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To prove equality (3.16), we first notice that for r,s = 0,1, . . . ,n and r 6= s we
always have 1  |r± s| N �1, and then use formula (3.20) to obtain:
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Equality (3.17) is proven similarly, except that instead of the trigonometric
identity 2cosa cosb = cos(a +b )+cos(a �b ) that has been used when prov-
ing (3.16), one rather needs to employ another identity: 2sina sinb = cos(a +
b )� cos(a � b ). Finally, yet another trigonometric identity: 2sina cosb =
sin(a +b )+ sin(a �b ) is to be used for proving formula (3.18).

Altogether, we have established that (3.13) is an orthonormal basis in the
space FN . Therefore, every function f = { fm} 2 FN can be represented as a
linear combination of the basis functions (3.13):
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Calculating the dot products of both the left-hand side and the right-hand side
of the previous equality with all the basis functions x (r) and h(s), r = 0,1, . . . ,n,
s = 1,2, . . . ,n+1, we arrive at the equalities:

a0 =( f ,x (0)),

ak =
p

2( f ,x (k)), k = 1,2, . . . ,n,
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2( f ,h(k)), k = 1,2, . . . ,n,

bn+1 =( f ,h(n+1)),

that, according to definitions (3.13), coincide with formulae (3.7)–(3.10).


