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The quantity ¢ is often referred to as the phase error.

In many applications related to the propagation of waves (for example, in compu-
tational aeroacoustics) it may be highly desirable to minimize the phase error of the
scheme. Therefore, we can formulate the following problem: Among the schemes
(10.57) that have a prescribed order of accuracy on a fixed stencil (primary constraint
that defines the set M), find the one that would have the minimum phase error
on the largest possible subinterval 0 < k < kg of the overall range of wavenumbers
0 < k <2m/h. Solving this problem would imply analyzing the dispersion relations
similar to (10.58), but obtained for the general class of schemes (10.57).

The secondary constraint in this case can be taken as a requirement that the phase
error be equal to zero. It can, however, be shown that only a small number of schemes
(10.57) possess this property and only for the Courant number cr = 1. Consequently,
for the schemes with the Courant number less than one (which would always be
the case for multiple space dimensions) the primary and secondary constraints will
indeed be incompatible, i.e., Mp N Msec = 0. Then, finding the scheme with the
minimum phase error on M, may require solving a fairly non-trivial optimization
problem. Some particular formulations of this type have been studied in [TW93].

To provide another example of the phase error analysis, let us consider the Lax-
Wendroff scheme [cf. formula (10.56)]:
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Denoting r = t/h = const as before, we obtain the amplification factor:
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Then, for the phase ¢ we have:
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and similarly to the case of the first order upwind scheme we see that if cr = 1, then
¢ = kh and there is no dispersion. Otherwise, if cr < 1 we use the Taylor formula
for the long waves kh < 1 and find the dispersion relation [cf. formula (10.58)]:
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Hence, the phase speed for the Lax-Wendroff scheme is [cf. formula (10.59)]:
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We again conclude that the waves having different wavenumbers travel with different
speeds, i.e., the propagation is accompanied by dispersion. Moreover, the long waves
kh < 1 happen to travel slower than with the speed —c. The phase speed of these
waves may only approach —c as kh — 0.

10.2.4 Predictor-Corrector Schemes

When constructing difference schemes for time-dependent partial differential
equations, one can exploit the same key idea that provides the foundation of Runge-
Kutta schemes for ordinary differential equations. This is the idea of introducing
intermediate stages of computation, or equivalently, of employing the predictor-
corrector strategy, see Sections 9.2.6 and 9.4. This strategy allows one to increase
the order of accuracy beyond the one that would have been obtained if the original
scheme was used by itself, i.e., with no intermediate stages. Besides, in the case
of quasi-linear differential equations this strategy facilitates design of the so-called
conservative finite-difference schemes that will be discussed in Chapter 11.

Let us recall the idea of the predictor-corrector approach using one of the simplest
Runge-Kutta schemes as an example; this scheme will be applied to solving the
Cauchy problem for a first order ordinary differential equation:

- =G(ty), y0)=y. 0<I<T. (10.60)

If the value of the solution y, at the moment of time ¢, = p7 is already computed,
then in order to compute y,; we first find the auxiliary quantity j,,/, using the
standard forward Euler scheme in the capacity of a predictor:
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Subsequently, we apply the corrector scheme to compute y,4:

PP — Gty /21T p i1 /2)- (10.62)
The auxiliary quantity ¥, 1/, obtained by scheme (10.61) with first order accuracy
helps us approximately evaluate the slope of the integral curve at the midpoint of the
interval [t,,1,41] and thus obtain y,, | by formula (10.62) with accuracy higher than
that of the Euler scheme (10.61).

We have already mentioned in Section 9.4.2 that all these considerations will re-
main valid if y,, ¥, 1/2, and y,+1 were to be interpreted as finite-dimensional vectors
and G, accordingly, was to be thought of as a vector function. However, one can go
even further and consider y,, y,,, 12, and yp as elements of some functional space,
and G as an operator acting in this space.

For instance, the Cauchy problem:

du du
E“E‘O’ —co < x<oo, 0<t<T, (10.63)
u(x,0) =y(x), —oo<x< oo



