7. Consider Cauchy problem (10.67) for the heat equation, and approximate it with the predictor-corrector scheme designed as follows. The auxiliary grid function $\tilde{u}_{m}^{p+1 / 2}$ is to be computed by the implicit method:

$$
\frac{\tilde{u}_{m}^{p+1 / 2}-u_{m}^{p}}{\tau / 2}-\frac{\tilde{u}_{m+1}^{p+1 / 2}-2 \tilde{u}_{m}^{p+1 / 2}+\tilde{u}_{m-1}^{p+1 / 2}}{h^{2}}=0, \quad m=0, \pm 1, \pm 2, \ldots,
$$

and the actual solution u_{m}^{p+1} at $t=t_{p+1}$ is to be computed by the scheme:

$$
\frac{u_{m}^{p+1}-u_{m}^{p}}{\tau}-\frac{\tilde{u}_{m+1}^{p+1 / 2}-2 \tilde{u}_{m}^{p+1 / 2}+\tilde{u}_{m-1}^{p+1 / 2}}{h^{2}}=0, \quad u_{m}^{0}=\psi(m h) .
$$

Prove that the overall predictor-corrector scheme has accuracy $\mathscr{O}\left(\tau^{2}+h^{2}\right)$ on the smooth solution $u=u(x, t)$.
8. Consider a modified scheme $\boldsymbol{L}_{h} u^{(h)}=f^{(h)}$ of type (10.47) (modification of the righthand side only):

$$
\begin{aligned}
\boldsymbol{L}_{h} u^{(h)} & =\left\{\begin{array}{l}
a^{0} u_{m}^{p+1}+a_{-1} u_{m-1}^{p}+a_{0} u_{m}^{p}+a_{1} u_{m+1}^{p}, \\
u_{m}^{0},
\end{array}\right. \\
f^{(h)} & =\left\{\begin{array}{l}
\varphi\left(x_{m}, t_{p}\right)+\left.\frac{r h}{2}\left(\varphi_{t}+\varphi_{x}\right)\right|_{\left(x_{m}, t_{p}\right)} \\
\psi\left(x_{m}\right),
\end{array}\right.
\end{aligned}
$$

and define the coefficients of the operator \boldsymbol{L}_{h} according to formula (10.55) that corresponds to the Lax-Wendroff method. Show that the resulting scheme approximates problem (10.8) with second order accuracy for an arbitrary sufficiently smooth righthand side $\varphi(x, t)$ (not necessarily zero).
9. Represent scheme (10.47) with $\varphi(x, t)=0$ in the form:

$$
\begin{equation*}
u_{m}^{p+1}=b_{-1} u_{m-1}^{p}+b_{0} u_{m}^{p}+b_{1} u_{m+1}^{p} \tag{10.68}
\end{equation*}
$$

where $b_{-1}=-a_{-1} / a^{0}, b_{0}=-a_{0} / a^{0}$, and $b_{1}=-a_{1} / a^{0}$, see Section 10.2.3. Scheme (10.68) is said to be monotone if $b_{j} \geq 0, j=-1,0,1$. Adopting the terminology of Section 10.2.3, let the primary constraint be the order of accuracy of at least $\mathscr{O}(h)$, and the secondary constraint be monotonicity of the scheme. In the three-dimensional space of vectors $\left\{b_{-1}, b_{0}, b_{1}\right\}$, describe the set $M_{0}=M_{\mathrm{pr}} \cap M_{\mathrm{sec}}$ (in this case, the distance between the sets M_{pr} and $M_{\text {sec }}$ is zero).
Answer. If $r=\tau / h>1$, then $M_{0}=\emptyset$. If $r=1$, then $M_{0}=\{(0,0,1)\}$. If $0<r<1$, then M_{0} is the interval with the endpoints: $\left(\frac{1-r}{2}, 0, \frac{1+r}{2}\right)$ and $(0,1-r, r)$.
10. Prove that the monotone schemes defined the same way as in Exercise 9 for $\varphi=0$ and $j=-j_{\text {left }}, \ldots, j_{\text {right }}$ satisfy the maximum principle from page 315 , i.e., that the maximum of the corresponding difference solution will not increase as the time elapses.
11. ${ }^{\star}$ (Godunov theorem) Prove that no one-step explicit monotone scheme may have accuracy higher than $\mathscr{O}(h)$ on smooth solutions of the differential equation $u_{t}+c u_{x}=0$. Hint. One version of the proof, due to Harten, Hyman, and Lax, can be found, e.g., in [Str04, pages 71-72]. Note also that there are exceptions, but they are all trivial. For example, the first order upwind scheme with $r=1$ has zero error on the exact solution $u=u(x-t)$ of $u_{t}+u_{x}=0$.
12. Consider a Cauchy problem for the one-dimensional wave (d'Alembert) equation:

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=\varphi(x, t), \quad-\infty<x<\infty, \quad 0<t \leq T \\
u(x, 0)=\psi^{(0)}(x), \quad \frac{\partial u(x, 0)}{\partial t}=\psi^{(1)}(x), \quad-\infty<x<\infty
\end{gathered}
$$

Analyze the approximation properties of the scheme $\boldsymbol{L}_{h} u^{(h)}=f^{(h)}$ on a smooth solution $u=u(x, t)$, where:

$$
\begin{aligned}
\boldsymbol{L}_{h} u^{(h)} & =\left\{\begin{array}{l}
\frac{u_{m}^{p+1}-2 u_{m}^{p}+u_{m}^{p-1}}{\tau^{2}}-\frac{u_{m+1}^{p}-2 u_{m}^{p}+u_{m-1}^{p}}{h^{2}}, \\
u_{m}^{0}, \\
\frac{u_{m}^{1}-u_{m}^{0}}{\tau},
\end{array}\right. \\
f^{(h)} & =\left\{\begin{array}{l}
\varphi\left(x_{m}, t_{p}\right) \equiv \varphi_{m}^{p}, \\
\psi^{(0)}\left(x_{m}\right) \equiv \psi_{m}^{(0)} \\
\psi^{(1)}\left(x_{m}\right) \equiv \psi_{m}^{(1)}
\end{array}\right.
\end{aligned}
$$

Define the norm of $f^{(h)}$ as $\left\|f^{(h)}\right\|_{F_{h}}=\max \left\{\max _{p} \sup _{m}\left|\varphi_{m}^{p}\right|, \sup _{m}\left|\psi_{m}^{(0)}\right|, \sup _{m}\left|\psi_{m}^{(1)}\right|\right\}$ and show that when $\tau=r h, r=$ const, the accuracy of the scheme is $\mathscr{O}(h)$.
Find an alternative way of specifying $\psi_{m}^{(1)}\left[\right.$ instead of $\left.\psi^{(1)}\left(x_{m}\right)\right]$ so that to improve the order of accuracy and make it $\mathscr{O}\left(h^{2}\right)$. Note that $\varphi(x, t), \psi^{(0)}(x)$, and $\psi^{(1)}(x)$ are given.
13. Consider the process of heat transfer on a finite interval, as opposed to the infinite line. It is governed by the heat equation subject to both initial and boundary conditions, which altogether yield the initial boundary value problem:

$$
\begin{aligned}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}} & =\varphi(x, t), & & 0<x<1,0<t \leq T, \\
u(x, 0) & =\psi^{(0)}(x), & & 0<x<1, \\
u(0, t) & =\psi^{(1)}(t), & & 0<t \leq T, \\
u(1, t) & =\psi^{(2)}(t), & & 0<t \leq T .
\end{aligned}
$$

Use the grid: $x_{m}=m h, t_{p}=p \tau$, and approximate this problem with the scheme:

$$
\begin{gathered}
\frac{u_{m}^{p+1}-u_{m}^{p}}{\tau}-\frac{u_{m+1}^{p}-2 u_{m}^{p}+u_{m-1}^{p}}{h^{2}}=\varphi\left(x_{m}, t_{p}\right), \\
m=1,2, \ldots, M-1, \quad h=1 / M, \quad p=0,1, \ldots,[T / \tau]-1, \\
u_{m}^{0}=\psi^{(0)}\left(x_{m}\right), \quad m=0,1, \ldots, M, \\
u_{0}^{p}=\psi^{(1)}\left(t_{p}\right), \quad p=0,1, \ldots,[T / \tau], \\
u_{M}^{p}=\psi^{(2)}\left(t_{p}\right), \quad p=0,1, \ldots,[T / \tau] .
\end{gathered}
$$

Define the norm in the space F_{h} as:

$$
\left\|f^{(h)}\right\|_{F_{h}}=\max \left\{\max _{m, p}\left|\varphi\left(x_{m}, t_{p}\right)\right|, \max _{m}\left|\psi^{(0)}\left(x_{m}\right)\right|, \max _{p}\left|\psi^{(1)}\left(t_{p}\right)\right|, \max _{p}\left|\psi^{(2)}\left(t_{p}\right)\right|\right\}
$$

and show that when $\tau=r h^{2}, r=$ const, the accuracy of the scheme is $\mathscr{O}\left(h^{2}\right)$.

