
140 A Theoretical Introduction to Numerical Analysis

2. Prove that for a square matrix A and its transpose AT , the following equalities hold:
μ∞(A) = μ1(AT ), μ1(A) = μ∞(AT ).

3. Show that the condition number of the operator A does not change if the operator is
multiplied by an arbitrary non-zero real number.

4. Let L be a Euclidean space, and let A : L �−→ L. Show that the condition number
μB(A) = 1 if and only if at least one of the following conditions holds:

a) A= αI, where α ∈ R;

b) A is an orthogonal operator, i.e., ∀x ∈ L : [Ax,Ax]B = [x,x]B.

c) A is a composition of αI and an orthogonal operator.

5.� Prove that μB(A) = μB(A∗B), where A∗B is the operator adjoint to A in the sense of the
scalar product [x,y]B.

6. Let A be a non-singular matrix, detA �= 0. Multiply one row of the matrix A by some
scalar α , and denote the new matrix by Aα . Show that μ(Aα ) −→ ∞ as α −→ ∞.

7.� Prove that for any linear operator A : L �−→ L:

μB(A∗BA) = (μB(A))2,

where A∗B is the operator adjoint to A in the sense of the scalar product [x,y]B.
8.� Let A= A∗ > 0 and B= B∗ > 0 in the sense of some scalar product introduced on the
linear space L. Let the following inequalities hold for every x ∈ L:

γ1(Bx,x) ≤ (Ax,x) ≤ γ2(Bx,x),

where γ1 > 0 and γ2 > 0 are two real numbers. Consider the operator C = B−1A and
prove that the condition number μB(C) satisfies the estimate:

μB(C) ≤ γ2
γ1

.

Remark. We will solve this problem in Section 6.1.4 as it has numerous applications.

5.4 Gaussian Elimination and Its Tri-Diagonal Version

We will describe both the standard Gaussian elimination algorithm and the Gaus-
sian elimination with pivoting, as they apply to solving an n× n system of linear
algebraic equations in its canonical form:

a11x1+a12x2+ . . .+a1nxn = f1,

.............................................

an1x1+an2x2+ . . .+annxn = fn.

(5.44)

Recall that the Gaussian elimination procedures belong to the class of direct meth-
ods, i.e., they produce the exact solution of system (5.44) after a finite number of
arithmetic operations.



Systems of Linear Algebraic Equations: Direct Methods 141

5.4.1 Standard Gaussian Elimination

From the first equation of system (5.44), express x1 through the other variables:

x1 = a′12x2+ . . .+a′1nxn + f ′1. (5.45)

Substitute expression (5.45) for x1 into the remaining n− 1 equations of system
(5.44) and obtain a new system of n− 1 linear algebraic equations with respect to
n−1 unknowns: x2,x3, . . . ,xn. From the first equation of this updated system express
x2 as a function of all other variables:

x2 = a′23x3+ . . .+a′2nxn + f ′2, (5.46)

substitute into the remaining n−2 equations and obtain yet another system of further
reduced dimension: n− 2 equations with n− 2 unknowns. Repeat this procedure,
called elimination, for k= 3,4, . . . ,n−1:

xk = a′k,k+1xk+1+ . . .+a′knxn+ f ′k, (5.47)

and every time obtain a new smaller linear system of dimension (n−k)× (n−k). At
the last stage k= n, no substitution is needed, and we simply solve the 1×1 system,
i.e., a single scalar linear equation from the previous stage k = n−1, which yields:

xn = f ′n. (5.48)

Having obtained the value of xn by formula (5.48), we can find the values of the
unknowns xn−1,xn−2, . . . ,x1 one after another by employing formulae (5.47) in the
ascending order: k = n− 1,n− 2, . . .,1. This procedure, however, is not fail-proof.
It may break down because of a division by zero. Even if no division by zero occurs,
the algorithm may still end up generating a large error in the solution due to an
amplification of the small round-off errors. Let us explain these phenomena.
If the coefficient a11 in front of the unknown x1 in the first equation of system

(5.44) is equal to zero, a11 = 0, then already the first step of the elimination algo-
rithm, i.e., expression (5.45), becomes invalid, because a′12 = −a12/a11. A division
by zero can obviously be encountered at any stage of the algorithm. For exam-
ple, having the coefficient in front of x2 equal to zero in the first equation of the
(n−1)×(n−1) system invalidates expression (5.46). But even if no division by zero
is ever encountered, and formulae (5.47) are obtained for all k = 1,2, . . . ,n, then the
method can still develop a computational instability when solving for xn,xn−1, . . . ,x1.
For example, if it happens that a′k,k+1 = 2 for k = n− 1,n− 2, . . .,1, while all other
a′i j are equal to zero, then the small round-off error committed when evaluating xn
by formula (5.48) increases by a factor of two when computing xn−1, then by an-
other factor of two when computing xn−2, and eventually by a factor of 2n−1 when
computing xn. Already for n= 11 the error grows more than a thousand times.
Another potential danger that one needs to keep in mind is that the quantities f ′k

can rapidly increase when k increases. If this happens, then even small relative errors
committed when computing f ′k in expression (5.47) can lead to a large absolute error
in the value of xk.



142 A Theoretical Introduction to Numerical Analysis

Let us now formulate a sufficient condition that would guarantee the computa-
tional stability of the Gaussian elimination algorithm.

THEOREM 5.6
Let the matrix A of system (5.44) be a matrix with diagonal dominance of

magnitude δ > 0, see formula (5.40). Then, no division by zero will be encoun-
tered in the standard Gaussian elimination algorithm. Moreover, the following
inequalities will hold:

n−k
∑
j=1

|a′k,k+ j| < 1, k = 1,2, . . . ,n−1, (5.49)

| f ′k| ≤
2
δ
max
j

| f j|, k = 1,2, . . . ,n. (5.50)

To prove Theorem 5.6, we will first need the following Lemma.

LEMMA 5.1
Let

b11y1+b12y2+ . . .+b1mym =g1,

.............................................

bm1y1+bm2y2+ . . .+bmmym =gm,

(5.51)

be a system of linear algebraic equations with diagonal dominance of magni-
tude δ > 0:

|bll| ≥ ∑
j �=l

|bl j|+ δ , l = 1,2, . . . ,m. (5.52)

Then, when reducing the first equation of system (5.51) to the form

y1 = b′12y2+ . . .+b′1mym+g′1 (5.53)

there will be no division by zero. Besides, the inequality

m

∑
j=2

|b′1 j| < 1 (5.54)

will hold. Finally, if m> 1, then the variable y1 can be eliminated from system
(5.51) with the help of expression (5.53). In doing so, the resulting (m−1)×
(m−1) system with respect to the unknowns y2,y3, . . . ,ym will also be a system
with diagonal dominance of the same magnitude δ as in formula (5.52).

PROOF According to formula (5.52), for l = 1 we have:

|b11| ≥ |b12|+ |b13|+ . . .+ |b1m|+ δ .



Systems of Linear Algebraic Equations: Direct Methods 143

Consequently, b11 �= 0, and expression (5.53) makes sense, where

b′1 j = −b1 j
b11

for j = 2,3, . . . ,m, and g′1 =
g1
b11

.

Moreover,
m

∑
j=2

|b′1 j| =
|b12|+ |b13|+ . . .+ |b1m|

|b11| ,

hence inequality (5.54) is satisfied.
It remains to prove the last assertion of the Lemma for m> 1. Substituting

expression (5.53) into the equation number j ( j > 1) of system (5.51), we
obtain:

(b j2+b j1b
′
12)y2+(b j3+b j1b

′
13)y3+ . . .(b jm+b j1b

′
1m)ym = g′j,

j = 2,3, . . . ,m.

In this system of m−1 equations, equation number l (l = 1,2, . . . ,m−1) is the
equation:

(bl+1,2+bl+1,1b
′
12)y2+(bl+1,3+bl+1,1b

′
13)y3+ . . .(bl+1,m+bl+1,1b

′
1m)ym = g′l+1,

l = 1,2, . . . ,m−1. (5.55)

Consequently, the entries in row number l of the matrix of system (5.55) are:

(bl+1,2+bl+1,1b
′
12), (bl+1,3+bl+1,1b

′
13), . . . , (bl+1,m+bl+1,1b

′
1m),

and the corresponding diagonal entry is: (bl+1,l+1+bl+1,1b′1,l+1).
Let us show that there is a diagonal dominance of magnitude δ , i.e., that

the following estimate holds:

|bl+1,l+1+bl+1,1b
′
1,l+1| ≥

m

∑
j=2,
j �=l+1

|bl+1, j +bl+1,1b
′
1 j|+ δ . (5.56)

We will prove an even stronger inequality:

|bl+1,l+1|− |bl+1,1b′1,l+1| ≥
m

∑
j=2,
j �=l+1

[|bl+1, j|+ |bl+1,1b′1 j|
]
+ δ ,

which, in turn, is equivalent to the inequality:

|bl+1,l+1| ≥
m

∑
j=2,
j �=l+1

|bl+1, j|+ |bl+1,1|
m

∑
j=2

|b′1 j|+ δ . (5.57)

Let us replace the quantity
m
∑
j=2

|b′1 j| in formula (5.57) by the number 1:

|bl+1,l+1| ≥
m

∑
j=2,
j �=l+1

|bl+1, j|+ |bl+1,1|+ δ =
m

∑
j=1,
j �=l+1

|bl+1, j|+ δ . (5.58)



144 A Theoretical Introduction to Numerical Analysis

According to estimate (5.54), if inequality (5.58) holds, then inequality (5.57)
will automatically hold. However, inequality (5.58) is true because of estimate
(5.52). Thus, we have proven inequality (5.56).

PROOF OF THEOREM 5.6 We will first establish the validity of formula
(5.47) and prove inequality (5.49). To do so, we will use induction with respect
to k. If k= 1 and n> 1, formula (5.47) and inequality (5.49) are equivalent to
formula (5.53) and inequality (5.54), respectively, proven in Lemma 5.1. In
addition, Lemma 5.1 implies that the (n−1)× (n−1) system with respect to
x2,x3, . . . ,xn obtained from (5.44) by eliminating the variable x1 using (5.45)
will also be a system with diagonal dominance of magnitude δ .

Assume now that formula (5.47) and inequality (5.49) have already been
proven for all k= 1,2, . . . , l, where l < n. Also assume that the (n− l)× (n− l)
system with respect to xl+1,xl+2, . . . ,xn obtained from (5.44) by consecutively
eliminating the variables x1,x2, . . . ,xl using (5.47) is a system with diagonal
dominance of magnitude δ . Then this system can be considered in the capac-
ity of system (5.51), in which case Lemma 5.1 immediately implies that the
assumption of the induction is true for k = l+1 as well. This completes the
proof by induction.

Next, let us justify inequality (5.50). According to Theorem 5.5, the fol-
lowing estimate holds for the solution of system (5.44):

max
j

|x j| ≤ 1
δ
max
i

| fi|.

Employing this inequality along with formula (5.47) and inequality (5.49) that
we have just proven, we obtain for any k= 1,2, . . . ,n:

| f ′k| =
∣∣∣∣∣xk−

n

∑
j=k+1

a′k jx j

∣∣∣∣∣≤ |xk|+
n

∑
j=k+1

|a′k j||x j|

≤ max
1≤ j≤n

|x j|
(
1+

n

∑
j=k+1

|a′k j|
)

≤ 2 max
1≤ j≤n

|x j| ≤ 2
δ
max
i

| fi|.

This estimate obviously coincides with (5.50).

Let us emphasize that the hypothesis of Theorem 5.6 (diagonal dominance) pro-
vides a sufficient but not a necessary condition for the applicability of the standard
Gaussian elimination procedure. There are other linear systems (5.44) that lend
themselves to the solution by this method. If, for a given system (5.44), the Gaussian
elimination is successfully implemented on a computer (no divisions by zero and no
instabilities), then the accuracy of the resulting exact solution will only be limited by
the machine precision, i.e., by the round-off errors.
Having computed the approximate solution of system (5.44), one can substitute it

into the left-hand side and thus obtain the residual Δf of the right-hand side. Then,



Systems of Linear Algebraic Equations: Direct Methods 145

estimate
‖Δx‖
‖x‖ ≤ μ(A)

‖Δf‖
‖f‖ ,

can be used to judge the error of the solution, provided that the condition number
μ(A) or its upper bound is known. This is one of the ideas behind the so-called
a posteriori analysis.
Computational complexity of the standardGaussian elimination algorithm is cubic

with respect to the dimension n of the system. More precisely, it requires roughly
2
3n
3+2n2= O(n3) arithmetic operations to obtain the solution. In doing so, the cubic

component of the cost comes from the elimination per se, whereas the quadratic
component is the cost of solving back for xn,xn−1, . . . ,x1.

5.4.2 Tri-Diagonal Elimination

The Gaussian elimination algorithm of Section 5.4.1 is particularly efficient for a
system (5.44) of the following special kind:

b1x1 + c1x2 = f1,
a2x1 + b2x2 + c2x3 = f2,

a3x2 + b3x3 + c3x4 = f3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an−1xn−2 + bn−1xn−1 + cn−1xn = fn−1,
anxn−1 + bnxn = fn.

(5.59)

The matrix of system (5.59) is tri-diagonal, i.e., all its entries are equal to zero except
those on the main diagonal, on the super-diagonal, and on the sub-diagonal. In other
words, if A = {ai j}, then ai j = 0 for j > i+1 and j < i−1. Adopting the notation
of formula (5.59), we say that aii = bi, i= 1,2, . . . ,n; ai,i−1 = ai, i = 2,3, . . . ,n; and
ai,i+1 = ci, i= 1,2, . . . ,n−1.
The conditions of diagonal dominance (5.40) for system (5.59) read:

|b1| ≥ |c1|+ δ ,

|bk| ≥ |ak|+ |ck|+ δ , k = 2,3, . . . ,n−1, (5.60)

|bn| ≥ |an|+ δ .

Equalities (5.45)–(5.48) transform into:

xk =Akxk+1+Fk, k = 1,2, . . . ,n−1,
xn =Fn,

(5.61)

where Ak and Fk are some coefficients. Define An = 0 and rewrite formulae (5.61) as
a unified expression:

xk = Akxk+1+Fk, k = 1,2, . . . ,n. (5.62)



146 A Theoretical Introduction to Numerical Analysis

From the first equation of system (5.59) it is clear that for k = 1 the coefficients in
formula (5.62) are:

A1 = − c1
b1

, F1 =
f1
b1

. (5.63)

Suppose that all the coefficients Ak and Fk have already been computed up to some
fixed k, 1≤ k≤ n−1. Substituting the expression xk = Akxk+1+Fk into the equation
number k+1 of system (5.59) we obtain:

xk+1 = − ck+1
bk+1+ak+1Ak

xk+2+
fk+1−ak+1Fk
bk+1+ak+1Ak

.

Therefore, the coefficients Ak and Fk satisfy the following recurrence relations:

Ak+1 = − ck+1
bk+1+ak+1Ak

, Fk+1 =
fk+1−ak+1Fk
bk+1+ak+1Ak

,

k = 1,2, . . . ,n−1.
(5.64)

As such, the algorithm of solving system (5.59) gets split into two stages. At the
first stage, we evaluate the coefficients Ak and Fk for k = 1,2, . . . ,n using formu-
lae (5.63) and (5.64). At the second stage, we solve back for the actual unknowns
xn,xn−1, . . . ,x1 using formulae (5.62) for k = n,n−1, . . . ,1.
In the literature, one can find several alternative names for the tri-diagonal Gaus-

sian elimination procedure that we have described. Sometimes, the term marching
is used. The first stage of the algorithm is also referred to as the forward stage or
forward marching, when the marching coefficients Ak and Bk are computed. Accord-
ingly, the second stage of the algorithm, when relations (5.62) are applied consecu-
tively in the reverse order is called backward marching.
We will now estimate the computational complexity of the tri-diagonal elimina-

tion. At the forward stage, the elimination according to formulae (5.63) and (5.64)
requiresO(n) arithmetic operations. At the backward stage, formula (5.62) is applied
n times, which also requires O(n) operations. Altogether, the complexity of the tri-
diagonal elimination is O(n) arithmetic operations. It is clear that no algorithm can
be built that would be asymptotically cheaper than O(n), because the number of
unknowns in the system is also O(n).
Let us additionally note that the tri-diagonal elimination is apparently the only

example available in the literature of a direct method with linear complexity, i.e.,
of a method that produces the exact solution of a linear system at a cost of O(n)
operations. In other words, the computational cost is directly proportional to the
dimension of the system. We will later see examples of direct methods that produce
the exact solution at a cost ofO(n lnn) operations, and examples of iterative methods
that cost O(n) operations but only produce an approximate solution. However, no
other method of computing the exact solution with a genuinely linear complexity is
known.
The algorithm can also be generalized to the case of the bandedmatrices. Matrices

of this type may contain non-zero entries on several neighboring diagonals, including
the main diagonal. Normally we would assume that the number m of the non-zero



Systems of Linear Algebraic Equations: Direct Methods 147

diagonals, i.e., the bandwidth, satisfies 3 ≤ m� n. The complexity of the Gaussian
elimination algorithm when applied to a banded system (5.44) isO(m2n) operations.
If m is fixed and n is arbitrary, then the complexity, again, scales as O(n).
High-order systems of type (5.59) drew the attention of researchers in the fifties.

They appeared when solving the heat equation numerically with the help of the so-
called implicit finite-difference schemes. These schemes, their construction and their
importance, will be discussed later in Part III of the book, see, in particular, Sec-
tion 10.6.
The foregoing tri-diagonal marching algorithm was apparently introduced for the

first time by I. M. Gelfand and O. V. Lokutsievskii around the late forties or early
fifties. They conducted a complete analysis of the algorithm, showed that it was
computationally stable, and also built its continuous “closure,” see Appendix II to
the book [GR64] written by Gelfand and Lokutsievskii.
Alternatively, the tri-diagonal elimination algorithm is attributed to L. H. Thomas

[Tho49], and is referred to as the Thomas algorithm.
The aforementionedwork by Gelfand and Lokutsievskii was one of the first papers

in the literature where the question of stability of a computational algorithm was
accurately formulated and solved for a particular class of problems. This question
has since become one of the key issues for the entire large field of knowledge called
scientific computing. Having stability is crucial, as otherwise computer codes that
implement the algorithms will not execute properly. In Part III of the book, we study
computational stability for the finite-difference schemes.
Theorem 5.6, which provides sufficient conditions for applicability of the Gaus-

sian elimination, is a generalization to the case of full matrices of the result by
Gelfand and Lokutsievskii on stability of the tri-diagonal marching.
Note also that the conditions of strict diagonal dominance (5.60) that are sufficient

for stability of the tri-diagonal elimination can actually be relaxed. In fact, one can
only require that the coefficients of system (5.59) satisfy the inequalities:

|b1| ≥ |c1|,
|bk| ≥ |ak|+ |ck|, k= 2,3, . . . ,n−1, (5.65)

|bn| ≥ |an|,

so that at least one out of the total of n inequalities (5.65) actually be strict, i.e., “>”
rather than “≥.” We refer the reader to [SN89a, Chapter II] for detail.
Overall, the idea of transporting, or marching, the condition b1x1+c1x2 = f1 spec-

ified by the first equation of the tri-diagonal system (5.59) is quite general. In the
previous algorithm, this idea is put to use when obtaining the marching coefficients
(5.63), (5.64) and relations (5.62). It is also exploited in many other elimination
algorithms, see [SN89a, Chapter II]. We briefly describe one of those algorithms,
known as the cyclic tri-diagonal elimination, in Section 5.4.3.



148 A Theoretical Introduction to Numerical Analysis

5.4.3 Cyclic Tri-Diagonal Elimination

In many applications, one needs to solve a system which is “almost” tri-diagonal,
but is not quite equivalent to system (5.59):

b1x1 + c1x2 + a1xn = f1,
a2x1 + b2x2 + c2x3 = f2,

a3x2 + b3x3 + c3x4 = f3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an−1xn−2 + bn−1xn−1 + cn−1xn = fn−1,
cnx1 + anxn−1 + bnxn = fn.

(5.66)

In Section 2.3.2, we have analyzed one particular example of this type that arises
when constructing the nonlocal Schoenberg splines; see the matrix A given by for-
mula (2.66) on page 52. Other typical examples include the so-called central dif-
ference schemes (see Section 9.2.1) for the solution of second order ordinary differ-
ential equations with periodic boundary conditions, as well as many schemes built
for solving partial differential equations in the cylindrical or spherical coordinates.
Periodicity of the boundary conditions gave rise to the name cyclic attached to the
version of the tri-diagonal elimination that we are about to describe.
The coefficients a1 and cn in the first and last equations of system (5.66), respec-

tively, are, generally speaking, non-zero. Their presence does not allow one to apply
the tri-diagonal elimination algorithm of Section 5.4.2 to system (5.66) directly. Let
us therefore consider two auxiliary linear systems of dimension (n−1)× (n−1):

b2u2 + c2u3 = f2,
a3u2 + b3u3 + c3u4 = f3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an−1un−2 + bn−1un−1 + cn−1un = fn−1,
anun−1 + bnun = fn.

(5.67)

and
b2v2 + c2v3 = −a2,
a3v2 + b3v3 + c3v4 = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an−1vn−2 + bn−1vn−1 + cn−1vn = 0,
anvn−1 + bnvn = −cn.

(5.68)

Having obtained the solutions {u2,u3, . . . ,un} and {v2,v3, . . . ,vn} to systems (5.67)
and (5.68), respectively, we can represent the solution {x1,x2, . . . ,xn} to system
(5.66) in the form:

xi = ui+ x1vi, i= 1,2, . . . ,n, (5.69)

where for convenience we additionally define u1 = 0 and v1 = 1. Indeed, multiplying
each equation of system (5.68) by x1, adding with the corresponding equation of
system (5.67), and using representation (5.69), we immediately see that the equations
number 2 through n of system (5.66) are satisfied. It only remains to satisfy equation
number 1 of system (5.66). To do so, we use formula (5.69) for i= 2 and i= n, and



Systems of Linear Algebraic Equations: Direct Methods 149

substitute x2 = u2+ x1v2 and xn = un + x1vn into the first equation of system (5.66),
which yields one scalar equation for x1:

b1x1+ c1(u2+ x1v2)+a1(un+ x1vn) = f1.

As such, we find:

x1 =
f1−a1un− c1u2
b1+a1vn+ c1v2

. (5.70)

Altogether, the solution algorithm for system (5.66) reduces to first solving the
two auxiliary systems (5.67) and (5.68), then finding x1 with the help of formula
(5.70), and finally obtaining x2,x3, . . . ,xn according to formula (5.69). As both sys-
tems (5.67) and (5.68) are genuinely tri-diagonal, they can be solved by the original
tri-diagonal elimination described in Section 5.4.2. In doing so, the overall compu-
tational complexity of solving system (5.66) obviously remains linear with respect
to the dimension of the system n, i.e., O(n) arithmetic operations.

5.4.4 Matrix Interpretation of the Gaussian Elimination. LU
Factorization

Consider system (5.44) written as Ax= f or alternatively, A(0)x= f (0), where

A≡ A(0) =

⎡
⎢⎢⎣
a(0)
11 . . . a(0)

1n
...
. . .

...

a(0)
n1 . . . a(0)

nn

⎤
⎥⎥⎦ and f ≡ f (0) =

⎡
⎢⎢⎣
f (0)1
...

f (0)n

⎤
⎥⎥⎦ ,

and the superscript “(0)” emphasizes that this is the beginning, i.e., the zeroth stage
of the Gaussian elimination procedure. The notations in this section are somewhat
different from those of Section 5.4.1, but we will later show the correspondence.

At the first stage of the algorithm we assume that a(0)
11 �= 0 and introduce the trans-

formation matrix:

T1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
−t21 1 0 . . . 0
−t31 0 1 . . . 0
...

...
...
. . .

...
−tn1 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ , where ti1 =

a(0)
i1

a(0)
11

, i= 2,3, . . . ,n.

Applying this matrix is equivalent to eliminating the variable x1 from equations num-
ber 2 through n of system (5.44):

T1A(0)x≡ A(1)x=

⎡
⎢⎢⎢⎢⎣
a(0)
11 a(0)

12 . . . a(0)
1n

0 a(1)
22 . . . a(1)

2n
...

...
. . .

...

0 a(1)
n2 . . . a(1)

nn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
x1
x2
...
xn

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣
f (0)1

f (1)2
...

f (1)n

⎤
⎥⎥⎥⎥⎦= f (1) ≡ T1f (0).



150 A Theoretical Introduction to Numerical Analysis

At the second stage, we define:

T2 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
0 1 0 . . . 0
0 −t32 1 . . . 0
...

. . .
...

0 −tn2 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ , where ti2 =

a(1)
i2

a(1)
22

, i= 3,4, . . . ,n,

and eliminate x2 from equations 3 through n, thus obtaining the system A(2)x= f (2),
where

A(2) = T2A(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a(0)
11 a(0)

12 a(0)
13 . . . a(0)

1n

0 a(1)
22 a(1)

23 . . . a(1)
2n

0 0 a(2)
33 . . . a(2)

3n
...

...
...
. . .

...

0 0 a(2)
n3 . . . a(2)

nn

⎤
⎥⎥⎥⎥⎥⎥⎦

and f (2) = T2 f (1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f (0)1

f (1)2

f (2)3
...

f (2)n

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In general, at stage number k we have the transformation matrix:

Tk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0 0 . . . 0
...
. . .

...
...

...
0 . . . 1 0 . . . 0
0 . . . −tk+1,k 1 . . . 0
...

...
...
. . .

...
0 . . . −tn,k 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where ti,k =
a(k−1)
ik

a(k−1)
kk

, i= k+1, . . . ,n, (5.71)

and the system A(k)x= f (k), where:

A(k) =TkA(k−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(0)
11 . . . a(0)

1,k a(0)
1,k+1 . . . a(0)

1,n
...
. . .

...
...

...

0 . . . a(k−1)
k,k a(k−1)

k,k+1 . . . a(k−1)
k,n

0 . . . 0 a(k)
k+1,k+1 . . . a(k)

k+1,n
...

...
...

. . .
...

0 . . . 0 a(k)
n,k+1 . . . a(k)

n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f (k) =Tk f (k−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (0)1
...

f (k−1)k

f (k)k+1
...

f (k)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Performing all n−1 stages of the elimination, we arrive at the system:
A(n−1)x= f (n−1),

where

A(n−1) = Tn−1Tn−2 . . .T1A and f (n−1) = Tn−1Tn−2 . . .T1f .



Systems of Linear Algebraic Equations: Direct Methods 151

The resulting matrix A(n−1) is upper triangular and we re-denote it by U. All entries
of this matrix below its main diagonal are equal to zero:

A(n−1) ≡ U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(0)
11 . . . a(0)

1,k a(0)
1,k+1 . . . a(0)

1,n
...
. . .

...
...

...

0 . . . a(k−1)
k,k a(k−1)

k,k+1 . . . a(k−1)
k,n

0 . . . 0 a(k)
k+1,k+1 . . . a(k)

k+1,n
...

...
...

. . .
...

0 . . . 0 0 . . . a(n−1)
n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.72)

The entries on the main diagonal, a(k−1)
k,k , k = 1,2, . . . ,n, are called pivots, and none

of them may turn into zero as otherwise the standard Gaussian elimination procedure
will fail. Solving the system Ux = f (n−1) ≡ g is a fairly straightforward task, as we
have seen in Section 5.4.1. It amounts to computing the values of all the unknowns

one after another in the reverse order, i.e., starting from xn = f (n−1)n /a(n−1)
n,n , then

xn−1 = ( f (n−2)n−1 −a(n−2)
n−1,nxn)/a

(n−2)
n−1,n−1, etc., and all the way up to x1.

We will now show that the representation U = Tn−1Tn−2 . . .T1A implies that
A = LU, where L is a lower triangular matrix, i.e., a matrix that only has zero
entries above its main diagonal. In other words, we will need to demonstrate that

L def= (Tn−1Tn−2 . . .T1)−1 = T−11 T
−1
2 . . .T−1n−1 is a lower triangular matrix. Then, the

formula
A= LU (5.73)

will be referred to as an LU factorization of the matrix A.
One can easily verify by direct multiplication that the inverse matrix for a given

Tk, k = 1,2, . . . ,n−1, see formula (5.71), is:

T−1k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0 0 . . . 0
...
. . .

...
...

...
0 . . . 1 0 . . . 0
0 . . . tk+1,k 1 . . . 0
...

...
...
. . .

...
0 . . . tn,k 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.74)

It is also clear that if the meaning of the operation rendered by Tk is “take equation
number k, multiply it consecutively by tk+1,k, . . . ,tn,k, and subtract from equations
number k+1 through n, respectively,” then the meaning of the inverse operation has
to be “take equation number k, multiply it consecutively by the factors tk+1,k, . . . ,tn,k,
and add to equations number k+1 through n, respectively,” which is precisely what
the foregoing matrix T−1k does.
We see that all the matrices T−1k , k = 1,2, . . . ,n− 1, given by formula (5.74) are

lower triangular matrices with the diagonal entries equal to one. Their product can



152 A Theoretical Introduction to Numerical Analysis

be calculated directly, which yields:

L= T−11 T
−1
2 . . .T−1n−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0 . . . 0
t2,1 1 . . . 0 0 . . . 0
...

...
. . .

...
...

...
tk,1 tk,2 . . . 1 0 . . . 0
tk+1,1 tk+1,2 . . . tk+1,k 1 . . . 0
...

...
...

...
. . .

...
tn,1 tn,2 . . . tn,k tn,k+1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.75)

Consequently, the matrix L is indeed a lower triangular matrix (with all its diagonal
entries equal to one), and the factorization formula (5.73) holds.
The LU factorization of the matrix A allows us to analyze the computational com-

plexity of the Gaussian elimination algorithm as it applies to solving multiple lin-
ear systems that have the same matrix A but different right-hand sides. The cost
of obtaining the factorization itself, i.e., that of computing the matrix U, is cubic:
O(n3) arithmetic operations. This factorization obviously stays the same when the
right-hand side changes. For a given right-hand side f , we need to solve the system
LUx = f . This amounts to first solving the system Lg = f with a lower triangular
matrix L of (5.75) and obtaining g= L−1f = Tn−1Tn−2 . . .T1f , and then solving the
system Ux= g with an upper triangular matrix U of (5.72) and obtaining x. The cost
of either solution is O(n2) operations. Consequently, once the LU factorization has
been built, each additional right-hand side can be accommodated at a quadratic cost.
In particular, consider the problem of finding the inverse matrix A−1 using Gaus-

sian elimination. By definition, AA−1 = I. In other words, each column of the
matrix A−1 is the solution to the system Ax = f with the right-hand side f equal to
the corresponding column of the identity matrix I. Altogether, there are n columns,
each adding an O(n2) solution cost to the O(n3) initial cost of the LU factorization
that is performed only once ahead of time. We therefore conclude that the overall
cost of computing A−1 using Gaussian elimination is also cubic: O(n3) operations.
Finally, let us note that for a given matrix A, its LU factorization is, generally

speaking, not unique. The procedure that we have described yields a particular form
of the LU factorization (5.73) defined by an additional constraint that all diagonal
entries of the matrix L of (5.75) be equal to one. Instead, we could have required,
for example, that the diagonal entries of U be equal to one. Then, the matrices Tk of
(5.71) get replaced by:

T̃k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0 0 . . . 0
...
. . .

...
...

...
0 . . . tk,k 0 . . . 0
0 . . . −tk+1,k 1 . . . 0
...

...
...
. . .

...
0 . . . −tn,k 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where tk,k =
1

a(k−1)
kk

, (5.76)



Systems of Linear Algebraic Equations: Direct Methods 153

and instead of (5.72) we have:

Ũ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . −a′1,k −a′1,k+1 . . . −a′1,n
...
. . .

...
...

...
0 . . . 1 −a′k,k+1 . . . −a′k,n
0 . . . 0 1 . . . −a′k+1,n
...

...
...

. . .
...

0 . . . 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.77)

where the off-diagonal entries of the matrix Ũ are the same as introduced in the
beginning of Section 5.4.1. The matrices T̃−1k and L̃ are obtained accordingly; this is
the subject of Exercise 1 after this section.

5.4.5 Cholesky Factorization

If A is a symmetric positive definite (SPD) matrix (with real entries), A= AT > 0,
then it admits a special form of LU factorization, namely:

A= LLT , (5.78)

where L is a lower triangular matrix with positive entries on its main diagonal. Fac-
torization (5.78) is known as the Cholesky factorization. The proof of formula (5.78),
which uses induction with respect to the dimension of the matrix, can be found, e.g.,
in [GL81, Chapter 2]. Moreover, one can derive explicit formulae for the entries of
the matrix L:

l j j =

(
a j j−

j−1
∑
k=1

l2jk

) 1
2

, j = 1,2, . . . ,n,

li j =

(
ai j−

j−1
∑
k=1

likl jk

)
· l−1j j , i= j+1, j+2, . . . ,n.

Computational complexity of obtaining the Cholesky factorization (5.78) is also
cubic with respect to the dimension of the matrix: O(n3) arithmetic operations. How-
ever, the actual cost is roughly one half compared to that of the standard Gaussian
elimination: n3/3 vs. 2n3/3 arithmetic operations. This reduction of the cost is the
key benefit of using the Cholesky factorization, as opposed to the standard Gaussian
elimination, for large symmetric matrices. The reduction of the cost is only enabled
by the special SPD structure of the matrix A; there is no Cholesky factorization for
general matrices, and one has to resort back to the standard LU. This is one of many
examples in numerical analysis when a more efficient computational procedure can
be obtained for a more narrow class of objects that define the problem.



154 A Theoretical Introduction to Numerical Analysis

5.4.6 Gaussian Elimination with Pivoting

The standard Gaussian procedure of Section 5.4.1 fails if a pivotal entry in the
matrix appears equal to zero. Consider, for example, the following linear system:

x1+2x2+3x3 =1,
2x1+4x2+5x3 =2,
7x1+8x2+9x3 =3.

After the first stage of elimination we obtain:

x1+2x2+3x3 =1,
0 · x1+0 · x2− x3 =0,
0 · x1−6x2−12x3 = −4.

The pivotal entry in the second equation of this system, i.e., the coefficient in front of
x2, is equal to zero. Therefore, this equation cannot be used for eliminating x2 from
the third equation. As such, the algorithm cannot proceed any further. The problem,
however, can be easily fixed by changing the order of the equations:

x1+2x2+3x3 =1,
−6x2−12x3 = −4,

x3 =0,

and we see that the system is already reduced to the upper triangular form.
Different strategies of pivoting are designed to help overcome or alleviate the dif-

ficulties that the standard Gaussian elimination may encounter — division by zero
and the loss of accuracy due to an instability. Pivoting exploits pretty much the same
idea as outlined in the previous simple example — changing the order of equations
and/or the order of unknowns in the equations. In the case detA �= 0, the elimination
procedure with pivoting guarantees that there will be no division by zero, and also
improves the computational stability compared to the standard Gaussian elimination.
We will describe partial pivoting and complete pivoting.
When performing partial pivoting for a non-singular system, we start with finding

the entry with the maximum absolute value4 in the first column of the matrix A.
Assume that this is the entry ai1. Clearly, ai1 �= 0, because otherwise detA= 0. Then,
we change the order of the equations in the system — the first equation becomes
equation number i, and equation number i becomes the first equation. The system
after this operation obviously remains equivalent to the original one. Finally, one
step of the standard Gaussian elimination is performed, see Section 5.4.1. In doing
so, the entries −t21,−t31, . . . ,−tn1 of the matrix T1, see formula (5.71) will all have
absolute values less than one. This improves stability, because multiplication of
the subtrahend by a quantity smaller than one before subtraction helps reduce the

4If several entries have the same largest absolute value, we take one of those.



Systems of Linear Algebraic Equations: Direct Methods 155

effect of the round-off errors. Having eliminated the variable x1, we apply the same
approach to the resulting smaller system of order (n−1)× (n−1). Namely, among
all the equations we first find the equation that has the maximum absolute value of
the coefficient in front of x2. We then change the order of the equations so that this
coefficient moves to the position of the pivot, and only after that eliminate x2.
Complete pivoting is similar to partial pivoting, except that at every stage of elim-

ination, the entry with the maximum absolute value is sought for not only in the first
column, but across the entire current-stage matrix:⎡

⎢⎣a
(k−1)
kk . . . a(k−1)

kn
. . . . . . . . . . . . . .

a(k−1)
nk . . . a(k−1)

nn

⎤
⎥⎦ .

Once the maximum entry has been determined, it needs to be moved to the position

of the pivot a(k−1)
kk . This is achieved by the appropriate permutations of both the

equations and the unknowns. It is clear that the system after the permutations remains
equivalent to the original one.
Computational complexity of Gaussian elimination with pivoting remains cubic

with respect to the dimension of the system: O(n3) arithmetic operations. Of course,
this estimate is only asymptotic, and the actual constants for the algorithm with par-
tial pivoting are larger than those for the standard Gaussian elimination. This is
the pay-off for its improved robustness. The algorithm with complete pivoting is
even more expensive than the algorithm with partial pivoting; but it is typically more
robust as well. Note that for the same reason of improved robustness, the use of
Gaussian elimination with pivoting can be recommended in practice, even for those
systems for which the standard algorithm does not fail.
Gaussian elimination with pivoting can be put into the matrix framework in much

the same way as it has been done in Section 5.4.4 for standard Gaussian elimination.
Moreover, a very similar result on the LU factorization can be obtained; this is the
subject of Exercise 3. To do so, one needs to exploit the so-called permutation matri-
ces, i.e., the matrices that change the order of rows or columns in a givenmatrix when
applied as multipliers, see [HJ85, Section 0.9]. For example, to swap the second and
the third equations in the example analyzed in the beginning of this section, one
would need to multiply the system matrix from the left by the permutation matrix:

P=

⎡
⎣1 0 00 0 1
0 1 0

⎤
⎦ .

5.4.7 An Algorithm with a Guaranteed Error Estimate

As has already been discussed, all numbers in a computer are represented as frac-
tions with a finite fixed number of significant digits. Consequently, many actual
numbers have to be truncated, or in other words, rounded, before they can be stored
in the computer memory, see Section 1.3.3. As such, when performing computations



156 A Theoretical Introduction to Numerical Analysis

on a real machine with a fixed number of significant digits, along with the effect
of inaccuracies in the input data, round-off errors are introduced at every arithmetic
operation. For linear systems, the impact of these round-off errors depends on the
number of significant digits, on the condition number of the matrix, as well as on
the particular algorithm chosen for computing the solution. In work [GAKK93], a
family of algorithms has been proposed that directly take into account the effect of
rounding on a given computer. These algorithms either produce the result with a
guaranteed accuracy, or otherwise determine in the course of computations that the
system is conditioned so poorly that no accuracy can be guaranteed when computing
its solution on the machine with a given number of significant digits.

Exercises

1. Write explicitly the matrices T̃−1k and L̃ that correspond to the LU decomposition of A
with T̃k and Ũ defined by formulae (5.76) and (5.77), respectively.

2. Compute the solution of the 2×2 system:
10−3x+y= 5, x−y= 6,

using standard Gaussian elimination and Gaussian elimination with pivoting. Conduct
all computations with two significant digits (decimal). Compare and explain the results.

3.� Show that when performing Gaussian elimination with partial pivoting, the LU factor-
ization is obtained in the form:

PA= LU,

where P is the composition (i.e., product) of all permutation matrices used at every
stage of the algorithm.

4. Consider a boundary value problem for the second order ordinary differential equation:

d2u
dx2

−u = f (x), x ∈ [0,1],

u(0) = 0, u(1) = 0,

where u = u(x) is the unknown function and f = f (x) is a given right-hand side. To
solve this problem numerically, we first partition the interval 0 ≤ x ≤ 1 into N equal
subintervals and thus build a uniform grid of N+ 1 nodes: x j = j · h, h = 1/N, j =
0,1,2, . . . ,N. Then, instead of looking for the continuous function u = u(x) we will
be looking for its approximate table of values {u0, u1, u2, . . . ,uN} at the grid nodes
x0, x1, x2, . . . ,xN , respectively.
At every interior node x j , j = 1,2, . . . ,N−1, we approximately replace the second

derivative by the difference quotient (for more detail, see Section 9.2):

d2u

dx2

∣∣∣
x=x j

≈ u j+1−2u j +u j−1
h2

,

and arrive at the following finite-difference counterpart of the original problem (a
central-difference scheme):

u j+1−2u j +u j−1
h2

−u j = f j, j = 1,2, . . . ,N−1,
u0 = 0, uN = 0,



Systems of Linear Algebraic Equations: Direct Methods 157

where f j ≡ f (x j) is the discrete right-hand side assumed given, and u j is the unknown
discrete solution.

a) Write down the previous scheme as a system of linear algebraic equations (N−1
equations with N− 1 unknowns) both in the canonical form and in an operator
form with the operator specified by an (N−1)× (N−1) matrix.

b) Show that the system is tri-diagonal and satisfies the sufficient conditions of Sec-
tion 5.4.2, so that the tri-diagonal elimination can be applied.

c) Assume that the exact solution u is known: u(x) = sin(πx)ex. Then, f (x) =
(−π2 sin(πx)+2π cos(πx))ex. Implement on the computer the tri-diagonal elim-
ination using double precision arithmetic. Solve the system for the right-hand
side f j = f (x j) on a sequence of grids with N = 32,64,128,256, and 512. On
each grid, calculate the relative error in the maximum norm:

ε∞(N) =
max

1≤ j≤N−1
|u(x j)−u j |

max
1≤ j≤N−1

|u(x j)| .

By plotting log2(ε∞(N)) vs. log2N, show that every time the grid is refined by a
factor of 2, the error drops by approximately a factor of 4. This should indicate
the second order of grid convergence of the scheme.

5.5 Minimization of Quadratic Functions and Its Rela-
tion to Linear Systems

Consider a Euclidean space R
n of vectors x with n real components. Let A be a

linear operator, A : R
n �−→R

n, f ∈ R
n be a fixed element of the vector spaceR

n, and
c be a real constant. The function F = F(x) of the argument x defined as:

F(x) = (Ax,x)−2(f ,x)+ c (5.79)

is called a quadratic function.
Note that since (Ax,x) = (x,A∗x) = (A∗x,x), the quadratic function F(x) coin-

cides with another quadratic function:

F(x) = (A∗x,x)−2(f ,x)+ c,

and consequently, with the function:

F(x) =
(
A+A∗

2
x,x
)
−2(f ,x)+ c.

Therefore, with no loss of generality we can assume that the operator A in formula
(5.79) is self-adjoint. Otherwise, we can simply replace a given operator A with the
corresponding self-adjoint operator (A+A∗)/2.



158 A Theoretical Introduction to Numerical Analysis

From now on, we will suppose that A = A∗ and A > 0 in formula (5.79), i.e.,
(Ax,x) > 0 for any x∈ R

n, x �= 0. Given the function F(x) of (5.79), let us formulate
the problem of its minimization, i.e., the problem of finding a particular element
z ∈ R

n that delivers the minimum value to F(x):

F(z) = min
x∈Rn

F(x). (5.80)

It turns out that the minimization problem (5.80) and the problem of solving the
system of linear algebraic equations:

Ax= f , where A= A∗ > 0, (5.81)

are equivalent. We formulate this result in the form of a theorem.

THEOREM 5.7
Let A = A∗ > 0. There is one and only one element z ∈ R

n that delivers
a minimum to the quadratic function F(x) of (5.79). This vector z is the
solution to the linear system (5.81).

PROOF As the operator A is positive definite, it is non-singular. Conse-
quently, system (5.81) has a unique solution z ∈ R

n. Let us now show that for
any δδδ ∈ R

n, δδδ �= 0, we have F(z+δδδ ) > F(z):

F(z+δδδ) = (A(z+δδδ),z+δδδ )−2(f ,z+δδδ)+ c=
=[(Az,z)−2(f ,z)+ c]+2(Az,δδδ)−2(f ,δδδ)+ (Aδδδ ,δδδ )
=F(z)+2(Az− f ,δδδ)+ (Aδδδ ,δδδ )
=F(z)+ (Aδδδ ,δδδ ) > F(z).

Consequently, the solution z of system (5.81) indeed delivers a minimum to
the function F(x), because any nonzero deviation δδδ implies a larger value of
the function.

Equivalence of problems (5.80) and (5.81) established by Theorem 5.7 allows one
to reduce the solution of either problem to the solution of the other problem.
Note that linear systems of type (5.81) that have a self-adjoint positive definite

matrix represent an important class of systems. Indeed, a general linear system

Ax= f ,

where A : R
n �−→ R

n is an arbitrary non-singular operator, can be easily reduced
to a new system of type (5.81): Cx = g, where C = C∗ > 0. To do so, one merely
needs to set: C = A∗A and g = A∗f . This approach, however, may only have a
theoretical significance because in practice an extra matrix multiplication performed
on a machine with finite precision is prone to generating large additional errors.



Systems of Linear Algebraic Equations: Direct Methods 159

However, linear systems with self-adjoint matrices can also arise naturally. For
example, many boundary value problems for elliptic partial differential equations
can be interpreted as the Lagrange-Euler problems for minimizing certain quadratic
functionals. It is therefore natural to expect that a “correct,” i.e., appropriate, dis-
cretization of the corresponding variational problem will lead to a problem of min-
imizing a quadratic function on a finite-dimensional space. The latter problem will,
in turn, be equivalent to the linear system (5.81) according to Theorem 5.7.

Exercises

1. Consider a quadratic function of two scalar arguments x1 and x2:

F(x1,x2) = x21+2x1x2+4x22−2x1+3x2+5.

Recast this function in the form (5.79) as a function of the vector argument x =
[
x1
x2

]
that belongs to the Euclidean space R

2 supplied with the inner product (x,y) = x1y1+
x2y2. Verify that A= A∗ > 0, and solve the corresponding problem (5.81).

2.� Recast the function F(x1,x2) from the previous exercise in the form:

F(x) = [Ax,x]B−2[f ,x]B+c,

where [x,y]B = (Bx,y), B=
[
1 0
0 2

]
, and A=A∗ in the sense of the inner product [x,y]B.

5.6 The Method of Conjugate Gradients

Consider a system of linear algebraic equations:

Ax= f , A= A∗ > 0, f ∈ R
n, x ∈ R

n, (5.82)

where R
n is an n-dimensional real vector space with the scalar product (x,y), and A :

R
n �−→ R

n is a self-adjoint positive definite operator with respect to this product. To
introduce the method of conjugate gradients, we will use the equivalence of system
(5.82) and the problem of minimizing the quadratic functionF(x) = (Ax,x)−2(f ,x)
that was established in Section 5.5, see Theorem 5.7.

5.6.1 Construction of the Method

In the core of the method is the sequence of vectors x(p) ∈ R
n, p = 0,1,2, . . .,

which is to be built so that it would converge to the vector that minimizes the value
of F(x). Along with this sequence, the method requires constructing another se-
quence of vectors d(p) ∈ R

k, p= 0,1,2, . . . , that would provide the so-called descent
directions. In other words, we define x(p+1) = x(p) + αpd(p), and choose the scalar
αp in order to minimize the composite function F(x(p) +αd(p)).


