be calculated directly, which yields:

$$
\boldsymbol{L}=\boldsymbol{T}_{1}^{-1} \boldsymbol{T}_{2}^{-1} \ldots \boldsymbol{T}_{n-1}^{-1}=\left[\begin{array}{ccccccc}
1 & 0 & \ldots & 0 & 0 & \ldots & 0 \tag{5.75}\\
t_{2,1} & 1 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
t_{k, 1} & t_{k, 2} & \ldots & 1 & 0 & \ldots & 0 \\
t_{k+1,1} & t_{k+1,2} & \ldots & t_{k+1, k} & 1 & \ldots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
t_{n, 1} & t_{n, 2} & \ldots & t_{n, k} & t_{n, k+1} & \ldots & 1
\end{array}\right]
$$

Consequently, the matrix L is indeed a lower triangular matrix (with all its diagonal entries equal to one), and the factorization formula (5.73) holds.

The $\boldsymbol{L} \boldsymbol{U}$ factorization of the matrix \boldsymbol{A} allows us to analyze the computational complexity of the Gaussian elimination algorithm as it applies to solving multiple linear systems that have the same matrix \boldsymbol{A} but different right-hand sides. The cost of obtaining the factorization itself, i.e., that of computing the matrix \boldsymbol{U}, is cubic: $\mathscr{O}\left(n^{3}\right)$ arithmetic operations. This factorization obviously stays the same when the right-hand side changes. For a given right-hand side f, we need to solve the system $\boldsymbol{L} \boldsymbol{U} \boldsymbol{x}=\boldsymbol{f}$. This amounts to first solving the system $\boldsymbol{L} \boldsymbol{g}=\boldsymbol{f}$ with a lower triangular matrix L of (5.75) and obtaining $\boldsymbol{g}=\boldsymbol{L}^{-1} \boldsymbol{f}=\boldsymbol{T}_{n-1} \boldsymbol{T}_{n-2} \ldots \boldsymbol{T}_{1} \boldsymbol{f}$, and then solving the system $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{g}$ with an upper triangular matrix \boldsymbol{U} of (5.72) and obtaining \boldsymbol{x}. The cost of either solution is $\mathscr{O}\left(n^{2}\right)$ operations. Consequently, once the $\boldsymbol{L} \boldsymbol{U}$ factorization has been built, each additional right-hand side can be accommodated at a quadratic cost.

In particular, consider the problem of finding the inverse matrix \boldsymbol{A}^{-1} using Gaussian elimination. By definition, $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{I}$. In other words, each column of the matrix \boldsymbol{A}^{-1} is the solution to the system $\boldsymbol{A x}=\boldsymbol{f}$ with the right-hand side f equal to the corresponding column of the identity matrix \boldsymbol{I}. Altogether, there are n columns, each adding an $\mathscr{O}\left(n^{2}\right)$ solution cost to the $\mathscr{O}\left(n^{3}\right)$ initial cost of the $\boldsymbol{L} \boldsymbol{U}$ factorization that is performed only once ahead of time. We therefore conclude that the overall cost of computing \boldsymbol{A}^{-1} using Gaussian elimination is also cubic: $\mathscr{O}\left(n^{3}\right)$ operations.

Finally, let us note that for a given matrix \boldsymbol{A}, its $\boldsymbol{L} \boldsymbol{U}$ factorization is, generally speaking, not unique. The procedure that we have described yields a particular form of the $\boldsymbol{L} \boldsymbol{U}$ factorization (5.73) defined by an additional constraint that all diagonal entries of the matrix L of (5.75) be equal to one. Instead, we could have required, for example, that the diagonal entries of \boldsymbol{U} be equal to one. Then, the matrices \boldsymbol{T}_{k} of (5.71) get replaced by:

$$
\tilde{\boldsymbol{T}}_{k}=\left[\begin{array}{cccccc}
1 \ldots & 0 & 0 & \ldots & 0 \tag{5.76}\\
\vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & \ldots & t_{k, k} & 0 & \ldots & 0 \\
0 \ldots & -t_{k+1, k} & 1 & \ldots & 0 \\
\vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & -t_{n, k} & 0 & \ldots & 1
\end{array}\right], \quad \text { where } \quad t_{k, k}=\frac{1}{a_{k k}^{(k-1)}},
$$

