
Finite-Difference Schemes for Partial Differential Equations 377

Exercises

1. Prove that the Crank-Nicolson scheme (10.118) has accuracy O(h2) provided that r =
τ/h = const.

2. Show that the Lax-Friedrichs scheme (10.85) is dissipative of order 2d = 2, although
not strictly in the sense of Definition 10.4. Prove that it rather satisfies inequality
(10.114) for all |α| ≤ π− ε , where ε > 0 can be arbitrary.

3. Use Theorem 10.5 to study stability of the scheme:

up+1
m −up

m

τ
−a(xm)

up
m+1−up

m

h
= 0,

u0m = ψ(xm), m = 0,±1,±2, . . . , p = 0,1,2, . . . , [T/τ]−1,
for the Cauchy problem:

∂u
∂ t
−a(x)

∂u
∂x

= 0, −∞ < x < ∞, 0< t ≤ T,

u(x,0) = ψ(x), −∞ < x < ∞,

where a(x) is a smooth function and a1 ≥ a(x)≥ a0 > 0.

4. Show that the implicit downwind scheme (10.106) for the Cauchy problem (10.116) is
dissipative of order 2d = 2 when r > 1.

5. Show that the implicit central scheme (10.107) for the Cauchy problem (10.116) is
dissipative of order 2d = 2 in the same non-strict sense as outlined in Exercise 2.

10.5 Stability for Initial Boundary Value Problems

Instead of the Cauchy problem (10.108), let us now consider an initial boundary
value problem for the heat equation formulated on the finite interval 0≤ x≤ 1:
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m − up

m

τ
− a(xm, tp)

up
m+1− 2up

m+ up
m−1

h2
= 0,

u0m = ψ(xm), l1u
p+1
0 = 0, l2u

p+1
M = 0,

m = 0,1,2, . . . ,M, p ≥ 0.

(10.124)

In formula (10.124), we assume that the grid is uniform: xm =mh, m= 0,1,2, . . . ,M,
M = 1/h, tp = pτ , p = 0,1,2, . . ., and denote by l1 and l2 the operators of the bound-
ary conditions at the left and right endpoints of the interval, respectively.

10.5.1 The Babenko-Gelfand Criterion

To analyze stability of the difference problem (10.124), we will first develop a
heuristic argument based on freezing the coefficients; this argument will further ex-
tend the previous considerations of Section 10.4.1. In Section 10.4.1, we have no-
ticed that because of the continuity of the coefficient a = a(x, t), its variation within
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a fixed number of cells around any given point (x̃, t̃) becomes smaller when the grid
is refined. In the context of the initial boundary value problem (10.124), as opposed
to the initial value problem (10.108), we supplement this consideration by another
obvious observation. If the point (x̃, t̃) lies inside the domain, then the distance from
this point to either of the endpoints, x = 0 or x = 1, measured in the number of grid
cells (of size h) will increase with no bound when h −→ 0. In other words, on fine
grids the point (x̃, t̃) can be considered to be located far away from the boundaries.
Consequently, we can still claim that for small h the perturbations superimposed on
the solution of problem (10.124) at the moment of time t = t̃ near any interior space
location x = x̃ will evolve similarly to how the perturbations of the solution to the
same “old” constant-coefficient equation (10.109) would have evolved. This, in turn,
implies that stability of the scheme (10.109) for every (x̃, t̃) inside the domain is still
necessary for the overall stability of scheme (10.124).

The foregoing heuristic argument, however, becomes far less convincing if the
point (x̃, t̃) happens to lie precisely on one of the lateral boundaries: x = 0 or x = 1.
For example, when we let x̃ = 0, the distance from (x̃, t̃) to any fixed location x > 0
(and in particular, to the right endpoint x = 1) measured in the number of grid cells
will again increase with no bound as h −→ 0. Yet the number of grid cells to the
left endpoint x = 0 will not change and will remain equal to zero. In other words,
the point (x̃, t̃) will never be far from the left boundary, no matter how fine the grid
may be. Consequently, we can no longer expect that perturbations of the solution to
problem (10.124) near x̃ = 0 will behave similarly to perturbations of the solution to
equation (10.109), as the latter is formulated on the grid infinite in both directions.

Instead, we shall rather expect that over the short periods of time the perturbations
of the solution to problem (10.124) near the left endpoint x = 0 will develop analo-
gously to perturbations of the solution to the following constant-coefficient problem:
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m − up
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τ
− a(0, t̃)
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m+1− 2up

m+ up
m−1

h2
= 0,

l1u
p+1
0 = 0, m = 0,1,2, . . . , p≥ 0.

(10.125)

Problem (10.125) is formulated on the semi-infinite grid: m = 0,1,2, . . . (i.e., semi-
infinite line x≥ 0). It is obtained from the original problem (10.124) by freezing the
coefficient a(x, t) at the left endpoint of the interval 0≤ x≤ 1 and by simultaneously
“pushing” the right boundary off all the way to +∞. Problem (10.125) shall be
analyzed only for those grid functions up = {up

0 ,u
p
1 , . . .} that satisfy:

up
m −→ 0, as m−→+∞. (10.126)

Indeed, only in this case will the perturbation be concentrated near the left boundary
x = 0, and only for the perturbations of this type will the problems (10.124) and
(10.125) be similar to one another in the vicinity of x = 0.

Likewise, the behavior of perturbations to the solution of problem (10.124) near
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the right endpoint x = 1 should resemble that for the problem:

up+1
m − up

m

τ
− a(1, t̃)

up
m+1− 2up

m + up
m−1

h2
= 0,

l2u
p+1
M = 0, m = . . . ,−2,−1,0,1,2, . . . ,M, p≥ 0,

(10.127)

that has only one boundary at m = M. Problem (10.127) is derived from problem
(10.124) by freezing the coefficient a(x, t) at the right endpoint of the interval 0 ≤
x ≤ 1 and by simultaneously pushing the left boundary off all the way to −∞. It
should be considered only for the grid functions up = {. . . ,up

−1,u
p
0 ,u

p
1 , . . . ,u

p
M} that

satisfy:
up

m −→ 0, as m−→−∞. (10.128)

The three problems: (10.109), (10.125), and (10.127), are easier to investigate
than the original problem (10.124), because they are all h independent provided that
r = τ/h2 = const, and they all have constant coefficients.
Thus, the issue of studying stability for the scheme (10.124), with the effect of the

boundary conditions taken into account, can be addressed as follows. One needs to
formulate three auxiliary problems: (10.109), (10.125), and (10.127). For each of
these three h independent problems, one needs to find all those numbers λ (eigen-
values of the transition operator from up to up+1), for which solutions of the type

up
m = λ pu0m (10.129)

exist. In doing so, for problem (10.109), the function u0 = {u0m}, m = 0,±1,±2, . . .,
has to be bounded on the grid. For problem (10.125), the grid function u0 = {u0m},
m ≥ 0, has to satisfy: u0m −→ 0 as m −→ +∞, and for problem (10.125), the grid
function u0 = {u0m}, m ≤ M, has to satisfy: u0m −→ 0 as m −→ −∞. For scheme
(10.124) to be stable, it is necessary that the overall spectrum of the difference ini-
tial boundary value problem, i.e., all eigenvalues of all three problems: (10.109),
(10.125), and (10.127), belong to the unit disk: |λ | ≤ 1, on the complex plane. This
is the Babenko-Gelfand stability criterion. Note that problem (10.109) has to be
considered for every fixed x̃ ∈ (0,1) and all t̃.

REMARK 10.1 Before we continue to study problem (10.124), let us
present an important intermediate conclusion that can already be drawn based
on the foregoing qualitative analysis. For stability of the pure Cauchy problem
(10.108) that has no boundary conditions it is necessary that finite-difference
equations (10.109) be stable in the von Neumann sense ∀(x̃, t̃). This require-
ment remains necessary for stability of the initial boundary value problem
(10.124) as well. Moreover, when boundary conditions are present, two more
auxiliary problems: (10.125) and (10.127), have to be stable in a similar sense.
Therefore, adding boundary conditions to a finite-difference Cauchy problem
will not, generally speaking, improve its stability. Boundary conditions may ei-
ther remain neutral or hamper the overall stability if, for example, problem
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(10.109) appears stable but one of the problems (10.125) or (10.127) happens
to be unstable. Later on, we will discuss this phenomenon in more detail.

Let us now assume for simplicity that a(x, t) ≡ 1 in problem (10.124), and let us
calculate the spectra of the three auxiliary problems (10.109), (10.125), and (10.127)
for various boundary conditions l1u

p+1
0 = 0 and l2u

p+1
M = 0.

Substituting the solution in the form up
m = λ pum into the finite-difference equation

(10.109), we obtain:

(λ − 1)um− r(um+1− 2um+ um−1) = 0, r = τ/h2,

which immediately yields:

um+1− λ − 1+ 2r
r

um + um−1 = 0. (10.130)

This is a second order homogeneousordinary difference equation. To find the general
solution of equation (10.130) we write down its algebraic characteristic equation:

q2− λ − 1+ 2r
r

q+ 1= 0. (10.131)

If q is a root of the quadratic equation (10.131), then the grid function

up
m = λ pqm

solves the homogeneous finite-difference equation:

up+1
m − up

m

τ
− up

m+1− 2up
m+ up

m−1
h2

= 0. (10.132)

If |q|= 1, i.e., if q = eiα , then the grid function

up
m = λ peiαm,

which is obviously bounded for m −→ +∞ and m −→ −∞, yields the solution of
equation (10.132), provided that

λ = 1− 4r sin2
α
2
, 0≤ α < 2π ,

see Example 6 of Section 10.3.3. These λ = λ (α) fill the interval 1− 4r ≤ λ ≤ 1
of the real axis, see Figure 10.8 on page 357. Therefore, interval 1− 4r ≤ λ ≤ 1
is the spectrum of problem (10.109) for a(x̃, t̃) = 1, i.e., of problem (10.132). This
problem has no eigenvalues that lie outside of the interval 1−4r≤ λ ≤ 1, because if
the characteristic equation (10.131) does not have a root qwith |q|= 1, then equation
(10.130) may have no solution bounded for m−→±∞.
If λ does not belong to the interval 1−4r≤ λ ≤ 1, then the absolute values of both

roots of the characteristic equation (10.131) differ from one. Their product, however,
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is still equal to one, see equation (10.131). Consequently, the absolute value of the
first root of equation (10.131) will be greater than one, while that of the second root
will be less than one. Let us denote |q1(λ )|< 1 and |q2(λ )|> 1. The general solution
of equation (10.130) has the form:

um = c1q
m
1 + c2q

m
2 ,

where c1 and c2 are arbitrary constants. Accordingly, the general solution that satis-
fies additional constraint (10.126), i.e., that decays as m−→+∞, is written as

um = c1q
m
1 , |q1|= |q1(λ )|< 1,

and the general solution that satisfies additional constraint (10.128), i.e., that decays
as m−→−∞, is given by

um = c2q
m
2 , |q2|= |q2(λ )|> 1.

To calculate the eigenvalues of problem (10.125), one needs to substitute up
m =

c1λ pqm
1 into the left boundary condition l1u0 = 0 and find those q1 and λ , for which

it is satisfied. If, for example, l1u0 ≡ u0 = 0, then c1λ pq01 = 0 implies λ = 0, because
c1 = 0 would mean a zero eigenfunction. Thus, λ = 0 is an eigenvalue provided
that r < 1/4, because only in this case for λ = 0 we may have |q1| < 1. Other-
wise, problem (10.125) has no eigenvalues. Likewise, if l1u0 ≡ u1− u0 = 0, then
c1λ p(q1− q01) = c1λ p(q1− 1) = 0 yields either λ = 0 for r < 1/4 or otherwise no
eigenvalues because c1 �= 0 and q1 �= 1. If, however, l1u0 ≡ 2u1− u0 = 0, then con-
dition c1λ p(2q1−q01) = c1λ p(2q1−1) = 0 is satisfied for c1 �= 0 and q1 = 1/2< 1.
Substituting q1 = 1/2 into the characteristic equation (10.131) we find that

λ = 1+ r

(
q1− 2+ 1

q1

)
= 1+

r
2
.

This is the only eigenvalue of problem (10.125). It does not belong to the unit disk
on the complex plane, and therefore the necessary stability condition is violated.
The eigenvalues of the auxiliary problem (10.127) are calculated analogously.

They are found from the equation l2uM = 0 when

um = c2q
m
2 , |q2|= |q2(λ )|> 1, m = M,M− 1,M− 2, . . . .

For stability, it is necessary that they all belong to the unit disk on the complex plane.
We can now provide more specific comments following Remark 10.1. When

boundary condition l1u0 ≡ 2u1− u0 = 0 is employed in problem (10.125) then the
solution that satisfies condition (10.126) is found in the form up

m = λ pqm
1 , where

q1 = 1/2 and λ = 1+ r/2> 1. This solution is only defined for m≥ 0. If, however,
we were to extend it to the region m < 0, we would have obtained an unbounded
function: up

m −→∞ as m−→−∞. In other words, the function up
m = λ pqm

1 cannot be
used in the framework of the standard von Neumann analysis of problem (10.109).
This consideration leads to a very simple explanation of the mechanism of instabil-

ity. The introduction of a boundary condition merely expands the pool of candidate
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functions, on which the instability may develop. In the pure von Neumann case, with
no boundary conditions, we have only been monitoring the behavior of the harmon-
ics eiαm that are bounded on the entire grid m = 0,±1,±2, . . .. With the boundary
conditions present, we may need to include additional functions that are bounded on
the semi-infinite grid, but unbounded if extended to the entire grid. These functions
do not belong to the von Neumann category. If any of them brings along an unstable
eigenvalue |λ | > 1, such as λ = 1+ r/2, then the overall scheme becomes unstable
as well. We therefore re-iterate that if the scheme that approximates some Cauchy
problem is supplemented by boundary conditions and thus transformed into an initial
boundary value problem, then its stability will not be improved. In other words, if
the Cauchy problem was stable, then the initial boundary value problem may either
remain stable or become unstable. If, however, the Cauchy problem is unstable, then
the initial boundary value problem will not become stable.
Our next example will be the familiar first order upwind scheme, but built on a

finite grid: xm = mh, m = 0,1,2, . . . ,M, Mh = 1, rather than on the infinite grid
m = 0,±1,±2, . . .:

up+1
m − up

m

τ
− up

m+1− up
m

h
= 0,

m = 0,1,2, . . . ,M− 1, p = 0,1,2, . . . , [T/τ]− 1,
u0m = ψ(xm), up+1

M = 0.

(10.133)

Scheme (10.133) approximates the following first order hyperbolic initial boundary
value problem:

∂u
∂ t
− ∂u

∂x
= 0, 0≤ x≤ 1, 0< t ≤ T,

u(x,0) = ψ(x), u(1, t) = 0,

on the interval 0 ≤ x ≤ 1. To investigate stability of scheme (10.133), we will em-
ploy the Babenko-Gelfand criterion. In other words, we will need to analyze three
auxiliary problems: A problem with no lateral boundaries:

up+1
m − up

m

τ
− up

m+1− up
m

h
= 0,

m = 0,±1,±2, . . . ,
(10.134)

a problem with only the left boundary:

up+1
m − up

m

τ
− up

m+1− up
m

h
= 0,

m = 0,1,2, . . . ,
(10.135)

and a problem with only the right boundary:

up+1
m − up

m

τ
− up

m+1− up
m

h
= 0,

m = M− 1,M− 2, . . . ,1,0,−1, . . . ,
up+1

M = 0.

(10.136)
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Note that we do not set any boundary condition at the left boundary in problem
(10.135) as we did not have any in the original problem (10.133) either.
We will need to find spectra of the three transition operators from up to up+1

that correspond to the three auxiliary problems (10.134), (10.135), and (10.136),
respectively, and determine under what conditions will all the eigenvalues belong to
the unit disk |λ | ≤ 1 on the complex plane.
Substituting a solution of the type:

up
m = λ pum

into the finite-difference equation:

up+1
m = (1− r)up

m + rup
m+1, r = τ/h,

that corresponds to all three problems (10.134), (10.135), and (10.136), we obtain
the following first order ordinary difference equation for the eigenfunction {um}:

(λ − 1+ r)um− rum+1 = 0. (10.137)

Its characteristic equation:
λ − 1+ r− rq= 0 (10.138)

yields the relation between λ and q, so that the general solution of equation (10.137)
can be written as

um = cqm = c

(
λ − 1+ r

r

)m

, m = 0,±1,±2, . . . , c = const.

When |q|= 1, i.e., when q = eiα , 0≤ α < 2π , we have:

λ = 1− r+ reiα .

The point λ = λ (α) sweeps the circle of radius r centered at the point (1−r,0) on the
complex plane. This circle gives the spectrum, i.e., the full set of eigenvalues, of the
first auxiliary problem (10.134), see Figure 10.11(a). It is clearly the same spectrum
as we have discussed in Section 10.3.2, see formula (10.77) and Figure 10.5(a).

λ

0

r

1−r 1 Reλ

Im

(a) Problem (10.134)

0

r

1−r 1 Reλ

Imλ

(b) Problem (10.135)

0 1 Reλ

Imλ

(c) Problem (10.136)

FIGURE 10.11: Spectra of auxiliary problems for the upwind scheme (10.133).
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As far as the second auxiliary problem (10.135), we need to look for its non-trivial
solutions that would decrease as m−→ +∞, see formula (10.126). Such a solution,
um = cλ pqm, obviously exists for any q: |q|< 1. The corresponding eigenvalues λ =
λ (q) = 1− r+ rq fill the interior of the disk bounded by the circle λ = 1− r+ reiα

on the complex plane, see Figure 10.11(b).
Solutions of the third auxiliary problem (10.136) that would satisfy (10.128), i.e.,

that would decay as m −→−∞, must obviously have the form: up
m = cλ pqm, where

|q| > 1 and the relation between λ and q is, again, given by formula (10.138). The
homogeneous boundary condition up+1

M = 0 of (10.136) implies that a non-trivial
eigenfunction um = cqm may only exist when λ = λ (q) = 0, i.e., when q= (r−1)/r.
The quantity q given by this expression may have its absolute value greater than one
if either of the two inequalities holds:

r− 1
r

> 1 or
r− 1

r
<−1.

The first inequality has no solutions. The solution to the second inequality is r <
1/2. Consequently, when r < 1/2, problem (10.136) has the eigenvalue λ = 0, see
Figure 10.11(c).
In Figure 10.12, we are schematically showing the combined sets of all eigenval-

ues, i.e., combined spectra, for problems (10.134), (10.135), and (10.136) for the
three different cases: r < 1/2, 1/2< r < 1, and r > 1.

0 1 Reλ

Imλ

(a) r < 1/2

0 1 Reλ

Imλ

(b) 1/2< r < 1

0 1 Reλ

Imλ

(c) r > 1

FIGURE 10.12: Combined spectra of auxiliary problems for scheme (10.133).

It is clear that the combined eigenvalues of all three auxiliary problems may only
belong to the unit disk |λ | ≤ 1 on the complex plane if r≤ 1. Therefore, condition r≤
1 is necessary for stability of the difference initial boundary value problem (10.133).
Compared to the von Neumann stability condition of Section 10.3, the key dis-

tinction of the Babenko-Gelfand criterion is that it takes into account the boundary
conditions for unsteady finite-difference equations on finite intervals. This criterion
can also be generalized to systems of such equations. In this case, a scheme that
may look perfectly natural and “benign” at a first glance, and that may, in particular,
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satisfy the von Neumann stability criterion, could still be unstable because of a poor
approximation of the boundary conditions. Consequently, it is important to be able
to build schemes that are free of this shortcoming.
In [GR87], the spectral criterion of Babenko and Gelfand is discussed from a

more general standpoint, using a special new concept of the spectrum of a family
of operators introduced by Godunov and Ryaben’kii. In this framework, one can
rigorously prove that the Babenko-Gelfand criterion is necessary for stability, and
also that when it holds, stability cannot be disrupted too severely. In the next section,
we reproduce key elements of this analysis, while referring the reader to [GR87,
Chapters 13 & 14] and [RM67, § 6.6 & 6.7] for further detail.

10.5.2 Spectra of the Families of Operators. The Godunov-
Ryaben’kii Criterion

In this section, we briefly describe a rigorous approach, due to Godunov and
Ryaben’kii, for studying stability of evolution-type finite-difference schemes on fi-
nite intervals. In other words, we study stability of the discrete approximations
to initial boundary value problems for hyperbolic and parabolic partial differential
equations. This material is more advanced, and can be skipped during the first read-
ing.
As we have seen previously, for evolution finite-difference schemes the discrete

solution u(h) = {up
m}, which is defined on a two-dimensional space-time grid:

(xm, tp)≡ (mh, pτ), m = 0,1, . . . ,M, p = 0,1, . . . , [T/τ],

gets naturally split or “stratified” into a collection of one-dimensional grid functions
{up} defined for individual time layers tp, p = 0,1, . . . , [T/τ]. For example, the first
order upwind scheme:

up+1
m − up

m

τ
− up

m+1− up
m

h
= ϕ p

m,

m = 0,1,2, . . . ,M− 1, p = 0,1,2, . . . , [T/τ]− 1,
u0m = ψm, up+1

M = χ p+1,

(10.139)

for the initial boundary value problem:

∂u
∂ t
− ∂u

∂x
= ϕ(x, t), 0≤ x≤ 1, 0< t ≤ T,

u(x,0) = ψ(x), u(1, t) = χ(t),

can be written as:

up+1
m =

[
(1− r)up

m+ rup
m+1

]
+ τϕ p

m, m = 0,1, . . . ,M− 1,
up+1

M = χ p+1, u0m = ψm, m = 0,1, . . . ,M,
(10.140)
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where r = τ/h. Form (10.140) suggests that the marching procedure for scheme
(10.139) can be interpreted as consecutive computation of the grid functions:

u0,u1, . . . ,up, . . . ,u[T/τ],

defined on identical one-dimensional grids m = 0,1, . . . ,M that can all be identified
with one and the same grid. Accordingly, the functions up, p= 0,1, . . . , [T/τ], can be
considered elements of the linear spaceU ′h of functions u = {u0,u1, . . . ,uM} defined
on the grid m = 0,1, . . . ,M. We will equip this linear space with the norm, e.g.,

‖u‖U ′h = max
0≤m≤M

|um| or ‖u‖U ′h =
[

h
M

∑
m
|um|2

] 1
2

.

We also recall that in the definitions of stability (Section 10.1.3) and convergence
(Section 10.1.1) we employ the norm ‖u(h)‖Uh of the finite-difference solution u(h)

on the entire two-dimensional grid. Hereafter, we will only be using norms that
explicitly take into account the layered structure of the solution, namely, those that
satisfy the equality:

‖u(h)‖Uh = max
0≤p≤[T/τ]

‖up‖U ′h .

Having introduced the linear normed space U ′h, we can represent any evolution
scheme, in particular, scheme (10.139), in the canonical form:

up+1 = Rhup + τρ p,

u0 is given.
(10.141)

In formula (10.141), Rh : U ′h �−→U ′h is the transition operator between the consec-
utive time levels, and ρ p ∈U ′h. If we denote vp+1 = Rhup, then formula (10.140)
yields:

vp+1
m = (1− r)up

m + rup
m+1, m = 0,1, . . .M− 1. (10.142a)

As far as the last componentm = M of the vector vp+1, a certain flexibility exists in
the definition of the operator Rh for scheme (10.139). For example, we can set:

vp+1
M = up

M, (10.142b)

which would also imply:

ρ p
m = ϕ p

m, m = 0,1, . . .M− 1, and ρ p
M =

χ p+1− χ p

τ
, (10.142c)

in order to satisfy the first equality of (10.141).
In general, the canonical form (10.141) for a given evolution scheme is not unique.

For scheme (10.139), we could have chosen vp+1
M = 0 instead of vp+1

M = up
M in for-

mula (10.142b), which would have also implied ρ p
M = χ p+1

τ in formula (10.142c).
However, when building the operator Rh, we need to make sure that the following
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rather natural conditions hold that require certain correlation between the norms in
the spacesU ′h and Fh:

‖ρ p‖U ′h ≤ K1‖ f (h)‖Fh , p = 0,1, . . . , [T/τ],

‖u0‖U ′h ≤ K2‖ f (h)‖Fh .
(10.143)

The constants K1 and K2 in inequalities (10.143) do not depend on h or on f (h). For
scheme (10.139), if we define the norm in the space Fh as:

‖ f (h)‖Fh =maxm, p
|ϕ p

m|+maxm
|ψm|+max

p

∣∣∣∣χ p+1− χ p

τ

∣∣∣∣
and the norms of ρ p and u0 as ‖ρ p‖U ′h = max

m
|ρ p

m| and ‖u0‖U ′h = max
m
|u0m|, respec-

tively, then conditions (10.143) obviously hold for the operator Rh and the source
term ρ p defined by formulae (10.142a)–(10.142c).
Let us now take an arbitrary û0 ∈U ′h and obtain û1, û2, . . . , û[T/τ] ∈U ′h using the re-

currence formula ûp+1 = Rhûp. Denote û(h) = {ûp}[T/τ]
p=0 and evaluate f̂ (h)

def
= Lhû(h).

Along with conditions (10.143), we will also require that

‖ f̂ (h)‖Fh ≤ K3‖û0‖U ′h , (10.144)

where the constant K3 does not depend on û0 ∈U ′h or on h.
In practice, inequalities (10.143) and (10.144) prove relatively non-restrictive.7

These inequalities allow one to establish the following important theorem that pro-
vides a necessary and sufficient condition for stability in terms of the uniform bound-
edness of the powers of Rh with respect to the grid size h.

THEOREM 10.6
Assume that when reducing a given evolution scheme to the canonical form
(10.141) the additional conditions (10.143) are satisfied. Then, for stability
of the scheme in the linear sense (Definition 10.2) it is sufficient that

‖Rp
h‖ ≤ K, p = 0,1, . . . , [T/τ], (10.145)

where the constant K in formula (10.145) does not depend on h. If the third
additional condition (10.144) is met as well, then estimates (10.145) are also
necessary for stability.

Theorem 10.6 is proven in [GR87, § 41].
For scheme (10.139), estimates (10.145) can be established directly, provided that

r ≤ 1. Indeed, according to formula (10.142a), we have for m = 0,1, . . . ,M− 1:
|vp+1

m |= |(1− r)up
m + rup

m+1| ≤ (1− r+ r)max
m
|up

m|= ‖up‖U ′h ,

7The first condition of (10.143) can, in fact, be further relaxed, see [GR87, § 42].
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and according to formula (10.142b), we have for m = M:

|vp+1
M |= |up

M| ≤maxm
|up

m|= ‖up‖U ′h .

Consequently,

‖Rhup‖U ′h = ‖v
p+1‖U ′h =maxm

|vp+1
m | ≤max

m
|up

m|= ‖up‖U ′h ,

which means that ‖Rh‖ ≤ 1. Therefore, ‖Rp
h‖ ≤ ‖Rh‖p ≤ 1, and according to Theo-

rem 10.6, scheme (10.139) is stable.

REMARK 10.2 We have already seen previously that the notion of
stability for a finite-difference scheme can be reformulated as boundedness
of powers for a family of matrices. Namely, in Section 10.3.6 we discussed
stability of finite-difference Cauchy problems for systems of equations with
constant coefficients (as opposed to scalar equations). We saw that finite-
difference stability (Definition 10.2) was equivalent to stability of the corre-
sponding family of amplification matrices. The latter, in turn, is defined as
boundedness of their powers, and the Kreiss matrix theorem (Theorem 10.4)
provides necessary and sufficient conditions for this property to hold.

Transition operators Rh can also be interpreted as matrices that operate
on vectors from the space U ′h. In this perspective, inequality (10.145) implies
uniform boundedness of all powers or stability of this family of operators
(matrices). There is, however, a fundamental difference between the consider-
ations of this section and those of Section 10.3.6. The amplification matrices
that appear in the context of the Kreiss matrix theorem (Theorem 10.4) are
parameterized by the frequency α and possibly the grid size h. Yet the di-
mension of all these matrices remains fixed and equal to the dimension of
the original system, regardless of the grid size. In contradistinction to that,
the dimension of the matrices Rh is inversely proportional to the grid size h,
i.e., it grows with no bound as h−→ 0. Therefore, estimate (10.145) actually
goes beyond the notion of stability for families of matrices of a fixed dimension
(Section 10.3.6), as it implies stability (uniform bound on powers) for a family
of matrices of increasing dimension.

As condition (10.145) is equivalent to stability according to Theorem 10.6, then to
investigate stability we need to see whether inequalities (10.145) hold. Let λh be an
eigenvalue of the operator Rh, and let v(h) be the corresponding eigenvector so that
Rhv(h) = λhv(h). Then,

‖Rp
h‖‖v(h)‖ ≥ ‖Rp

h v(h)‖= |λh|p‖v(h)‖

and consequently ‖Rp
h‖ ≥ |λh|p. Since λh is an arbitrary eigenvalue, we have:

‖Rp
h‖ ≥ [max |λh|]p , p = 0,1, . . . [T/τ],
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where [max |λh|] is the largest eigenvalue of Rh by modulus. Hence, for the estimate
(10.145) to hold, it is necessary that all eigenvalues λ of the transition operator Rh

belong to the following disk on the complex plane:

|λ | ≤ 1+ c1τ, (10.146)

where the constant c1 does not depend on the grid size h (or τ). It means that inequal-
ity (10.146) must hold with one and the same constant c1 for any given transition
operator from the family {Rh} parameterized by h.
Inequality (10.146) is known as the spectral necessary condition for the uniform

boundedness of the powers ‖Rp
h‖. It is called spectral because as long as the opera-

tors Rh can be identified with matrices of finite dimension, the eigenvalues of those
matrices yield the spectra of the operators. This spectral condition is also closely
related to the von Neumann spectral stability criterion for finite-difference Cauchy
problems on infinite grids that we have studied in Section 10.3, see formula (10.81).
Indeed, instead of the finite-difference initial boundary value problem (10.139),

consider a Cauchy problem on the grid that is infinite in space:

up+1
m − up

m

τ
− up

m+1− up
m

h
= ϕ p

m,

u0m = ψm,

m = 0,±1,±2, . . . , p = 0,1,2, . . . , [T/τ]− 1.
(10.147)

The von Neumann analysis of Section 10.3.2 has shown that for stability it is neces-
sary that r = τ/h≤ 1. To apply the spectral criterion (10.146), we first reduce scheme
(10.147) to the canonical form (10.141). The operator Rh :U ′h �−→U ′h, Rhup = vp+1,
and the source term ρ p are then given by [cf. formulae (10.142)]:

vp+1
m = (1− r)up

m+ rup
m+1, ρ p

m = ϕ p
m,

m = 0,±1,±2, . . . .
The space U ′h contains infinite sequences u = {. . . ,u−m, . . . ,u−1,u0,u1, . . . ,um, . . .}.
We can supplement this space with the C norm: ‖u‖ = sup

m
|um|. The grid func-

tions u = {um}= {eiαm} then belong to the spaceU ′h for all α ∈ [0,2π) and provide
eigenfunctions of the transition operator:

Rhu = (1− r)eiαm + reiα(m+1) = [(1− r)+ reiα]eiαm = λ (α)u,

where the eigenvalues are given by:

λ (α) = (1− r)+ reiα. (10.148)

According to the spectral condition of stability (10.146), all eigenvalues must satisfy
the inequality: |λ (α)| ≤ 1+ c1τ , which is the same as the von Neumann condition
(10.78). As the eigenvalues (10.148) do not explicitly depend on the grid size, the
spectral condition (10.146) reduces here to |λ (α)| ≤ 1, cf. formula (10.79).
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Let us also recall that as shown in Section 10.3.5, the von Neumann condition
is not only necessary, but also sufficient for the l2 stability of the two-layer (one-
step) scalar finite-difference Cauchy problems, see formula (10.95). If, however, the

space U ′h is equipped with the l2 norm: ‖u‖ =
[
h∑∞

m=−∞ |um|2
]1/2

(as opposed to
the C norm), then the functions {eiαm} no longer belong to this space, and therefore
may no longer be the eigenfunctions of Rh. Nonetheless, we can show that the points
λ (α) of (10.148) still belong to the spectrum of the operator Rh, provided that the
latter is defined as traditionally done in functional analysis, see Definition 10.7 on
page 393.8 Consequently, if we interpret λ in formula (10.146) as all points of
the spectrum rather than just the eigenvalues of the operator Rh, then the spectral
condition (10.146) also becomes sufficient for the l2 stability of the Cauchy problems
(10.95) on an infinite grid m = 0,±1,±2, . . ..
Returning now to the difference equations on finite intervals and grids (as op-

posed to Cauchy problems), we first notice that one can most easily verify estimates
(10.145) when the matrices of all operators Rh happen to be normal: RhR∗h = R

∗
hRh.

Indeed, in this case there is an orthonormal basis in the space U ′h composed of the
eigenvectors of the matrix Rh, see, e.g., [HJ85, Chapter 2]. Using expansion with
respect to this basis, one can show that the spectral condition (10.146) is necessary
and sufficient for the l2 stability of an evolution scheme with normal operatorsRh on
a finite interval. More precisely, the following theorem holds.

THEOREM 10.7
Let the operators Rh in the canonical form (10.141) be normal, and let them
all be uniformly bounded with respect to the grid: ‖Rh‖≤ c2, where c2 does not
depend on h. Let also all norms be chosen in the sense of l2. Then, for the
estimates (10.145) to hold, it is necessary and sufficient that the inequalities
be satisfied:

max
n
|λn| ≤ 1+ c1τ, c1 = const, (10.149)

where λ1,λ2, . . . ,λN are eigenvalues of the matrix Rh and the constant c1 in
formula (10.149) does not depend on h.

One implication of Theorem 10.7, the necessity, coincides with the previous nec-
essary spectral condition for stability that we have justified on page 389. The other
implication, the sufficiency, is to be proven in Exercise 5 of this section. A full proof
of Theorem 10.7 can be found, e.g., in [GR87, §43].
Unfortunately, in many practical situations the operators (matrices) Rh in the

canonical form (10.141) are not normal. Then, the spectral condition (10.146) still
remains necessary for stability. Moreover, we have just seen that in the special case
of two-layer scalar constant-coefficient Cauchy problems it is also sufficient for sta-
bility and that sufficiency takes place regardless of whether or not Rh has a full sys-

8In general, the points λ = λ(α ,h) given by Definition 10.3 on page 351 will be a part of the spectrum in
the sense of its classical definition, see Definition 10.7 on page 393.
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tem of orthonormal eigenfunctions. However, for general finite-difference problems
on finite intervals the spectral condition (10.146) becomes pretty far detached from
sufficiency and provides no adequate criterion for uniform boundedness of ‖Rp

h‖.
For instance, the matrix of the transition operator Rh defined by formulae

(10.142a) and (10.142b) is given by:

Rh =

⎡
⎢⎢⎢⎢⎢⎣
1− r r 0 · · · 0 0
0 1− r r · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 1− r r
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (10.150)

Its spectrum consists of the eigenvalues λ = 1 and λ = 1− r and as such, does not
depend on h (or on τ). Consequently, for any h > 0 the spectrum of the operator Rh

consists of only these two numbers: λ = 1 and λ = 1− r. This spectrum belongs
to the unit disk |λ | ≤ 1 when 0 ≤ r ≤ 2. However, for 1 < r ≤ 2, scheme (10.139)
violates the Courant, Friedrichs, and Lewy condition necessary for stability, and
hence, there may be no stability ‖Rp

h‖ ≤ K for any reasonable choice of norms.
Thus, we have seen that the spectral condition (10.146) that employs the eigenval-

ues of the operators Rh and that is necessary for the uniform boundedness ‖Rp
h‖ ≤ K

appears too rough in the case of non-normal matrices. For example, it fails to detect
the instability of scheme (10.139) for 1< r ≤ 2.
To refine the spectral condition we will introduce a new concept. Assume, as

before, that the operator Rh is defined on a normed linear space U ′h. We will denote
by {Rh} the entire family of operatorsRh for all legitimate values of the parameter h
that characterizes the grid.9

DEFINITION 10.6 A complex number λ is said to belong to the spectrum
of the family of operators {Rh} if for any h0 > 0 and ε > 0 one can always find
such a value of h, h < h0, that the inequality

‖Rhu−λu‖U ′h < ε‖u‖U ′h
will have a solution u ∈U ′h. The set of all such λ will be called the spectrum
of the family of operators {Rh}.

The following theorem employs the concept of the spectrum of a family of opera-
tors from Definition 10.6 and provides a key necessary condition for stability.

THEOREM 10.8 (Godunov-Ryaben’kii)
If even one point λ0 of the spectrum of the family of operators {Rh} lies
outside the unit disk on the complex plane, i.e., |λ0| > 1, then there is no

9By the very nature of finite-difference schemes, h may assume arbitrarily small positive values.
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common constant K such that the inequality

‖Rp
h‖ ≤ K

will hold for all h > 0 and all integer values of p from 0 till some p = p0(h),
where p0(h)−→ ∞ as h−→ 0.

PROOF Let us first assume that no such numbers h0 > 0 and c > 0 exist
that for all h < h0 the following estimate holds:

‖Rh‖ ≤ c. (10.151)

This assumption means that there is no uniform bound on the operators
Rh themselves. As such, there may be no bound on the powers Rp

h either.
Consequently, we only need to consider the case when there are such h0 > 0
and c > 0 that for all h < h0 inequality (10.151) is satisfied.

Let |λ0| = 1+ δ , where λ0 is the point of the spectrum for which |λ0| > 1.
Take an arbitrary K > 0 and choose p and ε so that:

(1+ δ )p > 2K,

1− (1+ c+ c2+ . . .+ cp−1)ε >
1
2
.

According to Definition 10.6, one can find arbitrarily small h, for which there
is a vector u ∈U ′h that solves the inequality:

‖Rhu−λ0u‖U ′h < ε‖u‖U ′h .

Let u be the solution, and denote:

Rhu = λ0u+ z.

It is clear that ‖z‖< ε‖u‖. Moreover, it is easy to see that

Rp
h u = λ p

0 u+(λ p−1
0 z+λ p−2

0 Rhz+ . . .+Rp−1
h z).

As |λ0|> 1, we have:

‖λ p−1
0 z+λ p−2

0 Rhz+ . . .+Rp−1
h z‖ < |λ0|p(1+ ‖Rh‖+ ‖R2h‖+ . . .+ ‖Rp−1

h ‖)ε‖u‖,
and consequently,

‖Rp
hu‖> |λ0|p[1− ε(1+ c+ c2+ . . .+ cp−1)]‖u‖

> (1+ δ )p1
2
‖u‖> 2K

1
2
‖u‖= K‖u‖.

In doing so, the value of h can always be taken sufficiently small so that to
ensure p < p0(h).
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Since the value of K has been chosen arbitrarily, we have essentially proven
that for the estimate ‖Rp

h‖< K to hold, it is necessary that all points of the spectrum

of the family {Rh} belong to the unit disk |λ | ≤ 1 on the complex plane.

Next recall that the following definition of the spectrum of an operator Rh (for a
fixed h) is given in functional analysis.

DEFINITION 10.7 A complex number λ is said to belong to the spec-
trum of the operator Rh : U ′h �−→U ′h if for any ε > 0 the inequality

‖Rhu−λu‖U ′h < ε‖u‖U ′h
has a solution u ∈U ′h. The set of all such λ is called the spectrum Rh.

At first glance, comparison of the Definitions 10.6 and 10.7 may lead one to think-
ing that the spectrum of the family of operators {Rh} consists of all those and only
those points on the complex plane that are obtained by passing to the limit h −→ 0
from the points of the spectrum of Rh, when h approaches zero along all possible
sub-sequences. However, this assumption is, generally speaking, not correct.
Consider, for example, the operatorRh : U ′h �−→U ′h defined by formulae (10.142a)

and (10.142b). It is described by the matrix (10.150) and operates in the M + 1-
dimensional linear space U ′h, where M = 1/h. The spectrum of a matrix consists of
its eigenvalues, and the eigenvalues of the matrix (10.150) are λ = 1 and λ = 1− r.
These eigenvalues do not depend on h (or on τ) and consequently, the spectrum of
the operator Rh consists of only two points, λ = 1 and λ = 1− r, for any h > 0.
As, however, we are going to see (pages 397-402), the spectrum of the family of
operators {Rh} contains not only these two points, but also all points of the disk
|λ − 1+ r| ≤ r of radius r centered at the point (1− r,0) on the complex plane, see
Figure 10.12 on page 384. When r≤ 1, the spectrum of the family of operators {Rh}
belongs to the unit disk |λ | ≤ 1, see Figures 10.12(a) and 10.12(b). However, when
r > 1, this necessary spectral condition of stability does not hold, see Figure 10.12(c),
and the inequality ‖Rp

h‖ ≤ K can not be satisfied uniformly with respect to h.
Before we accurately compute the spectrum of the family of operators {Rh} given

by formula (10.150), let us qualitatively analyze the behavior of the powers ‖Rp
h‖ for

r > 1 and also show that the necessary stability criterion given by Theorem 10.8 is,
in fact, rather close to sufficient.
We first notice that for any h > 0 there is only one eigenvalue of the matrix Rh that

has unit modulus: λ = 1, and that the similarity transformation S−1h RhSh, where

Sh =

⎡
⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0 1
0 1 0 · · · 0 1
...
...
...
. . .

...
...

0 0 0 · · · 1 1
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦ and S−1h =

⎡
⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
...
...
...
. . .

...
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,
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reduces this matrix to the block-diagonal form:

S−1h RhSh =

⎡
⎢⎢⎢⎢⎢⎣
1− r r 0 · · · 0 0
0 1− r r · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 1− r 0
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦≡ Bh.

When 1 < r < 2, we have |1− r|< 1 for the magnitude of the diagonal entry 1− r.
Then, it is possible to prove that Bp

h −→ diag{0,0, . . . ,0,1} as p −→ ∞ (see The-
orem 6.2 on page 178). In other words, the limiting matrix of Bp

h for the powers
p approaching infinity has only one non-zero entry equal to one at the lower right
corner. Consequently,

lim
p→∞

Rp
h =

⎡
⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0 1
0 0 0 · · · 0 1
...
...
...
. . .

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

and as such, lim
p→∞
‖Rp

h‖= 1. We can therefore see that regardless of the value of h, the

norms of the powers of the transition operator Rh approach one and the same finite
limit. In other words, we can write lim

pτ→∞
‖Rp

h‖ = 1, and this “benign” asymptotic

behavior of ‖Rp
h‖ for large pτ is indeed determined by the eigenvalues λ = 1− r and

λ = 1 that belong to the unit disk.

h

pτ0

1

||R p
h
||

||R

pppp

p ||
1

||R p ||
2

||R p ||
3h

h

FIGURE 10.13: Schematic behavior of the pow-
ers ‖Rp

h‖ for 1< r < 2 and h3 < h2 < h1.

The fact that the spectrum of
the family of operators {Rh}
does not belong to the unit disk
for r > 1 manifests itself in the
behavior of ‖Rp

h‖ for h −→ 0
and for moderate (not so large)
values of pτ . The maximum
value of ‖Rp

h‖ on the interval
0 < pτ < T , where T is an ar-
bitrary positive constant, will
rapidly grow as h decreases,
see Figure 10.13. This is pre-
cisely what leads to the insta-
bility, whereas the behavior of
‖Rp

h‖ as pτ −→∞, which is re-
lated to the spectrum of each
individual operator Rh, is not
important from the standpoint
of stability.
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Let us also emphasize that even though from a technical point of view Theo-
rem 10.8 only provides a necessary condition for stability, this condition, is, in fact,
not so distant from sufficient. More precisely, the following theorem holds.

THEOREM 10.9
Let the operators Rh be defined on a linear normed space U ′h for each h > 0,
and assume that they are uniformly bounded with respect to h:

‖Rh‖ ≤ c. (10.152)

Let also the spectrum of the family of operators {Rh} belong to the unit disk
on the complex plane: |λ | ≤ 1.

Then for any η > 0, the norms of the powers of operators Rh satisfy the
estimate:

‖Rp
h‖ ≤ A(η)(1+η)p, (10.153)

where A = A(η) may depend on η, but does not depend on the grid size h.

Theorem 10.9 means that having the spectrum of the family of operators {Rh} lie
inside the unit disk is not only necessary for stability, but it also guarantees us from
a catastrophic instability. Indeed, if the conditions of Theorem 10.9 hold, then the
quantity max

1≤p≤[T/τ]
‖Rp

h‖ either remains bounded as h −→ 0 or increases, but slower

than any exponential function, i.e., slower than any (1+η)[T/τ], where η > 0 may
be arbitrarily small.

PROOF Let us first show that if the spectrum of the family of operators
{Rh} belongs to the disk |λ | ≤ ρ , then for any given λ that satisfies the
inequality |λ | ≥ ρ +η , η > 0, there are the numbers A = A(η) and h0 > 0 such
that ∀h < h0 and ∀u ∈U ′h, u �= 0, the following estimate holds:

‖Rhu−λu‖U ′h >
ρ +η
A(η)

‖u‖U ′h . (10.154)

Assume the opposite. Then there exist: η > 0; a sequence of real numbers
hk > 0, hk −→ 0 as k −→ ∞; a sequence of complex numbers λk, |λk| > ρ +η ;
and a sequence of vectors uhk ∈U ′hk

such that:

‖Rhk uhk −λkuhk‖U ′hk
<

ρ +η
k
‖uhk‖U ′hk

. (10.155)

For sufficiently large values of k, for which ρ+η
k < 1, the numbers λk will not

lie outside the disk |λ | ≤ c+1 by virtue of estimate (10.152), because outside
this disk we have:

‖Rhkuhk −λuhk‖U ′hk
≥ (|λ |−‖Rhk‖

)‖uhk‖U ′hk
≥ ‖uhk‖U ′hk

.
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Therefore, the sequence of complex numbers λk is bounded and as such, has
a limit point λ̃ , |λ̃ | ≥ ρ + η . Using the triangle inequality, we can write:
‖Rhk uhk − λkuhk‖U ′hk

≥ ‖Rhk uhk − λ̃uhk‖U ′hk
− |λk− λ̃ |‖uhk‖U ′hk

. Substituting into

inequality (10.155), we obtain:

‖Rhk uhk − λ̃uhk‖U ′hk
<
[ ρ +η

k
+ |λk− λ̃ |︸ ︷︷ ︸

ε

]
‖u‖U ′hk

.

Therefore, according to Definition 10.6 the point λ̃ belongs to the spectrum of
the family of operators {Rh}. This contradicts the previous assumption that
the spectrum belongs to the disk |λ | ≤ ρ .

Now let R be a linear operator on a finite-dimensional normed space U ,
R : U �−→U . Assume that for any complex λ , |λ | ≥ γ > 0, and any u ∈U the
following inequality holds for some a = const> 0:

‖Ru−λu‖ ≥ a‖u‖. (10.156)

Then,

‖Rp‖ ≤ γ p+1

a
, p = 1,2, . . . . (10.157)

Inequality (10.157) follows from the relation:

Rp =− 1
2π i

∮
|λ |=γ

λ p(R−λ I)−1dλ (10.158)

combined with estimate (10.156), because the latter implies that ‖(R−
λ I)−1‖ ≤ 1

a . To prove estimate (10.153), we set R = Rh, ρ = 1 so that
|λ | ≥ 1+η = γ, and use (10.154) instead of (10.156). Then estimate (10.157)
coincides with (10.153).

It only remains to justify equality (10.158). For that purpose, we will use
an argument similar to that used when proving Theorem 6.2. Define

up+1 = Rup and w(λ ) =
∞

∑
p=0

up

λ p ,

where the series converges uniformly at least for all λ ∈C, |λ |> c, see formula
(10.152). Multiply the equality up+1 = Rup by λ−p and take the sum with
respect to p from p = 0 to p = ∞. This yields:

λw(λ )−λu0 = Rw(λ ),

or alternatively,

(R−λ I)w(λ ) =−λu0, w(λ ) =−λ (R−λ I)−1u0.
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From the definition of w(λ ) it is easy to see that −up is the residue of the
vector-function λ p−1w(λ ) at infinity:

up =
1
2π i

∮
|λ |=γ

λ p−1w(λ )dλ =− 1
2π i

∮
|λ |=γ

λ p(R−λ I)−1u0dλ .

As up = Rpu0, the last equality is equivalent to (10.158).

Altogether, we have seen that the question of stability for evolution finite-
difference schemes on finite intervals reduces to studying the spectra of the families
of the corresponding transition operators {Rh}. More precisely, we need to find out
whether the spectrum for a given family of operators {Rh} belongs to the unit disk
|λ | ≤ 1. If it does, then the scheme is either stable or, in the worst case scenario, it
may only develop a mild instability.
Let us now show how we can actually calculate the spectrum of a family of oper-

ators. To demonstrate the approach, we will exploit the previously introduced exam-
ple (10.142a), (10.142b). It turns out that the algorithm for computing the spectrum
of the family of operators {Rh} coincides with the Babenko-Gelfand procedure de-
scribed in Section 10.5.1. Namely, we need to introduce three auxiliary operators:←→
R ,
−→
R , and

←−
R . The operator

←→
R , v =

←→
R u, is defined on the linear space of bounded

grid functions u = {. . . ,u−1,u0,u1, . . .} according to the formula:

vm = (1− r)um+ rum+1, m = 0,±1,±2, . . . , (10.159)

which is obtained from (10.142a), (10.142b) by removing both boundaries. The
operator

−→
R is defined on the linear space of functions u = {u0,u1, . . . ,um, . . .} that

vanish at infinity: |um| −→ 0 as m−→+∞. It is given by the formula:

vm = (1− r)um+ rum+1, m = 0,1,2, . . . , (10.160)

which is obtained from (10.142a), (10.142b) by removing the right bound-
ary. Finally, the operator

←−
R is defined on the linear space of functions

{. . . ,um, . . . ,u0, . . . ,uM−1,uM} that satisfy: |um| −→ 0 as m −→−∞. It is given by
the formula:

vm =(1− r)um+ rum+1, m = . . . ,−1,0,1, . . . ,M− 1,
vM =uM,

(10.161)

which is obtained from (10.142a), (10.142b) by removing the left boundary. Note
that the spaces of functions for the operators

−→
R and

←−
R are defined on semi-infinite

grids m = 0,1,2, . . . and m = . . . ,−1,0,1, . . . ,M, respectively.
None of the operators

←→
R ,
−→
R , or

←−
R depend on h. We will show that the combina-

tion of all eigenvalues of these three auxiliary operators yields the spectrum of the
family of operators {Rh}. In Section 10.5.1, we have, in fact, already computed the
eigenvalues of the operators

←→
R and

−→
R . For the operator

←→
R , the eigenvalues are all



398 A Theoretical Introduction to Numerical Analysis

those and only those complex numbers λ , for which the equation
←→
R u = λu has a

bounded solution u = {um}, m = 0,±1,±2, . . .. According to (10.159), this equation
can be written as:

(1− r−λ )um+ rum+1 = 0, m = 0,±1,±2, . . . ,

and its general solution is um = cqm, where q is a root of the characteristic equation:
(1− r−λ )+ rq = 0. This solution is bounded as |m| −→ ∞ if and only if |q| = 1,
i.e., q = eiα , α ∈ [0,2π). The corresponding eigenvalues are given by:

λ = 1− r+ rq = 1− r+ reiα , α ∈ [0,2π).

The curve λ = λ (α) is a circle of radius r on the complex plane centered at the point

(1− r,0), see Figure 10.11(a). We will denote this circle by
←→
Λ .

The eigenvalues of the operator
−→
R are all those and only those complex numbers

λ , for which the equation
−→
R u = λu has a solution u = {u0,u1, . . . ,um, . . .} that sat-

isfies lim
m→+∞

|um|= 0. Recasting this equation with the help of formula (10.160), we
have:

(1− r−λ )um+ rum+1 = 0, m = 0,1,2, . . . .

The solution um = cqm may only be bounded as m −→ +∞ if |q| < 1. The corre-
sponding eigenvalues λ = 1− r+ rq completely fill the interior of the disk of radius
r centered at the point (1− r,0), see Figure 10.11(b). We will denote this set by

−→
Λ .

The eigenvalues of the operator
←−
R are computed similarly. Using formula

(10.161), we can write equation
←−
R u = λu as follows:

(1− r−λ )um+ rum+1 =0, m = . . . ,−1,0,1, . . . ,M− 1,
(1−λ )uM =0.

The general solution of the first equation from this pair is um = cqm, and the relation
between λ and q is λ = 1− r+ rq. The solution um = cqm may only vanish as m−→
−∞ if |q|> 1. The second equation provides an additional constraint (1−λ )qM = 0
so that λ = 1. However, for this particular λ we also have q = 1, which implies
no decay as m −→ −∞. We therefore conclude that the equation

←−
R u = λu has no

solutions u = {um} that satisfy lim
m→−∞

|um|= 0, i.e., there are no eigenvalues:←−Λ = /0.

The combination of all eigenvalues Λ =
←→
Λ ∪−→Λ ∪←−Λ is the disk |λ − (1− r)| ≤ r

on the complex plane; it is centered at (1− r,0) and has radius r. We will now show
that the spectrum of the family of operators {Rh} coincides with the set Λ. This is
equivalent to showing that every point λ0 ∈ Λ belongs to the spectrum of {Rh} and
that this spectrum contains no other points.
According to Definition 10.6, to prove the first implication it is sufficient to

demonstrate that for any ε > 0 the inequality

‖Rhu−λ0u‖U ′h < ε‖u‖U ′h (10.162)
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has a solution u ∈U ′h for all sufficiently small h > 0. As λ0 ∈ Λ, then λ0 ∈ ←→Λ or

λ0 ∈ −→Λ , because←−Λ = /0. Note that when ε is small one may call the solution u of
inequality (10.162) “almost an eigenvector” of the operator Rh, since a solution to
the equation Rhu−λ0u = 0 is its genuine eigenvector.
Let us first assume that λ0 ∈←→Λ . To construct a solution u of inequality (10.162),

we recall that by definition of the set
←→
Λ there exists q0: |q0| = 1, such that λ0 =

1− r+ rq0 and the equation (1− r− λ0)vm + rvm+1 = 0, m = 0,±1,±2, . . ., has a
bounded solution vm = qm

0 , m = 0,±1,±2, . . .. We will consider this solution only
for m = 0,1,2, . . . ,M, while keeping the same notation v. It turns out that the vector:

v = [v0,v1,v2, . . . ,vM] =
[
1,q0,q

2
0, . . . ,q

M
0

]
almost satisfies the operator equation Rhv−λ0v = 0 that we write as:

(1− r−λ0)vm + rvm+1 =0, m = 0,1,2, . . . ,M− 1,
(1−λ0)vM =0.

The vector v would have completely satisfied the previous equation, which is an
even stronger constraint than inequality (10.162), if it did not violate the last relation
(1−λ0)vM = 0.10 This relation can be interpreted as a boundary condition for the
difference equation:

(1− r−λ0)um + rum+1 = 0, m = 0,1,2, . . . ,M− 1.
The boundary condition is specified at m = M, i.e., at the right endpoint of the in-
terval 0 ≤ x ≤ 1. To satisfy this boundary condition, let us “correct” the vector
v =

[
1,q0,q20, . . . ,q

M
0

]
by multiplying each of its components vm by the respec-

tive factor (M −m)h. The resulting vector will be denoted u = [u0,u1, . . . ,uM],
um = (M−m)hqm

0 . Obviously, the vector u has unit norm:

‖u‖U ′h =maxm
|um|=max

m
|(M−m)hqm

0 |= Mh = 1.

We will now show that this vector u furnishes a desired solution to the inequality

(10.162). Define the vector w
def
= Rhu−λ0u, w = [w0,w1, . . . ,wM]. We need to esti-

mate its norm. For the individual components of w, we have:

|wm|= |(1− r−λ0)(M−m)hqm
0 + r(M−m− 1)hqm+1

0 |
= |[(1− r−λ0)+ rq0](M−m)hqm

0 − rhqm+1
0 |

= |0 · (M−m)hqm
0 − rhqm+1

0 |= rh, m = 0,1, . . . ,M− 1,
|wM|= |uM−λ0uM|= |0−λ0 ·0|= 0.

Consequently, ‖w‖U ′h = rh, and for h < ε/r we obtain: ‖w‖U ′h = ‖Rhu−λ0u‖U ′h <
ε = ε‖u‖U ′h , i.e., inequality (10.162) is satisfied. Thus, we have shown that if λ0 ∈←→
Λ , then this point also belongs to the spectrum of the family of operators {Rh}.

10Relation (1−λ0)vM = 0 is violated unless λ0 = q0 = 1.
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Next, let us assume that λ0 ∈ −→Λ and show that in this case λ0 also belongs to the
spectrum of the family of operators {Rh}. According to (10.160), equation −→R v−
λ0v = 0 is written as:

(1− r−λ0)vm + rvm+1 = 0, m = 0,1,2, . . . .

Since λ0 ∈ −→Λ , this equation has a solution vm = qm
0 , m = 0,1,2, . . ., where |q0| < 1.

We will consider this solution only for m = 0,1,2, . . . ,M:

u = [u0,u1,u2, . . . ,uM] =
[
1,q0,q

2
0, . . . ,q

M
0

]
, ‖u‖U ′h = 1.

As before, define w
def
= Rhu−λ0u. For the components of the vector w we have:

|wm|= |(1− r−λ0)qm
0 + rqm+1

0 |= 0, m = 0,1, . . . ,M− 1,
|wM|= |1−λ0| · |qM

0 |.

Consequently, ‖w‖U ′h = |1−λ0| · |q0|M = |1−λ0| · |q0|1/h. Since |q0| < 1, then for
any ε > 0 we can always choose a sufficiently small h so that |1−λ0| · |q0|1/h < ε .
Then, ‖w‖U ′h = ‖Rhu−λ0u‖U ′h < ε = ε‖u‖U ′h and the inequality (10.162) is satisfied.
Note that if the set

←−
Λ were not empty, then proving that each of its elements

belongs to the spectrum of the family of operators {Rh} would have been similar.
Altogether, we have thus shown that in our specific example given by equations
(10.142) every λ0 ∈ {←→Λ ∪←−Λ ∪−→Λ } is also an element of the spectrum of {Rh}.
Now we need to prove that if λ0 �∈ {←→Λ ∪←−Λ ∪−→Λ } then it does not belong to the

spectrum of the family of operators {Rh} either. To that end, it will be sufficient to
show that there is an h-independent constant A, such that for any u = [u0,u1, . . . ,uM]
the following inequality holds:

‖Rhu−λ0u‖U ′h ≥ A‖u‖U ′h . (10.163)

Then, for ε < A, inequality (10.162) will have no solutions, and therefore the point
λ0 will not belong to the spectrum. Denote f = Rhu−λ0u, then inequality (10.163)
reduces to:

‖ f‖U ′h ≥ A‖u‖U ′h . (10.164)

Our objective is to justify estimate (10.164). Rewrite the equation Rhu−λ0u = f as:

(1− r−λ0)um + rum+1 = fm, m = 0,1, . . . ,M− 1,
(1−λ0)uM = fM ,

and interpret these relations as an equation with respect to the unknown u = {um},
whereas the right-hand side f = { fm} is assumed given. Let

um = vm +wm, m = 0,1, . . . ,M, (10.165)
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where vm are components of the bounded solution v = {vm}, m = 0,±1,±2, . . ., to
the following equation:

(1− r−λ0)vm + rvm+1 = f̂m
def
=

⎧⎪⎨
⎪⎩
0, if m < 0,

fm, if m = 0,1, . . . ,M− 1,
0, if m≥M.

(10.166)

Then because of the linearity, the grid function w = {wm} introduced by formula
(10.165) solves the equation:

(1− r−λ0)wm + rwm+1 =0, m = 0,1, . . . ,M− 1,
(1−λ0)wM = fM− (1−λ0)vM.

(10.167)

Let us now recast estimate (10.164) as |um| ≤ A−1max
m
| fm|. According to

(10.165), to prove this estimate it is sufficient to establish individual inequalities:

|vm| ≤A1max
m
| fm|, (10.168a)

|wm| ≤A2max
m
| fm|, (10.168b)

where A1 and A2 are constants. We begin with inequality (10.168a). Notice that
equation (10.166) is a first order constant-coefficient ordinary difference equation:

avm + bvm+1 = f̂m, m = 0,±1,±2, . . . ,
where a = 1− r−λ0, b = r. Its bounded fundamental solution is given by

Gm =

⎧⎨
⎩
1
a

(
−a

b

)m
, m≤ 0,

0, m≥ 1,

because λ0 �∈ {←→Λ ∪←−Λ ∪−→Λ }, i.e., |λ0− (1− r)| > r, and consequently |a/b| > 1.

Representing the solution vm in the form of a convolution: vm =
∞
∑

k=−∞
Gm−k f̂k and

summing up the geometric sequence we arrive at the estimate:

|vm| ≤
max

m
| f̂m|

|a|− |b| =
max

m
| fm|

|a|− |b| .

Introducing the distance δ0 between the point λ0 and the set {←→Λ ∪←−Λ ∪−→Λ }, we can
obviously claim that |a|− |b|> δ0/2, which makes the previous estimate equivalent
to (10.168a). Estimate (10.168b) can be obtained by representing the solution of
equation (10.167) in the form:

wm =
fM− (1−λ0)vM

1−λ0
qm−M
0 , (10.169)
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where q0 is determined by the relation (1− r− λ0) + rq0 = 0. Our assumption is

that λ0 �∈ {←→Λ ∪←−Λ ∪−→Λ }, i.e., that λ0 lies outside of the disk of radius r on the
complex plane centered at (1− r,0). In this case |q0| > 1. Moreover, we can say
that |1− λ0| = δ1 > 0, because if λ0 = 1, then λ0 would have belonged to the set
{←→Λ ∪←−Λ ∪−→Λ }. As such, using formula (10.169) and taking into account estimate
(10.168a) that we have already proved, we obtain the desired estimate (10.168b):

|wm|=
∣∣∣∣ fM− (1−λ0)vM

1−λ0

∣∣∣∣ · |qm−M
0 | ≤ | fM |

|1−λ0| + |vM|

≤
max

m
| fm|

δ1
+A1max

m
| fm|= A2max

m
| fm|.

We have thus proven that the spectrum of the family of operators {Rh} defined by
formulae (10.142) coincides with the set {←→Λ ∪←−Λ ∪−→Λ } on the complex plane.
The foregoing algorithm for computing the spectrum of the family of operators

{Rh} is, in fact, quite general. We have illustrated it using a particular example
of the operators defined by formulae (10.142). However, not only for this specific
example but also for other scalar one-step finite-difference schemes with constant
coefficients that do not explicitly depend on h, the spectrum of the family of oper-
ators {Rh} can be obtained by performing the same Babenko-Gelfand analysis of
Section 10.5.1. The key idea is to take into account other candidate modes that may
be prone to developing the instability, besides the eigenmodes {eiαm} of the pure
Cauchy problem that are accounted for by the von Neumann analysis.
For systems of finite-difference equations (as well as for scalar multi-step equa-

tions), the technical side of the procedure may become more involved. In this case,
the computation of the spectrum of a family of operators can be reduced to studying
uniform bounds for the solutions of certain ordinary difference equations with matrix
coefficients. A necessary and sufficient condition has been obtained in [Rya64] for
the existence of such uniform bounds. This condition is given in terms of the roots
of the corresponding characteristic equation and also involves the analysis of some
determinants originating from the matrix coefficients of the system. For further de-
tail, we refer the reader to [GR87, § 4 & § 45] and [RM67, § 6.6 & § 6.7], as well as
to the original journal publication by Ryaben’kii [Rya64].

10.5.3 The Energy Method

For some evolution finite-difference problems, one can obtain the l2 estimates of
the solution directly, i.e., without employing any special stability criteria, such as
spectral. The corresponding technique is known as the method of energy estimates.
It is useful for deriving sufficient conditions of stability, in particular, because it can
often be applied to problems with variable coefficients on finite intervals. We illus-
trate the energy method with several examples.
In the beginning, let us analyze the continuous case. Consider an initial boundary



Finite-Difference Schemes for Partial Differential Equations 403

value problem for the first order constant-coefficient hyperbolic equation:

∂u
∂ t
− ∂u

∂x
= 0, 0≤ x≤ 1, 0< t ≤ T,

u(x,0) = ψ(x), u(1, t) = 0.
(10.170)

Note that both the differential equation and the boundary condition at x = 1 in prob-
lem (10.170) are homogeneous. Multiply the differential equation of (10.170) by
u = u(x, t) and integrate over the entire interval 0≤ x≤ 1:

d
dt

1∫
0

u2(x, t)
2

dx−
1∫
0

∂
∂x

u2(x, t)
2

dx

=
d
dt
‖u( · , t)‖22

2
− u2(1, t)

2
+

u2(0, t)
2

= 0,

where ‖u( · , t)‖2 def=
(∫ 1
0 u2(x, t)dx

)1/2
is the L2 norm of the solution in space for a

given moment of time t. According to formula (10.170), the solution at x = 1 van-
ishes: u(1, t) = 0, and we conclude that d

dt ‖u( · , t)‖22≤ 0, which means that ‖u( · , t)‖2
is a non-increasing function of time. Consequently, we see that the L2 norm of the
solution will never exceed that of the initial data:

‖u( · , t)‖2 ≤ ‖ψ‖2, t ≥ 0. (10.171)

Inequality (10.171) is the simplest energy estimate. It draws its name from the fact
that the quantities that are quadratic with respect to the solution are often interpreted
as energy in the context of physics. Note that estimate (10.171) holds for all t ≥ 0
rather than only 0≤ t ≤ T .

Next, we consider a somewhat more general formulation compared to (10.170),
namely, an initial boundary value problem for the hyperbolic equation with a variable
coefficient:

∂u
∂ t
− a(x, t)

∂u
∂x

= 0, 0≤ x≤ 1, 0< t ≤ T,

u(x,0) = ψ(x), u(1, t) = 0.
(10.172)

We are assuming that ∀x∈ [0,1] and ∀t ≥ 0 : a(x, t)≥ a0> 0, so that the characteris-
tic speed is negative across the entire domain. Then, the differential equation renders
transport from the right to the left. Consequently, setting the boundary condition
u(1, t) = 0 at the right endpoint of the interval 0≤ x≤ 1 is legitimate.
Let us now multiply the differential equation of (10.172) by u = u(x, t) and inte-

grate over the entire interval 0 ≤ x ≤ 1, while also applying integration by parts to
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the spatial term:

d
dt

1∫
0

u2(x, t)
2

dx−
1∫
0

a(x, t)
∂
∂x

u2(x, t)
2

dx

=
d
dt
‖u( · , t)‖22

2
− a(1, t)

u2(1, t)
2

+ a(0, t)
u2(0, t)
2

+

1∫
0

a′x(x, t)
u2(x, t)
2

dx = 0.

Using the boundary condition u(1, t) = 0, we find:

d
dt
‖u( · , t)‖22

2
=−a(0, t)

u2(0, t)
2
−

1∫
0

a′x(x, t)
u2(x, t)
2

dx = 0.

The first term on the right-hand side of the previous equality is always non-positive.
As far as the second term, let us denote A = sup(x,t)[−a′x(x, t)]. Then we have:

d
dt
‖u( · , t)‖22 ≤ A‖u( · , t)‖22,

which immediately yields:

‖u( · , t)‖2 ≤ eAt/2‖ψ‖2, t ≥ 0.
If A < 0, the previous inequality implies that the L2 norm of the solution decays as
t −→+∞. If A = 0, then the norm of the solution stays bounded by the norm of the
initial data. To obtain an overall uniform estimate of ‖u( · , t)‖2 for A ≤ 0 and all
t ≥ 0, we need to select the maximum value of the constant: maxt eAt/2 = 1, and then
the desired inequality will coincide with (10.171). For A > 0, a uniform estimate can
only be obtained for a given fixed interval 0≤ t ≤ T , so that altogether we can write:

‖u( · , t)‖2 ≤
{
‖ψ‖2, if A≤ 0, t ≥ 0,
eAT/2‖ψ‖2, if A > 0, 0≤ t ≤ T.

(10.173)

Similarly to inequality (10.171), the energy estimate (10.173) also provides a bound
for the L2 norm of the solution in terms of the L2 norm of the initial data. However,
when A > 0 the constant in front of ‖ψ‖2 is no longer equal to one. Instead, eAT/2

grows exponentially as the maximum time T elapses, and therefore estimate (10.173)
for A > 0 may only be considered on a finite interval 0≤ t ≤ T rather than for t ≥ 0.

In problems (10.170) and (10.172) the boundary condition at x = 1 was homoge-
neous. Let us now introduce yet another generalization and analyze the problem:

∂u
∂ t
− a(x, t)

∂u
∂x

= 0, 0≤ x≤ 1, 0< t ≤ T,

u(x,0) = ψ(x), u(1, t) = χ(t)
(10.174)
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that differs from (10.172) by its inhomogeneous boundary condition: u(1, t) =
χ(t). Otherwise everything is the same; in particular, we still assume that ∀x ∈
[0,1] and ∀t ≥ 0 : a(x, t) ≥ a0 > 0 and denote A = sup(x,t)[−a′x(x, t)]. Multiplying
the differential equation of (10.174) by u(x, t) and integrating by parts, we obtain:

d
dt
‖u( · , t)‖22

2
=−a(0, t)

u2(0, t)
2

+ a(1, t)
χ2(t)
2
−

1∫
0

a′x(x, t)
u2(x, t)
2

dx = 0.

Consequently,
d
dt
‖u( · , t)‖22 ≤ A‖u( · , t)‖22+ a(1, t)χ2(t).

Multiplying the previous inequality by e−At , we have:

d
dt

[
e−At‖u( · , t)‖22

]≤ e−Ata(1, t)χ2(t),

which, after integrating over the time interval 0≤ θ ≤ t, yields:

‖u( · , t)‖22 ≤ eAt‖ψ‖22+ eAt

t∫
0

e−Aθ a(1,θ )χ2(θ )dθ .

As in the case of a homogeneous boundary condition, we would like to obtain a
uniform energy estimate for a given interval of time. This can be done if we again
distinguish between A ≤ 0 and A > 0. When A ≤ 0 we can consider all t ≥ 0 and
when A > 0 we can only have the estimate on some fixed interval 0≤ t ≤ T :

‖u( · , t)‖22 ≤

⎧⎪⎪⎨
⎪⎪⎩
‖ψ‖22+

∫ ∞

0
a(1,θ )χ2(θ )dθ , A≤ 0, t ≥ 0,

eAT

[
‖ψ‖22+

∫ T

0
a(1,θ )χ2(θ )dθ

]
, A > 0, 0≤ t ≤ T.

(10.175)

When deriving inequalities (10.175), we obviously need to assume that the integrals
on the right-hand side of (10.175) are bounded. These integrals can be interpreted
as weighted L2 norms of the boundary data χ(t). Clearly, energy estimate (10.175)
includes the previous estimate (10.173) as a particular case for χ(t)≡ 0.
All three estimates (10.171), (10.173), and (10.175) indicate that the correspond-

ing initial boundary value problem is well-posed in the sense of L2. Qualitatively,
well-posedness means that the solution to a given problem is only weakly sensitive
to perturbations of the input data (such as initial and/or boundary data). In the case of
linear evolution problems, well-posedness can, for example, be quantified by means
of the energy estimates. These estimates provide a bound for the norm of the solution
in terms of the norms of the input data. In the finite-difference context, similar esti-
mates would have implied stability in the sense of l2, provided that the corresponding
constants on the right-hand side of each inequality can be chosen independent of the
grid. We will now proceed to demonstrate how energy estimates can be obtained for
finite-difference schemes.
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Consider the first order upwind scheme for problem (10.170):

up+1
m − up

m

τ
− up

m+1− up
m

h
= 0,

m = 0,1, . . . ,M− 1, p = 0,1, . . . , [T/τ]− 1,
u0m = ψm, up

M = 0.

(10.176)

To obtain an energy estimate for scheme (10.176), let us first consider two arbitrary
functions {um} and {vm} on the grid m = 0,1,2, . . . ,M. We will derive a formula
that can be interpreted as a discrete analogue of the classical continuous integration
by parts. In the literature, it is sometimes referred to as the summation by parts:

M−1
∑

m=0

um(vm+1− vm) =
M−1
∑

m=0

umvm+1−
M−1
∑

m=0

umvm =
M

∑
m=1

um−1vm−
M−1
∑

m=0

umvm

= −
M

∑
m=1

(um− um−1)vm + uMvM− u0v0

= −
M−1
∑

m=0
(um+1− um)vm+1+ uMvM− u0v0 (10.177)

= −
M−1
∑

m=0

(um+1− um)vm−
M−1
∑

m=0

(um+1− um)(vm+1− vm)

+ uMvM− u0v0.

Next, we rewrite the difference equation of (10.176) as

up+1
m = up

m + r(up
m+1− up

m), r =
τ
h
= const, m = 0,1, . . . ,M− 1,

square both sides, and take the sum from m = 0 to m = M− 1. This yields:
M−1
∑

m=0

(
up+1

m

)2
=

M−1
∑

m=0

(up
m)
2+ r2

M−1
∑

m=0

(
up

m+1− up
m

)2
+ 2r

M−1
∑

m=0

up
m

(
up

m+1− up
m

)
.

To transform the last term on the right-hand side of the previous equality, we apply
formula (10.177):

M−1
∑

m=0

(
up+1

m

)2
=

M−1
∑

m=0
(up

m)
2+ r2

M−1
∑

m=0

(
up

m+1− up
m

)2
+ r

M−1
∑

m=0
up

m

(
up

m+1− up
m

)
+ r

[
−

M−1
∑

m=0

(
up

m+1− up
m

)
up

m−
M−1
∑

m=0

(
up

m+1− up
m

)2
+
(
up

M

)2− (up
0

)2]

=
M−1
∑

m=0

(up
m)
2+ r(r− 1)

M−1
∑

m=0

(
up

m+1− up
m

)2
+ r
(
up

M

)2− r
(
up
0

)2
.
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Let us now assume that r≤ 1. Then, using the conventional definition of the l2 norm:

‖u‖2=
[
h∑M

0 |um|2
]1/2

and employing the homogeneous boundary condition up
M = 0

of (10.176), we obtain the inequality:

‖up+1‖2 ≤ ‖up‖2, p = 0,1,2, . . . ,

which clearly implies the energy estimate:

‖up‖2 ≤ ‖ψ‖2, p = 0,1,2, . . . . (10.178)

The discrete estimate (10.178) is analogous to the continuous estimate (10.171).
To approximate the variable-coefficient problem (10.172), we use the scheme:

up+1
m − up

m

τ
− ap

m
up

m+1− up
m

h
= 0,

m = 0,1, . . . ,M− 1, p = 0,1, . . . , [T/τ]− 1,
u0m = ψm, up

M = 0,

(10.179)

where ap
m ≡ a(xm, tp). Applying a similar approach, we obtain:

M−1
∑

m=0

(
up+1

m

)2
=

M−1
∑

m=0

(up
m)
2+ r2

M−1
∑

m=0

(ap
m)
2 (up

m+1− up
m

)2
+ r

M−1
∑

m=0

ap
mup

m

(
up

m+1− up
m

)
+ r

[
−

M−1
∑

m=0

(
ap

m+1u
p
m+1− ap

mup
m

)
up

m

−
M−1
∑

m=0

(
ap

m+1u
p
m+1− ap

mup
m

)(
up

m+1− up
m

)
+ ap

M

(
up

M

)2− ap
0

(
up
0

)2]
.

Next, we notice that am+1um+1 = amum+1+(am+1− am)um+1. Substituting this ex-
pression into the previous formula, we again perform summation by parts, which is
analogous to the continuous integration by parts, and which yields:

M−1
∑

m=0

(
up+1

m

)2
=

M−1
∑

m=0
(up

m)
2+ r2

M−1
∑

m=0
(ap

m)
2 (up

m+1− up
m

)2
+ r

M−1
∑

m=0
ap

mup
m

(
up

m+1− up
m

)
+ r

[
−

M−1
∑

m=0

(
ap

m

(
up

m+1− up
m

)
+
(
ap

m+1− ap
m

)
up

m+1

)
up

m

−
M−1
∑

m=0

(
ap

m

(
up

m+1− up
m

)
+
(
ap

m+1− ap
m

)
up

m+1

)(
up

m+1− up
m

)
+ ap

M

(
up

M

)2− ap
0

(
up
0

)2]

=
M−1
∑

m=0
(up

m)
2+

M−1
∑

m=0

(
r2 (ap

m)
2− rap

m

)(
up

m+1− up
m

)2
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− r
M−1
∑

m=0

(
ap

m+1− ap
m

)(
up

m+1

)2
+ rap

M

(
up

M

)2− rap
0

(
up
0

)2
.

Let us now assume that for all m and p we have: rap
m ≤ 1. Equivalently, we can

require that r ≤ [sup(x,t) a(x, t)]−1. Let us also introduce:

A = sup
(m,p)

{
−ap

m+1− ap
m

h

}
.

Then, using the homogeneous boundary condition up
M = 0 and dropping the a priori

non-positive term ∑M−1
m=0 rap

m
(
rap

m− 1
)(

up
m+1− up

m
)2, we obtain:

M−1
∑

m=0

(
up+1

m

)2 ≤ M−1
∑

m=0
(up

m)
2+ rA

M

∑
m=0

h(up
m)
2− rap

0

(
up
0

)2− rAh
(
up
0

)2
.

If A > 0, then for the last two terms on the right-hand side of the previous inequality
we clearly have: −r

(
up
0

)2
(ap
0 + Ah) < 0. Even if A ≤ 0 we can still claim that

−r
(
up
0

)2
(ap
0 + Ah) < 0 for sufficiently small h. Consequently, on fine grids the

following inequality holds:

‖up+1‖22 ≤ ‖up‖22+ τA‖up‖22 = (1+Aτ)‖up‖22,
which immediately implies:

‖up‖22 ≤ (1+Aτ)p‖ψ‖22, p = 1,2, . . . .

If A ≤ 0, the norm of the discrete solution will either decay or remain bounded as
p increases. If A > 0, a uniform estimate of ‖up‖2 can only be obtained for p =
0,1, . . . , [T/τ]. Altogether, the solution up = {up

m} to the finite-difference problem
(10.179) satisfies the following energy estimate:

‖up‖2 ≤
{
‖ψ‖2, A≤ 0, p = 0,1,2, . . . ,

eAT/2‖ψ‖2, A > 0, p = 0,1,2, . . . , [T/τ].
(10.180)

The discrete estimate (10.180) is analogous to the continuous estimate (10.173).
Finally, for problem (10.174) we use the scheme:

up+1
m − up

m

τ
− ap

m
up

m+1− up
m

h
= 0,

m = 0,1, . . . ,M− 1, p = 0,1, . . . , [T/τ]− 1,
u0m = ψm, up

M = χ p.

(10.181)

Under the same assumptions that we introduced when deriving estimate (10.180) for
scheme (10.179), we can now write for scheme (10.181):

M−1
∑

m=0

(
up+1

m

)2 ≤ M−1
∑

m=0
(up

m)
2+ rA

M

∑
m=0

h(up
m)
2+ rap

M (χ p)2 .



Finite-Difference Schemes for Partial Differential Equations 409

Denote [‖u‖′2]2 = h
M−1
∑

m=0
|um|2 = ‖u‖22− hu2M. Then the previous inequality implies:

[‖up+1‖′2]2 ≤ (1+Aτ)[‖up‖′2]2+ τ(ap
M +Ah)(χ p)2 , p = 1,2, . . . ,

and consequently:

[‖up‖′2]2 ≤ (1+Aτ)p[‖ψ‖′2]2+
p

∑
k=1

(1+Aτ)p−kτ(ak−1
M +Ah)(χk−1)2, p = 1,2, . . . .

We again need to distinguish between the cases A ≤ 0, p = 0,1,2, . . ., and A > 0,
p = 0,1,2, . . . , [T/τ]:

[‖up‖′2]2 ≤

⎧⎪⎪⎨
⎪⎪⎩
[‖ψ‖′2]2+

∞
∑

k=1
τak−1

M (χk−1)2, A≤ 0,

eAT

(
[‖ψ‖′2]2+

[T/τ]
∑

k=1
τ(ak−1

M +Ah)(χk−1)2
)
, A > 0.

(10.182)

The discrete estimate (10.182) is analogous to the continuous estimate (10.175). To
use the norms ‖ · ‖2 instead of ‖ · ‖′2 in (10.182), we only need to add a bounded
quantity h(χ0)2+ h(χ p)2 on the right-hand side.
Energy estimates (10.178), (10.180), and (10.182) imply the l2 stability of the

schemes (10.176), (10.179), and (10.181), respectively, in the sense of the Defini-
tion 10.2 from page 312. Note that since the foregoing schemes are explicit, stability
is not unconditional, and the Courant number has to satisfy r≤ 1 for scheme (10.176)
and r ≤ [sup(x,t) a(x, t)]−1 for schemes (10.179) and (10.181).
In general, direct energy estimates appear helpful for studying stability of finite-

difference schemes. Indeed, they may provide sufficient conditions for those difficult
cases that involve variable coefficients, boundary conditions, and evenmultiple space
dimensions. In addition to the scalar hyperbolic equations, energy estimates can
be obtained for some hyperbolic systems, as well as for the parabolic equations.
For detail, we refer the reader to [GKO95, Chapters 9 & 11], and to some fairly
recent journal publications [Str94, Ols95a, Ols95b]. However, there is a key non-
trivial step in proving energy estimates for finite-difference initial boundary value
problems, namely, obtaining the discrete summation by parts rules appropriate for a
given discretization [see the example given by formula (10.177)]. Sometimes, this
step may not be obvious at all; otherwise, it may require using alternative norms
based on specially chosen inner products.

10.5.4 A Necessary and Sufficient Condition of Stability.
The Kreiss Criterion

In Section 10.5.2, we have shown that for stability of a finite-difference initial
boundary value problem it is necessary that the spectrum of the family of transition
operators Rh belongs to the unit disk on the complex plane. We have also shown,
see Theorem 10.9, that this condition is, in fact, not very far from a sufficient one,
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as it guarantees the scheme from developing a catastrophic exponential instability.
However, it is not a fully sufficient condition, and there are examples of the schemes
that satisfy the Godunov and Ryaben’kii criterion of Section 10.5.2, i.e., that have
their spectrum of {Rh} inside the unit disk, yet they are unstable.
A comprehensive analysis of the necessary and sufficient conditions of stability for

the schemes that approximate time-dependent problems on finite intervals is rather
involved. In the literature, the corresponding series of results is commonly referred
to as the Gustafsson, Kreiss, and Sundström (GKS) theory, and we refer the reader
to the monograph [GKO95, Part II] for detail. A concise narrative of this theory can
also be found in [Str04, Chapter 11]. All results of the GKS theory are formulated in
terms of the l2 norm. An important tool used for obtaining stability estimates is the
Laplace transform in time.
Although a full account of (and even a self-contained introduction to) the GKS

theory is beyond the scope of this text, its key ideas are easy to understand on the
qualitative level and easy to illustrate with examples. The following material is es-
sentially based on that of Section 10.5.2 and can be skipped during the first reading.
Let us consider an initial boundary value problem for the first order constant co-

efficient hyperbolic equation:

∂u
∂ t
− ∂u

∂x
= 0, 0≤ x≤ 1, 0< t ≤ T,

u(x,0) = ψ(x), u(1, t) = 0.
(10.183)

We introduce a uniform grid: xm = mh, m = 0,1, . . . ,M, h = 1/M; tp = pτ , p =
0,1,2, . . ., and approximate problem (10.183) with the leap-frog scheme:

up+1
m − up−1

m

2τ
− up

m+1− up
m−1

2h
= 0,

m = 1,2, . . . ,M− 1, p = 1,2, . . . , [T/τ]− 1,
u0m = ψ(xm), u1m = ψ(xm + τ), m = 0,1, . . . ,M,

lup+1
0 = 0, up+1

M = 0, p = 1,2, . . . , [T/τ]− 1.

(10.184)

Notice that scheme (10.184) requires two initial conditions, and for simplicity we
use the exact solution, which is readily available in this case, to specify u1m for
m = 0,1, . . . ,M − 1. Also notice that the differential problem (10.183) does not
require any boundary conditions at the “outflow” boundary x = 0, but the discrete
problem (10.184) requires an additional boundary condition that we symbolically
denote lup+1

0 = 0. We will investigate two different outflow conditions for scheme
(10.184):

up+1
0 =up+1

1 (10.185a)

and

up+1
0 =up

0 + r(up
1− up

0), (10.185b)
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where we have used our standard notation r = τ
h = const.

Let us first note that scheme (10.184) is not a one-step scheme, which, in partic-
ular, renders the corresponding finite-difference Cauchy problem (mildly) unstable
for r = 1, see Section 10.3.6. To reduce scheme (10.184) to the canonical form
(10.141) so that to be able to investigate the spectrum of the family of operators {Rh},
we would formally need to introduce additional variables (i.e., transform a scalar
equation into a system) and then consider a one-step finite-difference equation, but
with vector unknowns. However, it turns out that in this case the Babenko-Gelfand
procedure of Section 10.5.1 applied to the resulting vector scheme is equivalent
to the Babenko-Gelfand procedure applied directly to the scalar multi-step scheme
(10.184). As such, we will skip the formal reduction of scheme (10.184) to the
canonical form (10.141) and proceed immediately to computing the spectrum of the
corresponding family of transition operators.
We need to analyze three model problems that follow from (10.184): A problem

with no lateral boundaries:

up+1
m − up−1

m

2τ
− up

m+1− up
m−1

2h
= 0,

m = 0,±1,±2, . . . ,
(10.186)

a problem with only the left boundary:

up+1
m − up−1

m

2τ
− up

m+1− up
m−1

2h
= 0,

m = 1,2, . . . ,

lup+1
0 = 0,

(10.187)

and a problem with only the right boundary:

up+1
m − up−1

m

2τ
− up

m+1− up
m−1

2h
= 0,

m = M− 1,M− 2, . . . ,1,0,−1, . . . ,
up+1

M = 0.

(10.188)

Substituting a solution of the type:

up
m = λ pum

into the finite-difference equation:

up+1
m − up−1

m = r(up
m+1− up

m−1), r = τ/h,

that corresponds to all three problems (10.186), (10.187), and (10.188), we obtain
the following second order ordinary difference equation for the eigenfunction {um}:

(λ −λ−1)um− r(um+1− um−1) = 0. (10.189)
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Its characteristic equation:

(λ −λ−1)− r(q− q−1) = 0 (10.190a)

has two roots: q1 = q1(λ ) and q2 = q2(λ ), so that the general solution of equation
(10.189) can be written as

um = c1q
m
1 + c2q

m
2 , m = 0,±1,±2, . . . , c1 = const, c2 = const.

It will also be convenient to recast the characteristic equation (10.190a) in an equiv-
alent form:

q2− λ −λ−1

r
q− 1= 0. (10.190b)

From equation (10.190b) one can easily see that q1q2 =−1 and consequently, unless
both roots have unit magnitude, we always have |q1(λ )|< 1 and |q2(λ )|> 1.
The solution of problem (10.186) must be bounded: |um| ≤ const for m =

0,±1,±2, . . .. We therefore require that for this problem |q1| = |q2| = 1, which
means q1 = eiα , 0 ≤ α < 2π , and q2 = −e−iα . The spectrum of this problem was
calculated in Example 5 of Section 10.3.3:

←→
Λ =

{
λ (α) = ir sinα±

√
1− r2 sin2α

∣∣∣0≤ α < 2π
}
. (10.191)

Provided that r ≤ 1, the spectrum←→Λ given by formula (10.191) belongs to the unit
circle on the complex plane.
For problem (10.188), we must have um −→ 0 as m −→ −∞. Consequently, its

general solution is given by:

up
m = c2λ pqm

2 , m = M,M− 1, . . . ,1,0,−1, . . . .

The homogeneous boundary condition up+1
M = 0 of (10.184) implies that a nontrivial

eigenfunction um = c2qm
2 may only exist if λ = 0. From the characteristic equation

(10.190a) in yet another equivalent form (λ 2− 1)q− rλ (q2− 1) = 0, we conclude
that if λ = 0 then q = 0, which means that problem (10.188) has no eigenvalues:

←−
Λ = /0. (10.192)

To study problem (10.187), we first consider boundary condition (10.185a), known
as the extrapolation boundary condition. The solution of problem (10.187) must
satisfy um −→ 0 as m−→ ∞. Consequently, its general form is:

up
m = c1λ pqm

1 , m = 0,1,2, . . . .

The extrapolation condition (10.185a) implies that a nontrivial eigenfunction um =
c1qm

1 may only exist if either λ = 0 or c1(1−q1) = 0. However, we must have |q1|<
1 for problem (10.187), and as such, we see that this problem has no eigenvalues
either: −→

Λ = /0. (10.193)
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Combining formulae (10.191), (10.192), and (10.193), we obtain the spectrum of the
family of operators:

Λ =
←→
Λ ∪←−Λ ∪−→Λ =

←→
Λ .

We therefore see that according to formula (10.191), the necessary condition for
stability (Theorem 10.8) of scheme (10.184), (10.185a) is satisfied when r ≤ 1.
However, scheme (10.184), (10.185a) still turns out unstable. The instability is

not catastrophic, because according to Theorem 10.9, even if there is no uniform
bound on the powers of the transition operators, their rate of growth should still be
slower than any exponential function. Yet one can clearly see the instability in Fig-
ure 10.14, where we show the results of numerical integration of problem (10.183)
with ψ(x) = cos2πx and u(1, t) = cos2π(1+ t) so that u(x, t) = cos2π(x+ t), us-
ing scheme (10.184), (10.185a) with r = 0.95. (The actual proof of instability can
be found, e.g., in [GKO95, Section 13.1] or in [Str04, Section 11.2].) Moreover,
as r < 1, this instability cannot be attributed to the instability of the finite-difference
Cauchy problem for the leap-frog scheme in the case r = 1, which is due to a multiple
eigenvalue |λ |= 1, see Section 10.3.6.
In order to analyze what may have caused the instability of scheme (10.184),

(10.185a), let us return to the proof of Theorem 10.9. If we were able to claim
that the entire spectrum of the family of operators {Rh} lies strictly inside the unit
disk, then a straightforward modification of that proof would immediately yield a
uniform bound on the powers Rp

h . This situation, however, is generally impossible.
Indeed, in all our previous examples, the spectrum has always contained at least one
point on the unit circle: λ = 1. It is therefore natural to assume that since the points
λ inside the unit disk present no danger of instability according to Theorem 10.9,
then the potential “culprits” should be sought on the unit circle.
As the finite-difference Cauchy problem (10.186) has no multiple eigenvalues

|λ |= 1 for the case r < 1, let us revisit the problem with the left boundary (10.187).
We have shown that this problem has no nontrivial eigenfunctions in the class
um −→ 0 as m −→ ∞ and accordingly, it has no eigenvalues either, see formula
(10.193). As such, it does not contribute to the overall spectrum of the family of
operators. However, even though the boundary condition (10.185a) in the form
c1(1− q1) = 0 is not satisfied by any function um = c1qm

1 , where |q1| < 1, we see
that it is “almost satisfied” if the root q1 is close to one. Therefore, the function
um = c1qm

1 is “almost an eigenfunction” of problem (10.187), and the smaller the
quantity |1− q1|, the more of a genuine eigenfunction it becomes.
To investigate stability, we need to determine whether or not the foregoing “almost

an eigenfunction” can bring along an unstable eigenvalue, or rather “almost an eigen-
value,” |λ | > 1. By passing to the limit q1 −→ 1, we find from equation (10.190a)
that λ = 1 or λ = −1. We should therefore analyze the behavior of the quantities λ
and q in a neighborhood of each of these two values of λ , when the relation between
λ and q is given by equation (10.190a).
First recall that according to formula (10.191), if |q|= 1, then |λ | = 1 (provided

that r ≤ 1). Consequently, if |λ | > 1, then |q| �= 1, i.e., there are two distinct roots:
|q1|< 1 and |q2|> 1. In particular, when λ is near (1,0), there are still two roots —
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FIGURE 10.14: Solution of problem (10.183) with scheme (10.184), (10.185a).

one with the magnitude greater than one and the other with the magnitude less than
one. When |λ−1|−→ 0 we will clearly have |q1| −→ 1 and |q2| −→ 1. We, however,
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don’t know ahead of time which of the two possible scenarios actually takes place:

lim
|λ |>1,λ→1

q1(λ ) = 1, lim
|λ |>1,λ→1

q2(λ ) =−1 (10.194a)

or

lim
|λ |>1,λ→1

q1(λ ) =−1, lim
|λ |>1,λ→1

q2(λ ) = 1. (10.194b)

To find this out, let us notice that the roots q1(λ ) and q2(λ ) are continuous (in fact,
analytic) functions of λ . Consequently, if we take λ in the form λ = 1+η , where
|η | � 1, and if we want to investigate the root q that is close to one, then we can say
that q(λ ) = 1+ ζ , where |ζ | � 1. From equation (10.190a) we then obtain:

2η +O(η2) = 2rζ +O(ζ 2). (10.195)

Consider a special case of real η > 0, then ζ must obviously be real as well. From
the previous equality we find that ζ > 0 (because r > 0), i.e., |q| > 1. As such, we
see that if |λ |> 1 and λ −→ 1, then

{q = q(λ )−→ 1}=⇒{|q|> 1}.
Indeed, for real η and ζ , we have |q|= 1+ ζ > 1; for other η and ζ the same result
follows by continuity. Consequently, it is the root q2 that approaches (1,0) when
λ −→ 1, and the true scenario is given by (10.194b) rather than by (10.194a).
We therefore see that when a potentially “dangerous” unstable eigenvalue |λ |> 1

approaches the unit circle at (1,0): λ −→ 1, it is the grid function um = c2qm
2 , |q2|>

1, that will almost satisfy the boundary condition (10.185a), because c2(1− q2)−→
0. This grid function, however, does not satisfy the requirement um−→ 0 asm−→∞,
i.e., it does not belong to the class of functions admitted by problem (10.187). On the
other hand, the function um = c1qm

1 , |q1|> 1, that satisfies um −→ 0 as m−→∞, will
be very far from satisfying the boundary condition (10.185a) because q1 −→−1.
Next, recall that we actually need to investigate what happens when q1 −→ 1, i.e.,

when c1qm
1 is almost an eigenfunction. This situation appears opposite to the one we

have analyzed. Consequently, when q1 −→ 1 we will not have such a λ (q1) −→ 1
where |λ (q1)|> 1. Qualitatively, this indicates that there is no instability associated
with “almost an eigenfunction” um = c1qm

1 , |q1| > 1, of problem (10.187). In the
framework of the GKS theory, this assertion can be proven rigorously.
Let us now consider the second case: λ −→−1 while |λ |> 1. We need to deter-

mine which of the two scenarios holds:

lim
|λ |>1,λ→−1

q1(λ ) = 1, lim
|λ |>1,λ→−1

q2(λ ) =−1 (10.196a)

or

lim
|λ |>1,λ→−1

q1(λ ) =−1, lim
|λ |>1,λ→−1

q2(λ ) = 1. (10.196b)
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Similarly to the previous analysis, let λ =−1+η , where |η | � 1, then also q(λ ) =
1+ζ , where |ζ | � 1 (recall, we are still interested in q−→ 1). Consider a particular
case of real η < 0, then equation (10.195) yields ζ < 0, i.e., |q|< 1. Consequently,
if |λ |> 1 and λ −→−1, then

{q = q(λ )−→ 1}=⇒{|q|< 1}.

In other words, this time it is the root q1 that approaches (1,0) as λ −→−1, and the
scenario that gets realized is (10.196a) rather than (10.196b). In contradistinction to
the previous case, this presents a potential for instability. Indeed, the pair (λ ,q1),
where |q1| < 1 and |λ | > 1, would have implied the instability in the sense of Sec-
tion 10.5.2 if c1qm

1 were a genuine eigenfunction of problem (10.187) and λ if were
the corresponding genuine eigenvalue. As we know, this is not the case. However,
according to the first formula of (10.196a), the actual setup appears to be a limit of
the admissible yet unstable situation. In other words, the combination of “almost
an eigenfunction” um = c1qm

1 , |q1| < 1, that satisfies um −→ 0 as m −→ ∞ with “al-
most an eigenvalue” λ = λ (q1), |λ |> 1, is unstable. While remaining unstable, this
combination becomesmore of a genuine eigenpair of problem (10.187) as λ −→−1.
Again, a rigorous proof of the instability is given in the framework of the GKS theory
using the technique based on the Laplace transform.
Thus, we have seen that two scenarios are possible when λ approaches the unit

circle from the outside. In one case, there may be an admissible root q of the charac-
teristic equation that almost satisfies the boundary condition, see formula (10.196a),
and this situation is prone to instability. Otherwise, see formula (10.194b), there is
no admissible root q that would ultimately satisfy the boundary condition, and as
such, no instability will be associated with this λ .
In the unstable case exemplified by formula (10.196a), the corresponding limit

value of λ is called the generalized eigenvalue, see [GKO95, Chapter 13]. In partic-
ular, λ =−1 is a generalized eigenvalue of problem (10.187). We re-emphasize that
it is not a genuine eigenvalue of problem (10.187), because when λ =−1 then q1= 1
and the eigenfunction um = cqm

1 does not belong to the admissible class: um −→ 0
as m −→ ∞. In fact, it is easy to see that ‖u‖2 = ∞. However, it is precisely this
generalized eigenvalue that causes the instability even when the entire spectrum of
the family of operators {Rh} belongs to the unit disk and r < 1.
Accordingly, the Kreiss necessary and sufficient condition of stability requires that

the spectrum of the family of operators be confined to the unit disk as before, and
additionally, that the scheme should have no generalized eigenvalues |λ |= 1. In the
case of systems, the discrete Cauchy problem must also be stable in the sense of
Theorem 10.4 (which, for the leap-frog scheme, means r < 1). Scheme (10.184),
(10.185a) violates the Kreiss condition as it has a generalized eigenvalue λ = −1.
Hence, it is unstable, see Figure 10.14.
Since, however, this instability is only due to a generalized eigenvalue with |λ |=

1, it is relatively mild, as expected. On the other hand, if we were to replace the
marginally unstable boundary condition (10.185a) with a truly unstable one in the
sense of Section 10.5.2, then the effect on the stability of the scheme would have
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been much more drastic. Instead of (10.185a), consider, for example:

up+1
0 = 1.05 ·up+1

1 . (10.197)

This boundary condition generates an eigenfunction um = c1qm
1 of problem (10.187)

with q1 =
1
1.05 < 1. The corresponding eigenvalues are given by:

λ (q1) =
r
2

(
q1− 1

q1

)
±
√
1+

r2

4

(
q1− 1

q1

)2
,

and for one of these eigenvalues we obviously have |λ | > 1. Therefore, the scheme
is unstable according to Theorem 10.8, see also Figure 10.15.
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FIGURE 10.15: Solution of problem (10.183) with scheme (10.184), (10.197).
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In Figure 10.15, we are showing the results of the numerical solution of problem
(10.183) using the unstable scheme (10.184), (10.197). Comparing the plots in Fig-
ure 10.15 with those in Figure 10.14, we see that in the case of boundary condition
(10.197) the instability develops much more rapidly in time. Moreover, comparing
the left column in Figure 10.15 that corresponds to the grid with M = 100 cells
with the right column in the same figure that corresponds to M = 200, we see that
the instability develops more rapidly on a finer grid, which is characteristic of an
exponential instability.
Let now now analyze the second outflow boundary condition (10.185b):

up+1
0 = up

0+ r(up
1− up

0).

Unlike the extrapolation-type boundary condition (10.185a), which to some extent is
arbitrary, boundary condition (10.185b) merely coincides with the first order upwind
approximation of the differential equation itself that we have encountered previously
on multiple occasions. To study stability, we again need to investigate three model
problems: (10.186), (10.187), and (10.188). Obviously, only problem (10.187)
changes due to the new boundary condition, where the other two stay the same.
Moreover, as the Cauchy problem (10.186) is not stable for r = 1, it is sufficient to
analyze the boundary conditions only for r < 1.
To find λ and q for problem (10.187), we need to solve the characteristic equation

(10.190a) along with a similar equation that comes from the boundary condition
(10.185b):

λ = 1− r+ rq. (10.198)

Substituting λ from equation (10.198) into equation (10.190a) and subsequently
solving for q, we find that there is only one solution: q = 1. For the corresponding
λ , we then have from equation (10.198): λ = 1. Consequently, for r < 1 problem
(10.187) has no proper eigenfunctions/eigenvalues, which means that we again have−→
Λ = /0. As far as the generalized eigenvalues, we only need to check one value of λ :
λ = 1 (because λ =−1 does not satisfy equation (10.198) for q = 1). Let λ = 1+η
and q = 1+ ζ , where |η | � 1 and |ζ | � 1. We then arrive at the same equation
(10.195) that we obtained in the context of the previous analysis and conclude that
λ = 1 does not violate the Kreiss condition, because |λ | > 1 implies |q| > 1. As
such, the scheme (10.184), (10.185b) is stable when r < 1.

Exercises

1. For the scalar Lax-Wendroff scheme [cf. formula (10.83)]:

up+1
m −up

m

τ
− up

m+1−up
m−1

2h
− τ
2

up
m+1−2up

m +up
m−1

h2
= 0,

p = 0,1, . . . , [T/τ]−1, m = 1,2, . . . ,M−1, Mh = 1,

u0m = ψ(xm), m = 0,1,2, . . . ,M,

up+1
0 −up

0
τ

− up
1 −up

0
h

= 0, up+1
M = 0, p = 0,1, . . . , [T/τ]−1,
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that approximates the initial boundary value problem:

∂u
∂ t
− ∂u

∂x
= 0, 0≤ x≤ 1, 0< t ≤ T,

u(x,0) = ψ(x), u(1, t) = 0,

on the uniform rectangular grid: xm = mh, m = 0,1, . . . ,M, Mh = 1, tp = pτ , p =
0,1, . . . , [T/τ], find out when the Babenko-Gelfand stability criterion holds.
Answer. r = τ/h≤ 1.

2.� Prove Theorem 10.6.

a) Prove the sufficiency part.

b) Prove the necessity part.

3.� Approximate the acoustics Cauchy problem:

∂u
∂ t
−A∂u

∂x
=ϕϕϕ(x, t), −∞≤ x ≤∞, 0< t ≤ T,

u(x,0) =ψψψ(x), −∞≤ x≤ ∞,

u(x, t) =
[

v(x, t)
w(x, t)

]
, ϕϕϕ(x) =

[
ϕ(1)(x)
ϕ(2)(x)

]
, ψψψ(x) =

[
ψ(1)(x)
ψ(2)(x)

]
, A=

[
0 1
1 0

]
,

with the Lax-Wendroff scheme:

up+1
m −up

m

τ
−Aup

m+1−up
m−1

2h
− τ
2
A2
up

m+1−2up
m +up

m−1
h2

=ϕϕϕ p
m,

p = 0,1, . . . , [T/τ]−1, m = 0,±1,±2, . . . ,
u0m =ψψψ(xm), m = 0,±1,±2, . . . .

Define up = {up
m} and ϕϕϕ p = {ϕϕϕ p

m}, and introduce the norms as follows:

‖u(h)‖Uh =maxp
‖up‖, ‖f (h)‖Fh =max

[
‖ψψψ‖,max

p
‖ϕϕϕ p‖

]
,

where

‖up‖2 =∑
m

(
|vp

m|2+ |wp
m|2
)
, ‖ψψψ‖2 =∑

m

(
|ψ(1)(xm)|2+ |ψ(2)(xm)|2

)
,

‖ϕϕϕ p‖2 = ∑
m

(
|ϕ(1)(xm, tp)|2+ |ϕ(2)(xm, tp)|2

)
.

a) Show that when reducing the Lax-Wendroff scheme to the canonical form
(10.141), inequalities (10.143) and (10.144) hold.

b) Prove that when r = τ
h ≤ 1 the scheme is l2 stable, and when r > 1 it is unstable.

Hint. To prove estimate (10.145) for the norms ‖Rp
h‖, first introduce the new unknown

variables (called the Riemann invariants):

I(1)m = vm +wm and I(2)m = vm−wm,

and transform the discrete system accordingly, and then employ the spectral criterion
of Section 10.3.
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4. Let the norm in the space U ′h be defined in the sense of l2: ‖u‖2 =
[

h
∞
∑

m=−∞
|um|2

]1/2
.

Prove that in this case all complex numbers λ (α) = 1− r + reiα , 0 ≤ α < 2π [see
formula (10.148)], belong to the spectrum of the transition operator Rh that corresponds
to the difference Cauchy problem (10.147), where the spectrum is defined according to
Definition 10.7.

Hint. Construct the solution u= {um},m= 0,±1,±2, . . ., to the inequality that appears
in Definition 10.7 in the form: um =

{
qm
1 , m≥ 0,

q−m
2 , m < 0,

, where q1 = (1− δ )eiα , q2 =

(1−δ )e−iα , and δ > 0 is a small quantity.

5. Prove sufficiency in Theorem 10.7.

Hint. Use expansion with respect to an orthonormal basis in U ′ composed of the
eigenvectors of Rh.

6. Compute the spectrum of the family of operators {Rh}, v=Rhu, given by the formulae:

vm =(1− r)um + rum+1, m = 0,1, . . . ,M−1,
vM =0.

Assume that the norm is the maximum norm.

7. Prove that the spectrum of the family of operators {Rh}, v = Rhu, defined as:

vm =(1− r+ γh)um + rum+1, m = 0,1, . . . ,M−1,
vM =uM ,

does not depend on the value of γ and coincides with the spectrum computed in Sec-
tion 10.5.2 for the case γ = 0. Assume that the norm is the maximum norm.

Hint. Notice that this operator is obtained by adding γhI′ to the operator Rh defined
by formulae (10.142a) & (10.142b), and then use Definition 10.6 directly. Here I′ is a
modification of the identity operator that leaves all components of the vector u intact
except the last component uM that is set to zero.

8. Compute the spectrum of the family of operators {Rh}, v=Rhu, given by the formulae:

vm =(1− r)um + r(um−1+um+1)/2, m = 1,2, . . . ,M−1,
vM =0, av0+bv1 = 0,

where a ∈R and b ∈ R are known and fixed. Consider the cases |a|> |b| and |a|< |b|.
9.� Prove that the spectrum of the family of operators {Rh}, v = Rhu, defined by formulae
(10.142a) & (10.142b) and analyzed in Section 10.5.2:

vm =(1− r)um + rum+1, m = 0,1, . . . ,M−1,
vM =uM ,

will not change if the C norm: ‖u‖ = maxm |um| is replaced by the l2 norm: ‖u‖ =[
h∑m u2m

]1/2
.
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10. For the first order ordinary difference equation:

avm +bvm+1 = fm, m = 0,±1,±2, . . . ,

the fundamental solution Gm is defined as a bounded solution of the equation:

aGm +bGm+1 = δm ≡
{
1, m = 0,

0, m �= 0.

a) Prove that if |a/b|< 1, then Gm =

{
0, m≤ 0,
− 1a
(− a

b

)m
, m≥ 1.

b) Prove that if |a/b|> 1, then Gm =

{
1
a

(− a
b

)m
, m≤ 0,

0, m≥ 1.

c) Prove that vm =
∞
∑

k=−∞
Gm−k fk.

11. Obtain energy estimates for the implicit first order upwind schemes that approximate
problems (10.170), (10.172)� , and (10.174)�.

12.� Approximate problem (10.170) with the Crank-Nicolson scheme supplemented by one-
sided differences at the left boundary x = 0:

up+1
m −up

m

τ
− 1
2

[
up+1

m+1−up+1
m−1

2h
+

up
m+1−up

m−1
2h

]
= 0,

m = 1,2, . . . ,M−1, p = 0,1, . . . , [T/τ]−1,
up+1
0 −up

0
τ

− 1
2

[
up+1
1 −up+1

0
h

+
up
1 −up

0
h

]
= 0, up

M = 0,

p = 0,1, . . . , [T/τ]−1,
u0m = ψm, m = 0,1,2, . . . ,M.

(10.199)

a) Use an alternative definition of the l2 norm: ‖u‖22 = h
2 (u

2
0+u2M)+h

M−1
∑

m=1
u2m and

develop an energy estimate for scheme (10.199).

Hint. Multiply the equation by up+1
m +up

m and sum over the entire range of m.

b) Construct the schemes similar to (10.199) for the variable-coefficient problems
(10.172) and (10.174) and obtain energy estimates.

13. Using the Kreiss condition, show that the leap-frog scheme (10.184) with the boundary
condition:

up+1
0 = up

1 (10.200a)

is stable, whereas with the boundary condition:

up+1
0 = up−1

0 +2r(up
1 −up

0 ) (10.200b)

it is unstable.
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14. Reproduce on the computer the results shown in Figures 10.14 and 10.15. In addition,
conduct the computations using the leap-frog scheme with the boundary conditions
(10.185b), (10.200a), and (10.200b), and demonstrate experimentally the stability and
instability in the respective cases.

15.� Using the Kreiss condition, investigate stability of the Crank-Nicolson scheme ap-
plied to solving problem (10.183) and supplemented either with the boundary condition
(10.185b) or with the boundary condition (10.200a).

10.6 Maximum Principle for the Heat Equation

Consider the following initial boundary value problem for a variable-coefficient
heat equation, a(x, t)> 0:

∂u
∂ t
− a(x, t)

∂ 2u
∂x2

= ϕ(x, t), 0≤ x≤ 1, 0≤ t ≤ T,

u(x,0) = ψ(x), 0≤ x≤ 1,
u(0, t) = ϑ(t), u(1, t) = χ(t), 0≤ t ≤ T.

(10.201)

To solve problem (10.201) numerically, we can use either an explicit or an implicit
finite-difference scheme. We will analyze and compare both schemes. In doing so,
we will see that quite often the implicit scheme has certain advantages compared
to the explicit scheme, even though the algorithm of computing the solution with
the help of an explicit scheme is simpler than that for the implicit scheme. The
advantages of using an implicit scheme stem from its unconditional stability, i.e.,
stability that holds for any ratio between the spatial and temporal grid sizes.

10.6.1 An Explicit Scheme

We introduce a uniform grid on the interval [0,1]: xm = mh, m = 0,1, . . . ,M,
Mh = 1, and build the scheme on the four-node stencil shown in Figure 10.3(left)
(see page 331):

up+1
m − up

m

τp
− a(xm, tp)

up
m+1− 2up

m+ up
m−1

h2
= ϕ(xm, tp),

m = 1,2, . . . ,M− 1,
u0m = ψ(xm)≡ ψm, m = 0,1, . . . ,M,

up+1
0 = ϑ(tp+1), up+1

M = χ(tp+1), p≥ 0,
t0 = 0, tp = τ0+ τ1+ . . .+ τp−1, p = 1,2, . . . .

(10.202)

If the solution uk
m, m = 0,1, . . . ,M, is already known for k = 0,1, . . . , p, then, by

virtue of (10.202), the values of up+1
m at the next time level t = tp+1 = tp + τp can be


