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High Order WENO Finite Difference Scheme

Consider the hyperbolic conservation laws

∂Q

∂t
+∇ · F(Q) = 0.

The semi-discretized of the equation, by method of lines, on a uni-
formly sized cell, in a conservative manner

dQ̄i(t)

dt
=

1

∆x

(
hi+ 1

2
− hi− 1

2

)
, h = h(Q̄i−r, · · · , Q̄i+l).

where h(x) is defined implicitly as f(x) = 1
∆x

∫ x+ ∆x
2

x−∆x
2

h(ξ)dξ.
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Fifth order WENO Reconstruction Procedure

Nonlinear spatial adaptive combination of THREE Lagrange poly-
nomials qk(x) of degree 2 in Sk, where k = 0, 1, 2 is the shift
parameter,

f̂(x) =

2∑
k=0

ωk q
k(x) ≈ h(x) +O(∆xM ) (1)

at xi± 1
2

, such that, when the solution is

I SMOOTH, becomes a M = 5 order central upwinded scheme.
I NON-SMOOTH, becomes a M = 3 order Upwinded scheme

by assigning the nonlinear weight ωk ≈ 0 in Sk containing
discontinuity =⇒ essentially no Gibbs oscillations.

xi xi+1 xi+2xi-1xi-2 xi+1/2

S2

S0

S1

S5 τ5

β0

β2

β1 ω1

ω0

ω2
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The Classical WENO-JS Scheme

The nonlinear weights of the classical WENO-JS scheme (Jiang and
Shu) are

αk =
dk

(βk + ε)p
, ωk =

αk∑2
l=0 αl

,

with two user defined parameters : (1) power parameter p ≥ 1
and (2) the sensitivity parameter ε > 0 (Usually a fixed small real
number).
The lower order local smoothness indicators

βk =

2∑
l=1

∆x2l−1

∫ x
i+ 1

2

x
i− 1

2

(
dl

dxl
qk(x)

)2

dx. (2)

measure the normalized modified Sobolov norm of the second de-
gree polynomials qk(x) in the substencil Sk at xi in the cell Ii =
[xi− 1

2
, xi+ 1

2
].
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The Improved WENO-Z Scheme

In the (2r−1) order WENO scheme with Z-type weights (WENO-Z),
the nonlinear weights are

αk = dk

(
1 +

(
τ2r−1

βk + ε

)p)
, ωZk =

αk∑r−1
j=0 αj

, k = 0, . . . , r−1.

where the global smoothness indicator is

τ2r−1 =

∣∣∣∣∣
r−1∑
k=0

ckβk

∣∣∣∣∣ ,
where ck are given constants1. For example, τ5 of the fifth order

WENO-Z scheme is
τ5 = |β0 − β2| .

Its leading truncation error has been shown to be O(∆x5).

1Castro. Costa. and Don. J. Comput. Phys. 230, 1766–1792, 2011
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Definition of Critical Points

Definition

If a function f(xc) = f ′(xc) = . . . = f (ncp)(xc) = 0 but
f (ncp+1)(xc) 6= 0, the function f(x) is said to have a critical point
of order ncp ≥ 0 at xc.

For example, f(x) = x3, f ′(0) = f ′′(0) = 0, f ′′′(0) 6= 0, then f(x)
has ncp = 2 at x = 0.
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Optimal Order At Critical Point

αk = dk

(
1 +

(
τ2r−1

βk + ε

)p)
.

The nonlinear weights αk have two important free parameters:

I Power p: increases the separation of scales, and controls the
amount of numerical dissipation.

I Sensitivity ε: avoids a division by zero in the denominator of
αk.
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The issue of critical points

I In general, a very small ε, say O(10−40), is highly desirable for
capturing shock in an essentially non-oscillatory manner because

I ε does not over-dominate over the size of the local smoothness
indicators βk as in (βk + ε).

I However, a very small ε could reduce the formal order of accuracy
of WENO schemes of a smooth function in the presence of high
order critical points.
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dx

L
_m

ax
 E

rr
o

r

O
rd

er
10-4 10-3 10-2 10-1

10-22

10-17

10-12

10-7

10-2

1

2

3

4

5

6

7

8

9

10
Z5p2edx3
Z5p2edx4*
Z5p2edx5
Z5p2edx6

Wai-Sun Don A Generalized Fifth Order WENO-Z type weights 10 / 47



Optimal Order At Critical Point

To mitigate the critical point problem, there are many recent works
on

I applying a mapping on the nonlinear weights such as the
WENO-M by Henrick et al. (J. Comput. Phys. 207, 2005).

I reformulating the WENO-Z type weights such as the
WENO-CU6 by Hu et al. (J. Comput. Phys., 229, 2010). and
WENO-η by Fan et al. (J. Comput. Phys. 269, 2014).

I setting the lower bound on the sensitivity parameters ε by
Don et al. (J. Comput. Phys. 250, 2013).
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The WENO-CU6 scheme

The WENO nonlinear weights of WENO-CU6 scheme are

αk = dk

(
C +

τ6

βk + ε

)
, ωk =

αk∑3
k=0 αk

,

I ε = 10−40. (A very small number).

I Large constant C � 1 increases the contribution of the
optimal weights. (Usually, C = 20 or larger).

I The global smoothness indicator

τ6 =

∣∣∣∣β6 −
1

6
(β0 + 4β1 + β2)

∣∣∣∣+O(∆x6), (3)

with a long and complex expression of β6.
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The WENO-η scheme

The WENO nonlinear weights of WENO-η are

αk = dk

(
1 +

τ

ηk + ε

)
, ωk =

αk∑2
k=0 αk

. (4)

I The local smoothness indicators

ηk =

r−1∑
m=1

[∆xmP
(m)
i−r+1+k(xi)]

2, k = 0, 1, 2. (5)

where P
(m)
i (x) is the m th derivative of the Lagrangian

interpolation polynomial for approximating the value of the
function f(x) based on the values (fi−r+1+k, . . . , fi−r+1+k).

I the global smoothness indicator τ , such as
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The WENO-η scheme

I the global smoothness indicator τ , such as

τ5 = |η0 − η2|+O(∆x6). (6)

τ6 = |6η5 − (4η1 + η0 + η2)| /6 +O(∆x6). (7)

τ8 =
∣∣∣(|P (1)

0 | − |P
(1)
2 |)(P

(2)
0 + P

(2)
2 − 2P

(2)
1 )
∣∣∣+O(∆x8). (8)

WENO-η(τ8), ncp = 2, ε = 10−40

dx
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The WENO-D Scheme

The improved WENO-Z scheme, which can guarantee the optimal order of ac-
curacy in the presence of critical points, the nonlinear weights are

αk = dk

(
1 + Φ

(
τ2r−1

βk + ε

)p)
, ωk =

αk∑r−1
j=0 αj

, k = 0, . . . , r − 1.

Φ = min{1, φ}, φ =
√
|β0 − 2β1 + β2|. (9)

Remark

I Φ, as a linear combination of the βk, can be treat as a shock sensor.

I when the solution is smooth, Φ = φ.
I around the shock, Φ = 1, the new weights become the

WENO-Z scheme.

I It can also be derived in other form, for example, a weighted linear
combination of function values, says, {fi−1, fi, fi+1} (See WENO-η).

I The key point is that the following condition must be satisfied, namely,

φ

(
τ5

βk + ε

)p
∼ O(∆xr−1). (10)

to guarantee the formal order of accuracy regardless critical points.
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The WENO-D Scheme

In order to guarantee that the formal order of accuracy can be
achieved regardless of critical points, the following condition must
be satisfied, namely,

φ

(
τ5

βk + ε

)p
∼ O(∆xr−1). (11)

By the Taylor expansions, one has φ2 and τ5 at xi as

φ2 =
∣∣∣(a13f

(1)
i f

(3)
i

)
∆x4 +

(
a15f

(1)
i f

(5)
i + a24f

(2)
i f

(4)
i + a33(f

(3)
i )2

)
∆x6

+
(
a17f

(1)
i f

(7)
i + a26f

(2)
i f

(6)
i + a35f

(3)
i f

(5)
i + a44(f

(4)
i )2

)
∆x8 +O(∆x9)

∣∣∣ .
(12)

τ5 =
∣∣∣(a14f

(1)
i f

(4)
i + a23f

(2)
i f

(3)
i

)
∆x5

+
(
a16f

(1)
i f

(6)
i + a25f

(2)
i f

(5)
i + a34f

(3)
i f

(4)
i

)
∆x7 +O(∆x9)

∣∣∣ . (13)
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Definition of Order θ

Definition

The notation θ (g(∆x)) denotes the power of ∆x in the leading
term of the Taylor series expansion of g(∆x), that is,

θ (g) = n ⇐⇒ g(∆x) = Θ(∆xn).

For instance, if g(∆x) = 5∆x2 + ∆x3, then θ (g) = 2.
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Analysis of Order of Accuracy

According to Don et al. 2, the nonlinear component of the Z-type
weights must satisfy

φ

(
τ2r−1

βk + ε

)p
≥ ∆xr−1, (14)

to guarantee the formal order of accuracy regardless of critical points,
or

θ

(
φ

(
τ2r−1

βk + ε

)p)
≥ r − 1. (15)

θ(φ) + pθ(τ2r−1)− pθ(βk + ε) ≥ r − 1, (16)

θ(βk + ε) ≤ θ(τ2r−1) +
θ(φ)− (r − 1)

p
, (17)

min{θ(βk), θ(ε)} ≤ θ(τ2r−1) +
θ(φ)− (r − 1)

p
. (18)

2Don and Borges, J. Comput. Phys. 250, 2013
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Analysis of Order of Accuracy

I If θ(ε) > θ(βk) implies ε < βk, the non-linear component is
dominated by βk, the accuracy of the scheme won’t be
affected by ε.

I If θ(ε) ≤ θ(βk), then equation (18) becomes

θ(ε) ≤ θ(τ2r−1) +
θ(φ)− (r − 1)

p
. (19)

The integer parts of the optimal sensitivity order θ(ε), m, for the
fifth order WENO schemencp = 1, 2, 3 and p = 1, 2, 3 are given in
the table.

WENO-Z(m) WENO-D(m)
ncp θ(τ5) θ(φ) p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

1 5 3 3 4 4 6 5 5
2 7 3 5 6 6 8 7 7
3 9 4 7 8 8 11 10 9
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The New WENO-D Scheme

Based on the WENO-D scheme, a small modification on the non-
linear weights is applied to the WENO-D scheme, namely,

αk = dk

(
max

(
1,Φ

(
τ2r−1

βk + ε

)p))
. (20)

This modification do not affect the optimal order at the presence of
critical points as analysed above for the WENO-D scheme.
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The WENO-A Scheme

We name this improved WENO-D scheme
as WENO-A scheme with A stands for
Abarbanel.
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Analysis of Order of Accuracy

We will examine the performance of the WENO-Z, WENO-D and
WENO-A scheme in achieving the formal order of accuracy for a
smooth function in the presence of critical points.
Consider the following test function

f(x) = xke0.75x, x ∈ [−1, 1], (21)

in which its first k − 1 derivatives f (j)(0) = 0, j = 0, 1, ..., k − 1.
That is, this function has a critical point of order ncp = k − 1 at
x = 0.
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Analysis of Order of Accuracy
Optimal Variable ε

ncp = 1 ncp = 2 ncp = 3

dx

L
_M

ax
 E

rr
o

r

O
rd

er

10-5 10-4 10-3 10-2 10-1
10-27

10-22

10-17

10-12

10-7

10-2

3

4

5

6

7

8

Z5p2dx4
Z5p2dx4
D5p2dx5
D5p2dx5
A5p2dx5
A5p2dx5

dx

L
_M

ax
 E

rr
o

r

O
rd

er

10-5 10-4 10-3 10-2 10-1
10-27

10-22

10-17

10-12

10-7

10-2

3

4

5

6

7

8

Z5p2dx4
Z5p2dx4
D5p2dx5
D5p2dx5
A5p2dx5
A5p2dx5

dx

L
_M

ax
 E

rr
o

r

O
rd

er

10-5 10-4 10-3 10-2 10-1
10-27

10-22

10-17

10-12

10-7

10-2

3

4

5

6

7

8

Z5p2dx4
Z5p2dx4
D5p2dx5
D5p2dx5
A5p2dx5
A5p2dx5

I Notice that for various ε = ∆xm ( m = 4 for WENO-Z scheme, m = 5

for WENO-D and WENO-A scheme )

I All three methods achieve the optimal order asymptotically.
I WENO-A and WENO-D have a smaller L∞ error than

WENO-Z.
I For coarse mesh, WENO-A has smaller L∞ error than

WENO-D, and
I WENO-A has a convergence quicker than WENO-D and

WENO-Z schemes.
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Analysis of Order of Accuracy
Optimal Variable ε

ncp = 1 ncp = 3
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I The Zoomed in figure.

I For coarse mesh, WENO-A has a smaller L∞ error than
WENO-D.
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Analysis of Order of Accuracy
Fixed Variable ε
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I Notice that for ε = ∆x5

I Not all three methods can get optimal order.
I WENO-A and WENO-D have smaller L∞ error than WENO-Z.
I WENO-A has a better convergence rate than the other two

schemes.
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Analysis of Order of Accuracy
Fixed Variable ε
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I The Zoomed in figure.

I For coarse mesh, WENO-A has smaller L∞ error than
WENO-D.
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WENO-A Scheme

Generally Speaking, WENO-A Scheme has

I a quicker convergence rate in the presence of high order
critical points,

I for fine meshes, the errors are the same as WENO-D scheme,

I for coarse meshes, a smaller errors than WENO-D scheme.
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Numerical Result

We compare the numerical performance of WENO-A, WENO-D and
classical WENO-Z scheme. For those numerical examples,
the flow is describes by the Euler equations
ρ

ρu

ρv

ρw

E


t

+



ρu

ρu2 + p

ρuv

ρuw

(E + p)u


x

+



ρv

ρvu

ρv2 + p

ρvw

(E + p)v


y

+



ρw

ρwu

ρwv

ρw2 + p

(E + p)w


z

= 0.

This set of equations describes the conservation laws expressed by
mass density ρ, momentum density ρv ≡ (ρu, ρv, ρw) and total
energy density E = ρe + 1

2ρv
2, where e is the internal energy per

unit mass. To close this set of equations, the ideal-gas equation of
state p = (γ − 1)ρe with γ = 1.4 is used.
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Numerical Result

For those numerical experiments, the Euler equations are solved by
following the general WENO methodology.

I Characteristic projection by Roe averaged eigensystem.

I Flux splitting by local Lax-Friedrichs.

I Time integration by third order TVD Runge-Kutta method
with CFL number CFL= 0.45.
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I Time integration by third order TVD Runge-Kutta method
with CFL number CFL= 0.45.
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One Dimension Shock Entropy Problem

The final time is t = 5 and resolution is N = 1500.
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One Dimension Shock Entropy Problem

The final time is t = 5 and resolution is N = 1600.
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One Dimension Shock Entropy Problem

The final time is t = 5 and resolution is N = 1700.
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One Dimension Shock Entropy Problem

The final time is t = 5 and resolution is N = 2000.
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One Dimension Shock Density Problem

The final time is t = 5 and resolution is N = 800.
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One Dimension Shock Density Problem

The final time is t = 5 and resolution is N = 700.
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One Dimension Shock Density Problem

The final time is t = 5 and resolution is N = 600.
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Interacting Blast Wave Problem

The final time is t = 0.038 and resolution is N = 400.
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Two Dimension Riemann Problem

The final time is t = 0.8 and resolution is N = 400× 400.

WENO-Z5 WENO-D5 WENO-A5
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Two Dimension DMR Problem

The final time is t = 0.2 and resolution is N = 800× 200.

WENO-Z5 WENO-D5 WENO-A5

Table: The CPU time (in seconds) of the DMR problem.

N ×M WENO-Z WENO-D WENO-A

800× 200 4.1E+03 4.6E+03 4.5E+03
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Rayleigh-Taylor Instability Problem

WENO-Z5 WENO-D5 WENO-A5

N = × higher resolution will be updated in the next version, the code is still running
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Compressible Multicomponent Flows

Use WENO-A scheme for solving overestimated quasi-conservative form of the
compressible multicomponent flows simulation.

∂Q

∂t
+ U

∂F

∂x
= 0, (22)

Q =


ρ
ρu
ρe
ρY1

γp

 , U =


1

1
1

1
u

 , F =


ρu

ρu2 + P
u (ρe+ P )
ρuY1

γp

 . (23)
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Richtmyer-Meshkov Instability Problem

The initial conditions are

(ρ u v P γ M) =

 ( 1.4112 −0.3613 0 1.6272/1.4 1.4 28.8 ), x > −0.8
( 5.04 0 0 1/1.4 1.093 145.15 ), x < x0
( 1 0 0 1/1.4 1.4 28.8 ), otherwise.

(24)

I where x0 = −1.1− 0.1 cos(2πy).

I The computational domain is −8 ≤ x ≤ 0 and 0 ≤ y ≤ 1.
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Richtmyer-Meshkov Instability Problem

The final time is t = 8.25 and resolution is N = 1024× 128.

WENO-Z5 WENO-D5 WENO-A5
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Shock-Bubble Interaction Problem

The initial conditions are

(ρ u v P γ M) =


( 1.3764 −0.3336 0 1.5698/1.4 1.4 28.80 ), x ≥ 1.0

( 3.153 0 0 1/1.4 1.249 90.82 ),
√
x2 + y2 < 0.5

( 1 0 0 1/1.4 1.4 28.80 ), otherwise.

(25)

I The computational domain is −3.5 ≤ x ≤ 3 and −1 ≤ y ≤ 1.
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Shock-Bubble Interaction Problem

The final time is t = 7.337 and resolution is N = 650× 178.

WENO-Z5 WENO-D5 WENO-A5
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Conclusion And Future Work

I Summary and conclusion remark

I We present the WENO-D and WENO-A schemes for the
solution of nonlinear hyperbolic conservation laws.

I We analyzed the new schemes in resolving function with a high
order critical point.

I We demonstrate that the new schemes can achieve the
optimal order of accuracy with a greatly relaxed constraint on
the sensitivity parameter ε.

I The WENO-A scheme has a substantially smaller ε than the
standard WENO-Z scheme, and performs competitively for
shocked flows.

I Future Work

I Extend the WENO-A scheme to higher order.

I Extend the WENO-A scheme to alternative WENO scheme
(AWENO) scheme for multi-components shocked flows in a
general curvilinear coordination.
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