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To actually implement Newton’s iteration (8.12), we need to solve an n× n linear
system with the matrix JF(x(p)) for every p = 0,1,2, . . .. To do so, we can em-
ploy the Gaussian elimination or some other method (iterative). However, for large
dimensions, this may prove computationally expensive, especially if the Jacobian
JF(x(p)) is ill-conditioned. To reduce the implementation cost of the original New-
ton’s method, several modified versions of the algorithm have been proposed.

8.3.3 Modified Newton’s Methods

Instead of inverting the Jacobian JF(x(p)) on every iteration, it may only be in-
verted once per several iterations. In the scalar context this means that we do not
compute the new tangent to the graph of F(x) for every x(p), p= 0,1,2, . . ., as in the
original method, see Figure 8.4, but rather “freeze” the same slope of the straight line
for several iterations, and after that update. In the context of systems, this approach
may considerably reduce the computational cost. Its downside, though, is a slower
convergence of the method, which is the case for both scalar equations and systems.
Alternatively, when the linear system:

F(x(p))+ JF(x(p))(x− x(p)) = 0
is solved by iterations, instead of iterating until, say, a predetermined level of the
residual reduction is reached, we can only run a fixed number of linear iterations
chosen ahead of time. While reducing the cost, this, of course, only yields a fairly
“crude” approximation of the solution to the linear system, and also slows down the
overall convergence. Depending on what particular linear iteration is used (Chap-
ter 6), there are Newton-Jacobi, Newton-SOR, Newton-Krylov, and other methods
of this type.
In addition to the costs associated with inverting the Jacobian JF(x(p)), the cost

of computing the matrix JF(x(p)) itself for every p= 0,1,2, . . . may be quite notice-
able. To reduce it, instead of evaluating the Jacobian exactly, one often evaluates
it approximately with the help of finite differences. Either forward differencing or
central differencing can be employed; the analysis of the corresponding errors can
be found in Chapter 9. To keep the quadratic convergence of the method when the
Jacobian is evaluated using finite differences, one needs to satisfy certain constraints
for the step size, otherwise the convergence rate drops to linear.
Finally, there is a family of the so-called quasi-Newton methods that can be built

for both exact and finite-difference Jacobians [cf. formula (8.12)]:

x(p+1) = x(p)− γpJ−1F (x(p))F(x(p)), p= 0,1,2, . . . .

The quantities γp are known as the damping parameters.
Besides Newton’s method, other methods are available for the solution of non-

linear systems. There is, for example, a multidimensional version of the secant
method called the Broyden method. We do not discuss it in this book. We rather
refer the reader to the specialized literature for further detail on the numerical so-
lution of the nonlinear scalar equations and systems, see, e.g., the monographs
[OR00,Kel95,Kel03].
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Exercises

1.� Prove quadratic convergence of Newton’s method for systems, i.e., establish estimate
(8.13) given the conditions right after equation (8.13) on page 245 and also assuming
that the initial guess x(0) is sufficiently close to the solution x̂.

Hint. Increment of F(x) is to be obtained by integrating the corresponding directional
derivative.

2. Build an algorithm for computing
√
5 with a given precision. Interpret

√
5 as a solution

to the equation x2−5= 0 and employ Newton’s method. Show that the iterations will
converge for any initial guess x(0) > 0.

3. Let φ = φ(x) and ψ = ψ(x) be two functions with bounded second derivatives. For
solving the equation F(x)≡ φ(x)−ψ(x) = 0 one can use Newton’s method.

a) Let the graphs of the functions φ = φ(x) and ψ = ψ(x) be plotted on the Carte-
sian plane (x,y), and let their intersection point [the root of F(x) = 0] have the
abscissa x = x̂. Assume that the Newton iterate x(p) is already computed and
provide a geometric interpretation of how one obtains the next iterate x(p+1).
Use the following form of Newton’s linearization:

φ(x(p))−ψ(x(p))+(φ ′(x(p))−ψ ′(x(p)))(x(p+1)−x(p)) = 0.

b) Assume, for definiteness, that φ(x) > ψ(x) for x > x̂, and φ ′(x̂)−ψ ′(x̂) > 0.
Let also the graph of φ(x) be convex, i.e., φ ′′(x) > 0, and the graph of ψ(x) be
concave, i.e., ψ ′′(x)< 0. Show that Newton’s method will converge to x̂ for any
initial guess x(0) > x̂.

4. Use Newton’s method to compute real solutions to the following systems of nonlinear
equations. Obtain the results with five significant digits:

a) sinx−y= 1.30; cosy−x =−0.84.
b) x2+4y2 = 1; x4+y4 = 0.5.

5. A nonlinear boundary value problem:

d2u
dx2

−u3 = x2, x ∈ [0,1],

u(0) = 1, u(1) = 3,

with the unknown function u = u(x) is approximated on the uniform grid x j = j · h,
j = 0,1, . . . ,N, h= 1

N , using the following second-order central-difference scheme:

u j+1−2u j+u j−1
h2

−u3j = ( jh)2, j = 1,2, . . . ,N−1,
u0 = 1, uN = 3,

where u j , j = 0,1,2, . . . ,N, is the unknown discrete solution on the grid.

Solve the foregoing discrete system of nonlinear equations with respect to u j , j =

0,1,2, . . . ,N, using Newton’s method. Introduce the following initial guess: u(0)j = 1+
2( jh), j= 0,1,2, . . . ,N. This grid function obviously satisfies the boundary conditions:


