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10.3.4 Stability in C

Let us emphasize that the type of stability we have analyzed in Sections 10.3.1–
10.3.3 was stability in the sense of the maximum norm (10.71). Alternatively, it is
referred to as stability in (the space) C. This space contains all bounded numerical
sequences. The von Neumann spectral condition (10.78) is necessary for the scheme
to be stable in C. As far as the sufficient conditions, in some simple cases stability
in C can be proved directly, for example, using maximum principle, as done in Sec-
tion 10.1.3 for the first order explicit upwind scheme and in Section 10.6.1 for an
explicit scheme for the heat equation. Otherwise, sufficient conditions for stability
in C turn out to be delicate and may require rather sophisticated arguments. The
analysis of a general case even for one scalar constant coefficient difference equation
goes beyond the scope of the current book, and we refer the reader to the original
work by Fedoryuk [Fed67] (see also his monograph [Fed77, Chapter V, § 4]). In
addition, in [RM67, Chapter 5] the reader can find an account of the work by Strang
and by Thomee on the subject.

10.3.5 Su�ciency of the Spectral Stability Condition in l2

However, a sufficient condition for stability may sometimes be easier to find if we
were to use a different norm instead of the maximum norm (10.71). Let, for example,
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Relations (10.94) define Euclidean (i.e., l2) norms for up, j p, and y . Accordingly,
stability in the sense of the norms given by (10.94) is referred to as stability in (the
space) l2. We recall that the space l2 is a Hilbert space of all numerical sequences,
for which the sum of squares of absolute values of all their terms is bounded.

Consider a general constant coefficient finite-difference Cauchy problem:
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u0
m = ym, m = 0,±1,±2, . . . , p = 0,1, . . . , [T/t]�1,

under the assumption that
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Â
j=� jleft

b jeia j 6= 0, 0  a < 2p.

Note that all spatially one-dimensional schemes from Section 10.3.3, except those in
Examples 5 and 9, fit into the category (10.95) with jleft = jright = 1.
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THEOREM 10.3
For the scheme (10.95) to be stable in l2 with respect to the initial data, i.e.,
for the following inequality to hold:

kupk  ckyk, p = 0,1, . . . , [T/t], (10.96)

where the constant c does not depend on h [or on t = t(h)], it is necessary
and su�cient that the von Neumann condition (10.78) be satisfied, i.e., that
the spectrum of the scheme l = l (a) belong to the disk:

|l (a)| 1+ c1t, (10.97)

where c1 is another constant that does not depend either on a or on t.

PROOF We will first prove the su�ciency. By hypotheses of the theo-

rem, the number series
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also converges in the space L2[0,2p], and its sum that we denote Y(a), 0 
a  2p, is a function that has ym as the Fourier coe�cients:
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(a realization of the Riesz-Fischer theorem, see, e.g., [KF75, Section 16]).
Moreover, the following relation holds:
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known as the Parseval equality.
Consider a homogeneous counterpart to the di↵erence equation (10.95):
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For any a 2 [0,2p) this equation obviously has a solution of the type:

up
m(a) = l p(a)eiam (10.99)
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for some particular l = l (a) that can be determined by substitution:
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Introduce the grid function:
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Y(a)l p(a)eiamda, m = 0,±1,±2, . . . (10.100)

If the von Neumann spectral condition (10.97) holds, we have:

|l (a)|p  |1+ c1t|T/t  ec1T . (10.101)

Then, the integral on the right-hand side of (10.100) indeed converges,
because Y(a) 2 L2 along with (10.101) imply Y(a)l p(a) 2 L2, andR 2p
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The function up

m of (10.100) solves the Cauchy problem (10.95) for j p
m = 0

because it is a linear combination of solutions up
m(a) of (10.99) and coincides

with ym for p = 0, see (10.98). Consequently, using the Parseval equality and
inequality (10.101), we can obtain:
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which clearly implies stability with respect to the initial data: kupk  ckyk.
To prove the necessity, we will need to show that if (10.97) holds for no fixed

c1, then the scheme is unstable. We should emphasize that to demonstrate the
instability for the chosen norm (10.94) we may not exploit the unboundedness
of the solution up

m(a) = l p(a)eiam that takes place in this case, because the
grid function {eiam} does not belong to l2.

Instead, let us take a particular Y(a) 2 L2[0,2p] such that
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where e > 0 is given. For an arbitrary e, estimate (10.102) can always be
guaranteed by choosing

Y(a) =

(
1, if a 2 [a⇤ �d ,a⇤+d ],
0, if a 62 [a⇤ �d ,a⇤+d ],

where a⇤ = argmax
a

|l (a)| and d > 0. Indeed, as the function |l (a)|2p is

continuous, inequality (10.102) will hold for a su�ciently small d = d (e).
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If estimate (10.101) does not take place, then we can find a sequence hk,
k = 0,1,2,3, . . ., and the corresponding sequence tk = t(hk) such that

ck =
⇣

max
a

|l (a,hk)|
⌘[T/tk]

�! • as k �! •.

Let us set e = 1 and choose Y(a) to satisfy (10.102). Define ym as Fourier co-
e�cients of the function Y(a), according to formula (10.98). Then, inequality
(10.102) for pk = [T/tk] transforms into:

kupkk2 � (c2
k �1)kyk2 =)kupkk � (ck �1)kyk,
ck �! • as k �! •,

i.e., there is indeed no stability (10.96) with respect to the initial data.

Theorem 10.3 establishes equivalence between the von Neumann spectral condi-
tion and the l2 stability of scheme (10.95) with respect to the initial data. In fact, one
can go even further and prove that the von Neumann spectral condition is necessary
and sufficient for the full-fledged l2 stability of the scheme (10.95) as well, i.e., when
the right-hand side j p

m is not disregarded. One implication, the necessity, immedi-
ately follows from Theorem 10.3, because if the von Neumann condition does not
hold, then the scheme is unstable even with respect to the initial data. The proof of
the other implication, the sufficiency, can be found in [GR87, § 25]. This proof is
based on using the discrete Green’s functions. In general, once stability with respect
to the initial data has been established, stability of the full inhomogeneous problem
can be derived using the Duhamel principle. This principle basically says that the
solution to the inhomogeneous problem can be obtained as linear superposition of
the solutions to some specially chosen homogeneous problems. Consequently, a
stability estimate for the inhomogeneous problem can be obtained on the basis of
stability estimates for a series of homogeneous problems, see [Str04, Chapter 9].

10.3.6 Scalar Equations vs. Systems

As of yet, our analysis of finite-difference stability has focused mostly on scalar
equations; we have considered a 2⇥ 2 system only in Examples 10 and 11 of Sec-
tion 10.3.3. In Examples 5 and 9, we have also considered scalar difference equations
that connect the values of the solution on more than two consecutive time levels;
those can be reduced to systems on two time levels.

In general, a constant coefficient finite-difference Cauchy problem with vector
unknowns (i.e., a system) can be written in the form similar to (10.95):
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under the assumption that the matrices
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are non-singular. In formula (10.103), u
p
m, jjj p

m, and yyym are grid vector functions of a
fixed dimension, and A j = A j(h), B j = B j(h), j =� jleft, . . . , jright, are given square
matrices of the same dimension.

Solution to the homogeneous counterpart of equation (10.103) can be sought for
in the form (10.80), where u

0 = u
0(a,h) and l = l (a,h) are the eigenvectors and

eigenvalues, respectively, of the amplification matrix of scheme (10.103):
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The von Neumann spectral condition (10.97) is still necessary for stability of sys-
tems in both C and l2. Indeed, if it is not met, then estimate (10.101) won’t hold, and
the scheme will develop an exponential instability. This can be seen by applying the
respective scalar argument to any component of the corresponding vector solution.

Yet the von Neumann condition remains only a necessary stability condition for
systems in either C or l2. For C, the analysis of sufficient conditions becomes cum-
bersome already for the scalar case (see Section 10.3.4), and even in l2 obtaining
sufficient conditions for systems proves rather involved.

Qualitatively, the difficulties stem from the fact that the amplification matrix
(10.104) may have multiple eigenvalues and as a consequence, may not necessarily
have a full set of eigenvectors. If a multiple eigenvalue occurs exactly on the unit
circle or just outside the unit disk, this may still cause instability even when all the
eigenvalues satisfy the von Neumann constraint (10.97) (similar to Theorem 9.2).

An example is provided by the leap-frog scheme (10.86). If r = 1 and a = p/2,
then we have l1,2 = i, and if r = 1 and a = 3p/2, then l1,2 =�i. In either case, in
addition to (10.80) there will be a solution of the form u

p
m = pl p ⇥

u
0eiam⇤, which is

a manifestation of a gradually (linearly) developing instability.
Of course, if the amplification matrix appears normal (a matrix that commutes with

its adjoint) and therefore unitarily diagonalizable, then none of the aforementioned
difficulties is present, and the von Neumann condition becomes not only necessary
but also sufficient for stability of the vector scheme (10.103) in l2.

Otherwise, the question of stability for scheme (10.103) can be equivalently re-
formulated using the new concept of stability for families of matrices. A family of
square matrices (of a given fixed dimension) is said to be stable if there is a constant
K > 0 such that for any particular matrix LLL from the family, and any positive integer
p, the following estimate holds: kLLLpk  K. Scheme (10.103) is stable in l2 if and
only if the family of amplification matrices LLL=LLL(a,h) given by (10.104) is stable in
the sense of the previous definition (this family is parameterized by a 2 [0,2p) and
h> 0). Theorem 10.4, known as the Kreiss matrix theorem, provides some necessary
and sufficient conditions for a family of matrices to be stable.
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THEOREM 10.4 (Kreiss)
Stability of a family of matrices LLL is equivalent to any of the following:

1. There is a constant C1 > 0 such that for any matrix LLL from the given
family, and any complex number z, |z|> 1, there is a resolvent (LLL�zI)�1

bounded as: ��(LLL� zI)�1�� C1

|z|�1
.

2. There are constants C2 > 0 and C3 > 0, and for any matrix LLL from
the given family there is a non-singular matrix M such that kMk C2,

kM
�1k C2, and the matrix D

def
= MLLLM

�1 is upper triangular, with the
o↵-diagonal entries that satisfy:

|di j|C3 min{1�ki,1�k j},

where ki = dii and k j = d j j are the corresponding diagonal entries of D,
i.e., the eigenvalues of LLL.

3. There is a constant C4 > 0, and for any matrix LLL from the given family
there is a Hermitian positive definite matrix H, such that

C�1
4 I  H C4I and LLL⇤

HLLL  H.

The proof can be found in [RM67, Chapter 4] or [Str04, Chapter 9].

Exercises

1. Consider the so-called weighted scheme for the heat equation:
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where the real parameter s 2 [0,1] is called the weight (between the fully explicit
scheme, s = 0, and fully implicit scheme, s = 1). What values of s guarantee that the
scheme will meet the von Neumann stability condition for any r = t/h2 = const?

2. Consider the Cauchy problem (10.87) for the heat equation. The scheme:
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where we assume that j(x,0)⌘ 0 and define:
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approximates problem (10.87) on its smooth solutions with accuracy O(t2+h2). Does
this scheme satisfy the von Neumann spectral stability condition for r = t/h2 = const?
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3. For the two-dimensional Cauchy problem:
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= j(x,y, t), �• < x, y < •, 0 < t  T,

u(x,y,0) = y(x,y), �• < x, y < •,

investigate the von Neumann spectral stability of:

a) The first order explicit scheme:
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b) The second order explicit scheme:
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m, n = 0,±1,±2, . . . , p = 0,1, . . . , [T/t]�1.

4. Investigate the von Neumann spectral stability of the implicit two-dimensional scheme
for the homogeneous heat equation:
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5. Investigate the von Neumann stability of the implicit upwind scheme for the Cauchy
problem (10.82):
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(10.105)

6. Investigate the von Neumann stability of the implicit downwind scheme for the Cauchy
problem (10.82):
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7. Investigate the von Neumann stability of the implicit central scheme for the Cauchy
problem (10.82):
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8.? Transform the leap-frog scheme (10.86) of Example 5, Section 10.3.3, and the central-
difference scheme for the d’Alembert equation of Example 9, Section 10.3.3, to the
schemes written for finite-difference systems, as opposed to scalar equations, but con-
necting only two, as opposed to three, consecutive time levels of the grid. Investigate
the von Neumann stability by calculating spectra of the corresponding amplification
matrices (10.104).
Hint. Use the difference {up+1

m �up
m} as the second unknown grid function.

10.4 Stability for Problems with Variable Coe�cients

The von Neumann necessary condition that we have introduced in Section 10.3
to analyze stability of linear finite-difference Cauchy problems with constant coeffi-
cients can, in fact, be applied to a wider class of formulations. A simple extension
that we describe in this section allows one to exploit the von Neumann condition to
analyze stability of problems with variable coefficients (continuous, but not neces-
sarily constant) and even some nonlinear problems.

10.4.1 The Principle of Frozen Coe�cients

Introduce a uniform Cartesian grid: xm = mh, m = 0,±1,±2, . . ., tp = pt , p =
0,1,2, . . ., and consider a finite-difference Cauchy problem for the homogeneous
heat equation with the variable coefficient of heat conduction a = a(x, t):
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(10.108)

Next, take an arbitrary point (x̃, t̃) in the domain of problem (10.108) and “freeze”
the coefficients of problem (10.108) at this point. Then, we arrive at the constant-
coefficient finite-difference equation:
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(10.109)

Having obtained equation (10.109), we can formulate the following principle of
frozen coefficients. For the original variable-coefficient Cauchy problem (10.108) to
be stable it is necessary that the constant-coefficient Cauchy problem for the differ-
ence equation (10.109) satisfies the von Neumann spectral stability condition.

To justify the principle of frozen coefficients, we will provide an heuristic argu-
ment rather than a proof. When the grid is refined, the variation of the coefficient
a(x, t) in a neighborhood of the point (x̃, t̃) becomes smaller if measured over any
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finite fixed number of grid cells that have size h in space and size t in time. This is
true because of the continuity of the function a = a(x, t). In other words, the finer the
grid, the closer is a(x, t) to a(x̃, t̃) as long as (x, t) is no more than so many cells away
from (x̃, t̃). Consequently, if we were to perturb the solution of problem (10.108) on
a fine grid at the moment of time t = t̃ near the space location x = x̃, then over short
time intervals these perturbations would have evolved pretty much the as if they were
perturbations of the solution to the constant-coefficient equation (10.109).

It is clear that the previous argument is quite general. It is not affected by the
number of space dimensions, the number of unknown functions, or the specific type
of the finite-difference equation or system.

In Section 10.3.3, we analyzed a Cauchy problem for the equation of type
(10.109), see Example 6, and found that for the von Neumann stability condition
to hold the ratio r = t/h2 must satisfy the inequality:

r  1
2a(x̃, t̃)

. (10.110)

According to the principle of frozen coefficients, stability of scheme (10.108) re-
quires that condition (10.110) be met for any (x̃, t̃). Therefore, altogether the ratio
r = t/h2 must satisfy the inequality:

r  1
2max

x,t
a(x, t)

. (10.111)

The principle of frozen coefficients can also provide an heuristic argument for the
analysis of stability of nonlinear difference equations. We illustrate this using an
example of a Cauchy problem for the nonlinear heat equation:

∂u
∂ t

� (1+u2)
∂ 2u
∂x2 = 0, �• < x < •, 0 < t  T,

u(x,0) = y(x), �• < x < •.

We approximate this problem by means of an explicit scheme:
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(10.112)

The scheme is built on a uniform spatial grid: xm = mh, m = 0,±1,±2, . . ., but with a
non-uniform temporal grid, such that the size tp = tp+1 � tp may vary from one time
level to another. The finite-difference solution can still be obtained by marching.

Assume that we have already marched all the way up the time level tp and com-
puted the solution up

m, m = 0,±1,±2, . . .. To continue marching, we first need to
select the next grid size tp. This can be done by interpreting the finite-difference
equation to be solved at t = tp with respect to up+1

m as a linear equation:
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�ap

m
up

m+1 �2up
m +up

m�1
h2 = 0 (10.113)
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with the given variable coefficient of heat conduction: ap
m ⌘ 1+(up

m)2. Indeed, it is
natural to think that the values of the grid function up

m are close to the values u(xm, tp)
of the continuous solution u(x, t). Then, the discrete heat conduction coefficient
ap

m will be close to the projection a(xm, tp) of the continuous function a(x, t) = 1+
u(x, t)2 onto the grid. This function may vary only slightly over a few temporal steps.

By applying the principle of frozen coefficients to equation (10.113), we arrive at
the constraint (10.111) for the grid sizes that is necessary for stability:

tp
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m
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m
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m)2)
.

Consequently, when marching equation (10.112) one should select the temporal grid
size tp for each p = 0,1,2, . . . based on the inequality:

tp 
h2

2max
m

(1+(up
m)2)

.

Numerical experiments corroborate correctness of these heuristic arguments.
If stability condition obtained by considering the Cauchy problem with frozen

coefficients (at an arbitrary point of the domain) is violated, then we expect that
there will be no stability. We re-emphasize though that our justification for the prin-
ciple of frozen coefficients was heuristic rather than rigorous. There are, in fact,
counter-examples, when the problem with variable coefficients is stable, whereas the
problems with frozen coefficients are unstable. Those counter-examples, however,
are fairly “exotic” in nature, like the one given by Strang in [Str66] that involves
a second order differential equation with complex coefficients: ut = i[(sinx)ux]x.
At the same time, the analysis of [Str66] shows that for some important classes of
differential equations/systems that include, in particular, all first order systems (e.g.,
hyperbolic), the principle of frozen coefficients holds in the sense of l2 for explicit
finite-difference schemes. The same result is also known to be true for parabolic
equations, see [RM67, Chapter 5]. Therefore, for all practical purposes hereafter,
we will still regard the principle of frozen coefficients as a necessary condition for
stability. Moreover, in Section 10.6.1 we will use the maximum principle and show
that the explicit finite-difference scheme for a variable coefficient heat equation is ac-
tually stable if it satisfies the condition based on the principle of frozen coefficients.

We should also mention that the principle of frozen coefficients as formulated in
this section applies only to Cauchy problems. For an initial boundary value problem
formulated on a finite interval, the foregoing analysis is not sufficient. Even if the
necessary stability condition based on the principle of frozen coefficients holds, the
overall problem on the finite interval can still be either stable or unstable depend-
ing on the choice of the boundary conditions at the endpoints of the interval. In
Section 10.5.1, we discuss the Babenko-Gelfand stability criterion that takes into
account the effect of boundary conditions in the case of a problem on an interval.


