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that satisfies the integral equation:

∫
Γ

uk+1

k+1
dt− uk

k
dx= 0 (11.1a)

for an arbitrary closed contour Γ. The quantity k in formula (11.1a) is a fixed positive
integer. We also require that u= u(x,t) satisfies the initial condition:

u(x,0) = ψ(x), −∞ < x< ∞. (11.1b)

The left-hand side of equation (11.1a) can be interpreted as the flux of the vector
field:

φ(x,t) ≡
[
φ1
φ2

]
=

[
uk/k

uk+1/(k+1)

]

through the contour Γ. The requirement that the flux of this vector field through an
arbitrary contour Γ be equal to zero can be thought of as a conservation law written
in an integral form.
Problem (11.1a), (11.1b) provides the simplest formulation that leads to the for-

mation of discontinuities albeit smooth initial data. It can serve as a model for under-
standing the methods of solving similar problems in the context of fluid dynamics.

11.1 Differential Form of an Integral Conservation Law

11.1.1 Differential Equation in the Case of Smooth Solutions

Let us first assume that the solution u = u(x, t) to problem (11.1a), (11.1b) is
continuously differentiable everywhere on the strip 0 ≤ t ≤ T . We will then show
that problem (11.1a), (11.1b) is equivalent to the following Cauchy problem:

∂u
∂ t

+u
∂u
∂x

= 0, 0< t < T, −∞ < x< ∞,

u(x,0) = ψ(x), −∞ < x< ∞.

(11.2)

In the literature, the differential equation of (11.2) is known as the Burgers equation.

To establish the equivalence of problem (11.1a), (11.1b) and problem (11.2), we
recall Green’s formula. Let Ω be an arbitrary domain on the (x,t) plane, let Γ = ∂Ω
be its boundary, and let the functions φ1(x,t) and φ2(x,t) have partial derivatives
with respect to x and t on the domain Ω that are continuous everywhere up to the
boundary Γ. Then, the following Green’s formula holds:

∫∫
Ω

(
∂φ1
∂ t

+
∂φ2
∂x

)
dxdt =

∫
Γ

φ2dt−φ1dx. (11.3)
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Identity (11.3) means that the integral of the divergence ∂φ1
∂ t + ∂φ2

∂x of the vector field
φ = [φ1,φ2]T over the domain Ω is equal to the flux of this vector field through the
boundary Γ = ∂Ω.
Using formula (11.3), we can write:

∫
Γ

uk+1

k+1
dt− uk

k
dx=

∫∫
Ω

[
∂
∂ t

(
uk

k

)
+

∂
∂x

(
uk+1

k+1

)]
dxdt. (11.4)

Equality (11.4) implies that if a smooth function u = u(x, t) satisfies the Burgers
equation, see formula (11.2), then equation (11.1a) also holds. Indeed, if the Burgers
equation is satisfied, then we also have:

uk−1
(

∂u
∂ t

+u
∂u
∂x

)
≡ ∂

∂ t

(
uk

k

)
+

∂
∂x

(
uk+1

k+1

)
= 0. (11.5)

Consequently, the right-hand side of equality (11.4) becomes zero. The converse
is also true: If a smooth function u = u(x,t) satisfies the integral conservation law
(11.1a), then at every point (x̃, t̃) of the strip 0 < t < T equation (11.5) holds, and
hence equation (11.2) is true as well. To justify that, let us assume the opposite, and
let us, for definiteness, take some point (x̃, t̃) for which:

∂
∂ t

(
uk

k

)
+

∂
∂x

(
uk+1

k+1

)∣∣∣∣
(x̃,t̃)

> 0.

Then, by continuity, we can always find a sufficiently small disk Ω ⊂ {(x,t)|0< t <
T} centered at (x̃, t̃) such that

∂
∂ t

(
uk

k

)
+

∂
∂x

(
uk+1

k+1

)∣∣∣∣
(x,t)∈Ω

> 0.

Hence, combining equations (11.1a) and (11.4) we obtain (recall, Γ = ∂Ω):

0=
∫
Γ

uk+1

k+1
dt− uk

k
dx=

∫∫
Ω

[
∂
∂ t

(
uk

k

)
+

∂
∂x

(
uk+1

k+1

)]
dxdt > 0.

The contradiction we have just arrived at, 0 > 0, proves that for smooth functions
u= u(x,t), problem (11.1a), (11.1b) and the Cauchy problem (11.2) are equivalent.

11.1.2 The Mechanism of Formation of Discontinuities

Let us first suppose that the solution u = u(x, t) of the Cauchy problem (11.2) is
smooth. Then we introduce the curves x = x(t) defined by the following ordinary
differential equation:

dx
dt

= u(x,t). (11.6)


