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In other words, formula (6.23) implies that �eee(p) is the residue of the vector
function l p�1

w(l ) at infinity.
Next, according to inequality (6.21), all the eigenvalues of the operator

B belong to the disk of radius r < 1 centered at the origin on the complex
plane: |l j|  r < 1, j = 1,2, . . . ,n. Then the integrand in the second integral
of formula (6.23) is an analytic vector function of l outside of this disk,
i.e., for |l | > r, because the operator (B�l I)�1 exists (i.e., is bounded) for
all l : |l | > r. This function is the analytic continuation of the function
l p�1

w(l ), where w(l ) is originally defined by the series (6.22) that can only
be proven to converge outside of a larger disk |l |  kBk+h . Consequently,
the contour of integration in (6.23) can be altered, and instead of r � kBk+h
one can take r = r +z , where z > 0 is arbitrary, without changing the value
of the integral. Therefore, the error can be estimated as follows:

keee(p)k= 1
2p

����
Z

|l |=r+z

l p(B�l I)�1eee(0)dl
����

 (r +z )p+1 max
|l |=r+z

k(B�l I)�1kkeee(0)k.
(6.24)

In formula (6.24), let us take z > 0 su�ciently small so that r +z < 1. Then,
the right-hand side of inequality (6.24) vanishes as p increases, which implies
the convergence: keee(p)k �! 0 when p �! •. This completes the proof of
su�ciency.

To prove the necessity, suppose that inequality (6.21) does not hold, i.e.,
that for some lk we have |lk|� 1. At the same time, contrary to the conclusion
of the theorem, let us assume that the convergence still takes place for any
choice of x

(0): x
(p) �! x as p �! •. Then we can choose x

(0) so that eee(0) =
x�x

(0) = ek, where ek is the eigenvector of the operator B that corresponds to
the eigenvalue lk. In this case, eee(p) = B

peee(0) = B
p
ek = l p

k ek. As |lk| � 1, the
sequence l p

k ek does not converge to 0 when p increases. The contradiction

proves the necessity.

REMARK 6.2 Let us make an interesting and important observation of a
situation that we encounter here for the first time. The problem of computing
the limit x = lim

p!•
x
(p) is ultimately well conditioned, because the result x does

not depend on the initial data at all, i.e., it does not depend on the initial
guess x

(0). Yet the algorithm for computing the sequence x
(p) that converges

according to Theorem 6.2 may still appear computationally unstable. The
instability may take place if along with the inequality max j |l j| = r < 1 we
have kBk > 1. This situation is typical for non-self-adjoint (or non-normal)
matrices B (opposite of Theorem 5.2).

Indeed, if kBk < 1, then the norm of the error keee(p)k = kB
peee(0)k decreases

monotonically, this is the result of Theorem 6.1. Otherwise, if kBk> 1, then
for some eee(0) the norm keee(p)k will initially grow, and only then decrease. The


