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@ The Research for the space-time spectral element method was performed by
Chaoxu Pei under the supervision of Mark Sussman and M. Yousuff Hussaini.

@ We have discovered that the space-time spectral element method preserves
structure in complex flow better than low order methods.

@ We have discovered that it is easier than one might expect to extend a low
order method to a space-time spectral method that is robust.
@ Possible future applications: Stability Analysis in complex Multiphase Flow,

vorticity confinement in complex multiphase and multimaterial flows,
numerical methods with excellent dispersion relation preserving properties.
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Wing Tip Vortices
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Stability of Rotating Viscous and Inviscid Flows

Stability of Rotating Viscous and Inviscid flows
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Abstract: Flow instability and turbulent transition can be well explained using a new proposed
theory--Energy gradient theory [1]. In this theory, the stability of a flow depends on the relative
magnitude of energy gradient in streamwise direction and that in transverse direction, if there is
no work input. In this note, it is shown based on the energy gradient theory that inviscid non-
uniform flow is unstable if the energy in transverse direction is not constant. This new finding
breaks the classical linear theory from Rayleigh that inviscid flow is unstable if the velocity
profile has an inflection point in parallel flows and inviscid flow is stable if the velocity profile
has no inflection point in parallel flow. Then, stability of rotating viscous and inviscid flows is
studied, and two examples of rotating flows (rotating rigid body motion and free vortex motion)
are shown, respectively.

Keywords: Viscous instability; Inviscid Instability; Rotating flows; Energy gradient; Energy
loss; Non-uniform flow

PACS numbers:

47.20.-k Hydrodynamic stability
47.20.Gv Viscous instability
47.20.Ky Nonlinearity

47.15.Fe Stability of laminar flows
47.27.Cn Transition to turbulence
47.20.Ft Instability of shear flows
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Stability of Rotating Viscous and Inviscid Flows

Fig. 3 Rigid body flow. Fig. 4 Free vortex flow.
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Long term Stability of vortex patches

Ann. scient. Ec. Norm. Sup.,
4¢ série, 1. 26, 1993, p. 517 & 542.

PERSISTANCE DE STRUCTURES GEOMETRIQUES
DANS LES FLUIDES INCOMPRESSIBLES
BIDIMENSIONNELS

PAR JEAN-YVvEs CHEMIN

REsuME. — Dans cet article, on s'intéresse au comportement en temps grand d'une solution du systéme
d'Euler relatif 4 un fluide parfait incompressible. On suppose que le tourbillon 4 Iinstant initial est la fonction
caractéristique d'un domaine borné régulier. Alors, pour tout temps, le tourbillon reste la fonction caractéristique
d'un domaine borné ayant la méme régularité.

ABSTRACT. — In this paper, we study the properties of a solution of the incompressible Euler system for
large time. We suppose that the initial vorticity is the characteristic function of a regular bounded
domain. Then the vorticity remains, for all time, the characteristic function of a bounded domain with the
same regularity.

Mots-clefs : Champ de vecteurs (peu réguliers), régularité tangentielle, flot, tourbillon (poches de).

Introduction

Les résultats principaux exposés ici ont pour motivation premiére un p
de la mécanique d’un fluide parfait bidimensionnel : le probléme des poches de louxblllon
Rappelons le cadre dans lequel nous allons travailler. Le mouvement d’un tel fluide est
décrit par un champ de vecteurs sur le plan, dépendant du temps, noté v (¢, x) et vérifiant

dv+v.Vo=—Vp
®) dive=0

=y,
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Jet In A Cross Flow (JICF)
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Jet In A Cross Flow (JICF): Grid strategies

additional coarsening via the introduction of Lagrangian droplets (to be referred as AMR-DRP)
were also performed using 24 cores each. It is observed in Table IIT that, indeed, AMR and droplet
transformation significantly reduce the grid-count and simulation cost. It is important to note that
the 15.7 days UG computation using 5008 cores translates to at least 9 years if using 24 cores
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Jet In A Cross Flow (JICF): uniform grids versus AMR

AMR-DRP
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FIG. 5. Comparison of flow velocities at the mid-plane (y = 1 cm) using different grid configurations as in Fig. 2, We =40,
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Jet In A Cross Flow (JICF): patterns

We=10 We=40 We=160
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Further Motivations in multiphase flow

Sea Spray (Dr. Doug Dommermuth, SUSTAIN tank in Miami)
@ boiling in microgravity environments (Dr. Yongsheng Lian, Yang Liu)

o Laser assisted particle removal (Dr. M.Y. Hussaini, Dr. B. Unlusu, Dr. K.
Lammers)

@ spray in dishwashers (Dr. Yongsheng Lian)
@ shock drop interaction (Dr. Yongsheng Lian)

@ under water explosions (Weidlinger Assoc., Dr. Matt Jemison, Dr. Samet
Kadioglu)

@ Atomization and spray in diesel injectors (Dr. Marco Arienti, Cody Estebe,
Dr. Yaohong Wang)

e Multiphase non-Newtonian flows (Dr. Mitsuhiro Ohta, Dr. Edwin Jimenez,
Dr. Paul Stewart, Dr. Nathan Lay)
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A space-time discontinuous Galerkin spectral element method for the Stefan problem
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Full Text(HTML)

A novel space-time discontinuous Galerkin (DG) spectral element method is presented to solve the one dimensional Stefan problem in an Eulerian coordinate system. This method
employs the level set procedure to describe the time-evolving interface. To deal with the prior unknown interface, a backward ransformation and a forward transformation are introduced in
the space-time mesh. By combining an Eulerian description, .e., a fixed frame of reference, with a Lagrangian description, ie., a moving frame of reference, the issue of dealing with implicitly
defined arbitrary shaped space-time elements is avoided. The backward transformation maps the unknown time-varying interface in the fixed frame of reference to a known stationary
interface in the moving frame of reference. In the moving frame of reference, the transformed governing equations, written in the space-time framework, are discretized by a DG spectral
element method in each space-time slab. The forward transformation is used to update the level set function and then to project the Solution in each phase back from the moving frame of
reference to the fixed Eulerian grid. Two options for calculating the interface velocity are presented, and both options exhibit spectral accuracy. Benchmark tests indicate that the method
converges with spectral accuracy in both space and time for the temperature distribution and the interface velocity. A Picard iteration algorithm is introduced in order to solve the nonlinear
algebraic system of equations and itis found that just a few iterations lead to convergence.
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Paper that recently appeared online in the

Journal of Computational Methods (2018)

International

International Journal of Computational Methods | Online Ready
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Abstract

A space-time discontinuous Galerkin spectral element method is combined with two different approaches for
treating problems with discontinuous solutions: (i) adding a space-time dependent artificial viscosity, and (ii)
tracking the discontinuity with space-time spectral accuracy. A Picard iteration method is employed to solve
nonlinear system of equations derived from the space-time DG spectral element discretization. Spectral accuracy
in both space and time is demonstrated for the Burgers’ equation with a smooth solution. For tests with
discontinuities, the present space-time method enables better accuracy at capturing the shock strength in the
element containing shock when higher order polynomials in both space and time are used. The spectral accuracy
of the shock speed and location is demonstrated for the solution of the inviscid Burgers’ equation obtained by the

tracking method.

Preprint submitted to International Journal of Computational Methods December 21, 2017.

Space-time - discontinuous Galerkin - spectral accuracy - shock capturing - shock tracking - picard iteration
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cﬁ,’.‘,fs New Multi-implicit Space-Time Spectral Element
Methods for Advection-Diffusion-Reaction
Problems

Authors Authors and sfistions
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Abstract

Novel multi-implicit space-time spectral element methods are described for

solutions to ad diff ction problems by
‘multiple time scales. The new methods are spectrally accurate in space and time
and they are designed to be easy to implement and robust. In other words, given
an existing stable low order operator split method for approximating solutions to
PDEs exhibiting multiple scales, the algorithms described in this article enable one
to easily extend a low order method to be a robust space-time spectrally accurate
method. In space, two spectrally accurate advective flux reconstructions are

proposed: extended ol flux reconstruction and ded
element-wise flux reconstruction. In time, for the hyperbolic term(s), a low-order
explicit I-stable building block time integration scheme is introduced in order to
obtain a stable and efficient building block for the spectrally accurate space-time
scheme. In this article, multiple spectrally accurate space discretization strategies,
and multiple spectrally accurate time discretization strategies are compared to one
another. It is found that all methods described are spectrally accurate with each
method having distinguishing properties.

Keywords

Space-time Operator splitting Coupling strategy Multiple time scales

Spectral accuracy
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Other Related Work (single phase flow only)

@ Zhang, "GePUP: Generic Projection and Unconstrained PPE for
Fourth-Order Solutions of the Incompressible NavierStokes Equations with
No-Slip Boundary Conditions” (2016)

o Kadioglu and Colak, “An essentially non-oscillatory spectral deferred
correction method for conservation laws” (2016)

@ Almgren, Aspden, Bell, Minion, “On the Use of Higher-Order Projection
Methods for Incompressible Turbulent Flow" (2013)

@ Fambri and Dumbser, “Spectral semi-implicit and space-time discontinuous
Galerkin methods for the incompressible Navier-Stokes equations on
staggered Cartesian grids” (2016)

@ Morinishi, Lund, Vasilyev, Moin, “Fully conservative higher order finite
difference schemes for incompressible flow” (JCP 1998)
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Other Related Work continued

@ Hu, Grossman, Steinhoff, “Numerical Method for Vorticity Confinement in
Compressible Flow,” AIAA Journal, 2002.

o Bauer, Cotter, “Energy-enstrophy conserving compatible finite element
schemes for the rotating shallow water equations with slip boundary
conditions,” JCP 2018.

o Sidilkover, “Towards unification of the Vorticity Confinement and Shock
Capturing (TVD and ENO/WENO) methods,” JCP 2018.
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Other Related Work continued (one of which is

multiphase)

@ Minion and Saye, “Higher-order temporal integration for the incompressible
Navier-Stokes equations in bounded domains” (JCP 2018)

@ Saye, “Implicit mesh discontinuous Galerkin methods and interfacial gauge
methods for high-order accurate interface dynamics, with applications to
surface tension dynamics, rigid body fluid-structure interaction, and free
surface flow: Part I" (JCP 2017)

@ Saye, “Interfacial gauge methods for incompressible fluid dynamics” (Science
Advances 2016)
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Navier-Stokes Equations for Multiphase flow

w; = Falw] + Fp[w] + Fp[w]
¢§m) +u-Vol™ =0 Level set equations
p=p"(p,e) (t,x)e Q(m),compressible

V.u=0 (tx)e€ Q(m),incompressible

Mark Sussman (Florida State University)
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Navier-Stokes Equations for Multiphase flow (cont)

Far=-V - (uaw)

0 0
Fp= V-t Fp=| —Vp—ok(¢)VH
V(u:1)—V-q -V - (up)

n-[—pl+7]-n=—0k(¢) t-[-pl+7]-n=0
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Level Set Function

0 >0 Water , g

Figure 2 : Comparison of our numerical results with ex-
‘perimental results found in Hinat and Buckmaster (1976)

where Re = 9.8, Mo = 0.065, and C = 4.95.
r ¢<0

(]

Figure 3 : Comparison of our numerical results with
computational results found in Ryskin and Leal (1984)
‘where Re — 100 and We = 10.

Figure 1: Comparison of our numerical results with
experimental results found in Bhaga and Weber (1981)
where Eo = 243, Mo = 266, and Re = 7.77.

M= {x|o(t,x) = 0}
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Explicit Method

For example, an |-stable scheme:

Wn+1,(0) —w"

At = Falw"]+ Fp[w"] + Fplw"]

Wn+1 _ Wn
At

Bao and Jin, 2001, 2003
Nourgaliev and Theofanous, 2007

— FA[Wn+1,(O)] + FD[W"+1’(O)] + FP[Wn+1,(0)]
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Implicit (Monolithic) Method

e.g. Crank-Nicholson method:

w™l —w  FA[w"] + Falw™?]  Fplw"] + Fp[w"]  Fp[w"] + Fp[w"t1]
At 2 * 2 + 2

Rasetarinara and Hussaini, 2001
Roberts, Sidilkover, Tsynkov, 2002
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Divide and Conquer (operator split) Method

Wn+1,(0) —w"

At = Falw’]

Wn+1,(1) —w"

—_ F n+1,(0)
At Alw ]

wth(2) _ ynt1,(1)

— F n+1,(2)
Ar p[w ]

wntl — Wn+1,(2)

_ F n+1
At plw™]

Douglas and Rachford, 1956

Speth, Green, MacNamara, Strang, 2013
Kwatra, Su, Gretarsson, Fedkiw, 2009
Jemison, Sussman, Arienti, 2014

Bell, Colella, Glaz, 1989
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Spectral Deferred Correction Method

Spectral in time

Processes with disparate temporal scales are treated independently, but coupled
iteratively by a series of the deferred correction procedure.

Bourlioux, Layton, Minion, 2003
Layton, Minion, 2004

Kadioglu, 2016

Pei, Sussman, Hussaini, 2018
Minion and Saye, 2018
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The space time slab

All variables are discretized at the Legendre Gauss Lobatto points with respect to
time.

n+étn,(4
n,(3)
() T
(1)
e tn,(O) 3
Space—Time Slab

t
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Coupling strategy 1

fork=0,...,r, form=0,...,r,

tn,(m+1) tn,(m+1)
Wil D st [ R ) Eawilar [ [Fa(w ),
0y (m #n,(m
¢n.(m+1) m(m1)
WZém#»l)Ak‘Fl _ W:7(m+1)7k+1 +/ " [FD(WXBI _ FD(WXD)]dT"’ / . [FD(Wk)]dT,
£n,(m J ¢ni(m
tn,(m+1) ¢, (m+1)
W (DAL nm bl / " [Fp(w* ™) — Fp(w")]dT + / . [Fp(w")]dT.
#n,(m £n(m

The second integral is evaluated with a higher-order quadrature rule, i.e., Gauss
quadrature, while the first integral is discretized by a low-order time integration scheme,
i.e., first order time integration scheme.
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Coupling strategy 2

fork=0,...,r, form=20,...,r,
tn,(m+1) tn,(rn+1)
sz(m+1):k+l _ W"!(m)7k+1 +/ ( [FA(W£+1) _ FA(WX)]dT‘f’/ " [FA(Wk)]dT7
ns(m ens(m
¢ (m+1)
Wz,é;nJrl),kJrl _ W;,(m+1),k+1 +/ . [FD(WXB—}D _ FD(Wk)]dT
tn,(m
s (m+1)
[ TR+ Fe(wldr,
ns(m
¢ (m+1)
wrm DR gt [ () — Fe(wldr
n,(m
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Example building blocks for the

Advection-diffusion-reaction equation

To describe the multi implicit space-time spectral element method, we take the
following advection-diffusion-reaction equation as an example,

we + V- (uw) = vAw + Aw, x € Q
w(x,0) = wy,
W|BQ =8,

T

where u = (u,v) " is velocity vector, v and A are constant.

Both diffusion and reaction processes are on faster time scales compared to
advection process.
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Discretization in time

After applying spectral element discretizations in space (details will soon follow),
we obtain a system of ODEs as follows,

ow
¢ = Falw) + Fo(w) + Fr(w),
where
@ Fa(w) denotes the spatial discretization of advection term V - (uw).
e Fp(w) denotes the spatial discretization of diffusion term vAw). (Stiff term.)

@ Fr(w) denotes the spatial discretization of reaction term f,(w). (Stiff term.)
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Low order building blocks

In order to avoid stringent time step, we use an implicit treatment for both
diffusion and reaction processes while an explicit I-scheme time integration scheme
for the advection process.
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I-scheme building block for advection

Wn+1,(0) —w"

At = Falw’]

Wn+1 —w"
At

A comparison of stability region between forward Euler scheme and I-stable

— FA[Wn+1,(0)]

scheme for advection:

Ref: Bao and Jin, 2001, 2003.
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Backwards Euler building blocks for diffusion and reaction

Wn+1 —wn

pe = Folw™]
Wn+1 _ Wn
“ar  Falw™
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spectral element grid

Pressure, Density, Temperature, and Level set function are located at the tensor
product Legendre Gauss points with respect to the space coordinates. The
velocity is located at the staggared Gauss Lobatto and Gauss points with respect

to the space points.

A Hierarchical Space-Time spectral element method fo
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piecewise spectral element grid

Pressure, Density, Temperature, and Level set function are located at the tensor
product Legendre Gauss points with respect to the space coordinates. The
velocity is located at the staggared Gauss Lobatto and Gauss points with respect
to the space points. Each mixed element and one surrounding element are
discretized using a standard piecewise continuous finite volume method.

IIIZ--I'H'

.V
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Discretization at a coarse-fine interface

Prolongation and restriction are approximated using high order Lagrange
interpolating polynomials (no Runge Phenomenon). For the multigrid
preconditioner though, only second order Prolongation or Restriction algorithms
are used.

i B S R
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[ ]
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LA K)
00K
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Spectrally Accurate and Conservative Discretization in

Space

Gauss (p™)

+]

Extended element-wise Non-Extended element-wise
flux reconstruction flux reconstruction

Extended-Gauss (p ™ +2) —o+o—o—0—o—|—o— —to—o—e—&+— Gauss (p™)

|

Gauss-Lobatto (p * +1) —¢—o—o—0—¢— —4—o—o—o—4¢— Gauss-Lobatto (p™ +1)

Advection fluxes: interpolate from Extended-Gauss grid to Gauss-Lobatto grid.
Diffusive fluxes: find derivative of Extended-Gauss grid interpolant at the
Gauss-Lobato grid points.
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Spectrally Accurate and Conservative Discretization in

Space: near a boundary

} J } } Gauss (p™) ﬁ—o—o—o—o—}o—o—o—o—{— Gauss (p©)

i l

—ete—o—oofe brtended Gauss (p”12) é,_._._.{_. Extended-Gauss (p* +2)
R L S Y S Gauss-Lobatto (p*'+2) %H—’_“_ Gauss-Lobatto (p® +2)
e Gauss-Lobatto (p™+1) //i . l. —4 Gauss-Lobatto (¢ +1)
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Gauss Legendre vs Gauss Chebychev?

The error for polynomial interpolation is:

f(x) = Pn(x) + Ra(x)

F+) (¢(x
Role) = D - )
On the one hand, Gauss Chebychev polynomial interpolation optimizes the part of
Ra(x) corresponding to M7_,(x — x;). On the other hand, Gauss Legendre
polynomial interpolation optimizes the degree of precision for numerical
quadrature. We have found, experimentally, that Gauss Chebychev placement of
discrete points is unstable. A recent article that might shed light on this issue:
Gassner, Gregor J., Andrew R. Winters, and David A. Kopriva. " Split form nodal
discontinuous Galerkin schemes with summation-by-parts property for the
compressible Euler equations.” Journal of Computational Physics 327 (2016):
39-66.
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Numerical tests: Advection-diffusion-reaction equation

wy + V- (uw) = vAw + Aw, x € Q
w(x,0) = wy,
wloa = g,

T

where u = (u,v) ' is velocity vector, v and X are constant.

Both diffusion and reaction processes are on faster time scales compared to
advection process.
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Numerical tests

On a computational domain Q = [0, 1] x [0, 1], we solve a
advection-diffusion-reaction problem with periodic boundary conditions. The
velocity vector u = (u,v) ' is set to be (1,1)", and v = 0.04 and A = 5.0.

p=p; Coupling 1; p=p; Coupling 2;
—=— EEFR-average —&— EEFR-average
10' —e— EEFR-upwind || 10 b —6— EEFR-upwind
4 —#— NEEFR-average 4 —— NEEFR-average
o —— NEEFR-upwind o —&— NEEFR-upwind
10° g 10 g
107 1 107" 1 . .
Figure: Errors in the
10* 9 107 9 . .
solution as a function of
107 4 107 3 : H
5 5 polynomial order in space
T 10" 1z 10* 1 . .
£ g p in a semi-log plot. The
£ . 12 ] . .
° ° simulation is computed up
" s to 1.0 with 5 x 5 spatial
i o 3 tessellation and E® = 80.
10 1 10° 1
10° 1 10° 1
‘0"“ L L L L L L L L T ‘0'“7 L L L L L L L
2 3 4 5 6 7 8 9 1011 2 3 4 5 6 7 8 9 1011
Poly. Order p Poly. Order p
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Overall order of accuracy

Overall order of convergence

(p%, pM), (p K) T (E® x EV) E®) | Coupling 1 | Coupling 2

(5 x 5, 80) — —

(4, 4), (4, 4) (10 x 10, 160) 5.1 5.2
(20 x 20, 320) 44 44

(5 x 5, 40) - -

(4, 4), (4, 5) (10 x 10, 80) 5.3 5.7
(20 x 20, 160) 5.0 5.1

(5 x 5, 80) — =

(5, 5), (5, 5) (10 x 10, 160) 5.7 5.7
(20 x 20, 320) 5.6 5.6

(5 x 5, 40) = =

(5, 5), (5, 6) (10 x 10, 80) 6.0 6.0
(20 x 20, 160) 5.8 5.8

Either reduce the time step or increase the number of iterations per step can
achieve min{p(x) +1,p0 +1,p() 41, K}, where K is the number of iterations

per time step.

Mark Sussman (Florida State University)
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Order of accuracy in space

Order of convergence in space
(P, P, (p®, K) | (EX x EV),EM) | Coupling 1 | Coupling 2

(3 x 3, 100) — —

(4, 4), (6, 8) (6 x 6, 100) 57 5.7
(12 x 12, 100) 6.0 6.0

(3 x 3, 100) — —

(5,5) .(6,8) (6 x 6, 100) 6.5 6.5
(12 x 12, 100) 5.7 5.7

(3 x 3, 100) — —

(6,6), (6, 8) (6 x 6, 100) 8.1 8.1
(12 x 12, 100) 8.1 8.1

(3 x 3, 100) — —

(7.7), (6, 8) (6 x 6, 100) 8.2 8.2
(12 x 12, 100) 8.2 8.5
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Order of accuracy in time

Order of convergence in time
(p%, pM), (p K) T (E® x EV) E®) | Coupling 1 | Coupling 2
(5 x 5, 40) = =
(8,8), (4,5) (5 x 5, 80) 5.0 5.0
(5 x 5, 160) 5.0 5.0
(5 x 5, 40) - —
(8. 8), (5. 5) (5 5, 80) 49 49
(5 x 5, 160) 5.0 5.0
(5 x 5, 40) — —
(8, 8), (4, 6) (5 x 5, 80) 6.1 6.2
(5 x 5, 160) 5.8 5.7
(5 x 5, 40) = =
(9, 9), (5, 6) (5 x 5, 80) 6.1 6.1
(5 x 5, 160) 6.0 6.0
(5 x 5, 40) = —
(9,9), (6, 6) (5 % 5, 80) 6.0 6.0
(5 x 5, 160) 5.9 5.9
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Outline of hierarchical method

@ Advection: CISL-MOF in “low order” regions, Free-stream preserving
I-scheme building block otherwise.

@ Diffusion: Backwards Euler building block: Multigrid preconditioned
BiCGStab.

© Compressible or Incompressible Projection method: Multigrid preconditioned
BiCGStab.

@ After regridding: A spectrally accurate “projection” guarantees that the value
of V- U is preserved.

@ “BoxLib" with tiling: an adaptive mesh refinement software framework.
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“BoxLib"

also now known as “AMReX"

SIAM J. ScI. COMPUT. (© 2016 Society for Industrial and Applied Mathematics
Vol. 38, No. 5, pp. S156-5172

BOXLIB WITH TILING: AN ADAPTIVE MESH REFINEMENT
SOFTWARE FRAMEWORK*

WEIQUN ZHANGT, ANN ALMGRENT, MARCUS DAY?, TAN NGUYEN?, JOHN SHALFS,
AND DIDEM UNATY

Abstract. In this paper we introduce a block-structured adaptive mesh refinement software
framework that incorporates tiling, a well-known loop transformation. Because the multiscale,
multiphysics codes built in BoxLib are designed to solve complex systems at high resolution, per-
formance on current and next generation architectures is essential. With the expectation of many
more cores per node on next generation architectures, the ability to effectively utilize threads

within
a node is essential, and the current model for parallelization will not be sufficient. We describe a new
version of BoxLib in which the tiling constructs are embedded so that BoxLib-based applications
can easily realize expected performance gains without extra effort on the part of the application
developer. We also discuss a path forward to enable future versions of BoxLib to take advantage of

NUMA-aware optimizations using the TiDA portable library.
Key words. high-performance computing, software framework, tiling
AMS subject classification. 97N80

DOI. 10.1137/15M102616X
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Properly Nested grids

FIc. 2. Cartoon of AMR grids with two levels of factor 2 refinement. The coarsest grid covers
the domain with 162 cells. Bold lines represent grid boundaries. The two intermediate resolution
grids are at level 1 and the cells are a factor of 2 finer than those at level 0. The two finest grids
are at level 2 and the cells are a factor of 2 finer than the level 1 cells. Note that there is no
direct parent-child connection. The data for each grid are contained in an object called FArrayBox
(see section 3.1). In this example, there are 1, 2, and 2 FArrayBox objects on levels 0, 1, and 2,
respectively. FArrayBox objects on each level are organized into an object called MultiFab (Multiple
FArrayBoz).
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Fic. 1. Grid, region, and tile. In this example of regional tiling, there are two grids. The grid
on the left contains four regions, and the grid on the right contains two regions. Each region is split
into four logical tiles in iteration space. The floating point data are allocated contiguously in each

region; thus the data within a grid are not in one contiguous block. Note that logical tiles do not
affect the data layout in memory.
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Single fluid, Inviscid, Incompressible Flow tests

ur+u-Vu=-Vp V-u=0
u;=—u-Vu—Vp=Fa(w)+ Fp(w) V-u=0

w = (u, p)
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Low order | scheme building block for advection

Wn+1,(0) —wn

At Alw’]

Wn+1 —w"

- F n+1,(0)
At alw ]
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Projection method for the pressure gradient building block

n+1l %
uAitu — _vpn+1 AV un+1 -0
n+1 *
V- <U+Atu = Vp"+1>
Ap™tt = Vou

At

u™tl = (1 - VATV u*
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smooth test problem

At t =0,
u = —sin(2mx) cos(2my) + uo
v = cos(2mx) sin(2my) + v

Periodic boundary conditions, the following quantities should be constant with
respect to time:

/u - u/2dx Kinetic Energy

/w -wdx w=Vxu Enstrophy
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smooth problem, contours of the initial vorticity magnitude
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exact| ‘

smooth problem, plot of ||w — w ~ Versus time
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smooth problem with AMR patch, plot of ||w — w®¥act||

versus time
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Double shear layer

(Bell, Colella, Glaz, JCP) At t =0,

u=tanh(30(y —1/4)) y<1/2
u=tanh(30(3/4—y)) y>1/2

v = sin(27x)/20

Periodic boundary conditions, the following quantities should be constant with
respect to time:

/u - u/2dx Kinetic Energy

/W -wdx w=Vxu Enstrophy
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Double shear layer 8th order 256x256
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Enstrophy Double shear layer
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Double shear layer 2nd order 128x128
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Double shear layer 4th order 128x128
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Double shear layer 4th order 128x128 vs 256x256

VORT02
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Initial vortex patch

At t =0,

u=a(r(x))(y - )

v = —a(r(x))(x - x0)

r(x) = v/ (x = x0)2 + (y — y0)?

Periodic boundary conditions, the following quantities should be constant with
respect to time:

/u - u/2dx Kinetic Energy

/w -wdx w=Vxu Enstrophy
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rtex patch, plot of enstrophy versus time
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3D bubble
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Liquid Jet in Gas Cross Flow (new method)
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Liquid Jet in Gas Cross Flow (low order method)
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Nucleate Boiling
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A depletable micro-layer model has been developed for the simulation of nucleate pool
boiling within the framework of Computational Fluid Dynamics (CFD) modeling using
an interface-tracking method. A micro-layer model is required for the CFD simulation
to take into account vaporization from the thin liquid film - called the micro-layer -
existing beneath a growing vapor bubble on a hot surface. In our model, the thickness
of the micro-layer is a variable defined at each discretized fluid cell adjacent to the
heat-transfer surface; the layer decreases due to vaporization, and can finally disappear.
Compared to existing micro-region models, most of them based on the concept of contact-
line evaporation, as originally proposed by Stephan and Busse, and by Lay and Dhir, our
model incorporates simplified modeling ideas, but can nonetheless predict the temperature
field beneath the growing bubble accurately. The model proposed in this paper has
been validated against measurements of pool boiling in water at atmospheric pressure.
Specifically, the bubble principal dimensions and the temperature distribution over the
heat-transfer surface are in good agreement with experimental data.

© 2015 Elsevier Inc. All rights reserved.
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Nucleate Boiling
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Nucleate Boiling
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Differentially heated rotating annulus
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Differentially heated rotating annulus

i‘t‘ = vV — 2Qe. xu + (ge. — re,)e(T — Ty) 7in —(u-Vu, )
Po
%:KVZT—(u-V)T, )
Veu=0, ©6)
Q
< s

FIGURE 1 The differentially heated rotating annulus experiment, where the annulus is rotated at rate £
and the inner wall is held at the fixed temperature 7, and the outer wall at temperature T}, creating a
differential heating. r, and ry are the radii of the inner and outer cylinders, R = r, — r,, and D is the height
of the annulus.
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Dynamics of Baroclinic Fluid Systems

LINEAR STABILITY ANALYSIS 143

thermal Rossby number
3

Taylor number

FIGURE 3 Neutral stability curves are plotted for the wave numbers m =3 to m =8. The curves are
caleulated by finding the parameter values where, for each m, the eigenvalues of (23) all have negative real
part except one with zero real part. The curves are plotted on @ log-log graph of thermal Rossby number
versus Taylor number.

Taylor number: 4Q2R*/v*

Thermal Rossby number: %

Mark Sussman (Florida State Universit A Hierarchical Space-Time spectral element method fo



Differentially heated rotating annulus
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Conclusions and Future Work

@ Our methodology is very good at approximating solutions to multiphase flow
problems, taking into account contact line dynamics, phase change, vortical
structures, and complex deforming boundaries, but, ...,

@ for most practical problems, some kind of data assimilation technique
(satellite data, experimental data, CAD/CAM data) and uncertainty
quantification technique must be developed too. We are working on this now,
using AMReX as a software infrastructure.
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