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Abstract

We compare several approaches for handling the
artificial outer boundaries that can be imple-
mented with the standard FDTD method in 3D.
Our goal is to obtain the asymptotic estimates
of computational complexity for each class of
methods and corroborate those with numerical
results so as to show the advantages and disad-
vantages of the various methodologies.
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1 Local artificial boundary conditions

There is a number of established artificial
boundary conditions (ABCs) for Maxwell’s
equations that are derived using asymptotic
considerations. The low-order ABCs (e.g.,
Sommerfeld, Higdon, Betz-Mittra, or Mur) are
widely used in FDTD methods since 1970’s [1].
These ABCs are easy to implement (indepen-
dently at each boundary node), but their ac-
curacy is not satisfactory in most cases. Fur-
thermore, these ABCs may suffer from a dete-
rioration of performance in long-time computa-
tions [2]. The overall complexity is

C0(N) = N3a, (1)

where N is the grid dimension in one direction
and a = const depends on the implementation.

A number of more accurate local high-
order ABCs (e.g., Givoli-Neta or Hagstrom-
Warburton [3]) have also been proposed, but
in most cases the treatment of corners is dif-
ficult and no 3D implementation has been de-
scribed by the authors. The exception is the
recent development of double absorbing bound-
aries (DAB) by LaGrone and Hagstrom [4]. It
provides a nearly uniform theoretical accuracy
over long time intervals, yet in our experiments
we observed a rapid growth of the error for the
magnetic field when the solution was driven by a
non-solenoidal current. The algorithm of DAB
is rather sophisticated, but we assume that the

computational complexity can still be estimated
in the form similar to (1).

2 Perfectly matched layer

Another group of popular and efficient ap-
proaches for truncating the unbounded regions
in EM simulations are perfectly matched layers
(PMLs). A PML is an absorbing layer that sur-
rounds the computational domain. The PML
and the computational domain are usually dis-
cretized on the same grid, hence the computa-
tional complexity of a FDTD/PML implemen-
tation is as follows:

CPML(N) = (1 + 2ν)3N3a, ν = P/N, (2)

where P is the number of nodes in the PML.
The value of ν may be relatively small for large
grid dimensions N . The PMLs usually provide
a low level of spurious reflections and their im-
plementation is straightforward in FDTD. Yet
they may be prone to error growth in long-time
simulations [5, 6]. In particular, our computa-
tions show that the performance depends on the
type of the source (antenna current) that drives
the EM field. For solenoidal currents the solu-
tion with a PML is usually stable yet for non-
solenoidal currents it may deteriorate rapidly.

3 Lacunae-based time marching

The lacunae-based time marching can be used
to mitigate the long-time deterioration of the
PML [6, 7]. This approach is based on the fol-
lowing property of Maxwell’s equations in vac-
uum (the Huygens’ principle): provided that
the currents are compactly supported in both
space and time, the propagating electromag-
netic waves have sharp aft fronts. The orig-
inal problem is decomposed into a series of
partial subproblems driven by compactly sup-
ported partial currents. The latter are obtained
by a smooth partition of the original currents.
The computational complexity of this algorithm
is

CLac-PML =
(1 + 2ν)3

(1 − µ)
N3a, (3)

mailto:mishaosintsev@gmail.com


WAVES 2017, Minneapolis

where 0 < µ < 1 is the overlap between the con-
secutive partial currents. If the overlap is small,
then the computational complexity (3) tends to
(2). The original lacunae-based time march-
ing requires divergence-free sources [6]. Its ex-
tension based on quasi-lacunae [7] removes this
limitation yet keeps the asymptotic complexity
(3) unchanged. The most recent work [8] re-
duces quasi-lacunae to classical lacunae, which
improves the performance and enables the proof
of a temporally uniform error bound.

The lacunae-based time marching can also
be used as a standalone closure at the artifi-
cial outer boundary [9]. The idea is to take a
sufficiently large auxiliary domain beyond the
actual computational domain so that the re-
flections off the outer boundary of this auxil-
iary domain won’t reach the computational do-
main by the time the latter falls into the lacuna.
This algorithm is considerably more expensive
than the lacunae-based algorithm with PML.
Its complexity is given by the same expression
(3) but with the quantity (1+2ν)3 replaced with
a large constant, on the order of 150. The ad-
vantage of this algorithm, however, is that it
does not require any special treatment of the
artificial outer boundary per se. The outgoing
waves propagate into the auxiliary region and
then get canceled there once the main computa-
tional domain falls inside the lacuna. As such,
this algorithm is provably free from any error
associated with the domain truncation.

4 Computational results

We use our serial FORTRAN FDTD code to
compare the computational complexity of the
various boundary conditions numerically. Con-
sider a cubic domain with side l = 10 and the
propagation speed c = 1. Take a 100×100×100
grid for the FDTD scheme, with the spatial size
h = 0.1 and the time step ∆t = 0.03(3). We
compute on a 16-core Linux server, Intel Xeon
CPU E5-2698 v3 with 2.30 GHz. Table 1 shows
the time T for an update of one time step, the
value of a, and the maximum relative error ε for
each ABC. Note that for more accurate ABCs
the value of ε is dominated by the discretization
error rather than reflections. Finally, we include
the data for the original implementation of the
DAB [4], which is written in C++ and therefore
does not allow for a direct comparison.

ABC T (sec) a ε

1 0.657 6.565 × 10−7 17.08 × 10−2

2 0.667 6.665 × 10−7 5.44 × 10−2

3 0.805 4.656 × 10−7 3.56 × 10−2

4 1.301 1.506 × 10−7 3.56 × 10−2

5 26.709 3.459 × 10−8 3.56 × 10−2

6 0.6669 8.551 × 10−7 3.56 × 10−2

Table 1: Comparison of the various boundary
conditions in a serial implementation. The ABC
types: 1 - Sommerfeld ABC, 2 - Higdon ABC,
3 - Uniaxial 10-point PML, 4 - Lacunae with
Uniaxial 10-points PML, 5 - Lacunae without
PML, 6 - DAB with 4 recursions.
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