Structure Preserving Numerical Methods for Hyperbolic Systems of Conservation and Balance Laws

Alina Chertock

North Carolina State University chertock@math.ncsu.edu

joint work with S. Cui, M. Herty, A. Kurganov, X. Liu, S.N. Özcan and E. Tadmor

Systems of Balance Laws

$$U_t + f(U)_x + g(U)_y = S(U)$$

Examples:

- Gas dynamics with pipe-wall friction
- Euler equations with gravity/friction
- shallow water equations with Coriolis forces

Applications:

- astrophysical and atmospheric phenomena in many fields including supernova explosions
- (solar) climate modeling and weather forecasting

$$oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = rac{1}{arepsilon}oldsymbol{S}(oldsymbol{U})$$

Examples:

- Iow Mach number compressible flows
- low Froude number shallow water flows
- diffusive relaxation in kinetic models

Applications:

- various two-phase flows such as bubbles in water
- unmostly incompressible flows with regions of high compressibility such as underwater explosions
- atmospheric flows

Systems of Balance Laws

$$oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = oldsymbol{S}(oldsymbol{U})$$
 or $oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = rac{1}{arepsilon}oldsymbol{S}(oldsymbol{U})$

- Challenges: certain structural properties of these hyperbolic problems (conservation or balance law, equilibrium state, positivity, assymptotic regimes, etc.) are essential in many applications;
- Goal: to design numerical methods that are not only consistent with the given PDEs, but
 - preserve the structural properties at the discrete level well-balanced numerical methods
 - remain accurate and robust in certain asymptotic regimes of physical interest – asymptotic preserving numerical methods

[P. LeFloch; 2014]

Well-Balanced (WB) Methods

$\boldsymbol{U}_t + \boldsymbol{f}(\boldsymbol{U})_x + \boldsymbol{g}(\boldsymbol{U})_y = \boldsymbol{S}(\boldsymbol{U})$

- In many physical applications, solutions of the system are small perturbations of the steady states;
- These perturbations may be smaller than the size of the truncation error on a coarse grid;
- To overcome this difficulty, one can use very fine grid, but in many physically relevant situations, this may be unaffordable;

Goal:

- to design a well-balanced numerical method, that is, the method which is capable of exactly preserving some steady state solutions;
- perturbations of these solutions will be resolved on a coarse grid in a non-oscillatory way.

Asymptotic Preserving (AP) Methods

$$oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = rac{1}{arepsilon}oldsymbol{S}(oldsymbol{U})$$

- Solutions of many hyperbolic systemes reveal a multiscale character and thus their numerical resolution presence some major difficulties;
- Such problems are typically characterized by the occurence of a small parameter by $0<\varepsilon\ll1;$
- The solutions show a nonuniform behavior as $\varepsilon \to 0$;
- the type of the limiting solution is different in nature from that of the solutions for finite values of $\varepsilon > 0$.

Goal:

- asymptotic passage from one model to another should be preserved at the discrete level;
- for a fixed mesh size and time step, AP method should automatically transform into a stable discretization of the limitting model as $\varepsilon \to 0$.

Finite-Volume Methods – 1-D

$$oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x = oldsymbol{S} \quad \left(=rac{1}{arepsilon}oldsymbol{S}
ight)$$

•
$$\overline{U}_k^n \approx \frac{1}{\Delta y} \int_{C_k} U(y, t^n) \, dy$$
: cell averages over $C_j := (x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}})$

• Semi-discrete FV method:

$$\frac{d}{dt}\overline{U}_{j}(t) = -\frac{\mathcal{F}_{j+\frac{1}{2}}(t) - \mathcal{F}_{j-\frac{1}{2}}(t)}{\Delta x} + \overline{S}_{j}$$

 ${\cal F}_{j+\frac{1}{2}}(t)$: numerical fluxes \overline{S}_j : quadrature approximating the corresponding source terms

• Central-Upwind (CU) Scheme:

[Kurganov, Lin, Noelle, Petrova, Tadmor, et al.; 2000–2007]

$$\{\overline{\boldsymbol{U}}_{j}(t)\} \to \widetilde{\boldsymbol{U}}(\cdot,t) \to \left\{\boldsymbol{U}_{j}^{\mathrm{E,W}}(t)\right\} \to \left\{\boldsymbol{\mathcal{F}}_{j+\frac{1}{2}}(t)\right\} \to \{\overline{\boldsymbol{U}}_{j}(t+\Delta t)\}$$

(**Discontinuous**) piecewise-linear reconstruction:

$$\widetilde{\boldsymbol{U}}(y,t) := \overline{\boldsymbol{U}}_j(t) + (\boldsymbol{U}_x)_j(x-x_j), \quad x \in C_j$$

It is conservative, second-order accurate, and non-oscillatory provided the slopes, $\{(U_y)_k\}$, are computed by a nonlinear limiter

Example — Generalized Minmod Limiter

$$(U_y)_j = \operatorname{minmod}\left(\theta \frac{\overline{U}_j - \overline{U}_{j-1}}{\Delta x}, \frac{\overline{U}_{j+1} - \overline{U}_{j-1}}{2\Delta x}, \theta \frac{\overline{U}_{j+1} - \overline{U}_j}{\Delta x}\right)$$

where

$$\operatorname{minmod}(z_1, z_2, \ldots) := \begin{cases} \min_j \{z_j\}, & \text{ if } z_j > 0 \quad \forall j, \\ \max_j \{z_j\}, & \text{ if } z_j < 0 \quad \forall j, \\ 0, & \text{ otherwise,} \end{cases}$$

and $\theta \in [1,2]$ is a constant

$$\{\overline{U}_{j}(t)\} \to \widetilde{U}(\cdot, t) \to \left\{ U_{j}^{\mathrm{E,W}}(t) \right\} \to \left\{ \mathcal{F}_{j+\frac{1}{2}}(t) \right\} \to \{\overline{U}_{j}(t+\Delta t)\}$$

 $U_j^{\rm E}$ and $U_j^{\rm W}$ are the point values at $x_{j+\frac{1}{2}}$ and $x_{j-\frac{1}{2}}$:

$$\overline{U}(y,t) = \overline{U}_j + (U_x)_j (x - x_j), \quad x \in C_j$$

$$\boldsymbol{U}_{j}^{\mathrm{E}} := \overline{\boldsymbol{U}}_{j} + \frac{\Delta x}{2} (\boldsymbol{U}_{x})_{j}$$
$$\boldsymbol{U}_{j}^{\mathrm{W}} := \overline{\boldsymbol{U}}_{j} - \frac{\Delta x}{2} (\boldsymbol{U}_{x})_{j}$$

$$\{\overline{\boldsymbol{U}}_{j}(t)\} \to \widetilde{\boldsymbol{U}}(\cdot,t) \to \left\{\boldsymbol{U}_{j}^{\mathrm{E,W}}(t)\right\} \to \left\{\boldsymbol{\mathcal{F}}_{j+\frac{1}{2}}(t)\right\} \to \left\{\overline{\boldsymbol{U}}_{j}(t+\Delta t)\right\}$$

$$\frac{d}{dt}\overline{U}_{j} = -\frac{\mathcal{F}_{j+\frac{1}{2}} - \mathcal{F}_{j-\frac{1}{2}}}{\Delta x} + \overline{S}_{j}$$

where

$$\begin{aligned} \mathcal{F}_{j+\frac{1}{2}} &= \frac{a_{j+\frac{1}{2}}^{+} f(\boldsymbol{U}_{j}^{\mathrm{E}}) - a_{j+\frac{1}{2}}^{-} f(\boldsymbol{U}_{j+1}^{\mathrm{W}})}{a_{j+\frac{1}{2}}^{+} - a_{j+\frac{1}{2}}^{-}} + \alpha_{j+\frac{1}{2}} \left(\boldsymbol{U}_{j+1}^{\mathrm{W}} - \boldsymbol{U}_{j}^{\mathrm{E}}\right) \\ \alpha_{j+\frac{1}{2}} &= \frac{a_{j+\frac{1}{2}}^{+} a_{j+\frac{1}{2}}^{-}}{a_{j+\frac{1}{2}}^{+} - a_{j+\frac{1}{2}}^{-}} \\ a_{j+\frac{1}{2}}^{+} &= \max\left\{\lambda(\boldsymbol{U}_{j}^{\mathrm{E}}), \lambda(\boldsymbol{U}_{j+1}^{\mathrm{W}}), 0\right\}, \quad a_{j+\frac{1}{2}}^{-} &= \min\left\{\lambda(\boldsymbol{U}_{j}^{\mathrm{E}}), \lambda(\boldsymbol{U}_{j+1}^{\mathrm{W}}), 0\right\} \end{aligned}$$

2-D extension is dimension-by-dimension

Non Well-Balanced Property – Example

$$\begin{cases} \rho_t + q_x = 0, \\ q_t + f_2(\rho, q)_x = -s(\rho, q) \end{cases}$$

For steady-state solution: q = Const and $\rho = \rho(x)$

Implementing the CU scheme results in

- The steady state would not be preserved at the discrete level;
- This would also true for the first-order version of the scheme;
- For smooth solutions, the balance error is expected to be of order $(\Delta x)^2$, but a coarse grid solution may contain large spurious waves.

Well-Balanced Methods

"Balance is not something you find, it's something you create"

1-D 2×2 Systems of Balance Laws

$$\begin{cases} \rho_t + f_1(\rho, q)_x = 0, \\ q_t + f_2(\rho, q)_x = -s(\rho, q), \end{cases}$$

Steady state solution:

$$f_1(\rho, q)_x \equiv 0, \quad f_2(\rho, q)_x + s(\rho, q) \equiv 0$$

or

$$K := f_1(\rho, q) \equiv \text{Const}, \qquad \forall x, t$$
$$L := f_2(\rho, q) + \int^x s(\rho, q) d\xi \equiv \text{Const}$$

Numerical Challenges : to exactly balance the flux and source terms, i.e., to exactly preserve the steady states.

How to design a well-balanced scheme?

Well-Balanced Scheme

$$\begin{cases} \rho_t + f_1(\rho, q)_x = 0, \\ q_t + f_2(\rho, q)_x = -s(\rho, q) \end{cases}$$

• Incorporate the source term into the flux:

$$\begin{cases} \rho_t + f_1(\rho, q)_x = 0, \\ q_t + (f_2(\rho, q)_x + R)_x = 0, \end{cases} \qquad R := \int^x s(\rho, q) d\xi$$

• Rewrite

$$\begin{cases} \rho_t + K_x = 0, \\ q_t + L_x = 0 \end{cases}$$

where

$$K := f_1(\rho, q), \qquad L := f_2(\rho, q)_x + R$$

• Define

conservative variables $\boldsymbol{U} = (\rho, q)^T$ equilibrium variables $\boldsymbol{W} := (K, L)^T$

Well-Balanced Scheme

 $\boldsymbol{U}_t + \boldsymbol{f}(\boldsymbol{U})_x = \boldsymbol{0}$

$$\boldsymbol{U} = \begin{pmatrix} \rho \\ q \end{pmatrix}, \quad \boldsymbol{f}(\boldsymbol{U}) = \boldsymbol{W} := \begin{pmatrix} K \\ L \end{pmatrix}$$

Semi-discrete FV method:

$$\frac{d}{dt}\overline{U}_{j}(t) = -\frac{\mathcal{F}_{j+\frac{1}{2}}(t) - \mathcal{F}_{j-\frac{1}{2}}(t)}{\Delta x}$$

Two major modifications:

• Well-balanced reconstruction – performed on the equilibrium rather than conservative variables:

 $\{\overline{\boldsymbol{U}}_{j}(t)\} \to \widetilde{\boldsymbol{U}}(\cdot,t) \to \left\{\boldsymbol{W}_{j}^{\mathrm{E},\mathrm{W}}(t)\right\} \to \left\{\boldsymbol{U}_{j}^{\mathrm{E},\mathrm{W}}(t)\right\} \to \left\{\boldsymbol{\mathcal{F}}_{j+\frac{1}{2}}(t)\right\} \to \{\overline{\boldsymbol{U}}_{j}(t+\Delta t)\}$

• Well-balanced evolution

Well-Balanced Reconstruction

Given: $\overline{U}_j(t) = (\overline{\rho}_j, \overline{q}_j)^T$ – cell averages **Need**: $\mathbf{W}_j^{\mathrm{E,W}} = (K_j^{\mathrm{E,W}}, L_j^{\mathrm{E,W}})^T$ – point values, where

$$K := f_1(\rho, q), \quad L := f_2(\rho, q)_x + R, \quad R := \int^x s(\rho, q) d\xi$$

• Compute $R_j = \int s(\rho, q) d\xi$ by the midpoint quadrature rule and using the following recursive relation:

$$\begin{aligned} R_{1/2} &\equiv 0, \quad R_j = \frac{1}{2} (R_{j-\frac{1}{2}} + R_{j+\frac{1}{2}}), \\ R_{j+\frac{1}{2}} &= R(x_{j+\frac{1}{2}}) = R_{j-\frac{1}{2}} + \Delta x \, s(x_j, \bar{\rho}_j, \bar{q}_j). \end{aligned}$$

• Compute the point values of K and L at x_j from the cell averages, $\bar{\rho}_j$ and \bar{q}_j :

$$K_j = f_1(\bar{\rho}_j, \bar{q}_j), \qquad L_j = f_2(\bar{\rho}_j, \bar{q}_j) + R_j$$

Well-Balanced Reconstruction

• Apply the minmod reconstruction procedure to $\{K_j, L_j\}$ and obtain the point values at the cell interfaces:

$$K_{j}^{\rm E} = K_{j} + \frac{\Delta x}{2} (K_{x})_{j}, \quad L_{j}^{\rm E} = L_{j} + \frac{\Delta x}{2} (L_{x})_{j},$$
$$K_{j}^{\rm W} = K_{j} - \frac{\Delta x}{2} (K_{x})_{j}, \quad L_{j}^{\rm W} = L_{j} - \frac{\Delta x}{2} (L_{x})_{j}$$

• Finally, equipped with the values of $K_j^{E,W}$, $L_j^{E,W}$ and $R_{j\pm\frac{1}{2}}$, solve

$$K_{j}^{\mathrm{E}} = f_{1}(\rho_{j}^{\mathrm{E}}, q_{j}^{\mathrm{E}}), \qquad L_{j}^{\mathrm{E}} = f_{2}(\rho_{j}^{\mathrm{E}}, q_{j}^{\mathrm{E}}) + R_{j+\frac{1}{2}},$$
$$K_{j}^{\mathrm{W}} = f_{1}(\rho_{j}^{\mathrm{W}}, q_{j}^{\mathrm{W}}), \qquad L_{j}^{\mathrm{W}} = f_{2}(\rho_{j}^{\mathrm{W}}, q_{j}^{\mathrm{W}}) + R_{j-\frac{1}{2}}$$

for $\boldsymbol{U}^{\mathrm{E,W}}_{j} = (\rho^{\mathrm{E,W}}_{j}, q^{\mathrm{E,W}}_{j})^{T}$.

Proof of the Well-Balanced Property

Theorem. The central-upwind semi-discrete schemes coupled with the well-balanced reconstruction and evolution is well-balanced in the sense that it preserves the corresponding steady states exactly.

Example – Gas dynamics with pipe-wall friction

$$\begin{cases} \rho_t + q_x = 0, \\ q_t + \left(c^2 \rho + \frac{q^2}{\rho}\right)_x = -\mu \frac{q}{\rho} |q|, \end{cases}$$

- $\rho(x,t)$ is the density of the fluid
- u(x,t) is the velocity of the fluid
- q(x,t) is the momentum
- $\mu > 0$ is the friction coefficient (divided by the pipe cross section)
- c > 0 is the speed of sound

Equilibrium variables:

$$\begin{split} K(x,t) &= q(x,t) \quad L(x,t) = \left(c^2\rho + \frac{q^2}{\rho}\right)(x,t) + R(x,t), \\ R(x,t) &= \int^x \mu \frac{q(\xi,t)}{\rho(\xi,t)} |q(\xi,t)| d\xi \end{split}$$

Steady states: $K \equiv \text{Const}, L \equiv \text{Const}$

Numerical Tests

• Steady state initial data:

 $K(x,0) = q(x,0) = K^* = 0.15$ and $L(x,0) = L^* = 0.4$,

- in a single pipe $x \in [0, 1]$
- <u>Perturbed initial data</u>:

$$K(x,0) = K^* + \eta e^{-100(x-0.5)^2}, \quad L(x,0) = L^* = 0.4, \quad \eta > 0$$

in a single pipe $x \in [0, 1]$

We compare the WB and NWB methods ...

Numerical Test – Steady state initial data

WB:

N	K	L		
100	1.94E-18	7.77E-18		
200	9.71E-19	9.71E-18		
400	1.66E-18	9.57E-18		
800	2.18E-18	1.18E-17		

WB:

N	K	rate	L	rate
100	1.29E-06	-	8.81E-07	-
200	3.30E-07	1.9668	2.25E-07	1.9692
400	8.34E-08	1.9843	5.69E-08	1.9834
800	2.09E-08	1.9965	1.43E-08	1.9924

Numerical Test – Perturbed initial data

Euler Equations with Gravity

$$\begin{cases} \rho_t + (\rho u)_x + (\rho v)_y = 0\\ (\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y = -\rho \phi_x\\ (\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y = -\rho \phi_y\\ E_t + (u(E+p))_x + (v(E+p))_y = -\rho(u\phi_x + v\phi_y) \end{cases}$$

• ρ is the density

- u, v are the x- and y-velocities
- E is the total energy

•
$$p$$
 is the pressure; $E = \frac{p}{\gamma - 1} + \frac{\rho}{2}(u^2 + v^2)$

• ϕ is the gravitational potential

Euler Equations with Gravity

$$\begin{cases} \rho_t + (\rho u)_x + (\rho v)_y = 0\\ (\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y = -\rho \phi_x\\ (\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y = -\rho \phi_y\\ E_t + (u(E+p))_x + (v(E+p))_y = -\rho(u\phi_x + v\phi_y) \end{cases}$$

Multiply the first (density) equation by ϕ and add to the last (energy) equation to obtain ...

$$\begin{aligned} \rho_t + (\rho u)_x + (\rho v)_y &= 0 \\ (\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y &= -\rho \phi_x \\ (\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y &= -\rho \phi_y \\ (E + \rho \phi)_t + (u(E + \rho \phi + p))_x + (v(E + \rho \phi + p))_y &= 0 \end{aligned}$$

Steady States

 $\begin{cases} p_{t} + (\rho u)_{x} + (\rho v)_{y} = 0\\ (\rho u)_{t} + (\rho u^{2} + p)_{x} + (\rho uv)_{y} = -\rho\phi_{x}\\ (\rho v)_{t} + (\rho uv)_{x} + (\rho v^{2} + p)_{y} = -\rho\phi_{y}\\ (E + \rho\phi)_{t} + (u(E + \rho\phi + p))_{x} + (v(E + \rho\phi + p))_{y} = 0 \end{cases}$

Plays an important role in modeling model astrophysical and atmospheric phenomena in many fields including supernova explosions, (solar) climate modeling and weather forecasting

Steady state solution:

$$u \equiv 0, \ v \equiv 0, \ K_x = p_x + \rho \phi_x \equiv 0, \ L_y = p_y + \rho \phi_y \equiv 0$$
$$K := p + Q, \quad Q(x, y, t) := \int^x \rho(\xi, y, t) \phi_x(\xi, y) \, d\xi$$
$$L := p + R, \quad R(x, y, t) := \int^y \rho(x, \eta, t) \phi_y(x, \eta) \, d\eta$$

2-D Well-Balanced Scheme

• Incorporate the source term into the flux:

$$K := p + Q, \quad Q(x, y, t) := \int^{y} \rho(\xi, y, t) \phi_{x}(\xi, y), d\xi$$
$$L := p + R, \quad R(x, y, t) := \int^{y} \rho(x, \eta, t) \phi_{y}(x, \eta), d\eta$$

$$\begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E + \rho \phi \end{pmatrix}_{t} + \begin{pmatrix} \rho u \\ \rho u^{2} + \mathbf{K} \\ \rho u v \\ u(E + \rho \phi + p) \end{pmatrix}_{x} + \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^{2} + \mathbf{L} \\ v(E + \rho \phi + p) \end{pmatrix}_{y} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

• Define

conservative variables: $\boldsymbol{U} := (\rho, \rho u, \rho v, E)^T$ equilibrium variables: $\boldsymbol{W} := (\rho, K, L, E + \rho \phi)^T$

• Solve by the well-balanced scheme ...

Well-Balanced Scheme

• Define

conservative variables: $\boldsymbol{U} := (h, hu, hv)^T$

equilibrium variables: $\boldsymbol{W} := (u, v, K, L)^T$

fluxes in the x- and y-directions: f(U, B) and g(U, B)

• Assume that at time t the cell averages are available

$$\overline{\boldsymbol{U}}_{j,k}(t) := \frac{1}{\Delta x \Delta y} \iint_{C_{j,k}} \boldsymbol{U}(x, y, t) \, dx dy,$$

• Solve by the well-balanced scheme

$$\{\overline{U}_{j,k}(t)\} \to \widetilde{U}(\cdot,t) \to \left\{\mathbf{W}_{j,k}^{\mathrm{E},\mathrm{W},\mathrm{N},\mathrm{S}}(t)\right\} \to \left\{U_{j,k}^{\mathrm{E},\mathrm{W},\mathrm{N},\mathrm{S}}(t)\right\} \\ \to \left\{\mathcal{F}_{j+\frac{1}{2},k}(t), \mathcal{G}_{j,k+\frac{1}{2}}(t)\right\} \to \left\{\overline{U}_{j,k}(t+\Delta t)\right\}$$

j+1/2

k + 1/2

k - 1/2

k

i - 1/2

Example — 2-D Isothermal Equilibrium Solution

[Xing, Shu; 2013]

- The ideal gas with $\gamma = 1.4$; domain $[0,1] \times [0,1]$
- The gravitational force is $\phi_y = g = 1$
- The steady-state initial conditions are

 $\rho(x, y, 0) = 1.21e^{-1.21y}, \quad p(x, y, 0) = e^{-1.21y}, \quad u(x, y, 0) \equiv v(x, y, 0) \equiv 0$

• Solid wall boundary conditions imposed at the edges of the unit square

Perturbation

A small initial pressure perturbation:

$$p(x, y, 0) = e^{-1.21y} + \eta e^{-121((x-0.3)^2 + (y-0.3)^2)}, \quad \eta = 10^{-3}$$

 50×50

WB: $50 \times 50, 200 \times 200$

NWB : 50×50 , 200×200

Shallow Water System with Coriolis Force

$$\begin{cases} h_t + (hu)_x + (hv)_y = 0\\ (hu)_t + \left(hu^2 + \frac{g}{2}h^2\right)_x + (huv)_y = -ghB_x + fhv\\ (hv)_t + (huv)_x + \left(hv^2 + \frac{g}{2}h^2\right)_x = -ghB_y - fhu \end{cases}$$

- *h*: water height
- u, v: fluid velocity
- g: gravitational constant
- $B \equiv 0$ bottom topography
- $f = 1/\varepsilon$ Coriolis parameter

Dimensional Analysis

Introduce

$$\widehat{x} := \frac{x}{\ell_0}, \quad \widehat{y} := \frac{y}{\ell_0}, \quad \widehat{h} := \frac{h}{h_0}, \quad \widehat{u} := \frac{u}{w_0}, \quad \widehat{v} := \frac{v}{w_0},$$

Substituting them into the SWE and dropping the hats in the notations, we obtain the dimensionless form:

$$\begin{cases} h_t + (hu)_x + (hv)_y = 0, \\ (hu)_t + \left(hu^2 + \frac{1}{\varepsilon^2}\frac{h^2}{2}\right)_x + (huv)_y = \frac{1}{\varepsilon}hv, \\ (hv)_t + (huv)_x + \left(hv^2 + \frac{1}{\varepsilon^2}\frac{h^2}{2}\right)_y = -\frac{1}{\varepsilon}hu, \end{cases}$$

in which

$$\operatorname{Fr} := \frac{w_0}{\sqrt{gh_0}} = \varepsilon$$

is the reference Froude number

Explicit Discretization

Eigenvalues of the flux Jacobian:

$$\left\{ u \pm \frac{1}{\varepsilon}\sqrt{h}, u \right\}$$
 and $\left\{ v \pm \frac{1}{\varepsilon}\sqrt{h}, v \right\}$

This leads to the CFL condition

$$\Delta t_{\exp l} \le \nu \cdot \min\left(\frac{\Delta x}{\max_{u,h}\left\{|u| + \frac{1}{\varepsilon}\sqrt{h}\right\}}, \frac{\Delta y}{\max_{v,h}\left\{|v| + \frac{1}{\varepsilon}\sqrt{h}\right\}}\right) = \mathcal{O}(\varepsilon\Delta_{\min}).$$

where $\Delta_{\min} := \min(\Delta x, \Delta y)$

- $0 < \nu \leq 1$ is the CFL number
- Numerical diffusion: $\mathcal{O}(\lambda_{max}\Delta x) = \mathcal{O}(\varepsilon^{-1}\Delta x).$
- We must choose $\Delta x \approx \varepsilon$ to control numerical diffusion and the stability condition becomes

$$\Delta t = \mathcal{O}(\varepsilon^2)$$

Low Froude Number Flows

Low Froude number regime $(0 < \varepsilon \ll 1) \Longrightarrow$ very large propagation speeds

Explicit methods:

- very restrictive time and space dicretization steps, typically proportional to ε due to the CFL condition;
- too computationally expensive and typically impractical.

Implicit schemes:

- uniformly stable for $0 < \varepsilon < 1$;
- may be inconsistent with the limit problem;
- may provide a wrong solution in the zero Froude number limit.

Goal: to design robust numerical algorithms, whose accuracy and efficiency is independent of ε

Asymptotic Perserving Methods

Asymptotic-Preserving (AP) Methods

Introduced in [Klar; 1998, Jin; 1999], see also [Jin, Levermore; 1991],

[Golse, Jin, Levermore; 1999].

Idea:

- asymptotic passage from one model to another should be preserved at the discrete level;
- for a fixed mesh size and time step, AP method should automatically transform into a stable discretization of the limitting model as $\varepsilon \to 0$.

Hyperbolic Flux Splitting

Key idea: Split the stiff pressure term [Haack, Jin, Liu; 2012]

$$\begin{cases} h_t + \alpha(hu)_x + \alpha(hv)_y + (1 - \alpha)(hu)_x + (1 - \alpha)(hv)_y = 0, \\ (hu)_t + \left(hu^2 + \frac{\frac{1}{2}h^2 - a(t)h}{\varepsilon^2}\right)_x + (huv)_y + \frac{a(t)}{\varepsilon^2}h_x = \frac{1}{\varepsilon}hv, \\ (hv)_t + (huv)_x + \left(hv^2 + \frac{\frac{1}{2}h^2 - a(t)h}{\varepsilon^2}\right)_y + \frac{a(t)}{\varepsilon^2}h_y = -\frac{1}{\varepsilon}hu. \end{cases}$$

This system can be written in the following vector form:

$$U_t + \underbrace{\widetilde{F}(U)_x + \widetilde{G}(U)_y}_{\text{non-stiff terms}} + \underbrace{\widetilde{F}(U)_x + \widehat{G}(U)_y}_{\text{stiff terms}} = \underbrace{S(U)}_{\text{source terms}}$$

How to choose parameters α and a(t)?

Hyperbolic Flux Splitting $U_t + \widetilde{F}(U)_x + \widetilde{G}(U)_y$ $+ \widehat{F}(U)_x + \widehat{G}(U)_y$ $= \underbrace{S(U)}_{source terms}$ non-stiff termsstiff termssource termsnonlinear partlinear partlinear part

<u>Need to ensure</u>: $U_t + \widetilde{F}(U)_x + \widetilde{G}(U)_y = 0$ is both nonstiff and hyperbolic Eigenvalues of the Jacobians $\partial \widetilde{F} / \partial U$ and $\partial \widetilde{G} / \partial U$:

$$\left\{u \pm \sqrt{(1-\alpha)u^2 + \alpha \frac{h-a(t)}{\varepsilon^2}}, u\right\}, \quad \left\{v \pm \sqrt{(1-\alpha)v^2 + \alpha \frac{h-a(t)}{\varepsilon^2}}, v\right\}$$

We then take

$$lpha = arepsilon^2$$
 and $a(t) = \min_{(x,y)\in\Omega} h(x,y,t)$

Discretization of the Split System

$$U^{n+1} = U^n + \Delta t \quad \underbrace{\widetilde{F}(U)_x^n + \Delta t \widetilde{G}(U)_y^n}_{\text{nonlinear part, explicit}} + \underbrace{\widehat{F}(U)_x^{n+1} + \widehat{G}(U)_y^{n+1}}_{\text{linear part, implicit}} = S(U)^{n+1}$$

- Nonstiff nonlinear part is treated using the second-order central-upwind scheme
- Stiff linear part reduces to a linear elliptic equation for h^{n+1} and straigtforward computations of $(hu)^{n+1}$ and $(hv)^{n+1}$

$$\begin{aligned} \Delta t &\leq \nu \cdot \min\left(\frac{\Delta x}{\max_{u,h} \left\{|u| + \sqrt{(1-\alpha)u^2 + \alpha \frac{h-a(t)}{\varepsilon^2}}\right\}}, \\ &\frac{\Delta y}{\max_{v,h} \left\{|v| + \sqrt{(1-\alpha)v^2 + \alpha \frac{h-a(t)}{\varepsilon^2}}\right\}} \end{aligned}\right) \end{aligned}$$

Proof of the AP Property

Theorem. The proposed hyperbolic flux splitting method coupled with the described fully discrete scheme is asymptotic preserving in the sense that it provides a consistent and stable discretization of the limiting system as the Froude number $\varepsilon \to 0$.

Remark. In practice, the fully discrete scheme is both second-order accurate in space and time as we increase a temporal order of accuracy to the second one by implementing a two-stage globally stiffly accurate IMEX Runge-Kutta scheme ARS(2,2,2). The proof holds as well.

Example — 2-D Stationary Vortex

[E. Audusse, R. Klein, D. D. Nguyen, and S. Vater, 2011]

$$h(r,0) = 1 + \varepsilon^{2} \begin{cases} \frac{5}{2}(1+5\varepsilon^{2})r^{2} \\ \frac{1}{10}(1+5\varepsilon^{2}) + 2r - \frac{1}{2} - \frac{5}{2}r^{2} + \varepsilon^{2}(4\ln(5r) + \frac{7}{2} - 20r + \frac{25}{2}r^{2}) \\ \frac{1}{5}(1-10\varepsilon + 4\varepsilon^{2}\ln 2), \end{cases}$$

$$\begin{split} u(x,y,0) &= -\varepsilon y \Upsilon(r), \quad v(x,y,0) = \varepsilon x \Upsilon(r), \quad \Upsilon(r) := \begin{cases} 5, & r < \frac{1}{5} \\ \frac{2}{r} - 5, & \frac{1}{5} \le r < \frac{2}{5} \\ 0, & r \ge \frac{2}{5}, \end{cases} \\ \text{Domain: } [-1,1] \times [-1,1], \quad r := \sqrt{x^2 + y^2} \end{split}$$

Boundary conditions: a zero-order extrapolation in both x- and y-directions

Numerical Tests:

- Experimental order of convergence
- Comparison of non-AP and AP methods for various values of ε

Experimental order of convergence

 $L^\infty\text{-}{\rm errors}$ for h computed using the AP scheme on several different grids for $\varepsilon=0.1$ (left) and 10^{-3}

Comparison of non-AP and AP methods, $\varepsilon=1$

42

Comparison of non-AP and AP methods, $\varepsilon=0.1$

Comparison of non-AP and AP methods, $\varepsilon=0.01$

Comparison of non-AP and AP methods, CPU times

	$\varepsilon = 1$		$\varepsilon = 0.1$		$\varepsilon = 0.01$	
Grid	AP	Explicit	AP	Explicit	AP	Explicit
40×40	0.18 s	0.16 s	0.06 s	1.25 s	0.03 s	10.53 s
80 imes 80	1.57 s	1.32 s	0.29 s	4.73 s	0.18 s	47.0 s
200 imes 200	24.11 s	21.36 s	5.36 s	163.36 s	3.37 s	804.15 s

Smaller values: $\varepsilon = 10^{-3}$ and $\varepsilon = 10^{-4}$

Smaller times: 200×200 , larger times: 500×500

THANK YOU!