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Abstract

We propose an efficient high order accurate
boundary algorithm for the numerical solution
of unsteady exterior initial boundary problems
for the three-dimensional wave equation. The
algorithm relies on the method of difference po-
tentials combined with the Huygens’ principle.
Keywords: method of difference potentials,
Huygens’ principle, unsteady wave propagation

1 Introduction

Consider an exterior initial boundary value
problem (IBVP) for the three-dimensional ho-
mogeneous wave (d’Alembert) equation:

1

c2

∂2u

∂t2
−∆u = 0, on R3\Ω× [0, T ], (1a)

lΓu = φ, on ∂Ω× [0, T ], (1b)
u|t=0 = ∂u/∂t|t=0 = 0, (1c)

where c is the speed of light. The boundary con-
dition (1b) is inhomogeneous. For example, if u
is the field scattered off the given shape Ω, then
the operator lΓ defines the type of scattering on
∂Ω and the data φ represent the impinging field.

The numerical method we propose for solv-
ing the IBVP (1) combines the flexibility and
ease of finite differences with the advantages of a
boundary approach. It reduces the dimension of
the problem by one and handles non-conforming
boundaries ∂Ω on regular grids with no loss of
accuracy. These features are enabled by the
method of difference potentials (MDP) [1] that
employs discrete counterparts of Calderon’s op-
erators. The MDP has previously been used
for the simulation of both time-harmonic [2]
and time-dependent waves [3]. As an extension
of [3], the current work addresses exterior prob-
lems and offers high order accuracy.

A fundamental difficulty in applying bound-
ary methods (e.g., those based on retarded
potential boundary integral equations [4] or
those based on Calderon’s operators) to time-

dependent problems is that the boundary ex-
tends with time. To avoid the growth of cost,
we employ the strong Huygens’ principle that
helps us truncate the ever expanding “tail” of
the algorithm. It also guarantees that only out-
going waves will be present in the solution to the
exterior problem. The time marching is there-
fore performed on a sliding window of fixed du-
ration and only along the boundary ∂Ω× [0, T ],
which has dimension (2+1) in space-time. As
such, the method provides sub-linear complex-
ity, i.e., outperforms the typical explicit schemes
in long-time simulations. Moreover, changing
the boundary condition (1b) incurs only a mi-
nor additional cost compared to that for a con-
ventional volumetric time-stepping technique.

2 Method

The MDP reduces the PDE (1a) from the un-
bounded domain R3\Ω × [0, T ] to the operator
equation at the boundary Γ=∂Ω× [0, T ]:

PΓξΓ = ξΓ. (2)

In (2), PΓ is Calderon’s projection for the
d’Alembert operator and ξΓ≡(ξ0, ξ1) is the den-
sity of the generalized Calderon’s potential:

PΩξΓ =

∫
Γ

{
ξ1(y , t′)G(x − y , t− t′) (3)

− ξ0(y , t′)
∂G

∂n
(x − y , t− t′)

}
dt′dSy .

The functions ξ0 and ξ1 in (2), (3) are traces of
the solution and its normal derivative on Γ, re-
spectively, and G(x , t) in (3) is the fundamental
solution of the d’Alembert operator. The pro-
jection PΓ in (2) is the vector trace of the po-
tential (3): PΓξΓ =

(
PΩξΓ,

∂PΩξΓ
∂n

)∣∣
Γ
.

The boundary equation (2), which is equiv-
alent to (1a), is solved as a system along with
the BC (1b). This can be arbitrary as long as
the overall formulation (1) is well-posed. In sim-
ple cases, the BC explicitly provides one com-
ponent of ξΓ, e.g., ξ0 for a Dirichlet BC and ξ1
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for a Neumann BC. The remaining component
is then obtained as a solution to (2).

To discretize (2), the MDP computes the
finite difference projection operator by solving
a series of inhomogeneous auxiliary problems
(APs) for equation (1a). The AP is originally
formulated as a Cauchy problem and then trun-
cated to a bounded domain Ω0 of simple shape,
see Figure 1, where it can be easily integrated
by any appropriate finite difference scheme. The
Huygens’ principle combined with MDP enables
a perfectly reflectionless treatment of the artifi-
cial outer boundary ∂Ω0, as in [5].
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Figure 1: Computational domain for the AP.

Moreover, the Huygens’ principle incorpo-
rated into our time-marching algorithm implies
that for a bounded domain Ω in space, the ex-
tent of the backward dependence of the solution
u to equation (1a) in time is finite and non-
increasing. This property allows us to solve (2)
(and thus, (1)) over long computational times
Tfinal � T sequentially, updating the density ξΓ

by “chunks” of size T , see Figure 2. The solu-
tion u on Ω is computed only once, at t=Tfinal.
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Figure 2: Time marching by “chunks” of size T .

3 Numerical demonstrations

To solve the AP, we employed a fourth order
accurate compact scheme [6] (it controls the
dispersion error more efficiently than the pre-
viously used lower order schemes). The test

problem is scattering of a plane wave about a
sphere of radius R0. All computations are con-
ducted on a Cartesian grid, for which the spher-
ical boundary r = R0 is non-conforming. Fig-
ure 3 shows the error profiles for a long-time run
with Tfinal=4000R0/c on two consecutive grids.
Table 1 demonstrates that the CPU time to ad-
vance the solution over T =R0/c scales roughly
as 23 =8 for the proposed boundary method ver-
sus 24 =16 for an explicit volumetric scheme.
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Figure 3: Fourth order convergence of the pro-
posed boundary method with Robin BC (1b).

Grid CPU time, sec scaling rate
MDP Volume MDP Volume

1× 0.0474 1.26 - -
2× 0.421 19.8 8.87 15.7
4× 3.56 322 8.46 16.3

Table 1: Comparison of numerical performance
over a fixed time interval T = R0/c of the pro-
posed boundary method (MDP+Huygens’ prin-
ciple) vs. standard volumetric time marching.
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