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Abstract—We present an efficient high order accurate bound-
ary algorithm for the numerical solution of unsteady exterior
initial boundary problems for the three-dimensional wave equa-
tion. The algorithm relies on the method of difference potentials
combined with the Huygens’ principle.

Index Terms—method of difference potentials, Huygens’ prin-
ciple, 3D wave equation.

I. INTRODUCTION

Consider an exterior initial boundary value problem (IBVP)
for the three-dimensional homogeneous wave (d’Alembert)
equation:

1

c2
∂2u

∂t2
−∆u = 0, on R3\Ω× [0, T ], (1a)

lΓu = φ, on ∂Ω× [0, T ], (1b)
u|t=0 = ∂u/∂t|t=0 = 0, (1c)

where c is the speed of light. The boundary condition (1b) is
inhomogeneous. For example, if u is the field scattered off a
given shape Ω, then the operator lΓ defines the type of scat-
tering on ∂Ω and the data φ represent the impinging field.

The numerical method we introduce for solving the IBVP
(1) combines the flexibility and ease of finite differences with
the advantages of a boundary approach. It reduces the di-
mension of the problem by one and handles non-conforming
boundaries ∂Ω on regular structured grids with no deteriora-
tion of accuracy and no adverse effect on stability due to the
cut cells. These features are enabled by the method of differ-
ence potentials (MDP) [1] that employs discrete counterparts
of Calderon’s operators. The MDP has previously been used
for the simulation of both time-harmonic [2], [3] and time-
dependent waves [4]. As an extension of [4], the current work
addresses exterior scattering problems. It offers high order ac-
curacy and sub-linear computational complexity.

A fundamental difficulty in applying the boundary meth-
ods (e.g., those based on retarded potential boundary integral
equations [5] or those based on Calderon’s operators) to time-
dependent problems is that the boundary extends as the time
elapses. To avoid the associated growth of cost, we employ
the strong Huygens’ principle that helps us truncate the ever
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expanding “tail” of the algorithm. It also guarantees that only
outgoing waves will be present in the solution to the exte-
rior problem. The time marching is therefore performed on a
sliding window of fixed duration and only along the boundary
∂Ω× [0, T ], which has dimension (2+1) in space-time. The re-
duction of the dimension translates into sub-linear complexity,
so that the method outperforms the typical explicit schemes in
long-time simulations. Moreover, changing the boundary con-
dition (1b) incurs only a minor additional cost compared to
that for a conventional volumetric time-stepping technique.

II. METHOD

The MDP reduces the PDE (1a) from its unbounded domain
R3\Ω × [0, T ] to the operator equation at the boundary Γ =
∂Ω× [0, T ]:

PΓξΓ = ξΓ. (2)

Equation (2) is known as Calderon’s boundary equation with
projection (BEP). In (2), PΓ is a Calderon’s projection for the
d’Alembert operator defined as follows. Let ξΓ≡(ξ0, ξ1) be a
vector function at the boundary Γ. The generalized Calderon’s
potential with density ξΓ is given by

PΩξΓ =

∫
Γ

{
ξ1(y , t′)G(x − y , t− t′) (3)

− ξ0(y , t′)
∂G

∂n
(x − y , t− t′)

}
dt′dSy ,

where G(x , t) is the fundamental solution of the d’Alembert
operator. The projection PΓ in (2) is the vector trace of the
potential (3): PΓξΓ =

(
PΩξΓ,

∂PΩξΓ

∂n

)∣∣
Γ

.
The boundary equation (2) is equivalent to (1a). Namely,

the function u = u(x , t) provides a solution to equation (1a)
if and only if its trace ξΓ = (ξ0, ξ1) ≡

(
u, ∂u∂n

)∣∣
Γ

satisfies (2).
The BEP (2) is combined with the boundary (1b) and the

two equations are solved as a system. The boundary condition
(1b) can be arbitrary as long as the overall formulation (1) is
well-posed. In simple cases, the boundary condition explicitly
specifices one component of ξΓ, e.g., ξ0 for a Dirichlet BC
and ξ1 for a Neumann BC. The remaining component is then
obtained as a solution to the BEP (2).

To discretize the BEP (2), the MDP introduces a finite dif-
ference counterpart to the projection operator PΓ. It is com-
puted by solving a series of inhomogeneous auxiliary problems
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(APs) for equation (1a). The AP is originally formulated as
a Cauchy problem and then truncated to a bounded domain
Ω0 of simple shape, see Fig. 1, where it can be easily inte-
grated by any appropriate finite difference scheme, for exam-
ple, the compact fourth order accurate scheme [6] constructed
on the Cartesian grid. A key feature of the MDP is that the
non-conforming boundary ∂Ω does not lead to any loss of ac-
curacy. Moreover, the Huygens’ principle combined with the
MDP enables a perfectly reflectionless treatment of the artifi-
cial outer boundary ∂Ω0, as in [7].

Fig. 1. Computational domain for the AP.

Furthermore, the Huygens’ principle incorporated into our
time-marching algorithm implies that for a bounded domain Ω
in space, the extent of the backward dependence of the solution
u on time is finite and non-increasing. This property allows us
to solve the BEP (2) (and thus, system (1)) over long compu-
tational times Tfinal � T sequentially, updating the density ξΓ

by “chunks” of size T , see Fig. 2. Our implementation relies
on the manifestation of the Huygens’ principle via lacunae of
the solution, i.e., voids behind aft fronts of the waves [8]. La-
cunae allow us to limit the backward dependence of the MDP
algorithm in time and thus solve the AP only over a finite
non-increasing time interval. The latter depends on the size of
the scatterer and speed of propagation, but does not depend on
the frequency/wavelength. Hence, the cost of computing the
solution on Γ per unit time appears fixed and non-increasing
regardless of the overall simulation time. This cost scales as
∝ h−3, where h is the grid size, whereas for a conventional
volumetric time-marching scheme that involves three space di-
rections and time it would scale as ∝ h−4 (Section III). The
solution u on Ω is computed only once, at t=Tfinal [9].
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Fig. 2. Time marching by “chunks” of size T .

III. NUMERICAL DEMONSTRATIONS

To solve the AP, we employed a fourth order accurate com-
pact scheme [6] (it controls the dispersion error more effi-
ciently than the previously used lower order schemes). The
first test case is scattering of a plane wave about a sphere
of radius R0. All computations are conducted on a Carte-
sian grid, for which the spherical boundary r = R0 is non-
conforming. Fig. 3 shows the error profiles for a long-time
run with Tfinal = 4000R0/c on two consecutive grids. Table I
demonstrates that the CPU time to advance the solution over
T =R0/c scales roughly as 23 =8 for the proposed boundary
method versus 24 =16 for an explicit volumetric scheme.

Fig. 3. Fourth order convergence of the proposed boundary method with
Robin BC (1b).

TABLE I
COMPARISON OF NUMERICAL PERFORMANCE OVER A FIXED TIME

INTERVAL T = R0/c OF THE PROPOSED BOUNDARY METHOD
(MDP+LACUNAE) VS. STANDARD VOLUMETRIC TIME MARCHING.

Grid Volumetric Method MDP+lacunae
CPU time, sec scaling CPU time, sec scaling

1× 1.26 - 6.14 · 10−2 -
2× 19.8 15.7 5.16 · 10−1 8.44
4× 322 16.3 4.44 8.61

Fig. 4 shows scattering about a prolate spheroid for two
different angles of incidence. Changing the angle of incidence
amounts only to changing the boundary condition (1b). There-
fore, all simulations in Fig. 4 are conducted without having
the recompute the discrete Calderon’s projection.

Yet another test case is the scattering of an impinging plane
wave about a toroidal surface. The results are presented in
Fig. 5.

REFERENCES

[1] V. S. Ryaben’kii, Method of Difference Potentials and Its Applications,
ser. Springer Series in Computational Mathematics. Berlin: Springer-
Verlag, 2002, vol. 30.

[2] M. Medvinsky, S. Tsynkov, and E. Turkel, “The method of difference
potentials for the Helmholtz equation using compact high order
schemes,” J. Sci. Comput., vol. 53, no. 1, pp. 150–193, 2012. [Online].
Available: https://doi.org/10.1007/s10915-012-9602-y

[3] ——, “High order numerical simulation of the transmission and
scattering of waves using the method of difference potentials,” J.
Comput. Phys., vol. 243, pp. 305–322, 2013. [Online]. Available:
https://doi.org/10.1016/j.jcp.2013.03.014



Fig. 4. 3D time-dependent scattering about a prolate spheroid for two different
incident directions. The surface is parameterized using spheroidal coordinates
(see [10, Volume 1]).

[4] S. Petropavlovsky, S. Tsynkov, and E. Turkel, “A method of
boundary equations for unsteady hyperbolic problems in 3D,” J.
Comput. Phys., vol. 365, pp. 294–323, July 2018. [Online]. Available:
https://doi.org/10.1016/j.jcp.2018.03.039

[5] F.-J. Sayas, Retarded Potentials and Time Domain Boundary Integral
Equations. A Road Map, ser. Springer Series in Computational
Mathematics. Cham, Switzerland: Springer, 2016, vol. 50. [Online].
Available: http://doi.org/10.1007/978-3-319-26645-9

[6] F. Smith, S. Tsynkov, and E. Turkel, “Compact high order accurate
schemes for the three dimensional wave equation,” J. Sci. Comput.,
vol. 81, no. 3, pp. 1181–1209, December 2019. [Online]. Available:

Fig. 5. 3D time-dependent scattering of a Gaussian modulated chirp about
a torus. Chirp length ∼ torus size. The surface is represented using toroidal
coordinates (see [10, Volume 1]).

https://doi.org/10.1007/s10915-019-00970-x
[7] S. Petropavlovsky and S. Tsynkov, “Non-deteriorating time domain

numerical algorithms for Maxwell’s electrodynamics,” J. Comput.
Phys., vol. 336, pp. 1–35, May 2017. [Online]. Available: https:
//doi.org/10.1016/j.jcp.2017.01.068

[8] I. Petrowsky, “On the diffusion of waves and the lacunas for hyperbolic
equations,” Matematicheskii Sbornik (Recueil Mathématique), vol. 17
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