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FIGURE 11.9: Grid cell.

Consider two families of
straight lines on the plane
(x,t): the horizontal lines t =
pτ , p = 0,1,2, . . ., and the
vertical lines x= (m+1/2)h,
m = 0,±1,±2, . . .. These
lines partition the plane into
rectangular cells. On the

sides of each cell we will mark the respective midpoints, see Figure 11.9, and com-
pose the overall grid Dh of the resulting nodes (we are not showing the coordinate
axes in Figure 11.9).

The unknown function [u]h will be defined on the grid Dh. Unlike in many pre-
vious examples, when [u]h was introduced as a mere trace of the continuous exact
solution u(x,t) on the grid, here we define [u]h by averaging the solution u(x,t) over
the side of the grid cell (see Figure 11.9) that the given node belongs to:
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The approximate solution u(h) of our problem will be defined on the same grid Dh.
The values of u(h) at the nodes (xm,tp) of the grid that belong to the horizontal sides
of the rectangles, see Figure 11.9, will be denoted by upm, and the values of the
solution at the nodes (xm+1/2,tp+1/2) that belong to the vertical sides of the rectangles

will be denoted byUp+1/2
m+1/2.

Instead of the discrete function u(h) defined only at the grid nodes (m, p) and
(m+1/2, p+1/2), let us consider a family of piecewise constant functions of con-
tinuous argument defined on the horizontal and vertical lines of the grid. In other
words, we will think of the value upm as associated with the entire horizontal side
{(x,t)|xm−1/2 < x< xm+1/2, t = tp} of the grid cell that the node (xm,tp) belongs to,

see Figure 11.9. Likewise, the valueUp+1/2
m+1/2 will be defined on the entire vertical grid

interval {(x,t)|x= xm+1/2, tp < t < tp+1}. The relation between the quantities upm and
Up+1/2
m+1/2, wherem= 0,±1,±2, . . . and p= 0,1,2, . . ., will be established based on the
integral conservation law (11.1a) for k = 1:

∮
Γ

u2

2
dt−udx= 0.
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Let us consider the boundary of the grid cell from Figure 11.9 as the contour Γ:
∮
Γ

(u(h))2

2
dt−u(h)dx= 0. (11.16)

Using the actual values of the foregoing piecewise constant function u(h), we can
rewrite equality (11.16) as follows:

h[up+1m −upm]+
τ
2

[(
Up+1/2
m+1/2

)2−(
Up+1/2
m−1/2

)2]
= 0. (11.17)

Formula (11.17) implies that if there was a rule for evaluation of the quantities(
Up+1/2
m+1/2

)2
, m = 0,±1,±2, . . ., given the quantities upm, m = 0,±1,±2, . . ., then we

could have advanced one time step and obtained up+1m , m = 0,±1,±2, . . .. In other
words, formula (11.17) would have enabled a marching algorithm. Note that the

quantities
(
Up+1/2
m+1/2

)2
are commonly referred to as fluxes. The reason is that the

Burgers equation can be equivalently recast in the divergence form:
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+u
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∂u
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∂
∂x

(
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2

)
=

∂u
∂ t

+
∂F(u)

∂x
= 0,

where F(u) is known as the flux function for the general equation: ut +Fx(u) = 0.
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FIGURE 11.10: Grid domain.

The fluxes
(
Up+1/2
m+1/2

)2
can be

computed using various approaches.
However, regardless of the spe-
cific approach, the finite difference
scheme (11.17) always appears con-
servative. This important character-
ization means the following.
Let us draw an arbitrary non-self-

intersecting closed contour in the
upper semi-plane t > 0 that would
be completely composed of the grid
segments, see Figure 11.10. Ac-
cordingly, this contour Γh encloses
some domain Ωh composed of the
grid cells. Next, let us perform
termwise summation of all the equations (11.17) that correspond to the grid cells
from the domain Ωh. Since equations (11.17) and (11.16) are equivalent and the
only difference is in the notations, we may think that the summation is performed on
equations (11.16). This immediately yields:

∮
Γh

(u(h))2

2
dt−u(h)dx= 0. (11.18)
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FIGURE 11.11: Directions of integration.

Formula (11.18) is easy to justify.
The integrals along those sides of
the grid rectangles that do not be-
long to the boundary Γh of the do-
main Ωh, see Figure 11.10, mutu-
ally cancel out. Indeed, each of
these interior grid segments belongs
to two neighboring cells. Conse-
quently, the integration of the func-

tion u(h) along each of those appears twice in the sum (11.18) and is conducted in
the opposite directions, see Figure 11.11. Hence only the contributions due to the
exterior boundary Γh do not cancel, and we arrive at equality (11.18).
Scheme (11.17) provides an example of what is known as conservative finite-

difference schemes. In general, given a scheme, if we perform termwise summation
of its finite-difference equations over the nodes of the grid domain Ωh, and only
those contributions to the sum remain that correspond to the boundary Γh, then the
scheme is called conservative. Conservative schemes are analogous to the differential
equations of divergence type, for example:

divφ =
∂φ1
∂ t

+
∂φ2
∂x

= 0.

Once integrated over a two-dimensional domain Ω, these equations give rise to a
contour integral along Γ = ∂Ω, see formula (11.3). Finite-difference scheme (11.14)
is not conservative, whereas scheme (11.17) is conservative.

REMARK 11.1 Let the grid function u(h) that satisfies equation (11.17)
for m = 0,±1,±2, . . . and p = 0,1,2, . . ., converge to a piecewise continuous
function u(x,t) when h −→ 0 uniformly on any closed region of space that
does not contain the discontinuities. Also let u(h) be uniformly bounded with
respect to h. Then, u(x,t) satisfies the integral conservation law:

∮
Γ

u2

2
dt−udx= 0,

where Γ is an arbitrary piecewise smooth contour. In other words, u(h) con-
verges to the generalized solution of problem (11.2). This immediately follows
from the possibility to approximate Γ by Γh, formula (11.18), and the conver-
gence that we have just assumed.

For the difference scheme (11.17) to make sense, we still need to define a proce-

dure for evaluating the fluxes
(
Up+1/2
m+1/2

)2
given the quantities upm. To do that, we can

exploit the solution to a special Riemann problem. This approach leads to one of the
most popular and successful conservative schemes known as the Godunov scheme.


