Algebraic Interpolation

Using the previous two expressions, we differentiate the function $\varphi(t)$ defined by formula (2.24) s + 1 times and obtain:

$$\varphi^{(s+1)}(t) = f^{(s+1)}(t) - k(s+1)!.$$

Substituting $t = \xi$ into the last equality, and recalling that $\varphi^{(s+1)}(\xi) = 0$, we arrive at the following expression for k:

$$k = \frac{f^{(s+1)}(\xi)}{(s+1)!}.$$

Finally, by substituting k into equality (2.26) we obtain a formula for $R_s(\bar{t})$ that would actually coincide with formula (2.23) because $\bar{t} \in [\alpha, \beta]$ has been chosen arbitrarily.

THEOREM 2.6

Under the assumptions of the previous theorem, the following estimate holds:

$$\max_{\alpha \le t \le \beta} |R_s(t)| \le \frac{1}{(s+1)!} \max_{\alpha \le t \le \beta} |f^{(s+1)}(t)| (\beta - \alpha)^{s+1}.$$
 (2.27)

PROOF We first note that $\forall t \in [\alpha, \beta]$ the absolute value of each expression $t - t_0, t - t_1, ..., t - t_s$ will not exceed $\beta - \alpha$. Then, we use formula (2.23):

$$|R_{s}(t)| = \frac{1}{(s+1)!} |f^{(s+1)}(\xi)(t-t_{0})(t-t_{1})\dots(t-t_{s})|$$

$$\leq \frac{1}{(s+1)!} \max_{\alpha \leq t \leq \beta} |f^{(s+1)}(t)| (\beta - \alpha)^{s+1}.$$
 (2.28)

As $t \in [\alpha, \beta]$ on the left-hand side of formula (2.28) is arbitrary, the required estimate (2.27) follows.

Let us emphasize that we have proven inequality (2.27) for an arbitrary distribution of the (distinct) interpolation nodes t_0, t_1, \ldots, t_s on the interval $[\alpha, \beta]$. For a given fixed distribution of nodes, estimate (2.27) can often be improved. For example, consider a piecewise linear interpolation and assume that the nodes t_0 and t_1 coincide with the endpoints α and β , respectively, of the interval $\alpha \le t \le \beta$. Then,

$$|R_1(t)| = \left| \frac{f''(\xi)}{(s+1)!} (t-\alpha)(t-\beta) \right|$$

$$\leq \frac{1}{2} \max_{\alpha \leq t \leq \beta} |f''(t)| \max_{\alpha \leq t \leq \beta} |(t-\alpha)(t-\beta)| = \frac{1}{8} \max_{\alpha \leq t \leq \beta} |f''(t)| (\beta-\alpha)^2,$$

which yields

$$\max_{\alpha \le t \le \beta} |R_1(t)| \le \frac{1}{8} \max_{\alpha \le t \le \beta} |f''(t)| (\beta - \alpha)^2,$$
(2.29)