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Introduction

I Vorticiy-con�nement methods - developed initially for

incompressible �ow, enhance resolution of vortical structures.

I Shock-capturing methods - for computing compressible �ow

with shock waves.

I There appears to exist a (surprising ?) commonality between

the two methods.

I Exploration of this commonality leads to devising a uni�ed

approach.



Vorticity con�nement methods

I Developed by John Steinho� for incompressible �ow equations

I There exist two approaches: VC1 (early 90's) and VC2 (late

90's)

I Both are concerned with an addition of a nonlinear mechanism

to a numerical scheme

I VC2 is relevant for the purpose of this work



Incompessible NS equations

Continuity equation and momentum equations

∇ · v = 0

∂v

∂t
+ v · ∇v +∇p = µ∇2v

with p - pressure, v - velocity vector, µ - viscosity coe�cient.

Using the identity

∇2v = ∇ (∇ · v)−∇×∇× v

the momentum equations can be recast

∂v

∂t
+ v · ∇v +∇p = −µ∇× ω



VC2 method

The �anti-di�usion� term

s = ∇×$

Together with the dissipation can be recast as

µ∇2v − εs = ∇× (µω − ε$)

where

$ =
ω

ω̄

[∑
l (ω̄l)

−1

N

]−1
with

ω̄ = ‖ωl‖+ δ



Compressible �ow applications

I A di�culty: both VC and Shock Capturing involve arti�cial
non-linearity
I Most of the VC compressible �ow applications are subsonic
I Work by Hu (2001): VC on top of the FCT method -

supersonic �ow tests.



Preliminary remarks

The dissipation & VC2 term in tensorial form

∇× (µω − ε$) ≡ ∇ ·

µ
 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0


−ε

 0 −$3 $2

$3 0 −$1

−$2 $1 0





Euler equations for compressible �ow

The Euler system of equations for compressible �ow in the

conservation form

ut + [F (u)]x + [G(u)]y + [H (u)]z = 0

where the vector of unknowns and the x-�ux:

u =


ρ
ρu
ρv
ρw
ρE

 F (u) =


ρu

ρu2 + p
ρuv
ρuw
ρuH


v = (u, v ,w) - the velocity vector, ρ - the density, p - the pressure,

E - the total speci�c energy and H = E + p/ρ - speci�c enthalpy.

The ideal gas equation of state p = (γ − 1)ρE , where γ is the

speci�c heats ratio.



The numerical scheme

The upwind scheme's numerical �ux

F̂U
i+1/2 =

1

2
[F (ui ) + F (ui+1)]− 1

2
(R |Λ|)Qi+1/2 (q)︸ ︷︷ ︸

Jacobian at the cell face i + 1/2

A = F′
u
|x=xi+1/2

based either upon Roe-averaging procedure, q is a vector of

characteristic variables,

Qi+1/2 (q) = δi+1/2 (q) ≡ qi+1 − qi

with δi+1/2 (. . .) denoting undivided di�erence, R - is the matrix of

the Jacobians' right eigenvectors.

Eigenvalues of A: three identical - u, �advective�; two others -

(u ± c) - �acoustic�.



Primitive variables formulation

∂s

∂t
+ v · ∇s =0

∂v

∂t
+ v · ∇v +

1

ρ
∇p =0

∂p

∂t
+ v · ∇p + ρc2∇ · v=0

where s is the entropy and c - the speed of sound c2 = γp/ρ.
The transformation matrix between the primitive and conservative

variables

T =


1 0 0 0 1/c2

u ρ 0 0 u/c2

v 0 ρ 0 v/c2

w 0 0 ρ w/c2

v2 ρu ρv ρw v2/c2





Relevant arti�cial viscosity terms

Formulate the dissipative portion of the upwind scheme numerical

�ux for primitive variables equations.

Single out the following terms

h

2

 0 |v | uy |w | uz
|u| vx 0 |w | vz
|u|wx |v |wy 0

 =
h

2

 0 uy uz
vx 0 vz
wx wy 0

M (1)

with

M =

 |u| 0 0

0 |v | 0

0 0 |w |





Some details of the TVD approach

The corresponding components of vector Qi+1/2 (q)

Qi+1/2 (v) = δi+1/2 (v) , Qi+1/2 (w) = δi+1/2 (w)

A second order upwind scheme - rede�ning v component

(assuming u > 0)

Qi+1/2 (v) = δi+1/2 (v)− δi−1/2 (v)

A TVD-type scheme, again, by rede�ning

Qi+1/2 (v) = δi+1/2 (v)− δi−1/2 (v)φ
[
r+i+1/2 (v)

]
where

r+i+1/2 (v) =
δi+1/2 (v)

δi−1/2 (v)

and φ (r) is one of the so-called limiter-functions.



�Augmenting� the arti�cial dissipation

Augment the singled out terms by subtracting the transposed tensor

h

2


 0 uy uz

vx 0 vz
wx wy 0

−
 0 uy uz

vx 0 vz
wx wy 0

T
M

=
h

2

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

M
- a skew-symmetric form



�Augmenting� the arti�cial dissipation (cont-d)
In addition to the �regular� undivided di�erences, introduce the

transverse ones: in y -direction

τ yi+1/2(u) =
(ui+1,j+1,k − ui+1,j−1,k) + (ui ,j+1,k − ui ,j−1,k)

4

and in z-direction

τ zi+1/2(u) =
(ui+1,j ,k+1 − ui+1,j ,k−1) + (ui ,j ,k+1 − ui ,j ,k−1)

4

Introduce the �undivided vorticity� components:

ωz ≈ hωz ; ωy ≈ hωy which are evaluated as follows

ωz
i+1/2 ≡

[
δi+1/2(v)− τ yi+1/2(u)

]
ωy
i+1/2 ≡

[
δi+1/2(w)− τ zi+1/2(u)

]
A �rst-order upwind scheme �ux with augmented (or �vorticity�)

arti�cial dissipation is de�ned by:

Qi+1/2 (v) = ωz
i+1/2, Qi+1/2 (w) = ωy

i+1/2



TVD-VC scheme formulation

The next step is to devise higher order corrections.

By analogy to the �regular� TVD scheme (assuming u > 0):

Qi+1/2 (v) = ωz
i+1/2 − ω

z
i−1/2φ

(
R+
i+1/2

)
≡ ωz

i+1/2 −$
z
i−1/2

where

R+
i+1/2 =

ωz
i+1/2

ωz
i−1/2

The component Qi+1/2 (w) is evaluated in analogous manner, as

well the other elements of the �limited vorticity� correction tensor

I The entropy and the �acoustic� characteristic variables are

treated in the standard way.



TVD-VC scheme formulation (cont-d)

The entire 2nd order upwind �vorticity� dissipation is

1

2

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

−
 0 −$z $y

$z 0 −$x

−$y $x 0

M
where $α terms are the �limited� vorticity components (second

order corrections)

- resemblance to the VC2 scheme !



Some remarks

I Upwind TVD-VC scheme - resembles the VC2 method, though
the key di�erences are
I limiting based on vorticity components (not on the vorticity

vector magnitude)
I limiting along a grid-line (not a more general neighborhood)

I The general strategy for SC-VC
I single out the relevant velocity error components
I augment them so that they are expressed via vorticity

components.
I contstruct (limited) correction, also formulated based upon

vorticity components.

I Flux-splitting TVD - straightforward.

I Reasonably easy to retro�t existing codes.



Isentropic vortex example
(Studied by Shu and Yee)

Computational domain Ω = {[−5, 5]× [−5, 5]}:

T = 1− γ − 1

8γπ
exp

(
1− r2

)
p = T

1

γ−1

ρ = ρT ≡ ργ

Velocities

(u, v) =
ε

2π
exp

(
1− r2

2

)
(−y , x)

with r =
√
x2 + y2, ε = 5.

Computational grid: 70× 70 cells.



Isentropic vortex testcase 1

Figure: TVD-VC Figure: TVD

Sweby limiter, β = 1 (identical to minmod).



Isentropic vortex testcase 2

Figure: TVD-VC Figure: TVD

Sweby limiter, β = 1.1.



Accuracy veri�cation

mesh-size L1 error L1 order L∞ error L∞ order

1/10 4.1362E − 04 8.3428E − 03

1/20 1.3635E − 04 1.60 3.6567E − 03 1.18

1/40 3.7331E − 05 1.87 1.0919E − 03 1.74

1/80 9.8754E − 06 1.92 2.6601E − 04 2.04

Table: Accuracy test for TVD-VC method, Sweby limiter with β = 1.1,
time t = 2. Errors in ρ are presented.



Shock-capturing properties veri�cation

Figure: TVD-VC, shock re�ection from a wall, computational grid with
mesh-size ∆x = 1/30.



WENO-VC scheme formulation principles

I Reformulate a chosen WENO scheme using undivided

di�erences (like the original FD ENO methods by Shu&Osher

1988)

I Apply the previously formulated strategy
I single out the relevant (velocity) error components
I augment them so that they are expressed via vorticity

components
I construct limited corrections (vorticity based)



The basic method's choice

I Choice - 5th order WENO scheme (Shu 2003)

I Conversion to WENO-VC - following the previously formulated

strategy

I As an illustration - the vorticity base smoothness monitor

β1 =
13

12

(
−ωz

i−3/2 + ωz
i−1/2

)2
+

1

4

(
−ωz

i−3/2 + 3ωz
i−1/2

)2
β2 =

13

12

(
−ωz

i−1/2 + ωz
i+1/2

)2
+

1

4

(
−ωz

i−1/2 − ω
z
i+1/2

)2
β3 =

13

12

(
−ωz

i+1/2 + ωz
i+3/2

)2
+

1

4

(
−ωz

i+1/2 + 3ωz
i+3/2

)2



Isentropic vortex example

W

Figure: WENO Figure: WENO-VC



Accuracy veri�cation

mesh-size L1 error L1 order L∞ error L∞ order

1/10 5.0987E − 06 1.1228E − 04

1/20 2.0331E − 07 4.65 3.3317E − 06 5.07

1/40 7.5689E − 09 4.75 1.4198E − 07 4.55

1/80 2.3976E − 10 4.98 3.5008E − 09 5.34

Table: WENO-VC method, isentropic vortex problem, time t = 2.
Di�erent norm of error in density ρ are presented.



Rayleigh-Taylor instability
time t = 1.95

Figure: ∆x = 1/240, WENO-VC -
left, WENO -right.

Figure: ∆x = 1/480, WENO-VC
left, WENO - right.



Double Mach re�ection

∆x = 1/256, time t = 2

WENO-VC

WENO



Double Mach re�ection

∆x = 1/512, time t = 2

WENO-VC

WENO



Double Mach re�ection

∆x = 1/512, time t = 2

Figure: WENO-VC Figure: WENO



Double Mach re�ection (vorticity)

∆x = 1/512, time t = 2

Figure: WENO-VC Figure: WENO



Double Mach re�ection (vorticity)

∆x = 1/256

Figure: WENO-VC Figure: WENO



Double Mach re�ection (vorticity)

∆x = 1/512

Figure: WENO-VC Figure: WENO



Conclusions and future work

I A certain uni�cation of Vorticity Con�nement and Shock

Capturing methods proposed.

I It constitutes a certain departure from the

dimension-by-dimension approach, since the multidmensional

quantities (vorticity) are involved.

I The numerical results demonstrate certain advantages of the
new approach
I improved resolution of vortical �ows
I elimination of a certain numerical artifact

I The future plans:
I factorizable Shock-Capturing higher order methods



Thank you for your attention !
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