
146 A Theoretical Introduction to Numerical Analysis

From the first equation of system (5.59) it is clear that for k = 1 the coefficients in
formula (5.62) are:

A1 =� c1

b1
, F1 =

f1

b1
. (5.63)

Suppose that all the coefficients Ak and Fk have already been computed up to some
fixed k, 1  k  n�1. Substituting the expression xk = Akxk+1+Fk into the equation
number k+1 of system (5.59) we obtain:

xk+1 =� ck+1

bk+1 +ak+1Ak
xk+2 +

fk+1 �ak+1Fk

bk+1 +ak+1Ak
.

Therefore, the coefficients Ak and Fk satisfy the following recurrence relations:

Ak+1 =� ck+1

bk+1 +ak+1Ak
, Fk+1 =

fk+1 �ak+1Fk

bk+1 +ak+1Ak
,

k = 1,2, . . . ,n�1.
(5.64)

As such, the algorithm of solving system (5.59) gets split into two stages. At the
first stage, we evaluate the coefficients Ak and Fk for k = 1,2, . . . ,n using formu-
lae (5.63) and (5.64). At the second stage, we solve back for the actual unknowns
xn,xn�1, . . . ,x1 using formulae (5.62) for k = n,n�1, . . . ,1.

In the literature, one can find several alternative names for the tri-diagonal Gaus-
sian elimination procedure that we have described. Sometimes, the term marching
is used. The first stage of the algorithm is also referred to as the forward stage or
forward marching, when the marching coefficients Ak and Fk are computed. Accord-
ingly, the second stage of the algorithm, when relations (5.62) are applied consecu-
tively in the reverse order is called backward marching.

We will now estimate the computational complexity of the tri-diagonal elimina-
tion. At the forward stage, the elimination according to formulae (5.63) and (5.64)
requires O(n) arithmetic operations. At the backward stage, formula (5.62) is applied
n times, which also requires O(n) operations. Altogether, the complexity of the tri-
diagonal elimination is O(n) arithmetic operations. It is clear that no algorithm can
be built that would be asymptotically cheaper than O(n), because the number of
unknowns in the system is also O(n).

Let us additionally note that the tri-diagonal elimination is apparently the only
example available in the literature of a direct method with linear complexity, i.e.,
of a method that produces the exact solution of a linear system at a cost of O(n)
operations. In other words, the computational cost is directly proportional to the
dimension of the system. We will later see examples of direct methods that produce
the exact solution at a cost of O(n lnn) operations, and examples of iterative methods
that cost O(n) operations but only produce an approximate solution. However, no
other method of computing the exact solution with a genuinely linear complexity is
known.

The algorithm can also be generalized to the case of the banded matrices. Matrices
of this type may contain non-zero entries on several neighboring diagonals, including
the main diagonal. Normally we would assume that the number m of the non-zero


