Finite-Difference Schemes for Partial Differential Equations 321

Let U and F be two Banach spaces, and let L be a linear operator: $L: U \mapsto F$ that has a bounded inverse, $L^{-1}: F \mapsto U, ||L^{-1}|| < \infty$. In other words, we assume that the problem

$$Lu = f \tag{10.26}$$

is uniquely solvable for every $f \in F$ and well-posed.

Let $L_h: U \mapsto F$ be a family of operators parameterized by some *h* (for example, we may have h = 1/n, n = 1, 2, 3, ...). Along with the original problem (10.26), we introduce a series of its "discrete" counterparts:

$$L_h u^{(h)} = f, (10.27)$$

where $u^{(h)} \in U$ and each L_h is also assumed to have a bounded inverse, $L_h^{-1} : F \mapsto U$, $||L_h^{-1}|| < \infty$. The operators L_h are referred to as approximating operators.

We say that problem (10.27) is consistent, or in other words, that the operators L_h of (10.27) approximate the operator L of (10.26), if for any $u \in U$ we have

$$\|L_h u - Lu\|_F \longrightarrow 0, \quad \text{as} \quad h \longrightarrow 0.$$
 (10.28)

Note that any given $u \in U$ can be interpreted as solution to problem (10.26) with the right-hand side defined as $F \ni f \stackrel{\text{def}}{=} Lu$. Then, the general notion of consistency (10.28) becomes similar to the concept of approximation on a solution introduced in Section 10.1.2, see formula (10.6).

Problem (10.27) is said to be stable if all the inverse operators are bounded uniformly:

$$\|L_h^{-1}\| \le C = \text{const},$$
 (10.29)

which means that C does not depend on h. This is obviously a stricter condition than simply having each L_h^{-1} bounded; it is, again, similar to Definition 10.2 of Section 10.1.3.

THEOREM 10.2 (Kantorovich)

Provided that properties (10.28) and (10.29) hold, the solution $u^{(h)}$ of the approximating problem (10.27) converges to the solution u of the original problem (10.26):

$$||u-u^{(h)}||_U \longrightarrow 0, \quad \text{as} \quad h \longrightarrow 0.$$
 (10.30)

PROOF Given (10.28) and (10.29), we have

$$\|u - u^{(h)}\|_{U} = \|L_{h}^{-1}L_{h}u - L_{h}^{-1}f\|_{U} \le \|L_{h}^{-1}\|\|L_{h}u - f\|_{F}$$

$$\le C\|L_{h}u - f\|_{F} = \le C\|L_{h}u - Lu + Lu - f\|_{F}$$

$$= C\|L_{h}u - Lu\|_{F} \longrightarrow 0, \quad \text{as} \quad h \longrightarrow 0,$$

because Lu = f and $L_h u^{(h)} = f$.