ±↵

±
"}. Denoting [·]↵"

and h·i↵" such jump and mean, we look for the
shifted transmission problem
8
><

>:

r · �A⇤
0ru

1
↵"

�
+ !

2
u

1
↵" = f on ⌦±

↵"

[u1↵"]↵" = "P↵"(u1↵")

[A⇤
0ru

1
↵" · e1]↵" = "Q↵"(u↵")

(7)

where P↵" and Q↵" are defined as in (4) but
with [·]↵" and h·i↵" for the jumps and means
instead and with new constants C

↵
j instead of

the Cj . One can prove that for ↵± large enough,
the constants C↵

j have the correct sign thus we
have the following result: it exists ↵0 > 0 such
that (7) is well-posed for all ↵±

> ↵0.

Error estimates. When adding an oscillat-
ing part to the approximate solution u

1
↵" in the

homogenized medium (the so-called correctors
in homogenization [3]), one can show that if
↵

±
> ↵0 and under regularity assumptions on

a, one has
��
u" � (u1↵"+"ru

1
↵" ·w(·/")

+"

2r · (⇥(·/")ru

1
↵")

��
H1(⌦)

= O("2)

on any open set ⌦ such that ⌦ \ � = ;, where
w = (wj) and ⇥ = (✓ij) are the solutions of
the cell problems of first and second order [3]
(considered zero for x1 < 0).

Numerical methods. For solving the exact
problem (1), we use a Floquet-Bloch transform
in the x2 direction so (1) reduces to a fam-
ily of problems in R ⇥ (0, ") indexed by ⇠ 2
(0, 2⇡/"). For the x1 direction, we use Dirichlet-
to-Neumann (DtN) operators adapted to peri-
odic media [4]. The parameter ⇠ is discretized
using a trapezoidal rule. We use the same treat-
ment for the homogenized problems (2) and (7)
(i.e. the homogenized medium is considered as
a periodic one).

For computing the profile functions solutions
of (5), it is possible to use such DtN opera-
tors to reduce (5) to a problem on the inter-
face {0}⇥ (0, 1) with a right-hand side that de-
pends on the behaviour at infinity of others pro-
file functions. Moreover these operators can be
used to reconstruct such profile functions in the
whole strip B and give use their behaviour at
y1 = ±1. Then this is used to compute the
C

↵
j .

Numerical results. We use a0 = 1, a(y) =
(2+

p
2 sin 2⇡y1)(4+

p
2 sin 2⇡y2), ! = 2+0.01i

and f a Gaussian centred at (�0.2, 0.5). The
figure 1 confirms the e�ciency of our approx-
imate model (7) compared to (2) and shows a
profile function.

Figure 1: Top: Di↵erence between u" and u0

(left) and between u" and u

1
↵" (right), both with

correctors of first and second order (" = 0.25).
Bottom: a typical profile function.
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1
, Siyang Wang

2,⇤

1Department of Mathematics and Statistics, University of New Mexico, USA
2Department of Information Technology, Uppsala University, Sweden

⇤Email: siyang.wang@it.uu.se

Abstract

We consider wave propagation in a media with
both fluid and solid. In the fluid, the prob-
lem is modeled by the acoustic wave equation
in terms of a velocity potential. In the solid,
the elastic wave equation in displacement form
is used. To couple the two regions, suitable
physical conditions are imposed on the inter-
face. We are interested in the numerical treat-
ment of those interface conditions. The equa-
tions are discretized directly on second-order
form by a discontinuous Galerkin method. We
derive stable energy-conserving and upwind dis-
cretizations. The talk will present numerical ex-
periments illustrating the accuracy and robust-
ness of the proposed method.

Keywords: discontinuous Galerkin, fluid-solid
coupling, acoustic wave equation, elastic wave
equation.

1 Introduction

Problems with fluid-solid interfaces can be found,
in marine seismic or o↵shore seismic surveying.
There pressure waves are mechanically gener-
ated from a sound source in the water, and
propagate from the water (fluid) to the seafloor
(solid). Coupling the fluid and solid region in
a stable and accurate manner is crucial for nu-
merical simulations of such wave phenomena.

Discontinuous Galerkin methods have been
used to solve acoustic–elastic coupling problems
in di↵erent forms of the governing equations.
In [5], the first–order velocity–strain formula-
tion is used, whereas in [4] the discretization
is preformed on the first–order velocity–stress
form.

In this work, we propose a discontinuous
Galerkin method for the governing equations on
the second–order form. The same form is used
in [3] with a spectral element method.

2 The continuous problem

We consider wave propagations in the fluid ⌦f

satisfying the acoustic wave equation in terms

of velocity potential  and its time derivative p

@ 

@t
= p,

1

c2
@p

@t
= r ·r , (1)

where c is the wave speed, and p is the pressure
scaled by density.

In the solid ⌦s, the problem is modeled by
the elastic wave equation governing time evolu-
tion of displacement vector u = [u1, u2]T and
velocity vector v = [v1, v2]T

@ui
@t

= vi, ⇢
@vi
@t

= r · �i, (2)

for i = 1, 2. Here, ⇢ is the density, and � =
[�1,�2] is the stress tensor.

At the interface � = ⌦f \ ⌦s, we first en-
sure the continuity of the velocity in the normal
direction

r · n = v · n, (3)

where n = nS = �nF denotes the outward-
pointing normal of the interface for the solid
region. Next, we also ensure balance of trac-
tions

pn = � · n. (4)

Therefore, the fluid-solid coupling problem is
modeled by equations (1), (2) and interface con-
ditions (3), (4).

3 The discretized problem

We use the discontinuous Galerkin method de-
veloped in [1, 2] to discretize the equations in
space. Let the finite element mesh

⌦f =
[

i

⌦f
i , ⌦s =

[

j

⌦s
j ,

be a discretization of the domain consisting of
geometry-conforming and non-overlapping mesh
elements with piecewise smooth boundaries. On
each element, we require that the unknown
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Z

⌦f
j

r� ·r
✓
@ h

@t
� ph

◆
=

Z

@⌦f
j

�
r� · nF

� ⇣
p⇤ � ph

⌘
, 8� 2 (⇧(q))2, (5)

Z

⌦f
j

1

c2
�p
@ph

@t
+r�p ·r h =

Z

@⌦f
j

�p(r ⇤ · nF ), 8�p 2 (⇧(q))2, (6)

Z

⌦s
j

��ui
i ·r

✓
@uhi
@t

� vhi

◆
=

Z

@⌦s
j

(��ui
i · nS)(v⇤i � vhi ), 8�ui 2 (⇧(q))2, i = 1, 2, (7)

Z

⌦s
j

�vi⇢
@vhi
@t

+r�vi · �i
h =

Z

@⌦s
j

(�⇤
i · nS)�vi, 8�vi 2 (⇧(q))2 i = 1, 2. (8)

variables in (2) are approximated by piecewise
tensor product polynomials of degree q in the
broken space (⇧(q))2. The approximations are
denoted by a superscript h.

Let � be a basis function from the same
space as the approximation to the solution, with
a subscript indicating its associated unknown.
We write the Galerkin variational formulation:

Problem. On each element in the fluid, the
variational formulation (5)-(6) holds together
with moments against the null vector of the acous-
tic energy, [1], on each element in the solid, the
variational formulation (7)-(8) holds with mo-
ments against the null vectors of the elastic en-
ergy, [2]. Above ��ui

i is �i with argument ui
replaced by �ui. The variables with an asterisk
in the superscript are numerical fluxes.

Numerical fluxes for inter-element interfaces
and outer boundaries can be found in [1,2]. The
following theorem presents the numerical fluxes
for an element boundary that is on the interface
between the fluid ⌦f and solid ⌦s.

Theorem. For the element boundary at the fluid-
solid interface �, the following numerical fluxes

v⇤ · n = r ⇤ · n = ⌧(vh · n) (9)

+ (1� ⌧)(r h · n)� ↵(�h · n� phn) · n,
v⇤ ·m = vh ·m, (10)

p⇤n = �⇤ · n = ⌧phn+ (1� ⌧)(�h · n · n)n
� �((vh �r h) · n)n, (11)

lead to a stable discretization if ↵,� � 0, where
v⇤ = [v⇤1, v

⇤
2]

T and m is the tangential vector
satisfying m · n = 0. In particular, the dis-
cretization is energy-conserving when ↵ = � =

0 and dissipates the energy when ↵,� > 0 by

�
Z

@⌦s
j

↵((�h ·n)·n�ph)2+�(vh ·n�r h ·n)2.
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Abstract

Complex scaling is a popular method for treat-
ing scattering and resonance problems in open
domains. For solving scattering problems it is
common to use frequency dependent scaling pa-
rameters. Using similar ideas for resonance prob-
lems leads to non-linear eigenvalue problems. In
this talk we analyze the discrete resonances of
both, the frequency independent and the fre-
quency dependent complex scaled Helmholtz equa-
tion.

Keywords: Helmholtz resonance problem, per-
fectly matched layer, spurious solution

Introduction

We are concerned with the approximation of
eigenpairs (!, u) 2 C ⇥ H1

loc

(Rn) \ {0} of the
Helmholtz equation

��u(x)� !2(1 + p(x))2u(x) = 0, (1)

in Rn. The function p is a given potential func-
tion such that there exists an open and sim-
ply connected interior domain ⌦

int

⇢ Rn, with
supp p ⇢ ⌦

int

. As radiation condition, we de-
mand, that u satisfies

u(x) =

1X

⌫=0

l⌫X

k=0

c
⌫,k

H(1)
⌫

(!kxk)�n

⌫,k

✓
x

kxk
◆

(2)

for x 2 Rn \⌦
int

, where H(1)
⌫

are the (spherical)
Hankel functions of the first kind, and �n

⌫,k

are
the circular (spherical) harmonics.

To realize the radiation condition we use
complex scalings of the form

x̂(x) = x� d(x) + ⌧
!

(kd(x)k) d(x), (3)

for some continuous and piecewise smooth dis-
tance function d : Rn ! Rn such that

d(x) = 0, x 2 ⌦
int

, (4)

x� d(x) 2 @⌦
int

, x 2 Rn \ ⌦
int

, (5)

and some continuous and piecewise smooth scal-
ing function ⌧

w

: R+ [ {0} ! C, such that

lim
t!1

Im ⌧
!

(t) > 0, lim
t!1

Im ⌧
!

(t)

Re ⌧
!

(t)
> 0. (6)

It can be shown, that for any given eigenpair
(!, u) of (1), the pair (!, û), with the scaled
function û(x) := u(x̂(x)) 2 H1(Rn) is an eigen-
pair of the complex scaled equation

��̂û(x)� !2(1 + p(x))2û(x) = 0, (7)

where �̂ := JT

x̂

r · JT

x̂

r and J
x̂

(x) is the Jaco-
bian of the scaling x̂(x).

The essential Spectrum of the unbounded
problem

The simplest scaling is an a�ne, linear and fre-
quency independent radial complex scaling, i.e.
⌦
int

:= B
R0(0) for some R0 > 0 and

x̂(x) := x+ �⌦c
int

(x)(� � 1)(kxk �R0)
x

kxk
(8)

for � 2 C, with Im� > 0. It can be shown, that
the set

⌃
ess

:=
�
! 2 C : !� 2 R+ , (9)

is the essential spectrum of the complex scaled
problem (7). Moreover the eigenvalues of the
initial problem (1) and the complex scaled prob-
lem (7) coincide if they are located in the sec-
tor bounded by the positive real axis and ⌃

ess

(cf. [1]). For large kxk, the complex scaled reso-
nance functions are approximately given by (2)
where the argument of the Hankel functions is
replaced by !�kxk, indicating an exponential
decay for kxk ! 1.

Choosing a frequency dependent complex slope
�(!) in (8) changes the shape of the essential
spectrum of the resulting complex scaled prob-
lem. Particularly notable is the fact that for

�(!) := �0!
�1, �0 2 C, Im�0 > 0 (10)
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Figure 1: Computed resonances of a two dimen-
sional resonance problem using �(!) ⌘ 1 + 3i.

the argument of the Hankel functions becomes
asymptotically �0kxk. The problem has no es-
sential spectrum in the lower complex half plane
and the decay of the resonance functions is al-
most independent of the resonance !.

In general, choosing a frequency dependent
scaling function ⌧

!

leads to a non-linear eigen-
value problem. In case of a frequency scaled
a�ne linear scaling however, the problem can
be reduced to a polynomial eigenvalue problem.

Asymptotic results

The complex scaled problem (7) is discretized
on a su�ciently large computational domain
⌦
T

:= B
T

(0) using high order finite element
spaces V

h,p,T

of order p and meshsize h. Spectral
convergence can be shown using results from
[3] and [4] for su�ciently good discretizations.
Hence, for all h < h

!

and T > T
!

, there are
no spurious eigenvalues in a small neighborhood
of a resonance !, and the error of the approx-
imated eigenvalues decays with h2p and expo-
nentially with T . Nevertheless solving one eigen-
value problem on a too coarse discrete space
might result in discrete eigenvalues, which are
neither an approximation to the essential spec-
trum, nor approximations to the desired eigen-
values of (1), since the approximation quality of
the discrete spaces to the complex scaled eigen-
functions û depends heavily on the frequency
w.

Discretization resonances

Figures 1 and 2 show resonances of a discretized
two dimensional transmission problem with piece-
wise constant potential function
p(x) := p0�[�r,r]⇥[�r,r](x), a�ne, linear complex
scaling (8).

0 10 20 30 40
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�2

�1

0

<(!)

=(
!
)

Figure 2: Computed resonances of a two dimen-
sional resonance problem using �(!) := 9+9i

!

.

The set of discrete resonances can be sepa-
rated into the approximated sought for outgo-
ing resonances of (1) (marked by the dashed el-
lipses), the approximation of the essential spec-
trum and the aforementioned spurious resonances.
Even though the unbounded problem in the fre-
quency dependent case does not have an essen-
tial spectrum in the lower complex half-plane,
due to truncation a corresponding set of dis-
crete resonances appears, located on a horizon-
tal line. An analysis of some easy accessible ex-
amples and numerical experiments in [2] show,
that these spurious resonances, can be catego-
rized into interior and exterior spurious reso-
nances induced by the discretization errors of
the interior and exterior domain respectively.
The exterior spurious resonances depend heav-
ily on the choice of the parameters of the com-
plex scaling. Choosing a frequency dependent
scaling (10) however, reduces this dependency
as mentioned above. As Figures 1 and 2 indicate
a clear improvement in the number of well ap-
proximated resonances it might pay o↵ to invest
into solving the polynomial eigenvalue problem
arising from a frequency dependent scaling for
more evolved examples, e.g. by using the con-
tour integration method.
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Abstract

General Relativity has passed all Solar System
experiments and binary pulsar observations with
flying colors. Recent direct detections of grav-
itational waves from binary black hole coales-
cences o↵er us unique testbeds of gravity in the
regime where the field is both strong and dy-
namical. Based on a Fisher analysis, we derive
constraints on parameterized deviations in the
gravitational waveform from General Relativity.
We then map such constraints to those on fun-
damental pillars of General Relativity, such as
the equivalence principle, Lorentz/parity invari-
ance and the dispersion relation of the massless
graviton. We find that one can only place rel-
atively weak constraints on generation mecha-
nisms of gravitational waves due to our lack of
knowledge of the modified gravitational wave-
form in the merger regime. On the other hand,
one can place relatively strong constraints on
modified propagation mechanisms of gravitational
waves that are complementary to the existing
bounds.

Keywords: Gravitational Waves, General Rel-
ativity, Black Holes

1 Introduction

A century after their prediction, gravitational
waves (GWs) have finally been detected directly
with Advanced LIGO (aLIGO) [1, 2]. These
GWs were generated from binary black hole (BH)
coalescences. Such a historic discovery not only
opens an era of GW astronomy, but also o↵ers
us unique testbeds to probe gravity in the ex-
treme regime [3].

Figure 1 presents the amount of gravitational
potential and curvature of systems that have
been used to probe GR. The top right corner
of this figure, where the GW sources live, cor-
responds to the strong-field regime. Observe
also that such sources are shown by lines in-
stead of points, which means that these sources
are highly dynamical. Thus, such GW systems
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LAGEOS

Cassini
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(Orbital Decay)

Double Binary Pulsar
(Shapiro Delay)

Figure 1: Phase diagram showing the amount
of gravitational potential and curvature for sys-
tems used to probe gravity. We classify such
systems into the Solar System (green), the dou-
ble binary pulsar (blue) and the binary BH co-
alescences (red). Observe that the field of the
GW sources are not only strong but also dynam-
ical. This figure is taken and edited from [3].

are in the extreme gravity regime, where the
field is not only strong but also dynamical.

One can use these new GW sources to probe
fundamental pillars of GR, including the strong
equivalence principle, Lorentz invariance, parity
invariance, four dimensionality of the spacetime
and the massless graviton. In this article, we
summarize the results presented in [3].

2 Analysis and Results

We carry out a Fisher analysis and derive pa-
rameterized deviations from GR in the wave-
form. Such deviations are introduced following
the parameterized post-Einsteinian (ppE) for-
malism [4], in which the modified waveform in
the Fourier domain is given by

h̃(f) = h̃GR(f) e
i�v2n�5

. (1)

Here h̃GR is the GR waveform, � is the ppE pa-
rameter representing the magnitude of the non-
GR deviation and v is the relative velocity of
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the binary constituents. The above correction
enters at nth post-Newtonian (PN) order.

-4 -3 -2 -1 0 1 2 3
n PN
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Figure 2: Upper bounds on the ppE parameter
� in Eq. (1) with GW150914 and GW151226 en-
tering at di↵erent PN orders. We also present
bounds from binary pulsar observations and So-
lar System experiments. This figure is taken
and edited from [3].

Regarding non-GR corrections to generation
mechanisms of GWs, we include the ppE correc-
tion in the waveform only in the inspiral part of
the waveform as a good modeling of the non-
GR waveform in the merger-ringdown part is
currently unavailable. Figure 2 presents upper
bounds on the ppE parameter � with GW150914
and GW151226 at various PN orders. Observe
that the latter places stronger constraints than
the former, especially in the negative PN re-
gion. This is because (i) the velocity of the bi-
nary constituents is smaller for GW151226 at a
fixed frequency and (ii) the observed frequency
range is larger that helps breaking the degener-
acy between � and other parameters. Compar-
ing these GW bounds with those from binary
pulsar observations and Solar System experi-
ments, we see that the former are stronger for
positive PN corrections where the strong-field
e↵ect becomes important.

One can then map these constraints on �
to those on various GR pillars. For example, -
4PN correction allows us to probe the existence
of extra dimensions and the strong equivalence
principle via a time variation of gravitational
constant, while 0PN (2PN) correction can be
used to probe a violation of Lorentz (parity)
invariance. Doing so, we found that the GW
sources either do not place stronger constraints

than weak-field bounds or the GW bounds are
too weak that one cannot say anything mean-
ingful. Though, such weak GW bounds are
distinct from other existing ones as the former
come directly from the extreme gravity regime.

Regarding non-GR corrections to propaga-
tion mechanisms of GWs, one can include ppE
corrections to all of the inspiral, merger and
ringdown parts. Similar to the generation mech-
anism case, one can carry out a Fisher analysis
to derive bounds on � and map such constraints
to those on the modified dispersion relation of
the graviton. We found that the new bounds
from the GW sources are complementary to the
existing bounds from cosmic ray observations
and give unique constraints on some regions in
the non-GR parameter space.

3 Discussions

The bounds on fundamental pillars in GR will
only increase in the near future as (i) the detec-
tor sensitivity improves, (ii) one combines sig-
nals from multiple events, (iii) one finds GWs
from di↵erent sources such as neutron star bi-
naries, (iv) multi-band ground- and space-based
tests maybe possible. The bounds on generation
mechanisms will further increase as the non-GR
waveform modeling becomes available including
the merger and ringdown phases. To achieve
this, numerical relativity simulations in various
modified theories of gravity are necessary.

One can also probe extreme gravity by study-
ing whether final objects after merger are con-
sistent with the Kerr BH. For example, we de-
rived bounds on an e↵ective viscosity of the
remnant and also placed constraints on the am-
plitude of the higher order ringdown modes that
are useful to probe the BH no-hair property [3].
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Abstract

We prove by means of a couple of examples that
plasmonic resonances can be used on one hand
to classify shapes of nanoparticles with real al-
gebraic boundaries and on the other hand to re-
construct the separation distance between two
nanoparticles from measurements of their first
collective plasmonic resonances. To this end,
we explicitly compute the spectral decomposi-
tions of the Neumann-Poincaré operators asso-
ciated with a class of quadrature domains and
two nearly touching disks. Numerical results
are included in support of our main findings.

Keywords: plasmonic resonance, algebraic do-
main, Neumann-Poincaré operator

1 Introduction

The present paper is a part of an ample and
recent e↵ort to understand the mathematical
structure of inverse problems arising in nanopho-
tonics. Although very classical, the spectral
analysis of the Neumann-Poincaré (NP) opera-
tor emerges as the main theme of investigation.
Consider a domain ⌦ with C1,⌘ boundary in R2

for ⌘ > 0. Let ⌫ denote the outward normal to
@⌦. The NP operator K⇤

⌦ associated with ⌦ is
defined as follows: for x 2 @⌦,

K⇤
⌦['](x) =

1

2⇡

Z

@⌦

hx� y, ⌫

x

i
|x� y|2 '(y)d�(y).

Using the quasi-static limit of electromagnetic
fields, plasmonic resonances are associated with
the set of eigenvalues �

j

of the Neumann-Poincaré
operator K⇤

⌦ for which h'
j

, x

i

i
L

2(@⌦) 6= 0, for ei-
ther i = 1 or i = 2, where '

j

is an eigenfunction
associated to �

j

. We refer the reader to [3, 4]
for the mathematical theory of plasmonic reso-
nances for nanoparticles.

In our paper [2], we prove that based on
plasmonic resonances we can on one hand clas-
sify the shape of a class of domains with real

algebraic boundaries and on the other hand re-
cover the separation distance between two com-
ponents of multiple connected domains. These
results have important applications in nanopho-
tonics. They can be used in order to identify
the shape and separation distance between plas-
monic nanoparticles having known material pa-
rameters from measured plasmonic resonances,
for which the scattering cross-section is maxi-
mized [3, 4].

2 Plasmonic resonance for algebraic do-
mains

Let us first explain the algebraic domains. Let
D be the unit disk in C. For m 2 N and a 2 R,
define � : C \D ! C by

�
m,a

(⇣) = ⇣ +
a

⇣

m

.

Assume that � is injective on C \D. We intro-
duce the class Q as the collection of all bounded
domains ⌦ ⇢ C bounded by the curves

@⌦ = {�(⇣) : |⇣| = r0}

for some r0 > 1,m 2 N and a 2 R. Note that �
is a conformal mapping from {|⇣| > r0} onto C\
⌦. We introduce the parameter � defined by a =
e

(m+1)⇢0
�. Then the shape of ⌦ is determined by

the two parameters m and �, while the size by
the parameter ⇢0.

The far field response of nanoparticle ⌦ is
determined by the generalized polarization ten-

sors [1]:

M

↵�

=

Z

@⌦
y

�(�I �K⇤
⌦)

�1[
@x

↵

@⌫

](y) d�(y),

for ↵,� 2 Nd

. Here, � is given by

� =
✏+ 1

2(✏� 1)
,

where ✏ is the permittivity of the nanoparticle.
It is more conveninent to use special linear com-
binations of GPTs, M

cc

mn

,M

cs

mn

and M

ss

mn

for
m,n 2 N. See [1] for details.
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If � is small enough, then the shape of @⌦
is close to a circle. By investigating the asymp-
totic behavior of the NP operator and its spec-
trum for small �, we derive asymptotic expan-
sions of M cc

11 and M

cc

22:

M

cc

11 =
⇡

2
e

2⇢0
⇣ 1

�� �+
+

1

�� ��

⌘
,

M

cc

22 =
⇡e

4⇢0(12 � �

0
+)

(12 + �

0
+)(�� �

0
+)

+
⇡e

4⇢0(12 + �

0
�)

(12 � �

0
�)(�� �

0
�)

,

up to order �2. Here, �± and �

0
± are given by

�+ =
1

2
�

p
m, �

0
+ =

1

2
�

p
2(m� 1).

In fact, �± and �

0
± are (asymptotically) eigen-

values of the NP operator and characterize the
plasmonic resonances of the algebraic domains.

The identification of the parameters ⇢0 and
m is now straightforward. Suppose that we can
obtain the values of �±,�

0
± approximately from

M

cc

11 and M

cc

22. Then the parameters m and �

can be reconstructed by the following formulas:

m =
�

2
+

�

2
+ � (�0

+)
2
/2

, � = 2
q
�

2
+ � (�0

+)
2
/2.

In Figure 1, we provide a numerical example
for m = 4 and � = 0.05. By assuming the
Drude model for ✏, we measure �+,�

0
+ and then

reconstruct the target shape.

3 Two separated nanoparticles and their
plasmonic resonances

We now consider two circular disks of radius r

separated by a distance ✏ > 0. We find that the
eigenvalues �

±
✏,n

of the corresponding NP oper-
ator are given by

�

±
✏,n

= ±1

2
e

�2|n|s
, n 6= 0,

where s = sinh�1 (↵/r) and ↵ = (✏(r+ ✏/4))1/2.
By using the spectral decomposition of the NP
operator, we derive M

cc

11 as follows:

M

cc

11 =
X

n 6=0

4⇡↵2|n|e�2|n|s

�� �

+
✏,n

.

Suppose that the first eigenvalue �+
✏,1 =

1
2e

�2s is
measured. Then we immediately find the value
of s. The distance ✏ can be determined by the
following formula: r cosh s = ✏/2 + r.

Recently, the plasmonic resonance of two 3D
spheres is analytically investigated and the hy-
brid numerical scheme is developed [5].
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Figure 1: From top to bottom and left to right:
initial shape, reconstructed shape, |M cc

11| and
|M cc

22| with respect to the wavelength for m = 4,
� = 0.05.
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Abstract

We study the quasi-stable dynamics of a mode-
locked laser with active feedback and noise due
to amplified spontaneous emission. We show
that, in a distinguished small-noise limit, an ef-
fective boundary can be drawn in parameter
space for quasi-stability that is distinct from
the deterministic stability boundary. We con-
sider the probability that a mode-locked laser
with active feedback will experience a transi-
tion between stable equilibria in a potential well
when subjected to amplified spontaneous emis-
sion noise generated by the gain medium. To in-
vestigate the influence of noise on quasi-stability,
we reduce the infinite-dimensional model to a
finite-dimensional system of stochastic ordinary
di↵erential equations and compute the quasi-
stable state by evaluating the action functional
via the geometric minimum action method. This
computation shows how and to what extent noise
e↵ectively destabilizes the system, and produc-
ing a region of quasi-stability in its parameter
space that is smaller than that of the determin-
istic system.

Keywords: Mode-locked lasers; large devia-
tion theory; stochastic perturbation; rare events.

1 Mathematical Model

We consider the following model of a mode-
locked fiber laser with a nonlinear gain element
that controls the pulse amplitude and active
phase modulation that controls the pulse po-
sition,ie.,

iu
t

+
1

2
u
xx

+ |u|2u = �b cos(!x)u� ic1u

+ ic2uxx

+ id1|u|2u� id2|u|4u+ i✏f(x, t), (1)

where u is the electric field envelope, u
xx

rep-
resents filtering, cos(!x)u is the active phase
modulation, and �ic1u+id1|u|2u�id2|u|4u rep-
resents linear loss and saturable gain. The noise
process f(x, t) is assumed to derive from sponta-
neous emission noise and assumed to be mean-
zero Gaussian white noise, delta-correlated in x
and t [1]. Eqn.(1) with trivial right-hand side
has a soliton solution of the following form:

u
s

(x, t) = A(t) sech[A(t)(x�X(t))] exp[i�], (2)

where � = '(t) + (x � X(t))⌦(t).A,X,' and ⌦
represent amplitude, position, phase and fre-
quency.

To approximate the dynamics of optical pulses
in this model, we assume slow adiabatic changes
in the pulse parameters with the above ansatz.
We obtain a set of four stochastic ordinary dif-
ferential equations(SODE) for the four soliton
parameters through a variational approach, us-
ing an extended version of Rayleigh-Ritz pro-
cess for the non-variational part of the PDE [2].
Following the above procedure, we have the fol-
lowing corresponding SODE

dU = F (U)dt+ ✏�(U)dW, (3)

where U = (A,⌦, X)T and

F (U) =

0

B@
�2c

1

u
1

+ ( 4
3

d
1

� 2

3

c
2

)u3

1

� 16

15

d
2

u5

1

� 2c
2

u
1

u2

2

� 4

3

c
2

u2

1

u
2

� ⇡bw2

2u3
1

csch( ⇡w
2u1

) sin(wu
3

)

u
2

1

CA

(4)

and

�(U) =

0

BB@

p
u1 0 0

� u2p
u1

q
u1
3 + u

2
2

u1
0

0 0 ⇡p
12u3

1

1

CCA . (5)

The phase evolution is not included in the
above dynamical system since it does not a↵ect
the above dynamics.

2 Linearization and Stability

Considering ✏ = 0, the fixed points of F (U) are

U
n

= (A0, 0, n⇡/!),

n 2 Z and A2
0 = 5

16d2
[2d1�c2+

q
(2d1 � c2)2 � 96

5 c2d2],

provided (2d1�c2)2� 96
5 c2d2 > 0. Recalling that

all the physical parameters of Eqn.(1) are pos-
itive, the fixed points are stable if n is even,
otherwise they are unstable. The stable fixed
points are nodes if (43c2A

2
0)

2 > 2⇡b!3

A

3

0

csch( ⇡!

2A
0

);

otherwise, they are spirals. The eigenvalues of
the fixed points are given by

�
U1 = 8c1 �

4

3
(2d1 � c2)A

2
0

�
U2 =

1

2
(M22 �

q
M2

22 + 4M23)

�
U3 =

1

2
(M22 +

q
M2

22 + 4M23)
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where M22 = �4/3c2A2
0, and

M23 = (�1)n+1⇡b!3/(2A3
0) csch(⇡!/(2A0)).

To examine the e↵ect of noise on quasi-
stability of the mode-locked laser we focus on
the active feedback parameters (!, b) and we fix
the parameters of (c1, c2, d1, d2) = (0.01, 0.002,
0.034, 0.02),which imply large gain, dispersion
and pulse power. The fixed points with even
n are stable in the first quadrant of parameter
plane (!,b). Notice that when b ! 0 we have
�
U

2

= �
U

3

! 0. Meanwhile as ! ! 1, U
n

=
(A0, 0, n⇡/!) ! (A0, 0, 0). These limits confirm
the intuition that the susceptibility of the state
to undergo a transition is a↵ected by b and !.

3 Quasi-stability and large deviation the-
ory

In presence of noise ✏ > 0, any trajectory that
starts at stable fixed point (A0, 0, 0), will almost
surely exit the basin of attraction and enter the
basin of attraction of (A0, 0,±2⇡/!). Large de-
viation theory[3] states that the probability of
exiting the basin of attraction G from a stable
fixed point before finite T is given by

lim
✏!0

✏2 lnP (t  T ) ⇠ � inf
�(T )/2G

S
T

(�) (6)

and that the mean first exit time ⌧ is given by

lim
✏!0

✏2 lnE⌧ ⇠ inf
�(⌧)/2G

S1(�) (7)

where

S
T

(�) =
1

2

Z
T

0
|��1(�)(�̇� F (�))|2dt. (8)
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Figure 1: Three di↵erent optimal paths corresponding to three

di↵erent values of ! (left). There is a unique ! that minimizes the

transition rate, i.e., maximizes the mean exit time (right).

Eqn.(6) and Eqn.(7) suggest that as T !
1, P (t  T ) ! 1 almost surely. Meanwhile,
for any T and ✏ = 0, the transition event does
not occur. By choosing T

✏

= exp(A/✏2)(B +
O(✏)), where A,B > 0 and ⌧ ⇠ ⌫ exp(S/✏2), the
probability of an exit before T

✏

is given by

P ⇠ 1� exp(�T
✏

/⌧)

= 1� exp(� exp((A� S)/✏2)
B

⌫
).

If A = S, we have that P remains bounded
away from 0 and 1 as ✏ ! 0. If A > S, we
have P ! 1 as ✏ ! 0.If A < S, we have P ! 0
as ✏ ! 0. Thus, in a manner related to the
finite-temperature astroids studied for magnetic
materials in [4], this distinguished limit of van-
ishing noise strength provides a quasi-stable re-
gion with a boundary inside the deterministic
stability boundary.
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Figure 2: Top: Contours of the action functional (8). Bottom:

Quasi-stable region determined by choosing T (✏) with A = 0.010316.
For small ✏, the transition region shrinks to a narrow band, which

converges to one of contours in top figure.

References

[1] Richard O. Moore. Trade-o↵ between
linewidth and slip rate in a mode-locked
laser model. Opt. Lett., 39(10):3042–3045,
May 2014.

[2] D. Anderson, M. Lisak, and A. Berntson. A
variational approach to nonlinear evolution
equations in optics. Pramana, 57(5):917–
936, 2001.

[3] Mark I Freidlin and Alexander D Wentzell.
Random Perturbations of Dynamical Sys-
tems. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[4] R. V. Kohn, M. G. Rezniko↵, and
E. Vanden-Eijnden. Magnetic elements at fi-
nite temperature and large deviation theory.
Journal of Nonlinear Science, 15(4):223–
253, 8 2005.


	fill_1: 


