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In accordance with Theorem 3.6 of Section 3.1, and the discussion on page 73 that
follows this theorem, we obtain the trigonometric interpolating polynomial:
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Changing the variable to x = cos ¢ and denoting Q,(cos @,sin@,F) = B,(x, f), we
have:
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Similarly to the polynomial P, (x, ) of (3.62), the algebraic interpolating polynomial
B, (x, f) built on the grid:

T
Xm = cos ¢, = cos —m, m=0,1,...,n, (3.71)
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also inherits the two foremost advantageous properties from the trigonometric inter-
polating polynomial Q,(cos @,sin@,F). They are the slow growth of the Lebesgue
constants as n increases (that translates into the numerical stability with respect to
the perturbations of f;,), as well convergence with the rate that automatically takes
into account the smoothness of f(x), i.e., no susceptibility to saturation.

Finally, we notice that the Chebyshev polynomial T;,(x) reaches its extreme values
on the interval —1 < x < 1 precisely at the interpolation nodes %, of (3.71): T,,(%) =
coswm = (—1)", m=0,1,...,n. In the literature, the grid nodes %,, of (3.71) are
known as the Chebyshev-Gauss-Lobatto nodes or simply the Gauss-Lobatto nodes.

3.2.7 More on the Lebesgue Constants and Convergence of
Interpolants

In this section, we discuss the problem of interpolation from the general per-
spective of approximation of functions by polynomials. Our considerations, in
a substantially abridged form, follow those of [LG95], see also [Bab86]. We
quote many of the fundamental results without a proof (the theorems of Jack-
son, Weierstrass, Faber-Bernstein, and Bernstein). The justification of these re-
sults, along with a broader and more comprehensive account of the subject, can



