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SMOOTHNESS-INCREASING ACCURACY-CONSERVING (SIAC) FILTER

superconvergence extraction through siac filtering

Approximation order:  p+1 
SIAC DG order:  2p+1

SIAC filtering allows: 
• Extract global superconvergence 
• Create globally smooth approximations



APPLICATIONS:  FLOW VISUALIZATION
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Visualizing 
Vorticity 

(from NACA 
wing 

simulation)

Jallepelli, Docampo, Ryan, Haimes, and Kirby, IEEE TVCG, 2018



DATA INFORMATION

➤ Re = 1.2x106, 12 degree angle of attack 

➤  Results from Nektar++: 

➤ continuous Galerkin (cG)  

discretization 

➤ p=5 polynomials 

➤ 211180 tetrahedra   

➤ 38680 prisms 

➤ Box is sampled and vorticity is computed at a resolution of  
90 x 90 x 90.  
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2D SIAC FILTER:  COMPUTATIONAL FOOTPRINT
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OUTLINE

➤ Background 

➤ Convergence properties of Discontinuous Galerkin method 

➤ Smoothness-Increasing Accuracy-Conserving (SIAC) filter 

➤ Divided Difference Estimates 

➤ Line SIAC filter 

➤ Numerical results 

➤ Conclusion & Future Work

6



DISCONTINUOUS GALERKIN:  CONVERGENCE PROPERTIES

For linear hyperbolic equations over a regular grid: 

➤ In L2: 

➤ Outflow edge:  

➤ Negative-Order norm:  
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Extracting Superconvergence 
Smoothness-Increasing Accuracy-Conserving (SIAC)  

Filters
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SIAC FILTERED DG
SIAC filtered solution: 

SIAC filtered error:

u⇤
h(x, t) =
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Mock & Lax (1978) 
Bramble & Schatz, Math. Comp (1977) 

Cockburn, Luskin, Shu, & Süli, Math. Comp (2003) 
(❨L-inf estimates)❩  Ji, Xu, Ryan, Math. Comp. (2012)



SIAC KERNEL

➤ SIAC kernel: 
➤ Linear combination of B-splines of order m+1. 

➤ Filter width: (2r+m+1)H, where H is the scaling 
(generally the mesh size). 

➤ Alternatively:  Can choose coefficients to satisfy data 
requirements.

Chosen to maintain 2r moments
B-spline chosen for  
desired smoothness

K(x) =
rX

�=�r

c� 
(m+1)(x� �)
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SIAC KERNEL:  FOURIER SPACE

➤ In physical space, the filter is 

➤ In Fourier space this is:
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Thomee, Math. Comp. (1977) 
Ji & Ryan, ICOSAHOM 2014 Proceedings



SIAC KERNEL:  FOURIER SPACE

Basic properties of dg and beyond

Plot of full kernel in Fourier space 
for preserving 2, 4 and 6 moments.

SIAC filter:  first-order B-spline  
(top hat function). 

Plot of full kernel in Fourier space 
for preserving 2, 4 and 6 moments.

SIAC filter:  fourth-order B-spline. 



TYPICAL PARAMETER CHOICE

p Number
B-Splines

B-Splne
Order

Number 
elements

Possible 
accuracy

1 3 2 5 3

3 1 3 3

2 5 3 7  —> 9 5

5 1 7 5

3 1 4 —> 5 3

3 7 4 11 7

7 1 8 —> 9 7

5 1 6 —> 7 5

H < Dx 
Order p+1

H = Dx 
up to  

Order 2p+1

u⇤
h(x, t) =

1

H

Z

R
K

✓
x� y

H

◆
uh(y, t) dy



SIAC KERNEL

superconvergence extraction through siac filtering

p=2 Kernel:  
• Preserves 4 moments 
• C1 continuity 
• Support of 7 elements

p=1 Kernel: 
• Preserves 2 moments 
• Continuous 
• Support of 5 elements



SIAC KERNEL:  MULTIPLE DIMENSIONS

➤ The post-processed solution: 

     where  

➤ The post-processing kernel is the same in each dimension:
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SIAC FILTER:  ERROR ESTIMATES

iltering

Through convolution, we can obtain a higher order accurate solution:

Determined by 
number of moments (2r) 

the filter preserves 
Ch2r+1

Determined by 
• Numerical scheme 
• Choice of kernel function 
• (Dual problem of PDE) 
• Chs

Error in filtered 
solution

ku� u⇤
hk0  ku� u⇤k

0| {z }
Filter Error

+ kKH ⇤ (u� uh)k0| {z }
Discretization Error



SIAC FILTER:  ERROR ESTIMATES

Second term  

where

Using properties of B-splines and convolution

Properties of the scheme/Equation
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Question: 
How can we use a 1D filter for 2D data?
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LINE SIAC FILTER FOR  MULTI-DIMENSIONAL FILTERING

➤ Cartesian-aligned filter vs. Rotated filter

h is the uniform DG element size, H is the kernel scaling
20



SIAC FILTER:  DIVIDED DIFFERENCE ESTIMATES

➤ We need to worry about:    

➤ Requires: 

➤ Relating coordinate-aligned derivatives with arc-length 
derivatives
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SIAC FILTER:  DIRECTIONAL DIVIDED DIFFERENCE ESTIMATES

➤ Need to relate directional divided differences to coordinate-
aligned divided differences. 

➤ Direction vector:  u=(ux,uy). 

➤ Scaled directional divided difference with respect to u: 

➤ a-th directional divided difference:
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SIAC FILTER:  DIVIDED DIFFERENCE ESTIMATES

➤ We can relate the directional divided difference to the 
coordinate aligned divided difference 

  

➤ As long as q s 0, p/2, then we have superconvergence! 

➤ Leads to a reduced error constant.
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LINE SIAC FILTER FOR  MULTI-DIMENSIONAL FILTERING

➤ Reducing the support to a line:  axis-aligned vs. rotated
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Tensor Product SIAC filter Line SIAC filter
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DG Errors Tensor Product  
Filter

Line Filter 
p/4 rotation

Line Filter 
3p/4 rotation

LINE SIAC FILTER FOR  MULTI-DIMENSIONAL FILTERING

SISC (2017)u

t

+ u

x

+ u

y

= 0, u(x, y, 0) = sin(x+ y)



LINE SIAC FILTER FOR  MULTI-DIMENSIONAL FILTERING
➤ Numerical test:  2D advection equation, u(x,u,0)=sin(x+y) 

➤ Superconvergence and error reduction!
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Unfiltered Line Filtering 2D Filter
✓ = 3⇡/4 ✓ = ⇡/4 ✓ = 0

N L2-error Order L2-error Order L2-error Order L2-error
P1

20 9.7e-03 - 1.5e-03 - 2.7e-03 - 1.6e-03
40 2.4e-03 2.02 1.9e-04 2.98 2.6e-04 3.33 2.0e-04
80 5.9e-04 2.01 2.4e-05 2.99 2.8e-05 3.21

P2

20 2.4e-04 - 1.5e-06 - 1.4e-04 - 6.1e-06
40 2.9e-05 3.01 4.7e-08 4.99 2.3e-06 5.91 1.2e-07
80 3.6e-06 3.01 1.5e-09 5.00 3.7e-08 5.95 -

P3

20 4.5e-06 - 7.7e-10 - 1.6e-05 - 1.4e-07
40 2.8e-07 4.01 6.9e-12 6.79 6.9e-08 7.87 5.6e-10



LSIAC FILTER:  SMOOTHNESS

27



28

LINE SIAC FILTER FOR  MULTI-DIMENSIONAL FILTERING
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LINE SIAC FILTER FOR  MULTI-DIMENSIONAL FILTERING
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LINE SIAC FILTER FOR  MULTI-DIMENSIONAL FILTERING
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LINE SIAC FILTER FOR  MULTI-DIMENSIONAL FILTERING
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LSIAC FILTER:  COMPUTATIONAL COST

➤ Total operations per point. 

➤ Elapsed time per point.
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Filter Type Intersection Scans Integrals Quadrature Sums

Line Filter 4 10 10

2D Rotated Filter 64 93 8649

2D No Rotation 64 63 3969

No. of Splines and degree Line Filter 2D Rotated Filter 2D No Rotation

3, 1 0.09 0.87 0.68

5, 2 0.35 3.49 2.60

7, 3 0.41 10.42 6.75



SUMMARY

➤ A Line SIAC filter can be applied for multi-dimensional data  

➤ Reduces error 

➤ Increases smoothness in all directions 

➤ Reduced computational cost 

➤ Improves the convergence rate from p+1 to 2p+1 

➤ Requires choosing the rotation wisely. 

➤ Essential to have the appropriate divided difference estimates. 

➤ Can generalise to higher dimensions given the appropriate 
parameterisation.
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