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5. Let [a,b] = [�p,p], f1(x) = |x3|, f2(x) = sinx, and let the interpolation grid be uniform
with size h. For both functions f1 and f2 implement on the computer the local spline
(2.42), (2.58) with s = 2, j = 1, and the nonlocal cubic spline (2.60) with any type
of boundary conditions: (2.63), (2.64), or (2.65). Demonstrate that for either type of
spline, the convergence rate is O(h2) for f1(x) and O(h3) for f2(x).

2.4 Interpolation of Functions of Two Variables

The problem of reconstructing a function of continuous argument from its discrete
table of values can be formulated in the multi-dimensional case as well, for exam-
ple, when f = f (x,y), i.e., when there are two independent variables. The principal
objective remains the same as in the case of one dimension, namely, to build a proce-
dure for (approximately) evaluating the function in between the given interpolation
nodes. However, in the case of two variables one can consider a much wider variety
of interpolation grids. All these grids basically fall into one of the two categories:
structured or unstructured.

2.4.1 Structured Grids

Typically, structured grids on the (x,y) plane are composed of rectangular cells.
In other words, the nodes (xk,yl), k = 0,±1, . . ., l = 0,±1, . . ., are obtained as inter-
sections of the two families of straight lines: the vertical lines x = xk, k = 0,±1, . . .,
and the horizontal lines y = yl , l = 0,±1, . . .. In so doing, we always assume that
8k : xk+1 > xk, and 8l : yl+1 > yl . In the literature, such grids are also referred to
as rectangular or Cartesian. The grid sizes h(x)k = xk+1 � xk and h(y)l = yl+1 � yl may
but do not have to be constant. In the case of constant size(s), the grid is called
uniform or equally spaced (in the corresponding direction). The simplest example of
a uniform two-dimensional grid is a grid with square cells: h(x)k = h(y)l = const.

To approximately compute the value of the function f at the point (x̄, ȳ) that does
not coincide with any of the nodes (xk,yl) of a structured rectangular grid, one can, in
fact, use the apparatus of piecewise polynomial interpolation for the functions of one
variable. To do so, we first select the parameters s (degree of interpolation) and j, as
in Section 2.2. We also need to determine which cell of the grid contains the point
of interest. Let us assume that xk < x̄ < xk+1 and yl < ȳ < yl+1 for some particular
values of k and l. Then, we interpolate along the horizontal grid lines:

f̄ (x̄,yl� j+i) = Ps(x̄, f ( · ,yl� j+i),xk� j,xk� j+1, . . . ,xk� j+s), i = 0,1, . . . ,s.

and obtain the intermediate values f̄ . Having done that, we interpolate along the
vertical grid lines and obtain the approximate value f :

f (x̄, ȳ)⇡ Ps(ȳ, f̄ (x̄, · ),yl� j,yl� j+1, . . . ,yl� j+s).
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Clearly, the foregoing formulae can be used to approximate the function f at any
point (x̄, ȳ) inside the rectangular grid cell {(x,y)|xk < x < xk+1,yl < y < yl+1}. For
example, if we choose piecewise linear interpolation along x and y, i.e., s = 1, then

f (x̄, ȳ)⇡ f (xk,yl)
(x̄� xk+1)(ȳ� yl+1)

(xk � xk+1)(yl � yl+1)
+ f (xk+1,yl)

(x̄� xk)(ȳ� yl+1)

(xk+1 � xk)(yl � yl+1)
+

f (xk,yl+1)
(x̄� xk+1)(ȳ� yl)

(xk � xk+1)(yl+1 � yl)
+ f (xk+1,yl+1)

(x̄� xk)(ȳ� yl)

(xk+1 � xk)(yl+1 � yl)
. (2.83)

Note, however, that in general the degree of interpolation does not necessarily have
to be the same for both dimensions. Also note that the procedure is obviously sym-
metric. In other words, it does not matter whether we first interpolate along x and
then along y, as shown above, or the other way around.

The piecewise polynomial interpolation on the plane, built dimension-by-
dimension on a rectangular grid as explained above, inherits the key properties of
the one-dimensional interpolation. For example, if the function f = f (x,y) is twice
differentiable, with bounded second partial derivatives, then the interpolation error
of formula (2.83) on a square-cell grid with size h will be O(h2). For piecewise
polynomial interpolation of a higher degree, the rate of convergence will accord-
ingly be faster, provided that the interpolated function is sufficiently smooth. On the
other hand, similarly to the one-dimensional case, the two-dimensional piecewise
polynomial interpolation is also prone to the saturation by smoothness.

Again, similarly to the one-dimensional case, one can also construct a smooth
piecewise polynomial interpolation in two dimensions. As before, this interpolation
may be either local or nonlocal. Local splines that extend the methodology of Sec-
tion 2.3.1 can be built on the plane dimension-by-dimension, in much the same way
as the conventional piecewise polynomials outlined previously. Their key properties
will be preserved from the one-dimensional case, specifically, the relation between
their degree and smoothness, the minimum number of grid nodes in each direction,
the convergence rate, and susceptibility to saturation (see [Rya75] for detail).

The construction of nonlocal cubic splines can also be extended to two dimen-
sions; in this case the splines are called bi-cubic. On a domain of rectangular shape,
they can be obtained by solving multiple tri-diagonal linear systems of type (2.62)
along the x and y coordinate lines of the Cartesian grid. The approximation properties
of bi-cubic splines remain the same as those of the one-dimensional cubic splines.

Similar constructions, standard piecewise polynomials, local splines, and nonlo-
cal splines, are also available for the interpolation of multivariable functions (more
than two arguments). We should emphasize, however, that in general the size of the
tables that would guarantee a given accuracy of interpolation for a function of certain
smoothness rapidly grows as the number of arguments of the function increases. The
corresponding interpolation algorithms also become more cumbersome.


