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Denote [kuk02]2 = h
M�1
Â

m=0
|um|2 = kuk2

2�hu2
M . Then the previous inequality implies:

[kup+1k02]2  (1+At)[kupk02]2 + t(ap
M +Ah)(c p)2 , p = 1,2, . . . ,

and consequently:

[kupk02]2  (1+At)p[kyk02]2 +
p

Â
k=1

(1+At)p�kt(ak�1
M +Ah)(ck�1)2, p = 1,2, . . . .

We again need to distinguish between the cases A  0, p = 0,1,2, . . ., and A > 0,
p = 0,1,2, . . . , [T/t]:

[kupk02]2 

8
>><

>>:

[kyk02]2 +
•
Â

k=1
tak�1

M (ck�1)2, A 0,

eAT

 
[kyk02]2 +

[T/t]
Â

k=1
t(ak�1

M +Ah)(ck�1)2

!
, A > 0.

(10.182)

The discrete estimate (10.182) is analogous to the continuous estimate (10.175). To
use the norms k · k2 instead of k · k02 in (10.182), we only need to add a bounded
quantity h(c0)2 +h(c p)2 on the right-hand side.

Energy estimates (10.178), (10.180), and (10.182) imply the l2 stability of the
schemes (10.176), (10.179), and (10.181), respectively, in the sense of the Defini-
tion 10.2 from page 312. Note that since the foregoing schemes are explicit, stability
is not unconditional, and the Courant number has to satisfy r 1 for scheme (10.176)
and r  [sup(x,t) a(x, t)]�1 for schemes (10.179) and (10.181).

In general, direct energy estimates appear helpful for studying stability of finite-
difference schemes. Indeed, they may provide sufficient conditions for those difficult
cases that involve variable coefficients, boundary conditions, and even multiple space
dimensions. In addition to the scalar hyperbolic equations, energy estimates can
be obtained for some hyperbolic systems, as well as for the parabolic equations.
For detail, we refer the reader to [GKO95, Chapters 9 & 11], and to some fairly
recent journal publications [Str94, Ols95a, Ols95b]. However, there is a key non-
trivial step in proving energy estimates for finite-difference initial boundary value
problems, namely, obtaining the discrete summation by parts rules appropriate for a
given discretization [see the example given by formula (10.177)]. Sometimes, this
step may not be obvious at all; otherwise, it may require using alternative norms
based on specially chosen inner products.

10.5.4 A Necessary and Su�cient Condition of Stability.

The Kreiss Criterion

In Section 10.5.2, we have shown that for stability of a finite-difference initial
boundary value problem it is necessary that the spectrum of the family of transition
operators Rh belongs to the unit disk on the complex plane. We have also shown,
see Theorem 10.9, that this condition is, in fact, not very far from a sufficient one,
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as it guarantees the scheme from developing a catastrophic exponential instability.
However, it is not a fully sufficient condition, and there are examples of the schemes
that satisfy the Godunov and Ryaben’kii criterion of Section 10.5.2, i.e., that have
their spectrum of {Rh} inside the unit disk, yet they are unstable.

A comprehensive analysis of the necessary and sufficient conditions of stability for
the schemes that approximate time-dependent problems on finite intervals is rather
involved. In the literature, the corresponding series of results is commonly referred
to as the Gustafsson, Kreiss, and Sundström (GKS) theory, and we refer the reader
to the monograph [GKO95, Part II] for detail. A concise narrative of this theory can
also be found in [Str04, Chapter 11]. All results of the GKS theory are formulated in
terms of the l2 norm. An important tool used for obtaining stability estimates is the
Laplace transform in time.

Although a full account of (and even a self-contained introduction to) the GKS
theory is beyond the scope of this text, its key ideas are easy to understand on the
qualitative level and easy to illustrate with examples. The following material is es-
sentially based on that of Section 10.5.2 and can be skipped during the first reading.

Let us consider an initial boundary value problem for the first order constant co-
efficient hyperbolic equation:

∂u
∂ t
� ∂u

∂x
= 0, 0 x 1, 0 < t  T,

u(x,0) = y(x), u(1, t) = 0.
(10.183)

We introduce a uniform grid: xm = mh, m = 0,1, . . . ,M, h = 1/M; tp = pt , p =
0,1,2, . . ., and approximate problem (10.183) with the leap-frog scheme:

up+1
m �up�1

m

2t
�

up
m+1�up

m�1
2h

= 0,

m = 1,2, . . . ,M�1, p = 1,2, . . . , [T/t]�1,

u0
m = y(xm), u1

m = y(xm + t), m = 0,1, . . . ,M,

lup+1
0 = 0, up+1

M = 0, p = 1,2, . . . , [T/t]�1.

(10.184)

Notice that scheme (10.184) requires two initial conditions, and for simplicity we
use the exact solution, which is readily available in this case, to specify u1

m for
m = 0,1, . . . ,M � 1. Also notice that the differential problem (10.183) does not
require any boundary conditions at the “outflow” boundary x = 0, but the discrete
problem (10.184) requires an additional boundary condition that we symbolically
denote lup+1

0 = 0. We will investigate two different outflow conditions for scheme
(10.184):

up+1
0 =up+1

1 (10.185a)

and

up+1
0 =up

0 + r(up
1 �up

0), (10.185b)
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where we have used our standard notation r = t
h = const.

Let us first note that scheme (10.184) is not a one-step scheme, which, in partic-
ular, renders the corresponding finite-difference Cauchy problem (mildly) unstable
for r = 1, see Section 10.3.6. To reduce scheme (10.184) to the canonical form
(10.141) so that to be able to investigate the spectrum of the family of operators {Rh},
we would formally need to introduce additional variables (i.e., transform a scalar
equation into a system) and then consider a one-step finite-difference equation, but
with vector unknowns. However, it turns out that in this case the Babenko-Gelfand
procedure of Section 10.5.1 applied to the resulting vector scheme is equivalent
to the Babenko-Gelfand procedure applied directly to the scalar multi-step scheme
(10.184). As such, we will skip the formal reduction of scheme (10.184) to the
canonical form (10.141) and proceed immediately to computing the spectrum of the
corresponding family of transition operators.

We need to analyze three model problems that follow from (10.184): A problem
with no lateral boundaries:

up+1
m �up�1

m

2t
�

up
m+1�up

m�1
2h

= 0,

m = 0,±1,±2, . . . ,
(10.186)

a problem with only the left boundary:

up+1
m �up�1

m

2t
�

up
m+1�up

m�1
2h

= 0,

m = 1,2, . . . ,

lup+1
0 = 0,

(10.187)

and a problem with only the right boundary:

up+1
m �up�1

m

2t
�

up
m+1�up

m�1
2h

= 0,

m = M�1,M�2, . . . ,1,0,�1, . . . ,

up+1
M = 0.

(10.188)

Substituting a solution of the type:

up
m = l pum

into the finite-difference equation:

up+1
m �up�1

m = r(up
m+1�up

m�1), r = t/h,

that corresponds to all three problems (10.186), (10.187), and (10.188), we obtain
the following second order ordinary difference equation for the eigenfunction {um}:

(l �l�1)um� r(um+1�um�1) = 0. (10.189)
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Its characteristic equation:

(l �l�1)� r(q�q�1) = 0 (10.190a)

has two roots: q1 = q1(l ) and q2 = q2(l ), so that the general solution of equation
(10.189) can be written as

um = c1qm
1 + c2qm

2 , m = 0,±1,±2, . . . , c1 = const, c2 = const.

It will also be convenient to recast the characteristic equation (10.190a) in an equiv-
alent form:

q2� l �l�1

r
q�1 = 0. (10.190b)

From equation (10.190b) one can easily see that q1q2 =�1 and consequently, unless
both roots have unit magnitude, we always have |q1(l )|< 1 and |q2(l )|> 1.

The solution of problem (10.186) must be bounded: |um|  const for m =
0,±1,±2, . . .. We therefore require that for this problem |q1| = |q2| = 1, which
means q1 = eia , 0  a < 2p , and q2 = �e�ia . The spectrum of this problem was
calculated in Example 5 of Section 10.3.3:

 !
L =

n
l (a) = ir sina ±

p
1� r2 sin2 a

���0 a < 2p
o
. (10.191)

Provided that r  1, the spectrum
 !
L given by formula (10.191) belongs to the unit

circle on the complex plane.
For problem (10.188), we must have um �! 0 as m �! �•. Consequently, its

general solution is given by:

up
m = c2l pqm

2 , m = M,M�1, . . . ,1,0,�1, . . . .

The homogeneous boundary condition up+1
M = 0 of (10.184) implies that a nontrivial

eigenfunction um = c2qm
2 may only exist if l = 0. From the characteristic equation

(10.190a) in yet another equivalent form (l 2� 1)q� rl (q2� 1) = 0, we conclude
that if l = 0 then q = 0, which means that problem (10.188) has no eigenvalues:

 �
L = /0. (10.192)

To study problem (10.187), we first consider boundary condition (10.185a), known
as the extrapolation boundary condition. The solution of problem (10.187) must
satisfy um �! 0 as m�! •. Consequently, its general form is:

up
m = c1l pqm

1 , m = 0,1,2, . . . .

The extrapolation condition (10.185a) implies that a nontrivial eigenfunction um =
c1qm

1 may only exist if either l = 0 or c1(1�q1) = 0. However, we must have |q1|<
1 for problem (10.187), and as such, we see that this problem has no eigenvalues
either: �!

L = /0. (10.193)
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Combining formulae (10.191), (10.192), and (10.193), we obtain the spectrum of the
family of operators:

L =
 !
L [ �L [�!L =

 !
L .

We therefore see that according to formula (10.191), the necessary condition for
stability (Theorem 10.8) of scheme (10.184), (10.185a) is satisfied when r  1.

However, scheme (10.184), (10.185a) still turns out unstable. The instability is
not catastrophic, because according to Theorem 10.9, even if there is no uniform
bound on the powers of the transition operators, their rate of growth should still be
slower than any exponential function. Yet one can clearly see the instability in Fig-
ure 10.14, where we show the results of numerical integration of problem (10.183)
with y(x) = cos2px and u(1, t) = cos2p(1+ t) so that u(x, t) = cos2p(x+ t), us-
ing scheme (10.184), (10.185a) with r = 0.95. (The actual proof of instability can
be found, e.g., in [GKO95, Section 13.1] or in [Str04, Section 11.2].) Moreover,
as r < 1, this instability cannot be attributed to the instability of the finite-difference
Cauchy problem for the leap-frog scheme in the case r = 1, which is due to a multiple
eigenvalue |l |= 1, see Section 10.3.6.

In order to analyze what may have caused the instability of scheme (10.184),
(10.185a), let us return to the proof of Theorem 10.9. If we were able to claim
that the entire spectrum of the family of operators {Rh} lies strictly inside the unit
disk, then a straightforward modification of that proof would immediately yield a
uniform bound on the powers R

p
h . This situation, however, is generally impossible.

Indeed, in all our previous examples, the spectrum has always contained at least one
point on the unit circle: l = 1. It is therefore natural to assume that since the points
l inside the unit disk present no danger of instability according to Theorem 10.9,
then the potential “culprits” should be sought on the unit circle.

As the finite-difference Cauchy problem (10.186) has no multiple eigenvalues
|l |= 1 for the case r < 1, let us revisit the problem with the left boundary (10.187).
We have shown that this problem has no nontrivial eigenfunctions in the class
um �! 0 as m �! • and accordingly, it has no eigenvalues either, see formula
(10.193). As such, it does not contribute to the overall spectrum of the family of
operators. However, even though the boundary condition (10.185a) in the form
c1(1� q1) = 0 is not satisfied by any function um = c1qm

1 , where |q1| < 1, we see
that it is “almost satisfied” if the root q1 is close to one. Therefore, the function
um = c1qm

1 is “almost an eigenfunction” of problem (10.187), and the smaller the
quantity |1�q1|, the more of a genuine eigenfunction it becomes.

To investigate stability, we need to determine whether or not the foregoing “almost
an eigenfunction” can bring along an unstable eigenvalue, or rather “almost an eigen-
value,” |l | > 1. By passing to the limit q1 �! 1, we find from equation (10.190a)
that l = 1 or l =�1. We should therefore analyze the behavior of the quantities l
and q in a neighborhood of each of these two values of l , when the relation between
l and q is given by equation (10.190a).

First recall that according to formula (10.191), if |q| = 1, then |l | = 1 (provided
that r  1). Consequently, if |l | > 1, then |q| 6= 1, i.e., there are two distinct roots:
|q1|< 1 and |q2|> 1. In particular, when l is near (1,0), there are still two roots —
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FIGURE 10.14: Solution of problem (10.183) with scheme (10.184), (10.185a).

one with the magnitude greater than one and the other with the magnitude less than
one. When |l�1|�! 0 we will clearly have |q1|�! 1 and |q2|�! 1. We, however,
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don’t know ahead of time which of the two possible scenarios actually takes place:

lim
|l |>1,l!1

q1(l ) = 1, lim
|l |>1,l!1

q2(l ) =�1 (10.194a)

or

lim
|l |>1,l!1

q1(l ) =�1, lim
|l |>1,l!1

q2(l ) = 1. (10.194b)

To find this out, let us notice that the roots q1(l ) and q2(l ) are continuous (in fact,
analytic) functions of l . Consequently, if we take l in the form l = 1+h , where
|h |⌧ 1, and if we want to investigate the root q that is close to one, then we can say
that q(l ) = 1+z , where |z |⌧ 1. From equation (10.190a) we then obtain:

2h +O(h2) = 2rz +O(z 2). (10.195)

Consider a special case of real h > 0, then z must obviously be real as well. From
the previous equality we find that z > 0 (because r > 0), i.e., |q| > 1. As such, we
see that if |l |> 1 and l �! 1, then

{q = q(l )�! 1}=) {|q|> 1}.

Indeed, for real h and z , we have |q|= 1+z > 1; for other h and z the same result
follows by continuity. Consequently, it is the root q2 that approaches (1,0) when
l �! 1, and the true scenario is given by (10.194b) rather than by (10.194a).

We therefore see that when a potentially “dangerous” unstable eigenvalue |l |> 1
approaches the unit circle at (1,0): l �! 1, it is the grid function um = c2qm

2 , |q2|>
1, that will almost satisfy the boundary condition (10.185a), because c2(1�q2)�!
0. This grid function, however, does not satisfy the requirement um�! 0 as m�!•,
i.e., it does not belong to the class of functions admitted by problem (10.187). On the
other hand, the function um = c1qm

1 , |q1|< 1, that satisfies um �! 0 as m�!•, will
be very far from satisfying the boundary condition (10.185a) because q1 �!�1.

Next, recall that we actually need to investigate what happens when q1 �! 1, i.e.,
when c1qm

1 is almost an eigenfunction. This situation appears opposite to the one we
have analyzed. Consequently, when q1 �! 1 we will not have such a l (q1) �! 1
where |l (q1)|> 1. Qualitatively, this indicates that there is no instability associated
with “almost an eigenfunction” um = c1qm

1 , |q1| < 1, of problem (10.187). In the
framework of the GKS theory, this assertion can be proven rigorously.

Let us now consider the second case: l �!�1 while |l |> 1. We need to deter-
mine which of the two scenarios holds:

lim
|l |>1,l!�1

q1(l ) = 1, lim
|l |>1,l!�1

q2(l ) =�1 (10.196a)

or

lim
|l |>1,l!�1

q1(l ) =�1, lim
|l |>1,l!�1

q2(l ) = 1. (10.196b)
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Similarly to the previous analysis, let l =�1+h , where |h |⌧ 1, then also q(l ) =
1+z , where |z |⌧ 1 (recall, we are still interested in q�! 1). Consider a particular
case of real h < 0, then equation (10.195) yields z < 0, i.e., |q| < 1. Consequently,
if |l |> 1 and l �!�1, then

{q = q(l )�! 1}=) {|q|< 1}.

In other words, this time it is the root q1 that approaches (1,0) as l �!�1, and the
scenario that gets realized is (10.196a) rather than (10.196b). In contradistinction to
the previous case, this presents a potential for instability. Indeed, the pair (l ,q1),
where |q1| < 1 and |l | > 1, would have implied the instability in the sense of Sec-
tion 10.5.2 if c1qm

1 were a genuine eigenfunction of problem (10.187) and l if were
the corresponding genuine eigenvalue. As we know, this is not the case. However,
according to the first formula of (10.196a), the actual setup appears to be a limit of
the admissible yet unstable situation. In other words, the combination of “almost
an eigenfunction” um = c1qm

1 , |q1| < 1, that satisfies um �! 0 as m �! • with “al-
most an eigenvalue” l = l (q1), |l |> 1, is unstable. While remaining unstable, this
combination becomes more of a genuine eigenpair of problem (10.187) as l �!�1.
Again, a rigorous proof of the instability is given in the framework of the GKS theory
using the technique based on the Laplace transform.

Thus, we have seen that two scenarios are possible when l approaches the unit
circle from the outside. In one case, there may be an admissible root q of the charac-
teristic equation that almost satisfies the boundary condition, see formula (10.196a),
and this situation is prone to instability. Otherwise, see formula (10.194b), there is
no admissible root q that would ultimately satisfy the boundary condition, and as
such, no instability will be associated with this l .

In the unstable case exemplified by formula (10.196a), the corresponding limit
value of l is called the generalized eigenvalue, see [GKO95, Chapter 13]. In partic-
ular, l =�1 is a generalized eigenvalue of problem (10.187). We re-emphasize that
it is not a genuine eigenvalue of problem (10.187), because when l =�1 then q1 = 1
and the eigenfunction um = cqm

1 does not belong to the admissible class: um �! 0
as m �! •. In fact, it is easy to see that kuk2 = •. However, it is precisely this
generalized eigenvalue that causes the instability even when the entire spectrum of
the family of operators {Rh} belongs to the unit disk and r < 1.

Accordingly, the Kreiss necessary and sufficient condition of stability requires that
the spectrum of the family of operators be confined to the unit disk as before, and
additionally, that the scheme should have no generalized eigenvalues |l |= 1. In the
case of systems, the discrete Cauchy problem must also be stable in the sense of
Theorem 10.4 (which, for the leap-frog scheme, means r < 1). Scheme (10.184),
(10.185a) violates the Kreiss condition as it has a generalized eigenvalue l = �1.
Hence, it is unstable, see Figure 10.14.

Since, however, this instability is only due to a generalized eigenvalue with |l |=
1, it is relatively mild, as expected. On the other hand, if we were to replace the
marginally unstable boundary condition (10.185a) with a truly unstable one in the
sense of Section 10.5.2, then the effect on the stability of the scheme would have
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been much more drastic. Instead of (10.185a), consider, for example:

up+1
0 = 1.05 ·up+1

1 . (10.197)

This boundary condition generates an eigenfunction um = c1qm
1 of problem (10.187)

with q1 =
1

1.05 < 1. The corresponding eigenvalues are given by:

l (q1) =
r
2

✓
q1�

1
q1

◆
±

s

1+
r2

4

✓
q1�

1
q1

◆2
,

and for one of these eigenvalues we obviously have |l | > 1. Therefore, the scheme
is unstable according to Theorem 10.8, see also Figure 10.15.
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FIGURE 10.15: Solution of problem (10.183) with scheme (10.184), (10.197).
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In Figure 10.15, we are showing the results of the numerical solution of problem
(10.183) using the unstable scheme (10.184), (10.197). Comparing the plots in Fig-
ure 10.15 with those in Figure 10.14, we see that in the case of boundary condition
(10.197) the instability develops much more rapidly in time. Moreover, comparing
the left column in Figure 10.15 that corresponds to the grid with M = 100 cells
with the right column in the same figure that corresponds to M = 200, we see that
the instability develops more rapidly on a finer grid, which is characteristic of an
exponential instability.

Let now now analyze the second outflow boundary condition (10.185b):

up+1
0 = up

0 + r(up
1 �up

0).

Unlike the extrapolation-type boundary condition (10.185a), which to some extent is
arbitrary, boundary condition (10.185b) merely coincides with the first order upwind
approximation of the differential equation itself that we have encountered previously
on multiple occasions. To study stability, we again need to investigate three model
problems: (10.186), (10.187), and (10.188). Obviously, only problem (10.187)
changes due to the new boundary condition, where the other two stay the same.
Moreover, as the Cauchy problem (10.186) is not stable for r = 1, it is sufficient to
analyze the boundary conditions only for r < 1.

To find l and q for problem (10.187), we need to solve the characteristic equation
(10.190a) along with a similar equation that comes from the boundary condition
(10.185b):

l = 1� r+ rq. (10.198)

Substituting l from equation (10.198) into equation (10.190a) and subsequently
solving for q, we find that there is only one solution: q = 1. For the corresponding
l , we then have from equation (10.198): l = 1. Consequently, for r < 1 problem
(10.187) has no proper eigenfunctions/eigenvalues, which means that we again have�!
L = /0. As far as the generalized eigenvalues, we only need to check one value of l :
l = 1 (because l =�1 does not satisfy equation (10.198) for q = 1). Let l = 1+h
and q = 1+ z , where |h |⌧ 1 and |z |⌧ 1. We then arrive at the same equation
(10.195) that we obtained in the context of the previous analysis and conclude that
l = 1 does not violate the Kreiss condition, because |l | > 1 implies |q| > 1. As
such, the scheme (10.184), (10.185b) is stable when r < 1.

Exercises

1. For the scalar Lax-Wendroff scheme [cf. formula (10.83)]:

up+1
m �up

m
t

�
up

m+1�up
m�1

2h
� t

2
up

m+1�2up
m +up

m�1
h2 = 0,

p = 0,1, . . . , [T/t]�1, m = 1,2, . . . ,M�1, Mh = 1,

u0
m = y(xm), m = 0,1,2, . . . ,M,

up+1
0 �up

0
t

�
up

1 �up
0

h
= 0, up+1

M = 0, p = 0,1, . . . , [T/t]�1,



Finite-Difference Schemes for Partial Differential Equations 419

that approximates the initial boundary value problem:

∂u
∂ t
� ∂u

∂x
= 0, 0 x 1, 0 < t  T,

u(x,0) = y(x), u(1, t) = 0,

on the uniform rectangular grid: xm = mh, m = 0,1, . . . ,M, Mh = 1, tp = pt , p =
0,1, . . . , [T/t], find out when the Babenko-Gelfand stability criterion holds.
Answer. r = t/h 1.

2.? Prove Theorem 10.6.

a) Prove the sufficiency part.

b) Prove the necessity part.

3.? Approximate the acoustics Cauchy problem:

∂u

∂ t
�A

∂u

∂x
=jjj(x, t), �• x •, 0 < t  T,

u(x,0) =yyy(x), �• x •,

u(x, t) =


v(x, t)
w(x, t)

�
, jjj(x) =


j(1)(x)
j(2)(x)

�
, yyy(x) =


y(1)(x)
y(2)(x)

�
, A =


0 1
1 0

�
,

with the Lax-Wendroff scheme:

u
p+1
m �u

p
m

t
�A

up
m+1�up

m�1
2h

� t
2

A
2 u

p
m+1�2u

p
m +u

p
m�1

h2 =jjj p
m,

p = 0,1, . . . , [T/t]�1, m = 0,±1,±2, . . . ,

u
0
m =yyy(xm), m = 0,±1,±2, . . . .

Define u
p = {u

p
m} and jjj p = {jjj p

m}, and introduce the norms as follows:

ku(h)kUh = max
p
kupk, kf (h)kFh = max


kyyyk,max

p
kjjj pk

�
,

where

kupk2 = Â
m

⇣
|vp

m|2 + |wp
m|2
⌘
, kyyyk2 = Â

m

⇣
|y(1)(xm)|2 + |y(2)(xm)|2

⌘
,

kjjj pk2 = Â
m

⇣
|j(1)(xm, tp)|2 + |j(2)(xm, tp)|2

⌘
.

a) Show that when reducing the Lax-Wendroff scheme to the canonical form
(10.141), inequalities (10.143) and (10.144) hold.

b) Prove that when r = t
h  1 the scheme is l2 stable, and when r > 1 it is unstable.

Hint. To prove estimate (10.145) for the norms kRp
hk, first introduce the new unknown

variables (called the Riemann invariants):

I(1)m = vm +wm and I(2)m = vm�wm,

and transform the discrete system accordingly, and then employ the spectral criterion
of Section 10.3.
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4. Let the norm in the space U 0h be defined in the sense of l2: kuk2 =


h

•
Â

m=�•
|um|2

�1/2
.

Prove that in this case all complex numbers l (a) = 1� r + reia , 0  a < 2p [see
formula (10.148)], belong to the spectrum of the transition operator Rh that corresponds
to the difference Cauchy problem (10.147), where the spectrum is defined according to
Definition 10.7.
Hint. Construct the solution u= {um}, m= 0,±1,±2, . . ., to the inequality that appears

in Definition 10.7 in the form: um =

(
qm

1 , m� 0,
q�m

2 , m < 0,
, where q1 = (1� d )eia , q2 =

(1�d )e�ia , and d > 0 is a small quantity.

5. Prove sufficiency in Theorem 10.7.
Hint. Use expansion with respect to an orthonormal basis in U 0 composed of the
eigenvectors of Rh.

6. Compute the spectrum of the family of operators {Rh}, v=Rhu, given by the formulae:

vm =(1� r)um + rum+1, m = 0,1, . . . ,M�1,
vM =0.

Assume that the norm is the maximum norm.

7. Prove that the spectrum of the family of operators {Rh}, v = Rhu, defined as:

vm =(1� r+ gh)um + rum+1, m = 0,1, . . . ,M�1,
vM =uM ,

does not depend on the value of g and coincides with the spectrum computed in Sec-
tion 10.5.2 for the case g = 0. Assume that the norm is the maximum norm.
Hint. Notice that this operator is obtained by adding ghI

0 to the operator Rh defined
by formulae (10.142a) & (10.142b), and then use Definition 10.6 directly. Here I

0 is a
modification of the identity operator that leaves all components of the vector u intact
except the last component uM that is set to zero.

8. Compute the spectrum of the family of operators {Rh}, v=Rhu, given by the formulae:

vm =(1� r)um + r(um�1 +um+1)/2, m = 1,2, . . . ,M�1,
vM =0, av0 +bv1 = 0,

where a 2R and b 2R are known and fixed. Consider the cases |a|> |b| and |a|< |b|.

9.? Prove that the spectrum of the family of operators {Rh}, v = Rhu, defined by formulae
(10.142a) & (10.142b) and analyzed in Section 10.5.2:

vm =(1� r)um + rum+1, m = 0,1, . . . ,M�1,
vM =uM ,

will not change if the C norm: kuk = maxm |um| is replaced by the l2 norm: kuk =
⇥
hÂm u2

m
⇤1/2.
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10. For the first order ordinary difference equation:

avm +bvm+1 = fm, m = 0,±1,±2, . . . ,

the fundamental solution Gm is defined as a bounded solution of the equation:

aGm +bGm+1 = dm ⌘
(

1, m = 0,
0, m 6= 0.

a) Prove that if |a/b|< 1, then Gm =

(
0, m 0,
� 1

a
�
� a

b
�m

, m� 1.

b) Prove that if |a/b|> 1, then Gm =

(
1
a
�
� a

b
�m

, m 0,
0, m� 1.

c) Prove that vm =
•
Â

k=�•
Gm�k fk.

11. Obtain energy estimates for the implicit first order upwind schemes that approximate
problems (10.170), (10.172)?, and (10.174)?.

12.? Approximate problem (10.170) with the Crank-Nicolson scheme supplemented by one-
sided differences at the left boundary x = 0:

up+1
m �up

m
t

� 1
2

"
up+1

m+1�up+1
m�1

2h
+

up
m+1�up

m�1
2h

#
= 0,

m = 1,2, . . . ,M�1, p = 0,1, . . . , [T/t]�1,

up+1
0 �up

0
t

� 1
2

"
up+1

1 �up+1
0

h
+

up
1 �up

0
h

#
= 0, up

M = 0,

p = 0,1, . . . , [T/t]�1,

u0
m = ym, m = 0,1,2, . . . ,M.

(10.199)

a) Use an alternative definition of the l2 norm: kuk2
2 = h

2 (u
2
0 +u2

M)+h
M�1
Â

m=1
u2

m and

develop an energy estimate for scheme (10.199).

Hint. Multiply the equation by up+1
m +up

m and sum over the entire range of m.

b) Construct the schemes similar to (10.199) for the variable-coefficient problems
(10.172) and (10.174) and obtain energy estimates.

13. Using the Kreiss condition, show that the leap-frog scheme (10.184) with the boundary
condition:

up+1
0 = up

1 (10.200a)

is stable provided that r < 1, whereas with the boundary condition:

up+1
0 = up�1

0 +2r(up
1 �up

0) (10.200b)

it is unstable.


