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The coe�cients of this polynomial are given by the formulae:
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PROOF Let us consider a set of all real valued periodic discrete functions:

fm+N = fm, m = 0,±1,±2, . . . , (3.11)

defined on the grid xm = L
N m+ L

2N . We will only be considering these functions
on the grid interval m = 0,1, . . . ,N � 1, because for all other m’s they can be
unambiguously reconstructed by virtue of periodicity (3.11).

The entire set of these functions, supplemented by the conventional opera-
tions of addition and multiplication by real scalars, form a linear space that
we will denote FN . The dimension of this space is equal to N, because the
system of N linearly independent functions (vectors) ỹ(k) 2 FN , k = 1,2, . . . ,N:
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provides a basis in the space FN . Indeed, any function f 2 FN , f = { fm |m =
0,1, . . . ,N �1} always admits a unique representation as a linear combination
of the basis functions ỹ(k): f = ÂN

k=1 fk�1ỹ(k).
Let us now introduce a Euclidean dot (i.e., inner) product in the space FN :
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and show that the system of 2(n+ 1) functions: x (k) = {x (k)
m }, k = 0,1, . . . ,n,
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