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Introduction

> Vorticiy-confinement methods - developed initially for
incompressible flow, enhance resolution of vortical structures.

» Shock-capturing methods - for computing compressible flow
with shock waves.

» There appears to exist a (surprising ?) commonality between
the two methods.

» Exploration of this commonality leads to devising a unified
approach.



Vorticity confinement methods

» Developed by John Steinhoff for incompressible flow equations

» There exist two approaches: VC1 (early 90’s) and VC2 (late
90's)

» Both are concerned with an addition of a nonlinear mechanism
to a numerical scheme

> V(C2 is relevant for the purpose of this work



Incompessible NS equations

Continuity equation and momentum equations
V-v=20
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with p - pressure, v - velocity vector, u - viscosity coefficient.
Using the identity

VA=V (V-v)-VxVxuv
the momentum equations can be recast
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VC2 method

The “anti-diffusion” term
s=VXxw
Together with the dissipation can be recast as
Vv —es = V x (pw — ew)

where
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Compressible flow applications

» A difficulty: both VC and Shock Capturing involve artificial
non-linearity

» Most of the VC compressible flow applications are subsonic
» Work by Hu (2001): VC on top of the FCT method -
supersonic flow tests.



Preliminary remarks

The dissipation & VC2 term in tensorial form
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Euler equations for compressible flow

The Euler system of equations for compressible flow in the
conservation form

uy + [F (u)], +[G(u)], +[H (u)], =0

where the vector of unknowns and the x-flux;

p pu
pu ,ou2 +p
u=| pv F(u) = puv
pw puw
pE puH

v = (u, v, w) - the velocity vector, p - the density, p - the pressure,
E - the total specific energy and H = E + p/p - specific enthalpy.
The ideal gas equation of state p = (v — 1)pE, where  is the
specific heats ratio.



The numerical scheme
The upwind scheme’s numerical flux

A
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Jacobian at the cell face i +1/2

!/
A= FU‘X:XI+1/2
based either upon Roe-averaging procedure, q is a vector of
characteristic variables,

Qit1/2(q) =6iy12(a) =qiy1 —q;

with 0j1/5 (. ..) denoting undivided difference, R - is the matrix of
the Jacobians’ right eigenvectors.

Eigenvalues of A: three identical - u, “advective”; two others -

(u =+ ¢) - "acoustic”.



Primitive variables formulation
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where s is the entropy and c - the speed of sound c? = vp/p.
The transformation matrix between the primitive and conservative
variables
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Relevant artificial viscosity terms

Formulate the dissipative portion of the upwind scheme numerical
flux for primitive variables equations.
Single out the following terms
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Some details of the TVD approach

The corresponding components of vector Q;41/> (q)

Qiy12 (v) = 0412 (v),  Qix1y2 (W) = dip1/2 (w)

A second order upwind scheme - redefining v component
(assuming u > 0)

Qix1/2 (V) = diy1y2 (v) = dic1/2 (v)

A TVD-type scheme, again, by redefining

Qit1/2 (v) = Oit1/2 (v) =0i—1p2(v) & [f,-il/z (V)}

where 5 W)
+ i+1/2\V
r = — =
12 (V) di—1/2(v)

and ¢ (r) is one of the so-called limiter-functions.



“Augmenting” the artificial dissipation

Augment the singled out terms by subtracting the transposed tensor

h 0 wu u 0 wu u T
5 ve 0 v, | — ve 0 v, M
wx w, 0 wx w, 0
h 0 —w? WY
= — w? 0 —w | M
2 —wY W 0

- a skew-symmetric form



“Augmenting” the artificial dissipation (cont-d)
In addition to the “regular” undivided differences, introduce the
transverse ones: in y-direction

y (Ui e = vipj—1,0) + (Ui, — Uij—1,4)
Tf+1/2(”) = a

and in z-direction

, ~ (Uigrgkr — Ui gk—1) + (Uij ket — Uijk—1)
Tf+1/2(“) = 4

Introduce the “undivided vorticity” components:
w? = hw?; wY =~ hwY which are evaluated as follows

g,ﬂl/g = {5i+1/2(v) - Tiy+1/2(”)}

@ﬁrl/Q = [5i+1/2(W) - Tiz+1/2(U)}

A first-order upwind scheme flux with augmented (or “vorticity”)
artificial dissipation is defined by:

Qiv1/2 (V) = Wity Qit12(w) = Qﬁlp



TVD-VC scheme formulation

The next step is to devise higher order corrections.
By analogy to the “regular” TVD scheme (assuming u > 0):

Qit1/2 (V) = Wiyy)p — i1/ (RL/z) = Wi~ @i

where

z
Rt _ “it1/2
i+1/2 = 7z
/ wi_1/2
The component Q11> (w) is evaluated in analogous manner, as
well the other elements of the “limited vorticity” correction tensor

» The entropy and the “acoustic” characteristic variables are
treated in the standard way.



TVD-VC scheme formulation (cont-d)

The entire 2nd order upwind “vorticity” dissipation is

1 —w? W 0 —w w
5 w? 0 —w* |- w? 0 —w* M
—wY W 0 —w¥  w* 0

where w® terms are the “limited” vorticity components (second
order corrections)
- resemblance to the VC2 scheme !



Some remarks

» Upwind TVD-VC scheme - resembles the VC2 method, though
the key differences are
» limiting based on vorticity components (not on the vorticity
vector magnitude)
> limiting along a grid-line (not a more general neighborhood)
» The general strategy for SC-VC
» single out the relevant velocity error components
» augment them so that they are expressed via vorticity
components.
» contstruct (limited) correction, also formulated based upon
vorticity components.

» Flux-splitting TVD - straightforward.

» Reasonably easy to retrofit existing codes.



Isentropic vortex example
(Studied by Shu and Yee)

Computational domain Q = {[-5,5] x [-5,5]}:

-1

T = 1—2 exp(l—r2)
0

p = pT=p’

Velocities

1— 2
()= 5o (57 (v
with r = \/x? + y?, € = 5.

Computational grid: 70 x 70 cells.



Isentropic vortex testcase 1

Figure: TVD-VC Figure: TVD
Sweby limiter, § = 1 (identical to minmod).



Isentropic vortex testcase 2

Figure: TVD-VC Figure: TVD
Sweby limiter, 8 = 1.1.




Accuracy verification

mesh-size Ly error Ly order L error L, order
1/10 4.1362E — 04 8.3428E — 03
1/20 1.3635E — 04 1.60 3.6567E — 03 1.18
1/40 3.7331E — 05 1.87 1.0919E — 03 1.74
1/80 9.8754E — 06 1.92 2.6601E — 04 2.04

Table: Accuracy test for TVD-VC method, Sweby limiter with § = 1.1,
time t = 2. Errors in p are presented.



Shock-capturing properties verification

Dens
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Figure: TVD-VC, shock reflection from a wall, computational grid with
mesh-size Ax = 1/30.




WENO-VC scheme formulation principles

» Reformulate a chosen WENO scheme using undivided
differences (like the original FD ENO methods by Shu&Osher
1988)

» Apply the previously formulated strategy

> single out the relevant (velocity) error components

» augment them so that they are expressed via vorticity
components

» construct limited corrections (vorticity based)



The basic method’s choice

» Choice - 5th order WENO scheme (Shu 2003)

» Conversion to WENO-VC - following the previously formulated
strategy

» As an illustration - the vorticity base smoothness monitor
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Isentropic vortex example

Figure: WENO Figure: WENO-VC



Accuracy verification

mesh-size Ly error Ly order L error L, order
1/10 5.0987E — 06 1.1228E — 04
1/20 2.0331E — 07 4.65 3.3317E — 06 5.07
1/40 7.5689E — 09 4.75 1.4198E — 07 4.55
1/80 2.3976E — 10 4.98 3.5008E — 09 5.34

Table: WENO-VC method, isentropic vortex problem, time t = 2.
Different norm of error in density p are presented.



Rayleigh-Taylor instability
time t = 1.95

Der
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Figure: Ax = 1/240, WENO-VC - Figure: Ax = 1/480, WENO-VC
left, WENO -right. left, WENO - right.



Double Mach reflection

Ax = 1/256, time t = 2

Density

2.235e+01
20,947

571

10474

5.2368

WENO-VC

2.235e+01
20,947

571

~10.474

ES.QS&B
1.400e+00

WENO

[m]

=




Double Mach reflection

Ax =1/512, time t =2
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Double Mach reflection

Ax =1/512, time t =2

Density
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Figure: WENO-VC

Figure: WENO
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Double Mach reflection (vorticity)
Ax =1/512, time t =2

Vorticity Z
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Figure: WENO-VC

Figure: WENO
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Double Mach reflection (vorticity)

Ax = 1/256

Figure: WENO-VC
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Figure: WENO
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Double Mach reflection (vorticity)

Ax =1/512

Vorticity Z
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Figure: WENO-VC

-6.2808+0

Figure: WENO



Conclusions and future work

| 4
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A certain unification of Vorticity Confinement and Shock
Capturing methods proposed.

It constitutes a certain departure from the
dimension-by-dimension approach, since the multidmensional
quantities (vorticity) are involved.
The numerical results demonstrate certain advantages of the
new approach

» improved resolution of vortical flows

» elimination of a certain numerical artifact
The future plans:

> factorizable Shock-Capturing higher order methods



Thank you for your attention !
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