
Chapter 6

Iterative Methods for Solving Linear
Systems

Consider a system of linear algebraic equations:

Ax= f , f ∈ L, x ∈ L, (6.1)

whereL is a vector space andA : L �−→L is a linear operator. From the standpoint of
applications, having a capability to compute its exact solution may be “nice,” but it
is typically not necessary. Quite the opposite, one can normally use an approximate
solution, provided that it would guarantee the accuracy sufficient for a particular
application. On the other hand, one usually cannot obtain the exact solution anyway.
The reason is that the input data of the problem (the right-hand side f , as well as
the operator A itself) are always specified with some degree of uncertainty. This
necessarily leads to a certain unavoidable error in the result. Besides, as all the
numbers inside the machine are only specified with a finite precision, the round-off
errors are also inevitable in the course of computations.
Therefore, instead of solving system (6.1) by a direct method, e.g., by Gaussian

elimination, in many cases it may be advantageous to use an iterative method of
solution. This is particularly true when the dimension n of system (6.1) is very large,
and unless a special fast algorithm such as FFT (see Section 5.7.3) can be employed,
the O(n3) cost of a direct method (see Sections 5.4 and 5.6) would be unbearable.
A typical iterative method (or an iteration scheme) consists of building a sequence

of vectors {x(p)}⊂L, p= 0,1,2, . . . , that are supposed to provide successively more
accurate approximations of the exact solution x. The initial guess x(0) ∈L for an iter-
ation scheme is normally taken arbitrarily. The notion of successively more accurate
approximations can, of course, be quantified. It means that the sequence x(p) has
to converge to the exact solution x as the number p increases: x(p) −→ x, when
p −→ ∞. This means that for any ε > 0 we can always find p = p(ε) such that the
following inequality:

‖x−x(p)‖ ≤ ε
will hold for all p ≥ p(ε). Accordingly, by specifying a sufficiently small ε > 0
we can terminate the iteration process after a finite number p = p(ε) of steps, and
subsequently use the iteration x(p) in the capacity of an approximate solution that
would meet the accuracy requirements for a given problem.
In this chapter, we will describe some popular iterative methods, and outline the

conditions under which it may be advisable to use an iterative method rather than a
direct method, or to prefer one particular iterative method over another.
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6.1 Richardson Iterations and the Like

We will build a family of iterative methods by first recasting system (6.1) as fol-
lows:

x= (I− τA)x+ τf . (6.2)

In doing so, the new system (6.2) will be equivalent to the original one for any value
of the parameter τ , τ > 0. In general, there are many different ways of replacing the
system Ax= f by its equivalent of the type:

x= Bx+ϕϕϕ, x ∈ L, ϕϕϕ ∈ L. (6.3)

System (6.2) is a particular case of (6.3) with B= (I− τA) and ϕϕϕ = τf .

6.1.1 General Iteration Scheme

The general scheme of what is known as the first order linear stationary iteration
process consists of successively computing the terms of the sequence:

x(p+1) = Bx(p) +ϕϕϕ, p= 0,1,2, . . . , (6.4)

where the initial guess x(0) is specified arbitrarily. The matrix B is known as the
iteration matrix. Clearly, if the sequence x(p) converges, i.e., if there is a limit:
limp→∞ x(p) = x, then x is the solution of system (6.1). Later we will identify the
conditions that would guarantee convergence of the sequence (6.4).
Iterative method (6.4) is first order because the next iterate x(p+1) depends only

on one previous iterate, x(p); it is linear because the latter dependence is linear; and
finally it is stationary because if we formally rewrite (6.4) as x(p+1) = F(x(p),A, f),
then the function F does not depend on p.
A particular form of the iteration scheme (6.4) based on system (6.2) is known as

the stationary Richardson method:

x(p+1) = (I− τA)x(p) + τf , p = 0,1,2, . . . . (6.5)

Formula (6.5) can obviously be rewritten as:

x(p+1) = x(p)− τr(p), (6.6)

where r(p) = Ax(p) − f is the residual of the iterate x(p). Instead of keeping the
parameter τ constant we can allow it to depend on p. Then, departing from formula
(6.6), we arrive at the so-called non-stationary Richardson method:

x(p+1) = x(p)− τpr(p). (6.7)

Note that in order to actually compute the iterations according to formula (6.5) we
only need to be able to obtain the vector Ax(p) once x(p) ∈ L is given. This does not
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necessarily entail the explicit knowledge of the matrix A. In other words, an iterative
method of solving Ax = f can also be realized when the system is specified in an
operator form. Building the iteration sequence does not require choosing a particular
basis in L and reducing the system to its canonical form:

n

∑
j=1

ai jx j = fi, i= 1,2, . . . ,n. (6.8)

Moreover, when computing the terms of the sequence x(p) with the help of formula
(6.5), we do not necessarily need to store all n2 entries of the matrix A in the com-
puter memory. Instead, to implement the iteration scheme (6.5) we may only store
the current vector x(p) ∈L that has n components. In addition to the memory savings
and flexibility in specifying A, we will see that for certain classes of linear systems
the computational cost of obtaining a sufficiently accurate solution of Ax = f with
the help of an iterative method may be considerably lower than O(n3) operations,
which is characteristic of direct methods.

THEOREM 6.1
Let L be an n-dimensional normed vector space (say, Rn or Cn), and assume
that the induced operator norm of the iteration matrix B of (6.4) satisfies:

‖B‖ = q< 1. (6.9)

Then, system (6.3) or equivalently, system (6.1), has a unique solution x ∈ L.
Moreover, the iteration sequence (6.4) converges to this solution x for an
arbitrary initial guess x(0), and the error of the iterate number p:

εεε (p) def= x−x(p)

satisfies the estimate:

‖εεε(p)‖ = ‖x−x(p)‖ ≤ qp‖x−x(0)‖ = qp‖εεε(0)‖. (6.10)

In other words, the norm of the error ‖εεε(p)‖ vanishes when p −→ ∞ at least as fast
as the geometric sequence qp.

PROOF If ϕϕϕ = 0, then system (6.3) only has a trivial solution x = 0.
Indeed, otherwise for a solution x 	= 0, ϕϕϕ = 0, we could write:

‖x‖ = ‖Bx‖ ≤ ‖B‖‖x‖= q‖x‖ < ‖x‖,
i.e., ‖x‖ < ‖x‖, which may not hold. The contradiction proves that system
(6.3) is uniquely solvable for any ϕϕϕ , and as such, so is system (6.1) for any f .

Next, let x be the solution of system (6.3). Take an arbitrary x(0) ∈ L and
subtract equality (6.3) from equality (6.4), which yields:

εεε (p+1) = Bεεε(p), p= 0,1,2, . . . .
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Consequently, the following error estimate holds:

‖x−x(p)‖ = ‖εεε(p)‖ =‖Bεεε(p−1)‖ ≤ q‖εεε(p−1)‖
≤q2‖εεε(p−2)‖ ≤ . . . ≤ qp‖εεε(0)‖ = qp‖x−x(0)‖,

which is equivalent to (6.10).

REMARK 6.1 Condition (6.9) can be violated for a different choice of
norm on the space L: ‖x‖′ instead of ‖x‖. This, however, will not disrupt the
convergence: x(p) −→ x as p −→ ∞. Moreover, the error estimate (6.10) will
be replaced by

‖εεε(p)‖′ ≤ cqp‖εεε(0)‖′, (6.11)

where c is a constant that will, generally speaking, depend on the new norm
‖ · ‖′, whereas the value of q will remain the same.

To justify this remark one needs to employ the equivalence of any two
norms on a vector (i.e., finite-dimensional) space, see [HJ85, Section 5.4].
This important result says that if ‖ · ‖ and ‖ · ‖′ are two norms on L, then we
can always find two constants c1 > 0 and c2 > 0, such that ∀x ∈ L : c1‖x‖′ ≤
‖x‖≤ c2‖x‖′, where c1 and c2 do not depend on x. Therefore, inequality (6.10)
implies (6.11) with c= c2/c1.

Example 1: The Jacobi Method

Let the matrix A= {ai j} of system (6.1) be diagonally dominant:
|aii| > ∑

j 	=i
|ai j|+ δ , i= 1,2, . . . ,n, δ > 0. (6.12)

In the equation number i of system (6.1), we move all terms ai jx j, j 	= i, to the right-
hand side and then divide this equation by aii. In doing so, we obtain a system of
type (6.3) with the matrix:

B=

⎡
⎢⎢⎣
0 b12 b13 . . . b1,n−1 b1n
b21 0 b23 . . . b2,n−1 b2n
. . . . . . . . . . . . . . . . . . . . . . .
bn1 bn2 bn3 . . . bn,n−1 0

⎤
⎥⎥⎦ .

Alternatively, if we define the diagonal n× n matrix D = diag{aii}, then in the re-
sulting system (6.3) we have B= −D−1(A−D) and ϕϕϕ = D−1f .
Due to the diagonal dominance of A, one can find such a number 0< q< 1 that

n

∑
j=1

|bi j| =
n

∑
j=1,
j 	=i

|ai j|
|aii| ≤ q< 1.

Consequently, the maximum norm of the iteration matrix B: ‖B‖∞ = maxi∑ j |bi j|,
satisfies estimate (6.9). Then, according to Theorem 6.1, the Jacobi iterations:

x(p+1) = −D−1(A−D)x(p) +D−1f (6.13)
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converge to the solution x of system (6.1). In the component form, the Jacobi iterative
method (6.13) is written as:

x(p+1)i = −
n

∑
j=1,
j 	=i

ai j
aii
x(p)j +

fi
aii

, i= 1,2, . . . ,n. (6.14)

Let us specify x(0) arbitrarily, but so that the initial error ‖εεε(0)‖∞ = ‖x−x(0)‖∞ will
not exceed some prescribed quantity, e.g., will not exceed one. Let us also assume
that the accuracy of the approximate solution will be satisfactory if in the course of
the iteration the initial error drops by three orders of magnitude, i.e., if the error be-
comes no greater than 10−3. Then it is sufficient to choose p so that to guarantee the
inequality qp ≤ 10−3. If, for example, q= 1/2, then one can take p= 10 regardless
of the value of n. The overall computational cost will then beO(10n2)= O(n2) arith-
metic operations, as opposed to the cubic cost O(n3) of Gaussian elimination. In-
deed, every matrix-vectormultiplicationBx(p) requiresO(n2) operations. Of course,
the key consideration here is the actual rate of convergence determined by the value
of q. We will later provide accurate estimates for the convergence rates of several
iteration schemes: the Richardson method (Section 6.1.3), the Chebyshev method
(Section 6.2.1), and the method of conjugate gradients (Section 6.2.2).

Example 2: The Gauss-Seidel Method

The Gauss-Seidel method is similar to the Jacobi method, except that

when computing the component x(p+1)i , the previously updated components

x(p+1)1 ,x(p+1)2 , . . . ,x(p+1)i−1 are immediately put to use, which yields the following it-
eration scheme [cf. formula (6.14)]:

x(p+1)i = −
i−1
∑
j=1

ai j
aii
x(p+1)j −

n

∑
j=i+1

ai j
aii
x(p)j +

fi
aii

, i= 1,2, . . . ,n. (6.15)

Using matrix notations, we can write the Gauss-Seidel method (6.15) as follows:

x(p+1) = −D−1L̂x(p+1)−D−1Ûx(p) +D−1f , (6.16)

where L̂= {li j} is a lower triangular matrix with the entries: li j =
{
ai j, j < i,

0 j ≥ i,
and

Û = {ui j} is an upper triangular matrix with the entries: ui j =

{
0, j ≤ i,

ai j j > i,
so that

altogetherA= L̂+D+Û. By noticing that (I+D−1L̂)=D−1(D+L̂)=D−1(A−Û),
we convert expression (6.16) to the form (6.4):

x(p+1) = −(A− Û)−1Ûx(p) + (A− Û)−1f (6.17)

and see that the iteration matrix B for the Gauss-Seidel method is given by: B =
−(A− Û)−1Û. If the matrix A is diagonally dominant, see (6.12), then the Gauss-
Seidel iterations (6.17) are known to converge to the solution x of system (6.1) for
an arbitrary initial guess x(0). We refer the reader to [Axe94] for the proof.
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Example 3: The Over-Relaxation Methods

Note that the condition of diagonal dominance (6.12) of the matrix A that guar-
antees convergence of both the Jacobi method (6.14) and the Gauss-Seidel method
(6.15) is only a sufficient and not a necessary condition of convergence. These meth-
ods may, in fact, converge for other types of matrices as well. Often, the convergence
of an iteration is judged experimentally rather than studied theoretically. In this case,
it may be beneficial to consider a broader family of algorithms that would provide
more room for tuning the parameters in order to achieve a better convergence. A
widely used generalization of both the Jacobi iteration and the Gauss-Seidel iteration
is obtained by introducing the relaxation parameter γ and using a weighted update
between the old and the new value, which leads to the Jacobi over-relaxation method
(JOR):

x(p+1)i = γ
(
−

n

∑
j=1,
j 	=i

ai j
aii
x(p)j +

fi
aii

)
+(1− γ)x(p)i , i= 1,2, . . . ,n, (6.18)

and to the successive over-relaxation method (SOR):

x(p+1)i = γ

(
−

i−1
∑
j=1

ai j
aii
x(p+1)j −

n

∑
j=i+1

ai j
aii
x(p)j +

fi
aii

)
+(1− γ)x(p)i , i= 1,2, . . . ,n.

(6.19)
Theoretical convergence results for the iterations (6.18) or (6.19) are only obtained
for some particular cases. Again, we refer the reader to [Axe94] for detail. In gen-
eral, the successive over-relaxationmethod (6.19) will not converge if γ < 0 or γ > 2.
Otherwise, adjusting the value of γ can be used to speed up the convergence. Con-
versely, if it is observed in a numerical experiment that the convergence for a given
case is “iffy,” one may try and gain a better robustness by trading off the convergence
rate, i.e., by assigning more weight to the old value and less weight to the new value,
which means taking a small positive γ .

6.1.2 A Necessary and Sufficient Condition for Convergence

THEOREM 6.2
Let L be a complex n-dimensional linear space, and let B be an operator

mapping this space onto itself B : L �−→ L. A first order linear stationary
iterative method (6.4):

x(p+1) = Bx(p) +ϕϕϕ, p= 0,1,2, . . . , (6.20)

converges to the solution x of problem (6.1) in any norm and for an arbitrary
initial guess x(0) ∈ L if and only if the spectral radius of the operator B is
strictly less than one (here λ j, j = 1, . . . ,n, are the eigenvalues of B):

ρ(B) def= max
j

|λ j| < 1. (6.21)
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PROOF We will first prove the sufficiency, that is, if inequality (6.21)
holds then the iterations (6.20) converge. Inequality (6.21) obviously implies
that the number λ = 1 is not an eigenvalue of the operator B. Consequently,
the linear system Bx = 1 ·x only has a trivial solution x = 0 and as such, the
system x= Bx+ϕϕϕ has a unique solution for any ϕϕϕ ∈ L.

As before, we define the error of the iterate x(p) as follows: εεε (p) = x−x(p).
Let us first note that convergence of the sequence x(p), p = 0,1,2, . . ., for an
arbitrary x(0) is equivalent to convergence of the sequence εεε(p) to zero for an
arbitrary εεε(0): εεε(p) −→ 0 as p −→ ∞. Indeed, let us first assume that the
sequence x(p) converges. Then it can only converge to the solution x, because
by taking both sides of equality (6.20) to the limit p −→ ∞ we obtain that
the limit lim

p→∞
x(p) furnishes a solution to the system x = Bx+ϕϕϕ. Because of

the uniqueness, lim
p→∞

x(p) = x, and consequently, lim
p→∞

εεε(p) = 0. Conversely, if

εεε (p) −→ 0 as p −→ ∞, then clearly x(p) −→ x as p−→ ∞.
Let us fix some εεε(0). For the error εεε(p) we can write:

εεε (p+1) = Bεεε(p), p= 0,1,2, . . . ,

which yields: ‖εεε(p)‖ ≤ ‖B‖p‖εεε(0)‖. Denote by w(λ ), λ ∈ C, the sum of the
series of vector quantities:

w(λ ) =
∞

∑
p=0

εεε (p)

λ p . (6.22)

This series converges uniformly (and absolutely) outside of any disk of radius
‖B‖+ η , η > 0, centered at the origin on the complex plane of the variable
λ . Indeed, ∀λ ∈ C, |λ | > ‖B‖+ η , series (6.22) is majorized (component-
wise) by a convergent geometric series: ‖εεε(0)‖∑∞

p=0
‖B‖p

(‖B‖+η)p . According to
the Weierstrass theorem proven in the courses of complex analysis, see, e.g.,
[Mar77, Chapter 3], the sum of a uniformly converging series of holomorphic
functions is holomorphic. Therefore, in the region of convergence the function
w(λ ) is a holomorphic vector function of its argument λ , and the series (6.22)
is its Laurent series. It is also easy to see that λw(λ )−λεεε (0) = Bw(λ ), which,
in turn, means: w(λ ) =−λ (B−λ I)−1εεε(0). Moreover, by multiplying the series
(6.22) by λ p−1 and then integrating (counterclockwise) along the circle |λ |= r
on the complex plane, where the number r is to be chosen so that the contour
of integration lie within the area of convergence, i.e., r ≥ ‖B‖+η , we obtain:

εεε(p) =
1
2π i

∫
|λ |=r

λ p−1w(λ )dλ = − 1
2π i

∫
|λ |=r

λ p(B−λ I)−1εεε(0)dλ . (6.23)

Indeed, integrating the individual powers of λ on the complex plane, we have:
∫

|λ |=r
λ kdλ =

{
2π i, k = −1,
0, k 	= −1.
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In other words, formula (6.23) implies that −εεε(p) is the residue of the vector
function λ p−1w(λ ) at infinity.

Next, according to inequality (6.21), all the eigenvalues of the operator
B belong to the disk of radius ρ < 1 centered at the origin on the complex
plane: |λ j| ≤ ρ < 1, j = 1,2, . . . ,n. Then the integrand in the second integral
of formula (6.23) is an analytic vector function of λ outside of this disk,
i.e., for |λ | > ρ , because the operator (B−λ I)−1 exists (i.e., is bounded) for
all λ : |λ | > ρ . This function is the analytic continuation of the function
λ p−1w(λ ), where w(λ ) is originally defined by the series (6.22) that can only
be proven to converge outside of a larger disk |λ | ≤ ‖B‖+ η . Consequently,
the contour of integration in (6.23) can be altered, and instead of r ≥ ‖B‖+η
one can take r = ρ + ζ , where ζ > 0 is arbitrary, without changing the value
of the integral. Therefore, the error can be estimated as follows:

‖εεε(p)‖ =
1
2π

∥∥∥∥
∫

|λ |=ρ+ζ

λ p(B−λ I)−1εεε (0)dλ
∥∥∥∥

≤ (ρ + ζ )p max
|λ |=ρ+ζ

‖(B−λ I)−1‖‖εεε(0)‖.
(6.24)

In formula (6.24), let us take ζ > 0 sufficiently small so that ρ +ζ < 1. Then,
the right-hand side of inequality (6.24) vanishes as p increases, which implies
the convergence: ‖εεε(p)‖ −→ 0 when p −→ ∞. This completes the proof of
sufficiency.

To prove the necessity, suppose that inequality (6.21) does not hold, i.e.,
that for some λk we have |λk| ≥ 1. At the same time, contrary to the conclusion
of the theorem, let us assume that the convergence still takes place for any
choice of x(0): x(p) −→ x as p −→ ∞. Then we can choose x(0) so that εεε(0) =
x−x(0) = ek, where ek is the eigenvector of the operator B that corresponds to
the eigenvalue λk. In this case, εεε(p) = Bpεεε (0) = Bpek = λ p

k ek. As |λk| ≥ 1, the
sequence λ p

k ek does not converge to 0 when p increases. The contradiction
proves the necessity.

REMARK 6.2 Let us make an interesting and important observation of a
situation that we encounter here for the first time. The problem of computing
the limit x= lim

p→∞
x(p) is ultimately well conditioned, because the result x does

not depend on the initial data at all, i.e., it does not depend on the initial
guess x(0). Yet the algorithm for computing the sequence x(p) that converges
according to Theorem 6.2 may still appear computationally unstable. The
instability may take place if along with the inequality max j |λ j‖ = ρ < 1 we
have ‖B‖ > 1. This situation is typical for non-self-adjoint (or non-normal)
matrices B (opposite of Theorem 5.2).

Indeed, if ‖B‖ < 1, then the norm of the error ‖εεε(p)‖ = ‖Bpεεε(0)‖ decreases
monotonically, this is the result of Theorem 6.1. Otherwise, if ‖B‖ > 1, then
for some εεε (0) the norm ‖εεε(p)‖ will initially grow, and only then decrease. The
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behavior will be qualitatively similar to that shown in Figure 10.13 (see page
394) that pertains to the study of stability for finite-difference initial boundary
value problems. In doing so, the height of the intermediate “hump” on the
curve showing the dependence of ‖εεε(p)‖ on p may be arbitrarily high. A small
relative error committed near the value of p that corresponds to the maximum
of the “hump” will subsequently increase (i.e., its norm will increase) — this
error will also evolve and undergo a maximum, etc. The resulting instability
may appear so strong that the computation will become practically impossible
already for moderate dimensions n and for the norms ‖B‖ that are only slightly
larger than one.

A rigorous definition of stability for the first order linear stationary iterative meth-
ods, as well as the classification of possible instabilities, the pertinent theorems, and
examples can be found in work [Rya70].

6.1.3 The Richardson Method for A= A∗ > 0

Consider equation (6.3): x= Bx+ϕϕϕ, x ∈ L, assuming that L is an n-dimensional
Euclidean space with the inner product (x,y) and the norm ‖x‖ =

√
(x,x) (e.g.,

L = Rn). Also assume that B : L �−→ L is a self-adjoint operator: B = B∗, with
respect to the chosen inner product. Let ν j, j = 1,2, . . . ,n, be the eigenvalues of B
and let

ρ = ρ(B) =max
j

|ν j|

be its spectral radius. Specify an arbitrary x(0) ∈L and build a sequence of iterations:

x(p+1) = Bx(p) +ϕϕϕ, p= 0,1,2, . . . . (6.25)

LEMMA 6.1

1. If ρ < 1 then the system x = Bx+ϕϕϕ has a unique solution x ∈ L; the
iterates x(p) of (6.25) converge to x; and the Euclidean norm of the
error ‖x−x(p)‖ satisfies the estimate:

‖x−x(p)‖ ≤ ρ p‖x−x(0)‖, p = 0,1,2, . . . . (6.26)

Moreover, there is a particular x(0) ∈L for which inequality (6.26) trans-
forms into a precise equality.

2. Let the system x=Bx+ϕϕϕ have a solution x∈L for a given ϕϕϕ ∈L, and let
ρ ≥ 1. Then there is an initial guess x(0) ∈L such that the corresponding
sequence of iterations (6.25) does not converge to x.

PROOF According to Theorem 5.2, the Euclidean norm of a self-adjoint
operator B= B∗ coincides with its spectral radius ρ . Therefore, the first con-
clusion of the lemma except its last statement holds by virtue of Theorem 6.1.
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To find the initial guess that would turn (6.26) into an equality, we first
introduce our standard notation εεε(p) = x−x(p) for the error of the iterate x(p),
and subtract equation (6.25) from x = Bx+ϕϕϕ , which yields: εεε(p+1) = Bεεε (p),
p= 0,1,2, . . .. Next, suppose that |νk|=max j |ν j|= ρ and take εεε(0) = x−x(0) =
ek, where ek is the eigenvector of B that corresponds to the eigenvalue with
maximum magnitude. Then we obtain: ‖εεε(p)‖ = |νk|p‖εεε(0)‖ = ρ p‖εεε(0)‖.

To prove the second conclusion of the lemma, we take the particular eigen-
value νk that delivers the maximum: |νk|=max j |ν j|= ρ ≥ 1, and again select
εεε (0) = x−x(0) = ek, where ek is the corresponding eigenvector. In this case the
error obviously does not vanish as p−→ ∞, because:

εεε(p) = Bεεε(p−1) = . . . = Bpεεε(0) = ν p
k ek,

and consequently, ‖εεε(p)‖= ρ p‖ek‖, where ρ p will either stay bounded but will
not vanish, or will increase when p−→ ∞.

Lemma 6.1 analyzes a special case B = B∗ and provides a simple illustration for
the general conclusion of Theorem 6.2 that for the convergence of a first order linear
stationary iteration it is necessary and sufficient that the spectral radius of the itera-
tion matrix be strictly less than one. With the help of this lemma, wewill now analyze
convergence of the stationary Richardson iteration (6.5) for the case A= A∗ > 0.

THEOREM 6.3
Consider a system of linear algebraic equations:

Ax = f , A= A∗ > 0, (6.27)

where x, f ∈ L, and L is an n-dimensional Euclidean space (e.g., L = Rn).
Let λmin and λmax be the smallest and the largest eigenvalues of the operator
A, respectively. Specify some τ 	= 0 and recast system (6.27) in an equivalent
form:

x= (I− τA)x+ τf . (6.28)

Given an arbitrary initial guess x(0) ∈ L, consider the sequence of Richardson
iterations:

x(p+1) = (I− τA)x(p) + τf , p = 0,1,2, . . . . (6.29)

1. If the parameter τ satisfies the inequalities:

0< τ <
2

λmax
, (6.30)

then the sequence x(p) of (6.29) converges to the solution x of system
(6.27). Moreover, the norm of the error ‖x− x(p)‖ is guaranteed to
decrease when p increases with the rate given by the following estimate:

‖x−x(p)‖ ≤ ρ p‖x−x(0)‖, p = 0,1,2, . . . . (6.31)



Iterative Methods for Solving Linear Systems 183

The quantity ρ in formula (6.31) is defined as

ρ = ρ(τ) =max{|1− τλmin|, |1− τλmax|}. (6.32)

This quantity is less than one, ρ < 1, as it is the maximum of two
numbers, |1− τλmin| and |1− τλmax|, neither of which may exceed one
provided that inequalities (6.30) hold.

2. Let the number τ satisfy (6.30). Then there is a special initial guess
x(0) for which estimate (6.31) cannot be improved, because for this x(0)

inequality (6.31) transforms into a precise equality.

3. If condition (6.30) is violated, so that either τ ≥ 2/λmax or τ ≤ 0, then
there is an initial guess x(0) for which the sequence x(p) of (6.29) does
not converge to the solution x of system (6.27).

4. The number ρ = ρ(τ) given by formula (6.32) assumes its minimal (i.e.,
optimal) value ρopt= ρ(τopt) when τ = τopt= 2/(λmin+λmax). In this case,

ρ = ρopt =
λmax−λmin
λmax+λmin

=
μ(A)−1
μ(A)+1

, (6.33)

where μ(A) = λmax/λmin is the condition number of the operator A (see
Theorem 5.3).

PROOF To prove Theorem 6.3, we will use Lemma 6.1. In this lemma,
let us set B= I− τA. Note that if A= A∗ then the operator B= I− τA is also
self-adjoint, i.e., B= B∗:

(Bx,y) =((I− τA)x,y) = (x,y)− τ(Ax,y)
=(x,y)− τ(x,Ay) = (x,(I− τA)y) = (x,By).

Suppose that λ j, j = 1,2, . . . ,n, are the eigenvalues of the operator A arranged
in the ascending order:

0< λmin = λ1 ≤ λ2 ≤ . . . ≤ λn = λmax, (6.34)

and {e1,e2, . . . ,en} are the corresponding eigenvectors: Ae j = λ je j, j =
1,2, . . . ,n, that form an orthonormal basis in the space L. Then clearly, the
same vectors e j, j= 1,2, . . . ,n, are also eigenvectors of the operator B, whereas
the respective eigenvalues are given by:

ν j = ν j(τ) = 1− τλ j, j = 1,2, . . . ,n. (6.35)

Indeed,

Be j = (I− τA)e j = e j− τλ je j = (1− τλ j)e j = ν je j,
j = 1,2, . . . ,n.
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According to (6.34), if τ > 0 then the eigenvalues ν j given by formula (6.35)
are arranged in the descending order, see Figure 6.1:

1> ν1 ≥ ν2 ≥ . . . ≥ νn.

From Figure 6.1 it is also easy to see that the largest among the absolute values
|ν j|, j = 1,2, . . . ,n, may be either |ν1| = |1− τλ1| ≡ |1− τλmin| or |νn| = |1−
τλn| ≡ |1− τλmax|; the case |νn| =max j |ν j| is realized when νn = 1− τλmax < 0
and |1− τλmax| > |1− τλmin|. Consequently, the condition:

ρ =max
j

|ν j| < 1 (6.36)

(see Lemma 6.1) coincides with the condition [see formula (6.32)]:

ρ =max{|1− τλmin|, |1− τλmax|} < 1.

...
−1 0 1 ν

νν 12νn ... ...

FIGURE 6.1: Eigenvalues of the matrix B= I− τA.

Clearly, if τ > 0 we can
only guarantee ρ < 1 pro-
vided that the point νn
on Figure 6.1 is located
to the right of the point
−1, i.e., if νn = 1 −

τλmax > −1. This means that along with τ > 0 the second inequality of
(6.30) also holds. Otherwise, if τ ≥ 2/λmax, then ρ > 1. If τ < 0, then
ν j = 1− τλ j = 1+ |τ|λ j > 1 for all j = 1,2, . . . ,n, and we will always have
ρ = max j |ν j| > 1. Hence, condition (6.30) is equivalent to the requirement
(6.36) for B= I−τA (or to requirement (6.21) of Theorem 6.2). Therefore, by
virtue of Lemma 6.1, have proven the first three implications of Theorem 6.3.

|

τ

|ν|

0

1

τopt

opt
ρ

|1−τλmax|

|1−τλmin

FIGURE 6.2: |ν1| and |νn| as functions of τ .

To prove the remain-
ing fourth implication,
we need to analyze the
behavior of the quanti-
ties |ν1| = |1− τλmin| and
|νn|= |1−τλmax| as func-
tions of τ. We schemat-
ically show this behav-
ior in Figure 6.2. From
this figure, we determine
that for smaller values of
τ the quantity |ν1| dom-
inates, i.e., |1− τλmin| >
|1− τλmax|, whereas for
larger values of τ the
quantity |νn| dominates,
i.e., |1 − τλmax| > |1 −

τλmin|. The value of ρ(τ) = max{|1− τλmin|, |1− τλmax|} is shown by a bold
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polygonal line in Figure 6.2; it coincides with |1−τλmin| before the intersection
point, and after this point it coincides with |1−τλmax|. Consequently, the min-
imum value of ρ = ρopt is achieved precisely at the intersection, i.e., at the value
of τ = τopt obtained from the following condition: ν1(τ) = |νn(τ)| = −νn(τ).
This condition reads:

1− τλmin = τλmax−1,
which yields:

τopt =
2

λmin+λmax
.

Consequently,

ρopt = ρ(τopt) = 1− τoptλmin =
λmax−λmin
λmax+λmin

=
μ(A)−1
μ(A)+1

.

This expression is identical to (6.33), which completes the proof.

Let us emphasize the following important consideration. Previously, we saw that
the condition number of a matrix determines how sensitive the solution of the corre-
sponding linear system will be to the perturbations of the input data (Section 5.3.2).
The result of Theorem 6.3 provides the first evidence that the condition number also
determines the rate of convergence of an iterative method. Indeed, from formula
(6.33) it is clear that the closer the value of μ(A) to one, the closer the value of ρopt
to zero, and consequently, the faster is the decay of the error according to estimate
(6.31). When the condition number μ(A) increases, so does the quantity ρopt (while
still remaining less than one) and the convergence slows down.
According to formulae (6.31) and (6.33), the optimal choice of the iteration pa-

rameter τ = τopt enables the following error estimate:

‖εεε(p)‖ ≤
(
1− ξ
1+ ξ

)p

‖εεε(0)‖, where ξ =
λmin
λmax

=
1

μ(A)
.

Moreover, Lemma 6.1 implies that this estimate cannot be improved, i.e., that there
is a particular initial guess x(0) (and hence εεε(0)), for which the inequality transforms
into a precise equality. Therefore, in order to guarantee that the initial error drops
by a prescribed factor in the course of the iteration, i.e., in order to guarantee the
estimate:

‖εεε(p)‖ ≤ σ‖εεε(0)‖, (6.37)

where σ > 0 is given, it is necessary and sufficient to select p that would satisfy:(
1− ξ
1+ ξ

)p

≤ σ , i.e., p≥− lnσ
ln(1+ ξ )− ln(1− ξ )

.

A more practical estimate for the number p can also be obtained. Note that

ln(1+ ξ )− ln(1− ξ ) = 2ξ
∞

∑
k=0

ξ 2k

2k+1
,
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where

1≤
∞

∑
k=0

ξ 2k

2k+1
≤ 1
1− ξ 2

.

Therefore, for the estimate (6.37) to hold it is sufficient that p satisfy:

p≥−1
2
lnσ ·μ(A), μ(A) =

1
ξ

, (6.38a)

and it is necessary that

p≥−1
2
lnσ · (1− ξ 2)μ(A). (6.38b)

Altogether, the number of Richardson iterations required for reducing the initial error
by a predetermined factor is proportional to the condition number of the matrix.

REMARK 6.3 In many cases, for example when approximating elliptic
boundary value problems using finite differences (see, e.g., Section 5.1.3), the
operator A : L �−→ L of the resulting linear system (typically, L = Rn) appears
self-adjoint and positive definite (A = A∗ > 0) in the sense of some natural
inner product. However, most often one cannot find the precise minimum
and maximum eigenvalues for such operators. Instead, only the estimates a
and b for the boundaries of the spectrum may be available:

0< a≤ λmin ≤ λmax ≤ b. (6.39)

In this case, the Richardson iteration (6.29) can still be used for solving the
system Ax= f .

The key difference, though, between the more general case outlined in Remark 6.3
and the case of Theorem 6.3, for which the precise boundaries of the spectrum are
known, is the way the iteration parameter τ is selected. If instead of λmin and λmax we
only know a and b, see formula (6.39), then the best we can do is take τ ′ = 2/(a+b)
instead of τopt = 2/(λmin+λmax). Then, instead of ρopt given by formula (6.33):

ρopt = (λmin−λmax)/(λmin+λmax)

another quantity
ρ ′ =max{|1− τ ′λmin|, |1− τ ′λmax|},

which is larger than ρopt, will appear in the guaranteed error estimate (6.31). As has
been shown, for any value of τ within the limits (6.30), and for the respective value
of ρ = ρ(τ) given by formula (6.32), there is always an initial guess x(0) for which
estimate (6.31) becomes a precise equality. Therefore, for τ = τ ′ 	= τopt we obtain
an unimprovable estimate (6.31) with ρ = ρ ′ > ρopt. In doing so, the rougher the
estimate for the boundaries of the spectrum, the slower the convergence.
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Example

Let us apply the Richardson iterative method to solving the finite-difference
Dirichlet problem for the Poisson equation: −Δ(h)u(h) = f (h) that we introduced
in Section 5.1.3. In this case, formula (6.29) becomes:

u(h,p+1) = (I+ τΔ(h))u(h,p) + τ f (h), p= 0,1,2, . . . .

The eigenvalues of the operator−Δ(h) are given by formula (5.109) of Section 5.7.2.
In the same Section 5.7.2, we have shown that the operator−Δ(h) : U (h) �−→U (h) is
self-adjoint with respect to the natural scalar product (5.20) onU (h):

(u(h),v(h)) = h2
M−1
∑

m1,m2=1
um1,m2vm1,m2 .

Finally, we have estimated its condition number: μ(−Δ(h)) = O(h−2), see formula
(5.115).
Therefore, according to formulae (6.37) and (6.38), when τ = τopt,1 the number

of iterations p required for reducing the initial error, say, by a factor of e is p ≈
1
2μ(−Δ(h)) = O(h−2). Every iteration requires O(h−2) arithmetic operations and
consequently, the overall number of operations is O(h−4).
In Section 5.7.2, we represented the exact solution of the system −Δ(h)u(h) = f (h)

in the form of a finite Fourier series, see formula (5.110). However, in the case of a
non-rectangular domain, or in the case of an equation with variable coefficients (as
opposed to the Poisson equation):

∂
∂x

(
a

∂u
∂x

)
+

∂
∂y

(
b

∂u
∂y

)
= f , a= a(x,y) > 0, b= b(x,y) > 0, (6.40)

we typically do not know the eigenvalues and eigenvectors of the problem and as
such, cannot use the discrete Fourier series. At the same time, an iterative algorithm,
such as the Richardson method, can still be implemented in quite the same way as
it was done previously. In doing so, we only need to make sure that the discrete
operator is self-adjoint, and also obtain reasonable estimates for the boundaries of its
spectrum.
In Section 6.2, we will analyze other iterative methods for the system Ax = f ,

where A = A∗ > 0, and will show that even for an ill conditioned operator A, say,
with the condition number μ(A) = O(h−2), it is possible to build the methods that
will be far more efficient than the Richardson iteration. A better efficiency will
be achieved by obtaining a more favorable dependence of the number of required
iterations p on the condition number μ(A). We will have p�

√
μ(A) as opposed to

p� μ(A), which is guaranteed by formulae (6.38).

1In this case, τopt = 2/(λ11+λM−1,M−1) ≈ h2/[4(1+ sin2 πh
2 )], see formulae (5.112) and (5.114).
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6.1.4 Preconditioning

As has beenmentioned, some alternative methods that are less expensive computa-
tionally than the Richardson iteration will be described in Section 6.2. Theywill have
a slower than linear rate of increase of p as a function of μ(A). A complementary
strategy for reducing the number of iterations p consists of modifying the system
Ax = f itself, to keep the solution intact and at the same time make the condition
number μ smaller.
Let P be a non-singular square matrix of the same dimension as that of A. We can

equivalently recast system (6.1) by multiplying it from the left by P−1:

P−1Ax= P−1f . (6.41)

The matrix P is known as a preconditioner. The solution x of system (6.41) is obvi-
ously the same as that of system (6.1).
Accordingly, instead of the standard stationary Richardson iteration (6.5) or (6.6),

we now obtain its preconditioned version:

x(p+1) = (I− τP−1A)x(p) + τP−1f , p= 0,1,2, . . . , (6.42)

or equivalently,

x(p+1) = x(p)− τP−1r(p), where r(p) = Ax(p)− f (p). (6.43)

As a matter of fact, we have already seen some examples of a preconditioned
Richardson method. By comparing formulae (6.13) and (6.42), we conclude that the
Jacobi method (Example 1 of Section 6.1.1) can be interpreted as a preconditioned
Richardson iteration with τ = 1 and P = D = diag{aii}. Similarly, by comparing
formulae (6.17) and (6.42) and by noticing that

−(A− Û)−1Û = −(A− Û)−1(A− (A− Û)) = I− (A− Û)−1A,

we conclude that the Gauss-Seidel method (Example 2 of Section 6.1.1) can be in-
terpreted as a preconditioned Richardson iteration with τ = 1 and P= A− Û.
Of course, we need to remember that the purpose of preconditioning is not to

analyze the equivalent system (6.41) “for the sake of it,” but rather to reduce the
condition number, so that μ(P−1A) < μ(A) or ideally, μ(P−1A) � μ(A). Unfortu-
nately, relatively little systematic theory is available in the literature for the design of
efficient preconditioners. Different types of problems may require special individual
tools for analysis, and we refer the reader, e.g., to [Axe94] for detail.
For our subsequent considerations, let us assume that the operatorA is self-adjoint

and positive definite, as in Section 6.1.3, so that we need to solve the system:

Ax = f , A= A∗ > 0, x ∈ L, f ∈ L. (6.44)

Introduce an operator P = P∗ > 0, which can be taken arbitrarily in the meantime,
and multiply both sides of system (6.44) by P−1, which yields an equivalent system:

Cx = g, C = P−1A, g= P−1f . (6.45)

Note that the new operator C of (6.45) is, generally speaking, no longer self-adjoint.
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Let us, however, introduce a new inner product on the space L by means of the

operator P: [x,y]P
def= (Px,y). Then, the operator C of (6.45) appears self-adjoint and

positive definite in the sense of this new inner product. Indeed, as the inverse of a
self-adjoint operator is also self-adjoint, we can write:

[Cx,y]P =(PCx,y) = (PP−1Ax,y) = (Ax,y) = (x,Ay)

=(P−1Px,Ay) = (Px,P−1Ay) = [x,Cy]P,

[Cx,x]P =(PCx,x) = (PP−1Ax,x) = (Ax,x) > 0, if x 	= 0.

As of yet, the choice of the preconditioner P for system (6.45) was arbitrary. For
example, we can choose P= A and obtain C= A−1A= I, which immediately yields
the solution x. As such, P = A can be interpreted as the ideal preconditioner; it
provides an indication of what the ultimate goal should be. However, in real life
setting P = A is totally impractical. Indeed, the application of the operator P−1 =
A−1 is equivalent to solving the system Ax = f directly, which is precisely what we
are trying to avoid by employing an iterative scheme. Recall, an iterative method
only requires computing Az for a given z ∈ L, but does not require computing A−1f .
It therefore only makes sense to select the operator P among those for which the
computation of P−1z for a given z is considerably easier than the computation of
A−1z. The other extreme, however, would be setting P = I, which does not require
doing anything, but does not bring along any benefits either. In other words, the
preconditioner P should be chosen so as to be easily invertible on one hand, and on
the other hand, to “resemble” the operator A. In this case we can expect that the
operator C = P−1A will “resemble” the unit operator I, and the boundaries of its
spectrum λmin and λmax, as well as the condition number, will all be “closer” to one.

THEOREM 6.4

Let P = P∗ > 0, let the two numbers γ1 > 0 and γ2 > 0 be fixed, and let the
following inequalities hold:

γ1(Px,x) ≤ (Ax,x) ≤ γ2(Px,x) (6.46)

for all x∈L. Then the eigenvalues λmin(C), λmax(C) and the condition number
μP(C) of the operator C= P−1A satisfy the inequalities:

γ1 ≤ λmin(C) ≤ λmax(C) ≤ γ2,
μP(C) ≤ γ2/γ1.

(6.47)

PROOF From the courses of linear algebra it is known that the eigenvalues
of a self-adjoint operator can be obtained in the form of the Rayleigh-Ritz
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quotients (see, e.g., [HJ85, Section 4.2]):

λmin(C) = min
x∈L, x 	=0

[Cx,x]P
[x,x]P

= min
x∈L, x 	=0

(Ax,x)
(Px,x)

,

λmax(C) = max
x∈L, x 	=0

[Cx,x]P
[x,x]P

= max
x∈L, x 	=0

(Ax,x)
(Px,x)

.

By virtue of (6.46), these relations immediately yield (6.47).

The operators A and P that satisfy inequalities (6.46) are called equivalent by
spectrum or equivalent by energy, with the equivalence constants γ1 and γ2.
Let us emphasize that the transition from system (6.44) to system (6.45) is only

justified if

μP(C) ≤ γ2
γ1

� μ(A).

Indeed, since in this case the condition number of the transformed system becomes
much smaller than that of the original system, the convergence of the iteration no-
ticeably speeds up. In other words, the rate of decay of the error εεε(p) = x− x(p) in
the norm ‖ · ‖P increases substantially compared to (6.31):

‖εεε(p)‖P = ‖x−x(p)‖P ≤ ρ p
P‖x−x(0)‖P = ρ p

P‖εεε(0)‖P,

ρP =
μP(C)−1
μP(C)+1

.

The mechanism of the increase is the drop ρP � ρ that takes place because ρ =
μ(A)−1
μ(A)+1

according to formula (6.33), and μP(C) � μ(A). Consequently, for one

and the same value of p we will have ρ p
P � ρ p.

A typical situation when preconditioners of type (6.46) prove efficient arises in the
context of discrete approximations for elliptic boundary value problems. It was first
identified and studied by D’yakonov in the beginning of the sixties; the key results
have then been summarized in a later monograph [D’y96].
Consider a system of linear algebraic equations:

Anx= f , f ∈ R
n, x ∈ R

n,

obtained as a discrete approximation of an elliptic boundary value problem. For ex-
ample, it may be a system of finite-difference equations introduced in Section 5.1.3.
In doing so, the better the operator An approximates the original elliptic differential
operator, the higher the dimension n of the space R

n is. As such, we are effectively
dealing with a sequence of approximating spaces Rn, n −→ ∞, that we will assume
Euclidean with the scalar product (x,y)(n).
Let An : Rn �−→ Rn be a sequence of operators such that An = A∗

n > 0, and let
Anx = f , where x, f ∈ Rn, be a sequence of systems to be solved in the respective
spaces. Suppose that the condition number, μ(An), increases when the dimension
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n increases so that μ(An) ∼ ns, where s > 0 is a constant. Then, according to for-
mulae (6.38), it will take O(−ns lnσ) iterations to find the solution x ∈ Rn with the
guaranteed accuracy σ > 0.
Next, let Pn : Rn �−→ Rn be a sequence of operators equivalent to the respective

operators An by energy, with the equivalence constants γ1 and γ2 that do not depend
on n. Then, for Cn = P−1n An we obtain:

μPn(Cn) ≤ γ2/γ1 = const. (6.48)

Hence we can replace the original system (6.44): Anx= f by its equivalent (6.45):

Cnx= g, Cn = P−1n An, g= P−1n f . (6.49)

In doing so, because of a uniform boundedness of the condition number with respect
to n, see formula (6.48), the number of iterations required for reducing the ‖ · ‖Pn
norm of the initial error by a predetermined factor of σ :

‖x−x(p)‖Pn ≤ σ‖x−x(0)‖Pn , (6.50)

will not increase when the dimension n increases, and will remain O(lnσ).
Furthermore, let the norms:

‖x‖=
√

(x,x)(n) and ‖x‖Pn =
√

[x,x]Pn ≡
√

(Pnx,x)(n)

be related to one another via the inequalities:

n−l‖x‖Pn ≤ ‖x‖ ≤ nl‖x‖Pn , where l ≥ 0, l = const.

Then, in order to guarantee the original error estimate (6.37):

‖x−x(p)‖ ≤ σ‖x−x(0)‖ (6.51)

when iterating system (6.49), it is sufficient that the following inequality hold:

‖x−x(p)‖Pn ≤
σ
nl
‖x−x(0)‖Pn . (6.52)

Inequality (6.52) is obtained from (6.50) by replacing σ with σn−l, so that solv-
ing the preconditioned system (6.49) by the Richardson method will only require
O(− ln(σn−l)) = O(lnn− lnσ) iterations, as opposed to O(−ns lnσ) iterations re-
quired for solving the original non-preconditioned system (6.44).
Of course, the key question remains of how to design a preconditioner equivalent

by spectrum to the operator A, see (6.46). In the context of elliptic boundary value
problems, good results can often be achieved when preconditioning a discretized op-
erator with variable coefficients, such as the one from equation (6.40), with the dis-
cretized Laplace operator. On a regular grid, a preconditioner of this type P=−Δ(h),
see Section 5.1.3, can be easily inverted with the help of the FFT, see Section 5.7.3.
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Overall, the task of designing an efficient preconditioner is highly problem-
dependent. One general approach is based on availability of some a priori knowledge
of where the matrix A originates from. A typical example here is the aforementioned
spectrally equivalent elliptic preconditioners. Another approach is purely algebraic
and only uses the information contained in the structure of a given matrix A. Ex-
amples include incomplete factorizations (LU, Cholesky, modified unperturbed and
perturbed incomplete LU), polynomial preconditioners (e.g., truncated Neumann se-
ries), and various ordering strategies, foremost the multilevel recursive orderings that
are conceptually close to the idea of multigrid (Section 6.4). For further detail, we
refer the reader to specialized monographs [Axe94,Saa03, vdV03].

6.1.5 Scaling

One reason for a given matrix A to be poorly conditioned, i.e., to have a large
condition number μ(A), may be large disparity in the magnitudes of its entries. If this
is the case, then scaling the rows of the matrix so that the largest magnitude among
the entries in each row becomes equal to one often helps improve the conditioning.
Let D be a non-singular diagonal matrix (dii 	= 0), and instead of the original

system Ax= f let us consider its equivalent:

DAx= Df . (6.53)

The entries dii, i= 1,2, . . . ,n of the matrix D are to be chosen so that the maximum
absolute value of the entry in each row of the matrix DA be equal to one.

max
j

|diiai j| = 1, i= 1,2, . . . ,n. (6.54)

The transition from the matrix A to the matrix DA is known as scaling (of the rows
of A). By comparing equations (6.53) and (6.41) we conclude that it can be inter-
preted as a particular approach to preconditioning with P−1 = D. Note that different
strategies of scaling can be employed; instead of (6.54) we can require, for example,
that all diagonal entries of DA have the same magnitude.
Scaling typically reduces the condition number of a system: μ(DA) < μ(A). To

solve the system Ax = f by iterations, we can first transform it to an equivalent
systemCx= gwith a self-adjoint positive definite matrixC=A∗A and the right-hand
side g=A∗f , and then apply the Richardson method. According to Theorem 6.3, the
rate of convergence of the Richardson iteration will be determined by the condition
number μ(C). It is possible to show that for the Euclidean condition numbers we
have: μ(C) = μ2(A) (see Exercise 7 after Section 5.3). If the matrix A is scaled
ahead of time, see formula (6.53), then the convergence of the iterations will be
faster, because μ((DA)∗(DA)) = μ2(DA) < μ2(A).
Note that the transition from a givenA to C=A∗A is almost never used in practice

as a means of enabling the solution by iterations that require a self-adjoint matrix,
because an additional matrix multiplication may eventually lead to large errors when
computing with finite precision. Therefore, the foregoing example shall only be
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regarded as a simple theoretical illustration. However, scaling can also help when
solving the system Ax = f by a direct method rather than by iterations. For a matrix
A with large disparity in the magnitudes of entries it may improve stability of the
Gaussian elimination algorithm (Section 5.4). Besides, the system Ax = f with a
general matrix A can be solved by an iterative method that does not require a self-
adjoint matrix, e.g., by a Krylov subspace iteration (see Section 6.3). In this case,
scaling may be very helpful in reducing the condition number μ(A).

Exercises

1. Assume that the eigenvalues of the operator A : R100 �−→ R100 are known:

λk = k2, k = 1,2, . . . ,100. (6.55)

The system Ax= f is to be solved by the non-stationary Richardson iterative method:

x(p+1) = (I− τpA)x(p) + τpf , p= 0,1,2, . . . , (6.56)

where τp, p= 0,1,2, . . ., are some positive parameters.

Find a particular set of parameters {τ0,τ1, . . . ,τ99} that would guarantee x(100) = x,
where x is the exact solution of the system Ax= f .
Hint. First make sure that x−x(p+1) ≡ εεε(p+1) = (I− τpA)εεε(p) ≡ (I− τpA)(x−x(p)),
p= 0,1,2, . . . Then expand the initial error:

εεε(0) = ε(0)
1 e1+ ε(0)

2 e2+ . . .+ ε(0)
100e100, (6.57)

where e1,e2, . . . ,e100 are the eigenvectors of A that correspond to the eigenvalues
(6.55). Finally, as the eigenvalues (6.55) are given explicitly, choose the iteration pa-
rameters {τ0,τ1, . . . ,τ99} in such a way that each iteration will eliminate precisely one
term from the expansion of the error (6.57).

2. Let the iteration parameters in Exercise 1 be chosen as follows:

τp =
1

(p+1)2
, p= 0,1,2, . . . ,99. (6.58)

a) Show that in this case x(100) = x.

b) Implementation of algorithm (6.56) with the iteration parameters (6.58) on a real
computer encounters a critical obstacle. Very large numbers are generated in
the course of computation; they ruin the accuracy and make the computation
practically impossible. Explain the mechanism of the foregoing phenomenon.
Hint. Take expansion (6.57) and operate on it with the matrices (I−τpA), where
τp are chosen according to (6.58). Components of the error with the indexes
close to 100 become excessively large before they get canceled. Cancellation of
a given component means that a very large number is subtracted from the current
iterate x(p) to generate the next iterate x(p+1) and, eventually, the solution x. This
leads to the loss of significant digits and ruins the accuracy of the solution.

3. Let the iteration parameters in Exercise 1 be chosen as follows:

τp =
1

(100− p)2
, p= 0,1,2, . . . ,99. (6.59)
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a) Show that in this case also x(100) = x.
b) Implementation of algorithm (6.56) with the iteration parameters (6.59) on a real
computer encounters another critical obstacle. Small round-off errors rapidly in-
crease and destroy the overall accuracy. This, again, makes the computation prac-
tically impossible. Explain the mechanism of the aforementioned phenomenon.
Hint. When expansion (6.57) is operated on by the matrices (I− τpA) with τp
of (6.59), components of the error with large indexes are canceled first. The
cancellation, however, is not exact, its accuracy is determined by the machine
precision. Show that the corresponding round-off errors will subsequently grow.

6.2 Chebyshev Iterations and Conjugate Gradients

For the linear system:

Ax= f , A= A∗ > 0, x ∈ R
n, f ∈ R

n, (6.60)

we will describe two iterative methods of solution that offer a better performance
(faster convergence) compared to the Richardson method of Section 6.1. We will
also discuss the conditions that may justify preferring one of these methods over
the other. The two methods are known as the Chebyshev iterative method and the
method of conjugate gradients, both are described in detail, e.g., in [SN89b].
As we require that A=A∗ > 0, all eigenvalues λ j, j= 1,2, . . . ,n, of the operatorA

are strictly positive. With no loss of generality, we will assume that they are arranged
in the ascending order. We will also assume that two numbers a > 0 and b > 0 are
known such that:

0< a≤ λ1 ≤ . . . ≤ λn ≤ b. (6.61)

The two numbers a and b in formula (6.61) are called boundaries of the spectrum of
the operator A. If a= λ1 and b= λn these boundaries are referred to as sharp. As in
Section 6.1.3, we will also introduce their ratio:

ξ =
a
b

< 1.

If the boundaries of the spectrum are sharp, then clearly ξ = μ(A)−1, where μ(A) is
the Euclidean condition number of A (Theorem 5.3).

6.2.1 Chebyshev Iterations

Let us specify the initial guess x(0) ∈ Rn arbitrarily, and let us then compute the
iterates x(p), p= 1,2, . . ., according to the following formulae:

x(1) = (I− τA)x(0) + τf ,

x(p+1) = αp+1(I− τA)x(p) + (1−αp+1)x(p−1) + ταp+1f ,

p= 1,2, . . . ,

(6.62a)


