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Systems of Balance Laws

Ut + f(U)x + g(U)y = S(U)

Examples:

• Gas dynamics with pipe-wall
friction

• Euler equations with
gravity/friction

• shallow water equations with
Coriolis forces

Applications:

• astrophysical and atmospheric
phenomena in many fields
including supernova explosions

• (solar) climate modeling and
weather forecasting

Ut + f(U)x + g(U)y =
1

ε
S(U)

Examples:

• low Mach number compressible
flows

• low Froude number shallow
water flows

• diffusive relaxation in kinetic
models

Applications:

• various two-phase flows such as
bubbles in water

• unmostly incompressible
flows with regions of high
compressibility such as
underwater explosions

• atmospheric flows
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Systems of Balance Laws

Ut + f(U)x + g(U)y = S(U) or Ut + f(U)x + g(U)y =
1

ε
S(U)

• Challenges: certain structural properties of these hyperbolic problems
(conservation or balance law, equilibrium state, positivity, assymptotic
regimes, etc.) are essential in many applications;

• Goal: to design numerical methods that are not only consistent with the
given PDEs, but

– preserve the structural properties at the discrete level – well-balanced
numerical methods

– remain accurate and robust in certain asymptotic regimes of physical
interest – asymptotic preserving numerical methods

[P. LeFloch; 2014]
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Well-Balanced (WB) Methods

Ut + f(U)x + g(U)y = S(U)

• In many physical applications, solutions of the system are small
perturbations of the steady states;

• These perturbations may be smaller than the size of the truncation error
on a coarse grid;

• To overcome this difficulty, one can use very fine grid, but in many
physically relevant situations, this may be unaffordable;

Goal:

• to design a well-balanced numerical method, that is, the method which
is capable of exactly preserving some steady state solutions;

• perturbations of these solutions will be resolved on a coarse grid in a
non-oscillatory way.
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Asymptotic Preserving (AP) Methods

Ut + f(U)x + g(U)y =
1

ε
S(U)

• Solutions of many hyperbolic systemes reveal a multiscale character and
thus their numerical resolution presence some major difficulties;

• Such problems are typically characterized by the occurence of a small
parameter by 0 < ε� 1;

• The solutions show a nonuniform behavior as ε→ 0;

• the type of the limiting solution is different in nature from that of the
solutions for finite values of ε > 0.

Goal:

• asymptotic passage from one model to another should be preserved at
the discrete level;

• for a fixed mesh size and time step, AP method should automatically
transform into a stable discretization of the limitting model as ε→ 0.
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Finite-Volume Methods – 1-D

Ut + f(U)x = S

(
=

1

ε
S

)

• U
n

k ≈
1

∆y

∫
Ck

U(y, tn) dy : cell averages over Cj := (xj−1
2
, xj+1

2
)

• Semi-discrete FV method:

d

dt
U j(t) = −

F j+1
2
(t)−F j−1

2
(t)

∆x
+ Sj

F j+1
2
(t): numerical fluxes

Sj: quadrature approximating the corresponding source terms

• Central-Upwind (CU) Scheme:

[Kurganov, Lin, Noelle, Petrova, Tadmor, et al.; 2000–2007]
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{U j(t)} → Ũ(·, t)→
{
UE,W
j (t)

}
→
{
F j+1

2
(t)
}
→ {U j(t+ ∆t)}

(Discontinuous) piecewise-linear reconstruction:

Ũ(y, t) := U j(t) + (Ux)j(x− xj), x ∈ Cj

It is conservative, second-order accurate, and non-oscillatory provided the
slopes, {(Uy)k}, are computed by a nonlinear limiter

Example — Generalized Minmod Limiter

(Uy)j = minmod

(
θ
U j −U j−1

∆x
,
U j+1 −U j−1

2∆x
, θ

U j+1 −U j

∆x

)

where

minmod(z1, z2, ...) :=


minj{zj}, if zj > 0 ∀j,
maxj{zj}, if zj < 0 ∀j,
0, otherwise,

and θ ∈ [1, 2] is a constant
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{U j(t)} → Ũ(·, t)→
{
UE,W
j (t)

}
→
{
F j+1

2
(t)
}
→ {U j(t+ ∆t)}

UE
j and UW

j are the point values at xj+1
2

and xj−1
2
:

Ũ(y, t) = U j + (Ux)j(x− xj), x ∈ Cj

UE
j := U j +

∆x

2
(Ux)j

UW
j := U j −

∆x

2
(Ux)j

j+1/2j−1/2
j

k

k−1/2

k+1/2
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{U j(t)} → Ũ(·, t)→
{
UE,W
j (t)

}
→
{
F j+1

2
(t)
}
→ {U j(t+ ∆t)}

d

dt
U j = −

F j+1
2
−F j−1

2

∆x
+Sj

where

F j+1
2

=
a+

j+1
2
f(UE

j )− a−
j+1

2
f(UW

j+1)

a+

j+1
2
− a−

j+1
2

+ αj+1
2

(
UW
j+1 −UE

j

)

αj+1
2

=
a+

j+1
2
a−
j+1

2

a+

j+1
2
− a−

j+1
2

a+

j+1
2

= max
{
λ(UE

j ), λ(UW
j+1), 0

}
, a−

j+1
2

= min
{
λ(UE

j ), λ(UW
j+1), 0

}
2-D extension is dimension-by-dimension

8



Non Well-Balanced Property – Example{
ρt + qx = 0,

qt + f2(ρ, q)x = −s(ρ, q)

For steady-state solution: q = Const and ρ = ρ(x)

Implementing the CU scheme results in

dρj
dt

=− 1

∆x


��

��
�
��

�
��

�
��

�
��

��HHH
HHH

HHH
HHH

HHH
HHH

a+

j+1
2
qE
j − a−j+1

2
qW
j+1

a+

j+1
2
− a−

j+1
2

+ αj+1
2
(ρW
j+1 − ρE

j )

−
��

�
��

�
��

�
��

�
��

�
��
�HH

HHH
HHH

HHH
HHH

HHHH

a+

j−1
2
qE
j−1 − a−j−1

2
qW
j

a+

j−1
2
− a−

j−1
2

+ αj−1
2
(ρW
j − ρE

j−1)

 6= 0

• The steady state would not be preserved at the discrete level;

• This would also true for the first-order version of the scheme;

• For smooth solutions, the balance error is expected to be of order (∆x)2,
but a coarse grid solution may contain large spurious waves.
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Well-Balanced Methods

“Balance is not something you find, it’s
something you create”
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1-D 2× 2 Systems of Balance Laws

{
ρt + f1(ρ, q)x = 0,

qt + f2(ρ, q)x = −s(ρ, q),

Steady state solution:

f1(ρ, q)x ≡ 0, f2(ρ, q)x + s(ρ, q) ≡ 0

or
K := f1(ρ, q) ≡ Const,

L := f2(ρ, q) +

x∫
s(ρ, q)dξ ≡ Const

∀x, t

Numerical Challenges : to exactly balance the flux and source terms, i.e.,
to exactly preserve the steady states.

How to design a well-balanced scheme?
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Well-Balanced Scheme{
ρt + f1(ρ, q)x = 0,

qt + f2(ρ, q)x = −s(ρ, q)

• Incorporate the source term into the flux:

{
ρt + f1(ρ, q)x = 0,

qt + (f2(ρ, q)x +R)x = 0,
R :=

x∫
s(ρ, q)dξ

• Rewrite {
ρt +Kx = 0,

qt + Lx = 0

where
K := f1(ρ, q), L := f2(ρ, q)x +R

• Define

conservative variables U = (ρ, q)T

equilibrium variables W := (K,L)T
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Well-Balanced Scheme

Ut + f(U)x = 0

U =

(
ρ
q

)
, f(U) = W :=

(
K
L

)

Semi-discrete FV method:

d

dt
U j(t) = −

F j+1
2
(t)−F j−1

2
(t)

∆x

Two major modifications:

• Well-balanced reconstruction – performed on the equilibrium rather
than conservative variables:

{U j(t)} → Ũ(·, t)→
{
WE,W

j (t)
}
→
{
UE,W
j (t)

}
→
{
F j+1

2
(t)
}
→ {U j(t+∆t)}

• Well-balanced evolution
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Well-Balanced Reconstruction

Given: U j(t) = (ρj, qj)
T – cell averages

Need: WE,W
j = (KE,W

j , LE,W
j )T – point values, where

K := f1(ρ, q), L := f2(ρ, q)x +R, R :=

x∫
s(ρ, q)dξ

• Compute Rj =

xj∫
s(ρ, q)dξ by the midpoint quadrature rule and using

the following recursive relation:

R1/2 ≡ 0, Rj =
1

2
(Rj−1

2
+Rj+1

2
),

Rj+1
2

= R(xj+1
2
) = Rj−1

2
+ ∆x s(xj,ρj,qj)

• Compute the point values of K and L at xj from the cell averages, ρj
and qj:

Kj = f1(ρj,qj), Lj = f2(ρj,qj) +Rj
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Well-Balanced Reconstruction

• Apply the minmod reconstruction procedure to {Kj, Lj} and obtain the
point values at the cell interfaces:

KE
j = Kj +

∆x

2
(Kx)j, LE

j = Lj +
∆x

2
(Lx)j,

KW
j = Kj −

∆x

2
(Kx)j, LW

j = Lj −
∆x

2
(Lx)j

• Finally, equipped with the values of KE,W
j , LE,W

j and Rj±1
2
, solve

KE
j = f1(ρE

j , q
E
j ), LE

j = f2(ρE
j , q

E
j ) +Rj+1

2
,

KW
j = f1(ρW

j , q
W
j ), LW

j = f2(ρW
j , q

W
j ) +Rj−1

2

for UE,W
j = (ρE,W

j , qE,W
j )T .
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Well-Balanced Evolution

d

dt
U j = −

F j+1
2
−F j−1

2

∆x

where

F (1)

j+1
2

=
a+

j+1
2
KE
j − a−j+1

2
KW
j+1

a+

j+1
2
− a−

j+1
2

+ αj+1
2
(ρW
j+1 − ρE

j )H
(|Kj+1 −Kj|

∆x
· |Ω|

maxj
Kj,Kj+1}

)
,

F (2)

j+1
2

=
a+

j+1
2
LE
j − a−j+1

2
LW
j+1

a+

j+1
2
− a−

j+1
2

+ αj+1
2
(qW
j+1 − qE

j )H
(|Lj+1 − Lj|

∆x
· |Ω|

maxj{Lj, Lj+1}

)
,

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

ψ

H
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Proof of the Well-Balanced Property

Theorem. The central-upwind semi-discrete schemes coupled with the
well-balanced reconstruction and evolution is well-balanced in the sense
that it preserves the corresponding steady states exactly.
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Example – Gas dynamics with pipe-wall friction
ρt + qx = 0,

qt +

(
c2ρ+

q2

ρ

)
x

= −µq
ρ
|q|,

• ρ(x, t) is the density of the fluid
• u(x, t) is the velocity of the fluid
• q(x, t) is the momentum
• µ > 0 is the friction coefficient (divided by the pipe cross section)
• c > 0 is the speed of sound

Equilibrium variables:

K(x, t) = q(x, t) L(x, t) =

(
c2ρ+

q2

ρ

)
(x, t) +R(x, t),

R(x, t) =

∫ x

µ
q(ξ, t)

ρ(ξ, t)
|q(ξ, t)|dξ

Steady states: K ≡ Const, L ≡ Const
18



Numerical Tests

• Steady state initial data:

K(x, 0) = q(x, 0) = K∗ = 0.15 and L(x, 0) = L∗ = 0.4,

in a single pipe x ∈ [0, 1]

• Perturbed initial data:

K(x, 0) = K∗ + ηe−100(x−0.5)2
, L(x, 0) = L∗ = 0.4, η > 0

in a single pipe x ∈ [0, 1]

We compare the WB and NWB methods ...
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Numerical Test – Steady state initial data

WB:

N K L
100 1.94E-18 7.77E-18
200 9.71E-19 9.71E-18
400 1.66E-18 9.57E-18
800 2.18E-18 1.18E-17

WB:

N K rate L rate
100 1.29E-06 - 8.81E-07 -
200 3.30E-07 1.9668 2.25E-07 1.9692
400 8.34E-08 1.9843 5.69E-08 1.9834
800 2.09E-08 1.9965 1.43E-08 1.9924
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Numerical Test – Perturbed initial data

0 0.2 0.4 0.6 0.8 1

x

0

2

4

6

8
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12

perturbation of q, η = 10-3

initial state

WB, N=100

NWB, N=100

NWB, N=1600

× 10
-4

0 0.2 0.4 0.6 0.8 1

x

0

2

4

6

8

10

12

perturbation of q, η = 10-6

initial state

WB, N=100

NWB, N=100

NWB, N=3200

× 10
-7
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Euler Equations with Gravity

ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = −ρφx
(ρv)t + (ρuv)x + (ρv2 + p)y = −ρφy
Et + (u(E + p))x + (v(E + p))y = −ρ(uφx + vφy)

• ρ is the density

• u, v are the x- and y-velocities

• E is the total energy

• p is the pressure; E =
p

γ − 1
+
ρ

2
(u2 + v2)

• φ is the gravitational potential
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Euler Equations with Gravity

ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = −ρφx
(ρv)t + (ρuv)x + (ρv2 + p)y = −ρφy
Et + (u(E + p))x + (v(E + p))y = −ρ(uφx + vφy)

Multiply the first (density) equation by φ and add to the last (energy)
equation to obtain ...



ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = −ρφx
(ρv)t + (ρuv)x + (ρv2 + p)y = −ρφy
(E + ρφ)t + (u(E + ρφ+ p))x + (v(E + ρφ+ p))y = 0
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Steady States
�
�Z
Zρt + (ρu)x + (ρv)y = 0

��
�
��H

HHHH
(ρu)t + (ρu2 + p)x + (ρuv)y = −ρφx
��

�
��H

HHHH
(ρv)t + (ρuv)x + (ρv2 + p)y = −ρφy
��

���
���

�XXXXXXXXX
(E + ρφ)t + (u(E + ρφ+ p))x + (v(E + ρφ+ p))y = 0

Plays an important role in modeling model astrophysical and atmospheric
phenomena in many fields including supernova explosions, (solar)
climate modeling and weather forecasting

Steady state solution:

u ≡ 0, v ≡ 0, Kx = px + ρφx ≡ 0, Ly = py + ρφy ≡ 0

K := p+Q, Q(x, y, t) :=

∫ x

ρ(ξ, y, t)φx(ξ, y) dξ

L := p+R, R(x, y, t) :=

∫ y

ρ(x, η, t)φy(x, η) dη
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2-D Well-Balanced Scheme

• Incorporate the source term into the flux:

K := p+Q, Q(x, y, t) :=

∫ y

ρ(ξ, y, t)φx(ξ, y), dξ

L := p+R, R(x, y, t) :=

∫ y

ρ(x, η, t)φy(x, η), dη


ρ
ρu
ρv

E + ρφ


t

+


ρu

ρu2 +K
ρuv

u(E + ρφ+ p)


x

+


ρv
ρuv

ρv2 + L
v(E + ρφ+ p)


y

=


0
0
0
0


• Define

conservative variables: U := (ρ, ρu, ρv, E)T

equilibrium variables: W := (ρ,K,L,E + ρφ)T

• Solve by the well-balanced scheme ...
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Well-Balanced Scheme

• Define

conservative variables: U := (h, hu, hv)T

equilibrium variables: W := (u, v,K,L)T

fluxes in the x- and y-directions: f(U , B) and g(U , B)

• Assume that at time t the cell averages are available

U j,k(t) :=
1

∆x∆y

∫∫
Cj,k

U(x, y, t) dxdy,

• Solve by the well-balanced scheme

{U j,k(t)} → Ũ(·, t)→
{
WE,W,N,S

j,k (t)
}
→
{
UE,W,N,S
j,k (t)

}
→
{
F j+1

2,k
(t),Gj,k+1

2
(t)
}
→ {U j,k(t+ ∆t)}

j+1/2j−1/2
j

k

k−1/2

k+1/2
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Example — 2-D Isothermal Equilibrium Solution

[Xing, Shu; 2013]

• The ideal gas with γ = 1.4; domain [0, 1]× [0, 1]

• The gravitational force is φy = g = 1

• The steady-state initial conditions are

ρ(x, y, 0) = 1.21e−1.21y, p(x, y, 0) = e−1.21y, u(x, y, 0) ≡ v(x, y, 0) ≡ 0

• Solid wall boundary conditions imposed at the edges of the unit square
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Perturbation

A small initial pressure perturbation:

p(x, y, 0) = e−1.21y + ηe−121((x−0.3)2+(y−0.3)2), η = 10−3

50× 50
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Shallow Water System with Coriolis Force


ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 +

g

2
h2
)
x

+ (huv)y = −ghBx + fhv

(hv)t + (huv)x +
(
hv2 +

g

2
h2
)
x

= −ghBy − fhu

• h: water height

• u, v: fluid velocity

• g: gravitational constant

• B ≡ 0 – bottom topography

• f = 1/ε – Coriolis parameter
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Dimensional Analysis
Introduce

x̂ :=
x

`0
, ŷ :=

y

`0
, ĥ :=

h

h0
, û :=

u

w0
, v̂ :=

v

w0
.

Substituting them into the SWE and dropping the hats in the notations, we
obtain the dimensionless form:

ht + (hu)x + (hv)y = 0,

(hu)t +

(
hu2 +

1

ε2

h2

2

)
x

+ (huv)y =
1

ε
hv,

(hv)t + (huv)x +

(
hv2 +

1

ε2

h2

2

)
y

= −1

ε
hu,

in which
Fr :=

w0√
gh0

= ε

is the reference Froude number
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Explicit Discretization
Eigenvalues of the flux Jacobian:{

u± 1

ε

√
h, u

}
and

{
v ± 1

ε

√
h, v

}

This leads to the CFL condition

∆texpl ≤ ν ·min

 ∆x

max
u,h

{
|u|+ 1

ε

√
h
}, ∆y

max
v,h

{
|v|+ 1

ε

√
h
}
 = O(ε∆min).

where ∆min := min(∆x,∆y)

• 0 < ν ≤ 1 is the CFL number

• Numerical diffusion: O(λmax∆x) = O(ε−1∆x).

• We must choose ∆x ≈ ε to control numerical diffusion and the stability
condition becomes

∆t = O(ε2)
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Low Froude Number Flows

Low Froude number regime (0 < ε� 1) =⇒ very large propagation speeds

Explicit methods:

• very restrictive time and space dicretization steps, typically proportional
to ε due to the CFL condition;

• too computationally expensive and typically impractical.

Implicit schemes:

• uniformly stable for 0 < ε < 1;

• may be inconsistent with the limit problem;

• may provide a wrong solution in the zero Froude number limit.

Goal: to design robust numerical algorithms, whose accuracy and efficiency
is independent of ε
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Asymptotic Perserving Methods
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Asymptotic-Preserving (AP) Methods

Introduced in [Klar; 1998, Jin; 1999], see also [Jin, Levermore; 1991],

[Golse, Jin, Levermore; 1999].

Idea:

• asymptotic passage from one model to another should be preserved at
the discrete level;

• for a fixed mesh size and time step, AP method should automatically
transform into a stable discretization of the limitting model as ε→ 0.

0.4 Outline 13

resolve these scales and automatically switch to the macroscopic behaviour when the
mesh-sizes do not resolve the micro-scales. In other words, the AP-schemes catch the
numerical transition from microscopic to macroscopic scales, in some difficult situations
as singularly perturbed problems, however their primary focus is not to reduce the
computational costs, as the multiscale methods do.

P ε,h P ε

P 0,h P 0

ε→
0

ε→
0

h → 0

h → 0

Figure 7: Properties of AP-schemes

0.4 Outline

The present work is a review of several Asymptotic-Preserving schemes, construc-
ted in the kinetic and fluid framework. Inevitably, the choice of the model problems
is related with the author’s knowledge and with the concept of providing the reader
with the most important features of AP-schemes. These schemes can be designed for
several other singularly perturbed problems, that admit asymptotic behaviours/regimes.

An overview of the subject of this manuscript is :

– Chapter 1 deals with the Boltzmann equation in the drift-diffusion limit
– Chapter 2 discusses the Vlasov-Poisson system in the quasi-neutral limit
– Chapter 3 treats the subject of the Vlasov equation in the high-field limit and

considering variable Larmor radii
– Chapter 4 introduces an Asymptotic-Preserving scheme for a highly elliptic po-

tential equation
– Chapter 5 deals finally with a highly anisotropic, nonlinear, degenerate parabolic

temperature equation.
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Hyperbolic Flux Splitting

Key idea: Split the stiff pressure term [Haack, Jin, Liu; 2012]



ht + α(hu)x + α(hv)y + (1− α)(hu)x + (1− α)(hv)y = 0,

(hu)t +

(
hu2 +

1
2h

2 − a(t)h

ε2

)
x

+ (huv)y +
a(t)

ε2
hx =

1

ε
hv,

(hv)t + (huv)x +

(
hv2 +

1
2h

2 − a(t)h

ε2

)
y

+
a(t)

ε2
hy = −1

ε
hu.

This system can be written in the following vector form:

Ut + F̃ (U)x + G̃(U)y︸ ︷︷ ︸
non-stiff terms

+F̂ (U)x + Ĝ(U)y︸ ︷︷ ︸
stiff terms

= S(U)︸ ︷︷ ︸
source terms

How to choose parameters α and a(t)?
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Hyperbolic Flux Splitting

Ut + F̃ (U)x + G̃(U)y︸ ︷︷ ︸
non-stiff terms

nonlinear part

+ F̂ (U)x + Ĝ(U)y︸ ︷︷ ︸
stiff terms

= S(U)︸ ︷︷ ︸
source terms

linear part

Need to ensure: Ut + F̃ (U)x + G̃(U)y = 0 is both nonstiff and hyperbolic

Eigenvalues of the Jacobians ∂F̃ /∂U and ∂G̃/∂U :

{
u±

√
(1− α)u2 + α

h− a(t)

ε2
, u

}
,

{
v ±

√
(1− α)v2 + α

h− a(t)

ε2
, v

}

We then take
α = ε2 and a(t) = min

(x,y)∈Ω
h(x, y, t)
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Discretization of the Split System

Un+1 = Un + ∆t F̃ (U)nx + ∆tG̃(U)ny︸ ︷︷ ︸
nonlinear part, explicit

+ F̂ (U)n+1
x + Ĝ(U)n+1

y = S(U)n+1︸ ︷︷ ︸
linear part, implicit

• Nonstiff nonlinear part is treated using the second-order central-upwind
scheme

• Stiff linear part reduces to a linear elliptic equation for hn+1 and
straigtforward computations of (hu)n+1 and (hv)n+1

∆t ≤ ν·min

 ∆x

max
u,h

{
|u|+

√
(1− α)u2 + αh−a(t)

ε2

},

∆y

max
v,h

{
|v|+

√
(1− α)v2 + αh−a(t)

ε2

}
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Proof of the AP Property

Theorem. The proposed hyperbolic flux splitting method coupled with the described fully

discrete scheme is asymptotic preserving in the sense that it provides a consistent and

stable discretization of the limiting system as the Froude number ε→ 0.

Remark. In practice, the fully discrete scheme is both second-order accurate in space

and time as we increase a temporal order of accuracy to the second one by implementing

a two-stage globally stiffly accurate IMEX Runge-Kutta scheme ARS(2,2,2). The proof

holds as well.
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Example — 2-D Stationary Vortex
[E. Audusse, R. Klein, D. D. Nguyen, and S. Vater, 2011]

h(r, 0) = 1+ε
2



5

2
(1 + 5ε2)r2

1

10
(1 + 5ε2) + 2r −

1

2
−

5

2
r2 + ε2(4 ln(5r) +

7

2
− 20r +

25

2
r2)

1

5
(1− 10ε+ 4ε2 ln 2),

u(x, y, 0) = −εyΥ(r), v(x, y, 0) = εxΥ(r), Υ(r) :=


5, r <

1

5
2

r
− 5,

1

5
≤ r <

2

5

0, r ≥
2

5
,

Domain: [−1, 1]× [−1, 1], r :=
√
x2 + y2

Boundary conditions: a zero-order extrapolation in both x- and y-directions

Numerical Tests:

• Experimental order of convergence

• Comparison of non-AP and AP methods for various values of ε
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Experimental order of convergence

L∞-errors for h computed using the AP scheme on several different grids for ε = 0.1

(left) and 10−3
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Comparison of non-AP and AP methods, ε = 1
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Comparison of non-AP and AP methods, ε = 0.1
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Comparison of non-AP and AP methods, ε = 0.01
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Comparison of non-AP and AP methods, CPU times

ε = 1 ε = 0.1 ε = 0.01

Grid AP Explicit AP Explicit AP Explicit

40× 40 0.18 s 0.16 s 0.06 s 1.25 s 0.03 s 10.53 s

80× 80 1.57 s 1.32 s 0.29 s 4.73 s 0.18 s 47.0 s

200× 200 24.11 s 21.36 s 5.36 s 163.36 s 3.37 s 804.15 s
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Smaller values: ε = 10−3 and ε = 10−4

Smaller times: 200× 200, larger times: 500× 500
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THANK YOU!
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