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Outline of the talk:

• Review of the classical theory.

• Semi-discrete approximations for PDEs.
• Fully-discrete approximations for PDEs or ODEs.

• Error Inhibiting Schemes for ODEs.

• Error Inhibiting Schemes for PDEs.

• Block Finite Difference schemes for the Heat equation.

• Summary.
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Semi-discrete approximations for PDEs.

Review of the classical theory

Semi-discrete approximations for PDEs.

Consider the differential problem:

∂ u

∂t
= P

(

∂

∂x

)

u , x ∈ Ω ⊂ R
d , t ≥ 0

u(t = 0) = f .

It is assumed that this problem is well posed, In particular

∃K (t) <∞ s.t. ||u(t)|| ≤ K (t)||f ||. Typically K (t) = Keαt .
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Semi-discrete approximations for PDEs.

Let Q be the discretization of P
(

∂
∂x

)

where we assume:

Assumption 1: Q is semibound in some equivalent scalar

product (·, ·)H = (·,H·), i.e.

(w,Qw)H ≤ α (w,w)H = α ‖w‖2
H
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Semi-discrete approximations for PDEs.

Let Q be the discretization of P
(

∂
∂x

)

where we assume:

Assumption 1: Q is semibound in some equivalent scalar

product (·, ·)H = (·,H·), i.e.

(w,Qw)H ≤ α (w,w)H = α ‖w‖2
H

Assumption 2: The local truncation error of Q is Te and is

defined by Te = Pw − Qw,

where w(x) is a smooth function and w is the

projection of w(x) onto the grid. Te
N→∞
−−−−→ 0
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Semi-discrete approximations for PDEs.

Example:

∂ u

∂t
=

∂2 u

∂x2
+ F (x , t) , x ∈ [0,2π) , t ≥ 0

u(t = 0) = f (x)

with periodic boundary conditions. Consider the approximation:

uxx ≈
1

h2













. . .
. . .

. . . 1

1 −2 1

1 −2 1

1
. . .

. . .
. . .













u

= D+D−u .

Then

(Te)j =
h2

12

(

uj

)

xxxx
+ O(h4) and (w,D+D− w) ≤ 0
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Semi-discrete approximations for PDEs.

Consider the semi–discrete approximation:

∂ v

∂t
= Qv , t ≥ 0

v(t = 0) = f .

Proposition: Under Assumptions 1–3 The semi–discrete

approximation converges.
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Semi-discrete approximations for PDEs.

Proposition: Under Assumptions 1–3 The semi–discrete

approximation converges.

Proof: Let u is the projection of u(x , t) onto the grid. Then

∂ u

∂t
= Pu = Qu + Te

∂ v

∂t
= Qv

Let E = u − v then

∂ E

∂t
= QE + Te
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Semi-discrete approximations for PDEs.

∂ E

∂t
= QE + Te

By taking the H scalar product with E:

(

E,
∂ E

∂t

)

H

=
1

2

∂

∂t
(E,E)H = ‖E‖H

∂

∂t
||E‖H

= (E,QE)H + (E,Te)H

≤ α ‖E‖2
H + ‖E‖H ‖Te‖H

Thus
∂

∂t
‖E‖H ≤ α ‖E‖H + ‖Te‖H

Therefore:

‖E‖H (t) ≤ ‖E‖H (0)eαt +
eαt − 1

α
max

0≤τ≤t
‖Te‖H

N→∞
−−−−→ 0
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Fully-discrete approximations for PDEs or ODEs.

Fully-discrete approximations for PDEs or ODEs.

Consider the differential problem:

∂ u

∂t
= P u

u(t = 0) = f .

It is assumed that this problem is well posed, In particular

∃K (t) <∞ s.t. ||u(t)|| ≤ K (t)||f ||. Typically K (t) = Keαt .

Remark: in order to simplify the explanation we consider the

constant coefficients P.
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Fully-discrete approximations for PDEs or ODEs.

Consider the multistep approximation:

vn+1 =

p
∑

j=0

Qjvn−j

where tn = n∆t and vn is the approximation to u(tn).
Denoting:

Un = (u(tn),u(tn−1), ...,u(tn−p))
T

Vn = (vn, vn−1, ..., vn−p)
T .
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Fully-discrete approximations for PDEs or ODEs.

The scheme can be written as

Vn+1 =















Q0 Q1 ... Qn−p

I

0 I
. . .

0 ... I 0















Vn = Q Vn
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Fully-discrete approximations for PDEs or ODEs.

We assume:

Assumption 1: In some equivalent norm ‖ · ‖H

‖Q‖H ≤ 1 + α∆t
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Fully-discrete approximations for PDEs or ODEs.

We assume:

Assumption 1: In some equivalent norm ‖ · ‖H

‖Q‖H ≤ 1 + α∆t

Assumption 2: The local truncation error of Q is Tn which is

defined by

∆tTn = Wn+1 − QWn

where Wn+1 is the solution of the PDE/ODE whoe

’initial condition’ is Wn at tn. It is assumed that

Tn
N→∞
−−−−→ 0
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Fully-discrete approximations for PDEs or ODEs.

Similar to the semi-discrete case

Un+1 = QUn + ∆tTn

Vn+1 = QVn

Let En = Un − Vn then

En+1 = QEn + ∆tTn
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Fully-discrete approximations for PDEs or ODEs.

Denoting by

Vn = S∆t(tn, tν)Vν (= Qn−νVν for constant coefficients)

Then, using the discrete Duhamel’s principle

En = S∆t (tn,0)E0 + ∆t

n−1
∑

ν=0

S∆t (tn, tν+1)Tν ,

or, equivalently

En = QnE0 + ∆t

n−1
∑

ν=0

Qn−ν−1Tν .

Therefore, using ‖Qµ‖H ≤ (1 + α∆t)µ ≈ eαtµ :

‖En‖H ≤ ‖E0‖H eαt +
eαt − 1

α
max

0≤µ≤0
‖Tµ‖H

N→∞
−−−−→ 0
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Fully-discrete approximations for PDEs or ODEs.

Indeed, for all the classical schemes, e.g.

ODE PDE

Euler Forward Euler

Backward Euler Backward Euler

Trapezoid Lax–Friedrichs

Multistep methods Lax–Wendroff

Runge–Kutta methods Crank–Nicholson

Leap–Frog

Compact schemes

Deferred–correction methods

FE (Strang and Fix)

‖En‖H = O
(

‖Tµ‖H

)

.
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Fully-discrete approximations for PDEs or ODEs.

Observation

∂ E

∂t
= QE +∆tTe and En+1 = QEn + Tn

are exact while

‖E‖H (t) ≤ ‖E‖H (0)eαt +
eαt − 1

α
max

0≤τ≤t
‖Te‖H

N→∞
−−−−→ 0

and

‖En‖H ≤ ‖E0‖H eαt +
eαt − 1

α
max

0≤µ≤0
‖Tµ‖H

N→∞
−−−−→ 0

are estimates!
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Fully-discrete approximations for PDEs or ODEs.

Error inhibiting schemes for ODEs
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Ordinary Differential Equations.

Consider the differential problem:

∂ u

∂t
= f u , f = const

u(t = 0) = u0 .

It can be solved using a s steps multystep method such as the

Adams-Bashforth scheme.

The first Dahlquist barrier states that any explicit, s step,

linear multistep method can be of order less or equal to s.

High Order Error Inhibiting Schemes for Differential Equations Adi Ditkowski



Outline Introduction Ordinary Differential Equations. Examples The Heat Equations Post–processing Summary

Constructing an error inhibiting method
Define vectors of length s that contains the exact and numerical

solutions at times (tn + j∆t/s) for j = 0, . . . , s − 1

Un =
(

u(tn+(s−1)/s), . . . ,u(tn+1/s),u(tn)
)T
, (1)

Vn =
(

vn+(s−1)/s , . . . , vn+1/s, vn

)T
. (2)

This scheme uses s terms for generating the next s terms,

unlike explicit linear multistep methods which use s terms to

generate one term.

The block one-step method can be written as:

Vn+1 = QVn where Q = A +∆tBf (Vn, tn)

This particular formulation is called a Type 3 DIMSIM in Butcher’s

1993 paper. Implicit one-step: Shampine, L.F., Watts, H.A 1969.
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Constructing an error inhibiting method

Suppose we construct a method such that:

C1. rank(A) = 1.

C2. Its non-zero eigenvalue is equal to 1 and its corresponding

eigenvector is

(1, . . . ,1)T .

Note that A can be diagonalized.

C3. The matrices A and B are constructed such that:

‖Qτττ ν‖ ≤ O(∆t) ‖τττν‖ (note : ∆t τττn = Un+1 − QnUn)

This is accomplished by requiring the local truncation error

to live in the null space of A.
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Constructing an error inhibiting method

Property [C2] assures that the method produces the exact

solution for the trivial case ut = 0, i.e. f = 0 .

Note that the term ∆tBf is only an O(∆t) perturbation to A, so

the matrix Q will have one eigenvalue, z1 = 1 + O(∆t) whose

eigenvector has the form

ψ1 = (1 + O(∆t), . . . ,1 + O(∆t))T

and the rest of the eigenvalues satisfy zj = O(∆t) for

j = 2, . . . , s. Since the ‖Q‖ = 1 + O(∆t) we can conclude that

this scheme is stable.

Property [C3] makes the error inhibiting magic happen.
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Constructing an error inhibiting method

Recall that we defined the truncation error

∆t τττn = Un+1 − QnUn.
The global error is En = Un − Vn , and its evolution can be

described, in the linear constant coefficient case, by

En = QnE0 + ∆t

n−1
∑

ν=0

Qn−µ−1τττν .

• The initial error E0, which is assumed to very small.

• The last term in the sum, ∆t τττn−1, is by definition

O(∆t)‖τττ n−1‖.

• The rest of the sum, ∆t
∑n−2

ν=0 Qn−ν−1τττν , has the potential

of accumulating – this is the term we need to bound!
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Constructing an error inhibiting method:
Recall that [C3] ensures that

‖Qτττν‖ ≤ O(∆t) ‖τττν‖ .

∥

∥

∥

∥

∥

∆t

n−2
∑

ν=0

Qn−ν−1τττν

∥

∥

∥

∥

∥

≤ ∆t

n−2
∑

ν=0

∥

∥

∥Qn−ν−2
∥

∥

∥ ‖Qτττν‖

≤ ∆t

n−2
∑

ν=0

‖Q‖n−ν−2 O(∆t)‖τττν‖ due to [C3]

≤ O(∆t)

(

max
ν=0,...,n−2

‖τττν‖

)

∆t

n−2
∑

ν=0

(1 + c∆t)n−ν−2

≤ O(∆t)

(

max
ν=0,...,n−2

‖τττν‖

)

.

This is one order higher than you would normally get!
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Constructing an error inhibiting method: extension to

non-constant coefficient and nonlinear

Is this still true for the more general, nonlinear case?

Yes! We proved this in the paper:

Adi Ditkowski, and Sigal Gottlieb. "Error Inhibiting Block

One-step Schemes for Ordinary Differential Equations." Journal

of Scientific Computing (2017): 1-21.

You can read the ArXiv version at

https://arxiv.org/abs/1701.08568

The numerical results that follow demonstrate that this works.
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A third order error inhibiting method with s = 2.

Our first error inhibiting scheme takes the values of the solution

at the times tn and t
n+ 1

2
and obtains the solution at the

time-level tn+1 and tn+ 3
2
.

The exact solution vector for this problem is

Un =
(

u(tn+1/2),u(tn)
)T

and the vector of numerical

approximations is Vn =
(

vn+1/2, vn

)T
.

The scheme is given by:

Vn+1 =
1

6

(

−1 7

−1 7

)

Vn+
∆t

24

(

55 −17

25 1

)

(

f
(

v
n+ 1

2
, t

n+ 1
2

)

f (vn, tn)

)

,
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A third order error inhibiting method with s = 2.

This method has truncation error

τττn =
23

576

(

7

1

)

d3

dt3
u(tn)∆t2 + O(∆t3) .

The matrix A can be diagonalized as follows:

A =
1

6

(

−1 7

−1 7

)

=
1

6

(

1 7

1 1

)(

1

0

)(

−1 7

1 −1

)

Note that the leading order of the truncation error is in the

space of the second eigenvector of A, the one that corresponds

to the zero eigenvalue. This is what gives the error inhibiting

property.
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EIS on a nonlinear scalar equation
Given the nonlinear scalar equation of the form:

ut = −u2 = f (u) , t ≥ 0

u(t = 0) = 1 . (3)

We see the truncation error is only second order but the global

error is third order:

10
−2

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

∆ t

||
E

n
||

 

 

err v(1),   slope: 2.95536

err v(2),   slope: 2.96259

tr err v(1),slope: 1.93739

tr err v(2),slope: 1.94015
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EIS on a nonlinear system
This works on a nonlinear system as well! Consider the van der

Pol system
u
(1)
t = u(2)

u
(2)
t = 0.1[1 − (u(1))2]u(2) − u(1) (4)

Once again, we see that the convergence rate is indeed third

order:

∆ t
10

-3
10

-2

||
E

||

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

v(2) first component, slope=2.99511
v(2) second component, slope2.99412
v(1) first component, slope=2.96890
v(1) second component, slope=3.20035
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Not all Type 3 DIMSIM methods are error inhibiting!

It is important to note that not all Type 3 DIMSIM methods are

error inhibiting!

The property that the local truncation error lives in the space

spanned by the eigenvectors of A that correspond to the zero

eigenvalues is needed for the error inhibiting behavior to occur,

and this property is not generally satisfied.

To observe this, we study the DIMSIM scheme of Type 3

presented by J. C. Butcher in his 1993 paper.
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Not all Type 3 DIMSIM methods are error inhibiting!

The scheme
(

vn+3

vn+2

)

=
1

4

(

7 −3

7 −3

)(

vn+1

vn

)

+
∆t

8

(

9 −7

−3 −3

) (

f (vn+1, tn+1)
f (vn, tn)

)

was given by Butcher in his 1993 paper on DIMSIM methods.

This scheme has truncation error

τττn =
1

48

(

23

3

)

d3

dt3
u(tn)∆t2 + O(∆t3) .
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Not all Type 3 DIMSIM methods are error inhibiting!
The matrix A can be diagonalized as follows:

A =
1

4

(

7 −3

7 −3

)

(5)

=

(

1 3/7
1 1

)(

1

0

)

1

4

(

7 −3

−7 7

)

.(6)

The truncation error τττn can be written as a linear combination

of the two eigenvectors of A as follows:

τττn =

[

19

24

(

1

1

)

−
35

48

(

3/7
1

)]

d3

dt3
u(tn)∆t2 + O(∆t3) . (7)

Unlike the error inhibiting scheme, here the first term in this

expansion is of the order of O(τττ n) = O(∆t2) so a term of order

∆tO(τττ n) = O(∆t3) is accumulated at each time step, and the

global error is second order.
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Not all Type 3 DIMSIM methods are error inhibiting!
Both this method and our error inhibiting method satisfy the

order conditions in Theorem 3.1 of Butcher’s paper only up to

second order (p = 2). But this method gives second order

accuracy, while our error inhibiting method gave third order

accuracy in the same example.

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

∆ t

||
E

n
||

 

 

err v(1),   slope: 2.00403
err v(2),   slope: 2.01850

tr err v(1),slope: 1.92748
tr err v(2),slope: 1.94065

∆ t
10

-3
10

-2

||
E

||

10
-7

10
-6

10
-5

10
-4

10
-3

v(2) first component, slope=1.97144
v(2) second component, slope1.97803
v(1) first component, slope=2.00454
v(1) second component, slope=2.00191
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EIS vs. Type 3 DIMSIM

EIS scheme Type 3 DIMSIM

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

 

 

(1,1) subspace

Null space of A, (7,1)
Truncation Error, T

e
, (7,1)

Q Te

Q
2
 Te

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

 

 

(1,1) subspace

Null space of A, (3,7)
Truncation Error, T

e
, (23,3)

Q Te

Q
2
 Te

τττ , Q τττ and Q2 τττ , Q = A +∆tB for both schemes (∆t = 1/20).

High Order Error Inhibiting Schemes for Differential Equations Adi Ditkowski



Outline Introduction Ordinary Differential Equations. Examples The Heat Equations Post–processing Summary

A fourth order error inhibiting methods with s = 3.

This method takes the values of the solution at the times

tn, tn+ 1
3
, and tn+ 2

3

and uses these three values to obtain the solution at the

time-level

tn+1, tn+ 4
3
, and tn+ 5

3
.

The exact solution vector is given by

Un =
(

u(tn+2/3),u(tn+1/3),u(tn)
)T
, and the vector of numerical

approximations is Vn =
(

vn+2/3, vn+1/3, vn

)T
.
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A fourth order error inhibiting methods with s = 3.
This method is given by:

Vn+1 =
1

768





467 −1996 2297

467 −1996 2297

467 −1996 2297



Vn +

∆t

1152





5439 −6046 3058

2399 −1694 1362

703 354 626









f
(

vn+2/3, tn+2/3

)

f
(

vn+1/3, tn+1/3

)

f (vn, tn)





which has a local truncation error of third order,

τττn =
1

373248





43699

12787

2227





d4

dt4
u(tn)∆t3 + O(∆t4)

It can be verified that

Qnτττn = O(∆tτττn) = O(∆t4) .
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A fourth order error inhibiting methods with s = 3.

To demonstrate this result we revisit the two examples above:

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

∆ t

||
E

n
||

 

 

err v(1),   slope: 3.96530
err v(2),   slope: 3.98577
err v(3),   slope: 4.00815
tr err v(1),slope: 2.93687
tr err v(2),slope: 2.93971
tr err v(3),slope: 2.94414

∆ t
0.005 0.01 0.02 0.05

||
E

||

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

v(3) first component, slope=3.75686
v(3) second component, slope=3.91367
v(2) first component, slope=3.86984
v(2) second component, slope=4.74651
v(1) first component, slope=3.95006
v(1) second component, slope=4.06228

Although the local truncation errors are only third order, the

global errors are fourth order.
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Error inhibiting schemes for PDEs
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Block Finite Difference, EIS schemes for the Heat equation: 2 points block, 3rd order scheme

Block Finite Difference, EIS schemes ,for the Heat

equation: 2 points block, 3rd order scheme

Consider the Heat equation

∂ u

∂t
=

∂2 u

∂x2
, x ∈ [0,2π) , t ≥ 0

u(t = 0) = f (x)

with periodic boundary conditions.

we use the grid, xj = j h, xj+1/2 = j h + h/2, h = 2π/(N + 1)
(altogether 2(N + 1) points with spacing of h/2).

x_0 =0 x_1 x_2 x_3 x_{N−1} x_N 2 pi
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Block Finite Difference, EIS schemes for the Heat equation: 2 points block, 3rd order scheme

xj = j h, xj+1/2 = j h + h/2, h = 2π/(N + 1) .

x_0 =0 x_1 x_2 x_3 x_{N−1} x_N 2 pi

and the approximation:

uxx ≈
1

(h/2)2
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


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







u
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Block Finite Difference, EIS schemes for the Heat equation: 2 points block, 3rd order scheme

The truncation error is

(Te)j =
1

12

(

h

2

)2
(

uj

)

xxxx
+

c

[

(

h

2

)

(

uj

)

xxx
+

1

2

(

h

2

)2
(

uj

)

xxxx

]

+ O(h3) = O(h)

(Te)j+ 1
2
=

1

12

(

h

2

)2 (

u
j+ 1

2

)

xxxx
+

c

[

−

(

h

2

)

(

uj+ 1
2

)

xxx
+

1

2

(

h

2

)2
(

uj+ 1
2

)

xxxx

]

+ O(h3)

= O(h)

Te = O(h)
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Block Finite Difference, EIS schemes for the Heat equation: 2 points block, 3rd order scheme

If the initial condition is

vj(0) = eiωxj ; ω2h ≪ 1

Then

(v)j (t) = e−ω2t

[(

1−
(1 + 4c)ω2t

12 − 24c

(

ωh

2

)2

+ O(h4)

)

eiωxj+

(

−
ic

4 − 8c

(

ωh

2

)3

+ O(h5)

)

e−i(ω−sign(ω)(N/2))xj

]

The same expression hold for x
j+ 1

2
.

Therefore the scheme is 2nd order. It is 3rd order if c = −1/4.
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Block Finite Difference, EIS schemes for the Heat equation: 2 points block, 3rd order scheme

Indeed:

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

number of grid points

||
E

||
 h

 

 

c=0        , slope: −2.00410

c=1/6     , slope: −2.00503

c=−1/6    , slope: −2.12895

c=−1/4    , slope: −3.01426
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Observation: for the 2 points block, the solution is:

(v)j (t) = e−ω2t

[(

1−
(1 + 4c)ω2t

12 − 24c

(

ωh

2

)2

+ O(h4)

)

eiωxj+

(

−
ic

4 − 8c

(

ωh

2

)3

+ O(h5)

)

e−i(ω−sign(ω)(N/2))xj

]

For the 3rd order scheme, c = −1/4, the error is highly

oscillatory.
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Observation: for the 2 points block, the solution is:

(v)j (t) = e−ω2t

[(

1−
(1 + 4c)ω2t

12 − 24c

(

ωh

2

)2

+ O(h4)

)

eiωxj+

(

−
ic

4 − 8c

(

ωh

2

)3

+ O(h5)

)

e−i(ω−sign(ω)(N/2))xj

]

For the 3rd order scheme, c = −1/4, the error is highly

oscillatory.

N = 16 N = 64 N = 256
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x 10
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It was suggested by Jennifer k. Ryan that this term could be

filtered at the final time. This method is called

"post–processing"

10
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2
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3
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4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of grid points

||
E

||
 h

 

 

  spectral filter, slope: −3.99978

* local filter     , slope: −4.04835

  no filter         , slope: −3.01298
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2 points block, 5th order scheme

2 points block, 5th order scheme

Consider the approximation:

uxx ≈
1

12(h/2)2
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2 points block, 5th order scheme

Using the same analysis as in the 3rd order scheme, It was

shown that this is a 5th order scheme (6th order with post

processing).

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

number of grid points

||
E

||
 h

 

 

c=0,             slope: −3.97559

c=−4/13,         slope: −5.03268

c=−4/13 pp,      slope: −5.98868
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Is it a finite difference scheme?

• Note that we are talking on blocks rather than points.
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Is it a finite difference scheme?

• Note that we are talking on blocks rather than points.

• In

M. Zhang and C-W Shu, AN ANALYSIS OF THREE

DIFFERENT FORMULATIONS OF THE

DISCONTINUOUS GALERKIN METHOD FOR

DIFFUSION EQUATIONS, Mathematical Models and

Methods in Applied Sciences Vol. 13, No. 3 (2003)

595–413.

The authors derived DCG schemes for the heat equations

and observed the same phenomenon.

This paper was motivating the current work.
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Summary

• We showed that schemes can be constructed such that

their convergence rates are higher than their truncation

errors.

It was done by having the truncation errors lies in a

different subspace than the solution and constructing the

numerical operators such that they attenuate the truncation

errors and inhibit them from accumulating over time.
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Summary

• We showed that schemes can be constructed such that

their convergence rates are higher than their truncation

errors.

It was done by having the truncation errors lies in a

different subspace than the solution and constructing the

numerical operators such that they attenuate the truncation

errors and inhibit them from accumulating over time.

• This methodology may be applied to other numerical

methods, such as finite elements and Discontinuous

Galerkin (DG).
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THANK YOU !
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