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the elements of the subspace
◦
W (N). In doing so, the accuracy of approximation is to

be measured in the energy norm. A similar result also holds for the Galerkin method.
Of course, the question of how large the right-hand side of inequality (12.41) may

actually be does not have a direct answer, because the solution u = u(x,y) is not
known ahead of time. Therefore, the best we can do for evaluating this right-hand

side is first to assume that the solution u belongs to some class of functionsU ⊂ ◦
W ,

and then try and narrow down this class as much as possible using all a priori infor-
mation about the solution that is available. Often, the class U can be characterized
in terms of smoothness, because a given degree of regularity of the data ϕ and ψ
normally translates into a certain level of smoothness of the solution u. For example,
recall that the solution of problem (12.15) was assumed twice continuously differen-
tiable. In this case, we can say that U is the class of all functions that are equal to
zero at Γ and also have continuous second derivatives on Ω̄.
Once we have identified the maximally narrow class of functionsU that contains

the solution u, we can write instead of estimate (12.41):

‖wN−u‖2W ≤ const · sup
v∈U

inf
w∈ ◦

W (N)

[
‖w− v‖′

]2
. (12.42)

Regarding this inequality, a natural expectation is that the narrower the class U , the
closer the value on the right-hand side of (12.42) to that on the right-side of (12.41).
Next, we realize that the value on the right-hand side of inequality (12.42) depends

on the choice of the approximating space
◦
W (N), and the best possible value therefore

corresponds to:

κN(U,
◦
W ) def= inf◦

W (N)⊂ ◦
W

sup
v∈U

inf
w∈ ◦

W (N)
‖w− v‖′. (12.43)

The quantity κN(U,
◦
W ) is called the N-dimensional Kolmogorov diameter of the set

U with respect to the space
◦
W in the sense of the energy norm ‖ · ‖′. We have

first encountered this concept in Section 2.2.4, see formula (2.39) on page 41. Note
that the norm in the definition of the Kolmogorov diameter is not squared, unlike in
formula (12.42). Note also that the outermost minimization in (12.43) is performed

with respect to the N-dimensional space
◦
W (N) as a whole, and its result does not

depend on the choice of a specific basis (12.27) in
◦
W (N). One and the same space

can be equipped with different bases.
Kolmogorov diameters and related concepts are widely used in the theory of ap-

proximation, as well as in many other branches of mathematics. In the context of
finite elements they provide optimal, i.e., unimprovable, estimates for the conver-

gence rate of the method. Once the space
◦
W , the norm ‖ · ‖′, and the subspace

U ⊂ ◦
W have been fixed, the diameter (12.43) depends on the dimension N. Then,

the optimal convergence rate of a finite element approximation is determined by how

rapidly the diameter κN(U,
◦
W ) decays as N −→ ∞. Of course, in every given case
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there is no guarantee that a particular choice of
◦
W (N) will yield the rate that would

come anywhere close to the theoretical optimum provided by the Kolmogorov di-

ameter κN(U,
◦
W ). In other words, the rate of convergence for a specific Ritz or

Galerkin approximation may be slower than optimalas N −→ ∞. Consequently, it
is the skill and experience of a numerical analyst that are required for choosing the

approximating space
◦
W (N) is such a way that the actual quantity:

sup
v∈U

inf
w∈ ◦

W (N)
‖w− v‖′

that controls the right-hand side of (12.42) would not be much larger than the Kol-

mogorov diameter κN(U,
◦
W ) of (12.43).

In many particular situations, the Kolmogorov diameters have been computed.

For example, for the setup analyzed in this section, when the space
◦
W contains all

piecewise continuously differentiable functions on Ω̄ ⊂ R
2 equal to zero at Γ = ∂Ω,

the class U contains all twice continuously differentiable functions from
◦
W , and the

norm is the energy norm, we have:

κN(U,
◦
W ) = O

( 1√
N

)
as N −→ ∞. (12.44)

Under certain additional conditions (non-restrictive), it is also possible to show that
the piecewise linear elements constructed in Section 12.2.4 converge with the same
asymptotic rate O(N−1/2) when N increases, see, e.g., [GR87, § 39]. As such, the
piecewise linear finite elements guarantee the optimal convergence rate of the Ritz
method for problem (12.15), assuming that nothing else can be said about the solu-
tion u= u(x,y) except that it has continuous second derivatives on Ω̄.
Note that as we have a total of N grid nodes on a two-dimensional domain Ω, for

a regular uniform grid it would have implied that the grid size is h = O(N−1/2). In
other words, the convergence rate of the piecewise linear finite elements appears to be
O(h), and the optimal unimprovable rate (12.44) is also O(h). At a first glance, this
seems to be a deterioration of convergence compared, e.g., to the standard central-
difference scheme of Section 12.1, which converges with the rate O(h2). This, how-
ever, is not the case. In Section 12.1, we measured the convergence in the norm that
did not contain the derivatives of the solution, whereas in this section we are using
the Sobolev norm (12.14) that contains the first derivatives.
Finally, recall that the convergence rates can be improved by selecting the approx-

imating space that would be right for the problem, as well as by narrowing down
the class of functions U that contains the solution u. These two strategies can be
combined and implemented together in the framework of one adaptive procedure.
Adaptive methods represent a class of rapidly developing, modern and efficient, ap-
proaches to finite element approximations. Both the size/shape of the elements, as
well as their order (beyond linear), can be controlled. Following a special (multigrid-
type) algorithm, the elements are adapted dynamically, i.e., in the course of compu-
tation. For example, by refining the grid and/or increasing the order locally, these
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elements can very accurately approximate sharp variations in the solution. In other
words, as soon as those particular areas of sharp variation are identified inside Ω,
the class U becomes narrower, and at the same time, the elements provide a better,
“fine-tuned,” basis for approximation. Convergence of these adaptive finite element
approximations may achieve spectral rates. We refer the reader to the recent mono-
graph by Demkowicz for further detail [Dem06].
To conclude this chapter, we will compare the method of finite elements with

the method of finite differences from the standpoint of how convergence of each
method is established. Recall, the study of convergence for finite-difference approx-
imations consists of analyzing two independent properties, consistency and stability,
see Theorem 10.1 on page 314. In the context of finite elements, consistency as
defined in Section 10.1.2 or 12.1.1 (small truncation error on smooth solutions) is
no longer needed for proving convergence. Instead, we need approximation of the

class U 
 u by the functions from
◦
W (N), see estimate (12.42). Stability for finite

elements shall be understood as good conditioning (uniform with respect to N) of
the Ritz system matrix (12.31) or of a similar Galerkin matrix, see (12.36). The
ideal case here, which cannot normally be realized in practice, is when the basis

w(N)
n , n = 1,2, . . . ,N, is orthonormal. Then, the matrix A(N) becomes a unit matrix.
Stability still remains important when computing with finite elements, although not
for justifying convergence, but for being able to disregard the small round-off errors.

Exercises

1. Prove that the quadratic form of the Ritz method, i.e., the first term on the right-hand
side of (12.28), is indeed positive definite.

Hint. Apply the Friedrichs inequality (12.25) to wN(x,y) = ∑N
n=1 cnw

(N)
n .

2. Consider a Dirichlet problem for the elliptic equation with variable coefficients:

∂
∂x

(
a(x,y)

∂u
∂x

)
+

∂
∂y

(
b(x,y)

∂u
∂y

)
= ϕ(x,y), (x,y) ∈ Ω,

u
∣∣∣
Γ

= ψ(s), Γ = ∂Ω,

where a(x,y) ≥ a0 > 0 and b(x,y) ≥ b0 > 0. Prove that its solution minimizes the
functional:

I(w) =
∫∫
Ω

[
a

(
∂u
∂x

)2
+b

(
∂u
∂y

)2
+2ϕw

]
dxdy

on the set of all functions w ∈W that satisfy the boundary condition: w
∣∣
Γ = ψ(s).

3. Let ψ(s) ≡ 0 in the boundary value problem of Exercise 2. Apply the Ritz method and
obtain the corresponding system of linear algebraic equations.

4. Let ψ(s) ≡ 0 in the boundary value problem of Exercise 2. Apply the Galerkin method
and obtain the corresponding system of linear algebraic equations.

5. Let the geometry of the two neighboring triangles that have common side
[
Z(N)
m ,Z(N)

n
]

be known. Evaluate the coefficients (12.39a) and (12.39b) for the finite element systems
(12.37) and (12.38).
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6. Consider problem (12.15) with ψ(s) ≡ 0 on a square domain Ω. Introduce a uniform
Cartesian grid with square cells on the domain Ω. Partition each cell into two right
triangles by the diagonal; in doing so, use the same orientation of the diagonal for
all cells. Apply the Ritz method on the resulting triangular grid and show that it is
equivalent to the central-difference scheme (12.5), (12.6).


