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Navier-Stokes equations in streamfunction formulation

Navier-Stokes Equations in Pure Streamfunction Formulati on
(Lagrange 1768)

Let u(x,t) = V1, where 1 is the streamfunction. Then
By(AY) + (V) - V(Ay) = vA%y, in Q.
The boundary and initial conditions are

0
w0 = eyt =0, (2.9 €00

Yo(x,y) = V(x,y, t)|t=0, (2,y) €.

There is no need for vorticity boundary conditions.

(*) Goodrich-Gustafson-Halasi, JCP (1990).

[1] M. Ben-Artzi, J.-P. Croisille, D. Fishelov and S. Trachtenberg, J.
Comp. Phys. 2005.
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Optimal convergence in 1D

Approximation in the one-dimensional case

Consider the problem

{ W (z) = f(z), 0<z<1 1)
¥(0) =0, ¥(1) =0, ¥'(0) =0, ¢'(1) = 0.

We lay out a uniform grid z, x1, ...,y Where x; = ih and h = 1/N.
We approximate ¢ on [z;_1, z;+1] by a polynomial of degree 4,

Q(z) =ap+ a1(x — z;) + as(x — xi)Q + az(z — xi)3 + ay(z — x;)4,
with interpolating values
1/)1'—17 wiv 1/)1'-&-17 ¢a;,i—17 1/’w,i+17

where v, ;_1, ¥, ;+1 are approximate values for ¢’ (x;_1), ¥’ (zi+1),
which will be determined by the system as well.
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Optimal convergence in 1D

Approximation in the one-dimensional case

We obtain

(a) ag = 13%

( ) 5%% - (¢z i+1 + ¢m 71— 1)

(c) as = 62¢; — (5 V)i, )
( hlz [1 (% i+1 + ww i— 1) 53@%}

(

1
a4 = 2h2 ((6 wx)z zwz)

d) as =
)
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Optimal convergence in 1D

Approximation in the one-dimensional case

The approximate value 1, ; is chosen as Q’(x;). Thus,

def 3 1
wz,i = a1 = 56171}2 - Z(wx,iJrl + wx,ifl)'

This yields the Padé approximation

1 2 1 .

gwaz,i—l + gww,i + Eww,i—i-l = 6wwia 1< < N —1. (3)
A natural approximation to ¢*)(z;) is therefore Q¥ (z;). Thus,

5401 240y = 22 ((Butba)s — 020) @
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Optimal convergence in 1D

Approximation in the one-dimensional case
An approximation for the one-dimensional biharmonic problem is
(a) 83 = flz;) 1<i<N-—1,
(b)  Owthei =650, 1<i<N-1, (5)

(C) 1;0 = 0; &N = 07 'l/;gg,o = 0, 1;95’]\/ =0.

where
1 +2 +1
Oz = ZPi— P T ZPi+1-
2 6‘? 1 3<P 690-1-1
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Optimal convergence in 1D

Consistency of the three-point biharmonic operator

Proposition
Suppose that () is a smooth function on [0, 1]. Then,

o2 (5207 — ()" (2))| < ChY[ WP, 2<i <N —2.  (6)

e At near boundary points i = 1 and i = N — 1, the fourth order
accuracy of (6) drops to first order,

oo (8297 — (W) *(2))| < Ch[Yp® ||, i=1,N~1.  (7)
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Optimal convergence in 1D

Optimal convergence of the three-point biharmonic operato r

The following error estimate holds.

Theorem
Let ¢) be the approximate solution of the biharmonic problem and let
1) be the exact solution and * its evaluation at grid points. The error
e=1 —*=54f — (9;1f)" satisfies

max |e;| < Ch*,  e|n, < Ch?, (8)

1<i<N-1

where C depends only on f.

[2] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, Navier-Stokes Egns.
in Planar Domains, 2013, Imperial College Press. J. Scientific
Computing, 2012.

B. Gustafsson,1981,S. Abarbanel, A. Ditkowski and B.
Gustafsson,2000, M. Svard and J. Nordstrom,2006
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Optimal convergence in 1D

Linear time-independent equation- constant coefficients ¢ ase
Consider an invertible problem
u® +au® +bu=f, xel0,1], 9
(with boundary conditions on «, u’) and its approximation
640 4 ad2o + bo = f*, (10)
where 620 = 2a, = 2620 — 0,b,. Then, the error ¢ = v — u* satisfies
le(t)]n < Ch?, (11)

where C' > 0 depends only on f.
[3] M. Ben-Artzi, J.-P. Croisille, D. Fishelov and R. Katzir, IMA J.
Numer. Anal, 2017.
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Optimal convergence in 1D

The linear evolution equation
Consider
ou = —0%u 4 ad*u +bu, =z €10,1], t>0. (12)
with the initial condition u(t = 0) = ug, and its approximation
by = =620 +adlo+bo,  t>0. (13)
Then the error ¢ = v — u* satisfies
le(t)[n < Ch*™¢, t€[0,T], h < ho, (14)

where C > 0 depends only on ug, T, .
[4] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, submitted.
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Optimal convergence in 1D

The linear evolution equation-sketch of the proof for Uy = —Upgre

Consider
Owu = —0pu, x € 10,1], t>0. (15)

Applying 9, * on the last equation,
0,0, u = —u. (16)
By the optimal error bound for 9, 40,u = —u we have
0:0, u* = —u* + O(h). (17)

Consider the approximation 9;b = —d*v and applying J;* on the last
equation, we have

D16, %0 = —v. (18)
Then the error ¢ = v — u* satisfies
0:6, te(t) = —e(t) + O(n"). (19)

Dalia Fishelov Afeka-Tel-Aviv Academic College of Engineer  ing An Embedded Cartesian Scheme for the Navier-Stokes Equations



Optimal convergence in 1D

The linear evolution equation-sketch of the proof

Defining ro = 6, %e

Oino(t) = —e(t) + O(h). (20)
Inner multiplication with to(t) yields
%&Im(t)lﬁ + (e(t), () = (O(h*), (1)) (21)
By the coercivity (e(t), w(t)), = (62, ), > Clwo(t)[2
drlro(t)[7 + Clro(t)[; < O(h®) + [w(t)]5. (22)

By Grownwall’s inequality |ro(t)|, < Ch*.
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Optimal convergence in 1D

The linear evolution equation-sketch of the proof

Going back to
Opro(t) = —e(t) + O(h*). (23)

Approximating 9w (t) by a finite difference scheme Sgtv, for which
Sgr(t) — w'(t) = O((At)?), and choosing At = h*/Q = he,

le(t)|n, < Ch*™C, t€[0,T)], h < ho, (24)

where C' > 0 depends only on ug, T, .
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Optimal convergence in 1D

Numerical results for time-dependent problems in
1D-Kuramuto-Sivashinsky Eqgn.

Consider the Kuramoto—Sivashinsky equation

Ou = —0%u — ?u —ud,u+ f, —-30<z <30, t>0,
u(0,t) = 0,u(0,t) =0 =u(1,t) = dyu(l,t) = 0.

We pick up the exact solution «(z, t) as in Xu and Shu (2006)

u(z,t) = c+(15/19)y/11/19(=9 tanh (k(z—ct—x0))+11 tanh® (k(z—ct—10)).
(26)

(25)

Here ¢ = —0.1,k = 0.5,/11/19 and xy = —10.

Mesh | N =241 Rate | N =481 Rate | N =961
e 3.2873(-4) | 3.99 | 2.0752(-5) | 4.00 | 1.2984(-6)
lex|n | 2.9822(-4) | 3.95 | 1.9332(-5) | 3.98 | 1.2246(-6)

Table: KS equation (25), where t = 1 and At = h2.

Dalia Fishelov Afeka-Tel-Aviv Academic College of Engineer  ing An Embedded Cartesian Scheme for the Navier-Stokes Equations



Optimal convergence in 1D

Numerical results for time-dependent problems in
1D-Kuramuto-Sivashinsky Eqn.

2 0t
- z logsy(1/N)

Figure: Third KS numerical example: Exact solution (solid line) and
computed solution (circles) for N = 121 (left) and N = 961 (center) The
convergence rate for the KS equation is documented in the right panel for u
(circles) and % (squares).
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The 2D Navier-Stokes system

The 2D NS Equation
Discretization of the biharmonic operator

Suppose the differential problem is given for x,y in Q = [0, 1] x [0, 1]
and lay out a uniform grid (z;,y;), 0 <4,5 < N.

Denoting by 2 = z — z;, § = y — y;, we approximate i (x,y) on
[i—1, @is1] X [yj-1,Y541] DY

P(z,y) = ap + a1% + asf + a3E + a Ty + asG>
a6§c3 + a75c2g] + asjﬂQ + agg]?’
a10Z* + a1 @Y + a127%9? + a132y° + araf?
a152° 4 a1621Y + a172%Y? + a1 + a1yt + azoy’®
a1 TG + az @yt
(27)
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The 2D Navier-Stokes system

Modified Stephenson’s Scheme

(¥y)ij+1
Yij+1
Yic1j+15 Vai—1,j+1 Vit1,j+1, Yrit1j+1
Yy,i—1,j+1 Yy i+1,5+1

Yig | Yaij

Vi1 (Ya)io1j Yitr1,5s (Va)it1,j
Yy,ig
U . als s
Pi-1,5-1, Yri-1,j— Dit1,j—15 Ywit1,j—
Yi-1,j—1, Y N C & Yit1j-15 Pri+lg-1
vi—1,j—1 Vi j—1 Wy it1,5—1
(¥y)ij—1

J.W. Stephenson, "Single cell discretizations of order two and four for
biharmonic problems”, J. Comp. Phys. 1984.
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The 2D Navier-Stokes system

Fourth Order Spatial Discretization for the biharmonic ope rator

12
Satiy = hQ{((swww)i,j - 553%‘,;} , 1<4,7<N-1.
., 12 ) .
Oy ¥ij = 72 (Oythy)ij —Oybij e » 1<i,j<N-—1L

The mixed term .., is approximated by
Oy tig = 302030015 — 026y y.ij — 8y0atbe iy = 030515 + O(h?)
The Laplacian of ¢ is approximated by A:, where

Antp = 2620 — 841y + 2001 — Sy,
[5] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, SISC 2008.
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The 2D Navier-Stokes system

The Convective Term

The convective term —y, Ay + 1, A1) is therefore approximated by

Cr(W) = =ty [Anthy + 3 (622070 63@) +5x6§w—6m6y@;y]
4, [Anthy, + 3 (6 ‘W % — 620, + 8,820 — 8, 0,0, ]

where ¢, and J)y are the 6-th order accurate Padé approximations to
0% and 9y1.

[6] M. Ben-Artzi, J.-P. Croisille, D. Fishelov, Navier-Stokes Equations
in Planar Domains, Imperial College Press, 2013. See also J.
Scientific Computing, 2009.

T. Hou and B. Wetton, 2009.
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The 2D Navier-Stokes system

Fourth-order spatial discretization and an IMEX scheme

(Apths )" 2—(Apgpi )™
At/2 -

~ n U A n+1/2 It n
—Crh(¥™)ij + 5[A707; 7?4 AR
Apti )" (Bt )" _
- At .
—Cr(mH2); 5 + S[AFRT + AZyp,).
Note here that only the discrete Laplacian and biharmonic operators,

which are approximated by a compact scheme, have to be inverted at
each step.
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The 2D Navier-Stokes system

Convergence of the semi-discrete scheme
Theorem: Let ¢ be the solution of
AW =~V - (A1) + vAFY,
and ¢ is the exact solution of NS equations:

DAY = =V - V(AY) + vAZp.

Define the error e(t) as e(t) = ¢ — 9. Let T > 0. Then there exist
constants C, hg > 0, depending possibly on 7', v and the exact
solution v, such that, forall 0 <¢ < T,

|65€f2 + |65 el2 < CR* . 0<h < h.

[7] M. Ben-Artzi, J.-P. Croisille, D. Fishelov, "Convergence of a
compact scheme for the pure streamfunction formulation of
Navier-Stokes equations”, SINUM, 2006
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A high order scheme for irregular domains

A High Order scheme for Irregular domains

Figure: Embedding of an elliptical domain in a Cartesian grid. Calculated nodes :
black circles. Exterior points : black squares. Edge Points: white circles.
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A high order scheme for irregular domains

Mo (0, hg)

Mi(—=hy,hy)

Mg (0, 0)

3)/3)/

5,0)

8, —hg)

Mg(—hg, —hg) 1\4?(0. f}w)

[8] M. Ben-Artzi, I. Choreyv, J.-P. Croisille and D. Fishelov, SINUM
2009.
[9] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, BGSiam, 2017.

Dalia Fishelov Afeka-Tel-Aviv Academic College of Engineer  ing An Embedded Cartesian Scheme for the Navier-Stokes Equations



A high order scheme for irregular domains

A Hermite-Lagrange interpolation problem in two dimension S

The sixth-order polynomial Py, (z,y) is of the form

19
P(z,y) =Y aili(x,y), (28)
=1
ll($7y) = 1a lg(ﬁ?,y) =, lg(l',y) = .’172,

14(55,11) = 1'3, l5(:r,y) = ‘T47 l@(fﬂ,y) = xS,

lr(z,y) =y, ls(z,y) = 9>, lo(z,y) =¢°,
Lo(z,y) =y, lu(z,y) =v°, Lalz,y) =2y,
hs(z,y) = zy(z +vy), halz,y) =zy(z—y),
his(x,y) = zy(z +y)?, Le(z,y) =ay(e —y)?, hr(z,y) = zy(z +y)?,
Ls(z,y) = ay(z —y)3, lLo(z,y) = 2> (22 + ¢?).

(29)
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A high order scheme for irregular domains

A High Order scheme for Irregular domains using 2D

polynomials
TOPOLOGICAL CODING LOGICAL CODING
15 15

19000000000000000 19©00000000000000

-15 -15

Figure: The ellipse 422 4+ 16y? < 1. Left: Exterior, boundary or internal.
Right: Exterior, boundary, edge, interior regular or irregular calculated.
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A high order scheme for irregular domains

The mesh for Irregular domains
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Figure: The embedded 30 x 30. Boundary points - red triangles. Edge points
- black open squares. Irregular calculated - dark blue circles.
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A high order scheme for irregular domains

The Exact and Calculated solution for the ellipse

EXACT PSI CALCULATED PSI

Figure: Ellipse embedded in a 60 x 60 Cartesian grid. NS for
W = (z? 4 43> — 0.25)% in the ellipse 42* + 16y* < 1 : Exact and calculated
solutions at final time ¢y = 0.5.
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A high order scheme for irregular domains

The errors for the ellipse

EXACT PSI-CALCULATED PS|  EXACT PSI,-CALCULATED PSI,

%107 x10°®

Figure: Error in ¢ and ¢, att; = 0.5, v = 0.001, 60 x 60 mesh for the ellipse
4z + 16y° < 1.
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A high order scheme for irregular domains

Rates of Convergence for the Ellipse

Nsxﬂuwin an ellipse embedded in [-1,1]  [-1,1], LilWang scheme s NS flow in an ellipse embedded in [-1,1] % [-1,1]
35 slope for by 1.50 55
-4 -6
45 %5 slope for vl 375
F s E o7
5 5
§ 55 5
I=3 =1
= =
g 6 slope for 1 1.98 g @ slope for v 4.06
6.5 85
75 a5
Logl0(h) Logl0(h)
(a) Li and Wang scheme (b) Present scheme

Figure: Regression lines for the Li-Wang test case. Left: Li and Wang
convergence rate with N = 32, 64, 128, 256. Right: Present scheme with
N = 20, 30, 40, 50, 60. Note that the accuracy with N = 20 on the right is
better than the accuracy with N = 256 on the left.
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A high order scheme for irregular domains

Consistency of the accuracy under rotation

CODING OF POINTS ‘CODING OF POINTS

08

06

04

02

02

04

06

08

(a) Coding of Points 6 =0 (b) Coding of Points § = w/16

Figure: Labeling of points in the square [—0.5,0.5] embedded in the
computational square [—1, 1] x [—1, 1] after rotation. (a) at position § = 0, (b)
6 = m/16.
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A high order scheme for irregular domains

Consistency of the accuracy under rotation

Psi error max i function of the rotation angle of the grid Psi, error max in function of the rotation angle of the grid
T T 25— u T ;- 1
-42 ]é
44 d a3t
46 =
&
N
48 il 5
& 35
5 5
>
52 S
54 A
-56
5.8 - 45 -
-ld -l8 0 /8 w4 “xld /8 0 /8
Rotation angle of the grid Rotation angle of the grid
(a) v error after rotation (b) v error after rotation

Figure: Maximum error for the Navier-Stokes equation in the square
[—0.5,0.5] x [—0.5,0.5]. Computation for /4 + k7 /360 for all k = 0, ..., 180.
Left: accuracy for ¢ (¢, z,y) at final time on the grid k. Right: accuracy for
¢ (t, z,y) at final time on the grid k.
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A high order scheme for irregular domains

A High Order scheme for Irregular domains using 1D
polynomials

Define a new coordinate system
n=(x+y)/V2, &=(y-a)/V2
Thus,y = (n+&)/v2, == (n—¢&)/V/2. By the chain rule,

digggg = %("Z)mxx:c - 4'¢xwwy + 6'¢xwyy - 4'¢xyyy + q/}yyyy)

Therefore, 2(Ynnny + Yecee) = Vazaa + 6Paayy + Yyyyy- ThUs,

Az;/J = '(/)waw:a: + Q%myy + "/)yyyy (31)
= 5 (Vnnnn + Veeee + Vawow + Yyyyy)-

A. Ditkowski, private communications
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A high order scheme for irregular domains

The discrete convective for an irregular element
The convective term is
CW) = Vi VAY = —(9y1) - 0o (D) + (959) - 0y (A0).
It may be written as
C() = =(0y¥) - (Ozacth + Ouyyth) + (029) - (Ozay? + Dyyy?).

[10] D. Fishelov, Computers and Mathematics with Applications, 2017.
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A high order scheme for irregular domains

The discrete convective for an irregular element

For the mixed third-order derivatives we have.

1
¢mm = ﬁ@ﬂu; + 3¢.L.Ly + 3wwyy + wyyy)a
1
Yeee = m(_&uu + 3Vsay — 3uyy + Yyyy)-
Therefore,
wwzy (wnnn + wffé) ¢uyy7

el

1
Vayy = ?(1/’177171 - ¢£§£) - g%cu
The convective term may be written using only pure derivatives by

V2 V3

C(z/)) = _1/’21 ( Vowot— Wmm 1/}555))"'77[’1 ( wyyzﬂ‘ (¢nnn+¢£§§))'
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A high order scheme for irregular domains

The truncation error for  9,., 92 for an irregular element
Let Q(x) be the following polynomial with interpolating data
Q(x) = ap + a1 (x — ;) + as(x — 2;)% + az(x — ;) + as(x — 25)*,

w(xwest> y])a w(iﬁu y])a w(xeasta yj)a 1/190 (l‘westa yj)a wa: (-Teash yj)
Then, the approximation v, ; ; to 0, ; has the form

¢x,i,j + Crp - wac (l'easta yj) + Coom wac (chestv yj) (32)
=Cp- qzb(xeasta yj) —Cm - w(xwesta yj) —C: wi,j~

The truncation errors for 1, and 64 for an irregular element satisfy
|(2)iy; = Outp] < CRHP| =,

1624p; 5 — 0%p| < Ch|®) || e .
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A high order scheme for irregular domains

Numerical Results- Irregular Domains-Full Navier-Stokes
Intersection of two non-concentric circles
Q= {(z,y)|(x — 0.4 +y* < 0.5} N {(z,y)|(z +0.4)* +y*> < 0.5} (33)
Y(z,y,t) = 57(0.81 — (22 + y2)?)e " in Q
We resolve numerically

DAY + VEip - VAY — A% = f(a,y,t), (z,y) €Q

Y(z,y,0) = 57(0.81 — (22 +9%)?), (z,y) €Q
(34)
Y(x,y,t) = 57(0.81 — (2 + ¢?)%)e", (,y) € 0

- . _ I2 252 e—t
Wa;f"t) _ 6*148((0 81 (3n+y Ve (z,y) € 99
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A high order scheme for irregular domains

mesh 11 x 11 Rate 21 x 21 Rate 41 x 41
e 5.8018E-09 | 3.87 | 3.9712E-10 | 3.86 | 2.7436E-11
€oo 1.1809E-08 | 4.20 | 7.25789E-10 | 3.98 | 4.6122E-11
(ex)2 | 2.1158E-08 | 4.30 | 1.0708E-09 | 3.86 | 7.3503E-11
(ex)oo | 3.7714E-08 | 4.15 | 2.1361E-09 | 3.94 | 1.3377E-10
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A high order scheme for irregular domains

Figure: Left: Approximation for ¢(z,y,t) = 2 (0.81 — (z* + y®)?)e~". Right:
The error
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A high order scheme for irregular domains

Y(@,y,t) = (1/64)e™" ((2* +y)* + " cos(y))

Our aim is to recover ¢ (z,y, t) from f(z,y,t). Thus, we resolve
numerically

QDAY + VY- VAY — A% = f(z,y,1), (2,y) €Q

U(x,y,0) = (1/64)((2* + )% + e cos(y)),  (w,y) €Q
(39)
U(x,y,t) = (1/64)e " ((2® + %) + " cos(y)), (z,y) € 99

IY(zy,t) _ A(1/64)e " ((z*+y?)?+e” cos(y)) (z,y) € OQ.

on on
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A high order scheme for irregular domains

mesh 11 x 11 Rate 21 x 21 Rate 41 x 41
e 3.0809E-08 | 4.02 | 1.8993E-09 | 4.33 | 9.4105E-11
€oo 9.6878E-08 | 4.21 | 5.2525E-09 | 4.25 | 2.7563E-10
(ex)2 | 2.8732E-07 | 4.17 | 1.5968E-08 | 4.16 | 8.9395E-10
(ex)oo | 5.6380E-07 | 4.28 | 2.8971E-08 | 3.63 | 2.3323E-09

Table 10: Compact scheme for Navier-Stokes equation with exact
solution: ¢ = (1/64)e~*((z? + y*)? + €” cos(y)) on 2. We present e
and e,, the I, errors for the streamfunction and for 9,.¢). Here

At = 0.25h% and t = 0.16.
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A high order scheme for irregular domains

".\y‘_v%,

Figure: Left: Approximation for ¢ (x,y,t) = (1/64)e ™" ((z? + %)% + €® cos(y)).
Right: The error
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Approximate biharmonic spectral problems in two dimension S

Let Q c R2. We consider the two following eigenproblems in
Problem 1: The buckling plate problem

A%p = —AAY, x €. (36)
Problem 2: The clamped plate problem
A%p =M\, x € Q. (37)

In each case, we want to calculate approximations of the (\,,, ¥, (x),
n > 1, the eigenvalues of the problem which are ordered in ascending
order.
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Approximate biharmonic spectral problems for Problem 1 in t he
square
N | A1 (V) our scheme | A\;(N) (Brenner-Monk-Sun)
10 52.316494 55.4016
20 52.343018 53.2067
40 52.344588 52.5757
80 52.344685 52.4045

The value obtained by (Bjgrstad and Tjgstheim) (1999) in the square
is

A1 = 52.344691168416544538705330750365 (38)
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Approximate biharmonic spectral problems for Problem 1 in a

square
; Conv. rate for 1st eigenvalue, bih. in [0,1]x[0.1], CB case
]
b 1
K-
5 1
g
S |
&
ol convergence slope: 4.05 1
-5 4
-6 "
-2 15 1 0.5

Log10(h)

Figure: Convergence rate for the Problem 1.
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Approximate biharmonic spectral problems for Problem 2 in t he
square
N | A (N)by (1) | A (N) (Brenner-Monk-Sun)
10 | 1295.434650 1377.1366
20 | 1294.973270 1318.5091
40 | 1294.436592 1301.3047
80 | 1294.934146 1296.5904

The value obtained by Bjgrstad and Tjgstheim (1999) in the square is

A1 = 1294.9339795917128081703026479744...
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Approximate biharmonic spectral problems for Problem 1 in a
square

Conv. rate for 1st eigenvalue, bih. in [0,1]x[0.1], CP case

!

Log10{error

convergence slope: 3.79

Log10(h)

Figure: Convergence rate for the Problem 2.
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Eigenfunctions for Problem 2 inadisc 22+ ¢ <1

Figure: Eigenfunctions for A1, A2, A3, A4 for Problem 1 in the disc. The size of
the grid is 40 x 40.

Dalia Fishelov Afeka-Tel-Aviv Academic College of Engineer  ing An Embedded Cartesian Scheme for the Navier-Stokes Equations



Eigenvalues and Eigenfunctions of Biharmonic Problems

Eigenfunctions for Problem 2 inadisc 22+ ¢ <1

i
-1
‘\\ 1
] 0
EE

Aow

-1

Figure: Eigenfunctions for As, A\¢, A7, As for Problem 1 in the disc. The size of
the grid is 40 x 40.
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Eigenfunctions for Problem 2 inadisc 22+ ¢ <1

Figure: Eigenfunctions for Ag, A10, A11, A12 for Problem 2 in the disc
z? 4 y* < 1. The size of the grid is 40 x 40.
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Eigenfunctions for Problem 2 inadisc 22 +¢2 <1
N A (V) A2 (V) A3(NV) A4(N)
10 | 0.1043056(3) | 0.4510779(3) | 0.4510779(3) | 1.2105913(3)
20 | 0.1043621(3) | 0.4519756(3) | 0.4519756(3) | 1.2159930(3)
40 | 0.1043630(3) | 0.4520028(3) | 0.4520028(3) | 1.2163867(3)
80 | 0.1043631(3) | 0.4520044(3) | 0.4520044(3) | 1.2164070(3)

Table: Disk 2 + y? < 1 embedded in the square [—1.1,1.1] x [-1,1].
Approximate value of the four smallest eigenvalues of the clampled plate
eigenproblem (37) for h = 1/10,1/20,1/40 and 1/80.
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Eigenfunctions for Problem 2 in the ellipse ~ 22/0.7% + y%/1.32 < 1

Figure: Eigenfunctions for A2, A3, A4, A5 for Problem 1 in the ellipse. The size
of the grid is 40 x 40.
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Eigenfunctions for Problem 2 in the ellipse ~ 22/0.7% + y%/1.32 < 1

Figure: Eigenfunctions for As, A7, As, Ag for Problem 2 in the ellipse. The size
of the grid is 40 x 40.
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Eigenfunctions for Problem 2 in the ellipse  2%/0.7%2 +?/1.32 < 1

Figure: Eigenfunctions for Ag, Aio, A11, A12 for Problem 2 in the ellipse
x2/0.7% + y*/1.3% < 1. The size of the grid is 40 x 40.
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Convergence of eigenvalues for Problem 2 in the ellipse

N A (V) A2 (V) A3(NV) A4(N)

10 | 0.2031296(3) | 0.4525390(3) | 0.9525603(3) | 1.2572786(3)
20 | 0.2038618(3) | 0.4531441(3) | 0.9561893(3) | 1.2995270(3)
40 | 0.2038890(3) | 0.4531487(3) | 0.9564064(3) | 1.3003232(3)
80 | 0.2038902(3) | 0.4531510(3) | 0.9564114(3) | 1.3004021(3)

Table: Ellipse z2/0.7% 4+ ¢*/1.3% < 1 embedded in the square

[—1.6,1.6] x [—1.6, 1.6]. Approximate value of the four smallest eigenvalues
of the clampled plate eigenproblem (37) for h = 1/10,1/20,1/40 and 1/80.
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Eigenvalues and Eigenfunctions of Biharmonic Problems

Thanks for your attention!
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