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where vm are components of the bounded solution v = {vm}, m = 0,±1,±2, . . ., to
the following equation:

(1− r−λ0)vm + rvm+1 = f̂m
def
=


0, if m < 0,
fm, if m = 0,1, . . . ,M−1,
0, if m≥M.

(10.166)

Then because of the linearity, the grid function w = {wm} introduced by formula
(10.165) solves the equation:

(1− r−λ0)wm + rwm+1 = 0, m = 0,1, . . . ,M−1,
(1−λ0)wM = fM− (1−λ0)vM.

(10.167)

Let us now recast estimate (10.164) as |um| ≤ A−1 max
m
| fm|. According to

(10.165), to prove this estimate it is sufficient to establish individual inequalities:

|vm| ≤A1 max
m
| fm|, (10.168a)

|wm| ≤A2 max
m
| fm|, (10.168b)

where A1 and A2 are constants. We begin with inequality (10.168a). Notice that
equation (10.166) is a first order constant-coefficient ordinary difference equation:

avm + bvm+1 = f̂m, m = 0,±1,±2, . . . ,

where a = 1− r−λ0, b = r. Its bounded fundamental solution is given by

Gm =


1
a

(
−a

b

)m
, m≤ 0,

0, m≥ 1,

because λ0 6∈ {
←→
Λ ∪←−Λ ∪−→Λ }, i.e., |λ0− (1− r)| > r, and consequently |a/b| > 1.

Representing the solution vm in the form of a convolution: vm =
∞

∑
k=−∞

Gm−k f̂k and

summing up the geometric sequence we arrive at the estimate:

|vm| ≤
max

m
| f̂m|

|a|− |b|
≤

max
m
| fm|

|a|− |b|
.

Introducing the distance δ0 between the point λ0 and the set {←→Λ ∪←−Λ ∪−→Λ }, we can
obviously claim that |a|− |b|> δ0/2, which makes the previous estimate equivalent
to (10.168a). Estimate (10.168b) can be obtained by representing the solution of
equation (10.167) in the form:

wm =
fM− (1−λ0)vM

1−λ0
qm−M

0 , (10.169)



402 A Theoretical Introduction to Numerical Analysis

where q0 is determined by the relation (1− r− λ0) + rq0 = 0. Our assumption is
that λ0 6∈ {

←→
Λ ∪←−Λ ∪−→Λ }, i.e., that λ0 lies outside of the disk of radius r on the

complex plane centered at (1− r,0). In this case |q0| > 1. Moreover, we can say
that |1− λ0| = δ1 > 0, because if λ0 = 1, then λ0 would have belonged to the set
{←→Λ ∪←−Λ ∪−→Λ }. As such, using formula (10.169) and taking into account estimate
(10.168a) that we have already proved, we obtain the desired estimate (10.168b):

|wm|=
∣∣∣∣ fM− (1−λ0)vM

1−λ0

∣∣∣∣ · |qm−M
0 | ≤ | fM|

|1−λ0|
+ |vM|

≤
max

m
| fm|

δ1
+ A1 max

m
| fm|= A2 max

m
| fm|.

We have thus proven that the spectrum of the family of operators {Rh} defined by
formulae (10.142) coincides with the set {←→Λ ∪←−Λ ∪−→Λ } on the complex plane.

The foregoing algorithm for computing the spectrum of the family of operators
{Rh} is, in fact, quite general. We have illustrated it using a particular example of the
operators defined by formulae (10.142). However, not only for this specific example
but also for other scalar one-step finite-difference schemes with constant coefficients,
the spectrum of the family of operators {Rh} can be obtained by performing the same
Babenko-Gelfand analysis of Section 10.5.1. The key idea is to take into account
other candidate modes that may be prone to developing the instability, besides the
eigenmodes {eiαm} of the pure Cauchy problem that are accounted for by the von
Neumann analysis.

For systems of finite-difference equations (as well as for scalar multi-step equa-
tions), the technical side of the procedure may become more involved. In this case,
the computation of the spectrum of a family of operators can be reduced to studying
uniform bounds for the solutions of certain ordinary difference equations with matrix
coefficients. A necessary and sufficient condition has been obtained in [Rya64] for
the existence of such uniform bounds. This condition is given in terms of the roots
of the corresponding characteristic equation and also involves the analysis of some
determinants originating from the matrix coefficients of the system. For further de-
tail, we refer the reader to [GR87, § 4 & § 45] and [RM67, § 6.6 & § 6.7], as well as
to the original journal publication by Ryaben’kii [Rya64].

10.5.3 The Energy Method

For some evolution finite-difference problems, one can obtain the l2 estimates of
the solution directly, i.e., without employing any special stability criteria, such as
spectral. The corresponding technique is known as the method of energy estimates.
It is useful for deriving sufficient conditions of stability, in particular, because it can
often be applied to problems with variable coefficients on finite intervals. We illus-
trate the energy method with several examples.

In the beginning, let us analyze the continuous case. Consider an initial boundary


