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respectively, see Figure 11.4. It turns out that the values of uleft(x,t) and uright(x,t)
are related to the velocity of the jump ẋ = dx/dt in a particular way, and altogether
these quantities are not independent.
Let us introduce a contour ABCD that straddles a part of the trajectory of the

jump L, see Figure 11.4. The integral conservation law (11.1a) holds for any closed
contour Γ and in particular for the contour ABCDA:

∫
ABCDA

uk+1

k+1
dt− uk

k
dx= 0. (11.8)

Next, we start contracting this contour toward the curve L, i.e., start making it nar-
rower. In doing so, the intervals BC and DA will shrink toward the points E and F ,
respectively, and the corresponding contributions to the integral (11.8) will obviously
approach zero, so that in the limit we obtain:

∫
L′

[
uk+1

k+1

]
dt−

[
uk

k

]
dx= 0,

or alternatively: ∫
L′

([
uk+1

k+1

]
−

[
uk

k

]
dx
dt

)
dt = 0.

Here the rectangular brackets: [z] def= zright− zleft denote the magnitude of the jump of
a given quantity z across the discontinuity, and L′ denotes an arbitrary stretch of the
jump trajectory.
Since L′ is arbitrary, the integrand in the previous equality must be equal to zero

at every point: ([
uk+1

k+1

]
−

[
uk

k

]
dx
dt

)∣∣∣∣
(x,t)∈L

= 0,

and consequently,

dx
dt

=
[
uk+1

k+1

]
·
[
uk

k

]−1
. (11.9)

Formula (11.9) indicates that for different values of k we can obtain different condi-
tions at the trajectory of discontinuity L. For example, if k = 1 we have:

dx
dt

=
uleft+uright

2
, (11.10)

and if k = 2 we can write:

dx
dt

=
2
3

u2left+ulefturight+u2right
uleft+uright

.

We therefore conclude that the conditions that any discontinuous solution of problem
(11.1a), (11.1b) must satisfy at the jump trajectory L depend on k.
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11.1.4 Generalized Solution of a Differential Problem

Let us define a generalized solution to problem (11.2). This solution can be dis-
continuous, and we simply identify it with the solution to the integral conservation
law (11.1a), (11.1b). Often the generalized solution is also called a weak solution.
In the case of a solution that has continuous derivatives everywhere, we have seen

(Section 11.1.1) that the weak solution, i.e., solution to problem (11.1a), (11.1b),
does not depend on k and coincides with the classical solution to the Cauchy problem
(11.2). In other words, the solution in this case is a differentiable function u =
u(x,t) that turns the Burgers equation ut +uux = 0 into an identity and also satisfies
the initial condition u(x,0) = ψ(x). We have also seen that even in the continuous
case it is very helpful to consider both the integral formulation (11.1a), (11.1b) and
the differential Cauchy problem (11.2). By staying only within the framework of
problem (11.1a), (11.1b), we would make it more difficult to reveal the mechanism
of the formation of discontinuity, as done in Section 11.1.2.
In the discontinuous case, the definition of a weak solution to problem (11.2) that

we have just introduced does not enhance the formulation of problem (11.1a), (11.1b)
yet; it merely renames it. Let us therefore provide an alternative definition of the
generalized solution to problem (11.2). In doing so, we will only consider bounded
solutions to problem (11.1a), (11.1b) that have continuous first partial derivatives
everywhere on the strip 0< t < T , except perhaps for a set of smooth curves x= x(t)
along which the solution may undergo discontinuities of the first kind (jumps).

DEFINITION 11.1 The function u= u(x, t) is called a generalized (weak)
solution to the Cauchy problem (11.2) that corresponds to the integral conser-
vation law (11.1a) if:

1. The function u = u(x,t) satisfies the Burgers equation [see formula
(11.2)] at every point of the strip 0 < t < T that does not belong to
the curves x= x(t) which define the jump trajectories.

2. Condition (11.9) holds at the jump trajectory.

3. For every x for which the initial function ψ = ψ(x) is continuous, the
solution u= u(x,t) is continuous at the point (x,0) and satisfies the initial
condition u(x,0) = ψ(x).

The proof of the equivalence of Definition 11.1 and the definition of a generalized
solution given in the beginning of this section is the subject of Exercise 1.
Let us emphasize that in the discontinuous case, the generalized solution of the

Cauchy problem (11.2) is not determined solely by equalities (11.2) themselves. It
also requires that a particular conservation law, i.e., particular value of k, be specified
that would relate the jump velocity with the magnitude of the jump across the dis-
continuity, see formula (11.9). Note that the general formulation of problem (11.1a),
(11.1b) we have adopted provides no motivation for selecting any preferred value of
k. However, in the problems that originate from real-world scientific applications,
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the integral conservation laws analogous to (11.1a) would normally express the con-
servation of some actual physical quantities. These conservation laws are, of course,
well defined. In our subsequent considerations, we will assume for definiteness that
the integral conservation law (11.1a) that corresponds to the value of k = 1 holds.
Accordingly, condition (11.10) is satisfied at the jump trajectory.
In the literature, the pioneering work on weak solutions was done by Lax [Lax54].

11.1.5 The Riemann Problem

Having defined weak solutions of problem (11.2), see Definition 11.1, we will now
see how a given initial discontinuity evolves when governed by the Burgers equation.
In the literature, the problem of evolution of a discontinuity specified in the initial
data is known as the Riemann problem.
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FIGURE 11.5: Shock.

Consider problem (11.2)
with the following discontin-
uous initial function:

ψ(x) =

{
2, x< 0,

1, x> 0.

The corresponding solution
is shown in Figure 11.5.
The evolution of the initial
discontinuity consists of its
propagation with the speed
ẋ = (2+ 1)/2 = 3/2. This
speed, which determines the
slope of the jump trajectory

in Figure 11.5, is obtained according to formula (11.10) as the arithmetic mean of
the slopes of characteristics to the left and to the right of the shock. As can be seen,
the characteristics on either side of the discontinuity impinge on it. In this case the
discontinuity is called a shock; it is similar to the shock waves in the flows of ideal
compressible fluid. One can show that the solution from Figure 11.5 is stable with
respect to small perturbations of the initial data.
Next consider a different type of initial discontinuity:

ψ(x) =

{
1, x< 0,

2, x> 0.
(11.11)

One can obtain two alternative solutions for the initial data (11.11). The solution
shown in Figure 11.6(a) has no discontinuities for t > 0. It consists of two regions
with u = 1 and u = 2 bounded by the straight lines ẋ = 1 and ẋ = 2, respectively,
that originate from (0,0). These lines do not correspond to the trajectories of discon-
tinuities, as the solution is continuous across both of them. The region in between
these two lines is characterized by a family of characteristics that all originate at the
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FIGURE 11.6: Solutions of the Burgers equation with initial data (11.11).

same point (0,0). This structure is often referred to as a fan (of characteristics); in
the context of gas dynamics it is known as the rarefaction wave.
The solution shown in Figure 11.6(b) is discontinuous; it consists of two regions

u = 1 and u = 2 separated by the discontinuity with the same trajectory ẋ = (1+
2)/2 = 3/2 as shown in Figure 11.5. However, unlike in the case of Figure 11.5,
the characteristics in Figure 11.6(b) emanate from the discontinuity and veer away
as the time elapses rather than impinge on it; this discontinuity is not a shock.
To find out which of the two solutions is actually realized, we need to incorporate

additional considerations. Let us perturb the initial function ψ(x) of (11.11) and
consider:

ψ(x) =

⎧⎪⎨
⎪⎩
1, x< 0,

1+ x/ε, 0≤ x≤ ε,

2, x> ε.

(11.12)
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FIGURE 11.7: Solution of the Burgers equation
with initial data (11.12).

The function ψ(x) of (11.12)
is continuous, and the cor-
responding solution u(x,t)
of problem (11.2) is deter-
mined uniquely. It is shown
in Figure 11.7. When ε
tends to zero, this solution
approaches the continuous
fan-type solution of prob-
lem (11.2), (11.11) shown
in Figure 11.6(a). At the
same time, the discontin-
uous solution of problem
(11.2), (11.11) shown in Fig-
ure 11.6(b) appears unstable
with respect to small pertur-
bations of the initial data. Hence, it is the continuous solution with the fan that should
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be selected as the true solution of problem (11.2), (11.11), see Figure 11.6(a). As for
the discontinuous solution from Figure 11.6(b), its exclusion due to the instability is
similar to the exclusion of the so-called rarefaction shocks that appear as mathemati-
cal artifacts when analyzing the flows of ideal compressible fluid. Unstable solutions
of this type are prohibited by the so-called entropy conditions that are introduced and
analyzed in the theory of quasi-linear hyperbolic equations, see, e.g., [RJ83].

Exercises

1. Prove that the definition of a weak solution to problem (11.2) given in the very begin-
ning of Section 11.1.4 is equivalent to Definition 11.1.

2.� Consider the following auxiliary problem:

∂u
∂ t

+u
∂u
∂x

= μ
∂ 2u
∂x2

, 0< t < T, −∞ < x< ∞,

u(x,0) = ψ(x), −∞ < x< ∞,

(11.13)

where μ > 0 is a parameter which is similar to viscosity in the context of fluid dynam-
ics. The differential equation of (11.13) is parabolic rather than hyperbolic. It is known
to have a smooth solution for any smooth initial function ψ(x). If the initial function is
discontinuous, the solution is also known to become smoother as time elapses.

Let ψ(x) = 2 for x < 0 and ψ(x) = 1 for x > 0. Prove that when μ −→ 0, the so-
lution of problem (11.13) approaches the generalized solution of problem (11.2) (see
Definition 11.1) that corresponds to the conservation law (11.1a) with k = 1.

Hint. The solution u= u(x,t) of problem (11.13) can be calculated explicitly with the
help of the Hopf formula:

u(x,t) =

∞∫
−∞

(x−ξ )e−
λ (x,ξ ,t)
2μ dξ

∞∫
−∞

te−
λ (x,ξ ,t)
2μ dξ

, where λ (x,ξ ,t) =
(x−ξ )2

2t
+

ξ∫
0

ψ(η)dη.

More detail can be found in the monograph [RJ83], as well as in the original research
papers [Hop50] and [Col51].

11.2 Construction of Difference Schemes

In this section, we will provide examples of finite-difference schemes for comput-
ing the generalized solution (see Definition 11.1) of problem (11.2):

∂u
∂ t

+u
∂u
∂x

= 0, 0< t < T, −∞ < x< ∞,

u(x,0) = ψ(x), −∞ < x< ∞,

that corresponds to the integral conservation law (11.1a) with k = 1.


