Using the previous two expressions, we differentiate the function $\varphi(t)$ defined by formula (2.24) $s+1$ times and obtain:

$$
\varphi^{(s+1)}(t)=f^{(s+1)}(t)-k(s+1)!
$$

Substituting $t=\xi$ into the last equality, and recalling that $\varphi^{(s+1)}(\xi)=0$, we arrive at the following expression for k :

$$
k=\frac{f^{(s+1)}(\xi)}{(s+1)!}
$$

Finally, by substituting k into equality (2.26) we obtain a formula for $R_{S}(\bar{t})$ that would actually coincide with formula (2.23) because $\bar{t} \in[\alpha, \beta]$ has been chosen arbitrarily.

THEOREM 2.6

Under the assumptions of the previous theorem, the following estimate holds:

$$
\begin{equation*}
\max _{\alpha \leq t \leq \beta}\left|R_{s}(t)\right| \leq \frac{1}{(s+1)!} \max _{\alpha \leq t \leq \beta}\left|f^{(s+1)}(t)\right|(\beta-\alpha)^{s+1} \tag{2.27}
\end{equation*}
$$

PROOF We first note that $\forall t \in[\alpha, \beta]$ the absolute value of each expression $t-t_{0}, t-t_{1}, \ldots, t-t_{s}$ will not exceed $\beta-\alpha$. Then, we use formula (2.23):

$$
\begin{align*}
\left|R_{s}(t)\right| & =\frac{1}{(s+1)!}\left|f^{(s+1)}(\xi)\left(t-t_{0}\right)\left(t-t_{1}\right) \ldots\left(t-t_{s}\right)\right| \tag{2.28}\\
& \leq \frac{1}{(s+1)!} \max _{\alpha \leq t \leq \beta}\left|f^{(s+1)}(t)\right|(\beta-\alpha)^{s+1}
\end{align*}
$$

As $t \in[\alpha, \beta]$ on the left-hand side of formula (2.28) is arbitrary, the required estimate (2.27) follows.

Let us emphasize that we have proven inequality (2.27) for an arbitrary distribution of the (distinct) interpolation nodes $t_{0}, t_{1}, \ldots, t_{s}$ on the interval $[\alpha, \beta]$. For a given fixed distribution of nodes, estimate (2.27) can often be improved. For example, consider a piecewise linear interpolation and assume that the nodes t_{0} and t_{1} coincide with the endpoints α and β, respectively, of the interval $\alpha \leq t \leq \beta$. Then,

$$
\begin{aligned}
\left|R_{1}(t)\right| & =\left|\frac{f^{\prime \prime}(\xi)}{(s+1)!}(t-\alpha)(t-\beta)\right| \\
& \leq \frac{1}{2} \max _{\alpha \leq t \leq \beta}\left|f^{\prime \prime}(t)\right| \max _{\alpha \leq t \leq \beta}|(t-\alpha)(t-\beta)|=\frac{1}{8} \max _{\alpha \leq t \leq \beta}\left|f^{\prime \prime}(t)\right|(\beta-\alpha)^{2}
\end{aligned}
$$

which yields

$$
\begin{equation*}
\max _{\alpha \leq t \leq \beta}\left|R_{1}(t)\right| \leq \frac{1}{8} \max _{\alpha \leq t \leq \beta}\left|f^{\prime \prime}(t)\right|(\beta-\alpha)^{2} \tag{2.29}
\end{equation*}
$$

