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Outline:

• Waves in anisotropic media, “inverse modes”

• Stability of Absorbing Boundary Conditions (ABCs)

• The Energy-Rate Reflection Coefficient (ERRC)

• An optimal ABC & results

• Double Absorbing Boundary (DAB) formulations



Applications:

• Underwater acoustics

• Geophysics

• Electromagnetics

• Aerodynamics

• Oceanography

• Meteorology

• and more ……..

Waves in Unbounded Media

J. Tromp, CalTech

C. Farhat et al. Hungarian Meteorological Society



Artificial / Absorbing Boundaries



Low-Order ABCs

Late 70’s – mid 80’s:

Absorbing Boundary Conditions (ABCs)

Other names: Non-reflecting, Radiating, Open, Silent, Transmitting, Transparent, 
Free-space, Pulled-back, One-way BCs…

Low-order (local) ABCs:

Engquist & Majda (1977), Bayliss & Turkel (1980), Kriegsmann et al. (1980), 
Feng (1983), Higdon (1986), …

BE, Texas            AM, Courant   AB, Northwestern   ET, TAU                GK, NJIT     KF, Nanjing U.    RH, Oregon State U.



Two milestones

Perfectly Matched Layer (PML)
Invented by J.P. Bérenger, 1994

Properties at the continuous level:

• Zero reflection at the interface B for any plane wave

• Waves quickly damped inside the layer

Technique: modification of governing equations in the layer

High-Order ABCs
Invented by F. Collino, 1993

• Local ABC on an artificial boundary

• Accuracy (order) of ABC is arbitrarily high 

• Only low-order derivatives appear

Technique: using auxiliary variables to eliminate high derivatives



ABCs and PMLs: Saul’s contributions

Abarbanel, Gottlieb & Hesthaven, Non-linear PML equations 

for time dependent electromagnetics in three dimensions, JSC, 

2006 

Abarbanel, Stanescu & Hussaini,  Unsplit variables PMLs 

for the shallow water equations with Coriolis forces, 

Comp. Geoph., 2003

Abarbanel, Gottlieb & Hesthaven, Long Time Behavior of the PML Equations in 

Computational Electromagnetics, JSC, 2002

Tsynkov, Abarbanel et al., Global artificial boundary conditions for computation of 

external flows with jets, AIAA J., 2000

Abarbanel, Gottlieb & Hesthaven, Well-posed perfectly matched layers for advective

Acoustics, JCP, 1999

Abarbanel & Gottlieb, A mathematical analysis of the PML method, JCP, 1997

Tsynkov, Turkel & Abarbanel, External flow computations using global boundary conditions,

AIAA J., 1996 



The Challenge of “Inverse Modes”

Acoustic, isotropic Acoustic, orthotropic,

no inverse modes

Acoustic, gen. anisotropy,

controlled inverse modes

Elastic, weakly-orthotropic,

no inverse modes

Elastic, 

Strongly-orthotropic,

uncontrolled inverse

modes



The Challenge of “Inverse Modes” (Contd.)

Why do standard ABCs generally fail in the presence of inverse modes?

Take, e.g., the simplest ABC in acoustics (c=wave speed, x=outward 

normal direction to the boundary):

This ABC is satisfied by waves whose phase velocity is in the outgoing 

direction. 

Suppose an outgoing inverse-mode approaches the boundary: 

energy is propagating out = group velocity is pointing out 

 phase velocity is pointing in. 

The ABC would “identify” it as incoming, and would not let it out!   

 Instability

See movie showing wave propagation 

with and without inverse modes
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Designing ABCs (our lesson)

The standard approach: 

Design the ABC based on accuracy. Then worry about stability. 

Our recommended approach:

Design the ABC based on (E-) stability. Then worry about accuracy, 

by optimizing the ABC free parameters. 



Stability Analysis (continuous level)

Standard stability analysis for hyperbolic IBV problems: the Kreiss theory 

[1970; book by Gustafsson, Kreiss & Oliger, 1995]. 

Continuous-level and discrete-level versions. 

If a 1st-order system is Kreiss-stable, one gets a stability estimate of the form

2 (1)
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Note: K(t) may be even exponentially growing!

A stronger type of stability is energy-stability, based on the existence of 

a positive “energy function” E[u](t)  such that d/dt E[u](t) ≤ 0. 

From E[u](t)≤E[u](0) we can obtain a stability estimate which is         

uniform in time. 



The Lysmer-Kuhlemeyer (LK) ABC [1969]:

The “dashpot model”.

Written in terms of the medium velocities: 

Exact for P and S waves at normal incidence.

1st order accuracy.  

ABC for Isotropic Elasticity
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Define the energy (physical)

Differentiating w.r.t. t, using the elastic equations, IBP and substituting 

the LK condition results in

D = any first derivative. C does not depend on T.

→ Stable, uniformly in time. 

Stability of the LK ABC
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Accuracy: amplitude reflection coefficients
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Extended ABC for Anisotropic Elasticity

, , , 0i ij j ij j ij j ij j yy ij j yy ij j yyT u u u u u u           

where all matrices are symmetric and at least one of 

them is positive definite.  

To obtain stability, define the non-physical “energy”

Then we can show
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Symmetric FE formulati

Find  s.t. ICs are satisfied,
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In the anisotropic case, due to the presence of inverse modes, 

amplitude RC’s (related to phase velocity) are not meaningful. 

Need to base the RC on energy or energy-rate

(related to group velocity). 

Plane waves in an anisotropic medium:

Where      is related to k through the dispersion relation,               

is the eigenvector corresponding to    , A is the amplitude, 

and     is the angle of incidence. 

No pure P and S waves, but quasi-P and quasi-S waves.  

The Energy-Rate Reflection Coefficient (ERRC)
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The Energy-Rate Reflection Coefficient (ERRC), Contd.

The elastic energy:

From this we get the energy rate:

Substituting the plane wave expression yields, after some algebra,

where P is an “indicator” unit vector that determines whether the 

wave is an inverse mode or not.

Take the integrand as the basis for the ERRC



The Energy-Rate Reflection Coefficient (ERRC), Contd.

The energy-rate density:

The 4 ERRC’s are defined by

These ERRCs depend on:

(1) the given incident angle      ,

(2) the given material properties         , 

(3) the amplitude-RCs , which are computed in the usual way 

(as if there are no inverse modes); depend on the free 

parameters in the ABC.  
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Optimization
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For a given angle of incidence calculate

Then define the cost function

The weighting function w attributes more importance to 

close-to-normal waves than to oblique waves (unless q=0)

The optimization is done using a genetic algorithm, to avoid 

a local-minimum trap.   
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Numerical Example

Orthotropic material

Only the traction and      

terms are taken in 

the ABC

Optimal ABC gives a 

maximal error which is 

smaller by ~20% than 

the LK error

See movie showing solutions   

and errors

ij



The Double Absorbing Boundary Method (DAB)

• A new approach for solving wave problems in unbounded domains. 

• Common features to local high-order Absorbing Boundary

Conditions (ABC) and Perfectly Matched Layers (PML).

• Enjoys relative advantages with respect to both.

• Idea: Require each auxiliary variable to satisfy the wave equation in the 

layer; apply the high-order ABC on both inner and outer boundaries of 

the layer. 



The DAB setup for elastodynamics



Elastic waveguide – 2D example movie

P=10



Elastic waveguide 2D example – contd.



Elastic waveguide 2D example – contd.



Layered Medium

• Extension of DAB to a layered medium, where the layer interfaces are

normal to the boundary, is very easy. It can be shown that the same

formulation applies as in the case of a homogeneous medium. 

• Jump conditions across layer interfaces for all auxiliary variables:

These conditions are enforced weakly (as natural interface conditions) 

in a FE formulation. 
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(displacement continuity)

(traction continuity) 



Layered Medium, example

t=0

t=2

t=4

t=10

 Reference solution

 Solution with DAB



Anisotropic Medium, example

t=0

t=2

t=6

t=12

 Reference solution

 Solution with DAB

11 22 12 33 13 233,    2,    0.25,    1,    0c c c c c c     



Extensions

 Energy-stable high-order DAB formulations for acoustics 

and elastodynamics

 Optimal high-order ABCs 

 Adaptive optimal ABCs

 Implement for more realistic geophysical configurations


