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In particular, provided that the third derivative f (3)(x) is bounded on [a,b], the cubic
spline y(x,2)⌘ y(x), along with its derivatives of orders m = 1, 2, will converge to
the function f (x) and its respective derivatives with the rate of O(h3�m).

On the other hand, the undesirable property of saturation by smoothness, which is
inherent for both the classical piecewise polynomial interpolation and local splines,
is shared by the Schoenberg splines as well, notwithstanding the loss of their local
nature. Namely, the nonlocal splines of smoothness s on a uniform interpolation grid
with size h will guarantee the order of error O(hs+1) for the functions that have a
maximum of s+ 1 bounded derivatives, and they will not provide accuracy higher
than O(hs+1) even for the functions f (x) that have more than s+1 derivatives.

Even though the coefficients of a nonlocal spline on a given interval [xk,xk+1]
depend on the function values on the entire grid, it is known that in practice the
influence of the remote nodes is rather weak. Nonetheless, to actually evaluate the
coefficients, one needs to solve the full system (2.62). Therefore, a natural task
of improving the accuracy of a Schoenberg’s spline by adding a few interpolation
nodes in a particular local region basically implies starting from the very beginning,
i.e., writing down and then solving a new system of type (2.62). In contradistinction
to that, the splines of Section 2.3.1 are particularly well suited for such local grid
refinements. In doing so, the additional computational effort is merely proportional
to the number of new nodes.

For further detail on the subject of splines we refer the reader to [dB01].

2.3.3 Proof of Theorem 2.11

This section can be skipped during the first reading.
The coefficients of the polynomial

Q2s+1(x,k) = c0,k + c1,kx+ . . .+ c2s+1,kx2s+1 (2.68)

are determined by solving the linear algebraic system (2.43), (2.44). The right-hand
sides of the equations that compose sub-system (2.43) have the form

a(m)
0 fk� j +a(m)

1 fk� j+1 + . . .+a(m)
s fk� j+s, m = 0,1, . . . ,s,

while those that pertain to sub-system (2.44) have the form

b(m)
0 fk� j+1 +b(m)

1 fk� j+2 + . . .+b(m)
s fk� j+s+1, m = 0,1, . . . ,s,

where a(m)
i and b(m)

i , i = 0,1, . . . ,s, m = 0,1, . . . ,s, are some numbers that do not
depend on5 fk� j, fk� j+1, ..., fk� j+s+1.

Consequently, one can say that the given quantities fk� j, fk� j+1, ..., fk� j+s+1
determine the solution c0,k, c1,k, ..., c2s+1,k of system (2.43), (2.44) through the for-
mulae of type

cr,k = a(r)
0 fk� j +a(r)

1 fk� j+1 + . . .+a(r)
s+1 fk� j+s+1, r = 0,1, . . . ,2s+1, (2.69)

5Hereafter in this section, we will use the notation fl = f (xl) for all nodes l.


