
CONSERVATION LAWS ON THE SPHERE:

FROM SHALLOW WATER TO BURGERS

Matania Ben-Artzi
Institute of Mathematics, Hebrew University, Jerusalem, Israel

Advances in Applied Mathematics
IN MEMORIAM OF PROFESSOR SAUL ABARBANEL

Tel Aviv University

December 2018

joint work with JOSEPH FALCOVITZ, PHILIPPE LEFLOCH
1



“...together with David Gottlieb
we noticed that some of the stuff that people were doing, the
formulation was not strongly well posed, which is a mathematical
point of view. So we got interested in how to make it more
posed.” (Interview with P. Davis, Brown University,2003).
“Problems should be studied in a ‘physico-mathematical’
fashion”–(private communication)
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General Circulation Model –JETSTREAM
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General Circulation Model –JETSTREAM
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MOVING VORTEX

R.D. Nair and C. Jablonowski–Moving vortices on the sphere: A
test case for horizontal advection problems,

Monthly Weather Review 136(2008)699–711
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Grid on sphere—the Kurihara Grid
D. J. Williamson–The evolution of dynamical cores for global
atmospheric models,
Journal of the meteorological society of Japan 85B (2007)241–269

DISCUSSION: The “POLE PROBLEM”

λ

φ
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DERIVATION OF THE MODEL

INVARIANT FORM
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TWO SYSTEMS

Lower-case letters = Inertial system
Capital letters =Rotating system .

Time derivatives of vector functions: ~̇q(t), ~̇Q(t).
Connection by ROTATION MATRIX

~x = R(t)~X .

~̇x =
d

dt
R(t)~X = R(t)(~Ω× ~X ).

~Ω = ~Ω(t) = angular velocity in the rotating system. It is constant
(namely, independent of time) in the rotating system.
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If ~X (t) represents a moving particle in the rotating system,

~̇x =
d

dt
R(t)~X = R(t)(~Ω× ~X ) + R(t)(~̇X ).
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If ~X (t) represents a moving particle in the rotating system,

~̇x =
d

dt
R(t)~X = R(t)(~Ω× ~X ) + R(t)(~̇X ).

~̈x = R(t){~Ω× (~Ω × ~X ) + ~Ω× ~̇X + ~Ω× ~̇X + ~̈X}

= R(t){~Ω× (~Ω × ~X ) + 2~Ω× ~̇X + ~̈X}.
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If ~X (t) represents a moving particle in the rotating system,

~̇x =
d

dt
R(t)~X = R(t)(~Ω× ~X ) + R(t)(~̇X ).

~̈x = R(t){~Ω× (~Ω × ~X ) + ~Ω× ~̇X + ~Ω× ~̇X + ~̈X}

= R(t){~Ω× (~Ω × ~X ) + 2~Ω× ~̇X + ~̈X}.

Particle of mass m, force ~f (in the inertial system):

R(t)(m ~̈X ) = ~f −mR(t){~Ω× (~Ω × ~X ) + 2~Ω× ~̇X}.

Lagrangian formulation: particle has unit mass, and is an element
of a fluid continuum moving (approximately) on the spherical
surface of the earth S ..
~N = outward unit normal on the sphere S .
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TWO “ADDITIONAL FORCES”

CENTRIFUGAL FORCE ~Ω× (~Ω× ~X )

CORIOLIS FORCE 2~Ω× ~̇X

Velocity ~V = ~̇X .
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ASSUMPTION I:

There are two body forces acting on the particle:

◮ − ~G — the gravity force .

◮ ~H — the hydrostatic force (due to fluid pressure).

Total force (in the inertial system) on the unit mass is

~f = R(t)(− ~G + ~H).
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Note: ~X is a three-dimensional vector in the rotational system.
Later: Confine to the sphere S : r = a, by assuming that the fluid
volume is very “thin”( vertically).
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ASSUMPTION I:

There are two body forces acting on the particle:

◮ − ~G — the gravity force .

◮ ~H — the hydrostatic force (due to fluid pressure).

Total force (in the inertial system) on the unit mass is

~f = R(t)(− ~G + ~H).

R(t)(~̈X ) = R(t){− ~G + ~H − ~Ω× (~Ω× ~X )− 2~Ω× ~̇X}.

Note: ~X is a three-dimensional vector in the rotational system.
Later: Confine to the sphere S : r = a, by assuming that the fluid
volume is very “thin”( vertically).

~̈X = − ~G + ~H − ~Ω× (~Ω × ~X )− 2~Ω× ~̇X .
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ASSUMPTION II:
Some constant g∗ > 0,

− ~G − ~Ω× (~Ω× ~X ) = −g∗ ~N .
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ASSUMPTION II:
Some constant g∗ > 0,

− ~G − ~Ω× (~Ω× ~X ) = −g∗ ~N .

MEANING: Earth is not a perfect sphere, the combination of the
gravitational and the centrifugal forces can be incorporated into a
perfect spherical setting where the “modified” gravitational force is
radial.
GEOPHYSICAL LITERATURE: geopotential and the geoid.

29



ASSUMPTION II:
Some constant g∗ > 0,

− ~G − ~Ω× (~Ω× ~X ) = −g∗ ~N .

MEANING: Earth is not a perfect sphere, the combination of the
gravitational and the centrifugal forces can be incorporated into a
perfect spherical setting where the “modified” gravitational force is
radial.
GEOPHYSICAL LITERATURE: geopotential and the geoid.
Remain (apart from the modified gravitation):
CORIOLIS FORCE −2~Ω× ~V HYDROSTATIC FORCE ~H .

30
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Some constant g∗ > 0,

− ~G − ~Ω× (~Ω× ~X ) = −g∗ ~N .

MEANING: Earth is not a perfect sphere, the combination of the
gravitational and the centrifugal forces can be incorporated into a
perfect spherical setting where the “modified” gravitational force is
radial.
GEOPHYSICAL LITERATURE: geopotential and the geoid.
Remain (apart from the modified gravitation):
CORIOLIS FORCE −2~Ω× ~V HYDROSTATIC FORCE ~H .
Earth surface S : r = a : At every point orthonormal system (fixed
in rotational system): unit normal ~N+ “tangential plane”.

~X = ~XN + ~XT

.
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ASSUMPTION II:
Some constant g∗ > 0,

− ~G − ~Ω× (~Ω× ~X ) = −g∗ ~N .

MEANING: Earth is not a perfect sphere, the combination of the
gravitational and the centrifugal forces can be incorporated into a
perfect spherical setting where the “modified” gravitational force is
radial.
GEOPHYSICAL LITERATURE: geopotential and the geoid.
Remain (apart from the modified gravitation):
CORIOLIS FORCE −2~Ω× ~V HYDROSTATIC FORCE ~H .
Earth surface S : r = a : At every point orthonormal system (fixed
in rotational system): unit normal ~N+ “tangential plane”.

~X = ~XN + ~XT

.

(~̈X )T = ~HT − (2~Ω× ~V )T .

32



SHALLOW-WATER MODEL

Incompressible fluid occupies a “thin”, yet varying in depth (and in
time) layer above the spherical surface S : r = a.
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SHALLOW-WATER MODEL

Incompressible fluid occupies a “thin”, yet varying in depth (and in
time) layer above the spherical surface S : r = a.
Y = point on the sphere,
z = vertical distance (along the normal ~N ) from the surface
S : z = 0.

0 ≤ z ≤ h(Y , t), Y ∈ S .
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0 ≤ z ≤ h(Y , t), Y ∈ S .

“free surface” z = h(Y , t) one of unknowns in the model .
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SHALLOW-WATER MODEL

Incompressible fluid occupies a “thin”, yet varying in depth (and in
time) layer above the spherical surface S : r = a.
Y = point on the sphere,
z = vertical distance (along the normal ~N ) from the surface
S : z = 0.

0 ≤ z ≤ h(Y , t), Y ∈ S .

“free surface” z = h(Y , t) one of unknowns in the model .

Fluid is incompressible (of unit density ).

h(Y , t) = height of column over Y = (surface) mass density at
Y , t.
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ASSUMPTION III:

Tangential velocity ~VT = ~̇XT independent of the height z .
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ASSUMPTION III:

Tangential velocity ~VT = ~̇XT independent of the height z .

Motion of “surface mass”, density h, determined by ~VT .

Conservation of mass:

∂h

∂t
(Y , t) +∇T · (h(Y , t) ~VT ) = 0.
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ASSUMPTION III:

Tangential velocity ~VT = ~̇XT independent of the height z .

Motion of “surface mass”, density h, determined by ~VT .

Conservation of mass:

∂h

∂t
(Y , t) +∇T · (h(Y , t) ~VT ) = 0.

“Surface Lagrangian” derivative:

d

dt
=

∂

∂t
+ ~VT · ∇T ,

dh

dt
(Y , t) = −h(Y , t)∇T · ~VT .
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ASSUMPTION III:

Tangential velocity ~VT = ~̇XT independent of the height z .
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∂t
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=
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Total derivative d
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is a “surface derivative”.

40



ASSUMPTION III:

Tangential velocity ~VT = ~̇XT independent of the height z .

Motion of “surface mass”, density h, determined by ~VT .

Conservation of mass:

∂h

∂t
(Y , t) +∇T · (h(Y , t) ~VT ) = 0.

“Surface Lagrangian” derivative:

d

dt
=

∂

∂t
+ ~VT · ∇T ,

dh

dt
(Y , t) = −h(Y , t)∇T · ~VT .

Total derivative d
dt

is a “surface derivative”.

“Convective” part = ~VT · ∇T = ∇VT
, covariant derivative.
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ASSUMPTION IV:

Hydrostatic force ~H is the gradient (in the rotating system)
of the hydrostatic pressure in the fluid,

~H = −∇P .
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ASSUMPTION IV:

Hydrostatic force ~H is the gradient (in the rotating system)
of the hydrostatic pressure in the fluid,

~H = −∇P .

P(Y , z = h(Y , t), t) = 0.
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ASSUMPTION IV:

Hydrostatic force ~H is the gradient (in the rotating system)
of the hydrostatic pressure in the fluid,

~H = −∇P .

P(Y , z = h(Y , t), t) = 0.

Normal component of

~̈X = − ~G + ~H − ~Ω× (~Ω × ~X )− 2~Ω× ~̇X .

(~̈X )z = −g∗ −
∂

∂z
P − (2~Ω × ~V )z .
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(~̈X )z = −g∗ −
∂

∂z
P − (2~Ω × ~V )z .

This equation is three-dimensional, {0 ≤ z ≤ h(Y , t), Y ∈ S} . In
particular, the z− component of the Lagrangian derivative

( ~̇V )z 6=
d

dt
Vz , Vz = ~Vz · ~N .
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(~̈X )z = −g∗ −
∂

∂z
P − (2~Ω × ~V )z .

This equation is three-dimensional, {0 ≤ z ≤ h(Y , t), Y ∈ S} . In
particular, the z− component of the Lagrangian derivative

( ~̇V )z 6=
d

dt
Vz , Vz = ~Vz · ~N .

(2~Ω× ~V )z = (2~ΩT × ~VT )z = (2~ΩT × ~VT ) · ~N .
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(~̈X )z = −g∗ −
∂

∂z
P − (2~Ω × ~V )z .

This equation is three-dimensional, {0 ≤ z ≤ h(Y , t), Y ∈ S} . In
particular, the z− component of the Lagrangian derivative

( ~̇V )z 6=
d

dt
Vz , Vz = ~Vz · ~N .

(2~Ω× ~V )z = (2~ΩT × ~VT )z = (2~ΩT × ~VT ) · ~N .

Traditional treatment:

−g∗ −
∂

∂z
P = 0, ~ΩT = 0.

Vz(Y , 0, t) ≡ 0 ⇒
[

~̇V
]

z
(Y , 0, t) ≡ 0.
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R. Salmon writes: :
“In the traditional approximation, we neglect the horizontal

component of the Earth’s rotation vector. This neglect has

no convincing general justification; it must be justified in

particular cases.”

We only use Assumption IV, in particular P is not assumed to vary
linearly with respect to z .

Vz(Y , 0, t) ≡ 0 ⇒
[

~̇V
]

z
(Y , 0, t) ≡ 0.

Vz(Y , h(Y , t), t) =
dh

dt
.
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( ~̇V )z = −g∗ −
∂

∂z
P − (2~Ω× ~V )z .

∫ h(Y ,t)

0

[

~̇V
]

z
dz = −[g∗ + (2~ΩT × ~VT )z ]h(Y , t) + P(Y , 0, t),

~ΩT depends only on Y , ~VT depends only on (Y , t)
(ASSUMPTION III).

P(Y , 0, t) = [g∗ + (2~ΩT × ~VT )z ]h(Y , t), Y ∈ S .

EFFECT of ROTATION on HYDROSTATIC PRESSURE!
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P(Y , 0, t) = [g∗ + (2~ΩT × ~VT )z ]h(Y , t), Y ∈ S .

BACK TO TANGENTIAL MOTION

(~̈X )T = ( ~̇V )T = ~HT − (2~Ω × ~V )T .
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P(Y , 0, t) = [g∗ + (2~ΩT × ~VT )z ]h(Y , t), Y ∈ S .

BACK TO TANGENTIAL MOTION

(~̈X )T = ( ~̇V )T = ~HT − (2~Ω × ~V )T .

~HT = −∇TP ⇒

d

dt
~VT = −∇T

{

[g∗ + (2~ΩT × ~VT )z ]h(Y , t)
}

− (2~Ω × ~V )T .

(2~Ω × ~V )T = 2~ΩN × ~VT .
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P(Y , 0, t) = [g∗ + (2~ΩT × ~VT )z ]h(Y , t), Y ∈ S .

BACK TO TANGENTIAL MOTION

(~̈X )T = ( ~̇V )T = ~HT − (2~Ω × ~V )T .

~HT = −∇TP ⇒

d

dt
~VT = −∇T

{

[g∗ + (2~ΩT × ~VT )z ]h(Y , t)
}

− (2~Ω × ~V )T .

(2~Ω × ~V )T = 2~ΩN × ~VT .

d

dt
~VT = −∇T

{

[g∗ + (2~ΩT × ~VT )z ]h(Y , t)
}

− 2~ΩN × ~VT .
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INVARIANT SHALLOW-WATER EQUATIONS ON

THE SPHERE

dh

dt
(Y , t) = −h(Y , t)∇T · ~VT .

d

dt
~VT = −∇T

{

[g∗ + (2~ΩT × ~VT )z ]h(Y , t)
}

− 2~ΩN × ~VT .
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INVARIANT SHALLOW-WATER EQUATIONS ON

THE SPHERE

dh

dt
(Y , t) = −h(Y , t)∇T · ~VT .

d

dt
~VT = −∇T

{

[g∗ + (2~ΩT × ~VT )z ]h(Y , t)
}

− 2~ΩN × ~VT .

Compare Equator and Poles !

54



THE SW EQUATIONS –SPHERICAL

COORDINATES

−
π

2
≤ φ ≤

π

2
, 0 ≤ λ ≤ 2π.

∂h

∂t
+

u

a cosφ

∂h

∂λ
+

v

a

∂h

∂φ
+

h

a cosφ

(∂u

∂λ
+ cosφ

∂v

∂φ

)

=
hv sinφ

a cosφ
.

λ

φ
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δ = 0 ⇒ set ~ΩT = 0, otherwise δ = 1.

∂u

∂t
+

u − 2δΩh cosφ

a cosφ

∂u

∂λ
+

v

a

∂u

∂φ
+

g∗ − 2δΩu cosφ

a cosφ

∂h

∂λ

= v sinφ
{ u

a cosφ
+ 2Ω

}

,

∂v

∂t
+

u

a cosφ

∂v

∂λ
+

v

a

∂v

∂φ
+

g∗ − 2δΩu cosφ

a

∂h

∂φ
−

2δΩh cosφ

a

∂u

∂φ

+2Ω sinφ
δhu

a
= −

u2

a cosφ
sinφ− 2Ωu sinφ .
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THE SPLIT SCHEME WITH SOURCE TERMS

ψt = A[ψ] + B [ψ] + f (·, ψ),

Consider first the homogeneous evolution

ψt = A[ψ] + B [ψ],

ψ(t) = LAB(t)ψ0.

Nonhomogeneous system: A, B are linear, but not necessarily
commuting , the solution is expressed by the Duhamel principle

ψ(t) = LAB(t)ψ0 +

t
∫

0

LAB(t − s)[f (·, ψ(s))]ds.
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ψ(t) = LAB(t)ψ0 +

t
∫

0

LAB(t − s)[f (·, ψ(s))]ds.

Assuming existence of a discrete operator (“scheme”) L
disc
AB (k),

time step k > 0, that approximates LAB(k) :
ψ(t) = LABψ0 solution to the homogeneous equation. Fix T > 0.
Then there exist a constant C > 0 and an integer j ≥ 1, such that

‖Ldisc
AB (k)[ψ(t)] − ψ(t + k)‖ ≤ Ck j+1, 0 ≤ t ≤ T .
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DISCRETIZATION OF NONHOMOGENEOUS

EQUATION

Splitting with two “generators”, A+ B and f .

(i) ψt = A[ψ] + B [ψ],

(ii) ψt = f (·, ψ).

ψtt = f ′ψ(·, ψ(t)) · ψt = f ′ψ(·, ψ(t)) · f (·, ψ(t)).

Discretization of (ii):

M
disc (k)[ψ(t)] = ψ(t) + kf (·, ψ(t)) +

k2

2
f ′ψ(·, ψ(t)) · f (·, ψ(t)).

SUMMARY: A discrete operator Γdisc(k) for the approximation
of the full system over the time interval [t, t + k] is given by

Γdisc (k) = M
disc (k)Ldisc

AB (k).
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A SCALAR MODEL ON MANIFOLDS

◮ Good definition of NONLINEAR VECTORFIELDS is needed
for ut + divF (u) = 0.
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A SCALAR MODEL ON MANIFOLDS

◮ Good definition of NONLINEAR VECTORFIELDS is needed
for ut + divF (u) = 0.

◮ Lack of linear structure (translation invariance)–more difficult
to control TOTAL VARIATION which is related to L1

contraction between two translated solutions.
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A SCALAR MODEL ON MANIFOLDS

◮ Good definition of NONLINEAR VECTORFIELDS is needed
for ut + divF (u) = 0.

◮ Lack of linear structure (translation invariance)–more difficult
to control TOTAL VARIATION which is related to L1

contraction between two translated solutions.

◮ No SELF-SIMILAR SOLUTIONS—Riemann Problems are not
defined.
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A SCALAR MODEL ON MANIFOLDS

◮ Good definition of NONLINEAR VECTORFIELDS is needed
for ut + divF (u) = 0.

◮ Lack of linear structure (translation invariance)–more difficult
to control TOTAL VARIATION which is related to L1

contraction between two translated solutions.

◮ No SELF-SIMILAR SOLUTIONS—Riemann Problems are not
defined.

◮ Waves produce multiple “recurring” interactions.
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DEFINITION:

A flux on a manifold (Mn, g) is a vector field f = fx(u) depending
upon the parameter u (the dependence in both variables being
smooth).
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DEFINITION:

A flux on a manifold (Mn, g) is a vector field f = fx(u) depending
upon the parameter u (the dependence in both variables being
smooth).
The conservation law associated with the flux fx on M is

∂tu +∇g · (fx(u)) = 0,

Unknown: scalar-valued function u = u(t, x).
∇g · (fx(u)) for fixed t, on vector field x →֒ fx(u(t, x)) ∈ TxM.
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DEFINITION:

A flux on a manifold (Mn, g) is a vector field f = fx(u) depending
upon the parameter u (the dependence in both variables being
smooth).
The conservation law associated with the flux fx on M is

∂tu +∇g · (fx(u)) = 0,

Unknown: scalar-valued function u = u(t, x).
∇g · (fx(u)) for fixed t, on vector field x →֒ fx(u(t, x)) ∈ TxM.
A flux is called geometry-compatible if it satisfies the
divergence-free condition

∇ · fx(u) = 0, u ∈ R, x ∈ M.
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CONFINED SOLUTION
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The regularized initial-value problem
An initial data u0 ∈ BV (M; dVg ), find a solution uε = uε(t, x) to:

∂tu
ε + divg

(

fx(u
ε)
)

= ε∆gu
ε, x ∈ M, t ≥ 0,

uε(0, x) = uε0(x), x ∈ M,

where ∆g denotes the Laplace operator on the manifold M,

∆gv := ∇g · ∇gv

= g ij
( ∂2v

∂x i∂x j
− Γkij

∂v

∂xk
)

.

uε0 : M → R is a sequence of smooth functions satisfying

‖uε0‖Lp(M) ≤ ‖u0‖Lp(M), p ∈ [1,∞],

TV (uε0) ≤ TV (u0),

sup
0<ε<1

ε ‖uε0‖H2(M;dVg ) <∞,

uε0 → u0 a.e. on M.
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REGULARIZED PROBLEM
(Ben-Artzi and LeFloch, 2007)
THEOREM: Let f = fx(u) be a geometry-compatible flux on
(M, g). Given any initial data uε0 ∈ C∞(M) satisfying the above
conditions there exists a unique solution uε ∈ C∞(R+ ×M) to the
initial value problem . Moreover, for each 1 ≤ p ≤ ∞ the solution
satisfies

‖uε(t)‖Lp(M;dVg ) ≤ ‖uε(t ′)‖Lp(M;dVg ), 0 ≤ t ′ ≤ t

and, for any two solutions uε and v ε,

‖v ε(t)− uε(t)‖L1(M;dVg )

≤ ‖v ε(t ′)− uε(t ′)‖L1(M;dVg ), 0 ≤ t ′ ≤ t.

In addition, for every convex entropy/entropy flux pair (U,Fx) the
solution uε satisfies the entropy inequality

∂tU(uε) + divg
(

Fx(u
ε)
)

≤ ε∆gU(uε).
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ENTROPY SOLUTION

(Ben-Artzi and LeFloch, 2007)
CORRECTION: Lengeler and Müller 2013
THEOREM: Let f = fx(u) be a geometry-compatible flux on
(M, g). Given any bounded initial function u0 ∈ BV (Mn; dVg )
there exists an entropy solution u ∈ L∞(R+ ×Mn) to the initial
value problem , so that

‖u(t)‖Lp(Mn;dVg ) ≤ ‖u0‖Lp(Mn;dVg ), t ≥ 0, p ∈ [1,∞].

For some constant C1 > 0 depending on ‖u0‖L∞(M) and the Ricci
tensor

TV (u(t)) ≤ eC1 t (1 + TV (u0)), t ∈ R+,

‖u(t)− u(t ′)‖L1(M;dVg ) ≤ C1TV (u0) |t − t ′|, 0 ≤ t ′ ≤ t.
(1)
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Definition
Let f = fx(u) be a geometry-compatible flux on (M, g). Given any
initial condition u0 ∈ L∞(M), a measure-valued map
(t, x) ∈ R+ ×M 7→ νt,x is called an entropy measure-valued

solution to the initial value problem if, for every convex
entropy/entropy flux pair (U,Fx) ,

∫∫

R+×M

(

〈

νt,x ,U
〉

∂tθ(t, x)+

gx
(〈

νt,x ,Fx
〉

, gradg θ(t, x)
)

)

dVg (x)dt

+

∫

M

U(u0(x)) θ(0, x) dVg (x) ≥ 0,

(2)

for every smooth function θ = θ(t, x) ≥ 0 compactly supported in
[0,+∞) ×M.
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THEOREM
(Well-posedness theory in the measure-valued class for geometry-compatible conservation
laws.)

(Ben-Artzi and LeFloch 2006)
Let f = fx(u) be a geometry-compatible flux on (M, g), and let
u0 ∈ L∞(M). Then there exists a unique entropy measure-valued
solution ν to the initial value problem . For almost every (t, x), the
measure νt,x is a Dirac mass, i.e. of the form

νt,x = δu(t,x),

where the function u ∈ L∞(R+ ×M). Moreover, the initial data is
attained in the strong sense

lim sup
t→0+

∫

M

|u(t, x)− u0(x)| dVg (x) = 0. (3)

72



✥

�

✁

✂

✄

✂

☎

✆

✝

✝

✞

✞

✟
✠

✡

☛

☞

✌

✍

✎

✏

✑

☎

☎

✒

☎

✑

✒

✏

✓

✓

☎

✏

✔

 -1
-.8
-.6
-.4
-.2
  0
 .2
 .4
 .6
 .8
  1

73



THANK YOU!
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