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Abstract

We build stochastic models for synthetic aper-
ture radar (SAR) imaging of targets that exhibit
delayed scattering. Detection of scattering de-
lay in SAR is hindered by the range-delay am-
biguity, and the stochasticity of scattering adds
uncertainty to the result. Using Monte-Carlo
simulations, we obtain ensembles of coordinate-
delay SAR images of instantaneous and delayed
targets. Then, we explore the separation of
likelihood-based metrics for those ensembles.
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1 Coordinate-delay SAR

By detecting and analyzing the scattering delay,
we can learn important geometrical information
about radar targets such as the presence of cav-
ities, their internal structure, and characteristic
size. Following [1], we will consider targets for
which the relation between the incident ui and
scattered us fields is local in space and non-local
in time. It is rendered by the spatio-temporal
reflectivity function ν(tz , z ):

us(t, z ) =

∫ ∞
0

ui(t− tz , z )ν(tz , z ) dtz . (1)

The coordinate-delay SAR (cdSAR) image
is built from a series of scattering events with
signals transmitted and received from the lo-
cations xn spaced over the synthetic aperture:
I(ty ,y) =

∑
n

∫
P (t− ty ,n)us(t,xn) dt. In this

formula, ty ,n = ty + 2|xn − y |/c is the sum of
scattering and propagation delays, and P is the
complex conjugate of the frequency modulated
transmitted pulse: P (t) = e−iω0te−iBt

2/(2τ),
|t| 6 τ , where B and τ are pulse bandwidth and
duration, respectively. In the linearized setting
(1), the image is given by a convolution operator

I(ty ,y) =

∫ ∞
0
dtz

∫
dz ν(tz , z )W (ty ,y ; tz , z ),

(2)
with the kernel defined as

W

Nτ
= e−2iξω0/B sinc ξ

∫ 1/2

−1/2
e2iηseiκξrs

2
ds. (3)

In (3), sincx = sin(x)/x, ξr = B(y2−z2) sin θ/c,
ξd = B(ty − tz )/2, ξ = ξr + ξd, κ = ϕ2

Tω0/B, N
is the number of pulses per the synthetic array,
η = ϕTω0(y1 − z1) sin θ/c, ϕT is the angular
aperture size, θ is the incident angle, and the
indices 1 and 2 denote the cross-range and range
coordinates, respectively.

The range-delay ambiguity is due to a com-
bination of range- and time-dependent terms in
ξ, and is controlled by the value of κ. If κ→ 0,
then the integral in (3) is just sinc η. Hence, the
dependence of W on ξr disappears and the two
terms in ξ cannot be separated. In this case, we
see that the cdSAR image (2) will be constant
along the lines y2 sin θ + cty/2 = const.

2 Stochastic scatterers and cdSAR

Speckle in SAR [2] is seen as rapid and strong
variations of the observed reflectivity of an ex-
tended scatterer whereas the true quantities of
interest vary gradually and smoothly. Due to
a large parameter ω0/B in the exponent in (3),
the kernel in (2) oscillates rapidly and thus em-
phasizes the singularities of ν in the directions z2
and tz . Typically, the reflectivity is rough on the
scale of the wavelength λ0 = 2πc/ω0, while the
size of the resolution cell in range is ∼ c/B �
λ0. The following stochastic model proved ef-
fective in standard SAR [2]. It simulates a large
number of point scatterers that are randomly
positioned inside each resolution cell and repre-
sent the singularities of ν:

νb(tz , z ) = δ(tz )µb(z ). (4)

In (4), µb(z ) is a two-dimensional circular Gaus-
sian white random field:

〈µb(z )〉 = 0,
〈
µb(z )µb(z ′)

〉
= σ2bδ(z − z ′).

(5)
In (5), σ2b is a deterministic parameter that char-
acterizes the average reflectivity of a homoge-
neous extended scatterer.

As an extension to (4)–(5), we introduce two
new stochastic scatterer models: νt is a delayed
point scatterer and νs is an inhomogeneous in-
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stantaneous scatterer:

νt(tz , z ) = µt(Btz/2)δ(z − zd), (6)
νs(tz , z ) = µs

(
B(z2 − zd2) sin θ/c

)
· δ(tz )δ(z1 − zd1), (7)

where zd = (zd1, zd2, 0) is the reference location
of the inhomogeneity. In (6)–(7), µs,t(ξ) are in-
homogeneous one-dimensional circular Gaussian
white random processes described by〈

µs,t(ξ)µs,t(ξ
′)
〉

= σ2s,tF (ξ)δ(ξ − ξ′),

where σ2s and σ2t are the averaged reflectivities
of the corresponding scatterers, 0 6 F 6 1, and
we choose F (ξ) = 0 for ξ < 0 to account for
the causality in (1). The justification for intro-
ducing stochasticity for νt may be seen in the
presence of multiple cavity eigenmodes and/or
multipath reflection. The form of F will char-
acterize the scatterer: we choose F (ξ) = 1 for
0 6 ξ 6 ξmax and zero otherwise, where ξmax

describes the maximum scattering delay.
The reflectivities νs and νt of (6)–(7) are

built so that they produce similar cdSAR im-
ages when the range-delay ambiguity is not re-
solved, e.g., when κ → 0 (Section 1). Hence,
we will use (6)–(7) to explore our ability to dis-
tinguish between the instantaneous and delayed
scatterers. The background (clutter) (4)–(5) is
added to (6)–(7) to create the overall reflectivity

ν = νb + νt or ν = νb + νs. (8)

3 Monte-Carlo simulations

The autocorrelation of a cdSAR image can be
obtained by substituting models (8) with (4)–
(7) into (2) and subsequent averaging. Then,
for given intensities σ2b, σ

2
s , and σ2t , we can use

the Monte-Carlo method to manufacture ensem-
bles of cdSAR images (i.e., arrays of pixel values
Q) due to one of the two models in (8) with the
corresponding multivariate Gaussian statistics.
Optionally, we can add to the result an uncor-
related circular Gaussian term to represent the
noise. If, on the other hand, we have an array
Q randomly generated as above or obtained by
observations, then we can use the same statis-
tics to calculate the probability density function
(pdf) of Q due to either of these models. De-
noting these likelihood functions by ps(Q) ≡
ps(Q;σ2b, σ

2
s) and pt(Q) ≡ pt(Q;σ2b, σ

2
t ), we cal-

culate

p̆t(Q) = max
σ2
b,σ

2
t

pt(Q), p̆s(Q) = max
σ2
b,σ

2
s

ps(Q).

Other parameters, such as zd, can be added to
the set of optimization variables.

Although the multivariate Gaussian models
can yield any data with nonzero pdf, we ex-
pect that on average, p̆t(Q) > p̆s(Q) for the
data produced from the first model in (8), and
p̆t(Q) 6 p̆s(Q) for the second one. In order
to characterize the separation between the two
models numerically, we use the Hellinger dis-
tance H[f, g] between two pdfs, f(x) and g(x),
defined as H[f, g] = 1

2

∫ (√
f(x) −

√
g(x)

)2
dx,

see [3]. In the limiting cases, H[f, g] = 1 when f
and g are completely disjoint, and H[f, f ] = 0.

Figure 1: Plot of the Hellinger distance vs. ξmax.

We calculate the Hellinger distance between
the pdfs of log

(
p̆t(Q)/p̆s(Q)

)
for the ensembles

generated according to the two models in (8).
Figure 1 plots this distance for two different val-
ues of signal to clutter and noise ratio (SCNR)
and κ = 1/4. We can see that with high SCNR
and large scattering delays ξmax, the models in
(8) are safely distinguishable.

Acknowledgements

This material is based upon work supported by
the US Air Force Office of Scientific Research
under award number FA9550-17-1-0230.

References

[1] Matthew Ferrara, Andrew Homan, and
Margaret Cheney, Hyperspectral SAR,
IEEE Transactions on Geoscience and Re-
mote Sensing, 55(3) (2017), pp. 1–14.

[2] Chris Oliver and Shaun Quegan, Under-
standing Synthetic Aperture Radar Images,
Artech House, Boston, 1998.

[3] David Pollard, A User’s Guide to Measure
Theoretic Probability, Cambridge Univer-
sity Press, 2002.

Suggested members of the Scientific Committee:
Josselin Garnier, Chrysoula Tsogka


	Coordinate-delay SAR
	Stochastic scatterers and cdSAR
	Monte-Carlo simulations

