
Hermite Leap-Frog Methods for Waves

Tom Hagstrom SMU

Major contributors to this work: Daniel Appelö, U. of Colorado, Arturo Vargas, LLNL

Original codevelopers of Hermite methods for 1st order hyperbolic systems: John Goodrich
(NASA GRC), Jens Lorenz (UNM)

Other contributors: Ronald Chen (HyPerComp) - hybrid Hermite-DG, P-adaptive
Jesse Chan (Rice), Tim Warburton (Virginia Tech) - GPU implementations and alternate forms
Chang Young Jang (SMU) - dispersion/dissipation characteristics of the method
Adeline Kornelus (Arizona State) - conservative formulations and shock capturing
Tim Colonius (Caltech) - compressible turbulence simulations with applications to jet aeroacoustics

Support: NSF, ARO

Charles Hermite 1822-1901

Hermitian Matrices We solve symmetrizable hyperbolic systems, but today’s focus is on second
order wave equations.

Transcendance of e We round to rationals.

Hermite Polynomials We don’t use them at all.

Error Formula for Polynomial Interpolation We have used it to estimate the resolution limit
of our method for high order.

Hermite Interpolation THE KEY INGREDIENT IN OUR METHODS!

What sort of Hermite interpolation am I talking about - in one dimension:

Construct a polynomial of degree 2m+ 1 on the interval [x1, x2] satisfying:

djP

dxj
(x1) = f1,j, j = 0, . . .m

djP

dxj
(x2) = f2,j, j = 0, . . .m

In 3 dimensions on the cell [x1, x2]× [y1, y2]× [z1, z2] construct a tensor product polynomial of degree
2m+ 1 in each coordinate (total degree 6m+ 3) satisfying (now with multi-index notation):

DαP (xj, yk, zl) = fj,k,l,α, 0 ≤ αi ≤ m.

Three popular myths busted by methods based on Hermite Interpolation

• High degree interpolants of nonsmooth functions must oscillate (e.g. Gibbs phenomenon)

• High order polynomial element methods must have derivative matrices which scale like the
square of the degree and thus time steps must be small compared with the ideal CFL condition

• Dahlquist’s Theorems imply that high order A-stable ode solvers must involve multiple nonlinear
solves each step.

A special feature of piecewise Hermite interpolation as defined above is that it is a projection in
some seminorm. In one dimension for sufficiently smooth f and some partition x0 < x1 < . . . < xN
define

If = Pk, xk−1 < x < xk

where Pk is the degree 2m+ 1 Hermite interpolant defined above. Define the semi-inner-product

〈f, g〉m+1 =

∫ xN

x0

dm+1f

dxm+1
· d

m+1g

dxm+1
.

Then
〈If, g − Ig〉m+1 = 0,

which implies
|f |2m+1 = |If |2m+1 + |f − If |2m+1

In higher dimension (e.g. 3) the same result holds with the inner product

〈f, g〉m+1 =

∫ xN1

x0

∫ yN2

y0

∫ zN3

z0

∂3m+3f

∂xm+1∂ym+1∂zm+1

∂3m+3g

∂xm+1∂ym+1∂zm+1

Proof: integration by parts on each interval/cell.

This smoothing property applies to the Hermite interpolation of functions which are only piecewise
smooth (so long as we don’t use the singular points as nodes) - here we plot Hermite interpolating
polynomials of degree 2m + 1,m = 1, . . . , 20 of the step function q(x) = −sign(x) and the absolute
value function |x|.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Older work was on Hermite methods for first order symmetric hyperbolic systems:

ut + Aux +Buy + Cuz = 0.

• High-order piecewise tensor-product polynomial methods using staggered rectangular/cuboidal
cells and the Hermite interpolants defined above.

• Degrees-of-freedom are the degree m⊗ · ⊗m tensor-product Taylor polynomial at the vertices
- the cell polynomial is the Hermite interpolant of these vertex polynomials.

• Each cell polynomial is evolved over a (half) time step to produce the updated Taylor polyno-
mials at the dual cell vertices.

Basic properties proven in Goodrich, Hagstrom, Lorenz, Math. Comp., 75, 2006, 595-630:

• Dissipative and of order 2m + 1 in space - no additional filters are used beyond the inherent
dissipation of the Hermite interpolation process;

• Stable under the usual CFL restriction independent of order - i.e. if waves can’t
propagate from the cell boundary to the cell center in a half time step. Time
step stability constraints are independent of the polynomial degree, and thus they
are at least an order of magnitude better than with standard spectral element methods (e.g.
discontinuous Galerkin). Time-stepping is local to each cell - no data exchange between cells
over a time step. No matter how many stages and substeps of an RK method we
use in a given cell there is no communication with neighboring cells or global stage
storage.

Leap-frog Hermite for the scalar wave equation - still use a staggered grid - the approximations
v(x, tn) and v(x, tn+1/2) are piecewise tensor-product Hermite interpolants on staggered grids. Now
the evolution is given by:

v(x, tn+1) = ISv(x, tn+1/2)− v(x, tn)

v(x, tn+3/2) = ISv(x, tn+1)− v(x, tn+1/2)

where S is the exact leap-frog evolution operator - in Fourier space

Ŝ = Ŝ+ + Ŝ− ≡ ei|k|∆t/2 + e−i|k|∆t/2

and I is the Hermite interpolation operator.

How can we evaluate S? So long as the physical CFL condition is satisfied - that is so long as waves
can’t propagate from the cell edges to the cell center in a half time step - Sv at the cell center is
a polynomial in space-time. Since we only use the nodal data when we compute ISv that’s all we
need!

Schematic description of the numerical process for a full time step. Solid circles represent the base
mesh and open circles represent the dual mesh. I is the Hermite interpolation operator and T is the
time evolution operator.

c c

c c

c c

s s s

s s s

s s s

I → I →

I → I →

I← I←

I← I←

T
↑

T
↑

T
↑

T
↑

T
↑

xj−1 xj− 1
2

xj xj+ 1
2

xj+1

tn

tn+ 1
2

tn+1

Stability and convergence - we combine energy conservation for the continuous problem with the
projection property of Hermite interpolation.

Theorem: If ∆t < h/c and the solution of the wave equation is sufficiently smooth then the
approximate solution produced by the leap-frog Hermite method converges at order 2m.

Note: a similar result can be proven for Maxwell’s equations and a staggered Hermite discretization:

E(x, tn+1) = IMH(x, tn+1/2) + E(x, tn)

H(x, tn+3/2) = −IME(x, tn+1) +H(x, tn+1/2)

We have implementations of this scheme for dispersive Maxwell systems and simple metamaterial
models.

Continuous energy for leap-frog:

Define for u a solution of the scalar wave equation:

U±(x, t) = u(x, t)− S±u(x, t−∆t/2)

Then
U±(x, t+ ∆t/2) = S∓U±(x, t)

Recalling that Ŝ± = e±i|k|∆t/2 we see that all L2-based Sobolev norms of U± are conserved.

For the approximate solution v we obtain a similar result in the seminorm for which I is a projection:

V±(x, tn+1) = IS∓V±(x, tn+1/2) + (I − 1)S±V∓(x, tn+1/2)

which implies

|V+(·, tn+1)|2m+1 + |V−(·, tn+1)|2m+1 =
V+(·, tn+1/2)

2

m+1
+
V−(·, tn+1/2)

2

m+1

Proof outline:

1. Use the energy equalities to estimate the seminorm of the errors, E± = U± − V±.

|E±(·, t)|m+1 = O(hm+1)

2. Use the energy estimate to prove convergence of the conserved quantities in L2 -

‖E±(·, tn+1)‖ ≤ ‖E±(·, tn+1/2)‖+O(hm+1) ·
(E+(·, tn+1/2)


m+1

+
E−(·, tn+1/2)


m+1

)
so that ‖E±(·, tn+1)‖ = O(h2m+1).

3. Finally estimate the error itself:

‖e(·, tn+1)‖ ≤ ‖e(·, tn+1/2)‖+ ‖E±(·, tn+1)‖

which yields the final result.

A simple numerical experiment - evolve u = sin(2πκ(x+ y+
√

2t) on the unit square with κ = m+ 1
for m = 1, . . . , 6. The dashed slopes are ∼ h2m

x and ∼ h2m+2
x for λ = 0.8 and λ = 1.0.

10
-2

10
-1

h
x

10
-10

10
-5

10
0

L
2
-e

rr
o
r

m=1

m=2

m=3

m=4

m=5

m=6

10
-2

10
-1

h
x

10
-10

10
-5

10
0

L
2
-e

rr
o
r

m=1

m=2

m=3

m=4

m=5

m=6

One unique feature of Hermite schemes is that the time stepping is purely local to each cell.
At high order we can take large steps without needing any intercell communication. Thus Hermite
methods are good candidates for efficient implementation on many-core platforms such as gpus.

First experiments with an implementation of conservative Hermite methods on NVIDIA P100 gpus
- comparison with a 36-core Broadwell CPU. Codes are written in OCCA (www.libocca.org) so that
the target device (e.g. CPU using OpenMP or gpu using CUDA) can be determined at runtime.
Here the grid sizes are 2803, 1903 and 1403 respectively.

m 1 2 3

GPU: Bandwidth (GB/s) 146 106 82

GPU: GFLOPS 1175 1259 1410

GPU: Time/step .035 .052 .058

CPU: Time/step .69 1.02 1.12

The difficulty with Hermite methods is the imposition of physical boundary conditions: one can only
used mapped cuboidal elements which are inconvenient in complex geometry; even in a mapped
domain we generally use the equations to derive conditions for normal derivatives.
Recently Appelö and Henshaw have made progress on this problem.

A second possibility is to use fictitious or embedded boundaries with cut cells:

i. Using higher order jump penalties - see, e.g., recent work by Sticko and Kreiss for DG methods
and (maybe?) the next talk.

ii. Modifying the discrete evolution equation near the boundaries and correct in a neighborhood of
the boundary using integral equations - see, e.g., Li and Greengard JCP 2004.

We have yet to try this with Hermite schemes.

What we have tried successfully for dissipative Hermite methods is to use unstructured grids in
the vicinity of complex geometry and discretize with a hybrid Hermite-discontinuous
Galerkin method. The method uses DG with small time steps on an unstructured mesh near
physical boundaries, and Hermite on a structured mesh elsewhere. Experimentally this works, but
we haven’t proven stability or used it with the leap-frog Hermite method discussed here.

d d d dt t t t tr rr r r rr r -

x0 x1 x2 x3xmin xmax

D0 D1

Hybrid grid in one dimension: The DG-grid GDG = {D0,D1}, consists of one element on each side of
the interior Cartesian grid. The LGL nodes on the elements are denoted by small filled circles. The
Cartesian grid is denoted by larger circles, the empty being the primal nodes and the filled being
the dual nodes. The communication of Hermite data to the DG solver consists of constructing DG
fluxes at x0 and x3. The communication of DG data to the Hermite solver consists of evaluating
derivatives centered at x−1/2 and x3+1/2 using the DG solution at the LGL nodes.

Example - evolution of a resonant mode of the unit disc:

Ez = J6(α6r) cos(6θ) cos(α6t),

Hx =
sin(α6t)

α6

(
6J6(α6r) cos(θ)

r
sin(6θ)− α6 sin(θ) cos(6θ)

(J5(α6r)− J7(α6r))

2

)
,

Hy =
sin(α6t)

α6

(
6J6(α6r) sin(θ)

r
sin(6θ)− α6 cos(θ) cos(6θ)

(J5(α6r)− J7(α6r))

2

)
,

and is a solution to the TM Maxwell’s equation in a unit radius, cylindrical, metallic cavity. Here
Jl(z) is the lth Bessel function of the first kind and α6 = 13.589290170541217. This mode has six
periods in the azimuthal direction and one ”period” in the r direction.

m h K CFL ∆tDG Error rate

1 0.1 447 0.8 1.08(E-02) 3.57(E-02)

1 0.08 666 0.8 9.03(E-03) 2.26(E-02) 2.1

1 0.05 1525 0.8 5.71(E-03) 6.09(E-03) 2.8

2 0.1 447 0.8 5.11(E-03) 3.20(E-04)

2 0.08 666 0.8 4.29(E-03) 4.61(E-05) 8.7

2 0.05 1525 0.8 2.71(E-03) 3.92(E-06) 5.2

3 0.1 447 0.7 2.88(E-03) 6.80(E-06)

3 0.08 666 0.7 2.42(E-03) 1.66(E-06) 6.3

3 0.05 1525 0.7 1.53(E-03) 7.21(E-08) 6.7

4 0.1 447 0.7 1.83(E-03) 1.37(E-08)

4 0.08 666 0.7 8.56(E-04) 1.42(E-09) 10.1

4 0.05 1525 0.7 4.09(E-04) 1.68(E-11) 9.4

Maximum error at T = 5. Here h is the length of the sides on the square elements, K is the number
of triangular element in GDG and GC, rate is the rate of convergence, m refers to the number of
derivatives.

1. For simple codes illustrating Hermite schemes see www.chides.org .

2. J. Goodrich, TH, J. Lorenz, Hermite methods for hyperbolic initial-boundary value problems,
Math. Comp., 75, 2006.

3. D. Appelö and TH, On advection by Hermite methods, Pacific J. Appl. Math., 4, 2012.

4. R. Chen and TH, P-adaptive Hermite methods for initial value problems, ESAIM: Mathematical
Modelling and Numerical Analysis, 46, 2012.

5. R. Chen, D. Appelö and TH, A hybrid Hermite - discontinuous Galerkin method for hyperbolic
systems with application to Maxwell’s equations, J. Comput. Phys., 257, 2014.

6. D. Appelö and TH, Solving PDEs with Hermite interpolation, ICOSAHOM 2014.

7. A. Vargas, J. Chan, TH and T. Warburton, GPU acceleration of Hermite methods for simulation
of wave propagation, ICOSAHOM 2016.

8. D. Appelö, G. Kreiss and S. Wang, An explicit Hermite-Taylor method for the Schrödinger
equation, Commun. Comput. Phys, 21, 2017.

9. A. Kornelus and D. Appelö, Flux-conservative Hermite methods for simulation of nonlinear
conservation laws, J. Sci. Comput., 76, 2018.

10. D. Appelö, TH and A. Vargas, Hermite methods for the scalar wave equation, SIAM J. Sci.
Comput., 40, 2018.

11. Articles on jet schemes by Nave, Rosales, Seibold, ...

