
Chapter 3

Trigonometric Interpolation

Along with the algebraic interpolation described in Chapter 2, one also uses interpo-
lation by means of trigonometric polynomials of the type:
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where n is a positive integer, L > 0, and ak & bk are the coefficients. A trigonometric
interpolating polynomial Q
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periodic function f (x), f (x+L) = f (x), at the equidistant interpolation nodes:
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can be chosen such that it will have some important advantages compared to the
algebraic interpolating polynomial built on the same grid (3.2).

First, the error of the trigonometric interpolation
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converges to zero uniformly with respect to x as N �!• already if the second deriva-
tive of f (x) is piecewise continuous.1 Moreover, the rate of this convergence, i.e.,
the rate of decay of the error (3.3) as N �! •, automatically takes into account the
smoothness of f (x), i.e., increases for those functions f (x) that have more deriva-
tives. Specifically, we will prove that
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Second, it turns out that the sensitivity of the trigonometric interpolating polyno-
mial (3.1) to the errors committed when specifying the function values fm = f (xm)
on the grid (3.2) remains “practically flat” (i.e., grows slowly) as N increases.

The foregoing two properties — automatic improvement of accuracy for smoother
functions, and slow growth of the Lebesgue constants that translates into numerical
stability — are distinctly different from the properties of algebraic interpolation on

1In fact, even less regularity may be required of f (x), see Section 3.2.7.
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