Utilizing Geometry of Smoothness-Increasing-Accuracy-Conserving (SIAC) filters for reduced errors

Joint work with Julia Docampo Sánchez (MIT)

Jennifer K. Ryan Heinrich Heine University, Düsseldorf, Germany University of East Anglia, Norwich, United Kingdom

> Advances in Applied Mathematics 18-20 December 2018

SMOOTHNESS-INCREASING ACCURACY-CONSERVING (SIAC) FILTER

Approximation order: p+1

SIAC DG order: 2p+1

APPLICATIONS: FLOW VISUALIZATION

Visualizing
Vorticity
(from NACA
wing
simulation)

DATA INFORMATION

- ightharpoonup Re = 1.2x10⁶, 12 degree angle of attack
- Results from Nektar++:
 - continuous Galerkin (cG)

discretization

- $\rightarrow p=5$ polynomials
- ➤ 211180 tetrahedra
- ➤ 38680 prisms

2D SIAC FILTER: COMPUTATIONAL FOOTPRINT

Tensor Product Filter

1D Line SIAC Filter

OUTLINE

- Background
 - Convergence properties of Discontinuous Galerkin method
 - ➤ Smoothness-Increasing Accuracy-Conserving (SIAC) filter
- ➤ Divided Difference Estimates
 - ➤ Line SIAC filter
- ➤ Numerical results
- ➤ Conclusion & Future Work

DISCONTINUOUS GALERKIN: CONVERGENCE PROPERTIES

For linear hyperbolic equations over a regular grid:

 \rightarrow In L^2 :

$$||u - u_h||_0 \le Ch^{p+1}$$

➤ Outflow edge:

$$|(u - u_h)(x_{j+1/2})| \le Ch^{2p+1}$$

Negative-Order norm:

$$\|\partial_h^{\alpha}(u - u_h)\|_{-(p+1)} = \sup_{\Phi \in \mathcal{C}_0^{\infty}} \frac{(\partial_h^{\alpha}(u - u_h), \Phi)}{\|\Phi\|_{p+1}} \le Ch^{2p+1}$$

Extracting Superconvergence Smoothness-Increasing Accuracy-Conserving (SIAC) Filters

SIAC FILTERED DG

SIAC filtered solution:

$$u_h^*(x,t) = \frac{1}{H} \int_{\mathbb{R}} K\left(\frac{x-y}{H}\right) u_h(y,t) dy$$

SIAC filtered error:

(Uniform)
$$||(u - K_h^{(2p+1,p+1)} * u_h)(T)||_0 \le Ch^{2p+1}$$

(Non-uniform)
$$\|(u - K_H^{(2p+1,p+1)} * u_h)(T)\|_0 \le Ch^{\frac{2}{3}(2p+1)}$$

Mock & Lax (1978)

Bramble & Schatz, Math. Comp (1977)

Cockburn, Luskin, Shu, & Süli, Math. Comp (2003)

(L-inf estimates) Ji, Xu, Ryan, Math. Comp. (2012)

SIAC KERNEL

- ➤ SIAC kernel:
 - \triangleright Linear combination of B-splines of order m+1.

$$K(x) = \sum_{\gamma = -r}^{r} c_{\gamma} \psi^{(m+1)}(x - \gamma)$$

Chosen to maintain 2r moments

B-spline chosen for desired smoothness

- Filter width: (2r+m+1)H, where H is the scaling (generally the mesh size).
- ➤ Alternatively: Can choose coefficients to satisfy data requirements.

SIAC KERNEL

- ➤ SIAC kernel:
 - \triangleright Linear combination of B-splines of order m+1.

$$K(x) = \sum_{\gamma = -r}^{r} c_{\gamma} \psi^{(m+1)}(x - \gamma)$$

Chosen to maintain 2r moments

B-spline chosen for desired smoothness

- Filter width: (2r+m+1)H, where H is the scaling (generally the mesh size).
- ➤ Alternatively: Can choose coefficients to satisfy data requirements.

SIAC KERNEL: FOURIER SPACE

➤ In physical space, the filter is

$$K(x) = \sum_{\gamma = -r}^{r} c_{\gamma} \psi^{(m+1)}(x - \gamma)$$

➤ In Fourier space this is:

$$\hat{K}(k) = \left(\frac{\sin(k\pi)}{k\pi}\right)^{m+1} \left(c_0 + 2\sum_{\gamma=0}^r c_\gamma \cos(\gamma k\pi)\right)$$

SIAC KERNEL: FOURIER SPACE

SIAC filter: first-order B-spline (top hat function).

Plot of full kernel in Fourier space for preserving 2, 4 and 6 moments.

SIAC filter: fourth-order B-spline.

Plot of full kernel in Fourier space for preserving 2, 4 and 6 moments.

TYPICAL PARAMETER CHOICE

$$u_h^*(x,t) = \frac{1}{H} \int_{\mathbb{R}} K\left(\frac{x-y}{H}\right) u_h(y,t) dy$$

 $H < \Delta x$ Order **p+1**

$$H = \Delta x$$

up to
Order **2p+1**

p	Number B-Splines			Possible accuracy
1	3	2	5	3
	3	1	3	3
2	5	3	7 -> 9	5
	5	1	7	5
	3	1	4 -> 5	3
3	7	4	11	7
	7	1	8 -> 9	7
	5	1	6 -> 7	5

SIAC KERNEL

SIAC KERNEL: MULTIPLE DIMENSIONS

➤ The post-processed solution:

$$u_h^*(\bar{\mathbf{x}},t) = \frac{1}{H_d} \int_{\mathbb{R}^d} K\left(\frac{\bar{x_1} - x_1}{\Delta x_1}\right) K\left(\frac{\bar{x_2} - x_2}{\Delta x_2}\right) \cdots K\left(\frac{\bar{x_d} - x_d}{\Delta x_d}\right) u_h(\mathbf{x},t) d\mathbf{x}$$

where
$$H_d = \Delta x_1 \Delta x_2 \cdots \Delta x_d$$

➤ The post-processing kernel is the same in each dimension:

$$K(x) = \sum_{\gamma = -r}^{r} c_{\gamma} \psi^{(m+1)}(x - \gamma)$$

SIAC FILTER: ERROR ESTIMATES

Through convolution, we can obtain a higher order accurate solution:

$$\|u - u_h^*\|_0 \le \underbrace{\|u - u^*\|_0}_{\text{Filter Error}} + \underbrace{\|K_H * (u - u_h)\|_0}_{\text{Discretization Error}}$$

Determined by number of moments (2r) the filter preserves Ch^{2r+1}

solution

Determined by

- Numerical scheme
- Choice of kernel function
- (Dual problem of PDE)
- Chs

SIAC FILTER: ERROR ESTIMATES

Second term

Using properties of B-splines and convolution

$$||K_{H} * (u - u_{h})||_{0} \leq \sum_{|\alpha| \leq m+1} ||D^{\alpha}(K_{H} * (u - u_{h}))||_{-(m+1)}$$

$$\leq \sum_{|\alpha| \leq m+1} ||K||_{1} ||\partial_{H}^{\alpha}(u - u_{h})||_{-(m+1)}$$

Properties of the scheme/Equation

where

$$\|\partial_h^{\alpha}(u-u_h)\|_{-(p+1)} \le Ch^{2p+1}$$

Question:

How can we use a 1D filter for 2D data?

➤ Cartesian-aligned filter vs. Rotated filter

h is the uniform DG element size, H is the kernel scaling

SIAC FILTER: DIVIDED DIFFERENCE ESTIMATES

➤ We need to worry about:

$$\|\partial_H^{\alpha}(u-u_h)\|_{-(m+1)}$$

- > Requires:
 - ➤ Relating coordinate-aligned derivatives with arc-length derivatives

$$D^{\alpha}\widetilde{\psi}^{(m+1)}(x,y) = \frac{\partial^{\alpha_1}}{\partial x^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial y^{\alpha_2}} \widetilde{\psi}^{(m+1)}(x,y)$$
$$= \cos^{\alpha_1} \theta \sin^{\alpha_2} \theta \frac{d^{|\alpha|}}{dt^{|\alpha|}} \psi^{(m+1)}(t)$$
$$= \cos^{\alpha_1} \theta \sin^{\alpha_2} \theta \partial_H^{|\alpha|} \psi^{(m+1-\alpha)}$$

SIAC FILTER: DIRECTIONAL DIVIDED DIFFERENCE ESTIMATES

- ➤ Need to relate directional divided differences to coordinatealigned divided differences.
- ➤ Direction vector: $\mathbf{u} = (u_x, u_y)$.
- > Scaled directional divided difference with respect to u:

$$\partial_{\mathbf{u},H} f(t) = \frac{1}{H} \left(f\left(x + \frac{H}{2}u_x, y + \frac{H}{2}u_y\right) - f\left(x - \frac{H}{2}u_x, y - \frac{H}{2}u_y\right) \right)$$
$$= \partial_{u_x,H} f\left(x, y + \frac{H}{2}u_y\right) + \partial_{u_y,H} f\left(x - \frac{H}{2}u_x, y\right).$$

 \triangleright α -th directional divided difference:

$$\partial_{\mathbf{u},H}^{\alpha} f(x,y) = \partial_{\mathbf{u},H} \left(\partial_{\mathbf{u},H}^{\alpha-1} f(x,y) \right), \quad \alpha > 1.$$

SIAC FILTER: DIVIDED DIFFERENCE ESTIMATES

➤ We can relate the directional divided difference to the coordinate aligned divided difference

$$D^{\alpha}\psi^{(\ell)}(t) = (\cos\theta)^{\alpha_x}(\sin\theta)^{\alpha_y} \partial_h^{\alpha}\psi^{(\ell-\alpha)}(\mathbf{x})$$
coordinate aligned

- \blacktriangleright As long as $\theta \neq 0$, $\pi/2$, then we have superconvergence!
 - ➤ Leads to a reduced error constant.

$$||K_H * (u - u_h)||_0 \le \cos^{\alpha_1} \theta \sin^{\alpha_2} \theta C \sum_{|\alpha| \le m+1} ||K_H||_1 ||\partial_H^{\alpha} (u - u_h)||_{-(m+1)}$$

➤ Reducing the support to a line: axis-aligned vs. rotated

Tensor Product SIAC filter

Line SIAC filter

➤ Numerical test: 2D advection equation, u(x,u,0) = sin(x+y)

Ш		J	<u> </u>			[]			
			$\theta = 3\pi/4$		$\theta = \pi/4$		$\theta = 0$		
N	L^2 -error	Order	L^2 -error	Order	L^2 -error	Order	L^2 -error		
	\mathbb{P}^1								
20	9.7e-03	-	1.5e-03	-	2.7e-03	_	1.6e-03		
40	2.4e-03	2.02	1.9e-04	2.98	2.6e-04	3.33	2.0e-04		
80	5.9e-04	2.01	2.4e-05	2.99	2.8e-05	3.21			
	•			\mathbb{P}^2					
20	2.4e-04	-	1.5e-06	-	1.4e-04	-	6.1e-06		
40	2.9e-05	3.01	4.7e-08	4.99	2.3e-06	5.91	1.2e-07		
80	3.6e-06	3.01	1.5e-09	5.00	3.7e-08	5.95	_		
20	4.5e-06	-	7.7e-10	-	1.6e-05	-	1.4e-07		
40	2.8e-07	4.01	6.9e-12	6.79	6.9e-08	7.87	5.6e-10		

➤ Superconvergence and error reduction!

LSIAC FILTER: SMOOTHNESS

LF $\theta = \pi/4$, $H = \sqrt{2}h$ LF $\theta = 3\pi/4$, $H = \sqrt{2}h$ Unfiltered LF $\theta = 0$, H = hVertical Cut Horizontal Cut Diagonal Cut

$$u_t + u_x + u_y = 0, \quad u(x, y, 0) = \sin(x)\cos(y)$$

Unfiltered

LSIAC LSIAC

LSIAC

$$u_t + u_x + u_y = 0, \quad u(x, y, 0) = \sin(x)\cos(y)$$

	Unfilte	ered			LSIAC			
			$\theta =$	0	$ heta=\pi/4$		$\theta = 3\pi/4$	
N	L ² -Error	Order	L ² -Error	Order	L ² -Error	Order	L ² -Error	Order
		•	•	\mathbb{P}^2				
20	1.3e-04	-	9.1e-05	-	6.8e-05	-	6.7e-05	-
40	1.6e-05	3.01	1.1e-05	3.02	1.1e-06	5.91	1.1e-06	5.92
80	2.0e-06	3.00	1.4e-06	3.00	1.8e-08	5.95	1.8e-08	5.98
	\mathbb{P}^3							
20	2.4e-06	-	1.9e-06	-	8.1-e06	-	8.1e-06	-
40	1.5e-07	4.01	1.1e-07	4.13	3.4e-08	7.87	3.4e-08	7.87
80	9.5e-09	4.00	6.7e-09	4.00	1.4e-10	7.97	1.4e-10	7.97

$$u_t + \left(\frac{u^2}{2}\right)_x + \left(\frac{u^2}{2}\right)_y = 0, \qquad u(x, y, 0) = 2 + \frac{1}{2}\sin(x + y).$$

Nonlinear!

DG LSIAC

 \mathbb{P}^1

20	6.15e-03		2.82e-02		1.08e-03		2.81e-03	
40	1.51e-03	2.02	7.11e-03	1.99	1.47e-04	2.87	4.26e-04	2.72
80	3.76e-04	2.01	1.78e-03	2.00	1.90e-05	2.96	5.66e-05	2.91

 \mathbb{P}^2

20	1.75e-04		8.09e-04		4.34e-06		1.54e-05	
40	2.02e-05	3.12	1.22e-04	2.73	1.55e-07	4.81	4.31e-07	5.16
80	2.46e-06	3.04	1.67e-05	2.87	5.14e-08	1.59	1.58e-07	1.44

LSIAC FILTER: COMPUTATIONAL COST

➤ Total operations per point.

Filter Type	Intersection Scans	Integrals	Quadrature Sums
Line Filter	4	10	10
2D Rotated Filter	64	93	8649
2D No Rotation	64	63	3969

➤ Elapsed time per point.

No. of Splines and degree	Line Filter	2D Rotated Filter	2D No Rotation
3,1	0.09	0.87	0.68
5,2	0.35	3.49	2.60
7,3	0.41	10.42	6.75

SUMMARY

- ➤ A Line SIAC filter can be applied for multi-dimensional data
 - ➤ Reduces error
 - ➤ Increases smoothness in all directions
 - Reduced computational cost
 - ➤ Improves the convergence rate from p+1 to 2p+1
- ➤ Requires choosing the rotation wisely.
- ➤ Essential to have the appropriate divided difference estimates.
- ➤ Can generalise to *higher dimensions* given the appropriate parameterisation.

REFERENCES

- 1. J.H. Bramble and A.H. Schatz, "Higher order local accuracy by averaging in the finite element method", *Mathematics of Computation*, **31** (1977), pp.94–111.
- 2. B. Cockburn, M. Luskin, C.-W. Shu, and E. Süli, "Enhanced accuracy by post-processing for finite element methods for hyperbolic equations", *Mathematics of Computation*, **72** (2003), pp.577–606.
- 3. J. Docampo Sánchez, J.K. Ryan, M. Mirzargar, and R.M. Kirby, "Multi-dimensional Filtering: Reducing the dimension through rotation." *SIAM Journal on Scientific Computing*, awaiting publication.
- 4. J. King, H. Mirzaee, J.K. Ryan, and R.M. Kirby, "Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering for discontinuous Galerkin Solutions: Improved Errors Versus Higher-Order Accuracy", *Journal of Scientific Computing*, **53** (2012), 129–149.
- 5. H. Mirzaee, J.K. Ryan, and R.M. Kirby, "Efficient Implementation of Smoothness-Increasing Accuracy-Conserving (SIAC) Filters for Discontinuous Galerkin Solutions", *Journal of Scientific Computing*, vol. **52** (2012), pp. 85–112.
- 6. M. Mirzargar, J.K. Ryan and R.M. Kirby, "Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering and Quasi-Interpolation: A Unified View." *Journal of Scientific Computing*, **67** (2016) pp 237--261.
- 7. M.S. Mock and P.D. Lax, "The computation of discontinuous solutions of linear hyperbolic equations", Communications on Pure and Applied Mathematics, **31** (1978), pp.423–430.
- 8. J.K. Ryan, "Exploiting Superconvergence through Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering", *Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014*, Salt Lake City, Utah. Lecture Notes in Computational Science and Engineering, Springer, **106** (2015), pp 87–102.
- 9. V. Thomee, "High order local approximations to derivatives in the finite element method", Mathematics of Computation, **31** (1977), pp. 652–660.