In memoriam of Professor Saul Abarbanel

An Embedded Cartesian Scheme for the Navier-Stokes Equations

Dalia Fishelov Afeka-Tel-Aviv Academic College of Engineering

18-20 December, 2018, Advances in Applied Mathematics, Tel Aviv University

Navier-Stokes equations in streamfunction formulation Optimal convergence in 10 The 2D Navier-Stokes system A high order scheme for irregular domains Eigenvalues and Eigenfunctions of Biharmonic Problems

Joint work with

M. Ben-Artzi, The Hebrew University
J.-P. Croisille, University of Lorraine, France

Outline

- 1. Navier-Stokes equations in streamfunction formulation
- 2. The one dimensional problem
- 3. Fourth order schemes in 2D regular domains
- 4. Fourth-order schemes for the N-S problem in irregular domains
- 5. Eigenvalues and Eigenfunctions of Biharmonic Problems

Navier-Stokes Equations in Pure Streamfunction Formulation (Lagrange 1768)

Let $\mathbf{u}(\mathbf{x},t) = \nabla^{\perp}\psi$, where ψ is the streamfunction. Then

$$\partial_t(\Delta\psi) + (\nabla^{\perp}\psi) \cdot \nabla(\Delta\psi) = \nu \Delta^2\psi, \quad \text{in } \Omega.$$

The boundary and initial conditions are

$$\psi(x, y, t) = \frac{\partial \psi}{\partial n}(x, y, t) = 0, \quad (x, y) \in \partial \Omega,$$

$$\psi_0(x,y) = \psi(x,y,t)|_{t=0}, (x,y) \in \Omega.$$

There is no need for vorticity boundary conditions.

- (*) Goodrich-Gustafson-Halasi, JCP (1990).
- [1] M. Ben-Artzi, J.-P. Croisille, D. Fishelov and S. Trachtenberg, J. Comp. Phys. 2005.

Consider the problem

$$\begin{cases} \psi^{(4)}(x) = f(x), & 0 < x < 1 \\ \psi(0) = 0, & \psi(1) = 0, & \psi'(0) = 0, & \psi'(1) = 0. \end{cases}$$
 (1)

We lay out a uniform grid $x_0, x_1, ..., x_N$ where $x_i = ih$ and h = 1/N. We approximate ψ on $[x_{i-1}, x_{i+1}]$ by a polynomial of degree 4,

$$Q(x) = a_0 + a_1(x - x_i) + a_2(x - x_i)^2 + a_3(x - x_i)^3 + a_4(x - x_i)^4,$$

with interpolating values

$$\psi_{i-1}, \psi_i, \psi_{i+1}, \psi_{x,i-1}, \psi_{x,i+1},$$

where $\psi_{x,i-1}, \psi_{x,i+1}$ are approximate values for $\psi'(x_{i-1}), \psi'(x_{i+1})$, which will be determined by the system as well.

We obtain

$$\begin{cases}
(a) & a_0 = \psi_i, \\
(b) & a_1 = \frac{3}{2}\delta_x\psi_i - \frac{1}{4}(\psi_{x,i+1} + \psi_{x,i-1}), \\
(c) & a_2 = \delta_x^2\psi_i - \frac{1}{2}(\delta_x\psi_x)_i, \\
(d) & a_3 = \frac{1}{h^2} \left[\frac{1}{4}(\psi_{x,i+1} + \psi_{x,i-1}) - \frac{1}{2}\delta_x\psi_i \right] \\
(e) & a_4 = \frac{1}{2h^2} \left((\delta_x\psi_x)_i - \delta_x^2\psi_i \right).
\end{cases}$$
(2)

The approximate value $\psi_{x,i}$ is chosen as $Q'(x_i)$. Thus,

$$\psi_{x,i} \stackrel{\text{def}}{=} a_1 = \frac{3}{2} \delta_x \psi_i - \frac{1}{4} (\psi_{x,i+1} + \psi_{x,i-1}).$$

This yields the Padé approximation

$$\frac{1}{6}\psi_{x,i-1} + \frac{2}{3}\psi_{x,i} + \frac{1}{6}\psi_{x,i+1} = \delta_x\psi_i, \quad 1 \le i \le N - 1.$$
 (3)

A natural approximation to $\psi^{(4)}(x_i)$ is therefore $Q^{(4)}(x_i)$. Thus,

$$\delta_x^4 \psi_i \stackrel{def}{=} 24a_4 = \frac{12}{h^2} \left((\delta_x \psi_x)_i - \delta_x^2 \psi_i \right).$$
 (4)

An approximation for the one-dimensional biharmonic problem is

$$\begin{cases}
(a) & \delta_x^4 \tilde{\psi}_i = f(x_i) & 1 \le i \le N - 1, \\
(b) & \sigma_x \tilde{\psi}_{x,i} = \delta_x \tilde{\psi}_i, & 1 \le i \le N - 1, \\
(c) & \tilde{\psi}_0 = 0, \ \tilde{\psi}_N = 0, \ \tilde{\psi}_{x,0} = 0, \ \tilde{\psi}_{x,N} = 0.
\end{cases}$$
(5)

where

$$\sigma_x \varphi = \frac{1}{6} \varphi_{i-1} + \frac{2}{3} \varphi_i + \frac{1}{6} \varphi_{i+1}.$$

Consistency of the three-point biharmonic operator

Proposition

Suppose that $\psi(x)$ is a smooth function on [0,1]. Then,

•

$$|\sigma_x \left(\delta_x^4 \psi_i^* - (\psi^{(4)})^*(x_i)\right)| \le Ch^4 \|\psi^{(8)}\|_{L^{\infty}}, \ 2 \le i \le N - 2.$$
 (6)

• At near boundary points i = 1 and i = N - 1, the fourth order accuracy of (6) drops to first order,

$$|\sigma_x(\delta_x^4\psi_i^* - (\psi^{(4)})^*(x_i))| \le Ch\|\psi^{(5)}\|_{L^\infty}, \quad i = 1, N - 1.$$
 (7)

Optimal convergence of the three-point biharmonic operator

The following error estimate holds.

Theorem

Let $\tilde{\psi}$ be the approximate solution of the biharmonic problem and let ψ be the exact solution and ψ^* its evaluation at grid points. The error $\mathfrak{e} = \tilde{\psi} - \psi^* = \delta_x^{-4} f^* - (\partial_x^{-4} f)^*$ satisfies

$$\max_{1 \le i \le N-1} |\mathfrak{e}_i| \le Ch^4, \quad |\mathfrak{e}|_h \le Ch^4, \tag{8}$$

where C depends only on f.

- [2] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, Navier-Stokes Eqns. in Planar Domains, 2013, Imperial College Press. J. Scientific Computing, 2012.
- B. Gustafsson,1981,S. Abarbanel, A. Ditkowski and B. Gustafsson,2000, M. Svard and J. Nordstrom,2006

Linear time-independent equation- constant coefficients case

Consider an invertible problem

$$u^{(4)} + au^{(2)} + bu = f, \quad x \in [0, 1],$$
 (9)

(with boundary conditions on u, u') and its approximation

$$\delta_x^4 \mathfrak{v} + a \tilde{\delta}_x^2 \mathfrak{v} + b \mathfrak{v} = f^*, \tag{10}$$

where $\tilde{\delta}_x^2 \mathfrak{v} = 2a_2 = 2\delta_x^2 \mathfrak{v} - \delta_x \mathfrak{v}_x$. Then, the error $\mathfrak{e} = \mathfrak{v} - u^*$ satisfies

$$|\mathfrak{e}(t)|_h \le Ch^4,\tag{11}$$

where C > 0 depends only on f.

[3] M. Ben-Artzi, J.-P. Croisille, D. Fishelov and R. Katzir, IMA J. Numer. Anal, 2017.

The linear evolution equation

Consider

$$\partial_t u = -\partial_x^4 u + a \partial_x^2 u + b u, \quad x \in [0, 1], \qquad t \ge 0.$$
 (12)

with the initial condition $u(t = 0) = u_0$, and its approximation

$$\mathfrak{v}_t = -\delta_x^4 \mathfrak{v} + a \tilde{\delta}_x^2 \mathfrak{v} + b \mathfrak{v}, \qquad t \ge 0.$$
 (13)

Then the error $e = v - u^*$ satisfies

$$|\mathfrak{e}(t)|_h \le Ch^{4-\epsilon}, \quad t \in [0, T], \ h < h_0,$$
 (14)

where C > 0 depends only on u_0, T, ϵ .

[4] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, submitted.

The linear evolution equation-sketch of the proof for $u_t = -u_{xxxx}$

Consider

$$\partial_t u = -\partial_x^4 u, \quad x \in [0, 1], \qquad t \ge 0. \tag{15}$$

Applying ∂_x^{-4} on the last equation,

$$\partial_t \partial_x^{-4} u = -u. {16}$$

By the optimal error bound for $\partial_x^{-4}\partial_t u = -u$ we have

$$\partial_t \delta_x^{-4} u^* = -u^* + O(h^4). \tag{17}$$

Consider the approximation $\partial_t \mathfrak{v} = -\delta_x^4 \mathfrak{v}$ and applying δ_x^{-4} on the last equation, we have

$$\partial_t \delta_x^{-4} \mathfrak{v} = -\mathfrak{v}. \tag{18}$$

Then the error $e = v - u^*$ satisfies

$$\partial_t \delta_x^{-4} \mathfrak{e}(t) = -\mathfrak{e}(t) + O(h^4). \tag{19}$$

The linear evolution equation-sketch of the proof

Defining $\mathfrak{w}=\delta_x^{-4}\mathfrak{e}$

$$\partial_t \mathfrak{w}(t) = -\mathfrak{e}(t) + O(h^4). \tag{20}$$

Inner multiplication with $\mathfrak{w}(t)$ yields

$$\frac{1}{2}\partial_t |\mathfrak{w}(t)|_h^2 + (\mathfrak{e}(t),\mathfrak{w}(t))_h = (O(h^4),\mathfrak{w}(t))_h. \tag{21}$$

By the coercivity $(\mathfrak{e}(t),\mathfrak{w}(t))_h=(\delta_x^4\mathfrak{w},\mathfrak{w})_h\geq C|\mathfrak{w}(t)|_h^2$

$$\partial_t |\mathfrak{w}(t)|_h^2 + C|\mathfrak{w}(t)|_h^2 \le O(h^8) + |\mathfrak{w}(t)|_h^2.$$
 (22)

By Grownwall's inequality $|\mathfrak{w}(t)|_h \leq Ch^4$.

The linear evolution equation-sketch of the proof

Going back to

$$\partial_t \mathfrak{w}(t) = -\mathfrak{e}(t) + O(h^4). \tag{23}$$

Approximating $\partial_t \mathfrak{w}(t)$ by a finite difference scheme $S_Q \mathfrak{w}$, for which $S_Q \mathfrak{w}(t) - \mathfrak{w}'(t) = O((\Delta t)^Q)$, and choosing $\Delta t = h^{4/Q} = h^\epsilon$,

$$|\mathfrak{e}(t)|_h \le Ch^{4-\epsilon}, \quad t \in [0, T], \ h < h_0,$$
 (24)

where C > 0 depends only on u_0, T, ϵ .

Numerical results for time-dependent problems in 1D-Kuramuto-Sivashinsky Eqn.

Consider the Kuramoto-Sivashinsky equation

$$\partial_t u = -\partial_x^4 u - \partial_x^2 u - u \partial_x u + f, \quad -30 < x < 30, \quad t > 0,
 u(0,t) = \partial_x u(0,t) = 0 = u(1,t) = \partial_x u(1,t) = 0.$$
(25)

We pick up the exact solution u(x,t) as in Xu and Shu (2006)

$$u(x,t) = c + (15/19)\sqrt{11/19}(-9\tanh(k(x-ct-x_0)) + 11\tanh^3(k(x-ct-x_0)).$$
(26)

Here
$$c = -0.1, k = 0.5\sqrt{11/19}$$
 and $x_0 = -10$.

Mesh	N = 241	Rate	N = 481	Rate	N = 961
$ \mathfrak{e} _h$	3.2873(-4)	3.99	2.0752(-5)	4.00	1.2984(-6)
$ \mathfrak{e}_x _h$	2.9822(-4)	3.95	1.9332(-5)	3.98	1.2246(-6)

Table: KS equation (25), where t = 1 and $\Delta t = h^2$.

Numerical results for time-dependent problems in 1D-Kuramuto-Sivashinsky Eqn.

Figure: Third KS numerical example: Exact solution (solid line) and computed solution (circles) for N=121 (left) and N=961 (center) The convergence rate for the KS equation is documented in the right panel for u (circles) and $\frac{\partial u}{\partial x}$ (squares).

The 2D NS Equation Discretization of the biharmonic operator

Suppose the differential problem is given for x, y in $\Omega = [0, 1] \times [0, 1]$ and lay out a uniform grid (x_i, y_j) , $0 \le i, j \le N$.

Denoting by $\tilde{x}=x-x_i, \ \tilde{y}=y-y_j$, we approximate $\psi(x,y)$ on $[x_{i-1},x_{i+1}]\times [y_{i-1},y_{i+1}]$ by

$$\begin{array}{lll} P(x,y) & = & a_0 + a_1 \tilde{x} + a_2 \tilde{y} + a_3 \tilde{x}^2 + a_4 \tilde{x} \tilde{y} + a_5 \tilde{y}^2 \\ & + & a_6 \tilde{x}^3 + a_7 \tilde{x}^2 \tilde{y} + a_8 \tilde{x} \tilde{y}^2 + a_9 \tilde{y}^3 \\ & + & a_{10} \tilde{x}^4 + a_{11} \tilde{x}^3 \tilde{y} + a_{12} \tilde{x}^2 \tilde{y}^2 + a_{13} \tilde{x} \tilde{y}^3 + a_{14} \tilde{y}^4 \\ & + & a_{15} \tilde{x}^5 + a_{16} \tilde{x}^4 \tilde{y} + a_{17} \tilde{x}^3 \tilde{y}^2 + a_{18} \tilde{x}^2 \tilde{y}^3 + a_{19} \tilde{x} \tilde{y}^4 + a_{20} \tilde{y}^5 \\ & + & a_{21} \tilde{x}^4 \tilde{y}^2 + a_{22} \tilde{x}^2 \tilde{y}^4. \end{array}$$

(27)

Modified Stephenson's Scheme

J.W. Stephenson, "Single cell discretizations of order two and four for biharmonic problems", J. Comp. Phys. 1984.

Fourth Order Spatial Discretization for the biharmonic operator

$$\delta_x^4 \psi_{i,j} = \frac{12}{h^2} \left\{ (\delta_x \psi_x)_{i,j} - \delta_x^2 \psi_{i,j} \right\} , \quad 1 \le i, j \le N - 1.$$

$$\delta_y^4 \psi_{i,j} = \frac{12}{h^2} \left\{ (\delta_y \psi_y)_{i,j} - \delta_y^2 \psi_{i,j} \right\} , \quad 1 \le i, j \le N - 1.$$

The mixed term ψ_{xxyy} is approximated by

$$\tilde{\delta}_{xy}^2\psi_{i,j}=3\delta_x^2\delta_y^2\psi_{i,j}-\delta_x^2\delta_y\psi_{y,i,j}-\delta_y^2\delta_x\psi_{x,i,j}=\partial_x^2\partial_y^2\psi_{i,j}+O(h^4)$$

The Laplacian of ψ is approximated by $\tilde{\Delta}_h \psi$:, where

$$\tilde{\Delta}_h \psi = 2\delta_x^2 \psi - \delta_x \psi_x + 2\delta_y^2 \psi - \delta_y \psi_y.$$

[5] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, SISC 2008.

The Convective Term

The convective term $-\psi_y\Delta_x\psi+\psi_x\Delta_y\psi$ is therefore approximated by

$$\begin{split} \tilde{C}_h(\psi) &= -\tilde{\psi}_y \big[\Delta_h \tilde{\psi}_x + \tfrac{5}{2} \big(6 \tfrac{\delta_x \psi - \tilde{\psi}_x}{h^2} - \delta_x^2 \tilde{\psi}_x \big) + \delta_x \delta_y^2 \psi - \delta_x \delta_y \tilde{\psi}_y \big] \\ &+ \tilde{\psi}_x \big[\Delta_h \tilde{\psi}_y + \tfrac{5}{2} \big(6 \tfrac{\delta_y \psi - \tilde{\psi}_y}{h^2} - \delta_y^2 \tilde{\psi}_y \big) + \delta_y \delta_x^2 \psi - \delta_y \delta_x \tilde{\psi}_x \big], \end{split}$$

where $\tilde{\psi}_x$ and $\tilde{\psi}_y$ are the 6-th order accurate Padé approximations to $\partial_x \psi$ and $\partial_y \psi$.

[6] M. Ben-Artzi, J.-P. Croisille, D. Fishelov, Navier-Stokes Equations in Planar Domains, Imperial College Press, 2013. See also J. Scientific Computing, 2009.

T. Hou and B. Wetton, 2009.

Fourth-order spatial discretization and an IMEX scheme

$$\begin{split} \frac{(\tilde{\Delta}_h \psi_{i,j})^{n+1/2} - (\tilde{\Delta}_h \psi_{i,j})^n}{\Delta t/2} &= \\ -\tilde{C}_h (\psi^n)_{i,j} + \frac{\nu}{2} [\tilde{\Delta}_h^2 \psi_{i,j}^{n+1/2} + \tilde{\Delta}_h^2 \psi_{i,j}^n] \\ \frac{(\tilde{\Delta}_h \psi_{i,j})^{n+1} - (\tilde{\Delta}_h \psi_{i,j})^n}{\Delta t} &= \\ -\tilde{C}_h (\psi^{n+1/2})_{i,j} + \frac{\nu}{2} [\tilde{\Delta}_h^2 \psi_{i,j}^{n+1} + \tilde{\Delta}_h^2 \psi_{i,j}^n]. \end{split}$$

Note here that only the discrete Laplacian and biharmonic operators, which are approximated by a compact scheme, have to be inverted at each step.

A high order scheme for irregular domains Eigenvalues and Eigenfunctions of Biharmonic Problems

Convergence of the semi-discrete scheme

Theorem: Let $\tilde{\psi}$ be the solution of

$$\partial_t \Delta_h \widetilde{\psi} = -\nabla_h^{\perp} \widetilde{\psi} \cdot (\Delta_h \nabla_h \widetilde{\psi}) + \nu \Delta_h^2 \widetilde{\psi},$$

and ψ is the exact solution of NS equations:

$$\partial_t \Delta \psi = -\nabla^{\perp} \psi \cdot \nabla(\Delta \psi) + \nu \Delta^2 \psi.$$

Define the error e(t) as $e(t) = \widetilde{\psi} - \psi$. Let T > 0. Then there exist constants $C, h_0 > 0$, depending possibly on T, ν and the exact solution ψ , such that, for all $0 \le t \le T$,

$$|\delta_x^+ e|_h^2 + |\delta_y^+ e|_h^2 \le Ch^3$$
, $0 < h \le h_0$.

[7] M. Ben-Artzi, J.-P. Croisille, D. Fishelov, "Convergence of a compact scheme for the pure streamfunction formulation of Navier-Stokes equations", SINUM, 2006

A High Order scheme for Irregular domains

Figure: Embedding of an elliptical domain in a Cartesian grid. Calculated nodes: black circles. Exterior points: black squares. Edge Points: white circles.

[8] M. Ben-Artzi, I. Chorev, J.-P. Croisille and D. Fishelov, SINUM 2009.

[9] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, BGSiam, 2017.

A Hermite-Lagrange interpolation problem in two dimensions

The sixth-order polynomial $P_{\mathbf{M_0}}(x,y)$ is of the form

$$P(x,y) = \sum_{i=1}^{19} a_i l_i(x,y),$$
(28)

$$\begin{cases} l_{1}(x,y) = 1, & l_{2}(x,y) = x, & l_{3}(x,y) = x^{2}, \\ l_{4}(x,y) = x^{3}, & l_{5}(x,y) = x^{4}, & l_{6}(x,y) = x^{5}, \\ l_{7}(x,y) = y, & l_{8}(x,y) = y^{2}, & l_{9}(x,y) = y^{3}, \\ l_{10}(x,y) = y^{4}, & l_{11}(x,y) = y^{5}, & l_{12}(x,y) = xy, \\ l_{13}(x,y) = xy(x+y), & l_{14}(x,y) = xy(x-y), \\ l_{15}(x,y) = xy(x+y)^{2}, & l_{16}(x,y) = xy(x-y)^{2}, & l_{17}(x,y) = xy(x+y)^{3}, \\ l_{18}(x,y) = xy(x-y)^{3}, & l_{19}(x,y) = x^{2}y^{2}(x^{2}+y^{2}). \end{cases}$$

$$(29)$$

A High Order scheme for Irregular domains using 2D polynomials

Figure: The ellipse $4x^2 + 16y^2 \le 1$. Left: Exterior, boundary or internal. Right: Exterior, boundary, edge, interior regular or irregular calculated.

The mesh for Irregular domains

Figure: The embedded 30×30 . Boundary points - red triangles. Edge points - black open squares. Irregular calculated - dark blue circles.

The Exact and Calculated solution for the ellipse

Figure: Ellipse embedded in a 60×60 Cartesian grid. NS for $\psi = (x^2 + 4y^2 - 0.25)^2$ in the ellipse $4x^2 + 16y^2 \le 1$: Exact and calculated solutions at final time $t_f = 0.5$.

The errors for the ellipse

Figure: Error in ψ and ψ_y at $t_f=0.5, \nu=0.001, 60\times 60$ mesh for the ellipse $4x^2+16y^2\leq 1$.

Rates of Convergence for the Ellipse

(a) Li and Wang scheme

(b) Present scheme

Figure: Regression lines for the Li-Wang test case. Left: Li and Wang convergence rate with N=32,64,128,256. Right: Present scheme with N=20,30,40,50,60. Note that the accuracy with N=20 on the right is better than the accuracy with N=256 on the left.

Consistency of the accuracy under rotation

(b) Coding of Points $\theta=\pi/16$

Figure: Labeling of points in the square [-0.5,0.5] embedded in the computational square $[-1,1]\times[-1,1]$ after rotation. (a) at position $\theta=0$, (b) $\theta=\pi/16$.

Consistency of the accuracy under rotation

(b) ψ_x error after rotation

Figure: Maximum error for the Navier-Stokes equation in the square $[-0.5,0.5] \times [-0.5,0.5]$. Computation for $\pi/4+k\pi/360$ for all k=0,...,180. Left: accuracy for $\psi(t,x,y)$ at final time on the grid k. Right: accuracy for $\psi_x(t,x,y)$ at final time on the grid k.

A High Order scheme for Irregular domains using 1D polynomials

Define a new coordinate system

$$\eta = (x+y)/\sqrt{2}, \quad \xi = (y-x)/\sqrt{2}.$$

Thus, $y=(\eta+\xi)/\sqrt{2}, \quad x=(\eta-\xi)/\sqrt{2}.$ By the chain rule,

$$\psi_{\eta\eta\eta\eta} = \frac{1}{4} (\psi_{xxxx} + 4\psi_{xxxy} + 6\psi_{xxyy} + 4\psi_{xyyy} + \psi_{yyyy})
\psi_{\xi\xi\xi\xi} = \frac{1}{4} (\psi_{xxxx} - 4\psi_{xxxy} + 6\psi_{xxyy} - 4\psi_{xyyy} + \psi_{yyyy}).$$
(30)

Therefore, $2(\psi_{\eta\eta\eta\eta} + \psi_{\xi\xi\xi\xi}) = \psi_{xxxx} + 6\psi_{xxyy} + \psi_{yyyy}$. Thus,

$$\Delta^2 \psi = \psi_{xxxx} + 2\psi_{xxyy} + \psi_{yyyy}$$

$$= \frac{2}{3} (\psi_{\eta\eta\eta\eta} + \psi_{\xi\xi\xi\xi} + \psi_{xxxx} + \psi_{yyyy}).$$
(31)

A. Ditkowski, private communications

The discrete convective for an irregular element

The convective term is

$$C(\psi) = \nabla^{\perp} \psi \cdot \nabla \Delta \psi = -(\partial_y \psi) \cdot \partial_x (\Delta \psi) + (\partial_x \psi) \cdot \partial_y (\Delta \psi).$$

It may be written as

$$C(\psi) = -(\partial_y \psi) \cdot (\partial_{xxx} \psi + \partial_{xyy} \psi) + (\partial_x \psi) \cdot (\partial_{xxy} \psi + \partial_{yyy} \psi).$$

[10] D. Fishelov, Computers and Mathematics with Applications, 2017.

The discrete convective for an irregular element

For the mixed third-order derivatives we have.

$$\psi_{\eta\eta\eta} = \frac{1}{2\sqrt{2}} (\psi_{xxx} + 3\psi_{xxy} + 3\psi_{xyy} + \psi_{yyy}),$$

$$\psi_{\xi\xi\xi} = \frac{1}{2\sqrt{2}} (-\psi_{xxx} + 3\psi_{xxy} - 3\psi_{xyy} + \psi_{yyy}).$$

Therefore,

$$\begin{split} \psi_{xxy} &= \frac{\sqrt{2}}{3}(\psi_{\eta\eta\eta} + \psi_{\xi\xi\xi}) - \frac{1}{3}\psi_{yyy}, \\ \psi_{xyy} &= \frac{\sqrt{2}}{3}(\psi_{\eta\eta\eta} - \psi_{\xi\xi\xi}) - \frac{1}{3}\psi_{xxx}. \end{split}$$

The convective term may be written using only pure derivatives by

$$C(\psi) = -\psi_y \cdot \left(\frac{2}{3}\psi_{xxx} + \frac{\sqrt{2}}{3}(\psi_{\eta\eta\eta} - \psi_{\xi\xi\xi})\right) + \psi_x \cdot \left(\frac{2}{3}\psi_{yyy} + \frac{\sqrt{2}}{3}(\psi_{\eta\eta\eta} + \psi_{\xi\xi\xi})\right).$$

The truncation error for ∂_x, ∂_x^4 for an irregular element

Let Q(x) be the following polynomial with interpolating data

$$Q(x) = a_0 + a_1(x - x_i) + a_2(x - x_i)^2 + a_3(x - x_i)^3 + a_4(x - x_i)^4,$$

$$\psi(x_{west}, y_j), \psi(x_i, y_j), \psi(x_{east}, y_j), \psi_x(x_{west}, y_j), \psi_x(x_{east}, y_j).$$

Then, the approximation $\psi_{x,i,j}$ to $\partial_x \psi_{i,j}$ has the form

$$\psi_{x,i,j} + c_{x,p} \cdot \psi_x(x_{east}, y_j) + c_{x,m} \cdot \psi_x(x_{west}, y_j)$$

$$= c_p \cdot \psi(x_{east}, y_j) - c_m \cdot \psi(x_{west}, y_j) - c \cdot \psi_{i,j}.$$
(32)

The truncation errors for ψ_x and $\bar{\delta}_x^4$ for an irregular element satisfy

$$|(\psi_x)_{i,j} - \partial_x \psi| \le Ch^4 \|\psi^{(5)}\|_{L^{\infty}},$$
$$|\bar{\delta}_x^4 \psi_{i,j} - \partial_x^4 \psi| \le Ch \|\psi^{(5)}\|_{L^{\infty}}.$$

Numerical Results- Irregular Domains-Full Navier-Stokes

Intersection of two non-concentric circles

$$\Omega=\{(x,y)|(x-0.4)^2+y^2<0.5\}\cap\{(x,y)|(x+0.4)^2+y^2<0.5\} \ \mbox{(33)}$$

$$\psi(x,y,t)=\tfrac{1}{64}(0.81-(x^2+y^2)^2)e^{-t} \ \mbox{in }\Omega$$

We resolve numerically

$$\begin{cases}
\partial_{t}\Delta\psi + \nabla^{\perp}\psi \cdot \nabla\Delta\psi - \Delta^{2}\psi = f(x,y,t), & (x,y) \in \Omega \\
\psi(x,y,0) = \frac{1}{64}(0.81 - (x^{2} + y^{2})^{2}), & (x,y) \in \Omega \\
\psi(x,y,t) = \frac{1}{64}(0.81 - (x^{2} + y^{2})^{2})e^{-t}, & (x,y) \in \partial\Omega \\
\frac{\partial\psi(x,y,t)}{\partial n} = \frac{1}{64}\frac{\partial((0.81 - (x^{2} + y^{2})^{2})e^{-t}}{\partial n}, & (x,y) \in \partial\Omega.
\end{cases}$$

ſ	mesh	11 × 11	Rate	21×21	Rate	41×41
	e_2	5.8018E-09	3.87	3.9712E-10	3.86	2.7436E-11
	e_{∞}	1.1809E-08	4.20	7.25789E-10	3.98	4.6122E-11
İ	$(e_x)_2$	2.1158E-08	4.30	1.0708E-09	3.86	7.3503E-11
İ	$(e_x)_{\infty}$	3.7714E-08	4.15	2.1361E-09	3.94	1.3377E-10

Figure: Left: Approximation for $\psi(x,y,t)=\frac{1}{64}(0.81-(x^2+y^2)^2)e^{-t}.$ Right: The error

$$\psi(x, y, t) = (1/64)e^{-t}((x^2 + y^2)^2 + e^x \cos(y))$$

Our aim is to recover $\psi(x,y,t)$ from f(x,y,t). Thus, we resolve numerically

$$\begin{cases} \partial_{t}\Delta\psi + \nabla^{\perp}\psi \cdot \nabla\Delta\psi - \Delta^{2}\psi = f(x,y,t), & (x,y) \in \Omega \\ \psi(x,y,0) = (1/64)((x^{2} + y^{2})^{2} + e^{x}\cos(y)), & (x,y) \in \Omega \\ \psi(x,y,t) = (1/64)e^{-t}((x^{2} + y^{2})^{2} + e^{x}\cos(y)), & (x,y) \in \partial\Omega \end{cases}$$

$$\frac{\partial\psi(x,y,t)}{\partial n} = \frac{\partial(1/64)e^{-t}((x^{2} + y^{2})^{2} + e^{x}\cos(y))}{\partial n}, & (x,y) \in \partial\Omega.$$
(35)

mesh	11 × 11	Rate	21×21	Rate	41×41
e_2	3.0809E-08	4.02	1.8993E-09	4.33	9.4105E-11
e_{∞}	9.6878E-08	4.21	5.2525E-09	4.25	2.7563E-10
$(e_x)_2$	2.8732E-07	4.17	1.5968E-08	4.16	8.9395E-10
$(e_x)_{\infty}$	5.6380E-07	4.28	2.8971E-08	3.63	2.3323E-09

Table 10: Compact scheme for Navier-Stokes equation with exact solution: $\psi=(1/64)e^{-t}((x^2+y^2)^2+e^x\cos(y))$ on Ω . We present e and e_x , the l_2 errors for the streamfunction and for $\partial_x\psi$. Here $\Delta t=0.25h^2$ and t=0.16.

Figure: Left: Approximation for $\psi(x,y,t)=(1/64)e^{-t}((x^2+y^2)^2+e^x\cos(y))$. Right: The error

Approximate biharmonic spectral problems in two dimensions

Let $\Omega \subset \mathbb{R}^2$. We consider the two following eigenproblems in Ω Problem 1: The buckling plate problem

$$\Delta^2 \psi = -\lambda \Delta \psi, \ \mathbf{x} \in \Omega.$$
 (36)

Problem 2: The clamped plate problem

$$\Delta^2 \psi = \lambda \psi, \ \mathbf{x} \in \Omega. \tag{37}$$

In each case, we want to calculate approximations of the $(\lambda_n, \psi_n(\mathbf{x}), n \geq 1$, the eigenvalues of the problem which are ordered in ascending order.

Approximate biharmonic spectral problems for Problem 1 in the square

N	$\lambda_1(N)$ our scheme	$\lambda_1(N)$ (Brenner-Monk-Sun)
10	52.316494	55.4016
20	52.343018	53.2067
40	52.344588	52.5757
80	52.344685	52.4045

The value obtained by (Bjørstad and Tjøstheim) (1999) in the square is

$$\lambda_1 = 52.344691168416544538705330750365 \tag{38}$$

Approximate biharmonic spectral problems for Problem 1 in a square

Figure: Convergence rate for the Problem 1.

Approximate biharmonic spectral problems for Problem 2 in the square

N	$\lambda_1(N)$ by (1)	$\lambda_1(N)$ (Brenner-Monk-Sun)
10	1295.434650	1377.1366
20	1294.973270	1318.5091
40	1294.436592	1301.3047
80	1294.934146	1296.5904

The value obtained by Bjørstad and Tjøstheim (1999) in the square is

 $\lambda_1 = 1294.9339795917128081703026479744...$

Approximate biharmonic spectral problems for Problem 1 in a square

Figure: Convergence rate for the Problem 2.

Figure: Eigenfunctions for λ_1 , λ_2 , λ_3 , λ_4 for Problem 1 in the disc. The size of the grid is 40×40 .

Figure: Eigenfunctions for λ_5 , λ_6 , λ_7 , λ_8 for Problem 1 in the disc. The size of the grid is 40×40 .

Figure: Eigenfunctions for λ_9 , λ_{10} , λ_{11} , λ_{12} for Problem 2 in the disc $x^2+y^2 < 1$. The size of the grid is 40×40 .

N	$\lambda_1(N)$	$\lambda_2(N)$	$\lambda_3(N)$	$\lambda_4(N)$
10	0.1043056(3)	0.4510779(3)	0.4510779(3)	1.2105913(3)
20	0.1043621(3)	0.4519756(3)	0.4519756(3)	1.2159930(3)
40	0.1043630(3)	0.4520028(3)	0.4520028(3)	1.2163867(3)
80	0.1043631(3)	0.4520044(3)	0.4520044(3)	1.2164070(3)

Table: Disk $x^2+y^2 \le 1$ embedded in the square $[-1.1,1.1] \times [-1,1]$. Approximate value of the four smallest eigenvalues of the clampled plate eigenproblem (37) for h=1/10,1/20,1/40 and 1/80.

Eigenfunctions for Problem 2 in the ellipse $x^2/0.7^2 + y^2/1.3^2 \le 1$

Figure: Eigenfunctions for λ_2 , λ_3 , λ_4 , λ_5 for Problem 1 in the ellipse. The size of the grid is 40×40 .

Eigenfunctions for Problem 2 in the ellipse $x^2/0.7^2 + y^2/1.3^2 \le 1$

Figure: Eigenfunctions for λ_6 , λ_7 , λ_8 , λ_9 for Problem 2 in the ellipse. The size of the grid is 40×40 .

Eigenfunctions for Problem 2 in the ellipse $x^2/0.7^2 + y^2/1.3^2 \le 1$

Figure: Eigenfunctions for λ_9 , λ_{10} , λ_{11} , λ_{12} for Problem 2 in the ellipse $x^2/0.7^2 + y^2/1.3^2 \le 1$. The size of the grid is 40×40 .

Convergence of eigenvalues for Problem 2 in the ellipse

N	$\lambda_1(N)$	$\lambda_2(N)$	$\lambda_3(N)$	$\lambda_4(N)$
10	0.2031296(3)	0.4525390(3)	0.9525603(3)	1.2572786(3)
20	0.2038618(3)	0.4531441(3)	0.9561893(3)	1.2995270(3)
40	0.2038890(3)	0.4531487(3)	0.9564064(3)	1.3003232(3)
80	0.2038902(3)	0.4531510(3)	0.9564114(3)	1.3004021(3)

Table: Ellipse $x^2/0.7^2+y^2/1.3^2\leq 1$ embedded in the square $[-1.6,1.6]\times[-1.6,1.6]$. Approximate value of the four smallest eigenvalues of the clampled plate eigenproblem (37) for h=1/10,1/20,1/40 and 1/80.

Navier-Stokes equations in streamfunction formulation
Optimal convergence in 1D
The 2D Navier-Stokes system
A high order scheme for irregular domains
Eigenvalues and Eigenfunctions of Biharmonic Problems

Thanks for your attention!