
Numerical Solution of Ordinary Differential Equations 293

In both cases, conduct the computations on a sequence of consecutively more fine grids
(reduce the size h by a factor of two several times). Verify experimentally that the
numerical solution converges to the exact solution (9.75) with the second order with
respect to h.

3.� Investigate applicability of the shooting method to solving the boundary value problem:

y′′ +a2y= 0, 0≤ x≤ 1,
y(0) =Y0, y(1) = Y1,

which has a “+” sign instead of the “−” in the governing differential equation, but
otherwise is identical to problem (9.74).

9.6 Saturation of Finite-Difference Methods by Smooth-
ness

Previously, we explored the saturation of numerical methods by smoothness in
the context of algebraic interpolation (piecewise polynomials, see Section 2.2.5, and
splines, see Section 2.3.2). Very briefly, the idea is to see whether or not a given
method of approximation fully utilizes all the information available, and thus attains
the optimal accuracy limited only by the threshold of the unavoidable error. When
the method introduces its own error threshold, which may only be larger than that
of the unavoidable error and shall be attributed to the specific design, we say that
the phenomenon of saturation takes place. For example, we have seen that the in-
terpolation by means of algebraic polynomials on uniform grids saturates, whereas
the interpolation by means of trigonometric or Chebyshev polynomials does not, see
Sections 3.1.3, 3.2.4, and 3.2.7. In the current section, we will use a number of
very simple examples to demonstrate that the approximations by means of finite-
difference schemes are, generally speaking, also prone to saturation by smoothness.
Before we continue, let us note that in the context of finite differences the term

“saturation” may sometimes acquire an alternative meaning. Namely, saturation the-
orems are proven as to what maximum order of accuracy may a (stable) scheme
have if it approximates a particular equation or class of equations on a given fixed
stencil.4 Results of this type are typically established for partial differential equa-
tions, see, e.g., [EO80, Ise82]. Some very simple conclusions can already be drawn
based on the method of undetermined coefficients (see Section 10.2.2). Note that this
alternative notion of saturation is similar to the one we have previously introduced
in this book (see Section 2.2.5) in the sense that it also discusses certain accuracy
limits. The difference is, however, that these accuracy limits pertain to a particu-
lar class of discretization methods (schemes on a given stencil), whereas previously

4The stencil of a difference scheme is a set of grid nodes, on which the finite-difference operator is built
that approximates the original differential operator.
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we discussed accuracy limits that are not related to specific methods and are rather
accounted for by the loss of information in the course of discretization.
Let us now consider the following simple boundary value problem for a second

order ordinary differential equation:

u′′ = f (x), 0≤ x≤ 1, u(0) = 0, u(1) = 0, (9.81)

where the right-hand side f (x) is assumed given.
We introduce a uniform grid on the interval [0,1]:

xn = nh, n= 0,1, . . . ,N, Nh = 1,

and approximate problem (9.81) using central differences:

un+1−2un+un−1
h2

= fn ≡ f (xn), n= 1,2, . . . ,N−1,
u0 = 0, uN = 0.

(9.82)

Provided that the solution u= u(x) of problem (9.81) is sufficiently smooth, or more
precisely, provided that its fourth derivative u(4)(x) is bounded for 0 ≤ x ≤ 1, the
approximation (9.82) is second-oder accurate, see formula (9.20a). In this case, if
the scheme (9.82) is stable, then it will converge with the rate O(h2).
However, for such a simple difference scheme as (9.82) one can easily study the

convergence directly, i.e., without using Theorem 9.1. A study of that type will be
particularly instrumental because on one hand the regularity of the solution may not
always be sufficient to guarantee consistency, and on the other hand, it will allow one
to see whether or not the convergence accelerates for the functions that are smoother
than those minimally required for obtainingO(h2).
Note that the degree of regularity of the solution u(x) to problem (9.81) is imme-

diately determined by that of the right-hand side f (x). Namely, the solution u(x)
will always have two additional derivatives. It will therefore be convenient to use
different right-hand sides f (x) with different degree of regularity, and to investigate
directly the convergence properties of scheme (9.82). In doing so, we will analyze
both the case when the regularity is formally insufficient to guarantee the second
order convergence, and the opposite case when the regularity is “excessive” for that
purpose. In the latter case we will, in fact, see that the convergence still remains only
second order with respect to h, which implies saturation.
Let us first consider a discontinuous right-hand side:

f (x) =

{
0, 0≤ x≤ 1

2 ,

1, 1
2 < x≤ 1. (9.83)

On each of the two sub-intervals: [0,1/2] and [1/2,1], the solution can be found as
a combination of the general solution to the homogeneous equation and a particular
solution to the inhomogeneous equation. The latter is equal to zero on [0,1/2] and on



Numerical Solution of Ordinary Differential Equations 295

[1/2,1] it is easily obtained using undetermined coefficients. Therefore, the overall
solution of problem (9.81), (9.83) can be found in the form:

u(x) =

{
c1+ c2x, 0≤ x≤ 1

2 ,

c3+ c4x+ 1
2x
2, 1

2 < x≤ 1, (9.84)

where the constants c1, c2, c3, and c4 are to be chosen so that to satisfy the boundary
conditions u(0) = u(1) = 1 and the continuity requirements:

u

(
1
2
−0

)
= u

(
1
2

+0
)

, u′
(
1
2
−0

)
= u′

(
1
2

+0
)

. (9.85)

Altogether this yields:

c1 =0, c3+ c4+
1
2

=0,

c1+
c2
2
− c3− c4

2
− 1
8

=0, c2− c4− 1
2

=0.
(9.86)

Solving equations (9.86) we find:

c1 = 0, c2 = −1
8
, c3 =

1
8
, c4 = −5

8
, (9.87)

so that

u(x) =

{
− 1
8x, 0≤ x≤ 1

2 ,
1
8 − 5

8x+ 1
2x
2, 1

2 < x≤ 1. (9.88)

In the finite-difference case, instead of (9.83) we have:

fn =

{
0, n= 0,1, . . . , N2 ,

1, n= N
2 +1, N2 +2, . . . ,N.

(9.89)

Accordingly, the solution is to be sought for in the form:

un =

{
c1+ c2(nh), n= 0,1, . . . , N2 +1,
c3+ c4(nh)+ 1

2 (nh)
2, n= N

2 , N2 +1, . . . ,N,
(9.90)

where on each sub-interval we have a combination of the general solution to the
homogeneous difference equation and a particular solution of the inhomogeneous
difference equation (obtained by the method of undetermined coefficients). Notice
that unlike in the continuous case (9.84), the two grid sub-intervals in formula (9.90)
overlap across the entire cell [N/2,N/2+1] (we are assuming that N is even). There-
fore, the constants c1, c2, c3, and c4 in (9.90) are to be determined from the boundary
conditions at the endpoints of the interval [0,1]: u0 = uN = 0, and from the matching
conditions in the middle that are given simply as [cf. formula (9.85)]:

c1+ c2

(
N
2
h

)
= c3+ c4

(
N
2
h

)
+
1
2

(
N
2
h

)2
,

c1+ c2

(
N
2
h+h

)
= c3+ c4

(
N
2
h+h

)
+
1
2

(
N
2
h+h

)2
.

(9.91)
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Altogether this yields:

c1 =0, c3+ c4+
1
2

=0,

c1+
c2
2
− c3− c4

2
− 1
8

=0, c2− c4− 1
2
− h
2

=0,
(9.92)

where the last equation of system (9.92) was obtained by subtracting the first equa-
tion of (9.91) from the second equation of (9.91) and subsequently dividing by h.
Notice that system (9.92) which characterizes the finite-difference case is almost

identical to system (9.86) which characterizes the continuous case, except that there
is an O(h) discrepancy in the fourth equation. Accordingly, there is also an O(h)
difference in the values of the constants [cf. formula (9.87)]:

c1 = 0, c2 = −1
8

+
h
4
, c3 =

1
8

+
h
4
, c4 = −5

8
− h
4
,

so that the solution to problem (9.82), (9.89) is given by:

un =

{
− 1
8(nh)+ h

4 (nh), n= 0,1, . . . , N2 +1,
1
8 − 5

8(nh)+ 1
2 (nh)

2+ h
4(1−nh), n= N

2 , N2 +1, . . . ,N.
(9.93)

By comparing formulae (9.88) and (9.93), where nh= xn, we conclude that

‖[u]h−u(h)‖ =max
n

|u(xn)−un| = O(h),

i.e., that the solution of the finite-difference problem (9.82), (9.89) converges to the
solution of the differential problem (9.81), (9.83) with the first order with respect to h.
Note that scheme (9.82), (9.89) falls short of the second order convergence because
the solution of the differential problem (9.82), (9.89) is not sufficiently smooth.
Instead of the discontinuous right-hand side (9.83) let us now consider a continu-

ous function with discontinuous first derivative:

f (x) =

{
−x, 0≤ x≤ 1

2 ,

x−1, 1
2 < x≤ 1. (9.94)

Solution to problem (9.81), (9.94) can be found in the form:

u(x) =

{
c1+ c2x− 1

6x
3, 0≤ x≤ 1

2 ,

c3+ c4x+ 1
6x
3− 1

2x
2, 1

2 < x≤ 1,
where the constants c1, c2, c3, and c4 are again to be chosen so that to satisfy the
boundary conditions u(0) = u(1) = 1 and the continuity requirements (9.85):

c1 =0, c3+ c4− 1
3

=0,

c1+
c2
2
− 1
48

− c3− c4
2

+
5
48

=0, c2− 1
8
− c4+

3
8

=0.
(9.95)
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Solving equations (9.95) we find:

c1 = 0, c2 =
1
8
, c3 = − 1

24
, c4 =

3
8
, (9.96)

so that

u(x) =

{
1
8x− 1

6x
3, 0≤ x≤ 1

2 ,

− 1
24 + 3

8x+ 1
6x
3− 1

2x
2, 1

2 < x≤ 1. (9.97)

In the discrete case, instead of (9.94) we write:

fn =

{
−(nh), n= 0,1, . . . , N2 ,

(nh)−1, n= N
2 +1, N2 +2, . . . ,N,

(9.98)

and then look for the solution un to problem (9.82), (9.98) in the form:

un =

{
c1+ c2(nh)− 1

6(nh)
3, n= 0,1, . . . , N2 +1,

c3+ c4(nh)+ 1
6(nh)

3− 1
2 (nh)

2, n= N
2 , N2 +1, . . . ,N.

For the matching conditions in the middle we now have [cf. formulae (9.91)]:

c1+ c2

(
N
2
h

)
− 1
6

(
N
2
h

)3
= c3+ c4

(
N
2
h

)
+
1
6

(
N
2
h

)3
− 1
2

(
N
2
h

)2
,

c1+ c2

(
N
2
h+h

)
− 1
6

(
N
2
h+h

)3
= c3+ c4

(
N
2
h+h

)
(9.99)

+
1
6

(
N
2
h+h

)3
− 1
2

(
N
2
h+h

)2
,

and consequently:

c1 =0, c3+ c4− 1
3

=0,

c1+
c2
2
− 1
48

− c3− c4
2

+
5
48

=0, c2− 1
8
− c4+

3
8
− h2

3
=0,

(9.100)

where the last equation of (9.100) was obtained by subtracting the first equation of
(9.99) from the second equation of (9.99) and subsequently dividing by h.
Solving equations (9.100) we obtain [cf. formula (9.96)]:

c1 = 0, c2 =
1
8

+
h2

6
, c3 = − 1

24
+
h2

6
, c4 =

3
8
− h2

6
,

and

un =

⎧⎪⎪⎨
⎪⎪⎩
1
8 (nh)− 1

6(nh)
3+ h2

6 (nh), n= 0,1, . . . , N2 +1,

− 1
24 + 3

8 (nh)+ 1
6 (nh)

3− 1
2(nh)

2

+ h2
6 (1−nh), n= N

2 , N2 +1, . . . ,N.

(9.101)
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It is clear that the error between the continuous solution (9.97) and the discrete solu-
tion (9.101) is estimated as

‖[u]h−u(h)‖ =max
n

|u(xn)−un| = O(h2),

which means that the solution of the finite-difference problem (9.82), (9.98) con-
verges to the solution of the differential problem (9.81), (9.94) with the second order
with respect to h. Note that second order convergence is attained here even though
the degree of regularity of the solution — third derivative is discontinuous — is
formally insufficient to guarantee second order accuracy (consistency).
In much the same way one can analyze the case when the right-hand side f (x) has

one continuous derivative (the so-calledC1 space of functions), for example:

f (x) =

{
−(x− 1

2 )
2, 0≤ x≤ 1

2 ,

(x− 1
2 )
2, 1

2 < x≤ 1. (9.102)

For problem (9.81), (9.102), it is also possible to prove the second order convergence,
which is the subject of Exercise 1 at the end of the section.
The foregoing examples demonstrate that the rate of finite-difference convergence

depends on the regularity of the solution to the underlying continuous problem. It is
therefore interesting to see what happens when the regularity increases beyondC1.
Consider the right-hand side in the form of a quadratic polynomial:

f (x) = x(x−1). (9.103)

This function is obviously infinitely differentiable (C∞ space), and so is the solution
u= u(x) of problem (9.81), (9.103), which is given by:

u(x) =
1
12
x+

1
12
x4− 1

6
x3. (9.104)

Scheme (9.82) with the right-hand side

fn = nh(nh−1), n= 0,1, . . . ,N, (9.105)

approximates problem (9.81), (9.103) with second order accuracy. The solution of
the finite-difference problem (9.82), (9.105) can be found in the form:

un = c1+ c2(nh)︸ ︷︷ ︸
u
(g)
n

+(nh)2(A(nh)2+B(nh)+C)︸ ︷︷ ︸
u
(p)
n

, (9.106)

where u(g)
n is the general solution to the homogeneous equation and u(p)

n is a particular
solution to the inhomogeneous equation. The values of A, B, and C are to be found
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using the method of undetermined coefficients:

A
((n+1)h)4−2(nh)4+((n−1)h)4

h2

+B
((n+1)h)3−2(nh)3+((n−1)h)3

h2

+C
((n+1)h)2−2(nh)2+((n−1)h)2

h2
= (nh)2− (nh),

which yields:

A(12(nh)2+2h2)+B(6nh)+2C= (nh)2− (nh)

and accordingly,

A=
1
12

, B= −1
6
, C = −Ah2 = − 1

12
h2. (9.107)

For the constants c1 and c2 we substitute the expression (9.106) and the already
available coefficients A, B, and C of (9.107) into the boundary conditions of (9.82)
and write:

u0 = c1 = 0, uN = c2+A+B+C= 0.

Consequently,

c1 = 0 and c2 =
1
12

+
1
12
h2,

so that for the overall solution un of problem (9.81), (9.105) we obtain:

un =
1
12

(nh)+
1
12
h2(nh)+ (nh)2

(
1
12

(nh)2− 1
6
(nh)− 1

12
h2

)
. (9.108)

Comparing the continuous solution u(x) given by (9.104) with the discrete solution
un given by (9.108) we conclude that

‖[u]h−u(h)‖ =max
n

|u(xn)−un| = O(h2),

which implies that notwithstanding the infinite smoothness of the right-hand side
f (x) of (9.103) and that of the solution u(x), scheme (9.82), (9.105) still shows only
second order convergence. This is a manifestation of the phenomenon of saturation
by smoothness. The rate of decay of the approximation error is determined by the
specific approximation method employed on a given grid, and does not reach the
level of the pertinent unavoidable error.
To demonstrate that the previous observation is not accidental, let us consider

another example of an infinitely differentiable (C∞) right-hand side:

f (x) = sin(πx). (9.109)
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The solution of problem (9.81), (9.109) is given by:

u(x) = − 1
π2
sin(πx). (9.110)

The discrete right-hand side that corresponds to (9.109) is:

fn = sin(πnh), n= 0,1, . . . ,N, (9.111)

and the solution to the finite-difference problem (9.82), (9.111) is to be sought for in
the form un = Asin(πnh)+Bcos(πnh) with the undetermined coefficients A and B,
which eventually yields:

un = − h2

4sin2 πh
2

sin(πnh). (9.112)

The error between the continuous solution given by (9.110) and the discrete solution
given by (9.112) is easy to estimate provided that the grid size is small, h� 1:

‖[u]h−u(h)‖ = max
n

|u(xn)−un| =
∣∣∣∣∣ 1π2 − h2

4sin2 πh
2

∣∣∣∣∣
≈

∣∣∣∣∣∣∣
1
π2

− h2

4
[

πh
2 − 1

6

(πh
2

)3]2
∣∣∣∣∣∣∣ ≈

∣∣∣∣∣∣ 1π2 − h2

4
[

πh
2 − 1

3

(πh
2

)4]
∣∣∣∣∣∣

≈
∣∣∣∣∣ 1π2 − h2

4
(πh
2

)2
[
1+

1
3

(
πh
2

)2]∣∣∣∣∣ =
1
π2
1
3

(
πh
2

)2
= O(h2).

This, again, corroborates the effect of saturation, as the convergence of the scheme
(9.82), (9.111) is only second order in spite of the infinite smoothness of the data.
In general, all finite-difference methods are prone to saturation. This includes the

methods for solving ordinary differential equations described in this chapter, as well
as the methods for partial differential equations described in Chapter 10. There are,
however, other methods for the numerical solution of differential equations. For ex-
ample, the so-called spectral methods described briefly in Section 9.7 do not saturate
and exhibit convergence rates that self-adjust to the regularity of the corresponding
solution (similarly to how the error of the trigonometric interpolation adjusts to the
smoothness of the interpolated function, see Theorem 3.5 on page 68). The literature
on the subject of spectral methods is vast, and we can refer the reader, e.g., to the
monographs [GO77,CHQZ88,CHQZ06], and textbooks [Boy01,HGG06].

Exercise

1. Consider scheme (9.82) with the right-hand side:

fn =

{
−(nh− 1

2 )
2, n= 0,1,2, . . . , N2 ,

(nh− 1
2 )
2, N

2 , N2 +1, . . . ,N.
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This scheme approximates problem (9.81), (9.102). Obtain the finite-difference solu-
tion in closed form and prove second order convergence.

9.7 The Notion of Spectral Methods

In this section, we only provide one particular example of a spectral method.
Namely, we solve a simple boundary value problem using a Fourier-based technique.
Our specific goal is to demonstrate that alternative discrete approximations to differ-
ential equations can be obtained that, unlike finite-differencemethods, will not suffer
from the saturation by smoothness (see Section 9.6). A comprehensive account of
spectral methods can be found, e.g., in the monographs [GO77,CHQZ88,CHQZ06],
as well as in the textbooks [Boy01,HGG06]. The material of this section is based on
the analysis of Chapter 3 and can be skipped during the first reading.
Consider the same boundary value problem as in Section 9.6:

u′′ = f (x), 0≤ x≤ 1, u(0) = 0, u(1) = 0, (9.113)

where the right-hand side f (x) is assumed given. In this section, we will not approx-
imate problem (9.113) on the grid using finite differences. We will rather look for an
approximate solution to problem (9.113) in the form of a trigonometric polynomial.
Trigonometric polynomials were introduced and studied in Chapter 3. Let us for-

mally extend both the unknown solution u = u(x) and the right-hand side f = f (x)
to the interval [−1,1] antisymmetrically, i.e., u(−x) = −u(x) and f (−x) = − f (x),
so that the resulting functions are odd. We can then represent the solution u(x) of
problem (9.113) approximately as a trigonometric polynomial:

u(n)(x) =
n+1

∑
k=1

Bk sin(πkx) (9.114)

with the coefficients Bk to be determined. Note that according to Theorem 3.3 (see
page 66), the polynomial (9.114), which is a linear combination of the sine functions
only, is suited specifically for representing the odd functions. Note also that for any
choice of the coefficients Bk the polynomial u(n)(x) of (9.114) satisfies the boundary
conditions of problem (9.113) exactly.
Let us now introduce the same grid (of dimension n+1) as we used in Section 3.1:

xm =
1

n+1
m+

1
2(n+1)

, m= 0,1, . . . ,n, (9.115)

and interpolate the given function f (x) on this grid by means of the trigonometric
polynomial with n+1 terms:

f (n)(x) =
n+1

∑
k=1

bk sin(πkx). (9.116)
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The coefficients of the polynomial (9.116) are given by:

bk =
2

n+1

n

∑
m=0

f (xm)sink
(

π
n+1

m+
π

2(n+1)

)
, k= 1,2, . . . ,n,

bn+1 =
1

n+1

n

∑
m=0

f (xm)(−1)m.

(9.117)

To approximate the differential equation u′′ = f of (9.113), we require that the
second derivative of the approximate solution u(n)(x):

d2

dx2
u(n)(x) = −π2

n+1

∑
k=1

Bkk
2 sin(πkx) (9.118)

coincide with the interpolant of the right-hand side f (n)(x) at every node xm of the
grid (9.115):

d2

dx2
u(n)(xm) = f (n)(xm), m= 0,1, . . . ,n. (9.119)

Note that both the interpolant f (n)(x) given by formula (9.116) and the derivative
d2

dx2
u(n)(x) given by formula (9.118) are sine trigonometric polynomials of the same

order n+1. According to formula (9.119), they coincide at xm for all m= 0,1, . . . ,n.
Therefore, due to the uniqueness of the trigonometric interpolating polynomial (see
Theorem 3.1 on page 62), these two polynomials are, in fact, the same everywhere
on the interval 0≤ x≤ 1. Consequently, their coefficients are identically equal:

−π2k2Bk = bk, k= 1,2, . . . ,n+1. (9.120)

Equalities (9.120) allow one to find Bk provided that bk are known.
Consider a particular example analyzed in the end of Section 9.6:

f (x) = sin(πx). (9.121)

The exact solution of problem (9.113), (9.121) is given by:

u(x) = − 1
π2
sin(πx). (9.122)

According to formulae (9.117), the coefficients bk that correspond to the right-hand
side f (x) given by (9.121) are:

b1 = 1 and bk = 0, k= 2,3, . . . ,n+1.

Consequently, relations (9.120) imply that

B1 = − 1
π2

and Bk = 0, k = 2,3, . . . ,n+1.

Therefore,

u(n)(x) = − 1
π2
sin(πx). (9.123)
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By comparing formulae (9.123) and (9.122), we conclude that the approximate
method based on enforcing the differential equation u′′ = f via the finite system
of equalities (9.119) reconstructs the exact solution of problem (9.113), (9.121). The
error is therefore equal to zero. Of course, one should not expect that this ideal
behavior of the error will hold in general. The foregoing particular result only takes
place because of the specific choice of the right-hand side (9.121). However, in a
variety of other cases one can obtain a rapid decay of the error as n increases.
Consider the odd function f (−x) = − f (x) obtained on the interval [−1,1] by

extending the right-hand side of problem (9.113) antisymmetrically from the interval
[0,1]. Assume that this function can also be translated along the entire real axis:

∀x ∈ [2l+1,2(l+1)+1] : f (x) = f (x−2(l+1)), l = 0,1,±2,±3, . . .
so that the resulting periodic function with the period L = 2 be smooth. More pre-
cisely, we require that the function f (x) constructed this way possess continuous
derivatives of order up to r > 0 everywhere, and a square integrable derivative of
order r+1: ∫ 1

−1

[
f (r+1)(x)

]2
dx< ∞.

Clearly the function f (x) = sin(πx), see formula (9.121), satisfies these require-
ments. Another example which, unlike (9.121), leads to a full infinite Fourier expan-
sion is f (x) = sin(π sin(πx)). Both functions are periodic with the period L= 2 and
infinitely smooth everywhere (r = ∞).
Let us represent f (x) as the sum of its sine Fourier series:

f (x) =
∞

∑
k=1

βk sin(kπx), (9.124)

where the coefficients βk are defined as:

βk = 2
∫ 1

0
f (x)sin(kπx)dx. (9.125)

The series (9.124) converges to the function f (x) uniformly and absolutely. The rate
of convergence was obtained when proving Theorem 3.5, see pages 68–71. Namely,
if we define the partial sum Sn(x) and the remainder δSn(x) of the series (9.124) as
done in Section 3.1.3:

Sn(x) =
n+1

∑
k=1

βk sin(kπx), δSn(x) =
∞

∑
k=n+2

βk sin(kπx), (9.126)

then

| f (x)−Sn(x)| = |δSn(x)| ≤ ζn
nr+

1
2

, (9.127)

where ζn is a numerical sequence such that ζn = o(1), i.e., limn→∞ ζn = 0. Substitut-
ing the expressions:

f (xm) = Sn(xm)+ δSn(xm), m= 0,1, . . . ,n,
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into the definition (9.117) of the coefficients bk we obtain:

bk =
2

n+1

n

∑
m=0

Sn(xm)sin(πkxm)︸ ︷︷ ︸
βk

+
2

n+1

n

∑
m=0

δSn(xm)sin(πkxm)︸ ︷︷ ︸
δβk

, k = 1,2, . . . ,n,

(9.128)

bn+1 =
1

n+1

n

∑
m=0

Sn(xm)(−1)m︸ ︷︷ ︸
βn+1

+
1

n+1

n

∑
m=0

δSn(xm)(−1)m︸ ︷︷ ︸
δβn+1

.

The first sum on the right-hand side of each equality (9.128) is indeed equal to the
genuine Fourier coefficient βk of (9.125), k = 1,2, . . . ,n+1, because the partial sum
Sn(x) given by (9.126) coincides with its own trigonometric interpolating polyno-
mial5 for all 0 ≤ x ≤ 1. As for the “corrections” to the coefficients, δβk, they come
from the remainder δSn(x) and their magnitudes can be easily estimated using in-
equality (9.127) and formulae (9.117):

|δβk| ≤ 2 ζn
nr+1/2

, k = 1,2, . . . ,n+1. (9.129)

Let us now consider the exact solution u = u(x) of problem (9.113). Given the
assumptions made regarding the right-hand side f = f (x), the solution u is also a
smooth odd periodic function with the period L= 2. It can be represented as its own
Fourier series:

u(x) =
∞

∑
k=1

γk sin(kπx), (9.130)

where the coefficients γk are given by:

γk = 2
∫ 1

0
u(x)sin(kπx)dx. (9.131)

Series (9.130) converges uniformly. Moreover, the same argument based on the pe-
riodicity and smoothness implies that the Fourier series for the derivatives u′(x) and
u′′(x) also converge uniformly.6 Consequently, series (9.130) can be differentiated
(at least) twice termwise:

u′′(x) = −π2
∞

∑
k=1

k2γk sin(kπx). (9.132)

Recall, we must enforce the equality u′′ = f . Then by comparing the expansions
(9.132) and (9.124) and using the orthogonality of the trigonometric system, we
have:

γk = − 1
π2k2

βk, k= 1,2, . . . . (9.133)

5Due to the uniqueness of the trigonometric interpolating polynomial, see Theorem 3.1.
6The first derivative u′(x) will be an even function rather than odd.



Numerical Solution of Ordinary Differential Equations 305

Next, recall that the coefficients Bk of the approximate solution u(n)(x) defined by
(9.114) are given by formula (9.120). Using the representation bk = βk + δβk, see
formula (9.128), and also employing relations (9.133), we obtain:

Bk = − 1
π2k2

bk

= − 1
π2k2

βk− 1
π2k2

δβk (9.134)

= γk− 1
π2k2

δβk, k= 1,2, . . . ,n+1.

Formula (9.134)will allow us to obtain an error estimate for the approximate solution
u(n)(x). To do so, we first rewrite the Fourier series (9.130) for the exact solution u(x)
as its partial sum plus the remainder [cf. formula (9.126)]:

u(x) = S̃n(x)+ δ S̃n(x) =
n+1

∑
k=1

γk sin(kπx)+
∞

∑
k=n+2

γk sin(kπx), (9.135)

and obtain an estimate for the convergence rate [cf. formula (9.127)]:

|u(x)− S̃n(x)| = |δ S̃n(x)| ≤ ηn
nr+

5
2

, (9.136)

where ηn = o(1) as n−→∞. Note that according to the formulae (9.136) and (9.127),
the series (9.130) converges faster than the series (9.124), with the rates o

(
n−(r+ 5

2 )
)

and o
(
n−(r+ 1

2 )
)
, respectively. The reason is that if the right-hand side f = f (x) of

problem (9.113) has r continuous derivatives and a square integrable derivative of
order r+ 1, then the solution u = u(x) to this problem would normally have r+ 2
continuous derivatives and a square integrable derivative of order r+3.
Next, using equalities (9.114), (9.134), and (9.135) and estimates (9.127) and

(9.136), we can write ∀x ∈ [0,1]:

|u(x)−u(n)(x)| =
∣∣∣∣∣S̃n(x)+ δ S̃n(x)−

n+1

∑
k=1

Bk sin(πkx)

∣∣∣∣∣
=

∣∣∣∣∣S̃n(x)+ δ S̃n(x)−
n+1

∑
k=1

γk sin(πkx)+
n+1

∑
k=1

δβk
π2k2

sin(πkx)

∣∣∣∣∣
=

∣∣∣∣∣δ S̃n(x)+
n+1

∑
k=1

δβk
π2k2

sin(πkx)

∣∣∣∣∣ ≤ |δ S̃n(x)|+
n+1

∑
k=1

|δβk|

≤ ηn
nr+

5
2

+
ζn
nr−

1
2

≤ σn
nr−

1
2

,

(9.137)

where σn is another infinitesimal sequence: σn = o(1) as n −→ ∞. The key dis-
tinctive feature of error estimate (9.137) is that it provides for a more rapid conver-
gence in the case when the right-hand side f (x) that drives the problem has higher
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regularity. In other words, similarly to the original trigonometric interpolation (see
Section 3.1.3), the foregoing method of obtaining an approximate solution to prob-
lem (9.113) does not get saturated by smoothness. Indeed, the approximation error
self-adjusts to the regularity of the data without us having to change anything in the
algorithm. Moreover, if the right-hand side f (x) of problem (9.113) has continuous
periodic derivatives of all orders, then according to estimate (9.137) the method will
converge with a spectral rate, i.e., faster than any inverse power of n. For that reason,
methods of this type are referred to as spectral methods in the literature.
Note that the simple Fourier-based spectral method that we have outlined in this

section will only work for smooth periodic functions, i.e., for the functions that
withstand smooth periodic extensions. There are many examples of smooth right-
hand sides that do not satisfy this constraint, for example the quadratic function
f (x) = x(x−1) used in Section 9.6, see formula (9.103). However, a spectral method
can be built for problem (9.113) with this right-hand side as well. In this case, it will
be convenient to look for a solution as a linear combination of Chebyshev polynomi-
als, rather than in the form of a trigonometric polynomial (9.114). This approach is
similar to Chebyshev-based interpolations discussed in Section 3.2.
Note also that in this section we enforced the differential equation of (9.113) by

requiring that the two trigonometric polynomials, d2

dx2
u(n)(x) and f (n)(x), coincide at

the nodes of the grid (9.115), see equalities (9.119). In the context of spectral meth-
ods, the points xm given by (9.115) are often referred to as the collocation points,
and the corresponding methods are known as the spectral collocation methods. Al-
ternatively, one can use Galerkin approximations for building spectral methods. The
Galerkin method is a very useful and general technique that has many applications
in numerical analysis and beyond; we briefly describe it in Section 12.2.3 when
discussing finite elements.
Similarly to any other method of approximation, one generally needs to analyze

accuracy and stability when designing spectral methods. Over the recent years, a
number of efficient spectral methods have been developed for solving a wide variety
of initial and boundary value problems for ordinary and partial differential equations.
For further detail, we refer the reader to [GO77,CHQZ88,Boy01,CHQZ06,HGG06].

Exercise

1. Solve problem (9.113) with the right-hand side f (x) = sin(π sin(πx)) on a computer
using the Fourier collocation method described in this section. Alternatively, apply
the second order difference method of Section 9.6. Demonstrate experimentally the
difference in convergence rates.


