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Unlike the schemes discussed in Examples 1 & 2, the Crank-Nicolson scheme
(10.118) is implicit. It approximates problem (10.116) with second order accuracy
with respect to h, provided that r = t/h = const.

For the spectrum of scheme (10.118) we can easily find:
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Consequently,
|l (a)|= 1

irrespective of the specific value of r. Therefore, the Crank-Nicolson scheme
(10.118) is non-dissipative. We also see that it satisfies the von Neumann stability
condition (10.78).

Example 4

Finally, consider a fully implicit first order upwind scheme (10.105):
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(10.119)

for the same Cauchy problem (10.116). Substituting the solution in the form up
m =

l peiam, �p  a  p , into the difference equation of (10.119), we obtain:
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which immediately yields the spectrum of the scheme (10.119):
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Using the inequality: |a|/4  |sin(a/2)|, a 2 [�p,p], from Example 1, we have:
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Consequently, if we introduce d > 0 according to:
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