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Navier-Stokes Equations in Pure Streamfunction Formulati on
(Lagrange 1768)

Let u(x, t) = ∇⊥ψ, where ψ is the streamfunction. Then

∂t(∆ψ) + (∇⊥ψ) · ∇(∆ψ) = ν∆2ψ, in Ω.

The boundary and initial conditions are

ψ(x, y, t) =
∂ψ

∂n
(x, y, t) = 0, (x, y) ∈ ∂Ω,

ψ0(x, y) = ψ(x, y, t)|t=0, (x, y) ∈ Ω.

There is no need for vorticity boundary conditions.
(*) Goodrich-Gustafson-Halasi, JCP (1990).
[1] M. Ben-Artzi, J.-P. Croisille, D. Fishelov and S. Trachtenberg, J.
Comp. Phys. 2005.
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Approximation in the one-dimensional case

Consider the problem

{
ψ(4)(x) = f(x), 0 < x < 1

ψ(0) = 0, ψ(1) = 0, ψ′(0) = 0, ψ′(1) = 0.
(1)

We lay out a uniform grid x0, x1, ..., xN where xi = ih and h = 1/N .
We approximate ψ on [xi−1, xi+1] by a polynomial of degree 4,

Q(x) = a0 + a1(x− xi) + a2(x− xi)
2 + a3(x− xi)

3 + a4(x− xi)
4,

with interpolating values

ψi−1, ψi, ψi+1, ψx,i−1, ψx,i+1,

where ψx,i−1, ψx,i+1 are approximate values for ψ′(xi−1), ψ
′(xi+1),

which will be determined by the system as well.
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Approximation in the one-dimensional case

We obtain





(a) a0 = ψi,

(b) a1 =
3

2
δxψi −

1

4
(ψx,i+1 + ψx,i−1),

(c) a2 = δ2xψi −
1

2
(δxψx)i,

(d) a3 =
1

h2

[1

4
(ψx,i+1 + ψx,i−1) −

1

2
δxψi

]

(e) a4 =
1

2h2

(
(δxψx)i − δ2xψi

)
.

(2)
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Approximation in the one-dimensional case

The approximate value ψx,i is chosen as Q′(xi). Thus,

ψx,i
def
= a1 =

3

2
δxψi −

1

4
(ψx,i+1 + ψx,i−1).

This yields the Padé approximation

1

6
ψx,i−1 +

2

3
ψx,i +

1

6
ψx,i+1 = δxψi, 1 ≤ i ≤ N − 1. (3)

A natural approximation to ψ(4)(xi) is therefore Q(4)(xi). Thus,

δ4xψi
def
= 24a4 =

12

h2

(
(δxψx)i − δ2xψi

)
. (4)
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Approximation in the one-dimensional case

An approximation for the one-dimensional biharmonic problem is




(a) δ4xψ̃i = f(xi) 1 ≤ i ≤ N − 1,

(b) σxψ̃x,i = δxψ̃i, 1 ≤ i ≤ N − 1,

(c) ψ̃0 = 0, ψ̃N = 0, ψ̃x,0 = 0, ψ̃x,N = 0.

(5)

where
σxϕ =

1

6
ϕi−1 +

2

3
ϕi +

1

6
ϕi+1.

Dalia Fishelov Afeka-Tel-Aviv Academic College of Engineer ing An Embedded Cartesian Scheme for the Navier-Stokes Equations



Navier-Stokes equations in streamfunction formulation
Optimal convergence in 1D

The 2D Navier-Stokes system
A high order scheme for irregular domains

Eigenvalues and Eigenfunctions of Biharmonic Problems

Consistency of the three-point biharmonic operator

Proposition
Suppose that ψ(x) is a smooth function on [0, 1]. Then,
•

|σx

(
δ4xψ

∗
i − (ψ(4))∗(xi)

)
| ≤ Ch4‖ψ(8)‖L∞ , 2 ≤ i ≤ N − 2. (6)

• At near boundary points i = 1 and i = N − 1, the fourth order
accuracy of (6) drops to first order,

|σx

(
δ4xψ

∗
i − (ψ(4))∗(xi)

)
| ≤ Ch‖ψ(5)‖L∞ , i = 1, N − 1. (7)
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Optimal convergence of the three-point biharmonic operato r

The following error estimate holds.

Theorem
Let ψ̃ be the approximate solution of the biharmonic problem and let
ψ be the exact solution and ψ∗ its evaluation at grid points. The error
e = ψ̃ − ψ∗ = δ−4

x f∗ − (∂−4
x f)∗ satisfies

max
1≤i≤N−1

|ei| ≤ Ch4, |e|h ≤ Ch4, (8)

where C depends only on f .

[2] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, Navier-Stokes Eqns.
in Planar Domains, 2013, Imperial College Press. J. Scientific
Computing, 2012.
B. Gustafsson,1981,S. Abarbanel, A. Ditkowski and B.
Gustafsson,2000, M. Svard and J. Nordstrom,2006
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Linear time-independent equation- constant coefficients c ase

Consider an invertible problem

u(4) + au(2) + bu = f, x ∈ [0, 1], (9)

(with boundary conditions on u, u′) and its approximation

δ4xv + aδ̃2xv + bv = f∗, (10)

where δ̃2xv = 2a2 = 2δ2xv − δxvx. Then, the error e = v − u∗ satisfies

|e(t)|h ≤ Ch4, (11)

where C > 0 depends only on f .
[3] M. Ben-Artzi, J.-P. Croisille, D. Fishelov and R. Katzir, IMA J.
Numer. Anal, 2017.
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The linear evolution equation

Consider

∂tu = −∂4
xu+ a∂2

xu+ bu, x ∈ [0, 1], t ≥ 0. (12)

with the initial condition u(t = 0) = u0, and its approximation

vt = −δ4xv + aδ̃2xv + bv, t ≥ 0. (13)

Then the error e = v − u∗ satisfies

|e(t)|h ≤ Ch4−ǫ, t ∈ [0, T ], h < h0, (14)

where C > 0 depends only on u0, T, ǫ.

[4] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, submitted.
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The linear evolution equation-sketch of the proof for ut = −uxxxx

Consider
∂tu = −∂4

xu, x ∈ [0, 1], t ≥ 0. (15)

Applying ∂−4
x on the last equation,

∂t∂
−4
x u = −u. (16)

By the optimal error bound for ∂−4
x ∂tu = −u we have

∂tδ
−4
x u∗ = −u∗ +O(h4). (17)

Consider the approximation ∂tv = −δ4xv and applying δ−4
x on the last

equation, we have
∂tδ

−4
x v = −v. (18)

Then the error e = v − u∗ satisfies

∂tδ
−4
x e(t) = −e(t) +O(h4). (19)
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The linear evolution equation-sketch of the proof

Defining w = δ−4
x e

∂tw(t) = −e(t) +O(h4). (20)

Inner multiplication with w(t) yields

1

2
∂t|w(t)|2h + (e(t),w(t))h = (O(h4),w(t))h. (21)

By the coercivity (e(t),w(t))h = (δ4xw,w)h ≥ C|w(t)|2h

∂t|w(t)|2h + C|w(t)|2h ≤ O(h8) + |w(t)|2h. (22)

By Grownwall’s inequality |w(t)|h ≤ Ch4.
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The linear evolution equation-sketch of the proof

Going back to
∂tw(t) = −e(t) +O(h4). (23)

Approximating ∂tw(t) by a finite difference scheme SQw, for which
SQw(t) − w

′(t) = O((∆t)Q), and choosing ∆t = h4/Q = hǫ,

|e(t)|h ≤ Ch4−ǫ, t ∈ [0, T ], h < h0, (24)

where C > 0 depends only on u0, T, ǫ.
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Numerical results for time-dependent problems in
1D-Kuramuto-Sivashinsky Eqn.

Consider the Kuramoto–Sivashinsky equation

∂tu = −∂4
xu− ∂2

xu− u∂xu+ f, −30 < x < 30, t > 0,

u(0, t) = ∂xu(0, t) = 0 = u(1, t) = ∂xu(1, t) = 0.
(25)

We pick up the exact solution u(x, t) as in Xu and Shu (2006)

u(x, t) = c+(15/19)
√

11/19(−9 tanh(k(x−ct−x0))+11 tanh3(k(x−ct−x0)).

(26)
Here c = −0.1, k = 0.5

√
11/19 and x0 = −10.

Mesh N = 241 Rate N = 481 Rate N = 961

|e|h 3.2873(-4) 3.99 2.0752(-5) 4.00 1.2984(-6)
|ex|h 2.9822(-4) 3.95 1.9332(-5) 3.98 1.2246(-6)

Table: KS equation (25), where t = 1 and ∆t = h2.
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Numerical results for time-dependent problems in
1D-Kuramuto-Sivashinsky Eqn.
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Figure: Third KS numerical example: Exact solution (solid line) and
computed solution (circles) for N = 121 (left) and N = 961 (center) The
convergence rate for the KS equation is documented in the right panel for u

(circles) and ∂u
∂x

(squares).
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The 2D NS Equation
Discretization of the biharmonic operator

Suppose the differential problem is given for x, y in Ω = [0, 1] × [0, 1]

and lay out a uniform grid (xi, yj), 0 ≤ i, j ≤ N .
Denoting by x̃ = x− xi, ỹ = y − yj , we approximate ψ(x, y) on
[xi−1, xi+1] × [yj−1, yj+1] by

P (x, y) = a0 + a1x̃+ a2ỹ + a3x̃
2 + a4x̃ỹ + a5ỹ

2

+ a6x̃
3 + a7x̃

2ỹ + a8x̃ỹ
2 + a9ỹ

3

+ a10x̃
4 + a11x̃

3ỹ + a12x̃
2ỹ2 + a13x̃ỹ

3 + a14ỹ
4

+ a15x̃
5 + a16x̃

4ỹ + a17x̃
3ỹ2 + a18x̃

2ỹ3 + a19x̃ỹ
4 + a20ỹ

5

+ a21x̃
4ỹ2 + a22x̃

2ỹ4.
(27)
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Modified Stephenson’s Scheme

g g g

g g

g

g

g

g

g

ψi−1,j−1, ψx,i−1,j−1

ψy,i−1,j−1 ψi,j−1

(ψy)i,j−1

ψi+1,j−1, ψx,i+1,j−1

ψy,i+1,j−1

ψi−1,j , (ψx)i−1,j ψi+1,j , (ψx)i+1,j

ψi−1,j+1, ψx,i−1,j+1

ψy,i−1,j+1

ψi,j+1

(ψy)i,j+1

ψi+1,j+1, ψx,i+1,j+1

ψy,i+1,j+1

ψi,j ψx,i,j

ψy,i,j

J.W. Stephenson, ”Single cell discretizations of order two and four for
biharmonic problems”, J. Comp. Phys. 1984.
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Fourth Order Spatial Discretization for the biharmonic ope rator

δ4xψi,j =
12

h2

{
(δxψx)i,j − δ2xψi,j

}
, 1 ≤ i, j ≤ N − 1.

δ4yψi,j =
12

h2

{
(δyψy)i,j − δ2yψi,j

}
, 1 ≤ i, j ≤ N − 1.

The mixed term ψxxyy is approximated by

δ̃2xyψi,j = 3δ2xδ
2
yψi,j − δ2xδyψy,i,j − δ2yδxψx,i,j = ∂2

x∂
2
yψi,j +O(h4)

The Laplacian of ψ is approximated by ∆̃hψ:, where

∆̃hψ = 2δ2xψ − δxψx + 2δ2yψ − δyψy.

[5] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, SISC 2008.
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The Convective Term

The convective term −ψy∆xψ + ψx∆yψ is therefore approximated by

C̃h(ψ) = −ψ̃y

[
∆hψ̃x + 5

2

(
6 δxψ−ψ̃x

h2 − δ2xψ̃x

)
+ δxδ

2
yψ − δxδyψ̃y

]

+ψ̃x

[
∆hψ̃y + 5

2

(
6

δyψ−ψ̃y

h2 − δ2yψ̃y

)
+ δyδ

2
xψ − δyδxψ̃x

]
,

where ψ̃x and ψ̃y are the 6-th order accurate Padé approximations to
∂xψ and ∂yψ.
[6] M. Ben-Artzi, J.-P. Croisille, D. Fishelov, Navier-Stokes Equations
in Planar Domains, Imperial College Press, 2013. See also J.
Scientific Computing, 2009.
T. Hou and B. Wetton, 2009.
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Fourth-order spatial discretization and an IMEX scheme

(∆̃hψi,j)
n+1/2−(∆̃hψi,j)

n

∆t/2 =

−C̃h(ψn)i,j + ν
2 [∆̃2

hψ
n+1/2
i,j + ∆̃2

hψ
n
i,j ]

(∆̃hψi,j)
n+1−(∆̃hψi,j)

n

∆t =

−C̃h(ψn+1/2)i,j + ν
2 [∆̃2

hψ
n+1
i,j + ∆̃2

hψ
n
i,j ].

Note here that only the discrete Laplacian and biharmonic operators,
which are approximated by a compact scheme, have to be inverted at
each step.
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Convergence of the semi-discrete scheme

Theorem: Let ψ̃ be the solution of

∂t∆hψ̃ = −∇⊥
h ψ̃ · (∆h∇hψ̃) + ν∆2

hψ̃,

and ψ is the exact solution of NS equations:

∂t∆ψ = −∇⊥ψ · ∇(∆ψ) + ν∆2ψ.

Define the error e(t) as e(t) = ψ̃ − ψ. Let T > 0. Then there exist
constants C, h0 > 0, depending possibly on T, ν and the exact
solution ψ, such that, for all 0 ≤ t ≤ T ,

|δ+x e|2h + |δ+y e|2h ≤ Ch3 , 0 < h ≤ h0.

[7] M. Ben-Artzi, J.-P. Croisille, D. Fishelov, ”Convergence of a
compact scheme for the pure streamfunction formulation of
Navier-Stokes equations”, SINUM, 2006
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A High Order scheme for Irregular domains

M0(ih, jh)

Figure: Embedding of an elliptical domain in a Cartesian grid. Calculated nodes :
black circles. Exterior points : black squares. Edge Points: white circles.
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M1(−h1, h1)

M2(0, h2)

M3(h3, h3)

M4(−h4, 0) M5(h5, 0)

M6(−h6, −h6) M7(0, −h7)

M8(h8, −h8)

M0(0, 0)

[8] M. Ben-Artzi, I. Chorev, J.-P. Croisille and D. Fishelov, SINUM
2009.
[9] M. Ben-Artzi, J.-P. Croisille and D. Fishelov, BGSiam, 2017.
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A Hermite-Lagrange interpolation problem in two dimension s

The sixth-order polynomial PM0
(x, y) is of the form

P (x, y) =
19∑

i=1

aili(x, y), (28)





l1(x, y) = 1, l2(x, y) = x, l3(x, y) = x2,

l4(x, y) = x3, l5(x, y) = x4, l6(x, y) = x5,

l7(x, y) = y, l8(x, y) = y2, l9(x, y) = y3,

l10(x, y) = y4, l11(x, y) = y5, l12(x, y) = xy,

l13(x, y) = xy(x+ y), l14(x, y) = xy(x− y),

l15(x, y) = xy(x+ y)2, l16(x, y) = xy(x− y)2, l17(x, y) = xy(x+ y)3,

l18(x, y) = xy(x− y)3, l19(x, y) = x2y2(x2 + y2).
(29)
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A High Order scheme for Irregular domains using 2D
polynomials
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Figure: The ellipse 4x2 + 16y2
≤ 1. Left: Exterior, boundary or internal.

Right: Exterior, boundary, edge, interior regular or irregular calculated.

Dalia Fishelov Afeka-Tel-Aviv Academic College of Engineer ing An Embedded Cartesian Scheme for the Navier-Stokes Equations



Navier-Stokes equations in streamfunction formulation
Optimal convergence in 1D

The 2D Navier-Stokes system
A high order scheme for irregular domains

Eigenvalues and Eigenfunctions of Biharmonic Problems

The mesh for Irregular domains

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0

0.2

0.4

LOGICAL CODING

Figure: The embedded 30 × 30. Boundary points - red triangles. Edge points
- black open squares. Irregular calculated - dark blue circles.
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The Exact and Calculated solution for the ellipse
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Figure: Ellipse embedded in a 60 × 60 Cartesian grid. NS for
ψ = (x2 + 4y2

− 0.25)2 in the ellipse 4x2 + 16y2
≤ 1 : Exact and calculated

solutions at final time tf = 0.5.
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The errors for the ellipse
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Figure: Error in ψ and ψy at tf = 0.5, ν = 0.001, 60 × 60 mesh for the ellipse
4x2 + 16y2

≤ 1.
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Rates of Convergence for the Ellipse

(a) Li and Wang scheme (b) Present scheme

Figure: Regression lines for the Li-Wang test case. Left: Li and Wang
convergence rate with N = 32, 64, 128, 256. Right: Present scheme with
N = 20, 30, 40, 50, 60. Note that the accuracy with N = 20 on the right is
better than the accuracy with N = 256 on the left.
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Consistency of the accuracy under rotation

(a) Coding of Points θ = 0 (b) Coding of Points θ = π/16

Figure: Labeling of points in the square [−0.5, 0.5] embedded in the
computational square [−1, 1] × [−1, 1] after rotation. (a) at position θ = 0, (b)
θ = π/16.
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Consistency of the accuracy under rotation

(a) ψ error after rotation (b) ψx error after rotation

Figure: Maximum error for the Navier-Stokes equation in the square
[−0.5, 0.5] × [−0.5, 0.5]. Computation for π/4 + kπ/360 for all k = 0, ..., 180.
Left: accuracy for ψ(t, x, y) at final time on the grid k. Right: accuracy for
ψx(t, x, y) at final time on the grid k.
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A High Order scheme for Irregular domains using 1D
polynomials

Define a new coordinate system

η = (x+ y)/
√

2, ξ = (y − x)/
√

2.

Thus, y = (η + ξ)/
√

2, x = (η − ξ)/
√

2. By the chain rule,

ψηηηη = 1
4 (ψxxxx + 4ψxxxy + 6ψxxyy + 4ψxyyy + ψyyyy)

ψξξξξ = 1
4 (ψxxxx − 4ψxxxy + 6ψxxyy − 4ψxyyy + ψyyyy).

(30)

Therefore, 2(ψηηηη + ψξξξξ) = ψxxxx + 6ψxxyy + ψyyyy. Thus,

∆2ψ = ψxxxx + 2ψxxyy + ψyyyy

= 2
3 (ψηηηη + ψξξξξ + ψxxxx + ψyyyy).

(31)

A. Ditkowski, private communications
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The discrete convective for an irregular element

The convective term is

C(ψ) = ∇⊥ψ · ∇∆ψ = −(∂yψ) · ∂x(∆ψ) + (∂xψ) · ∂y(∆ψ).

It may be written as

C(ψ) = −(∂yψ) · (∂xxxψ + ∂xyyψ) + (∂xψ) · (∂xxyψ + ∂yyyψ).

[10] D. Fishelov, Computers and Mathematics with Applications, 2017.
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The discrete convective for an irregular element

For the mixed third-order derivatives we have.

ψηηη =
1

2
√

2
(ψxxx + 3ψxxy + 3ψxyy + ψyyy),

ψξξξ =
1

2
√

2
(−ψxxx + 3ψxxy − 3ψxyy + ψyyy).

Therefore,

ψxxy =

√
2

3
(ψηηη + ψξξξ) −

1

3
ψyyy,

ψxyy =

√
2

3
(ψηηη − ψξξξ) −

1

3
ψxxx.

The convective term may be written using only pure derivatives by

C(ψ) = −ψy·
(2

3
ψxxx+

√
2

3
(ψηηη−ψξξξ)

)
+ψx·

(2

3
ψyyy+

√
2

3
(ψηηη+ψξξξ)

)
.
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The truncation error for ∂x, ∂
4
x for an irregular element

Let Q(x) be the following polynomial with interpolating data

Q(x) = a0 + a1(x− xi) + a2(x− xi)
2 + a3(x− xi)

3 + a4(x− xi)
4,

ψ(xwest, yj), ψ(xi, yj), ψ(xeast, yj), ψx(xwest, yj), ψx(xeast, yj).

Then, the approximation ψx,i,j to ∂xψi,j has the form

ψx,i,j + cx,p · ψx(xeast, yj) + cx,m · ψx(xwest, yj)

= cp · ψ(xeast, yj) − cm · ψ(xwest, yj) − c · ψi,j .
(32)

The truncation errors for ψx and δ̄4x for an irregular element satisfy

|(ψx)i,j − ∂xψ| ≤ Ch4‖ψ(5)‖L∞ ,

|δ̄4xψi,j − ∂4
xψ| ≤ Ch‖ψ(5)‖L∞ .
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Numerical Results- Irregular Domains-Full Navier-Stokes

Intersection of two non-concentric circles

Ω = {(x, y)|(x− 0.4)2 + y2 < 0.5}∩{(x, y)|(x+0.4)2 + y2 < 0.5} (33)

ψ(x, y, t) = 1
64 (0.81 − (x2 + y2)2)e−t in Ω

We resolve numerically





∂t∆ψ + ∇⊥ψ · ∇∆ψ − ∆2ψ = f(x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) = 1
64 (0.81 − (x2 + y2)2), (x, y) ∈ Ω

ψ(x, y, t) = 1
64 (0.81 − (x2 + y2)2)e−t, (x, y) ∈ ∂Ω

∂ψ(x,y,t)
∂n = 1

64
∂((0.81−(x2+y2)2)e−t

∂n , (x, y) ∈ ∂Ω.

(34)
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mesh 11 × 11 Rate 21 × 21 Rate 41 × 41

e2 5.8018E-09 3.87 3.9712E-10 3.86 2.7436E-11
e∞ 1.1809E-08 4.20 7.25789E-10 3.98 4.6122E-11

(ex)2 2.1158E-08 4.30 1.0708E-09 3.86 7.3503E-11
(ex)∞ 3.7714E-08 4.15 2.1361E-09 3.94 1.3377E-10
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Figure: Left: Approximation for ψ(x, y, t) = 1

64
(0.81 − (x2 + y2)2)e−t. Right:

The error
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ψ(x, y, t) = (1/64)e−t((x2 + y2)2 + ex cos(y))

Our aim is to recover ψ(x, y, t) from f(x, y, t). Thus, we resolve
numerically





∂t∆ψ + ∇⊥ψ · ∇∆ψ − ∆2ψ = f(x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) = (1/64)((x2 + y2)2 + ex cos(y)), (x, y) ∈ Ω

ψ(x, y, t) = (1/64)e−t((x2 + y2)2 + ex cos(y)), (x, y) ∈ ∂Ω

∂ψ(x,y,t)
∂n = ∂(1/64)e−t((x2+y2)2+ex cos(y))

∂n , (x, y) ∈ ∂Ω.

(35)

Dalia Fishelov Afeka-Tel-Aviv Academic College of Engineer ing An Embedded Cartesian Scheme for the Navier-Stokes Equations



Navier-Stokes equations in streamfunction formulation
Optimal convergence in 1D

The 2D Navier-Stokes system
A high order scheme for irregular domains

Eigenvalues and Eigenfunctions of Biharmonic Problems

mesh 11 × 11 Rate 21 × 21 Rate 41 × 41

e2 3.0809E-08 4.02 1.8993E-09 4.33 9.4105E-11
e∞ 9.6878E-08 4.21 5.2525E-09 4.25 2.7563E-10

(ex)2 2.8732E-07 4.17 1.5968E-08 4.16 8.9395E-10
(ex)∞ 5.6380E-07 4.28 2.8971E-08 3.63 2.3323E-09

Table 10: Compact scheme for Navier-Stokes equation with exact
solution: ψ = (1/64)e−t((x2 + y2)2 + ex cos(y)) on Ω. We present e
and ex, the l2 errors for the streamfunction and for ∂xψ. Here
∆t = 0.25h2 and t = 0.16.
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Figure: Left: Approximation for ψ(x, y, t) = (1/64)e−t((x2 + y2)2 + ex cos(y)).
Right: The error
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Approximate biharmonic spectral problems in two dimension s

Let Ω ⊂ R
2. We consider the two following eigenproblems in Ω

Problem 1: The buckling plate problem

∆2ψ = −λ∆ψ, x ∈ Ω. (36)

Problem 2: The clamped plate problem

∆2ψ = λψ, x ∈ Ω. (37)

In each case, we want to calculate approximations of the (λn, ψn(x),
n ≥ 1, the eigenvalues of the problem which are ordered in ascending
order.
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Approximate biharmonic spectral problems for Problem 1 in t he
square

N λ1(N) our scheme λ1(N) (Brenner-Monk-Sun)
10 52.316494 55.4016
20 52.343018 53.2067
40 52.344588 52.5757
80 52.344685 52.4045

The value obtained by (Bjørstad and Tjøstheim) (1999) in the square
is

λ1 = 52.344691168416544538705330750365 (38)
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Approximate biharmonic spectral problems for Problem 1 in a
square

Figure: Convergence rate for the Problem 1.
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Approximate biharmonic spectral problems for Problem 2 in t he
square

N λ1(N) by (1) λ1(N) (Brenner-Monk-Sun)
10 1295.434650 1377.1366
20 1294.973270 1318.5091
40 1294.436592 1301.3047
80 1294.934146 1296.5904

The value obtained by Bjørstad and Tjøstheim (1999) in the square is

λ1 = 1294.9339795917128081703026479744...
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Approximate biharmonic spectral problems for Problem 1 in a
square

Figure: Convergence rate for the Problem 2.
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Eigenfunctions for Problem 2 in a disc x2 + y2 ≤ 1

Figure: Eigenfunctions for λ1, λ2, λ3, λ4 for Problem 1 in the disc. The size of
the grid is 40 × 40.
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Eigenfunctions for Problem 2 in a disc x2 + y2 ≤ 1

Figure: Eigenfunctions for λ5, λ6, λ7, λ8 for Problem 1 in the disc. The size of
the grid is 40 × 40.
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Eigenfunctions for Problem 2 in a disc x2 + y2 ≤ 1

Figure: Eigenfunctions for λ9, λ10, λ11, λ12 for Problem 2 in the disc
x2 + y2

≤ 1. The size of the grid is 40 × 40.
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Eigenfunctions for Problem 2 in a disc x2 + y2 ≤ 1

N λ1(N) λ2(N) λ3(N) λ4(N)

10 0.1043056(3) 0.4510779(3) 0.4510779(3) 1.2105913(3)
20 0.1043621(3) 0.4519756(3) 0.4519756(3) 1.2159930(3)
40 0.1043630(3) 0.4520028(3) 0.4520028(3) 1.2163867(3)
80 0.1043631(3) 0.4520044(3) 0.4520044(3) 1.2164070(3)

Table: Disk x2 + y2
≤ 1 embedded in the square [−1.1, 1.1] × [−1, 1].

Approximate value of the four smallest eigenvalues of the clampled plate
eigenproblem (37) for h = 1/10, 1/20, 1/40 and 1/80.
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Eigenfunctions for Problem 2 in the ellipse x2/0.72 + y2/1.32 ≤ 1

Figure: Eigenfunctions for λ2, λ3, λ4, λ5 for Problem 1 in the ellipse. The size
of the grid is 40 × 40.
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Eigenfunctions for Problem 2 in the ellipse x2/0.72 + y2/1.32 ≤ 1

Figure: Eigenfunctions for λ6, λ7, λ8, λ9 for Problem 2 in the ellipse. The size
of the grid is 40 × 40.
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Eigenfunctions for Problem 2 in the ellipse x2/0.72 + y2/1.32 ≤ 1

Figure: Eigenfunctions for λ9, λ10, λ11, λ12 for Problem 2 in the ellipse
x2/0.72 + y2/1.32

≤ 1. The size of the grid is 40 × 40.
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Convergence of eigenvalues for Problem 2 in the ellipse

N λ1(N) λ2(N) λ3(N) λ4(N)

10 0.2031296(3) 0.4525390(3) 0.9525603(3) 1.2572786(3)
20 0.2038618(3) 0.4531441(3) 0.9561893(3) 1.2995270(3)
40 0.2038890(3) 0.4531487(3) 0.9564064(3) 1.3003232(3)
80 0.2038902(3) 0.4531510(3) 0.9564114(3) 1.3004021(3)

Table: Ellipse x2/0.72 + y2/1.32
≤ 1 embedded in the square

[−1.6, 1.6] × [−1.6, 1.6]. Approximate value of the four smallest eigenvalues
of the clampled plate eigenproblem (37) for h = 1/10, 1/20, 1/40 and 1/80.
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Thanks for your attention!
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