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Let us write down equation number k from the system Ax= f :

ak1x1+ ak2x2+ . . .+ aknxn = fk.

Taking into account that |xk| ≥ |x j| for j= 1,2, . . . ,n, we arrive at the following
estimate:

| fk|=
∣∣∣∣∣∑j ak jx j

∣∣∣∣∣≥ |akk||xk|− ∑
j �=k

|ak j||x j|

≥ |akk||xk|−
(

∑
j �=k

|ak j|
)
|xk|=

(
|akk|− ∑

j �=k
|ak j|

)
|xk| ≥ δ |xk|.

Consequently, |xk| ≤ | fk|/δ . On the other hand, |xk| = max j |x j| = ‖x‖∞ and
| fk| ≤maxi | fi|= ‖f‖∞. Therefore,

‖x‖∞ ≤ 1
δ
‖f‖∞. (5.42)

In particular, estimate (5.42) means that if f = 0 ∈ L (e.g., L=Rn of L=Cn),
then ‖x‖∞ = 0, and consequently, the homogeneous system Ax= 0 only has a
trivial solution x= 0. As such, the inhomogeneous system Ax= f has a unique
solution for every f ∈ L. In other words, the inverse matrix A−1 exists.

Estimate (5.42) also implies that for any f ∈L, f �= 0, the following estimate
holds for x= A−1f :

‖A−1f‖∞ ≤ 1
δ
‖f‖∞ =⇒ ‖A−1f‖∞

‖f‖∞
≤ 1

δ
,

so that

‖A−1‖∞ = max
f∈L, f �=0

‖A−1f‖∞

‖f‖∞
≤ 1

δ
.

COROLLARY 5.1
Let A be a matrix with diagonal dominance of magnitude δ > 0. Then,

μ∞(A) = ‖A‖∞‖A−1‖∞ ≤ 1
δ
‖A‖∞. (5.43)

The proof is obtained as an immediate implication of the result of Theorem 5.5.

Exercises

1. Prove that the condition numbers μ∞(A) and μ1(A) of the matrix A will not change
after any permutation of rows and/or columns.
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2. Prove that for a square matrix A and its transpose AT , the following equalities hold:
μ∞(A) = μ1(AT ), μ1(A) = μ∞(AT ).

3. Show that the condition number of the operator A does not change if the operator is
multiplied by an arbitrary non-zero real number.

4. Let L be a Euclidean space, and let A : L �−→ L. Show that the condition number
μB(A) = 1 if and only if at least one of the following conditions holds:

a) A= αI, where α ∈ R;

b) A is an orthogonal operator, i.e., ∀x ∈ L : [Ax,Ax]B = [x,x]B.

c) A is a composition of αI and an orthogonal operator.

5.� Prove that μB(A) = μB(A∗B), where A
∗
B is the operator adjoint to A in the sense of the

scalar product [x,y]B.

6. Let A be a non-singular matrix, detA �= 0. Multiply one row of the matrix A by some
scalar α , and denote the new matrix by Aα . Show that μ(Aα )−→ ∞ as α −→ ∞.

7.� Prove that for any linear operator A : L �−→ L:

μB(A∗BA) = (μB(A))2,

where A∗B is the operator adjoint to A in the sense of the scalar product [x,y]B.
8.� Let A= A∗ > 0 and B= B∗ > 0 in the sense of some scalar product introduced on the
linear space L. Let the following inequalities hold for every x ∈ L:

γ1(Bx,x)≤ (Ax,x)≤ γ2(Bx,x),

where γ1 > 0 and γ2 > 0 are two real numbers. Consider the operator C = B−1A and
prove that the condition number μB(C) satisfies the estimate:

μB(C)≤ γ2
γ1
.

Remark. We will solve this problem in Section 6.1.4 as it has numerous applications.

5.4 Gaussian Elimination and Its Tri-Diagonal Version

We will describe both the standard Gaussian elimination algorithm and the Gaus-
sian elimination with pivoting, as they apply to solving an n× n system of linear
algebraic equations in its canonical form:

a11x1+ a12x2+ . . .+ a1nxn = f1,

.............................................

an1x1+ an2x2+ . . .+ annxn = fn.

(5.44)

Recall that the Gaussian elimination procedures belong to the class of direct meth-
ods, i.e., they produce the exact solution of system (5.44) after a finite number of
arithmetic operations.


