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For an even grid function, fm = f−m, formulae (3.51)–(3.54) transform into:

ã0 =
1
N

( f0+ fn)+
2
N

n−1
∑
m=1

fm,

ãk =
2
N

( f0+(−1)k fn)+
4
N

n−1
∑
m=1

fm cos
2πkm
N

, k = 1,2, . . . ,n−1,

ãn =
1
N

( f0+(−1)n fn),
b̃k =0, k= 1,2, . . . ,n−1,

and the polynomial (3.50) reduces to:

Q̃n

(
cos

2π
L
x, sin

2π
L
x, f

)
=

n

∑
k=0

ãk cos
2πk
L
x.

Note that the arguments which are very similar to those used when proving the key
properties of the trigonometric interpolating polynomial Qn

(
cos 2πL x, sin

2π
L x, f

)
in

Theorems 3.4 and 3.5, also apply to the polynomial Q̃n
(
cos 2πL x, sin

2π
L x, f

)
defined

by formulae (3.50)–(3.54). Namely, this polynomial has slowly growing Lebesgue
constants and as such, is basically stable with respect to the perturbations of the grid
function fm. Moreover, it converges to the interpolated function f (x) as n−→∞with
the rate determined by the smoothness of f (x), i.e., there is no saturation.

REMARK 3.1 If the interpolated function f (x) has derivatives of all
orders, then the rate of convergence of the trigonometric interpolating poly-
nomials to f (x) will be faster than any inverse power of n. In the literature,
this type of convergence is often referred to as spectral.

3.2 Interpolation of Functions on an Interval. Relation
between Algebraic and Trigonometric Interpolation

Let f = f (x) be defined on the interval−1≤ x≤ 1, and let it have there a bounded
derivative of order r+ 1. We have chosen this specific interval −1 ≤ x ≤ 1 as the
domain of f (x), rather than an arbitrary interval a ≤ x ≤ b, for the only reason of
simplicity and convenience. Indeed, the transformation x = a+b

2 + t b−a2 renders a
transition from the function f (x) defined on an arbitrary interval a ≤ x ≤ b to the
function F(t) ≡ f

(
a+b
2 + t b−a2

)
defined on the interval−1≤ t ≤ 1.

3.2.1 Periodization

According to Theorem 3.5 of Section 3.1, trigonometric interpolation is only suit-
able for the reconstruction of smooth periodic functions from their tables of values.
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Therefore, to be able to apply it to the function f (x) given on −1 ≤ x ≤ 1, one
should first equivalently replace f (x) by some smooth periodic function. However,
a straightforward extension of the function f (x) from its domain −1 ≤ x ≤ 1 to the
entire real axis may, generally speaking, yield a discontinuous periodic function with
the period L= 2, see Figure 3.1.
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FIGURE 3.1: Straightforward periodization.
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FIGURE 3.2: Periodization according
to formula (3.55).

Therefore, instead of the function f (x),
−1≤ x≤ 1, let us consider a new function

F(ϕ) = f (cosϕ), x= cosϕ . (3.55)

It will be convenient to think that the
function F(ϕ) of (3.55) is defined on the
unit circle as a function of the polar an-
gle ϕ . The value of F(ϕ) is obtained by
merely translating the value of f (x) from
the point x ∈ [−1, 1] to the correspond-
ing point ϕ ∈ [0, π ] on the unit circle, see
Figure 3.2. In so doing, one can inter-
pret the resulting function F(ϕ) as even,
F(−ϕ) = F(ϕ), 2π-periodic function of
its argument ϕ . Moreover, it is easy to
see from definition (3.55) that the deriva-

tive dr+1F(ϕ)
dϕr+1 exists and is bounded.
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3.2.2 Trigonometric Interpolation

Let us choose the following interpolation nodes:

ϕm =
2π
N
m+

π
N

, m= 0,±1, . . . ,±n,−(n+1), N = 2(n+1). (3.56)

According to (3.55), the values Fm = F(ϕm) of the function F(ϕ) at the nodes ϕm of
(3.56) coincide with the values fm = f (xm) of the original function f (x) at the points
xm = cosϕm. To interpolate a 2π-periodic even function F(ϕ) using its tabulated
values at the nodes (3.56), one can employ formula (3.25) of Section 3.1:

Qn(cosϕ ,sinϕ ,F) =
n

∑
k=0

ak coskϕ . (3.57)

As Fm = fm for all m, the coefficients ak of the trigonometric interpolating polyno-
mial (3.57) are given by formulae (3.26), (3.27) of Section 3.1:

a0 =
1

n+1

n

∑
m=0

fm,

ak =
2

n+1

n

∑
m=0

fm coskϕm, k = 1,2, . . . ,n.

(3.58)

3.2.3 Chebyshev Polynomials. Relation between Algebraic
and Trigonometric Interpolation

Let us use the equality cosϕ = x and introduce the functions:

Tk(x) = coskϕ = cos(k arccosx), k = 0,1,2, . . . . (3.59)

THEOREM 3.7
The functions Tk(x) defined by formula (3.59) are polynomials of degree k =
0,1,2, . . .. Specifically, T0(x) = 1, T1(x) = x, and all other polynomials: T2(x),
T3(x), etc., can be obtained consecutively using the recursion formula

Tk+1(x) = 2xTk(x)−Tk−1(x). (3.60)

PROOF It is clear that T0(x) = cos0= 1 and T1(x) = cosarccosx= x. Then,
we employ a well-known trigonometric identity

cos(k+1)ϕ = 2cosϕ coskϕ − cos(k−1)ϕ , k= 1,2, . . . ,

which immediately yields formula (3.60) when ϕ = arccosx. It only remains
to prove that Tk(x) is a polynomial of degree k; we will use induction with
respect to k to do that. For k = 0 and k = 1 it has been proven directly. Let
us fix some k> 1 and assume that for all j = 0,1, . . . ,k we have already shown
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that Tj(x) are polynomials of degree j. Then, the expression on the right-hand
side of (3.60), and as such, Tk+1(x), is a polynomial of degree k+1.

The polynomials Tk(x) were first introduced and studied by Chebyshev. We pro-
vide here the formulae for a first few Chebyshev polynomials, along with their
graphs, see Figure 3.3:

T0(x) = 1, T1(x) = x, T2(x) = 2x2−1, T3(x) = 4x3−3x.
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FIGURE 3.3: Chebyshev polynomials.

Next, by substituting ϕ = arccosx into the right-hand side of formula (3.57), we
can recast it as a function of x, thus obtaining:

Qn(cosϕ ,sinϕ ,F) ≡ Pn(x, f ), (3.61)

where

Pn(x, f ) =
n

∑
k=0

akTk(x), (3.62)

and

a0 =
1

n+1

n

∑
m=0

fm =
1

n+1

n

∑
m=0

fmT0(xm),

ak =
2

n+1

n

∑
m=0

fm coskϕm =
2

n+1

n

∑
m=0

fmTk(xm).
(3.63)
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FIGURE 3.4: Chebyshev interpola-
tion nodes.

Therefore, we can conclude using for-
mulae (3.61), (3.62) and Theorem 3.7,
that Pn(x, f ) is an algebraic polynomial
of degree no greater than n that coincides
with the given function values f (xm) = fm
at the interpolation nodes xm = cosϕm. In
accordance with (3.56), these interpola-
tion nodes can be defined by the formula:

xm = cosϕm = cos
π(2m+1)
2(n+1)

,

m= 0,1, . . . ,n,
(3.64)

that basically coincides with formula
(2.20) of Chapter 2. We are schematically
showing the nodes (3.64) in Figure 3.4.
Note that the points ϕm = π

n+1m +
π

2(n+1) , m = 0,1, . . . ,n, defined by formula (3.56) are actually zeros of the function

cos(n+ 1)ϕ . Accordingly, the points xm = cosϕm defined by formula (3.64) are
roots of the Chebyshev polynomial Tn+1(x) = cos(n+ 1)ϕ . In the literature, this
particular choice of nodes for the Chebyshev grid, see Figure 3.4, is often referred
to as the Chebyshev-Gauss or simply Gauss nodes (an alternative choice of nodes is
discussed in Section 3.2.6).
In other words, the polynomial Pn(x, f ) specified by formulae (3.62), (3.63) ren-

ders algebraic interpolation of the function f (x) based on its values fm sampled at
the roots xm, see (3.64), of the Chebyshev polynomial Tn+1(x).

3.2.4 Properties of Algebraic Interpolation with Roots of
the Chebyshev Polynomial Tn+1(x) as Nodes

Equality Qn(cosϕ ,sinϕ ,F) = Pn(x, f ) implies that the properties of the trigono-
metric interpolating polynomialQn(cosϕ ,sinϕ ,F) established by Theorems 3.4 and
3.5 of Section 3.1 do carry over to the algebraic interpolating polynomial Pn(x, f )
defined by formula (3.62). In particular, the Lebesgue constants Ln that characterize
the sensitivity of the polynomial Pn(x, f ) to the perturbations of fm, satisfy estimate
(3.33) from Section 3.1:

Ln ≤ 4(n+1),

and the interpolation error

Rn(x) = f (x)−Pn(x, f )

uniformly converges to zero as n −→ ∞ with the rate automatically determined by
the number of derivatives r+1 that the function f (x) has:

max
−1≤x≤1

|Rn(x)| ≤ ζn
nr−1/2

, where ζn = o(1), n−→ ∞. (3.65)
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In other words, similarly to the trigonometric interpolation (see Section 3.1.3), alge-
braic interpolation on the Chebyshev nodes does not get saturated by smoothness. In
other words, the interpolation error self-adjusts to the regularity of the interpolated
function without having to change anything in the construction of the method.

REMARK 3.2 Estimate (3.33) for the Lebesgue constants that we proved
in Theorem 3.4 of Section 3.1 can be substantially improved. In fact, the
following equality holds [see the bibliography quoted in Section 3.2.7, and cf.
formula (2.21) of Section 2.1, Chapter 2]:

Ln =
2
π
ln(n+1)+1−θn, 0≤ θn ≤ 1

4
. (3.66)

Accordingly, the estimate for the interpolation error can also be improved,
and instead of (3.65) we will obtain:

max
−1≤x≤1

|Rn(x)| = o

(
lnn

nr+1/2

)
as n−→ ∞, (3.67)

where r+1 is the maximum number of derivatives that the function f (x) has.
Further improvements of estimate (3.67) can be obtained with the help of the
Jackson inequality, see Section 3.2.7.

In contradistinction to the Chebyshev nodes (3.64), when a uniform grid is used
for interpolation, the Lebesgue constants rapidly grow as n increases, see inequalities
(2.18) of Chapter 2, and convergence of the interpolating polynomial to the function
f (x) may break down even for infinitely smooth functions, see Section 2.1.5. These
are precisely the considerations that make the algebraic interpolation of high degree
inappropriate, and prompt the use of piecewise polynomial or spline interpolation on
uniform or arbitrary non-uniform grids (see Chapter 2).

3.2.5 An Algorithm for Evaluating the Interpolating Poly-
nomial

To obtain the coefficients ak of the polynomial Pn(x, f ) of (3.62) with the help
of formulae (3.63), as well as to actually evaluate this polynomial itself at a given
x ∈ [−1, 1], one needs to be able to compute the values of the polynomials Tk(x), k=
0,1,2, . . ., for −1 ≤ x ≤ 1. We will show that it is appropriate to use formula (3.60)
for this purpose. This formula is obviously easy to use and its computational efficacy
is also apparent. We only need to demonstrate that the computations according to this
formula are stable with respect to the round-off errors.
Consider a difference equation of the type:

yk+1 = 2xyk− yk−1, (3.68)

where yk is the unknown sequence parameterized by the integer quantity k. We will
be looking for a solution of equation (3.68) in the form yk = qk, where q is a fixed
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number. Substituting the latter expression into the difference equation (3.68), we
obtain the following algebraic equation for q:

q2−2xq+1= 0.

It is often called the characteristic equation, and it has two roots:

q1,2 = x±
√
x2−1.

Due to the linearity of equation (3.68), its general solution can be written in the form

yk = c1q
k
1+ c2q

k
2, (3.69)

where c1 and c2 are arbitrary constants. Let us choose these constants c1 and c2 so
that to satisfy the following conditions:

y0 = T0(x) = 1, y1 = T1(x) = x,

or equivalently,

c1+ c2 = 1, c1q1+ c2q2 = x.

This implies c1 = c2 = 1/2, and then formula (3.69) yields the following solution of
equation (3.68):

Tk(x) =
1
2

(
x+

√
x2−1

)k
+
1
2

(
x−

√
x2−1

)k
. (3.70)

According to formula (3.60), Tk(x) defined by (3.70) shall be interpreted for a given
fixed x as a (discrete) function of k that solves equation (3.68).
Next, note that when |x| < 1 the roots q1,2 = x±√

x2−1 of the characteristic
equation are complex conjugate and have unit moduli. Consequently, the quantities
qk1 and q

k
2 will remain equal to one by their absolute value as k increases. An error

committed for some k= k0 would cause a perturbation in the values of c1 and c2 that
enter into formula (3.69) for k > k0. However, due to the equalities |qk1| = |qk2| = 1,
k = 1,2, . . ., this error will not get amplified as k increases. This implies numerical
stability of the computations according to formula (3.60) for |x| < 1.

3.2.6 Algebraic Interpolation with Extrema of the Cheby-
shev Polynomial Tn(x) as Nodes

To interpolate the function F(ϕ) = f (cosϕ), let us now use the nodes:

ϕ̃m =
π
n
m, m= 0,1, . . . ,n.
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In accordance with Theorem 3.6 of Section 3.1, and the discussion on page 72 that
follows this theorem, we obtain the trigonometric interpolating polynomial:

Q̃n(cosϕ ,sinϕ ,F) =
n

∑
k=0

ãk coskϕ ,

ã0 =
1
2n

( f0+ fn)+
1
n

n−1
∑
m=1

fm, ãn =
1
2n

( f0+(−1)n fn),

ãk =
1
n
( f0+(−1)k fn)+

2
n

n−1
∑
m=1

fm coskϕm, k = 1,2, . . . ,n−1.

Changing the variable to x = cosϕ and denoting Q̃n(cosϕ ,sinϕ ,F) = P̃n(x, f ), we
have:

P̃n(x, f ) =
n

∑
k=0

ãkTk(x),

ã0 =
1
2n

( f0+ fn)+
1
n

n−1
∑
m=1

fm, ãn =
1
2n

( f0+(−1)n fn),

ãk =
1
n
( f0+(−1)k fn)+

2
n

n−1
∑
m=1

fmTk(x̃m), k = 1,2, . . . ,n−1.

Similarly to the polynomial Pn(x, f ) of (3.62), the algebraic interpolating polynomial
P̃n(x, f ) built on the grid:

x̃m = cos ϕ̃m = cos
π
n
m, m= 0,1, . . . ,n, (3.71)

also inherits the two foremost advantageous properties from the trigonometric inter-
polating polynomial Q̃n(cosϕ ,sinϕ ,F). They are the slow growth of the Lebesgue
constants as n increases (that translates into the numerical stability with respect to
the perturbations of fm), as well convergence with the rate that automatically takes
into account the smoothness of f (x), i.e., no susceptibility to saturation.
Finally, we notice that the Chebyshev polynomial Tn(x) reaches its extreme values

on the interval−1≤ x≤ 1 precisely at the interpolation nodes x̃m of (3.71): Tn(x̃m) =
cosπm = (−1)m, m = 0,1, . . . ,n. In the literature, the grid nodes x̃m of (3.71) are
known as the Chebyshev-Gauss-Lobatto nodes or simply the Gauss-Lobatto nodes.

3.2.7 More on the Lebesgue Constants and Convergence of
Interpolants

In this section, we discuss the problem of interpolation from the general per-
spective of approximation of functions by polynomials. Our considerations, in
a substantially abridged form, follow those of [LG95], see also [Bab86]. We
quote many of the fundamental results without a proof (the theorems of Jack-
son, Weierstrass, Faber-Bernstein, and Bernstein). The justification of these re-
sults, along with a broader and more comprehensive account of the subject, can
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be found in the literature on the classical theory of approximation, see, e.g.,
[Jac94, Ber52, Ber54, Ach92, Nat64, Nat65a, Nat65b, Lor86, Che66, Riv74]. In the
numerical analysis literature, some of these issues are addressed in [Wen66]. In
these books, the reader will also find references to research articles. The material of
this section is more advanced, and can be skipped during the first reading.
The meaning of Lebesgue’s constants Ln introduced in Chapter 2 as minimum

numbers that for each n guarantee the estimate [see formula (2.17)]:

max
a≤x≤b

|Pn(x,δ f )| ≤ Lnmax
j

|δ f (x j)|

is basically that of an operator norm. Indeed, interpolation by means of the polyno-
mial Pn(x, f ) can be interpreted as a linear operator that maps the finite-dimensional
space of vectors [ f0, f1, . . . , fn] into the spaceC[a, b] of all continuous functions f (x)
defined on [a, b]. The space C[a, b] is equipped with the maximum norm ‖ f‖ =
max
a≤x≤b

| f (x)|. Likewise, the space of vectors �f = [ f0, f1, . . . , fn] can also be equipped

with a maximum norm, but discrete rather than continuous: ‖�f‖ = max
0≤ j≤n

| f j|. Then,
Ln of (2.17) appears to be the induced norm of the foregoing linear operator:

Ln = sup
‖�f‖=1

‖Pn(x, f )‖. (3.72)

However, for subsequent analysis it will be more convenient to use a slightly different
definition of Ln — as norm of an operator that would rather mapC[a, b] onto itself.

DEFINITION 3.1 The operator Pn = Pn(x0,x1, . . . ,xn) : C[a, b] �−→
{Pn(x)} ⊂ C[a, b] takes a function f ∈ C[a, b], samples its values at a given
set of nodes {x0,x1, . . . ,xn} ∈ [a, b] thus creating the table { f0, f1, . . . , fn}, and
subsequently builds the polynomial Pn(x, f ,x0,x1, . . . ,xn) ∈C[a, b].

LEMMA 3.1

The operator Pn introduced by Definition 3.1 is linear and continuous.

PROOF The linearity of Pn is obvious. To show the continuity, we use
the Lagrange formula (2.1) of Section 2.1, Chapter 2, and obtain:

|Pn[ f ](x)| = |Pn(x, f ,x0,x1, . . . ,xn)| ≤
n

∑
k=0

| fk||lk(x)| ≤ ‖ f‖
n

∑
k=0

|lk(x)|.

Next, we introduce a new quantity

λn
def= sup

[a,b]

n

∑
k=0

|lk(x)| =max
[a,b]

n

∑
k=0

|lk(x)|, (3.73)
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where the second equality in (3.73) holds because [a, b] is a compact set, and
n
∑
k=0

|lk(x)| is a continuous function. Then clearly,

|Pn[ f ](x)| ≤ λn‖ f‖.
Consequently, Pn is a bounded operator, Pn : C[a, b] �→C[a, b], and therefore,
it is continuous. Moreover, ‖Pn‖ ≤ λn.

DEFINITION 3.2 The norm of the operator Pn introduced by Defini-
tion 3.1 is called the Lebesgue constant of the polynomial interpolation based
on the nodes x0,x1, . . . ,xn:

Ln = ‖Pn‖. (3.74)

Recall that the operator norm on the right-hand side of formula (3.74) is given by:

‖Pn‖ = sup
‖ f‖=1

‖Pn[ f ](x)‖ = sup
‖ f‖=1

‖Pn(x, f )‖. (3.75)

We have therefore formulated two alternative definitions of the Lebesgue constants
— by means of formula (3.72) and by means of formulae (3.74), (3.75). We will
now prove that these definitions are, in fact, equivalent. In other words, we will
show that the right-hand side of formula (3.75) coincides with the right-hand side
of formula (3.72). The difference between these right-hand sides is that in (3.75)
the smallest upper bound is taken across the unit sphere in the space C[a, b] that has
infinite dimension, whereas in (3.72) it is taken across the unit sphere in the n+ 1-
dimensional space of vectors �f = [ f0, f1, . . . , fn].

LEMMA 3.2
The Lebesgue constant defined by formulae (3.74), (3.75) is the same as the

Lebesgue constant defined by formula (3.72).

PROOF For every vector �f = [ f0, f1, . . . , fn], consider a piecewise linear
function defined as:

f (x) = f j+1
x− x j

x j+1− x j
+ f j

x j+1− x

x j+1− x j
for x ∈ [x j,x j+1], j = 0,1, . . . ,n−1.

Clearly, f (x) ∈ C[a, b], and also if ‖�f‖ = 1 then ‖ f‖ = 1. In other words,
every unit vector �f = [ f0, f1, . . . , fn] gives rise to a continuous (piecewise linear)
function that belongs to the unit sphere in C[a, b]. Therefore, one can say that
the smallest upper bound on the right-hand side of (3.75) is taken across a
wider set than that on the right-hand side of (3.72). Consequently,

sup
‖ f‖=1

‖Pn(x, f )‖ ≥ sup
‖�f‖=1

‖Pn(x, f )‖. (3.76)
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On the other hand, let f (x) ∈C[a, b] be a particular function that realizes
the smallest upper bound on the right-hand side of (3.75). By construction,
‖ f‖= 1. Let us sample the values of f (x) at the nodes x0,x1, . . . ,xn. This yields
the table { f0, f1, . . . , fn}, or equivalently, the vector �f = [ f0, f1, . . . , fn]. Assume
that ‖�f ‖ < 1. Then, denote α = ‖�f‖−1 > 1 and stretch the vector �f : �f �−→
α�f = [α f0,α f1, . . . ,α fn] so that ‖α�f ‖= 1. As the interpolation by means of the
polynomials Pn is a linear operator, we obviously have Pn(x,α f ) = αPn(x, f ),
and consequently, ‖Pn(x,α f )‖ > ‖Pn(x, f )‖. We have therefore found a unit
vector α�f , for which the norm of the corresponding interpolating polynomial
will be greater than the left-hand side of (3.76). The contradiction proves
that the two definitions of the Lebesgue constants are indeed equivalent.

LEMMA 3.3
The Lebesgue constant of (3.74), (3.75) is equal to

Ln = λn, (3.77)

where the quantity λn is defined by formula (3.73).

PROOF When proving Lemma 3.1, we have seen that ‖Pn‖ ≤ λn. We
therefore need to show that λn ≤ ‖Pn‖.

As has been mentioned, the function ψ(x) def=
n
∑
k=0

|lk(x)| is continuous on

[a, b]. Consequently, ∃x∗ ∈ [a, b] : ψ(x∗) = λn. Let us now consider a function
f0 ∈ C[a, b] such that f0(xk) = sign lk(x∗), k = 0,1,2, . . . ,n, and also ‖ f0‖ = 1.
For this function we have:

|Pn[ f0](x∗)|=
∣∣∣∣∣
n

∑
k=0

f0(xk)lk(x∗)

∣∣∣∣∣=
∣∣∣∣∣
n

∑
k=0

(sign lk(x∗)) lk(x∗)

∣∣∣∣∣ =
n

∑
k=0

|lk(x∗)|= ψ(x∗)= λn.

On the other hand,

|Pn[ f0](x∗)| ≤ ‖Pn[ f0]‖ ≤ ‖Pn‖ · ‖ f0‖ = ‖Pn‖,
which implies λn ≤ ‖Pn‖. It only remains to construct a specific example
of f0 ∈ C[a, b]. This can be done easily by taking f0(x) as a piecewise linear
function with the values sign lk(x∗) at the points xk, k = 0,1,2, . . . ,n.

We can therefore conclude that

Ln = max
a≤x≤b

n

∑
k=0

|lk(x)|.

We have used a somewhat weaker form of this result in Section 2.1.4 of Chapter 2.
The Lebesgue constants of Definition 3.2 play a fundamental role when studying

the convergence of interpolating polynomials. To actually see that, we will first need
to introduce another key new concept and formulate some important results.
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DEFINITION 3.3 The quantity

ε( f ,Pn) = min
Pn(x)

max
a≤x≤b

|Pn(x)− f (x)| (3.78)

is called the best approximation of a given function f (x) by polynomials of
degree no greater than n on the interval [a, b].

Note that the minimum in formula (3.78) is taken with respect to all algebraic poly-
nomials of degree no greater than n on the interval [a, b], not only the interpolating
polynomials. In other words, the polynomials in (3.78) do not, generally speaking,
have to coincide with f (x) at any given point of [a, b]. It is possible to show existence
of a particular polynomial that realizes the best approximation (3.78). In most cases,
however, this polynomial is difficult to obtain constructively. In general, polynomials
of the best approximation can only be built using sophisticated iterative algorithms
of non-smooth optimization. On the other hand, their theoretical properties are well
studied. Perhaps the most fundamental property is given by the Jackson inequality.

THEOREM 3.8 (Jackson inequality)
Let f = f (x) be defined on the interval [a, b], let it be r−1 times continuously
differentiable, and let the derivative f (r−1)(x) be Lipshitz-continuous:

∀x1, x2 ∈ [a, b] : | f (r−1)(x1)− f (r−1)(x2)| ≤M|x1− x2|, M > 0.

Then, for any n≥ r the following inequality holds:

ε( f ,Pn) <Cr

(
b−a
2

)r M
nr

, (3.79)

where Cr =
(πr
2

)r 1
r! are universal constants that depend neither on f , nor on

n, nor on M.

The Jackson inequality [Jac94] reinforces, for sufficiently smooth functions, the
result of the following classical theorem established in real analysis (see, e.g.,
[Rud87]):

THEOREM 3.9 (Weierstrass)
Let f ∈ C[a, b]. Then, for any ε > 0 there is an algebraic polynomial Pε(x)

such that ∀x ∈ [a, b] : | f (x)−Pε(x)| ≤ ε.

A classical proof of Theorem 3.9 is based on periodization of f that preserves
its continuity (the period should obviously be larger than [a, b]) and then on the
approximation by partial sums of the Taylor series that converges uniformly. The
Weierstrass theorem implies that for f ∈ C[a, b] the best approximation defined by
(3.78) converges to zero: ε( f ,Pn) −→ 0 when n −→ ∞. This is basically as much
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as one can tell regarding the behavior of ε( f ,Pn) if nothing else is known about
f (x) except that it is continuous. On the other hand, the Jackson inequality specifies
the rate of decay for the best approximation as a particular inverse power of n, see
formula (3.79), provided that f (x) is smooth.
Let us also note that the value of π

2 that enters the expression for Cr =
(πr
2

)r 1
r! in

the Jackson inequality (3.79) may, in fact, be replaced by smaller values:

K0 = 1, K1 =
π
2

, K2 =
π2

8
, K3 =

π3

24
, K4 =

5π4

384
, . . .

known as the Favard constants. The Favard constants can be obtained explicitly for
all r = 0,1,2, . . ., and it is possible to show that all Kr < π

2 . The key considera-
tion regarding the Favard constants is that substituting them into (3.79) makes this
inequality sharp.
The main result that connects the properties of the best approximation (Defini-

tion 3.3) and the quality of interpolation by means of algebraic polynomials is given
by the following

THEOREM 3.10 (Lebesgue inequality)
Let f ∈C[a, b] and let {x0,x1, . . . ,xn} be an arbitrary set of distinct interpola-
tion nodes on [a, b]. Then,

ε( f ,Pn) ≤ ‖ f −Pn[ f ]‖ ≤ (Ln +1)ε( f ,Pn). (3.80)

Note that according to Definition 3.1, the operator Pn in formula (3.80) generally
speaking depends on the choice of the interpolation nodes.

PROOF It is obvious that we only need to prove the second inequality in
(3.80), i.e., the upper bound. Consider an arbitrary polynomial Q(x)∈ {Pn(x)}
of degree no greater than n. As the algebraic interpolating polynomial is
unique (Theorem 2.1 of Chapter 2), we obviously have Pn[Q] = Q. Next,

‖ f −Pn[ f ]‖ =‖ f −Q+Pn[Q]−Pn[ f ]‖
≤‖ f −Q‖+‖Pn[Q]−Pn[ f ]‖ = ‖ f −Q‖+‖Pn[Q− f ]‖
≤‖ f −Q‖+‖Pn‖‖ f −Q‖ = (1+Ln)‖ f −Q‖.

Let us now introduce δ > 0 and denote by Qδ (x) ∈ {Pn(x)} a polynomial for
which ‖ f −Qδ‖ < ε( f ,Pn)+ δ . Then,

‖ f −Pn[ f ]‖ ≤ (1+Ln)‖ f −Qδ‖ < (1+Ln)(ε( f ,Pn)+ δ ).

Finally, by taking the limit δ −→ 0, we obtain the desired inequality (3.80).

The Lebesgue inequality (3.80) essentially provides an upper bound for the inter-
polation error ‖ f −Pn[ f ]‖ in terms of a product of the best approximation (3.78)
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times the Lebesgue constant (3.74). Often, this estimate allows one to judge the
convergence of algebraic interpolating polynomials as n increases. It is therefore
clear that the behavior of the Lebesgue constants is of central importance for the
convergence study.

THEOREM 3.11 (Faber-Bernstein)
For any choice of interpolation nodes x0,x1, . . . ,xn on the interval [a, b], the

following inequality holds:

Ln >
1

8
√

π
ln(n+1). (3.81)

Theorem 3.11 shows that the Lebesgue constants always grow as the grid dimen-
sion n increases. As such, the best one can generally hope for is to be able to place the
interpolation nodes in such a way that this growth will be optimal, i.e., logarithmic.
As far as the problem of interpolation is concerned, if, for example, nothing is

known about the function f ∈ C[a, b] except that it is continuous, then nothing can
be said about the behavior of the error beyond the estimate given by the Lebesgue
inequality (3.80). TheWeierstrass theorem (Theorem 3.9) indicates that ε( f ,Pn)−→
0 as n −→ ∞, and the Faber-Bernstein theorem (Theorem 3.11) says that Ln −→
∞ as n −→ ∞. We therefore have the uncertainty 0 ·∞ on the right-hand side of
the Lebesgue inequality; and the behavior of this right-hand side is determined by
which of the two processes dominates— the decay of the best approximations or the
growth of the Lebesgue constants. In particular, if limn→∞ Lnε( f ,Pn) = 0, then the
interpolating polynomials uniformly converge to f (x).
If the function f (x) is sufficiently smooth (as formulated in Theorem 3.8), then

combining the Lebesgue inequality (3.80) and the Jackson inequality (3.79) we ob-
tain the following error estimate:3

‖ f −Pn[ f ]‖ < (Ln+1)Cr

(
b−a
2

)r M
nr

, (3.82)

which implies that the convergence rate (if there is convergence) will depend on the
behavior of Ln when n increases. If the interpolation grid is uniform (equidistant
nodes), then the Lebesgue constants grow exponentially as n increases, see inequal-
ities (2.18) of Section 2.1, Chapter 2. In this case, the limit (as n −→ ∞) on the
right-hand side of (3.82) is infinite for any finite value of r. This does not necessarily
mean that the sequence of interpolating polynomialsPn[ f ](x) diverges, because in-
equality (3.82) only provides an upper bound for the error. It does mean though that
in this case convergence of the interpolating polynomials simply cannot be judged
using the arguments based on the inequalities of Lebesgue and Jackson.

3Note that in estimate (3.82) the function f (x) is assumed to have a maximum of r− 1 derivatives, and
the derivative f (r−1)(x) is required to be Lipshitz-continuous (Theorem 3.8), which basically makes f (x)
“almost” r times differentiable. Previously, we have used a slightly different notation and in the error
estimate (3.67) the function was assumed to have a maximum of r+1 derivatives.
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On the other hand, for the Chebyshev interpolation grid (3.64) the following the-
orem asserts that the asymptotic behavior of the Lebesgue constants is optimal:

THEOREM 3.12 (Bernstein)
Let the interpolation nodes x0,x1, . . . ,xn on the interval [−1, 1] be given by

roots of the Chebyshev polynomial Tn+1(x). Then,

Ln < 8+
4
π
ln(n+1). (3.83)

Therefore, according to (3.82) and (3.83), if the derivative f (r−1)(x) of the function
f (x) is Lipshitz-continuous, then the sequence of algebraic interpolating polynomials
built on the Chebyshev nodes converges uniformly to f (x) with the rate

O(n−r ln(n+1)) as n−→ ∞.

Let us now recall that a Lipshitz-continuous function f (x) on the interval [−1,1]:
| f (x′)− f (x′′)| ≤ const|x′ − x′′|, x′, x′′ ∈ [−1,1],

is absolutely continuous on [−1,1], and as such, according to the Lebesgue theorem
[KF75], its derivative is integrable, i.e., exists in L1[−1,1]. In this sense, we can
say that Lipshitz-continuity is “not very far” from differentiability, although this is,
of course, not sufficient to claim that the derivative f (r)(x) is bounded. On the other
hand, if f (x) is r times differentiable on [−1,1] and f (r)(x) is bounded, then f (r−1)(x)
is Lipshitz-continuous. Therefore, for a function with its r-th derivative bounded, the
rate of convergence of Chebyshev interpolating polynomials is at least as fast as the
inverse of the grid dimension raised to the power r (smoothness of the interpolated
function), times an additional slowly increasing factor ∼ lnn. At the same time,
recall that the unavoidable error of reconstructing a function with r derivatives on
a uniform grid with n nodes is O(n−r). This is also true for the Chebyshev grid,
because Chebyshev grid on the diameter is equivalent to a uniform grid on the circle,
see Figure 3.4. Consequently, accuracy of the Chebyshev interpolating polynomials
appears to be only a logarithmic factor away from the level of the unavoidable error.
As such, we have shown that Chebyshev interpolation is not saturated by smoothness
and practically reaches the intrinsic accuracy limit.
Altogether, we see that the type of interpolation grid may indeed have a drastic

effect on convergence, which corroborates our previous observations. For the Bern-
stein example f (x) = |x|, −1 ≤ x ≤ 1 (Section 2.1.5 of Chapter 2), the sequence of
interpolating polynomials constructed on a uniform grid diverges. On the Chebyshev
grid we have seen experimentally that it converges. Now, using estimates (3.82) and
(3.83) we can say that the rate of this convergence is at least O(n−1 ln(n+1)).
To conclude, let us also note that strictly speaking the behavior of Ln on the Cheby-

shev grid is only asymptotically optimal rather than optimal, because the constants
in the lower bound (3.81) and in the upper bound (3.83) are different. Better values
of these constants than those guaranteed by the Bernstein theorem (Theorem 3.12)
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have been obtained more recently, see inequality (3.66). However, there is still a gap
between (3.81) and (3.66).

REMARK 3.3 Formula (3.78) that introduces the best approximation
according to Definition 3.3 can obviously be recast as

ε( f ,Pn) = min
Pn(x)

‖Pn(x)− f (x)‖C,

where the norm on the right-hand side is taken in the sense of the spaceC[a,b].
In general, the notion of the best approximation admits a much broader in-
terpretation, when both the norm (currently, ‖ · ‖C) and the class of approxi-
mating functions (currently, polynomials Pn(x)) may be different. In fact, one
can consider the problem of approximating a given element of the linear space
by linear combinations of a pre-defined set of elements from the same space
in the sense of a selected norm. This is the same concept as exploited when
introducing the Kolmogorov diameters, see Remark 2.3 on page 41.

For example, consider the space L2[a,b] of all square integrable functions
f (x), x ∈ [a,b], equipped with the norm:

‖ f‖2 def=
[∫ b

a
f 2(x)dx

] 1
2

.

This space is known to be a Hilbert space. Let us take an arbitrary f ∈ L2[a,b]
and consider a set of all trigonometric polynomials Qn(x) of type (3.6), where
L = b− a is the length of the interval. Similarly to the algebraic polynomi-
als Pn(x) employed in Definition 3.3, the trigonometric polynomials Qn(x) do
not have to be interpolating polynomials. Then, it is known that the best
approximation in the sense of L2:

ε2( f ,Qn) = min
Qn(x)

‖ f (x)−Qn(x)‖2

is, in fact, realized by the partial sum Sn(x), see formula (3.38), of the Fourier
series for f (x) with the coefficients defined by (3.40). An upper bound for
the actual magnitude of the L2 best approximation is then given by estimate
(3.41) for the remainder δSn(x) of the series, see formula (3.39):

ε2( f ,Qn) ≤ ζn
nr+

1
2

, where ζn = o(1), n−→ ∞,

where r+1 is the maximum smoothness of f (x). Having identified what the
best approximation in the sense of L2 is, we can easily see now that both
the Lebesgue inequality (Theorem 3.10) and the error estimate for trigono-
metric interpolation (Theorem 3.5) are, in fact, justified using the same argu-
ment. It employs uniqueness of the corresponding interpolating polynomial,
the estimate for the best approximation, and the estimate of sensitivity to
perturbations given by the Lebesgue constants.
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Exercises

1. Let the function f = f (x) be defined on an arbitrary interval [a, b], rather than on
[−1, 1]. Construct the Chebyshev interpolation nodes for [a, b], and write down the in-
terpolating polynomials Pn(x, f ) and P̃n(x, f ) similar to those obtained in Sections 3.2.3
and 3.2.6, respectively.

2. For the function f (x) = 1
x2+1/4 ,−1≤ x≤ 1, construct the algebraic interpolating poly-

nomial Pn(x, f ) using roots of the Chebyshev polynomial Tn+1(x), see (3.64), as inter-
polation nodes. Plot the graphs of f (x) and Pn(x, f ) for n = 5,10,20,30, and 40. Do
the same for the interpolating polynomial Pn(x, f ) built on the equally spaced nodes
xk =−1+2k/n, k= 0,1,2, . . . ,n (Runge example of Section 2.1.5, Chapter 2). Explain
the observable qualitative difference between the two interpolation techniques.

3. Introduce the normalized Chebyshev polynomial T̂n(x) of degree n by setting T̂n(x) =
21−nTn(x).

a) Show that the coefficient in front of xn in the polynomial T̂n(x) is equal to one.

b) Show that the deviation max
−1≤x≤1

|T̂n(x)| of the polynomial T̂n(x) from zero on the
interval −1≤ x≤ 1 is equal to 21−n.

c)� Show that among all the polynomials of degree nwith the leading coefficient (i.e.,
the coefficient in front of xn) equal to one, the normalized Chebyshev polynomial
T̂n(x) has the smallest deviation from zero on the interval −1≤ x≤ 1.

d) How can one choose the interpolation nodes t0,t1, . . . ,tn on the interval [−1, 1],
so that the polynomial (t− t0)(t− t1) . . . (t− tn), which is a part of the formula
for the interpolation error (2.23), Chapter 2, would have the smallest possible
deviation from zero on the interval [−1, 1]?

4. Find a set of interpolation nodes for an even 2π-periodic function F(ϕ), see formula
(3.55), for which the Lebesgue constants would coincide with the Lebesgue constants
of algebraic interpolation on equidistant nodes.


